code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { '''deepmind/language-perceiver''': '''https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json''', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class A ( snake_case__ ): __UpperCAmelCase : Optional[int] = '''perceiver''' def __init__(self : Any , __UpperCAmelCase : Optional[Any]=2_5_6 , __UpperCAmelCase : List[str]=1_2_8_0 , __UpperCAmelCase : Dict=7_6_8 , __UpperCAmelCase : Union[str, Any]=1 , __UpperCAmelCase : int=2_6 , __UpperCAmelCase : List[Any]=8 , __UpperCAmelCase : Any=8 , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : Any=None , __UpperCAmelCase : List[str]="kv" , __UpperCAmelCase : Optional[Any]=1 , __UpperCAmelCase : int=1 , __UpperCAmelCase : int="gelu" , __UpperCAmelCase : Optional[Any]=0.1 , __UpperCAmelCase : Tuple=0.02 , __UpperCAmelCase : List[Any]=1E-12 , __UpperCAmelCase : Any=True , __UpperCAmelCase : List[str]=2_6_2 , __UpperCAmelCase : Dict=2_0_4_8 , __UpperCAmelCase : Optional[Any]=5_6 , __UpperCAmelCase : Optional[int]=[3_6_8, 4_9_6] , __UpperCAmelCase : Any=1_6 , __UpperCAmelCase : List[Any]=1_9_2_0 , __UpperCAmelCase : Tuple=1_6 , __UpperCAmelCase : List[str]=[1, 1_6, 2_2_4, 2_2_4] , **__UpperCAmelCase : Optional[Any] , ) -> Dict: """simple docstring""" super().__init__(**_A ) UpperCAmelCase__ = num_latents UpperCAmelCase__ = d_latents UpperCAmelCase__ = d_model UpperCAmelCase__ = num_blocks UpperCAmelCase__ = num_self_attends_per_block UpperCAmelCase__ = num_self_attention_heads UpperCAmelCase__ = num_cross_attention_heads UpperCAmelCase__ = qk_channels UpperCAmelCase__ = v_channels UpperCAmelCase__ = cross_attention_shape_for_attention UpperCAmelCase__ = self_attention_widening_factor UpperCAmelCase__ = cross_attention_widening_factor UpperCAmelCase__ = hidden_act UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = initializer_range UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = use_query_residual # masked language modeling attributes UpperCAmelCase__ = vocab_size UpperCAmelCase__ = max_position_embeddings # image classification attributes UpperCAmelCase__ = image_size # flow attributes UpperCAmelCase__ = train_size # multimodal autoencoding attributes UpperCAmelCase__ = num_frames UpperCAmelCase__ = audio_samples_per_frame UpperCAmelCase__ = samples_per_patch UpperCAmelCase__ = output_shape class A ( snake_case__ ): @property def lowercase_ (self : Any ) -> Optional[int]: """simple docstring""" if self.task == "multiple-choice": UpperCAmelCase__ = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCAmelCase__ = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ("inputs", dynamic_axis), ("attention_mask", dynamic_axis), ] ) @property def lowercase_ (self : str ) -> List[str]: """simple docstring""" return 1E-4 def lowercase_ (self : Optional[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Tuple = -1 , __UpperCAmelCase : int = -1 , __UpperCAmelCase : Any = -1 , __UpperCAmelCase : Dict = False , __UpperCAmelCase : Dict = None , __UpperCAmelCase : str = 3 , __UpperCAmelCase : Any = 4_0 , __UpperCAmelCase : List[Any] = 4_0 , ) -> Dict: """simple docstring""" if isinstance(_A , _A ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCAmelCase__ = compute_effective_axis_dimension( _A , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCAmelCase__ = preprocessor.num_special_tokens_to_add(_A ) UpperCAmelCase__ = compute_effective_axis_dimension( _A , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_A ) # Generate dummy inputs according to compute batch and sequence UpperCAmelCase__ = [' '.join(["a"] ) * seq_length] * batch_size UpperCAmelCase__ = dict(preprocessor(_A , return_tensors=_A ) ) UpperCAmelCase__ = inputs.pop("input_ids" ) return inputs elif isinstance(_A , _A ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCAmelCase__ = compute_effective_axis_dimension(_A , fixed_dimension=OnnxConfig.default_fixed_batch ) UpperCAmelCase__ = self._generate_dummy_images(_A , _A , _A , _A ) UpperCAmelCase__ = dict(preprocessor(images=_A , return_tensors=_A ) ) UpperCAmelCase__ = inputs.pop("pixel_values" ) return inputs else: raise ValueError( "Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor." )
65
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class _A( unittest.TestCase ): """simple docstring""" def __init__( self , _A , _A=7 , _A=3 , _A=30 , _A=400 , _A=True , _A=None , _A=True , _A=[0.5, 0.5, 0.5] , _A=[0.5, 0.5, 0.5] , _A=True , _A=1 / 255 , _A=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p __A : List[Any] = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} __A : Union[str, Any] = parent __A : Optional[int] = batch_size __A : int = num_channels __A : int = min_resolution __A : Any = max_resolution __A : List[Any] = do_resize __A : List[Any] = size __A : Union[str, Any] = do_normalize __A : Optional[int] = image_mean __A : Optional[int] = image_std __A : int = do_rescale __A : str = rescale_factor __A : Tuple = do_pad def UpperCAmelCase_ ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCAmelCase_ ( self , _A , _A=False ): if not batched: __A : List[str] = image_inputs[0] if isinstance(_A , Image.Image ): __A , __A : int = image.size else: __A , __A : Any = image.shape[1], image.shape[2] if w < h: __A : List[Any] = int(self.size['shortest_edge'] * h / w ) __A : List[Any] = self.size['shortest_edge'] elif w > h: __A : Union[str, Any] = self.size['shortest_edge'] __A : str = int(self.size['shortest_edge'] * w / h ) else: __A : Dict = self.size['shortest_edge'] __A : str = self.size['shortest_edge'] else: __A : int = [] for image in image_inputs: __A , __A : Optional[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __A : List[str] = max(_A , key=lambda _A : item[0] )[0] __A : str = max(_A , key=lambda _A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _A( snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase : List[str] = YolosImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self ): __A : Dict = YolosImageProcessingTester(self ) @property def UpperCAmelCase_ ( self ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self ): __A : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , 'image_mean' ) ) self.assertTrue(hasattr(_A , 'image_std' ) ) self.assertTrue(hasattr(_A , 'do_normalize' ) ) self.assertTrue(hasattr(_A , 'do_resize' ) ) self.assertTrue(hasattr(_A , 'size' ) ) def UpperCAmelCase_ ( self ): __A : Tuple = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333} ) self.assertEqual(image_processor.do_pad , _A ) __A : Dict = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_A ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , _A ) def UpperCAmelCase_ ( self ): pass def UpperCAmelCase_ ( self ): # Initialize image_processing __A : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input __A : Any = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __A , __A : Optional[int] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A , __A : Optional[Any] = self.image_processor_tester.get_expected_values(_A , batched=_A ) __A : str = image_processing(_A , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self ): # Initialize image_processing __A : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input __A : str = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __A , __A : List[Any] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A : Tuple = image_processing(_A , return_tensors='pt' ).pixel_values __A , __A : Optional[int] = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self ): # Initialize image_processing __A : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input __A : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __A , __A : Union[str, Any] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A : Optional[int] = image_processing(_A , return_tensors='pt' ).pixel_values __A , __A : Optional[int] = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self ): # Initialize image_processings __A : Tuple = self.image_processing_class(**self.image_processor_dict ) __A : Any = self.image_processing_class(do_resize=_A , do_normalize=_A , do_rescale=_A ) # create random PyTorch tensors __A : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors __A : Optional[int] = image_processing_a.pad(_A , return_tensors='pt' ) __A : Optional[int] = image_processing_a(_A , return_tensors='pt' ) self.assertTrue( torch.allclose(encoded_images_with_method['pixel_values'] , encoded_images['pixel_values'] , atol=1e-4 ) ) @slow def UpperCAmelCase_ ( self ): # prepare image and target __A : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: __A : Optional[Any] = json.loads(f.read() ) __A : Optional[Any] = {'image_id': 39769, 'annotations': target} # encode them __A : str = YolosImageProcessor.from_pretrained('hustvl/yolos-small' ) __A : List[Any] = image_processing(images=_A , annotations=_A , return_tensors='pt' ) # verify pixel values __A : List[Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , _A ) __A : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _A , atol=1e-4 ) ) # verify area __A : List[Any] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _A ) ) # verify boxes __A : Any = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _A ) __A : Optional[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _A , atol=1e-3 ) ) # verify image_id __A : Optional[int] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _A ) ) # verify is_crowd __A : str = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _A ) ) # verify class_labels __A : Any = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _A ) ) # verify orig_size __A : int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _A ) ) # verify size __A : str = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _A ) ) @slow def UpperCAmelCase_ ( self ): # prepare image, target and masks_path __A : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: __A : Tuple = json.loads(f.read() ) __A : Any = {'file_name': '000000039769.png', 'image_id': 39769, 'segments_info': target} __A : List[Any] = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them __A : Any = YolosImageProcessor(format='coco_panoptic' ) __A : List[Any] = image_processing(images=_A , annotations=_A , masks_path=_A , return_tensors='pt' ) # verify pixel values __A : Any = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , _A ) __A : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _A , atol=1e-4 ) ) # verify area __A : int = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _A ) ) # verify boxes __A : Optional[int] = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _A ) __A : Optional[Any] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _A , atol=1e-3 ) ) # verify image_id __A : Union[str, Any] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _A ) ) # verify is_crowd __A : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _A ) ) # verify class_labels __A : List[str] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _A ) ) # verify masks __A : Tuple = 822873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , _A ) # verify orig_size __A : str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _A ) ) # verify size __A : int = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _A ) )
280
0
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def lowerCamelCase__ ( a__ : str , a__ : Any , a__ : Tuple , a__ : List[Any] , a__ : Any=True , a__ : Optional[Any]="pt" ) -> Any: UpperCamelCase_ = {"""add_prefix_space""": True} if isinstance(a__ , a__ ) and not line.startswith(""" """ ) else {} UpperCamelCase_ = padding_side return tokenizer( [line] , max_length=a__ , padding="""max_length""" if pad_to_max_length else None , truncation=a__ , return_tensors=a__ , add_special_tokens=a__ , **a__ , ) def lowerCamelCase__ ( a__ : Union[str, Any] , a__ : Optional[int] , a__ : Optional[Any]=None , ) -> str: UpperCamelCase_ = input_ids.ne(a__ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class lowercase_ ( __SCREAMING_SNAKE_CASE ): def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase="train" , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase="" , ): """simple docstring""" super().__init__() UpperCamelCase_ = Path(__UpperCamelCase ).joinpath(type_path + """.source""" ) UpperCamelCase_ = Path(__UpperCamelCase ).joinpath(type_path + """.target""" ) UpperCamelCase_ = self.get_char_lens(self.src_file ) UpperCamelCase_ = max_source_length UpperCamelCase_ = max_target_length assert min(self.src_lens ) > 0, f'''found empty line in {self.src_file}''' UpperCamelCase_ = tokenizer UpperCamelCase_ = prefix if n_obs is not None: UpperCamelCase_ = self.src_lens[:n_obs] UpperCamelCase_ = src_lang UpperCamelCase_ = tgt_lang def __len__( self ): """simple docstring""" return len(self.src_lens ) def __getitem__( self , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = index + 1 # linecache starts at 1 UpperCamelCase_ = self.prefix + linecache.getline(str(self.src_file ) , __UpperCamelCase ).rstrip("""\n""" ) UpperCamelCase_ = linecache.getline(str(self.tgt_file ) , __UpperCamelCase ).rstrip("""\n""" ) assert source_line, f'''empty source line for index {index}''' assert tgt_line, f'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer , __UpperCamelCase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right UpperCamelCase_ = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , __UpperCamelCase ) else self.tokenizer ) UpperCamelCase_ = self.tokenizer.generator if isinstance(self.tokenizer , __UpperCamelCase ) else self.tokenizer UpperCamelCase_ = encode_line(__UpperCamelCase , __UpperCamelCase , self.max_source_length , """right""" ) UpperCamelCase_ = encode_line(__UpperCamelCase , __UpperCamelCase , self.max_target_length , """right""" ) UpperCamelCase_ = source_inputs["""input_ids"""].squeeze() UpperCamelCase_ = target_inputs["""input_ids"""].squeeze() UpperCamelCase_ = source_inputs["""attention_mask"""].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def lowerCamelCase_ ( __UpperCamelCase ): """simple docstring""" return [len(__UpperCamelCase ) for x in Path(__UpperCamelCase ).open().readlines()] def lowerCamelCase_ ( self , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = torch.stack([x["""input_ids"""] for x in batch] ) UpperCamelCase_ = torch.stack([x["""attention_mask"""] for x in batch] ) UpperCamelCase_ = torch.stack([x["""decoder_input_ids"""] for x in batch] ) UpperCamelCase_ = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , __UpperCamelCase ) else self.tokenizer.pad_token_id ) UpperCamelCase_ = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , __UpperCamelCase ) else self.tokenizer.pad_token_id ) UpperCamelCase_ = trim_batch(__UpperCamelCase , __UpperCamelCase ) UpperCamelCase_ , UpperCamelCase_ = trim_batch(__UpperCamelCase , __UpperCamelCase , attention_mask=__UpperCamelCase ) UpperCamelCase_ = { """input_ids""": source_ids, """attention_mask""": source_mask, """decoder_input_ids""": y, } return batch _A = getLogger(__name__) def lowerCamelCase__ ( a__ : List[List] ) -> Dict: return list(itertools.chain.from_iterable(a__ ) ) def lowerCamelCase__ ( a__ : str ) -> None: UpperCamelCase_ = get_git_info() save_json(a__ , os.path.join(a__ , """git_log.json""" ) ) def lowerCamelCase__ ( a__ : Optional[int] , a__ : List[str] , a__ : List[str]=4 , **a__ : Tuple ) -> str: with open(a__ , """w""" ) as f: json.dump(a__ , a__ , indent=a__ , **a__ ) def lowerCamelCase__ ( a__ : Any ) -> Dict: with open(a__ ) as f: return json.load(a__ ) def lowerCamelCase__ ( ) -> List[str]: UpperCamelCase_ = git.Repo(search_parent_directories=a__ ) UpperCamelCase_ = { """repo_id""": str(a__ ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), """hostname""": str(socket.gethostname() ), } return repo_infos def lowerCamelCase__ ( a__ : Callable , a__ : Iterable ) -> List: return list(map(a__ , a__ ) ) def lowerCamelCase__ ( a__ : List[Any] , a__ : Optional[Any] ) -> Optional[int]: with open(a__ , """wb""" ) as f: return pickle.dump(a__ , a__ ) def lowerCamelCase__ ( a__ : List[Any] ) -> Tuple: def remove_articles(a__ : str ): return re.sub(r"""\b(a|an|the)\b""" , """ """ , a__ ) def white_space_fix(a__ : List[str] ): return " ".join(text.split() ) def remove_punc(a__ : Optional[int] ): UpperCamelCase_ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(a__ : Dict ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(a__ ) ) ) ) def lowerCamelCase__ ( a__ : Union[str, Any] , a__ : str ) -> Optional[Any]: UpperCamelCase_ = normalize_answer(a__ ).split() UpperCamelCase_ = normalize_answer(a__ ).split() UpperCamelCase_ = Counter(a__ ) & Counter(a__ ) UpperCamelCase_ = sum(common.values() ) if num_same == 0: return 0 UpperCamelCase_ = 1.0 * num_same / len(a__ ) UpperCamelCase_ = 1.0 * num_same / len(a__ ) UpperCamelCase_ = (2 * precision * recall) / (precision + recall) return fa def lowerCamelCase__ ( a__ : Tuple , a__ : Any ) -> Union[str, Any]: return normalize_answer(a__ ) == normalize_answer(a__ ) def lowerCamelCase__ ( a__ : List[str] , a__ : List[str] ) -> Dict: assert len(a__ ) == len(a__ ) UpperCamelCase_ = 0 for hypo, pred in zip(a__ , a__ ): em += exact_match_score(a__ , a__ ) if len(a__ ) > 0: em /= len(a__ ) return {"em": em} def lowerCamelCase__ ( a__ : Union[str, Any] ) -> Any: return model_prefix.startswith("""rag""" ) def lowerCamelCase__ ( a__ : Tuple , a__ : int , a__ : Union[str, Any] ) -> Tuple: UpperCamelCase_ = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead UpperCamelCase_ = """dropout_rate""" for p in extra_params: if getattr(a__ , a__ , a__ ): if not hasattr(a__ , a__ ) and not hasattr(a__ , equivalent_param[p] ): logger.info("""config doesn't have a `{}` attribute""".format(a__ ) ) delattr(a__ , a__ ) continue UpperCamelCase_ = p if hasattr(a__ , a__ ) else equivalent_param[p] setattr(a__ , a__ , getattr(a__ , a__ ) ) delattr(a__ , a__ ) return hparams, config
261
import comet # From: unbabel-comet import torch import datasets _A = datasets.logging.get_logger(__name__) _A = '''\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel\'s Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = "{COMET}: A Neural Framework for {MT} Evaluation", author = "Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.emnlp-main.213", pages = "2685--2702", } ''' _A = '''\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA\'s or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. ''' _A = ''' COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric(\'comet\') >>> # comet_metric = load_metric(\'comet\', \'wmt20-comet-da\') # you can also choose which model to use >>> source = ["Dem Feuer konnte Einhalt geboten werden", "Schulen und Kindergärten wurden eröffnet."] >>> hypothesis = ["The fire could be stopped", "Schools and kindergartens were open"] >>> reference = ["They were able to control the fire.", "Schools and kindergartens opened"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results["scores"]]) [0.19, 0.92] ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ ( datasets.Metric ): def lowerCamelCase_ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://unbabel.github.io/COMET/html/index.html""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """sources""": datasets.Value("""string""" , id="""sequence""" ), """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/Unbabel/COMET"""] , reference_urls=[ """https://github.com/Unbabel/COMET""", """https://www.aclweb.org/anthology/2020.emnlp-main.213/""", """http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6""", ] , ) def lowerCamelCase_ ( self , __UpperCamelCase ): """simple docstring""" if self.config_name == "default": UpperCamelCase_ = comet.load_from_checkpoint(comet.download_model("""wmt20-comet-da""" ) ) else: UpperCamelCase_ = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=False ): """simple docstring""" if gpus is None: UpperCamelCase_ = 1 if torch.cuda.is_available() else 0 UpperCamelCase_ = {"""src""": sources, """mt""": predictions, """ref""": references} UpperCamelCase_ = [dict(zip(__UpperCamelCase , __UpperCamelCase ) ) for t in zip(*data.values() )] UpperCamelCase_ , UpperCamelCase_ = self.scorer.predict(__UpperCamelCase , gpus=__UpperCamelCase , progress_bar=__UpperCamelCase ) return {"mean_score": mean_score, "scores": scores}
261
1
import os import string import sys __A = 1 << 8 __A = { "tab": ord("\t"), "newline": ord("\r"), "esc": 27, "up": 65 + ARROW_KEY_FLAG, "down": 66 + ARROW_KEY_FLAG, "right": 67 + ARROW_KEY_FLAG, "left": 68 + ARROW_KEY_FLAG, "mod_int": 91, "undefined": sys.maxsize, "interrupt": 3, "insert": 50, "delete": 51, "pg_up": 53, "pg_down": 54, } __A = KEYMAP["up"] __A = KEYMAP["left"] if sys.platform == "win32": __A = [] __A = { b"\xe0H": KEYMAP["up"] - ARROW_KEY_FLAG, b"\x00H": KEYMAP["up"] - ARROW_KEY_FLAG, b"\xe0P": KEYMAP["down"] - ARROW_KEY_FLAG, b"\x00P": KEYMAP["down"] - ARROW_KEY_FLAG, b"\xe0M": KEYMAP["right"] - ARROW_KEY_FLAG, b"\x00M": KEYMAP["right"] - ARROW_KEY_FLAG, b"\xe0K": KEYMAP["left"] - ARROW_KEY_FLAG, b"\x00K": KEYMAP["left"] - ARROW_KEY_FLAG, } for i in range(10): __A = ord(str(i)) def lowerCAmelCase_ ( ) -> Dict: """simple docstring""" if os.name == "nt": import msvcrt lowerCamelCase__: Dict ="mbcs" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(__a ) == 0: # Read the keystroke lowerCamelCase__: Any =msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): lowerCamelCase__: Any =ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: lowerCamelCase__: int =chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["mod_int"] ) ) WIN_CH_BUFFER.append(__a ) if ord(__a ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) lowerCamelCase__: Any =chr(KEYMAP["esc"] ) except KeyError: lowerCamelCase__: Optional[Any] =cha[1] else: lowerCamelCase__: Dict =ch.decode(__a ) else: lowerCamelCase__: Tuple =WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty lowerCamelCase__: List[Any] =sys.stdin.fileno() lowerCamelCase__: Dict =termios.tcgetattr(__a ) try: tty.setraw(__a ) lowerCamelCase__: str =sys.stdin.read(1 ) finally: termios.tcsetattr(__a , termios.TCSADRAIN , __a ) return ch def lowerCAmelCase_ ( ) -> List[Any]: """simple docstring""" lowerCamelCase__: Any =get_raw_chars() if ord(__a ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(__a ) == KEYMAP["esc"]: lowerCamelCase__: Optional[int] =get_raw_chars() if ord(__a ) == KEYMAP["mod_int"]: lowerCamelCase__: Any =get_raw_chars() if ord(__a ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(__a ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(__a ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
10
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCamelCase : Optional[Any] = logging.get_logger(__name__) lowerCamelCase : Optional[int] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ,lowercase ) -> Union[str, Any]: for attribute in key.split(""".""" ): snake_case : Optional[Any] = getattr(lowercase ,lowercase ) if weight_type is not None: snake_case : Any = getattr(lowercase ,lowercase ).shape else: snake_case : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": snake_case : str = value elif weight_type == "weight_g": snake_case : Optional[int] = value elif weight_type == "weight_v": snake_case : List[str] = value elif weight_type == "bias": snake_case : int = value else: snake_case : str = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> List[Any]: snake_case : Optional[Any] = [] snake_case : Optional[Any] = fairseq_model.state_dict() snake_case : Tuple = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): snake_case : Optional[Any] = False if "conv_layers" in name: load_conv_layer( lowercase ,lowercase ,lowercase ,lowercase ,hf_model.config.feat_extract_norm == """group""" ,) snake_case : Any = True else: for key, mapped_key in MAPPING.items(): snake_case : Optional[int] = """hubert.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or (key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0] and not is_finetuned): snake_case : Union[str, Any] = True if "*" in mapped_key: snake_case : Dict = name.split(lowercase )[0].split(""".""" )[-2] snake_case : str = mapped_key.replace("""*""" ,lowercase ) if "weight_g" in name: snake_case : int = """weight_g""" elif "weight_v" in name: snake_case : Optional[int] = """weight_v""" elif "weight" in name: snake_case : Tuple = """weight""" elif "bias" in name: snake_case : List[Any] = """bias""" else: snake_case : List[str] = None set_recursively(lowercase ,lowercase ,lowercase ,lowercase ,lowercase ) continue if not is_used: unused_weights.append(lowercase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ,lowercase ) -> Dict: snake_case : str = full_name.split("""conv_layers.""" )[-1] snake_case : Dict = name.split(""".""" ) snake_case : Any = int(items[0] ) snake_case : Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) snake_case : int = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) snake_case : List[Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) snake_case : Optional[Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) snake_case : Tuple = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowercase ) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase=None ,lowercase=None ,lowercase=True ) -> Union[str, Any]: if config_path is not None: snake_case : Optional[int] = HubertConfig.from_pretrained(lowercase ) else: snake_case : Tuple = HubertConfig() if is_finetuned: if dict_path: snake_case : List[str] = Dictionary.load(lowercase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq snake_case : Optional[int] = target_dict.pad_index snake_case : Any = target_dict.bos_index snake_case : Dict = target_dict.eos_index snake_case : List[str] = len(target_dict.symbols ) snake_case : Union[str, Any] = os.path.join(lowercase ,"""vocab.json""" ) if not os.path.isdir(lowercase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(lowercase ) ) return os.makedirs(lowercase ,exist_ok=lowercase ) with open(lowercase ,"""w""" ,encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices ,lowercase ) snake_case : Union[str, Any] = WavaVecaCTCTokenizer( lowercase ,unk_token=target_dict.unk_word ,pad_token=target_dict.pad_word ,bos_token=target_dict.bos_word ,eos_token=target_dict.eos_word ,word_delimiter_token="""|""" ,do_lower_case=lowercase ,) snake_case : Union[str, Any] = True if config.feat_extract_norm == """layer""" else False snake_case : Union[str, Any] = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=16000 ,padding_value=0 ,do_normalize=lowercase ,return_attention_mask=lowercase ,) snake_case : Dict = WavaVecaProcessor(feature_extractor=lowercase ,tokenizer=lowercase ) processor.save_pretrained(lowercase ) snake_case : List[Any] = HubertForCTC(lowercase ) else: snake_case : Any = HubertModel(lowercase ) if is_finetuned: snake_case , snake_case , snake_case : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: snake_case , snake_case , snake_case : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) snake_case : Any = model[0].eval() recursively_load_weights(lowercase ,lowercase ,lowercase ) hf_wavavec.save_pretrained(lowercase ) if __name__ == "__main__": lowerCamelCase : Any = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) lowerCamelCase : List[str] = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
124
0
from collections import defaultdict from math import gcd def __lowerCamelCase ( __magic_name__ : int = 1_500_000 ): a__: defaultdict =defaultdict(__magic_name__ ) a__: List[str] =2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , __magic_name__ , 2 ): if gcd(__magic_name__ , __magic_name__ ) > 1: continue a__: Union[str, Any] =2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(__magic_name__ , limit + 1 , __magic_name__ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(f"""{solution() = }""")
42
def __lowerCamelCase ( __magic_name__ : int ): if not isinstance(__magic_name__ , __magic_name__ ): a__: List[str] =F"Input value of [number={number}] must be an integer" raise TypeError(__magic_name__ ) if number < 1: a__: Union[str, Any] =F"Input value of [number={number}] must be > 0" raise ValueError(__magic_name__ ) a__: List[Any] =1 for i in range(1 , __magic_name__ ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
42
1
"""simple docstring""" import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def __SCREAMING_SNAKE_CASE ( ): lowerCAmelCase__ : List[str] = torch.nn.Linear(2 , 4 ) lowerCAmelCase__ : List[str] = torch.optim.AdamW(model.parameters() , lr=1.0 ) lowerCAmelCase__ : Tuple = torch.optim.lr_scheduler.OneCycleLR(A_ , max_lr=0.01 , steps_per_epoch=2 , epochs=1 ) lowerCAmelCase__ : Optional[Any] = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) lowerCAmelCase__ : int = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def __SCREAMING_SNAKE_CASE ( A_ ): return (model.weight.abs().sum() + model.bias.abs().sum()).item() def __SCREAMING_SNAKE_CASE ( A_ ): lowerCAmelCase__ : Union[str, Any] = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(A_ ) class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" @require_cuda def __lowerCAmelCase ( self : Optional[Any] ): lowerCAmelCase__ : List[str] = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(lowercase_ ): lowerCAmelCase__ : Dict = Accelerator(cpu=lowercase_ ) def __lowerCAmelCase ( self : str ): lowerCAmelCase__ : Union[str, Any] = Accelerator() lowerCAmelCase__ : Optional[Any] = GradientState() assert state.num_steps == 1 lowerCAmelCase__ : int = 4 assert state.num_steps == 4 assert state.sync_gradients is True lowerCAmelCase__ : str = False assert state.sync_gradients is False GradientState._reset_state() def __lowerCAmelCase ( self : Optional[Any] ): lowerCAmelCase__ : Dict = Accelerator() lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Optional[int] = create_components() ( ( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) , ) : int = accelerator.prepare(lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def __lowerCAmelCase ( self : int ): lowerCAmelCase__ : str = Accelerator() lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Optional[int] = create_components() accelerator.prepare(lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def __lowerCAmelCase ( self : Optional[Any] ): PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*lowercase_ : Optional[Any] ,**lowercase_ : Optional[Any] ): pass with patch('''torch.cuda.set_device''' ,lowercase_ ), patch_environment(ACCELERATE_TORCH_DEVICE='''cuda:64''' ): lowerCAmelCase__ : Union[str, Any] = Accelerator() self.assertEqual(str(accelerator.state.device ) ,'''cuda:64''' ) def __lowerCAmelCase ( self : Dict ): lowerCAmelCase__ : str = Accelerator() lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : List[Any] = create_components() accelerator.prepare(lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) lowerCAmelCase__ : int = get_signature(lowercase_ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(lowercase_ ) # make sure random weights don't match load_random_weights(lowercase_ ) self.assertTrue(abs(model_signature - get_signature(lowercase_ ) ) > 1E-3 ) # make sure loaded weights match accelerator.load_state(lowercase_ ) self.assertTrue(abs(model_signature - get_signature(lowercase_ ) ) < 1E-3 ) def __lowerCAmelCase ( self : List[Any] ): lowerCAmelCase__ : Tuple = Accelerator() lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Dict = create_components() accelerator.prepare(lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) lowerCAmelCase__ : Any = get_signature(lowercase_ ) # saving hook def save_config(lowercase_ : str ,lowercase_ : List[Any] ,lowercase_ : Optional[int] ): lowerCAmelCase__ : str = {'''class_name''': models[0].__class__.__name__} with open(os.path.join(lowercase_ ,'''data.json''' ) ,'''w''' ) as f: json.dump(lowercase_ ,lowercase_ ) # loading hook def load_config(lowercase_ : Optional[Any] ,lowercase_ : str ): with open(os.path.join(lowercase_ ,'''data.json''' ) ,'''r''' ) as f: lowerCAmelCase__ : Dict = json.load(lowercase_ ) lowerCAmelCase__ : Any = config['''class_name'''] lowerCAmelCase__ : Optional[int] = accelerator.register_save_state_pre_hook(lowercase_ ) lowerCAmelCase__ : Optional[Any] = accelerator.register_load_state_pre_hook(lowercase_ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(lowercase_ ) # make sure random weights don't match with hooks load_random_weights(lowercase_ ) self.assertTrue(abs(model_signature - get_signature(lowercase_ ) ) > 1E-3 ) # random class name to verify correct one is loaded lowerCAmelCase__ : List[str] = '''random''' # make sure loaded weights match with hooks accelerator.load_state(lowercase_ ) self.assertTrue(abs(model_signature - get_signature(lowercase_ ) ) < 1E-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(lowercase_ ) # make sure random weights don't match with hooks removed load_random_weights(lowercase_ ) self.assertTrue(abs(model_signature - get_signature(lowercase_ ) ) > 1E-3 ) # random class name to verify correct one is loaded lowerCAmelCase__ : str = '''random''' # make sure loaded weights match with hooks removed accelerator.load_state(lowercase_ ) self.assertTrue(abs(model_signature - get_signature(lowercase_ ) ) < 1E-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def __lowerCAmelCase ( self : Union[str, Any] ): lowerCAmelCase__ : Union[str, Any] = Accelerator() lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Any = create_components() lowerCAmelCase__ : List[str] = None # This should work lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Dict = accelerator.prepare( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) self.assertTrue(dummy_obj is None ) def __lowerCAmelCase ( self : Optional[Any] ): lowerCAmelCase__ : Optional[Any] = Accelerator() lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Dict = create_components() lowerCAmelCase__ : Optional[Any] = [1, 2, 3] # This should work lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Any = accelerator.prepare( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) self.assertEqual( getattr(lowercase_ ,'''_is_accelerate_prepared''' ,lowercase_ ) ,lowercase_ ,'''Dummy object should have `_is_accelerate_prepared` set to `True`''' ,) self.assertEqual( getattr(lowercase_ ,'''_is_accelerate_prepared''' ,lowercase_ ) ,lowercase_ ,'''Model is missing `_is_accelerator_prepared` or is set to `False`''' ,) self.assertEqual( getattr(lowercase_ ,'''_is_accelerate_prepared''' ,lowercase_ ) ,lowercase_ ,'''Optimizer is missing `_is_accelerator_prepared` or is set to `False`''' ,) self.assertEqual( getattr(lowercase_ ,'''_is_accelerate_prepared''' ,lowercase_ ) ,lowercase_ ,'''Scheduler is missing `_is_accelerator_prepared` or is set to `False`''' ,) self.assertEqual( getattr(lowercase_ ,'''_is_accelerate_prepared''' ,lowercase_ ) ,lowercase_ ,'''Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`''' ,) self.assertEqual( getattr(lowercase_ ,'''_is_accelerate_prepared''' ,lowercase_ ) ,lowercase_ ,'''Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`''' ,) @slow @require_bnb def __lowerCAmelCase ( self : List[Any] ): from transformers import AutoModelForCausalLM lowerCAmelCase__ : List[str] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' ,load_in_abit=lowercase_ ,device_map={'''''': 0} ,) lowerCAmelCase__ : Union[str, Any] = Accelerator() # This should work lowerCAmelCase__ : Optional[int] = accelerator.prepare(lowercase_ ) @slow @require_bnb def __lowerCAmelCase ( self : int ): from transformers import AutoModelForCausalLM lowerCAmelCase__ : Tuple = Accelerator() with init_empty_weights(): lowerCAmelCase__ : List[str] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' ,) model.tie_weights() lowerCAmelCase__ : List[Any] = infer_auto_device_map(lowercase_ ) lowerCAmelCase__ : int = '''cpu''' lowerCAmelCase__ : Any = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' ,device_map=lowercase_ ,load_in_abit=lowercase_ ,llm_inta_enable_fpaa_cpu_offload=lowercase_ ) # This should not work and get value error with self.assertRaises(lowercase_ ): lowerCAmelCase__ : Any = accelerator.prepare(lowercase_ ) @slow @require_bnb @require_multi_gpu def __lowerCAmelCase ( self : Optional[Any] ): from transformers import AutoModelForCausalLM lowerCAmelCase__ : List[Any] = {'''distributed_type''': DistributedType.MULTI_GPU} with init_empty_weights(): lowerCAmelCase__ : Tuple = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' ,) model.tie_weights() lowerCAmelCase__ : Any = infer_auto_device_map(lowercase_ ) lowerCAmelCase__ : Any = 1 lowerCAmelCase__ : Tuple = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' ,load_in_abit=lowercase_ ,device_map=lowercase_ ,) lowerCAmelCase__ : Tuple = Accelerator() # This should not work and get value error with self.assertRaises(lowercase_ ): lowerCAmelCase__ : List[str] = accelerator.prepare(lowercase_ ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def __lowerCAmelCase ( self : Tuple ): from transformers import AutoModelForCausalLM with init_empty_weights(): lowerCAmelCase__ : List[str] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' ,) lowerCAmelCase__ : Optional[int] = infer_auto_device_map(lowercase_ ) lowerCAmelCase__ : int = 1 lowerCAmelCase__ : str = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' ,load_in_abit=lowercase_ ,device_map=lowercase_ ,) lowerCAmelCase__ : List[Any] = Accelerator() # This should work lowerCAmelCase__ : List[str] = accelerator.prepare(lowercase_ ) @require_cuda def __lowerCAmelCase ( self : List[str] ): lowerCAmelCase__ : Dict = torch.nn.Linear(1_0 ,1_0 ) lowerCAmelCase__ : List[Any] = torch.optim.SGD(model.parameters() ,lr=0.01 ) lowerCAmelCase__ : str = Accelerator(cpu=lowercase_ ) lowerCAmelCase__ : Optional[int] = accelerator.prepare(lowercase_ )
106
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __UpperCamelCase : Dict = { '''configuration_clip''': [ '''CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPConfig''', '''CLIPOnnxConfig''', '''CLIPTextConfig''', '''CLIPVisionConfig''', ], '''processing_clip''': ['''CLIPProcessor'''], '''tokenization_clip''': ['''CLIPTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : int = ['''CLIPTokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = ['''CLIPFeatureExtractor'''] __UpperCamelCase : Optional[Any] = ['''CLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = [ '''CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPModel''', '''CLIPPreTrainedModel''', '''CLIPTextModel''', '''CLIPTextModelWithProjection''', '''CLIPVisionModel''', '''CLIPVisionModelWithProjection''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = [ '''TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFCLIPModel''', '''TFCLIPPreTrainedModel''', '''TFCLIPTextModel''', '''TFCLIPVisionModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = [ '''FlaxCLIPModel''', '''FlaxCLIPPreTrainedModel''', '''FlaxCLIPTextModel''', '''FlaxCLIPTextPreTrainedModel''', '''FlaxCLIPVisionModel''', '''FlaxCLIPVisionPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys __UpperCamelCase : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
106
1
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class A__ : """simple docstring""" def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=True , lowercase=True , lowercase=True , lowercase=99 , lowercase=32 , lowercase=2 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=16 , lowercase=2 , lowercase=0.02 , lowercase=3 , lowercase=4 , lowercase=None , ) -> int: '''simple docstring''' a__ : Optional[Any] = parent a__ : Tuple = 13 a__ : Optional[int] = 7 a__ : Optional[Any] = True a__ : List[str] = True a__ : Union[str, Any] = True a__ : Optional[Any] = True a__ : Dict = 99 a__ : Tuple = 384 a__ : List[Any] = 2 a__ : Union[str, Any] = 4 a__ : Dict = 37 a__ : Tuple = 'gelu' a__ : str = 0.1 a__ : Tuple = 0.1 a__ : Union[str, Any] = 512 a__ : Tuple = 16 a__ : Tuple = 2 a__ : Dict = 0.02 a__ : List[str] = 3 a__ : int = 4 a__ : Optional[int] = 128 a__ : List[str] = 2 a__ : Optional[Any] = 9 a__ : Optional[Any] = 1 a__ : Tuple = None def __lowercase ( self) -> List[str]: '''simple docstring''' a__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a__ : int = None if self.use_input_mask: a__ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length]) a__ : Tuple = None if self.use_token_type_ids: a__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) a__ : List[Any] = None a__ : List[str] = None a__ : Optional[Any] = None if self.use_labels: a__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size) a__ : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) a__ : List[str] = ids_tensor([self.batch_size] , self.num_choices) a__ : Optional[Any] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=lowercase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowercase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase) -> int: '''simple docstring''' a__ : Union[str, Any] = TFConvBertModel(config=lowercase) a__ : Union[str, Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} a__ : Optional[Any] = [input_ids, input_mask] a__ : Tuple = model(lowercase) a__ : List[Any] = model(lowercase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def __lowercase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase) -> Union[str, Any]: '''simple docstring''' a__ : int = TFConvBertForMaskedLM(config=lowercase) a__ : int = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } a__ : Union[str, Any] = model(lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def __lowercase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase) -> str: '''simple docstring''' a__ : Union[str, Any] = self.num_labels a__ : Union[str, Any] = TFConvBertForSequenceClassification(config=lowercase) a__ : Optional[int] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } a__ : Optional[Any] = model(lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def __lowercase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase) -> Any: '''simple docstring''' a__ : Tuple = self.num_choices a__ : Optional[Any] = TFConvBertForMultipleChoice(config=lowercase) a__ : Any = tf.tile(tf.expand_dims(lowercase , 1) , (1, self.num_choices, 1)) a__ : List[str] = tf.tile(tf.expand_dims(lowercase , 1) , (1, self.num_choices, 1)) a__ : Dict = tf.tile(tf.expand_dims(lowercase , 1) , (1, self.num_choices, 1)) a__ : int = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } a__ : Optional[int] = model(lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def __lowercase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase) -> Optional[Any]: '''simple docstring''' a__ : Dict = self.num_labels a__ : str = TFConvBertForTokenClassification(config=lowercase) a__ : List[str] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } a__ : Union[str, Any] = model(lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def __lowercase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase) -> Any: '''simple docstring''' a__ : Optional[Any] = TFConvBertForQuestionAnswering(config=lowercase) a__ : Optional[int] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } a__ : int = model(lowercase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def __lowercase ( self) -> Tuple: '''simple docstring''' a__ : str = self.prepare_config_and_inputs() ( a__ ) : str = config_and_inputs a__ : List[str] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class A__ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): """simple docstring""" __A : Dict = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) __A : int = ( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) __A : Optional[Any] = False __A : List[str] = False __A : Union[str, Any] = False def __lowercase ( self) -> Any: '''simple docstring''' a__ : str = TFConvBertModelTester(self) a__ : Union[str, Any] = ConfigTester(self , config_class=lowercase , hidden_size=37) def __lowercase ( self) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def __lowercase ( self) -> str: '''simple docstring''' a__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase) def __lowercase ( self) -> Tuple: '''simple docstring''' a__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase) def __lowercase ( self) -> int: '''simple docstring''' a__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase) def __lowercase ( self) -> Optional[int]: '''simple docstring''' a__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase) def __lowercase ( self) -> Tuple: '''simple docstring''' a__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase) def __lowercase ( self) -> Tuple: '''simple docstring''' a__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase) @slow def __lowercase ( self) -> int: '''simple docstring''' a__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() a__ : List[Any] = True a__ : Any = True if hasattr(lowercase , 'use_cache'): a__ : Dict = True a__ : Optional[int] = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length) a__ : Optional[Any] = getattr(self.model_tester , 'key_length' , lowercase) for model_class in self.all_model_classes: a__ : Union[str, Any] = self._prepare_for_class(lowercase , lowercase) a__ : List[str] = model_class(lowercase) a__ : List[Any] = len(model(lowercase)) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowercase , saved_model=lowercase) a__ : Any = os.path.join(lowercase , 'saved_model' , '1') a__ : int = tf.keras.models.load_model(lowercase) a__ : Dict = model(lowercase) if self.is_encoder_decoder: a__ : Any = outputs['encoder_hidden_states'] a__ : Optional[Any] = outputs['encoder_attentions'] else: a__ : int = outputs['hidden_states'] a__ : Dict = outputs['attentions'] self.assertEqual(len(lowercase) , lowercase) a__ : List[str] = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(lowercase) , lowercase) self.assertListEqual( list(output_hidden_states[0].shape[-2:]) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(lowercase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(output_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def __lowercase ( self) -> int: '''simple docstring''' a__ : Tuple = TFConvBertModel.from_pretrained('YituTech/conv-bert-base') self.assertIsNotNone(lowercase) def __lowercase ( self) -> Dict: '''simple docstring''' a__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() a__ : Tuple = True a__ : Dict = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length) a__ : Optional[int] = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length) a__ : int = getattr(self.model_tester , 'key_length' , lowercase) a__ : Optional[int] = getattr(self.model_tester , 'key_length' , lowercase) def check_decoder_attentions_output(lowercase): a__ : Optional[Any] = len(lowercase) self.assertEqual(out_len % 2 , 0) a__ : Any = outputs.decoder_attentions self.assertEqual(len(lowercase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(lowercase): a__ : int = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(lowercase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: a__ : str = True a__ : List[str] = False a__ : str = model_class(lowercase) a__ : Any = model(self._prepare_for_class(lowercase , lowercase)) a__ : List[Any] = len(lowercase) self.assertEqual(config.output_hidden_states , lowercase) check_encoder_attentions_output(lowercase) if self.is_encoder_decoder: a__ : int = model_class(lowercase) a__ : Dict = model(self._prepare_for_class(lowercase , lowercase)) self.assertEqual(config.output_hidden_states , lowercase) check_decoder_attentions_output(lowercase) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] a__ : Union[str, Any] = True a__ : int = model_class(lowercase) a__ : Dict = model(self._prepare_for_class(lowercase , lowercase)) self.assertEqual(config.output_hidden_states , lowercase) check_encoder_attentions_output(lowercase) # Check attention is always last and order is fine a__ : str = True a__ : List[Any] = True a__ : int = model_class(lowercase) a__ : Tuple = model(self._prepare_for_class(lowercase , lowercase)) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowercase)) self.assertEqual(model.config.output_hidden_states , lowercase) check_encoder_attentions_output(lowercase) @require_tf class A__ ( unittest.TestCase ): """simple docstring""" @slow def __lowercase ( self) -> str: '''simple docstring''' a__ : Tuple = TFConvBertModel.from_pretrained('YituTech/conv-bert-base') a__ : List[Any] = tf.constant([[0, 1, 2, 3, 4, 5]]) a__ : Any = model(lowercase)[0] a__ : Dict = [1, 6, 768] self.assertEqual(output.shape , lowercase) a__ : Tuple = tf.constant( [ [ [-0.03_47_54_93, -0.4_68_60_34, -0.30_63_88_32], [0.22_63_72_48, -0.26_98_86_46, -0.7_42_34_24], [0.10_32_48_68, -0.45_01_35_08, -0.58_28_07_84], ] ]) tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1e-4)
351
import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class A__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self , lowercase , lowercase , lowercase) -> List[str]: '''simple docstring''' self.assertEqual(len(lowercase) , len(lowercase)) for a, b in zip(lowercase , lowercase): self.assertAlmostEqual(lowercase , lowercase , delta=lowercase) def __lowercase ( self) -> Any: '''simple docstring''' a__ : Tuple = GradientAccumulator() accumulator([tf.constant([1.0, 2.0])]) accumulator([tf.constant([-2.0, 1.0])]) accumulator([tf.constant([-1.0, 2.0])]) with self.assertRaises(lowercase): accumulator([tf.constant([1.0, 1.0]), tf.constant([2.0, 2.0])]) self.assertEqual(accumulator.step , 3) self.assertEqual(len(accumulator.gradients) , 1) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1e-2) accumulator.reset() self.assertEqual(accumulator.step , 0) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1e-2) def __lowercase ( self) -> List[Any]: '''simple docstring''' a__ : Tuple = None ops.enable_eager_execution_internal() a__ : Optional[int] = tf.config.list_physical_devices('CPU') if len(lowercase) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()]) a__ : int = tf.config.list_logical_devices(device_type='CPU') a__ : Union[str, Any] = tf.distribute.MirroredStrategy(devices=devices[:2]) with strategy.scope(): a__ : str = GradientAccumulator() a__ : Tuple = tf.Variable([4.0, 3.0]) a__ , a__ : Tuple = create_optimizer(5e-5 , 10 , 5) a__ : Tuple = tf.Variable([0.0, 0.0] , trainable=lowercase) def accumulate_on_replica(lowercase): accumulator([gradient]) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable]))) @tf.function def accumulate(lowercase , lowercase): with strategy.scope(): a__ : Union[str, Any] = strategy.experimental_local_results(lowercase) local_variables[0].assign(lowercase) local_variables[1].assign(lowercase) strategy.run(lowercase , args=(gradient_placeholder,)) @tf.function def apply_grad(): with strategy.scope(): strategy.run(lowercase) def _check_local_values(lowercase , lowercase): a__ : Union[str, Any] = strategy.experimental_local_results(accumulator._gradients[0]) self.assertListAlmostEqual(values[0].value() , lowercase , tol=1e-2) self.assertListAlmostEqual(values[1].value() , lowercase , tol=1e-2) accumulate([1.0, 2.0] , [-1.0, 1.0]) accumulate([3.0, -1.0] , [-1.0, -1.0]) accumulate([-2.0, 2.0] , [3.0, -2.0]) self.assertEqual(accumulator.step , 3) _check_local_values([2.0, 3.0] , [1.0, -2.0]) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1e-2) accumulator.reset() self.assertEqual(accumulator.step , 0) _check_local_values([0.0, 0.0] , [0.0, 0.0])
225
0
def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> int: while a != 0: lowerCamelCase , lowerCamelCase : Optional[int] = b % a, a return b def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> int: if gcd(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) != 1: lowerCamelCase : List[Any] = f'''mod inverse of {a!r} and {m!r} does not exist''' raise ValueError(_SCREAMING_SNAKE_CASE ) lowerCamelCase , lowerCamelCase , lowerCamelCase : Any = 1, 0, a lowerCamelCase , lowerCamelCase , lowerCamelCase : Tuple = 0, 1, m while va != 0: lowerCamelCase : List[str] = ua // va lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase : Dict = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
48
import math def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> float: if ( not isinstance(_SCREAMING_SNAKE_CASE ,(int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("power_factor must be a valid float value between -1 and 1." ) return apparent_power * power_factor def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> float: if ( not isinstance(_SCREAMING_SNAKE_CASE ,(int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("power_factor must be a valid float value between -1 and 1." ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
48
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase_ = {'configuration_glpn': ['GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GLPNConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['GLPNFeatureExtractor'] UpperCAmelCase_ = ['GLPNImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'GLPN_PRETRAINED_MODEL_ARCHIVE_LIST', 'GLPNForDepthEstimation', 'GLPNLayer', 'GLPNModel', 'GLPNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
371
import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class lowercase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self, __magic_name__, __magic_name__=13, __magic_name__=7, __magic_name__=True, __magic_name__=True, __magic_name__=True, __magic_name__=True, __magic_name__=99, __magic_name__=32, __magic_name__=5, __magic_name__=4, __magic_name__=37, __magic_name__="gelu", __magic_name__=0.1, __magic_name__=0.1, __magic_name__=512, __magic_name__=16, __magic_name__=2, __magic_name__=0.02, __magic_name__=4, ) -> str: """simple docstring""" UpperCamelCase__ : Tuple = parent UpperCamelCase__ : Optional[int] = batch_size UpperCamelCase__ : Dict = seq_length UpperCamelCase__ : Tuple = is_training UpperCamelCase__ : Any = use_attention_mask UpperCamelCase__ : Tuple = use_token_type_ids UpperCamelCase__ : Union[str, Any] = use_labels UpperCamelCase__ : List[Any] = vocab_size UpperCamelCase__ : str = hidden_size UpperCamelCase__ : Any = num_hidden_layers UpperCamelCase__ : List[str] = num_attention_heads UpperCamelCase__ : Tuple = intermediate_size UpperCamelCase__ : Union[str, Any] = hidden_act UpperCamelCase__ : Any = hidden_dropout_prob UpperCamelCase__ : int = attention_probs_dropout_prob UpperCamelCase__ : List[str] = max_position_embeddings UpperCamelCase__ : List[str] = type_vocab_size UpperCamelCase__ : int = type_sequence_label_size UpperCamelCase__ : Union[str, Any] = initializer_range UpperCamelCase__ : List[str] = num_choices def UpperCamelCase__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : List[str] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) UpperCamelCase__ : Tuple = None if self.use_attention_mask: UpperCamelCase__ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ : int = None if self.use_token_type_ids: UpperCamelCase__ : List[str] = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) UpperCamelCase__ : List[Any] = BertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=__magic_name__, initializer_range=self.initializer_range, ) return config, input_ids, token_type_ids, attention_mask def UpperCamelCase__ ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase__ : int = self.prepare_config_and_inputs() UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Optional[int] = config_and_inputs UpperCamelCase__ : List[Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def UpperCamelCase__ ( self ) -> int: """simple docstring""" UpperCamelCase__ : str = self.prepare_config_and_inputs() UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Optional[Any] = config_and_inputs UpperCamelCase__ : Optional[int] = True UpperCamelCase__ : str = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCamelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length], vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class lowercase__ ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' a : int = True a : List[str] = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : List[Any] = FlaxBertModelTester(self ) @slow def UpperCamelCase__ ( self ) -> Optional[int]: """simple docstring""" # Only check this for base model, not necessary for all model classes. # This will also help speed-up tests. UpperCamelCase__ : Dict = FlaxBertModel.from_pretrained('''bert-base-cased''' ) UpperCamelCase__ : Any = model(np.ones((1, 1) ) ) self.assertIsNotNone(__magic_name__ )
247
0
"""simple docstring""" import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip _a = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def __a ( __lowerCamelCase ): if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): return max(metric_fn(__lowerCamelCase, __lowerCamelCase ) for gt in ground_truths ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Any = [line.strip() for line in open(__lowerCamelCase, "r" ).readlines()] UpperCAmelCase_ : Optional[int] = [] if args.gold_data_mode == "qa": UpperCAmelCase_ : List[Any] = pd.read_csv(__lowerCamelCase, sep="\t", header=__lowerCamelCase ) for answer_list in data[1]: UpperCAmelCase_ : str = ast.literal_eval(__lowerCamelCase ) answers.append(__lowerCamelCase ) else: UpperCAmelCase_ : str = [line.strip() for line in open(__lowerCamelCase, "r" ).readlines()] UpperCAmelCase_ : Optional[Any] = [[reference] for reference in references] UpperCAmelCase_ : Optional[Any] = 0 for prediction, ground_truths in zip(__lowerCamelCase, __lowerCamelCase ): total += 1 em += metric_max_over_ground_truths(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) fa += metric_max_over_ground_truths(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) UpperCAmelCase_ : Optional[int] = 100.0 * em / total UpperCAmelCase_ : Any = 100.0 * fa / total logger.info(f"""F1: {fa:.2f}""" ) logger.info(f"""EM: {em:.2f}""" ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : int = args.k UpperCAmelCase_ : str = [line.strip() for line in open(__lowerCamelCase, "r" ).readlines()] UpperCAmelCase_ : Union[str, Any] = [line.strip() for line in open(__lowerCamelCase, "r" ).readlines()] UpperCAmelCase_ : List[str] = 0 for hypo, reference in zip(__lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : List[Any] = set(hypo.split("\t" )[:k] ) UpperCAmelCase_ : Tuple = set(reference.split("\t" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k UpperCAmelCase_ : int = 100.0 * em / total logger.info(f"""Precision@{k}: {em: .2f}""" ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): def strip_title(__lowerCamelCase ): if title.startswith("\"" ): UpperCAmelCase_ : List[str] = title[1:] if title.endswith("\"" ): UpperCAmelCase_ : Union[str, Any] = title[:-1] return title UpperCAmelCase_ : List[Any] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( __lowerCamelCase, return_tensors="pt", padding=__lowerCamelCase, truncation=__lowerCamelCase, )["input_ids"].to(args.device ) UpperCAmelCase_ : List[str] = rag_model.rag.question_encoder(__lowerCamelCase ) UpperCAmelCase_ : Tuple = question_enc_outputs[0] UpperCAmelCase_ : Union[str, Any] = rag_model.retriever( __lowerCamelCase, question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy(), prefix=rag_model.rag.generator.config.prefix, n_docs=rag_model.config.n_docs, return_tensors="pt", ) UpperCAmelCase_ : Any = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) UpperCAmelCase_ : List[Any] = [] for docs in all_docs: UpperCAmelCase_ : Optional[Any] = [strip_title(__lowerCamelCase ) for title in docs["title"]] provenance_strings.append("\t".join(__lowerCamelCase ) ) return provenance_strings def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): with torch.no_grad(): UpperCAmelCase_ : int = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( __lowerCamelCase, return_tensors="pt", padding=__lowerCamelCase, truncation=__lowerCamelCase ) UpperCAmelCase_ : Any = inputs_dict.input_ids.to(args.device ) UpperCAmelCase_ : Any = inputs_dict.attention_mask.to(args.device ) UpperCAmelCase_ : str = rag_model.generate( # rag_model overwrites generate __lowerCamelCase, attention_mask=__lowerCamelCase, num_beams=args.num_beams, min_length=args.min_length, max_length=args.max_length, early_stopping=__lowerCamelCase, num_return_sequences=1, bad_words_ids=[[0, 0]], ) UpperCAmelCase_ : int = rag_model.retriever.generator_tokenizer.batch_decode(__lowerCamelCase, skip_special_tokens=__lowerCamelCase ) if args.print_predictions: for q, a in zip(__lowerCamelCase, __lowerCamelCase ): logger.info("Q: {} - A: {}".format(__lowerCamelCase, __lowerCamelCase ) ) return answers def __a ( ): UpperCAmelCase_ : Any = argparse.ArgumentParser() parser.add_argument( "--model_type", choices=["rag_sequence", "rag_token", "bart"], type=__lowerCamelCase, help=( "RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the" " model_name_or_path" ), ) parser.add_argument( "--index_name", default=__lowerCamelCase, choices=["exact", "compressed", "legacy"], type=__lowerCamelCase, help="RAG model retriever type", ) parser.add_argument( "--index_path", default=__lowerCamelCase, type=__lowerCamelCase, help="Path to the retrieval index", ) parser.add_argument("--n_docs", default=5, type=__lowerCamelCase, help="Number of retrieved docs" ) parser.add_argument( "--model_name_or_path", default=__lowerCamelCase, type=__lowerCamelCase, required=__lowerCamelCase, help="Path to pretrained checkpoints or model identifier from huggingface.co/models", ) parser.add_argument( "--eval_mode", choices=["e2e", "retrieval"], default="e2e", type=__lowerCamelCase, help=( "Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates" " precision@k." ), ) parser.add_argument("--k", default=1, type=__lowerCamelCase, help="k for the precision@k calculation" ) parser.add_argument( "--evaluation_set", default=__lowerCamelCase, type=__lowerCamelCase, required=__lowerCamelCase, help="Path to a file containing evaluation samples", ) parser.add_argument( "--gold_data_path", default=__lowerCamelCase, type=__lowerCamelCase, required=__lowerCamelCase, help="Path to a tab-separated file with gold samples", ) parser.add_argument( "--gold_data_mode", default="qa", type=__lowerCamelCase, choices=["qa", "ans"], help=( "Format of the gold data file" "qa - a single line in the following format: question [tab] answer_list" "ans - a single line of the gold file contains the expected answer string" ), ) parser.add_argument( "--predictions_path", type=__lowerCamelCase, default="predictions.txt", help="Name of the predictions file, to be stored in the checkpoints directory", ) parser.add_argument( "--eval_all_checkpoints", action="store_true", help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number", ) parser.add_argument( "--eval_batch_size", default=8, type=__lowerCamelCase, help="Batch size per GPU/CPU for evaluation.", ) parser.add_argument( "--recalculate", help="Recalculate predictions even if the prediction file exists", action="store_true", ) parser.add_argument( "--num_beams", default=4, type=__lowerCamelCase, help="Number of beams to be used when generating answers", ) parser.add_argument("--min_length", default=1, type=__lowerCamelCase, help="Min length of the generated answers" ) parser.add_argument("--max_length", default=50, type=__lowerCamelCase, help="Max length of the generated answers" ) parser.add_argument( "--print_predictions", action="store_true", help="If True, prints predictions while evaluating.", ) parser.add_argument( "--print_docs", action="store_true", help="If True, prints docs retried while generating.", ) UpperCAmelCase_ : Optional[Any] = parser.parse_args() UpperCAmelCase_ : Any = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) return args def __a ( __lowerCamelCase ): UpperCAmelCase_ : Optional[int] = {} if args.model_type is None: UpperCAmelCase_ : Any = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("rag" ): UpperCAmelCase_ : int = RagTokenForGeneration if args.model_type == "rag_token" else RagSequenceForGeneration UpperCAmelCase_ : Optional[int] = args.n_docs if args.index_name is not None: UpperCAmelCase_ : int = args.index_name if args.index_path is not None: UpperCAmelCase_ : Tuple = args.index_path else: UpperCAmelCase_ : List[str] = BartForConditionalGeneration UpperCAmelCase_ : Tuple = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("Evaluate the following checkpoints: %s", __lowerCamelCase ) UpperCAmelCase_ : Tuple = get_scores if args.eval_mode == "e2e" else get_precision_at_k UpperCAmelCase_ : List[Any] = evaluate_batch_eae if args.eval_mode == "e2e" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("Calculating metrics based on an existing predictions file: {}".format(args.predictions_path ) ) score_fn(__lowerCamelCase, args.predictions_path, args.gold_data_path ) continue logger.info("***** Running evaluation for {} *****".format(__lowerCamelCase ) ) logger.info(" Batch size = %d", args.eval_batch_size ) logger.info(" Predictions will be stored under {}".format(args.predictions_path ) ) if args.model_type.startswith("rag" ): UpperCAmelCase_ : Dict = RagRetriever.from_pretrained(__lowerCamelCase, **__lowerCamelCase ) UpperCAmelCase_ : str = model_class.from_pretrained(__lowerCamelCase, retriever=__lowerCamelCase, **__lowerCamelCase ) model.retriever.init_retrieval() else: UpperCAmelCase_ : List[Any] = model_class.from_pretrained(__lowerCamelCase, **__lowerCamelCase ) model.to(args.device ) with open(args.evaluation_set, "r" ) as eval_file, open(args.predictions_path, "w" ) as preds_file: UpperCAmelCase_ : Optional[int] = [] for line in tqdm(__lowerCamelCase ): questions.append(line.strip() ) if len(__lowerCamelCase ) == args.eval_batch_size: UpperCAmelCase_ : int = evaluate_batch_fn(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) preds_file.write("\n".join(__lowerCamelCase ) + "\n" ) preds_file.flush() UpperCAmelCase_ : Dict = [] if len(__lowerCamelCase ) > 0: UpperCAmelCase_ : List[Any] = evaluate_batch_fn(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) preds_file.write("\n".join(__lowerCamelCase ) ) preds_file.flush() score_fn(__lowerCamelCase, args.predictions_path, args.gold_data_path ) if __name__ == "__main__": _a = get_args() main(args)
61
"""simple docstring""" from collections import namedtuple _a = namedtuple('from_to', 'from_ to') _a = { 'cubicmeter': from_to(1, 1), 'litre': from_to(0.001, 1_000), 'kilolitre': from_to(1, 1), 'gallon': from_to(0.0_0454, 264.172), 'cubicyard': from_to(0.7_6455, 1.3_0795), 'cubicfoot': from_to(0.028, 35.3147), 'cup': from_to(0.0_0023_6588, 4226.75), } def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): if from_type not in METRIC_CONVERSION: raise ValueError( f"""Invalid 'from_type' value: {from_type!r} Supported values are:\n""" + ", ".join(__lowerCamelCase ) ) if to_type not in METRIC_CONVERSION: raise ValueError( f"""Invalid 'to_type' value: {to_type!r}. Supported values are:\n""" + ", ".join(__lowerCamelCase ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
61
1
import datasets A : List[Any] = '''\ @InProceedings{conneau2018xnli, author = "Conneau, Alexis and Rinott, Ruty and Lample, Guillaume and Williams, Adina and Bowman, Samuel R. and Schwenk, Holger and Stoyanov, Veselin", title = "XNLI: Evaluating Cross-lingual Sentence Representations", booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing", year = "2018", publisher = "Association for Computational Linguistics", location = "Brussels, Belgium", } ''' A : Tuple = '''\ XNLI is a subset of a few thousand examples from MNLI which has been translated into a 14 different languages (some low-ish resource). As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels). ''' A : Optional[int] = ''' Computes XNLI score which is just simple accuracy. Args: predictions: Predicted labels. references: Ground truth labels. Returns: \'accuracy\': accuracy Examples: >>> predictions = [0, 1] >>> references = [0, 1] >>> xnli_metric = datasets.load_metric("xnli") >>> results = xnli_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} ''' def UpperCamelCase ( __magic_name__ : str , __magic_name__ : Optional[int] ) -> str: """simple docstring""" return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): '''simple docstring''' def lowerCamelCase__ (self : Dict ) -> List[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int64""" if self.config_name != """sts-b""" else """float32""" ), """references""": datasets.Value("""int64""" if self.config_name != """sts-b""" else """float32""" ), } ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" , ) def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Dict ) -> Dict: """simple docstring""" return {"accuracy": simple_accuracy(lowercase_ , lowercase_ )}
358
import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging A : str = logging.get_logger(__name__) # pylint: disable=invalid-name class A ( UpperCAmelCase__ ): '''simple docstring''' def __init__(self : List[str] , _UpperCAmelCase : AutoencoderKL , _UpperCAmelCase : CLIPTextModel , _UpperCAmelCase : CLIPTokenizer , _UpperCAmelCase : UNetaDConditionModel , _UpperCAmelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , _UpperCAmelCase : StableDiffusionSafetyChecker , _UpperCAmelCase : CLIPImageProcessor , ) -> Dict: """simple docstring""" super().__init__() self.register_modules( vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , tokenizer=_UpperCAmelCase , unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , ) def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Optional[Union[str, int]] = "auto" ) -> Tuple: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowercase__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] ) -> Optional[Any]: """simple docstring""" self.enable_attention_slicing(_UpperCAmelCase ) @torch.no_grad() def __call__(self : Any , _UpperCAmelCase : Union[str, List[str]] , _UpperCAmelCase : int = 512 , _UpperCAmelCase : int = 512 , _UpperCAmelCase : int = 50 , _UpperCAmelCase : float = 7.5 , _UpperCAmelCase : Optional[Union[str, List[str]]] = None , _UpperCAmelCase : Optional[int] = 1 , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : Optional[torch.Generator] = None , _UpperCAmelCase : Optional[torch.FloatTensor] = None , _UpperCAmelCase : Optional[str] = "pil" , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , _UpperCAmelCase : int = 1 , _UpperCAmelCase : Optional[torch.FloatTensor] = None , **_UpperCAmelCase : Any , ) -> Tuple: """simple docstring""" if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__ = 1 elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__ = len(_UpperCAmelCase ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(_UpperCAmelCase )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(_UpperCAmelCase )}.''' ) # get prompt text embeddings lowercase__ = self.tokenizer( _UpperCAmelCase , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) lowercase__ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowercase__ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) lowercase__ = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: lowercase__ = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowercase__ , lowercase__ , lowercase__ = text_embeddings.shape lowercase__ = text_embeddings.repeat(1 , _UpperCAmelCase , 1 ) lowercase__ = text_embeddings.view(bs_embed * num_images_per_prompt , _UpperCAmelCase , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowercase__ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowercase__ = 42 if negative_prompt is None: lowercase__ = [""""""] elif type(_UpperCAmelCase ) is not type(_UpperCAmelCase ): raise TypeError( f'''`negative_prompt` should be the same type to `prompt`, but got {type(_UpperCAmelCase )} !=''' f''' {type(_UpperCAmelCase )}.''' ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__ = [negative_prompt] elif batch_size != len(_UpperCAmelCase ): raise ValueError( f'''`negative_prompt`: {negative_prompt} has batch size {len(_UpperCAmelCase )}, but `prompt`:''' f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' """ the batch size of `prompt`.""" ) else: lowercase__ = negative_prompt lowercase__ = text_input_ids.shape[-1] lowercase__ = self.tokenizer( _UpperCAmelCase , padding="""max_length""" , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" , ) lowercase__ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowercase__ = uncond_embeddings.shape[1] lowercase__ = uncond_embeddings.repeat(_UpperCAmelCase , _UpperCAmelCase , 1 ) lowercase__ = uncond_embeddings.view(batch_size * num_images_per_prompt , _UpperCAmelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase__ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowercase__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowercase__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) lowercase__ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowercase__ = torch.randn( _UpperCAmelCase , generator=_UpperCAmelCase , device="""cpu""" , dtype=_UpperCAmelCase ).to(self.device ) lowercase__ = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device="""cpu""" , dtype=_UpperCAmelCase ).to( self.device ) else: lowercase__ = torch.randn( _UpperCAmelCase , generator=_UpperCAmelCase , device=self.device , dtype=_UpperCAmelCase ) lowercase__ = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device , dtype=_UpperCAmelCase ) else: if latents_reference.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) lowercase__ = latents_reference.to(self.device ) lowercase__ = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images lowercase__ = (latents_shape[3] - latents_shape_reference[3]) // 2 lowercase__ = (latents_shape[2] - latents_shape_reference[2]) // 2 lowercase__ = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx lowercase__ = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy lowercase__ = 0 if dx < 0 else dx lowercase__ = 0 if dy < 0 else dy lowercase__ = max(-dx , 0 ) lowercase__ = max(-dy , 0 ) # import pdb # pdb.set_trace() lowercase__ = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(_UpperCAmelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowercase__ = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowercase__ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowercase__ = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowercase__ = {} if accepts_eta: lowercase__ = eta for i, t in enumerate(self.progress_bar(_UpperCAmelCase ) ): # expand the latents if we are doing classifier free guidance lowercase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase__ = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) # predict the noise residual lowercase__ = self.unet(_UpperCAmelCase , _UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase ).sample # perform guidance if do_classifier_free_guidance: lowercase__ , lowercase__ = noise_pred.chunk(2 ) lowercase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowercase__ = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowercase__ = 1 / 0.18_215 * latents lowercase__ = self.vae.decode(_UpperCAmelCase ).sample lowercase__ = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: lowercase__ = self.feature_extractor(self.numpy_to_pil(_UpperCAmelCase ) , return_tensors="""pt""" ).to( self.device ) lowercase__ , lowercase__ = self.safety_checker( images=_UpperCAmelCase , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: lowercase__ = None if output_type == "pil": lowercase__ = self.numpy_to_pil(_UpperCAmelCase ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=_UpperCAmelCase , nsfw_content_detected=_UpperCAmelCase )
146
0
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = 42 class _UpperCAmelCase ( A__ ,A__ ): """simple docstring""" @register_to_config def __init__( self : str, lowerCamelCase : int = 3, lowerCamelCase : int = 3, lowerCamelCase : Tuple[str] = ("DownEncoderBlock2D",), lowerCamelCase : Tuple[str] = ("UpDecoderBlock2D",), lowerCamelCase : Tuple[int] = (64,), lowerCamelCase : int = 1, lowerCamelCase : str = "silu", lowerCamelCase : int = 3, lowerCamelCase : int = 32, lowerCamelCase : int = 256, lowerCamelCase : int = 32, lowerCamelCase : Optional[int] = None, lowerCamelCase : float = 0.18215, lowerCamelCase : str = "group", ): '''simple docstring''' super().__init__() # pass init params to Encoder lowercase__ = Encoder( in_channels=lowerCamelCase, out_channels=lowerCamelCase, down_block_types=lowerCamelCase, block_out_channels=lowerCamelCase, layers_per_block=lowerCamelCase, act_fn=lowerCamelCase, norm_num_groups=lowerCamelCase, double_z=lowerCamelCase, ) lowercase__ = vq_embed_dim if vq_embed_dim is not None else latent_channels lowercase__ = nn.Convad(lowerCamelCase, lowerCamelCase, 1 ) lowercase__ = VectorQuantizer(lowerCamelCase, lowerCamelCase, beta=0.25, remap=lowerCamelCase, sane_index_shape=lowerCamelCase ) lowercase__ = nn.Convad(lowerCamelCase, lowerCamelCase, 1 ) # pass init params to Decoder lowercase__ = Decoder( in_channels=lowerCamelCase, out_channels=lowerCamelCase, up_block_types=lowerCamelCase, block_out_channels=lowerCamelCase, layers_per_block=lowerCamelCase, act_fn=lowerCamelCase, norm_num_groups=lowerCamelCase, norm_type=lowerCamelCase, ) @apply_forward_hook def lowercase__ ( self : Tuple, lowerCamelCase : torch.FloatTensor, lowerCamelCase : bool = True ): '''simple docstring''' lowercase__ = self.encoder(lowerCamelCase ) lowercase__ = self.quant_conv(lowerCamelCase ) if not return_dict: return (h,) return VQEncoderOutput(latents=lowerCamelCase ) @apply_forward_hook def lowercase__ ( self : Tuple, lowerCamelCase : torch.FloatTensor, lowerCamelCase : bool = False, lowerCamelCase : bool = True ): '''simple docstring''' if not force_not_quantize: lowercase__ = self.quantize(lowerCamelCase ) else: lowercase__ = h lowercase__ = self.post_quant_conv(lowerCamelCase ) lowercase__ = self.decoder(lowerCamelCase, quant if self.config.norm_type == '''spatial''' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=lowerCamelCase ) def lowercase__ ( self : Dict, lowerCamelCase : torch.FloatTensor, lowerCamelCase : bool = True ): '''simple docstring''' lowercase__ = sample lowercase__ = self.encode(lowerCamelCase ).latents lowercase__ = self.decode(lowerCamelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=lowerCamelCase )
207
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCamelCase : Union[str, Any] =logging.get_logger(__name__) lowerCamelCase : str ={ '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } lowerCamelCase : str ={ '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } lowerCamelCase : str ={'''facebook/blenderbot-3B''': 128} class __a ( A__ ): _lowerCAmelCase : Union[str, Any] = VOCAB_FILES_NAMES _lowerCAmelCase : Dict = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase : int = ['''input_ids''', '''attention_mask'''] _lowerCAmelCase : Tuple = BlenderbotTokenizer def __init__( self : List[Any] , SCREAMING_SNAKE_CASE : Optional[int]=None , SCREAMING_SNAKE_CASE : Dict=None , SCREAMING_SNAKE_CASE : Union[str, Any]=None , SCREAMING_SNAKE_CASE : Tuple="replace" , SCREAMING_SNAKE_CASE : Union[str, Any]="<s>" , SCREAMING_SNAKE_CASE : str="</s>" , SCREAMING_SNAKE_CASE : str="</s>" , SCREAMING_SNAKE_CASE : Tuple="<s>" , SCREAMING_SNAKE_CASE : Union[str, Any]="<unk>" , SCREAMING_SNAKE_CASE : str="<pad>" , SCREAMING_SNAKE_CASE : Union[str, Any]="<mask>" , SCREAMING_SNAKE_CASE : Any=False , SCREAMING_SNAKE_CASE : List[Any]=True , **SCREAMING_SNAKE_CASE : int , ): '''simple docstring''' super().__init__( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , tokenizer_file=SCREAMING_SNAKE_CASE , errors=SCREAMING_SNAKE_CASE , bos_token=SCREAMING_SNAKE_CASE , eos_token=SCREAMING_SNAKE_CASE , sep_token=SCREAMING_SNAKE_CASE , cls_token=SCREAMING_SNAKE_CASE , unk_token=SCREAMING_SNAKE_CASE , pad_token=SCREAMING_SNAKE_CASE , mask_token=SCREAMING_SNAKE_CASE , add_prefix_space=SCREAMING_SNAKE_CASE , trim_offsets=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) UpperCamelCase__ : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , SCREAMING_SNAKE_CASE ) != add_prefix_space: UpperCamelCase__ : str = getattr(SCREAMING_SNAKE_CASE , pre_tok_state.pop("type" ) ) UpperCamelCase__ : Union[str, Any] = add_prefix_space UpperCamelCase__ : Union[str, Any] = pre_tok_class(**SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = add_prefix_space UpperCamelCase__ : Optional[int] = "post_processor" UpperCamelCase__ : Union[str, Any] = getattr(self.backend_tokenizer , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if tokenizer_component_instance: UpperCamelCase__ : Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: UpperCamelCase__ : Tuple = tuple(state["sep"] ) if "cls" in state: UpperCamelCase__ : Optional[int] = tuple(state["cls"] ) UpperCamelCase__ : List[Any] = False if state.get("add_prefix_space" , SCREAMING_SNAKE_CASE ) != add_prefix_space: UpperCamelCase__ : str = add_prefix_space UpperCamelCase__ : Optional[Any] = True if state.get("trim_offsets" , SCREAMING_SNAKE_CASE ) != trim_offsets: UpperCamelCase__ : Optional[Any] = trim_offsets UpperCamelCase__ : Tuple = True if changes_to_apply: UpperCamelCase__ : Optional[int] = getattr(SCREAMING_SNAKE_CASE , state.pop("type" ) ) UpperCamelCase__ : Dict = component_class(**SCREAMING_SNAKE_CASE ) setattr(self.backend_tokenizer , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def __lowercase ( self : Union[str, Any] ): '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def __lowercase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' UpperCamelCase__ : Dict = AddedToken(SCREAMING_SNAKE_CASE , lstrip=SCREAMING_SNAKE_CASE , rstrip=SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else value UpperCamelCase__ : str = value def __lowercase ( self : Any , *SCREAMING_SNAKE_CASE : List[str] , **SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' UpperCamelCase__ : List[Any] = kwargs.get("is_split_into_words" , SCREAMING_SNAKE_CASE ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowercase ( self : Dict , *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' UpperCamelCase__ : Dict = kwargs.get("is_split_into_words" , SCREAMING_SNAKE_CASE ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowercase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[str] = None ): '''simple docstring''' UpperCamelCase__ : Optional[Any] = self._tokenizer.model.save(SCREAMING_SNAKE_CASE , name=SCREAMING_SNAKE_CASE ) return tuple(SCREAMING_SNAKE_CASE ) def __lowercase ( self : Optional[int] , SCREAMING_SNAKE_CASE : List[int] , SCREAMING_SNAKE_CASE : Optional[List[int]] = None ): '''simple docstring''' UpperCamelCase__ : Optional[Any] = [self.sep_token_id] UpperCamelCase__ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE : List[int] , SCREAMING_SNAKE_CASE : Optional[List[int]] = None ): '''simple docstring''' return token_ids_a + [self.eos_token_id] def __lowercase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : "Conversation" ): '''simple docstring''' UpperCamelCase__ : Optional[Any] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = " ".join(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = self.encode(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > self.model_max_length: UpperCamelCase__ : Dict = input_ids[-self.model_max_length :] logger.warning(F'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.' ) return input_ids
189
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __A = {'configuration_yolos': ['YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'YolosConfig', 'YolosOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ['YolosFeatureExtractor'] __A = ['YolosImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ 'YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST', 'YolosForObjectDetection', 'YolosModel', 'YolosPreTrainedModel', ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
75
from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" A_ = 42 A_ = 42 A_ = None class SCREAMING_SNAKE_CASE ( snake_case , snake_case ): """simple docstring""" A_ = 2 @register_to_config def __init__( self: List[str] , __A: float = 0.02 , __A: float = 1_00 , __A: float = 1.007 , __A: float = 80 , __A: float = 0.05 , __A: float = 50 , ) -> Optional[int]: # standard deviation of the initial noise distribution _A = sigma_max # setable values _A = None _A = None _A = None # sigma(t_i) def __A ( self: Any , __A: torch.FloatTensor , __A: Optional[int] = None ) -> torch.FloatTensor: return sample def __A ( self: Union[str, Any] , __A: int , __A: Union[str, torch.device] = None ) -> List[Any]: _A = num_inference_steps _A = np.arange(0 , self.num_inference_steps )[::-1].copy() _A = torch.from_numpy(__A ).to(__A ) _A = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] _A = torch.tensor(__A , dtype=torch.floataa , device=__A ) def __A ( self: List[Any] , __A: torch.FloatTensor , __A: float , __A: Optional[torch.Generator] = None ) -> Tuple[torch.FloatTensor, float]: if self.config.s_min <= sigma <= self.config.s_max: _A = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: _A = 0 # sample eps ~ N(0, S_noise^2 * I) _A = self.config.s_noise * randn_tensor(sample.shape , generator=__A ).to(sample.device ) _A = sigma + gamma * sigma _A = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def __A ( self: Optional[Any] , __A: torch.FloatTensor , __A: float , __A: float , __A: torch.FloatTensor , __A: bool = True , ) -> Union[KarrasVeOutput, Tuple]: _A = sample_hat + sigma_hat * model_output _A = (sample_hat - pred_original_sample) / sigma_hat _A = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=__A , derivative=__A , pred_original_sample=__A ) def __A ( self: Dict , __A: torch.FloatTensor , __A: float , __A: float , __A: torch.FloatTensor , __A: torch.FloatTensor , __A: torch.FloatTensor , __A: bool = True , ) -> Union[KarrasVeOutput, Tuple]: _A = sample_prev + sigma_prev * model_output _A = (sample_prev - pred_original_sample) / sigma_prev _A = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=__A , derivative=__A , pred_original_sample=__A ) def __A ( self: Any , __A: List[Any] , __A: int , __A: int ) -> int: raise NotImplementedError()
75
1
from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge lowercase : Dict = [ """Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of the""" """ final seconds on board Flight 9525. The Germanwings co-pilot says he had a \"previous episode of severe""" """ depression\" German airline confirms it knew of Andreas Lubitz's depression years before he took control.""", """The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal""" """ accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC's""" """ founding Rome Statute in January. Israel and the United States opposed the Palestinians' efforts to join the""" """ body.""", """Amnesty International releases its annual report on the death penalty. The report catalogs the use of""" """ state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the""" """ world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital""" """ punishment.""", ] lowercase : Tuple = [ """Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports .""" """ Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz""" """ had informed his Lufthansa training school of an episode of severe depression, airline says .""", """Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .""" """ Israel and the United States opposed the move, which could open the door to war crimes investigations against""" """ Israelis .""", """Amnesty's annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to""" """ death . Organization claims that governments around the world are using the threat of terrorism to advance""" """ executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death""" """ sentences up by 28% .""", ] def _snake_case( ) -> int: lowercase : Union[str, Any] = calculate_rouge(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bootstrap_aggregation=SCREAMING_SNAKE_CASE__ , rouge_keys=["""rouge2""", """rougeL"""] ) assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = calculate_rouge(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bootstrap_aggregation=SCREAMING_SNAKE_CASE__ , rouge_keys=["""rouge2"""] ) assert ( pd.DataFrame(no_aggregation["""rouge2"""] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra["""rouge2"""] ).fmeasure.mean() ) def _snake_case( ) -> Dict: lowercase : List[Any] = """rougeLsum""" lowercase : List[Any] = calculate_rouge(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , newline_sep=SCREAMING_SNAKE_CASE__ , rouge_keys=[k] )[k] lowercase : int = calculate_rouge(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , newline_sep=SCREAMING_SNAKE_CASE__ , rouge_keys=[k] )[k] assert score > score_no_sep def _snake_case( ) -> Tuple: lowercase : List[str] = ["""rouge1""", """rouge2""", """rougeL"""] lowercase : Dict = calculate_rouge(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , newline_sep=SCREAMING_SNAKE_CASE__ , rouge_keys=SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = calculate_rouge(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , newline_sep=SCREAMING_SNAKE_CASE__ , rouge_keys=SCREAMING_SNAKE_CASE__ ) assert score_sep == score_no_sep def _snake_case( ) -> Union[str, Any]: lowercase : str = [ """Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.""", """Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports .""", ] lowercase : str = [ """Margot Frank, died in 1945, a month earlier than previously thought.""", """Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of""" """ the final seconds on board Flight 9525.""", ] assert calculate_rouge(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , newline_sep=SCREAMING_SNAKE_CASE__ ) == calculate_rouge(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , newline_sep=SCREAMING_SNAKE_CASE__ ) def _snake_case( ) -> Any: lowercase : Tuple = [ """\" \"a person who has such a video needs to immediately give it to the investigators,\" prosecutor says .<n> \"it is a very disturbing scene,\" editor-in-chief of bild online tells \"erin burnett: outfront\" """ ] lowercase : List[str] = [ """ Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports . Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .""" ] lowercase : Tuple = calculate_rouge(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , rouge_keys=["""rougeLsum"""] , newline_sep=SCREAMING_SNAKE_CASE__ )["""rougeLsum"""] lowercase : int = calculate_rouge(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , rouge_keys=["""rougeLsum"""] )["""rougeLsum"""] assert new_score > prev_score def _snake_case( ) -> Union[str, Any]: lowercase : List[Any] = Path("""examples/seq2seq/test_data/wmt_en_ro""" ) lowercase : Dict = calculate_rouge_path(data_dir.joinpath("""test.source""" ) , data_dir.joinpath("""test.target""" ) ) assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = calculate_rouge_path( data_dir.joinpath("""test.source""" ) , data_dir.joinpath("""test.target""" ) , bootstrap_aggregation=SCREAMING_SNAKE_CASE__ ) assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
20
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase : Union[str, Any] = { "configuration_convbert": ["CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvBertConfig", "ConvBertOnnxConfig"], "tokenization_convbert": ["ConvBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[Any] = ["ConvBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ "CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvBertForMaskedLM", "ConvBertForMultipleChoice", "ConvBertForQuestionAnswering", "ConvBertForSequenceClassification", "ConvBertForTokenClassification", "ConvBertLayer", "ConvBertModel", "ConvBertPreTrainedModel", "load_tf_weights_in_convbert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Tuple = [ "TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFConvBertForMaskedLM", "TFConvBertForMultipleChoice", "TFConvBertForQuestionAnswering", "TFConvBertForSequenceClassification", "TFConvBertForTokenClassification", "TFConvBertLayer", "TFConvBertModel", "TFConvBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
204
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class _SCREAMING_SNAKE_CASE ( A__ ): UpperCAmelCase_ :Dict = ( "This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image." "It takes two arguments named `image` which should be the original image, and `label` which should be a text " "describing the elements what should be identified in the segmentation mask. The tool returns the mask." ) UpperCAmelCase_ :List[str] = "CIDAS/clipseg-rd64-refined" UpperCAmelCase_ :List[Any] = "image_segmenter" UpperCAmelCase_ :Optional[int] = CLIPSegForImageSegmentation UpperCAmelCase_ :Tuple = ["image", "text"] UpperCAmelCase_ :Dict = ["image"] def __init__( self , *__A , **__A ) -> Optional[Any]: requires_backends(self , ["""vision"""] ) super().__init__(*__A , **__A ) def __lowerCAmelCase ( self , __A , __A ) -> Any: return self.pre_processor(text=[label] , images=[image] , padding=__A , return_tensors="""pt""" ) def __lowerCAmelCase ( self , __A ) -> Tuple: with torch.no_grad(): lowerCAmelCase_ :Dict = self.model(**__A ).logits return logits def __lowerCAmelCase ( self , __A ) -> Tuple: lowerCAmelCase_ :Optional[int] = outputs.cpu().detach().numpy() lowerCAmelCase_ :List[str] = 0 lowerCAmelCase_ :str = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
1
"""simple docstring""" import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class _SCREAMING_SNAKE_CASE : def __init__( self , __A ) -> Union[str, Any]: if isinstance(__A , __A ): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden lowerCAmelCase_ :Tuple = deepcopy(__A ) elif os.path.exists(__A ): with io.open(__A , """r""" , encoding="""utf-8""" ) as f: lowerCAmelCase_ :str = json.load(__A ) else: try: lowerCAmelCase_ :Dict = baseaa.urlsafe_baadecode(__A ).decode("""utf-8""" ) lowerCAmelCase_ :int = json.loads(__A ) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( f"""Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}""" ) lowerCAmelCase_ :Optional[Any] = config self.set_stage_and_offload() def __lowerCAmelCase ( self ) -> Tuple: # zero stage - this is done as early as possible, before model is created, to allow # ``is_deepspeed_zero3_enabled`` query and getting to the early deepspeed config object # during ``zero.Init()`` which needs to know the dtype, and some other hparams. lowerCAmelCase_ :Tuple = self.get_value("""zero_optimization.stage""" , -1 ) # offload lowerCAmelCase_ :Dict = False if self.is_zeroa() or self.is_zeroa(): lowerCAmelCase_ :Optional[int] = set(["""cpu""", """nvme"""] ) lowerCAmelCase_ :Union[str, Any] = set( [ self.get_value("""zero_optimization.offload_optimizer.device""" ), self.get_value("""zero_optimization.offload_param.device""" ), ] ) if len(offload_devices & offload_devices_valid ) > 0: lowerCAmelCase_ :Optional[int] = True def __lowerCAmelCase ( self , __A ) -> Optional[Any]: lowerCAmelCase_ :str = self.config # find the config node of interest if it exists lowerCAmelCase_ :Tuple = ds_key_long.split(""".""" ) lowerCAmelCase_ :List[str] = nodes.pop() for node in nodes: lowerCAmelCase_ :Tuple = config.get(__A ) if config is None: return None, ds_key return config, ds_key def __lowerCAmelCase ( self , __A , __A=None ) -> Optional[Any]: lowerCAmelCase_ , lowerCAmelCase_ :Optional[Any] = self.find_config_node(__A ) if config is None: return default return config.get(__A , __A ) def __lowerCAmelCase ( self , __A , __A=False ) -> Optional[Any]: lowerCAmelCase_ :Tuple = self.config # find the config node of interest if it exists lowerCAmelCase_ :Union[str, Any] = ds_key_long.split(""".""" ) for node in nodes: lowerCAmelCase_ :int = config lowerCAmelCase_ :Any = config.get(__A ) if config is None: if must_exist: raise ValueError(f"""Can't find {ds_key_long} entry in the config: {self.config}""" ) else: return # if found remove it if parent_config is not None: parent_config.pop(__A ) def __lowerCAmelCase ( self , __A ) -> Union[str, Any]: lowerCAmelCase_ :Optional[int] = self.get_value(__A ) return False if value is None else bool(__A ) def __lowerCAmelCase ( self , __A ) -> Optional[int]: lowerCAmelCase_ :List[str] = self.get_value(__A ) return False if value is None else not bool(__A ) def __lowerCAmelCase ( self ) -> str: return self._stage == 2 def __lowerCAmelCase ( self ) -> Union[str, Any]: return self._stage == 3 def __lowerCAmelCase ( self ) -> Union[str, Any]: return self._offload class _SCREAMING_SNAKE_CASE : def __init__( self , __A ) -> Optional[int]: lowerCAmelCase_ :Dict = engine def __lowerCAmelCase ( self , __A , **__A ) -> str: # runs backpropagation and handles mixed precision self.engine.backward(__A , **__A ) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class _SCREAMING_SNAKE_CASE ( A__ ): def __init__( self , __A ) -> List[str]: super().__init__(__A , device_placement=__A , scaler=__A ) lowerCAmelCase_ :List[str] = hasattr(self.optimizer , """overflow""" ) def __lowerCAmelCase ( self , __A=None ) -> Optional[Any]: pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def __lowerCAmelCase ( self ) -> List[Any]: pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def __lowerCAmelCase ( self ) -> int: if self.__has_overflow__: return self.optimizer.overflow return False class _SCREAMING_SNAKE_CASE ( A__ ): def __init__( self , __A , __A ) -> Optional[int]: super().__init__(__A , __A ) def __lowerCAmelCase ( self ) -> Any: pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class _SCREAMING_SNAKE_CASE : def __init__( self , __A , __A=0.0_0_1 , __A=0 , **__A ) -> List[Any]: lowerCAmelCase_ :str = params lowerCAmelCase_ :Any = lr lowerCAmelCase_ :List[Any] = weight_decay lowerCAmelCase_ :Any = kwargs class _SCREAMING_SNAKE_CASE : def __init__( self , __A , __A=None , __A=0 , **__A ) -> List[str]: lowerCAmelCase_ :Optional[int] = optimizer lowerCAmelCase_ :int = total_num_steps lowerCAmelCase_ :List[Any] = warmup_num_steps lowerCAmelCase_ :int = kwargs
1
1
"""simple docstring""" import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class __snake_case : """simple docstring""" def __init__( self , __lowerCamelCase , __lowerCamelCase=13 , __lowerCamelCase=7 , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=99 , __lowerCamelCase=32 , __lowerCamelCase=5 , __lowerCamelCase=4 , __lowerCamelCase=37 , __lowerCamelCase="gelu" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=50 , __lowerCamelCase=0.0_2 , __lowerCamelCase=True , __lowerCamelCase=None , ): '''simple docstring''' __A : Tuple = parent __A : Tuple = batch_size __A : Dict = seq_length __A : str = is_training __A : str = use_input_mask __A : int = vocab_size __A : Union[str, Any] = hidden_size __A : List[Any] = num_hidden_layers __A : Any = num_attention_heads __A : Dict = intermediate_size __A : Tuple = hidden_act __A : Union[str, Any] = hidden_dropout_prob __A : Union[str, Any] = attention_probs_dropout_prob __A : Dict = max_position_embeddings __A : int = initializer_range __A : Optional[Any] = use_labels __A : Optional[int] = scope def UpperCamelCase__( self ): '''simple docstring''' __A : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __A : Union[str, Any] = None if self.use_input_mask: __A : Dict = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: __A : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __A : Optional[Any] = self.get_config() return config, input_ids, input_mask, token_labels def UpperCamelCase__( self ): '''simple docstring''' return BertGenerationConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , ) def UpperCamelCase__( self ): '''simple docstring''' ( ( __A ) , ( __A ) , ( __A ) , ( __A ) , ) : List[Any] = self.prepare_config_and_inputs() __A : Tuple = True __A : Dict = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __A : Dict = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase , ): '''simple docstring''' __A : str = BertGenerationEncoder(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __A : Union[str, Any] = model(__lowerCamelCase , attention_mask=__lowerCamelCase ) __A : Union[str, Any] = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase , ): '''simple docstring''' __A : Tuple = True __A : List[str] = BertGenerationEncoder(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __A : Tuple = model( __lowerCamelCase , attention_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , ) __A : int = model( __lowerCamelCase , attention_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase , ): '''simple docstring''' __A : List[str] = True __A : List[str] = True __A : Optional[int] = BertGenerationDecoder(config=__lowerCamelCase ).to(__lowerCamelCase ).eval() # first forward pass __A : Optional[Any] = model( __lowerCamelCase , attention_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , use_cache=__lowerCamelCase , ) __A : int = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __A : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) __A : Dict = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __A : int = torch.cat([input_ids, next_tokens] , dim=-1 ) __A : Union[str, Any] = torch.cat([input_mask, next_mask] , dim=-1 ) __A : List[str] = model( __lowerCamelCase , attention_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , output_hidden_states=__lowerCamelCase , )['''hidden_states'''][0] __A : Tuple = model( __lowerCamelCase , attention_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , past_key_values=__lowerCamelCase , output_hidden_states=__lowerCamelCase , )['''hidden_states'''][0] # select random slice __A : str = ids_tensor((1,) , output_from_past.shape[-1] ).item() __A : List[str] = output_from_no_past[:, -3:, random_slice_idx].detach() __A : List[str] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3 ) ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , *__lowerCamelCase , ): '''simple docstring''' __A : Optional[Any] = BertGenerationDecoder(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __A : Optional[Any] = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__( self ): '''simple docstring''' __A , __A , __A , __A : int = self.prepare_config_and_inputs() __A : List[str] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __snake_case ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () _lowerCamelCase = (BertGenerationDecoder,) if is_torch_available() else () _lowerCamelCase = ( {"""feature-extraction""": BertGenerationEncoder, """text-generation""": BertGenerationDecoder} if is_torch_available() else {} ) def UpperCamelCase__( self ): '''simple docstring''' __A : Optional[Any] = BertGenerationEncoderTester(self ) __A : Union[str, Any] = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 ) def UpperCamelCase__( self ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase__( self ): '''simple docstring''' __A : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def UpperCamelCase__( self ): '''simple docstring''' __A , __A , __A , __A : Tuple = self.model_tester.prepare_config_and_inputs() __A : Optional[Any] = '''bert''' self.model_tester.create_and_check_model(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def UpperCamelCase__( self ): '''simple docstring''' __A : str = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__lowerCamelCase ) def UpperCamelCase__( self ): '''simple docstring''' __A : Any = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__lowerCamelCase ) def UpperCamelCase__( self ): '''simple docstring''' ( ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ) : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() __A : Dict = None self.model_tester.create_and_check_model_as_decoder( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) def UpperCamelCase__( self ): '''simple docstring''' __A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*__lowerCamelCase ) @slow def UpperCamelCase__( self ): '''simple docstring''' __A : List[str] = BertGenerationEncoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) self.assertIsNotNone(__lowerCamelCase ) @require_torch class __snake_case ( unittest.TestCase ): """simple docstring""" @slow def UpperCamelCase__( self ): '''simple docstring''' __A : Optional[Any] = BertGenerationEncoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) __A : int = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] ) with torch.no_grad(): __A : Optional[Any] = model(__lowerCamelCase )[0] __A : Optional[Any] = torch.Size([1, 8, 1024] ) self.assertEqual(output.shape , __lowerCamelCase ) __A : Dict = torch.tensor( [[[0.1_7_7_5, 0.0_0_8_3, -0.0_3_2_1], [1.6_0_0_2, 0.1_2_8_7, 0.3_9_1_2], [2.1_4_7_3, 0.5_7_9_1, 0.6_0_6_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __lowerCamelCase , atol=1e-4 ) ) @require_torch class __snake_case ( unittest.TestCase ): """simple docstring""" @slow def UpperCamelCase__( self ): '''simple docstring''' __A : Union[str, Any] = BertGenerationDecoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) __A : Union[str, Any] = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] ) with torch.no_grad(): __A : Dict = model(__lowerCamelCase )[0] __A : Any = torch.Size([1, 8, 5_0358] ) self.assertEqual(output.shape , __lowerCamelCase ) __A : int = torch.tensor( [[[-0.5_7_8_8, -2.5_9_9_4, -3.7_0_5_4], [0.0_4_3_8, 4.7_9_9_7, 1.8_7_9_5], [1.5_8_6_2, 6.6_4_0_9, 4.4_6_3_8]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __lowerCamelCase , atol=1e-4 ) )
179
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class __snake_case : """simple docstring""" _lowerCamelCase = 42 # setable values _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = None @classmethod def UpperCamelCase__( cls , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' return cls(common=__lowerCamelCase , init_noise_sigma=__lowerCamelCase , timesteps=__lowerCamelCase ) @dataclass class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = 42 class __snake_case ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = [e.name for e in FlaxKarrasDiffusionSchedulers] _lowerCamelCase = 42 @property def UpperCamelCase__( self ): '''simple docstring''' return True @register_to_config def __init__( self , __lowerCamelCase = 1000 , __lowerCamelCase = 0.0_0_0_1 , __lowerCamelCase = 0.0_2 , __lowerCamelCase = "linear" , __lowerCamelCase = None , __lowerCamelCase = "fixed_small" , __lowerCamelCase = True , __lowerCamelCase = "epsilon" , __lowerCamelCase = jnp.floataa , ): '''simple docstring''' __A : Tuple = dtype def UpperCamelCase__( self , __lowerCamelCase = None ): '''simple docstring''' if common is None: __A : Tuple = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution __A : Tuple = jnp.array(1.0 , dtype=self.dtype ) __A : Optional[int] = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=__lowerCamelCase , init_noise_sigma=__lowerCamelCase , timesteps=__lowerCamelCase , ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = None ): '''simple docstring''' return sample def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = () ): '''simple docstring''' __A : Optional[Any] = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 __A : Optional[Any] = (jnp.arange(0 , __lowerCamelCase ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=__lowerCamelCase , timesteps=__lowerCamelCase , ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None ): '''simple docstring''' __A : int = state.common.alphas_cumprod[t] __A : List[str] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample __A : str = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: __A : Dict = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": __A : List[Any] = jnp.clip(__lowerCamelCase , a_min=1e-2_0 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": __A : Optional[Any] = jnp.log(jnp.clip(__lowerCamelCase , a_min=1e-2_0 ) ) elif variance_type == "fixed_large": __A : Tuple = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log __A : Union[str, Any] = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": __A : Optional[Any] = variance __A : Optional[Any] = state.common.betas[t] __A : Any = (predicted_variance + 1) / 2 __A : Union[str, Any] = frac * max_log + (1 - frac) * min_log return variance def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = True , ): '''simple docstring''' __A : Optional[int] = timestep if key is None: __A : List[Any] = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: __A , __A : Tuple = jnp.split(__lowerCamelCase , sample.shape[1] , axis=1 ) else: __A : List[str] = None # 1. compute alphas, betas __A : Dict = state.common.alphas_cumprod[t] __A : int = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) __A : Tuple = 1 - alpha_prod_t __A : Optional[int] = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": __A : Optional[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": __A : Any = model_output elif self.config.prediction_type == "v_prediction": __A : str = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` """ ''' for the FlaxDDPMScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: __A : str = jnp.clip(__lowerCamelCase , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __A : Optional[Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t __A : Union[str, Any] = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __A : Optional[Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): __A : List[Any] = jax.random.split(__lowerCamelCase , num=1 ) __A : List[str] = jax.random.normal(__lowerCamelCase , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(__lowerCamelCase , __lowerCamelCase , predicted_variance=__lowerCamelCase ) ** 0.5) * noise __A : Optional[Any] = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) __A : Any = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=__lowerCamelCase , state=__lowerCamelCase ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ): '''simple docstring''' return add_noise_common(state.common , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ): '''simple docstring''' return get_velocity_common(state.common , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def __len__( self ): '''simple docstring''' return self.config.num_train_timesteps
179
1
import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCAmelCase : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=1_3 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=9_9 , lowerCAmelCase__=3_2 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=3_7 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=5_1_2 , lowerCAmelCase__=1_6 , lowerCAmelCase__=2 , lowerCAmelCase__=0.02 , lowerCAmelCase__=3 , lowerCAmelCase__=4 , lowerCAmelCase__=None , ) -> List[Any]: '''simple docstring''' a__ : Optional[Any] =parent a__ : Tuple =batch_size a__ : List[Any] =seq_length a__ : Dict =is_training a__ : Any =use_input_mask a__ : int =use_token_type_ids a__ : Optional[Any] =use_labels a__ : Optional[Any] =vocab_size a__ : List[str] =hidden_size a__ : int =num_hidden_layers a__ : Tuple =num_attention_heads a__ : Union[str, Any] =intermediate_size a__ : Optional[int] =hidden_act a__ : int =hidden_dropout_prob a__ : Union[str, Any] =attention_probs_dropout_prob a__ : List[Any] =max_position_embeddings a__ : str =type_vocab_size a__ : Optional[Any] =type_sequence_label_size a__ : Union[str, Any] =initializer_range a__ : List[Any] =num_labels a__ : str =num_choices a__ : int =scope def _lowercase ( self ) -> int: '''simple docstring''' a__ : List[Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a__ : str =None if self.use_input_mask: a__ : List[Any] =random_attention_mask([self.batch_size, self.seq_length] ) a__ : str =None if self.use_token_type_ids: a__ : List[str] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a__ : Dict =None a__ : str =None a__ : str =None if self.use_labels: a__ : List[str] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) a__ : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a__ : Dict =ids_tensor([self.batch_size] , self.num_choices ) a__ : Tuple =self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase ( self ) -> Tuple: '''simple docstring''' return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , ) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' a__ : Tuple =NystromformerModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() a__ : Optional[Any] =model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ ) a__ : str =model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ ) a__ : Optional[int] =model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: '''simple docstring''' a__ : int =NystromformerForMaskedLM(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() a__ : Dict =model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: '''simple docstring''' a__ : Optional[int] =NystromformerForQuestionAnswering(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() a__ : str =model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , start_positions=lowerCAmelCase__ , end_positions=lowerCAmelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' a__ : Optional[Any] =self.num_labels a__ : Dict =NystromformerForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() a__ : List[str] =model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: '''simple docstring''' a__ : Tuple =self.num_labels a__ : List[str] =NystromformerForTokenClassification(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() a__ : List[Any] =model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: '''simple docstring''' a__ : List[Any] =self.num_choices a__ : Optional[Any] =NystromformerForMultipleChoice(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() a__ : List[str] =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a__ : List[Any] =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a__ : List[Any] =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a__ : Dict =model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowercase ( self ) -> Tuple: '''simple docstring''' a__ : Optional[Any] =self.prepare_config_and_inputs() ( a__ ) : List[str] =config_and_inputs a__ : str ={"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase): _lowercase : int = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) _lowercase : Union[str, Any] = ( { """feature-extraction""": NystromformerModel, """fill-mask""": NystromformerForMaskedLM, """question-answering""": NystromformerForQuestionAnswering, """text-classification""": NystromformerForSequenceClassification, """token-classification""": NystromformerForTokenClassification, """zero-shot""": NystromformerForSequenceClassification, } if is_torch_available() else {} ) _lowercase : Union[str, Any] = False _lowercase : Union[str, Any] = False def _lowercase ( self ) -> List[str]: '''simple docstring''' a__ : Optional[int] =NystromformerModelTester(self ) a__ : Optional[int] =ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=3_7 ) def _lowercase ( self ) -> int: '''simple docstring''' self.config_tester.run_common_tests() def _lowercase ( self ) -> Dict: '''simple docstring''' a__ : List[str] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' a__ : Tuple =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a__ : int =type self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' a__ : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase__ ) def _lowercase ( self ) -> Dict: '''simple docstring''' a__ : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCAmelCase__ ) def _lowercase ( self ) -> List[str]: '''simple docstring''' a__ : Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase__ ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' a__ : Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase__ ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' a__ : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase__ ) @slow def _lowercase ( self ) -> str: '''simple docstring''' for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ : int =NystromformerModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @require_torch class __lowerCAmelCase ( unittest.TestCase): @slow def _lowercase ( self ) -> str: '''simple docstring''' a__ : str =NystromformerModel.from_pretrained("uw-madison/nystromformer-512" ) a__ : int =torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): a__ : Tuple =model(lowerCAmelCase__ )[0] a__ : List[str] =torch.Size((1, 6, 7_6_8) ) self.assertEqual(output.shape , lowerCAmelCase__ ) a__ : int =torch.tensor( [[[-0.45_32, -0.09_36, 0.51_37], [-0.26_76, 0.06_28, 0.61_86], [-0.36_29, -0.17_26, 0.47_16]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase__ , atol=1E-4 ) ) @slow def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' a__ : Union[str, Any] ="the [MASK] of Belgium is Brussels" a__ : str =AutoTokenizer.from_pretrained("uw-madison/nystromformer-512" ) a__ : int =NystromformerForMaskedLM.from_pretrained("uw-madison/nystromformer-512" ) a__ : List[Any] =tokenizer(lowerCAmelCase__ , return_tensors="pt" ) with torch.no_grad(): a__ : str =model(encoding.input_ids ).logits a__ : List[str] =token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(lowerCAmelCase__ ) , "capital" )
365
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __lowerCAmelCase ( UpperCamelCase__): def _lowercase ( self ) -> Any: '''simple docstring''' a__ : Optional[int] =self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , "tf_padding" ) ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , "depth_multiplier" ) ) class __lowerCAmelCase : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=1_3 , lowerCAmelCase__=3 , lowerCAmelCase__=3_2 , lowerCAmelCase__=0.25 , lowerCAmelCase__=8 , lowerCAmelCase__=True , lowerCAmelCase__=1_0_2_4 , lowerCAmelCase__=3_2 , lowerCAmelCase__="relu6" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.02 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=1_0 , lowerCAmelCase__=None , ) -> Dict: '''simple docstring''' a__ : int =parent a__ : Optional[Any] =batch_size a__ : Tuple =num_channels a__ : Dict =image_size a__ : Union[str, Any] =depth_multiplier a__ : List[str] =min_depth a__ : Dict =tf_padding a__ : Any =int(last_hidden_size * depth_multiplier ) a__ : Tuple =output_stride a__ : Optional[Any] =hidden_act a__ : str =classifier_dropout_prob a__ : int =use_labels a__ : List[Any] =is_training a__ : List[str] =num_labels a__ : Dict =initializer_range a__ : Tuple =scope def _lowercase ( self ) -> List[str]: '''simple docstring''' a__ : Union[str, Any] =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a__ : Any =None a__ : List[Any] =None if self.use_labels: a__ : Dict =ids_tensor([self.batch_size] , self.num_labels ) a__ : Tuple =ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) a__ : Optional[Any] =self.get_config() return config, pixel_values, labels, pixel_labels def _lowercase ( self ) -> str: '''simple docstring''' return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' a__ : Union[str, Any] =MobileNetVaModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() a__ : str =model(lowerCAmelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: '''simple docstring''' a__ : Any =self.num_labels a__ : Dict =MobileNetVaForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() a__ : Optional[int] =model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self ) -> str: '''simple docstring''' a__ : str =self.prepare_config_and_inputs() a__ , a__ , a__ , a__ : List[str] =config_and_inputs a__ : Tuple ={"pixel_values": pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase): _lowercase : List[str] = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () _lowercase : Optional[int] = ( {"""feature-extraction""": MobileNetVaModel, """image-classification""": MobileNetVaForImageClassification} if is_torch_available() else {} ) _lowercase : Union[str, Any] = False _lowercase : Optional[int] = False _lowercase : List[str] = False _lowercase : str = False def _lowercase ( self ) -> Optional[int]: '''simple docstring''' a__ : Optional[Any] =MobileNetVaModelTester(self ) a__ : Optional[Any] =MobileNetVaConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ ) def _lowercase ( self ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="MobileNetV1 does not use inputs_embeds" ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip(reason="MobileNetV1 does not support input and output embeddings" ) def _lowercase ( self ) -> List[str]: '''simple docstring''' pass @unittest.skip(reason="MobileNetV1 does not output attentions" ) def _lowercase ( self ) -> Any: '''simple docstring''' pass def _lowercase ( self ) -> str: '''simple docstring''' a__ , a__ : Optional[int] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : Optional[int] =model_class(lowerCAmelCase__ ) a__ : str =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ : Optional[int] =[*signature.parameters.keys()] a__ : Union[str, Any] =["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' a__ : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def _lowercase ( self ) -> List[str]: '''simple docstring''' def check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): a__ : int =model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): a__ : List[Any] =model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) a__ : Optional[int] =outputs.hidden_states a__ : Optional[int] =2_6 self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) a__ , a__ : Optional[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : Optional[int] =True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a__ : Union[str, Any] =True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def _lowercase ( self ) -> Any: '''simple docstring''' a__ : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @slow def _lowercase ( self ) -> Any: '''simple docstring''' for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ : List[str] =MobileNetVaModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def _A ( ): """simple docstring""" a__ : Optional[Any] =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase): @cached_property def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' return ( MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v1_1.0_224" ) if is_vision_available() else None ) @slow def _lowercase ( self ) -> Optional[int]: '''simple docstring''' a__ : str =MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v1_1.0_224" ).to(lowerCAmelCase__ ) a__ : Optional[Any] =self.default_image_processor a__ : Optional[int] =prepare_img() a__ : Optional[int] =image_processor(images=lowerCAmelCase__ , return_tensors="pt" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): a__ : int =model(**lowerCAmelCase__ ) # verify the logits a__ : str =torch.Size((1, 1_0_0_1) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) a__ : int =torch.tensor([-4.17_39, -1.12_33, 3.12_05] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4 ) )
148
0
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __A = logging.get_logger(__name__) __A = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } __A = { "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } __A = {"facebook/blenderbot-3B": 128} class lowerCamelCase__ ( lowerCamelCase_ ): a__ : str = VOCAB_FILES_NAMES a__ : str = PRETRAINED_VOCAB_FILES_MAP a__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : Optional[int] = ["""input_ids""", """attention_mask"""] a__ : Optional[int] = BlenderbotTokenizer def __init__( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE="replace" , SCREAMING_SNAKE_CASE="<s>" , SCREAMING_SNAKE_CASE="</s>" , SCREAMING_SNAKE_CASE="</s>" , SCREAMING_SNAKE_CASE="<s>" , SCREAMING_SNAKE_CASE="<unk>" , SCREAMING_SNAKE_CASE="<pad>" , SCREAMING_SNAKE_CASE="<mask>" , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=True , **SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , tokenizer_file=SCREAMING_SNAKE_CASE , errors=SCREAMING_SNAKE_CASE , bos_token=SCREAMING_SNAKE_CASE , eos_token=SCREAMING_SNAKE_CASE , sep_token=SCREAMING_SNAKE_CASE , cls_token=SCREAMING_SNAKE_CASE , unk_token=SCREAMING_SNAKE_CASE , pad_token=SCREAMING_SNAKE_CASE , mask_token=SCREAMING_SNAKE_CASE , add_prefix_space=SCREAMING_SNAKE_CASE , trim_offsets=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) snake_case : Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , SCREAMING_SNAKE_CASE ) != add_prefix_space: snake_case : Dict = getattr(SCREAMING_SNAKE_CASE , pre_tok_state.pop("type" ) ) snake_case : Optional[Any] = add_prefix_space snake_case : List[Any] = pre_tok_class(**SCREAMING_SNAKE_CASE ) snake_case : Any = add_prefix_space snake_case : Optional[int] = "post_processor" snake_case : Optional[Any] = getattr(self.backend_tokenizer , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if tokenizer_component_instance: snake_case : Optional[Any] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: snake_case : Optional[Any] = tuple(state["sep"] ) if "cls" in state: snake_case : Optional[int] = tuple(state["cls"] ) snake_case : Optional[int] = False if state.get("add_prefix_space" , SCREAMING_SNAKE_CASE ) != add_prefix_space: snake_case : Optional[Any] = add_prefix_space snake_case : Tuple = True if state.get("trim_offsets" , SCREAMING_SNAKE_CASE ) != trim_offsets: snake_case : Any = trim_offsets snake_case : List[str] = True if changes_to_apply: snake_case : Optional[int] = getattr(SCREAMING_SNAKE_CASE , state.pop("type" ) ) snake_case : List[Any] = component_class(**SCREAMING_SNAKE_CASE ) setattr(self.backend_tokenizer , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def lowerCamelCase_ ( self ): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : int = AddedToken(SCREAMING_SNAKE_CASE , lstrip=SCREAMING_SNAKE_CASE , rstrip=SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else value snake_case : Tuple = value def lowerCamelCase_ ( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : Optional[int] = kwargs.get("is_split_into_words" , SCREAMING_SNAKE_CASE ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : Union[str, Any] = kwargs.get("is_split_into_words" , SCREAMING_SNAKE_CASE ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ): """simple docstring""" snake_case : List[Any] = self._tokenizer.model.save(SCREAMING_SNAKE_CASE , name=SCREAMING_SNAKE_CASE ) return tuple(SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ): """simple docstring""" snake_case : Optional[Any] = [self.sep_token_id] snake_case : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ): """simple docstring""" return token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : List[str] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(SCREAMING_SNAKE_CASE ) snake_case : Optional[int] = " ".join(SCREAMING_SNAKE_CASE ) snake_case : Tuple = self.encode(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > self.model_max_length: snake_case : Optional[Any] = input_ids[-self.model_max_length :] logger.warning(F'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
148
"""simple docstring""" # Algorithm for the pigeonhole sorting def UpperCamelCase__ ( lowercase__ : List[str] ): snake_case : Tuple = min(lowercase__ ) # min() finds the minimum value snake_case : int = max(lowercase__ ) # max() finds the maximum value snake_case : List[Any] = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size snake_case : List[Any] = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(lowercase__ , lowercase__ ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. snake_case : Optional[Any] = 0 for count in range(lowercase__ ): while holes[count] > 0: holes[count] -= 1 snake_case : List[str] = count + min_val i += 1 def UpperCamelCase__ ( ): snake_case : Dict = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(lowercase__ ) print("Sorted order is:" , " ".join(lowercase__ ) ) if __name__ == "__main__": main()
148
1
from ...configuration_utils import PretrainedConfig class UpperCAmelCase_ ( a): lowerCamelCase__ = 'bert-generation' def __init__( self, __a=5_0358, __a=1024, __a=24, __a=16, __a=4096, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=0.02, __a=1E-12, __a=0, __a=2, __a=1, __a="absolute", __a=True, **__a, ): '''simple docstring''' super().__init__(pad_token_id=__a, bos_token_id=__a, eos_token_id=__a, **__a) _lowerCAmelCase : Optional[int] = vocab_size _lowerCAmelCase : str = hidden_size _lowerCAmelCase : Optional[Any] = num_hidden_layers _lowerCAmelCase : str = num_attention_heads _lowerCAmelCase : List[str] = hidden_act _lowerCAmelCase : Tuple = intermediate_size _lowerCAmelCase : List[str] = hidden_dropout_prob _lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCAmelCase : Dict = max_position_embeddings _lowerCAmelCase : Optional[Any] = initializer_range _lowerCAmelCase : List[Any] = layer_norm_eps _lowerCAmelCase : Optional[int] = position_embedding_type _lowerCAmelCase : Any = use_cache
300
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "facebook/wav2vec2-base-960h": "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json", # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'wav2vec2' def __init__( self, __a=32, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.1, __a=0.1, __a=0.1, __a=0.0, __a=0.0, __a=0.1, __a=0.1, __a=0.02, __a=1E-5, __a="group", __a="gelu", __a=(512, 512, 512, 512, 512, 512, 512), __a=(5, 2, 2, 2, 2, 2, 2), __a=(10, 3, 3, 3, 3, 2, 2), __a=False, __a=128, __a=16, __a=False, __a=True, __a=0.05, __a=10, __a=2, __a=0.0, __a=10, __a=0, __a=320, __a=2, __a=0.1, __a=100, __a=256, __a=256, __a=0.1, __a="sum", __a=False, __a=False, __a=256, __a=(512, 512, 512, 512, 1500), __a=(5, 3, 3, 1, 1), __a=(1, 2, 3, 1, 1), __a=512, __a=0, __a=1, __a=2, __a=False, __a=3, __a=2, __a=3, __a=None, __a=None, **__a, ): '''simple docstring''' super().__init__(**__a, pad_token_id=__a, bos_token_id=__a, eos_token_id=__a) _lowerCAmelCase : str = hidden_size _lowerCAmelCase : Optional[int] = feat_extract_norm _lowerCAmelCase : Dict = feat_extract_activation _lowerCAmelCase : Any = list(__a) _lowerCAmelCase : List[str] = list(__a) _lowerCAmelCase : List[Any] = list(__a) _lowerCAmelCase : List[str] = conv_bias _lowerCAmelCase : Optional[Any] = num_conv_pos_embeddings _lowerCAmelCase : Dict = num_conv_pos_embedding_groups _lowerCAmelCase : Any = len(self.conv_dim) _lowerCAmelCase : Union[str, Any] = num_hidden_layers _lowerCAmelCase : int = intermediate_size _lowerCAmelCase : List[Any] = hidden_act _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : List[str] = hidden_dropout _lowerCAmelCase : Tuple = attention_dropout _lowerCAmelCase : List[Any] = activation_dropout _lowerCAmelCase : Dict = feat_proj_dropout _lowerCAmelCase : Optional[int] = final_dropout _lowerCAmelCase : Dict = layerdrop _lowerCAmelCase : Tuple = layer_norm_eps _lowerCAmelCase : Tuple = initializer_range _lowerCAmelCase : int = vocab_size _lowerCAmelCase : Tuple = do_stable_layer_norm _lowerCAmelCase : Any = use_weighted_layer_sum if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`," f" `len(config.conv_kernel) = {len(self.conv_kernel)}`.") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCAmelCase : Optional[int] = apply_spec_augment _lowerCAmelCase : int = mask_time_prob _lowerCAmelCase : str = mask_time_length _lowerCAmelCase : int = mask_time_min_masks _lowerCAmelCase : List[Any] = mask_feature_prob _lowerCAmelCase : List[Any] = mask_feature_length _lowerCAmelCase : List[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _lowerCAmelCase : int = num_codevectors_per_group _lowerCAmelCase : List[str] = num_codevector_groups _lowerCAmelCase : List[Any] = contrastive_logits_temperature _lowerCAmelCase : int = feat_quantizer_dropout _lowerCAmelCase : Any = num_negatives _lowerCAmelCase : Dict = codevector_dim _lowerCAmelCase : Any = proj_codevector_dim _lowerCAmelCase : Optional[int] = diversity_loss_weight # ctc loss _lowerCAmelCase : Optional[Any] = ctc_loss_reduction _lowerCAmelCase : str = ctc_zero_infinity # adapter _lowerCAmelCase : Optional[Any] = add_adapter _lowerCAmelCase : Tuple = adapter_kernel_size _lowerCAmelCase : str = adapter_stride _lowerCAmelCase : List[Any] = num_adapter_layers _lowerCAmelCase : str = output_hidden_size or hidden_size _lowerCAmelCase : List[str] = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCAmelCase : List[str] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCAmelCase : int = list(__a) _lowerCAmelCase : Dict = list(__a) _lowerCAmelCase : Dict = list(__a) _lowerCAmelCase : Tuple = xvector_output_dim @property def snake_case__ ( self): '''simple docstring''' return functools.reduce(operator.mul, self.conv_stride, 1)
300
1
'''simple docstring''' from __future__ import annotations lowercase : Union[str, Any] = 10 def SCREAMING_SNAKE_CASE__ ( __A ) -> list[int]: _snake_case = 1 _snake_case = max(__A ) while placement <= max_digit: # declare and initialize empty buckets _snake_case = [[] for _ in range(__A )] # split list_of_ints between the buckets for i in list_of_ints: _snake_case = int((i / placement) % RADIX ) buckets[tmp].append(__A ) # put each buckets' contents into list_of_ints _snake_case = 0 for b in range(__A ): for i in buckets[b]: _snake_case = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
42
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class __UpperCAmelCase ( unittest.TestCase ): @slow def lowerCamelCase ( self ): """simple docstring""" _snake_case = TFCamembertModel.from_pretrained('jplu/tf-camembert-base' ) _snake_case = tf.convert_to_tensor( [[5, 1_21, 11, 6_60, 16, 7_30, 2_55_43, 1_10, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" _snake_case = model(lowerCAmelCase_ )['last_hidden_state'] _snake_case = tf.TensorShape((1, 10, 7_68) ) self.assertEqual(output.shape , lowerCAmelCase_ ) # compare the actual values for a slice. _snake_case = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
42
1
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" lowerCamelCase : List[str] lowerCamelCase : Optional[str] =None # Automatically constructed lowerCamelCase : ClassVar[str] ="dict" lowerCamelCase : ClassVar[Any] =None lowerCamelCase : str =field(default="Translation" , init=_UpperCamelCase , repr=_UpperCamelCase ) def __call__( self : Tuple ) -> List[str]: """simple docstring""" return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Value return {k: Value("""string""" ) for k in sorted(self.languages )} @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" lowerCamelCase : Optional[List] =None lowerCamelCase : Optional[int] =None lowerCamelCase : Optional[str] =None # Automatically constructed lowerCamelCase : ClassVar[str] ="dict" lowerCamelCase : ClassVar[Any] =None lowerCamelCase : str =field(default="TranslationVariableLanguages" , init=_UpperCamelCase , repr=_UpperCamelCase ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Any = sorted(set(self.languages ) ) if self.languages else None __lowerCAmelCase : Any = len(self.languages ) if self.languages else None def __call__( self : List[str] ) -> Optional[int]: """simple docstring""" return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} ) def SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase : Dict ) -> int: """simple docstring""" __lowerCAmelCase : Union[str, Any] = set(self.languages ) if self.languages and set(_SCREAMING_SNAKE_CASE ) - lang_set: raise ValueError( f'''Some languages in example ({', '.join(sorted(set(_SCREAMING_SNAKE_CASE ) - lang_set ) )}) are not in valid set ({', '.join(_SCREAMING_SNAKE_CASE )}).''' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __lowerCAmelCase : Dict = [] for lang, text in translation_dict.items(): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __lowerCAmelCase ,__lowerCAmelCase : Optional[int] = zip(*sorted(_SCREAMING_SNAKE_CASE ) ) return {"language": languages, "translation": translations} def SCREAMING_SNAKE_CASE ( self : str ) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Sequence, Value return { "language": Sequence(Value("""string""" ) ), "translation": Sequence(Value("""string""" ) ), }
368
__UpperCAmelCase = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ __UpperCAmelCase = [{"""type""": """code""", """content""": INSTALL_CONTENT}] __UpperCAmelCase = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
139
0
import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version lowercase : int = version.parse(importlib_metadata.version("""nltk""")) if NLTK_VERSION >= version.Version("""3.6.4"""): from nltk import word_tokenize lowercase : Optional[Any] = """\ @inproceedings{banarjee2005, title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments}, author = {Banerjee, Satanjeev and Lavie, Alon}, booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization}, month = jun, year = {2005}, address = {Ann Arbor, Michigan}, publisher = {Association for Computational Linguistics}, url = {https://www.aclweb.org/anthology/W05-0909}, pages = {65--72}, } """ lowercase : str = """\ METEOR, an automatic metric for machine translation evaluation that is based on a generalized concept of unigram matching between the machine-produced translation and human-produced reference translations. Unigrams can be matched based on their surface forms, stemmed forms, and meanings; furthermore, METEOR can be easily extended to include more advanced matching strategies. Once all generalized unigram matches between the two strings have been found, METEOR computes a score for this matching using a combination of unigram-precision, unigram-recall, and a measure of fragmentation that is designed to directly capture how well-ordered the matched words in the machine translation are in relation to the reference. METEOR gets an R correlation value of 0.347 with human evaluation on the Arabic data and 0.331 on the Chinese data. This is shown to be an improvement on using simply unigram-precision, unigram-recall and their harmonic F1 combination. """ lowercase : str = """ Computes METEOR score of translated segments against one or more references. Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. alpha: Parameter for controlling relative weights of precision and recall. default: 0.9 beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3 gamma: Relative weight assigned to fragmentation penalty. default: 0.5 Returns: \'meteor\': meteor score. Examples: >>> meteor = datasets.load_metric(\'meteor\') >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"] >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"] >>> results = meteor.compute(predictions=predictions, references=references) >>> print(round(results[\"meteor\"], 4)) 0.6944 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__ ( datasets.Metric ): """simple docstring""" def __lowercase ( self) -> str: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence'), 'references': datasets.Value('string' , id='sequence'), }) , codebase_urls=['https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'] , reference_urls=[ 'https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score', 'https://en.wikipedia.org/wiki/METEOR', ] , ) def __lowercase ( self , lowercase) -> Any: '''simple docstring''' import nltk nltk.download('wordnet') if NLTK_VERSION >= version.Version('3.6.5'): nltk.download('punkt') if NLTK_VERSION >= version.Version('3.6.6'): nltk.download('omw-1.4') def __lowercase ( self , lowercase , lowercase , lowercase=0.9 , lowercase=3 , lowercase=0.5) -> int: '''simple docstring''' if NLTK_VERSION >= version.Version('3.6.5'): a__ : List[Any] = [ meteor_score.single_meteor_score( word_tokenize(__A) , word_tokenize(__A) , alpha=__A , beta=__A , gamma=__A) for ref, pred in zip(__A , __A) ] else: a__ : Dict = [ meteor_score.single_meteor_score(__A , __A , alpha=__A , beta=__A , gamma=__A) for ref, pred in zip(__A , __A) ] return {"meteor": np.mean(__A)}
99
import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline _snake_case = argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False) parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''') parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''') _snake_case = parser.parse_args() _snake_case = '''cpu''' _snake_case = '''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings''' _snake_case = '''path-to-your-trained-model''' _snake_case = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: _snake_case = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) _snake_case = pipe.to(device) # to channels last _snake_case = pipe.unet.to(memory_format=torch.channels_last) _snake_case = pipe.vae.to(memory_format=torch.channels_last) _snake_case = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: _snake_case = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex _snake_case = torch.randn(2, 4, 64, 64) _snake_case = torch.rand(1) * 9_99 _snake_case = torch.randn(2, 77, 7_68) _snake_case = (sample, timestep, encoder_hidden_status) try: _snake_case = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: _snake_case = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) _snake_case = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) _snake_case = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: _snake_case = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute _snake_case = 6_66 _snake_case = torch.Generator(device).manual_seed(seed) _snake_case = {'''generator''': generator} if args.steps is not None: _snake_case = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): _snake_case = pipe(prompt, **generate_kwargs).images[0] # save image image.save('''generated.png''')
283
0
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets A_ : Any = '\\n@inproceedings{snover-etal-2006-study,\n title = \"A Study of Translation Edit Rate with Targeted Human Annotation\",\n author = \"Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John\",\n booktitle = \"Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers\",\n month = aug # \" 8-12\",\n year = \"2006\",\n address = \"Cambridge, Massachusetts, USA\",\n publisher = \"Association for Machine Translation in the Americas\",\n url = \"https://aclanthology.org/2006.amta-papers.25\",\n pages = \"223--231\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n' A_ : Any = '\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n' A_ : Union[str, Any] = '\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n \'score\' (float): TER score (num_edits / sum_ref_lengths * 100)\n \'num_edits\' (int): The cumulative number of edits\n \'ref_length\' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0}\n\n Example 2:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0}\n\n Example 3:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5}\n\n Example 4:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0}\n\n Example 5:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase( datasets.Metric ): """simple docstring""" def _a ( self ): if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='http://www.cs.umd.edu/~snover/tercom/' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#ter'] , reference_urls=[ 'https://github.com/jhclark/tercom', ] , ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = False , ): UpperCamelCase_: Optional[Any] = len(references[0] ) if any(len(_a ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) UpperCamelCase_: Tuple = [[refs[i] for refs in references] for i in range(_a )] UpperCamelCase_: List[Any] = TER( normalized=_a , no_punct=_a , asian_support=_a , case_sensitive=_a , ) UpperCamelCase_: Any = sb_ter.corpus_score(_a , _a ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
361
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def snake_case (UpperCAmelCase__ ) -> List[str]: UpperCamelCase_: int = [False] * len(UpperCAmelCase__ ) UpperCamelCase_: Any = [-1] * len(UpperCAmelCase__ ) def dfs(UpperCAmelCase__ , UpperCAmelCase__ ): UpperCamelCase_: Tuple = True UpperCamelCase_: Optional[int] = c for u in graph[v]: if not visited[u]: dfs(UpperCAmelCase__ , 1 - c ) for i in range(len(UpperCAmelCase__ ) ): if not visited[i]: dfs(UpperCAmelCase__ , 0 ) for i in range(len(UpperCAmelCase__ ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph A_ : Dict = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
292
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class snake_case ( unittest.TestCase ): """simple docstring""" def _lowerCamelCase ( self : List[str] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowerCamelCase ( self : Any ): __UpperCamelCase = 1 __UpperCamelCase = 3 __UpperCamelCase = (3_2, 3_2) __UpperCamelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__A ) return image @property def _lowerCamelCase ( self : int ): torch.manual_seed(0 ) __UpperCamelCase = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , ) return model @property def _lowerCamelCase ( self : int ): torch.manual_seed(0 ) __UpperCamelCase = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def _lowerCamelCase ( self : Any ): torch.manual_seed(0 ) __UpperCamelCase = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_6 , ) return RobertaSeriesModelWithTransformation(__A ) @property def _lowerCamelCase ( self : Any ): def extract(*__A : int , **__A : Dict ): class snake_case : """simple docstring""" def __init__( self : int ): __UpperCamelCase = torch.ones([0] ) def _lowerCamelCase ( self : int , __A : Union[str, Any] ): self.pixel_values.to(__A ) return self return Out() return extract def _lowerCamelCase ( self : Optional[Any] ): __UpperCamelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator __UpperCamelCase = self.dummy_cond_unet __UpperCamelCase = PNDMScheduler(skip_prk_steps=__A ) __UpperCamelCase = self.dummy_vae __UpperCamelCase = self.dummy_text_encoder __UpperCamelCase = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) __UpperCamelCase = 7_7 __UpperCamelCase = self.dummy_image.to(__A ) __UpperCamelCase = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk __UpperCamelCase = AltDiffusionImgaImgPipeline( unet=__A , scheduler=__A , vae=__A , text_encoder=__A , tokenizer=__A , safety_checker=__A , feature_extractor=self.dummy_extractor , ) __UpperCamelCase = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__A ) __UpperCamelCase = alt_pipe.to(__A ) alt_pipe.set_progress_bar_config(disable=__A ) __UpperCamelCase = 'A painting of a squirrel eating a burger' __UpperCamelCase = torch.Generator(device=__A ).manual_seed(0 ) __UpperCamelCase = alt_pipe( [prompt] , generator=__A , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=__A , ) __UpperCamelCase = output.images __UpperCamelCase = torch.Generator(device=__A ).manual_seed(0 ) __UpperCamelCase = alt_pipe( [prompt] , generator=__A , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=__A , return_dict=__A , )[0] __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) __UpperCamelCase = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def _lowerCamelCase ( self : int ): __UpperCamelCase = self.dummy_cond_unet __UpperCamelCase = PNDMScheduler(skip_prk_steps=__A ) __UpperCamelCase = self.dummy_vae __UpperCamelCase = self.dummy_text_encoder __UpperCamelCase = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) __UpperCamelCase = 7_7 __UpperCamelCase = self.dummy_image.to(__A ) # put models in fp16 __UpperCamelCase = unet.half() __UpperCamelCase = vae.half() __UpperCamelCase = bert.half() # make sure here that pndm scheduler skips prk __UpperCamelCase = AltDiffusionImgaImgPipeline( unet=__A , scheduler=__A , vae=__A , text_encoder=__A , tokenizer=__A , safety_checker=__A , feature_extractor=self.dummy_extractor , ) __UpperCamelCase = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__A ) __UpperCamelCase = alt_pipe.to(__A ) alt_pipe.set_progress_bar_config(disable=__A ) __UpperCamelCase = 'A painting of a squirrel eating a burger' __UpperCamelCase = torch.manual_seed(0 ) __UpperCamelCase = alt_pipe( [prompt] , generator=__A , num_inference_steps=2 , output_type='np' , image=__A , ).images assert image.shape == (1, 3_2, 3_2, 3) @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def _lowerCamelCase ( self : Tuple ): __UpperCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) # resize to resolution that is divisible by 8 but not 16 or 32 __UpperCamelCase = init_image.resize((7_6_0, 5_0_4) ) __UpperCamelCase = 'BAAI/AltDiffusion' __UpperCamelCase = AltDiffusionImgaImgPipeline.from_pretrained( __A , safety_checker=__A , ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) pipe.enable_attention_slicing() __UpperCamelCase = 'A fantasy landscape, trending on artstation' __UpperCamelCase = torch.manual_seed(0 ) __UpperCamelCase = pipe( prompt=__A , image=__A , strength=0.75 , guidance_scale=7.5 , generator=__A , output_type='np' , ) __UpperCamelCase = output.images[0] __UpperCamelCase = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert image.shape == (5_0_4, 7_6_0, 3) __UpperCamelCase = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class snake_case ( unittest.TestCase ): """simple docstring""" def _lowerCamelCase ( self : List[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : Tuple ): __UpperCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) __UpperCamelCase = init_image.resize((7_6_8, 5_1_2) ) __UpperCamelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy' ) __UpperCamelCase = 'BAAI/AltDiffusion' __UpperCamelCase = AltDiffusionImgaImgPipeline.from_pretrained( __A , safety_checker=__A , ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) pipe.enable_attention_slicing() __UpperCamelCase = 'A fantasy landscape, trending on artstation' __UpperCamelCase = torch.manual_seed(0 ) __UpperCamelCase = pipe( prompt=__A , image=__A , strength=0.75 , guidance_scale=7.5 , generator=__A , output_type='np' , ) __UpperCamelCase = output.images[0] assert image.shape == (5_1_2, 7_6_8, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
53
"""simple docstring""" import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) SCREAMING_SNAKE_CASE = [ "cross_validation.py", "gradient_accumulation.py", "local_sgd.py", "multi_process_metrics.py", "memory.py", "automatic_gradient_accumulation.py", "fsdp_with_peak_mem_tracking.py", "deepspeed_with_config_support.py", "megatron_lm_gpt_pretraining.py", ] class UpperCAmelCase_ ( unittest.TestCase ): def __magic_name__ ( self : List[Any] , snake_case_ : str , snake_case_ : bool , snake_case_ : str = None , snake_case_ : list = None ) -> Tuple: '''simple docstring''' A__ = None A__ = os.path.abspath(os.path.join("examples" , "by_feature" ) ) A__ = os.path.abspath("examples" ) for item in os.listdir(snake_case_ ): if item not in EXCLUDE_EXAMPLES: A__ = os.path.join(snake_case_ , snake_case_ ) if os.path.isfile(snake_case_ ) and ".py" in item_path: with self.subTest( tested_script=snake_case_ , feature_script=snake_case_ , tested_section="main()" if parser_only else "training_function()" , ): A__ = compare_against_test( os.path.join(snake_case_ , snake_case_ ) , snake_case_ , snake_case_ , snake_case_ ) A__ = "\n".join(snake_case_ ) if special_strings is not None: for string in special_strings: A__ = diff.replace(snake_case_ , "" ) self.assertEqual(snake_case_ , "" ) def __magic_name__ ( self : List[str] ) -> str: '''simple docstring''' self.one_complete_example("complete_nlp_example.py" , snake_case_ ) self.one_complete_example("complete_nlp_example.py" , snake_case_ ) def __magic_name__ ( self : str ) -> Union[str, Any]: '''simple docstring''' A__ = os.path.abspath(os.path.join("examples" , "cv_example.py" ) ) A__ = [ " " * 16 + "{\n\n", " " * 20 + "\"accuracy\": eval_metric[\"accuracy\"],\n\n", " " * 20 + "\"f1\": eval_metric[\"f1\"],\n\n", " " * 20 + "\"train_loss\": total_loss.item() / len(train_dataloader),\n\n", " " * 20 + "\"epoch\": epoch,\n\n", " " * 16 + "},\n\n", " " * 16 + "step=epoch,\n", " " * 12, " " * 8 + "for step, batch in enumerate(active_dataloader):\n", ] self.one_complete_example("complete_cv_example.py" , snake_case_ , snake_case_ , snake_case_ ) self.one_complete_example("complete_cv_example.py" , snake_case_ , snake_case_ , snake_case_ ) @mock.patch.dict(os.environ, {'''TESTING_MOCKED_DATALOADERS''': '''1'''} ) class UpperCAmelCase_ ( A_ ): lowercase__ = False @classmethod def __magic_name__ ( cls : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' super().setUpClass() A__ = tempfile.mkdtemp() A__ = os.path.join(cls._tmpdir , "default_config.yml" ) write_basic_config(save_location=cls.configPath ) A__ = ["accelerate", "launch", "--config_file", cls.configPath] @classmethod def __magic_name__ ( cls : Dict ) -> str: '''simple docstring''' super().tearDownClass() shutil.rmtree(cls._tmpdir ) def __magic_name__ ( self : Dict ) -> List[Any]: '''simple docstring''' A__ = F""" examples/by_feature/checkpointing.py --checkpointing_steps epoch --output_dir {self.tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , "epoch_0" ) ) ) def __magic_name__ ( self : Any ) -> Any: '''simple docstring''' A__ = F""" examples/by_feature/checkpointing.py --checkpointing_steps 1 --output_dir {self.tmpdir} """.split() A__ = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , "step_2" ) ) ) def __magic_name__ ( self : int ) -> Union[str, Any]: '''simple docstring''' A__ = F""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , "epoch_0" )} """.split() A__ = run_command(self._launch_args + testargs , return_stdout=snake_case_ ) self.assertNotIn("epoch 0:" , snake_case_ ) self.assertIn("epoch 1:" , snake_case_ ) def __magic_name__ ( self : List[str] ) -> Optional[int]: '''simple docstring''' A__ = F""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , "step_2" )} """.split() A__ = run_command(self._launch_args + testargs , return_stdout=snake_case_ ) if torch.cuda.is_available(): A__ = torch.cuda.device_count() else: A__ = 1 if num_processes > 1: self.assertNotIn("epoch 0:" , snake_case_ ) self.assertIn("epoch 1:" , snake_case_ ) else: self.assertIn("epoch 0:" , snake_case_ ) self.assertIn("epoch 1:" , snake_case_ ) @slow def __magic_name__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' A__ = "\n examples/by_feature/cross_validation.py\n --num_folds 2\n ".split() with mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "0"} ): A__ = run_command(self._launch_args + testargs , return_stdout=snake_case_ ) A__ = re.findall("({.+})" , snake_case_ ) A__ = [r for r in results if "accuracy" in r][-1] A__ = ast.literal_eval(snake_case_ ) self.assertGreaterEqual(results["accuracy"] , 0.75 ) def __magic_name__ ( self : List[Any] ) -> Tuple: '''simple docstring''' A__ = ["examples/by_feature/multi_process_metrics.py"] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def __magic_name__ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: A__ = F""" examples/by_feature/tracking.py --with_tracking --project_dir {tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(snake_case_ , "tracking" ) ) ) def __magic_name__ ( self : List[Any] ) -> int: '''simple docstring''' A__ = ["examples/by_feature/gradient_accumulation.py"] run_command(self._launch_args + testargs ) def __magic_name__ ( self : List[str] ) -> List[Any]: '''simple docstring''' A__ = ["examples/by_feature/local_sgd.py"] run_command(self._launch_args + testargs )
247
0
"""simple docstring""" from collections.abc import Callable import numpy as np def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : str = int(np.ceil((x_end - xa) / step_size ) ) UpperCAmelCase_ : Union[str, Any] = np.zeros((n + 1,) ) UpperCAmelCase_ : str = ya UpperCAmelCase_ : Optional[int] = xa for k in range(__lowerCamelCase ): UpperCAmelCase_ : int = y[k] + step_size * ode_func(__lowerCamelCase, y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
23
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _a = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ 'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST', 'UniSpeechForCTC', 'UniSpeechForPreTraining', 'UniSpeechForSequenceClassification', 'UniSpeechModel', 'UniSpeechPreTrainedModel', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys _a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
23
1
'''simple docstring''' _lowercase : Union[str, Any] = "0.18.2" from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
93
import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __magic_name__ : def __init__( self : Tuple , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : int=13 , lowerCamelCase__ : Union[str, Any]=30 , lowerCamelCase__ : Union[str, Any]=2 , lowerCamelCase__ : List[Any]=3 , lowerCamelCase__ : str=True , lowerCamelCase__ : str=True , lowerCamelCase__ : Dict=32 , lowerCamelCase__ : str=5 , lowerCamelCase__ : Dict=4 , lowerCamelCase__ : Any=37 , lowerCamelCase__ : Optional[Any]="gelu" , lowerCamelCase__ : List[Any]=0.1 , lowerCamelCase__ : Dict=0.1 , lowerCamelCase__ : Tuple=10 , lowerCamelCase__ : List[Any]=0.02 , lowerCamelCase__ : List[Any]=3 , lowerCamelCase__ : str=0.6 , lowerCamelCase__ : int=None , ) -> Dict: '''simple docstring''' UpperCamelCase__ : Any = parent UpperCamelCase__ : List[str] = batch_size UpperCamelCase__ : List[Any] = image_size UpperCamelCase__ : str = patch_size UpperCamelCase__ : List[str] = num_channels UpperCamelCase__ : int = is_training UpperCamelCase__ : Dict = use_labels UpperCamelCase__ : int = hidden_size UpperCamelCase__ : Union[str, Any] = num_hidden_layers UpperCamelCase__ : Tuple = num_attention_heads UpperCamelCase__ : Union[str, Any] = intermediate_size UpperCamelCase__ : Dict = hidden_act UpperCamelCase__ : str = hidden_dropout_prob UpperCamelCase__ : Tuple = attention_probs_dropout_prob UpperCamelCase__ : Union[str, Any] = type_sequence_label_size UpperCamelCase__ : str = initializer_range UpperCamelCase__ : str = mask_ratio UpperCamelCase__ : Tuple = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCamelCase__ : Optional[int] = (image_size // patch_size) ** 2 UpperCamelCase__ : Dict = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' UpperCamelCase__ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ : List[str] = None if self.use_labels: UpperCamelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ : Any = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self : Dict ) -> List[str]: '''simple docstring''' return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def UpperCAmelCase__ ( self : Tuple , lowerCamelCase__ : Dict , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[str] ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ : List[Any] = ViTMAEModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ : List[Any] = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : int , lowerCamelCase__ : str , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : List[Any] ) -> List[Any]: '''simple docstring''' UpperCamelCase__ : Tuple = ViTMAEForPreTraining(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ : List[str] = model(lowerCamelCase__ ) UpperCamelCase__ : int = (self.image_size // self.patch_size) ** 2 UpperCamelCase__ : Optional[int] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images UpperCamelCase__ : List[Any] = 1 UpperCamelCase__ : int = ViTMAEForPreTraining(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ : Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase__ : Any = model(lowerCamelCase__ ) UpperCamelCase__ : Optional[Any] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def UpperCAmelCase__ ( self : Optional[Any] ) -> str: '''simple docstring''' UpperCamelCase__ : Any = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : Union[str, Any] = config_and_inputs UpperCamelCase__ : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase): A: Optional[Any] = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () A: Union[str, Any] = {"feature-extraction": ViTMAEModel} if is_torch_available() else {} A: Any = False A: str = False A: Optional[int] = False A: Any = False def UpperCAmelCase__ ( self : Optional[Any] ) -> int: '''simple docstring''' UpperCamelCase__ : Optional[int] = ViTMAEModelTester(self ) UpperCamelCase__ : Union[str, Any] = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ , hidden_size=37 ) def UpperCAmelCase__ ( self : str ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def UpperCAmelCase__ ( self : Tuple ) -> str: '''simple docstring''' pass def UpperCAmelCase__ ( self : List[str] ) -> int: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : List[Any] = model_class(lowerCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase__ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase__ , nn.Linear ) ) def UpperCAmelCase__ ( self : Optional[int] ) -> int: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Optional[Any] = model_class(lowerCamelCase__ ) UpperCamelCase__ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ : Optional[int] = [*signature.parameters.keys()] UpperCamelCase__ : List[str] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def UpperCAmelCase__ ( self : Dict ) -> str: '''simple docstring''' UpperCamelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def UpperCAmelCase__ ( self : int ) -> List[str]: '''simple docstring''' UpperCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCamelCase__ ) def UpperCAmelCase__ ( self : int , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Any , lowerCamelCase__ : List[str] ) -> Tuple: '''simple docstring''' np.random.seed(2 ) UpperCamelCase__ : List[str] = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) UpperCamelCase__ : Any = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCamelCase__ : Optional[Any] = torch.from_numpy(lowerCamelCase__ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCamelCase__ : Union[str, Any] = pt_noise super().check_pt_tf_models(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def UpperCAmelCase__ ( self : Tuple ) -> List[str]: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Tuple = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): UpperCamelCase__ : Tuple = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) UpperCamelCase__ : int = outputs[0].cpu().numpy() UpperCamelCase__ : Dict = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ : Any = model_class.from_pretrained(lowerCamelCase__ ) model.to(lowerCamelCase__ ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): UpperCamelCase__ : Optional[Any] = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) # Make sure we don't have nans UpperCamelCase__ : Union[str, Any] = after_outputs[0].cpu().numpy() UpperCamelCase__ : Optional[Any] = 0 UpperCamelCase__ : List[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCamelCase__ , 1E-5 ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' pass @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def UpperCAmelCase__ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def UpperCAmelCase__ ( self : int ) -> Optional[int]: '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def UpperCAmelCase__ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' pass @slow def UpperCAmelCase__ ( self : Tuple ) -> Tuple: '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ : Dict = ViTMAEModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def _a ( ): """simple docstring""" UpperCamelCase__ : Optional[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __magic_name__ ( unittest.TestCase): @cached_property def UpperCAmelCase__ ( self : Optional[Any] ) -> str: '''simple docstring''' return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def UpperCAmelCase__ ( self : str ) -> Any: '''simple docstring''' np.random.seed(2 ) UpperCamelCase__ : Dict = ViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ).to(lowerCamelCase__ ) UpperCamelCase__ : Optional[Any] = self.default_image_processor UpperCamelCase__ : int = prepare_img() UpperCamelCase__ : str = image_processor(images=lowerCamelCase__ , return_tensors='''pt''' ).to(lowerCamelCase__ ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCamelCase__ : Tuple = ViTMAEConfig() UpperCamelCase__ : List[Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) UpperCamelCase__ : Dict = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): UpperCamelCase__ : List[Any] = model(**lowerCamelCase__ , noise=torch.from_numpy(lowerCamelCase__ ).to(device=lowerCamelCase__ ) ) # verify the logits UpperCamelCase__ : Optional[Any] = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) UpperCamelCase__ : Dict = torch.tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(lowerCamelCase__ ) , atol=1E-4 ) )
146
0
import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) __UpperCamelCase : Dict = logging.getLogger() def _a ( SCREAMING_SNAKE_CASE : Path , SCREAMING_SNAKE_CASE : list ): """simple docstring""" UpperCamelCase__ : Union[str, Any] = '''\n'''.join(SCREAMING_SNAKE_CASE ) Path(SCREAMING_SNAKE_CASE ).open('''w''' ).writelines(SCREAMING_SNAKE_CASE ) __UpperCamelCase : Any = "patrickvonplaten/t5-tiny-random" __UpperCamelCase : Optional[Any] = "sshleifer/bart-tiny-random" __UpperCamelCase : Tuple = "sshleifer/tiny-mbart" __UpperCamelCase : Any = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class __magic_name__ ( __lowerCAmelCase): def UpperCAmelCase__ ( self : Tuple , lowerCamelCase__ : int ) -> List[str]: '''simple docstring''' UpperCamelCase__ : Optional[Any] = Path(self.get_auto_remove_tmp_dir() ) / '''utest_input.source''' UpperCamelCase__ : Any = input_file_name.parent / '''utest_output.txt''' assert not output_file_name.exists() UpperCamelCase__ : Any = [''' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County.'''] _dump_articles(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ : Optional[int] = str(Path(self.get_auto_remove_tmp_dir() ) / '''scores.json''' ) UpperCamelCase__ : Optional[int] = '''translation_en_to_de''' if model == T5_TINY else '''summarization''' UpperCamelCase__ : Optional[Any] = F"\n run_eval_search.py\n {model}\n {input_file_name}\n {output_file_name}\n --score_path {score_path}\n --task {task}\n --num_beams 2\n --length_penalty 2.0\n ".split() with patch.object(lowerCamelCase__ , '''argv''' , lowerCamelCase__ ): run_generate() assert Path(lowerCamelCase__ ).exists() # os.remove(Path(output_file_name)) def UpperCAmelCase__ ( self : Tuple ) -> Dict: '''simple docstring''' self.run_eval_tester(lowerCamelCase__ ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def UpperCAmelCase__ ( self : Tuple , lowerCamelCase__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' self.run_eval_tester(lowerCamelCase__ ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def UpperCAmelCase__ ( self : List[Any] , lowerCamelCase__ : Tuple ) -> Tuple: '''simple docstring''' UpperCamelCase__ : List[str] = Path(self.get_auto_remove_tmp_dir() ) / '''utest_input.source''' UpperCamelCase__ : Optional[Any] = input_file_name.parent / '''utest_output.txt''' assert not output_file_name.exists() UpperCamelCase__ : Dict = { '''en''': ['''Machine learning is great, isn\'t it?''', '''I like to eat bananas''', '''Tomorrow is another great day!'''], '''de''': [ '''Maschinelles Lernen ist großartig, oder?''', '''Ich esse gerne Bananen''', '''Morgen ist wieder ein toller Tag!''', ], } UpperCamelCase__ : Dict = Path(self.get_auto_remove_tmp_dir() ) UpperCamelCase__ : List[Any] = str(tmp_dir / '''scores.json''' ) UpperCamelCase__ : Dict = str(tmp_dir / '''val.target''' ) _dump_articles(lowerCamelCase__ , text['''en'''] ) _dump_articles(lowerCamelCase__ , text['''de'''] ) UpperCamelCase__ : Tuple = '''translation_en_to_de''' if model == T5_TINY else '''summarization''' UpperCamelCase__ : Union[str, Any] = F"\n run_eval_search.py\n {model}\n {str(lowerCamelCase__ )}\n {str(lowerCamelCase__ )}\n --score_path {score_path}\n --reference_path {reference_path}\n --task {task}\n ".split() testargs.extend(['''--search''', '''num_beams=1:2 length_penalty=0.9:1.0'''] ) with patch.object(lowerCamelCase__ , '''argv''' , lowerCamelCase__ ): with CaptureStdout() as cs: run_search() UpperCamelCase__ : Union[str, Any] = [''' num_beams | length_penalty''', model, '''Best score args'''] UpperCamelCase__ : int = ['''Info'''] if "translation" in task: expected_strings.append('''bleu''' ) else: expected_strings.extend(lowerCamelCase__ ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(lowerCamelCase__ ).exists() os.remove(Path(lowerCamelCase__ ) )
351
import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __magic_name__ ( __lowerCAmelCase): A: Optional[int] = ["image_processor", "tokenizer"] A: int = "FlavaImageProcessor" A: List[str] = ("BertTokenizer", "BertTokenizerFast") def __init__( self : int , lowerCamelCase__ : Dict=None , lowerCamelCase__ : Union[str, Any]=None , **lowerCamelCase__ : int ) -> int: '''simple docstring''' UpperCamelCase__ : Optional[Any] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowerCamelCase__ , ) UpperCamelCase__ : Union[str, Any] = kwargs.pop('''feature_extractor''' ) UpperCamelCase__ : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ : List[str] = self.image_processor def __call__( self : int , lowerCamelCase__ : Optional[ImageInput] = None , lowerCamelCase__ : Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None , lowerCamelCase__ : bool = True , lowerCamelCase__ : Union[bool, str, PaddingStrategy] = False , lowerCamelCase__ : Union[bool, str, TruncationStrategy] = False , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : int = 0 , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : bool = False , lowerCamelCase__ : bool = False , lowerCamelCase__ : bool = False , lowerCamelCase__ : bool = False , lowerCamelCase__ : bool = True , lowerCamelCase__ : Optional[Union[str, TensorType]] = None , **lowerCamelCase__ : List[str] , ) -> Any: '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: UpperCamelCase__ : Dict = self.tokenizer( text=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ , stride=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_token_type_ids=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , return_overflowing_tokens=lowerCamelCase__ , return_special_tokens_mask=lowerCamelCase__ , return_offsets_mapping=lowerCamelCase__ , return_length=lowerCamelCase__ , verbose=lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ , ) if images is not None: UpperCamelCase__ : Optional[int] = self.image_processor( lowerCamelCase__ , return_image_mask=lowerCamelCase__ , return_codebook_pixels=lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ , ) if text is not None and images is not None: encoding.update(lowerCamelCase__ ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCamelCase__ ) , tensor_type=lowerCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] , *lowerCamelCase__ : str , **lowerCamelCase__ : int ) -> Optional[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase__ , **lowerCamelCase__ ) def UpperCAmelCase__ ( self : Dict , *lowerCamelCase__ : Dict , **lowerCamelCase__ : int ) -> List[str]: '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase__ , **lowerCamelCase__ ) @property def UpperCAmelCase__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ : Optional[Any] = self.tokenizer.model_input_names UpperCamelCase__ : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCAmelCase__ ( self : Tuple ) -> Dict: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowerCamelCase__ , ) return self.image_processor_class @property def UpperCAmelCase__ ( self : List[Any] ) -> Any: '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowerCamelCase__ , ) return self.image_processor
51
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class lowercase( metaclass=__a ): '''simple docstring''' lowercase__ = ["note_seq"] def __init__( self: Dict, *a_: Union[str, Any], **a_: List[str] ): '''simple docstring''' requires_backends(self, ["""note_seq"""] ) @classmethod def UpperCamelCase_ ( cls: Optional[int], *a_: Any, **a_: Optional[Any] ): '''simple docstring''' requires_backends(cls, ["""note_seq"""] ) @classmethod def UpperCamelCase_ ( cls: Tuple, *a_: Optional[Any], **a_: List[str] ): '''simple docstring''' requires_backends(cls, ["""note_seq"""] )
64
"""simple docstring""" from ..utils import DummyObject, requires_backends class lowercase( metaclass=__a ): '''simple docstring''' lowercase__ = ["note_seq"] def __init__( self: Dict, *a_: Union[str, Any], **a_: List[str] ): '''simple docstring''' requires_backends(self, ["""note_seq"""] ) @classmethod def UpperCamelCase_ ( cls: Optional[int], *a_: Any, **a_: Optional[Any] ): '''simple docstring''' requires_backends(cls, ["""note_seq"""] ) @classmethod def UpperCamelCase_ ( cls: Tuple, *a_: Optional[Any], **a_: List[str] ): '''simple docstring''' requires_backends(cls, ["""note_seq"""] )
64
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { 'microsoft/markuplm-base': 'https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json', 'microsoft/markuplm-large': 'https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json', } class a__ ( lowerCamelCase_ ): _SCREAMING_SNAKE_CASE : Tuple = 'markuplm' def __init__( self , _UpperCamelCase=30522 , _UpperCamelCase=768 , _UpperCamelCase=12 , _UpperCamelCase=12 , _UpperCamelCase=3072 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=512 , _UpperCamelCase=2 , _UpperCamelCase=0.0_2 , _UpperCamelCase=1E-1_2 , _UpperCamelCase=0 , _UpperCamelCase=0 , _UpperCamelCase=2 , _UpperCamelCase=256 , _UpperCamelCase=1024 , _UpperCamelCase=216 , _UpperCamelCase=1001 , _UpperCamelCase=32 , _UpperCamelCase=50 , _UpperCamelCase="absolute" , _UpperCamelCase=True , _UpperCamelCase=None , **_UpperCamelCase , ): """simple docstring""" super().__init__( pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase , ) _lowercase : Optional[int] = vocab_size _lowercase : List[Any] = hidden_size _lowercase : List[Any] = num_hidden_layers _lowercase : str = num_attention_heads _lowercase : Union[str, Any] = hidden_act _lowercase : List[Any] = intermediate_size _lowercase : Tuple = hidden_dropout_prob _lowercase : Union[str, Any] = attention_probs_dropout_prob _lowercase : Optional[int] = max_position_embeddings _lowercase : Tuple = type_vocab_size _lowercase : List[Any] = initializer_range _lowercase : Dict = layer_norm_eps _lowercase : List[str] = position_embedding_type _lowercase : Dict = use_cache _lowercase : Any = classifier_dropout # additional properties _lowercase : Optional[int] = max_depth _lowercase : int = max_xpath_tag_unit_embeddings _lowercase : int = max_xpath_subs_unit_embeddings _lowercase : Optional[Any] = tag_pad_id _lowercase : List[str] = subs_pad_id _lowercase : Dict = xpath_unit_hidden_size
365
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { 'weiweishi/roc-bert-base-zh': 'https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json', } class a__ ( lowerCamelCase_ ): _SCREAMING_SNAKE_CASE : Any = 'roc_bert' def __init__( self , _UpperCamelCase=30522 , _UpperCamelCase=768 , _UpperCamelCase=12 , _UpperCamelCase=12 , _UpperCamelCase=3072 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=512 , _UpperCamelCase=2 , _UpperCamelCase=0.0_2 , _UpperCamelCase=1E-1_2 , _UpperCamelCase=True , _UpperCamelCase=0 , _UpperCamelCase="absolute" , _UpperCamelCase=None , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=768 , _UpperCamelCase=910 , _UpperCamelCase=512 , _UpperCamelCase=24858 , _UpperCamelCase=True , **_UpperCamelCase , ): """simple docstring""" _lowercase : str = vocab_size _lowercase : List[str] = max_position_embeddings _lowercase : List[Any] = hidden_size _lowercase : Dict = num_hidden_layers _lowercase : str = num_attention_heads _lowercase : int = intermediate_size _lowercase : Optional[Any] = hidden_act _lowercase : Union[str, Any] = hidden_dropout_prob _lowercase : Dict = attention_probs_dropout_prob _lowercase : Dict = initializer_range _lowercase : List[Any] = type_vocab_size _lowercase : Tuple = layer_norm_eps _lowercase : Optional[int] = use_cache _lowercase : Tuple = enable_pronunciation _lowercase : Optional[int] = enable_shape _lowercase : int = pronunciation_embed_dim _lowercase : List[str] = pronunciation_vocab_size _lowercase : int = shape_embed_dim _lowercase : str = shape_vocab_size _lowercase : str = concat_input _lowercase : Dict = position_embedding_type _lowercase : Optional[Any] = classifier_dropout super().__init__(pad_token_id=_UpperCamelCase , **_UpperCamelCase )
199
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class __A ( UpperCamelCase__ ): a__ : Any = ( """This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.""" """It takes two arguments named `image` which should be the original image, and `label` which should be a text """ """describing the elements what should be identified in the segmentation mask. The tool returns the mask.""" ) a__ : int = """CIDAS/clipseg-rd64-refined""" a__ : List[Any] = """image_segmenter""" a__ : str = CLIPSegForImageSegmentation a__ : List[Any] = ["""image""", """text"""] a__ : int = ["""image"""] def __init__(self : Optional[int] , *__a : int , **__a : Dict ): requires_backends(self , ["vision"] ) super().__init__(*__a , **__a ) def _lowercase (self : int , __a : "Image" , __a : str ): return self.pre_processor(text=[label] , images=[image] , padding=__a , return_tensors="pt" ) def _lowercase (self : List[str] , __a : Optional[int] ): with torch.no_grad(): UpperCAmelCase_ = self.model(**__a ).logits return logits def _lowercase (self : int , __a : Any ): UpperCAmelCase_ = outputs.cpu().detach().numpy() UpperCAmelCase_ = 0 UpperCAmelCase_ = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
1
'''simple docstring''' import os from math import logaa def lowerCAmelCase_ ( snake_case_ : str = "base_exp.txt" ) -> int: '''simple docstring''' UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(snake_case_ ) , snake_case_ ) ) ): UpperCAmelCase_ , UpperCAmelCase_ = list(map(snake_case_ , line.split("," ) ) ) if x * logaa(snake_case_ ) > largest: UpperCAmelCase_ = x * logaa(snake_case_ ) UpperCAmelCase_ = i + 1 return result if __name__ == "__main__": print(solution())
1
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __a = logging.get_logger(__name__) __a = '▁' __a = {'vocab_file': 'sentencepiece.bpe.model'} __a = { 'vocab_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model' ), } } __a = { 'facebook/nllb-200-distilled-600M': 1_024, } # fmt: off __a = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] class __a( _a ): """simple docstring""" lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = ['''input_ids''', '''attention_mask'''] lowerCAmelCase = [] lowerCAmelCase = [] def __init__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE="<s>" ,_SCREAMING_SNAKE_CASE="</s>" ,_SCREAMING_SNAKE_CASE="</s>" ,_SCREAMING_SNAKE_CASE="<s>" ,_SCREAMING_SNAKE_CASE="<unk>" ,_SCREAMING_SNAKE_CASE="<pad>" ,_SCREAMING_SNAKE_CASE="<mask>" ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=False ,**_SCREAMING_SNAKE_CASE ,) -> str: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase_ : List[Any] = AddedToken(_SCREAMING_SNAKE_CASE ,lstrip=_SCREAMING_SNAKE_CASE ,rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) else mask_token UpperCAmelCase_ : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs UpperCAmelCase_ : Optional[int] = legacy_behaviour super().__init__( bos_token=_SCREAMING_SNAKE_CASE ,eos_token=_SCREAMING_SNAKE_CASE ,unk_token=_SCREAMING_SNAKE_CASE ,sep_token=_SCREAMING_SNAKE_CASE ,cls_token=_SCREAMING_SNAKE_CASE ,pad_token=_SCREAMING_SNAKE_CASE ,mask_token=_SCREAMING_SNAKE_CASE ,tokenizer_file=_SCREAMING_SNAKE_CASE ,src_lang=_SCREAMING_SNAKE_CASE ,tgt_lang=_SCREAMING_SNAKE_CASE ,additional_special_tokens=_SCREAMING_SNAKE_CASE ,sp_model_kwargs=self.sp_model_kwargs ,legacy_behaviour=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ,) UpperCAmelCase_ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_SCREAMING_SNAKE_CASE ) ) UpperCAmelCase_ : Tuple = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token UpperCAmelCase_ : List[str] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCAmelCase_ : Any = 1 UpperCAmelCase_ : List[str] = len(self.sp_model ) UpperCAmelCase_ : Optional[Any] = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_SCREAMING_SNAKE_CASE ) } UpperCAmelCase_ : Optional[int] = {v: k for k, v in self.lang_code_to_id.items()} UpperCAmelCase_ : Dict = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) UpperCAmelCase_ : Dict = {v: k for k, v in self.fairseq_tokens_to_ids.items()} UpperCAmelCase_ : Optional[int] = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) UpperCAmelCase_ : Optional[Any] = src_lang if src_lang is not None else '''eng_Latn''' UpperCAmelCase_ : str = self.lang_code_to_id[self._src_lang] UpperCAmelCase_ : List[Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ) -> Tuple: UpperCAmelCase_ : Optional[int] = self.__dict__.copy() UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Optional[Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self ,_SCREAMING_SNAKE_CASE ) -> Any: UpperCAmelCase_ : List[Any] = d # for backward compatibility if not hasattr(self ,'''sp_model_kwargs''' ): UpperCAmelCase_ : int = {} UpperCAmelCase_ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def a__ ( self ) -> List[Any]: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def a__ ( self ) -> str: return self._src_lang @src_lang.setter def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> None: UpperCAmelCase_ : str = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_SCREAMING_SNAKE_CASE ,token_ids_a=_SCREAMING_SNAKE_CASE ,already_has_special_tokens=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[str] = [1] * len(self.prefix_tokens ) UpperCAmelCase_ : Optional[int] = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_SCREAMING_SNAKE_CASE )) + suffix_ones return prefix_ones + ([0] * len(_SCREAMING_SNAKE_CASE )) + ([0] * len(_SCREAMING_SNAKE_CASE )) + suffix_ones def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ) -> List[int]: UpperCAmelCase_ : Union[str, Any] = [self.sep_token_id] UpperCAmelCase_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> List[str]: if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) UpperCAmelCase_ : Dict = src_lang UpperCAmelCase_ : List[str] = self(_SCREAMING_SNAKE_CASE ,add_special_tokens=_SCREAMING_SNAKE_CASE ,return_tensors=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = self.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = tgt_lang_id return inputs def a__ ( self ) -> Dict: UpperCAmelCase_ : Tuple = {self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> List[str]: return self.sp_model.encode(_SCREAMING_SNAKE_CASE ,out_type=_SCREAMING_SNAKE_CASE ) def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> Dict: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase_ : Dict = self.sp_model.PieceToId(_SCREAMING_SNAKE_CASE ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> Optional[int]: UpperCAmelCase_ : Dict = ''''''.join(_SCREAMING_SNAKE_CASE ).replace(_SCREAMING_SNAKE_CASE ,''' ''' ).strip() return out_string def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase_ : Optional[int] = os.path.join( _SCREAMING_SNAKE_CASE ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(_SCREAMING_SNAKE_CASE ,'''wb''' ) as fi: UpperCAmelCase_ : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(_SCREAMING_SNAKE_CASE ) return (out_vocab_file,) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = "eng_Latn" ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = "fra_Latn" ,**_SCREAMING_SNAKE_CASE ,) -> BatchEncoding: UpperCAmelCase_ : int = src_lang UpperCAmelCase_ : List[Any] = tgt_lang return super().prepare_seqaseq_batch(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Optional[Any]: return self.set_src_lang_special_tokens(self.src_lang ) def a__ ( self ) -> List[str]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> None: UpperCAmelCase_ : Any = self.lang_code_to_id[src_lang] if self.legacy_behaviour: UpperCAmelCase_ : Tuple = [] UpperCAmelCase_ : List[str] = [self.eos_token_id, self.cur_lang_code] else: UpperCAmelCase_ : Tuple = [self.cur_lang_code] UpperCAmelCase_ : Tuple = [self.eos_token_id] def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> None: UpperCAmelCase_ : Union[str, Any] = self.lang_code_to_id[lang] if self.legacy_behaviour: UpperCAmelCase_ : int = [] UpperCAmelCase_ : Optional[int] = [self.eos_token_id, self.cur_lang_code] else: UpperCAmelCase_ : Any = [self.cur_lang_code] UpperCAmelCase_ : List[Any] = [self.eos_token_id]
360
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class __a( unittest.TestCase ): """simple docstring""" def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : Optional[int] = tempfile.mkdtemp() UpperCAmelCase_ : str = BlipImageProcessor() UpperCAmelCase_ : Dict = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''' ) UpperCAmelCase_ : Optional[Any] = BlipaProcessor(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) processor.save_pretrained(self.tmpdirname ) def a__ ( self ,**_SCREAMING_SNAKE_CASE ) -> Optional[int]: return AutoProcessor.from_pretrained(self.tmpdirname ,**_SCREAMING_SNAKE_CASE ).tokenizer def a__ ( self ,**_SCREAMING_SNAKE_CASE ) -> Dict: return AutoProcessor.from_pretrained(self.tmpdirname ,**_SCREAMING_SNAKE_CASE ).image_processor def a__ ( self ) -> List[Any]: shutil.rmtree(self.tmpdirname ) def a__ ( self ) -> Tuple: UpperCAmelCase_ : Tuple = [np.random.randint(255 ,size=(3, 30, 400) ,dtype=np.uinta )] UpperCAmelCase_ : Optional[Any] = [Image.fromarray(np.moveaxis(_SCREAMING_SNAKE_CASE ,0 ,-1 ) ) for x in image_inputs] return image_inputs def a__ ( self ) -> List[str]: UpperCAmelCase_ : Dict = BlipaProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase_ : str = self.get_tokenizer(bos_token='''(BOS)''' ,eos_token='''(EOS)''' ) UpperCAmelCase_ : int = self.get_image_processor(do_normalize=_SCREAMING_SNAKE_CASE ,padding_value=1.0 ) UpperCAmelCase_ : Union[str, Any] = BlipaProcessor.from_pretrained( self.tmpdirname ,bos_token='''(BOS)''' ,eos_token='''(EOS)''' ,do_normalize=_SCREAMING_SNAKE_CASE ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,_SCREAMING_SNAKE_CASE ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Any: UpperCAmelCase_ : Dict = self.get_image_processor() UpperCAmelCase_ : Any = self.get_tokenizer() UpperCAmelCase_ : str = BlipaProcessor(tokenizer=_SCREAMING_SNAKE_CASE ,image_processor=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = self.prepare_image_inputs() UpperCAmelCase_ : Optional[Any] = image_processor(_SCREAMING_SNAKE_CASE ,return_tensors='''np''' ) UpperCAmelCase_ : int = processor(images=_SCREAMING_SNAKE_CASE ,return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1e-2 ) def a__ ( self ) -> int: UpperCAmelCase_ : str = self.get_image_processor() UpperCAmelCase_ : List[Any] = self.get_tokenizer() UpperCAmelCase_ : Any = BlipaProcessor(tokenizer=_SCREAMING_SNAKE_CASE ,image_processor=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = '''lower newer''' UpperCAmelCase_ : Optional[int] = processor(text=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = tokenizer(_SCREAMING_SNAKE_CASE ,return_token_type_ids=_SCREAMING_SNAKE_CASE ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : str = self.get_image_processor() UpperCAmelCase_ : List[Any] = self.get_tokenizer() UpperCAmelCase_ : Tuple = BlipaProcessor(tokenizer=_SCREAMING_SNAKE_CASE ,image_processor=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = '''lower newer''' UpperCAmelCase_ : int = self.prepare_image_inputs() UpperCAmelCase_ : List[str] = processor(text=_SCREAMING_SNAKE_CASE ,images=_SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) ,['''pixel_values''', '''input_ids''', '''attention_mask'''] ) # test if it raises when no input is passed with pytest.raises(_SCREAMING_SNAKE_CASE ): processor() def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : Tuple = self.get_image_processor() UpperCAmelCase_ : Dict = self.get_tokenizer() UpperCAmelCase_ : List[str] = BlipaProcessor(tokenizer=_SCREAMING_SNAKE_CASE ,image_processor=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase_ : List[str] = processor.batch_decode(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> str: UpperCAmelCase_ : Union[str, Any] = self.get_image_processor() UpperCAmelCase_ : int = self.get_tokenizer() UpperCAmelCase_ : Any = BlipaProcessor(tokenizer=_SCREAMING_SNAKE_CASE ,image_processor=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = '''lower newer''' UpperCAmelCase_ : Union[str, Any] = self.prepare_image_inputs() UpperCAmelCase_ : Any = processor(text=_SCREAMING_SNAKE_CASE ,images=_SCREAMING_SNAKE_CASE ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) ,['''pixel_values''', '''input_ids''', '''attention_mask'''] )
235
0
"""simple docstring""" import argparse import collections import json import os import re import string import sys import numpy as np _a : str= re.compile(R"\b(a|an|the)\b", re.UNICODE) _a : Any= None def __UpperCAmelCase ( ) -> Optional[Any]: '''simple docstring''' __snake_case : Optional[Any] = argparse.ArgumentParser('Official evaluation script for SQuAD version 2.0.' ) parser.add_argument('data_file' , metavar='data.json' , help='Input data JSON file.' ) parser.add_argument('pred_file' , metavar='pred.json' , help='Model predictions.' ) parser.add_argument( '--out-file' , '-o' , metavar='eval.json' , help='Write accuracy metrics to file (default is stdout).' ) parser.add_argument( '--na-prob-file' , '-n' , metavar='na_prob.json' , help='Model estimates of probability of no answer.' ) parser.add_argument( '--na-prob-thresh' , '-t' , type=lowercase__ , default=1.0 , help='Predict \"\" if no-answer probability exceeds this (default = 1.0).' , ) parser.add_argument( '--out-image-dir' , '-p' , metavar='out_images' , default=lowercase__ , help='Save precision-recall curves to directory.' ) parser.add_argument('--verbose' , '-v' , action='store_true' ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def __UpperCAmelCase ( UpperCAmelCase_ : List[Any] ) -> Tuple: '''simple docstring''' __snake_case : Any = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: __snake_case : List[str] = bool(qa['answers']['text'] ) return qid_to_has_ans def __UpperCAmelCase ( UpperCAmelCase_ : List[str] ) -> Tuple: '''simple docstring''' def remove_articles(UpperCAmelCase_ : Optional[Any] ): return ARTICLES_REGEX.sub(' ' , lowercase__ ) def white_space_fix(UpperCAmelCase_ : int ): return " ".join(text.split() ) def remove_punc(UpperCAmelCase_ : Optional[Any] ): __snake_case : int = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(UpperCAmelCase_ : Tuple ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowercase__ ) ) ) ) def __UpperCAmelCase ( UpperCAmelCase_ : List[Any] ) -> Optional[Any]: '''simple docstring''' if not s: return [] return normalize_answer(lowercase__ ).split() def __UpperCAmelCase ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str ) -> Tuple: '''simple docstring''' return int(normalize_answer(lowercase__ ) == normalize_answer(lowercase__ ) ) def __UpperCAmelCase ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple ) -> Union[str, Any]: '''simple docstring''' __snake_case : Any = get_tokens(lowercase__ ) __snake_case : List[Any] = get_tokens(lowercase__ ) __snake_case : Optional[Any] = collections.Counter(lowercase__ ) & collections.Counter(lowercase__ ) __snake_case : Optional[Any] = sum(common.values() ) if len(lowercase__ ) == 0 or len(lowercase__ ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 __snake_case : Optional[int] = 1.0 * num_same / len(lowercase__ ) __snake_case : Optional[int] = 1.0 * num_same / len(lowercase__ ) __snake_case : Dict = (2 * precision * recall) / (precision + recall) return fa def __UpperCAmelCase ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] ) -> Any: '''simple docstring''' __snake_case : str = {} __snake_case : Optional[Any] = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: __snake_case : str = qa["id"] __snake_case : List[Any] = [t for t in qa["answers"]["text"] if normalize_answer(lowercase__ )] if not gold_answers: # For unanswerable questions, only correct answer is empty string __snake_case : str = [""] if qid not in preds: print(F"Missing prediction for {qid}" ) continue __snake_case : Tuple = preds[qid] # Take max over all gold answers __snake_case : str = max(compute_exact(lowercase__ , lowercase__ ) for a in gold_answers ) __snake_case : Optional[int] = max(compute_fa(lowercase__ , lowercase__ ) for a in gold_answers ) return exact_scores, fa_scores def __UpperCAmelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple ) -> List[Any]: '''simple docstring''' __snake_case : int = {} for qid, s in scores.items(): __snake_case : Optional[int] = na_probs[qid] > na_prob_thresh if pred_na: __snake_case : int = float(not qid_to_has_ans[qid] ) else: __snake_case : List[Any] = s return new_scores def __UpperCAmelCase ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any]=None ) -> int: '''simple docstring''' if not qid_list: __snake_case : List[Any] = len(lowercase__ ) return collections.OrderedDict( [ ('exact', 1_00.0 * sum(exact_scores.values() ) / total), ('f1', 1_00.0 * sum(fa_scores.values() ) / total), ('total', total), ] ) else: __snake_case : Optional[Any] = len(lowercase__ ) return collections.OrderedDict( [ ('exact', 1_00.0 * sum(exact_scores[k] for k in qid_list ) / total), ('f1', 1_00.0 * sum(fa_scores[k] for k in qid_list ) / total), ('total', total), ] ) def __UpperCAmelCase ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] ) -> Tuple: '''simple docstring''' for k in new_eval: __snake_case : int = new_eval[k] def __UpperCAmelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple ) -> List[Any]: '''simple docstring''' plt.step(lowercase__ , lowercase__ , color='b' , alpha=0.2 , where='post' ) plt.fill_between(lowercase__ , lowercase__ , step='post' , alpha=0.2 , color='b' ) plt.xlabel('Recall' ) plt.ylabel('Precision' ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(lowercase__ ) plt.savefig(lowercase__ ) plt.clf() def __UpperCAmelCase ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Optional[int]=None ) -> Optional[Any]: '''simple docstring''' __snake_case : str = sorted(lowercase__ , key=lambda UpperCAmelCase_ : na_probs[k] ) __snake_case : Optional[Any] = 0.0 __snake_case : Optional[int] = 1.0 __snake_case : int = 0.0 __snake_case : List[str] = [1.0] __snake_case : Tuple = [0.0] __snake_case : int = 0.0 for i, qid in enumerate(lowercase__ ): if qid_to_has_ans[qid]: true_pos += scores[qid] __snake_case : Any = true_pos / float(i + 1 ) __snake_case : str = true_pos / float(lowercase__ ) if i == len(lowercase__ ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(lowercase__ ) recalls.append(lowercase__ ) if out_image: plot_pr_curve(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) return {"ap": 1_00.0 * avg_prec} def __UpperCAmelCase ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int ) -> Dict: '''simple docstring''' if out_image_dir and not os.path.exists(lowercase__ ): os.makedirs(lowercase__ ) __snake_case : Optional[int] = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return __snake_case : Union[str, Any] = make_precision_recall_eval( lowercase__ , lowercase__ , lowercase__ , lowercase__ , out_image=os.path.join(lowercase__ , 'pr_exact.png' ) , title='Precision-Recall curve for Exact Match score' , ) __snake_case : List[str] = make_precision_recall_eval( lowercase__ , lowercase__ , lowercase__ , lowercase__ , out_image=os.path.join(lowercase__ , 'pr_f1.png' ) , title='Precision-Recall curve for F1 score' , ) __snake_case : Union[str, Any] = {k: float(lowercase__ ) for k, v in qid_to_has_ans.items()} __snake_case : str = make_precision_recall_eval( lowercase__ , lowercase__ , lowercase__ , lowercase__ , out_image=os.path.join(lowercase__ , 'pr_oracle.png' ) , title='Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)' , ) merge_eval(lowercase__ , lowercase__ , 'pr_exact' ) merge_eval(lowercase__ , lowercase__ , 'pr_f1' ) merge_eval(lowercase__ , lowercase__ , 'pr_oracle' ) def __UpperCAmelCase ( UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any] ) -> List[str]: '''simple docstring''' if not qid_list: return __snake_case : int = [na_probs[k] for k in qid_list] __snake_case : Optional[int] = np.ones_like(lowercase__ ) / float(len(lowercase__ ) ) plt.hist(lowercase__ , weights=lowercase__ , bins=20 , range=(0.0, 1.0) ) plt.xlabel('Model probability of no-answer' ) plt.ylabel('Proportion of dataset' ) plt.title(F"Histogram of no-answer probability: {name}" ) plt.savefig(os.path.join(lowercase__ , F"na_prob_hist_{name}.png" ) ) plt.clf() def __UpperCAmelCase ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' __snake_case : int = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) __snake_case : Tuple = num_no_ans __snake_case : Any = cur_score __snake_case : int = 0.0 __snake_case : Dict = sorted(lowercase__ , key=lambda UpperCAmelCase_ : na_probs[k] ) for i, qid in enumerate(lowercase__ ): if qid not in scores: continue if qid_to_has_ans[qid]: __snake_case : Any = scores[qid] else: if preds[qid]: __snake_case : str = -1 else: __snake_case : int = 0 cur_score += diff if cur_score > best_score: __snake_case : str = cur_score __snake_case : int = na_probs[qid] return 1_00.0 * best_score / len(lowercase__ ), best_thresh def __UpperCAmelCase ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any] ) -> Dict: '''simple docstring''' __snake_case : Union[str, Any] = find_best_thresh(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) __snake_case : Dict = find_best_thresh(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) __snake_case : Union[str, Any] = best_exact __snake_case : Optional[int] = exact_thresh __snake_case : Any = best_fa __snake_case : Optional[int] = fa_thresh def __UpperCAmelCase ( ) -> Optional[Any]: '''simple docstring''' with open(OPTS.data_file ) as f: __snake_case : List[str] = json.load(lowercase__ ) __snake_case : Union[str, Any] = dataset_json["data"] with open(OPTS.pred_file ) as f: __snake_case : str = json.load(lowercase__ ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: __snake_case : Dict = json.load(lowercase__ ) else: __snake_case : Optional[int] = {k: 0.0 for k in preds} __snake_case : Union[str, Any] = make_qid_to_has_ans(lowercase__ ) # maps qid to True/False __snake_case : Any = [k for k, v in qid_to_has_ans.items() if v] __snake_case : Optional[Any] = [k for k, v in qid_to_has_ans.items() if not v] __snake_case : Tuple = get_raw_scores(lowercase__ , lowercase__ ) __snake_case : Any = apply_no_ans_threshold(lowercase__ , lowercase__ , lowercase__ , OPTS.na_prob_thresh ) __snake_case : Union[str, Any] = apply_no_ans_threshold(lowercase__ , lowercase__ , lowercase__ , OPTS.na_prob_thresh ) __snake_case : Dict = make_eval_dict(lowercase__ , lowercase__ ) if has_ans_qids: __snake_case : Any = make_eval_dict(lowercase__ , lowercase__ , qid_list=lowercase__ ) merge_eval(lowercase__ , lowercase__ , 'HasAns' ) if no_ans_qids: __snake_case : List[Any] = make_eval_dict(lowercase__ , lowercase__ , qid_list=lowercase__ ) merge_eval(lowercase__ , lowercase__ , 'NoAns' ) if OPTS.na_prob_file: find_all_best_thresh(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , OPTS.out_image_dir ) histogram_na_prob(lowercase__ , lowercase__ , OPTS.out_image_dir , 'hasAns' ) histogram_na_prob(lowercase__ , lowercase__ , OPTS.out_image_dir , 'noAns' ) if OPTS.out_file: with open(OPTS.out_file , 'w' ) as f: json.dump(lowercase__ , lowercase__ ) else: print(json.dumps(lowercase__ , indent=2 ) ) if __name__ == "__main__": _a : Union[str, Any]= parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt main()
172
"""simple docstring""" import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class lowerCamelCase__ ( unittest.TestCase ): def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=13 , SCREAMING_SNAKE_CASE=7 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=99 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=5 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=37 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=512 , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=4 , ): """simple docstring""" snake_case : int = parent snake_case : List[Any] = batch_size snake_case : str = seq_length snake_case : Optional[int] = is_training snake_case : Optional[int] = use_attention_mask snake_case : str = use_token_type_ids snake_case : int = use_labels snake_case : Any = vocab_size snake_case : Any = hidden_size snake_case : Any = num_hidden_layers snake_case : int = num_attention_heads snake_case : Optional[Any] = intermediate_size snake_case : List[str] = hidden_act snake_case : Any = hidden_dropout_prob snake_case : Tuple = attention_probs_dropout_prob snake_case : int = max_position_embeddings snake_case : Any = type_vocab_size snake_case : int = type_sequence_label_size snake_case : Union[str, Any] = initializer_range snake_case : Optional[Any] = num_choices def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case : Tuple = None if self.use_attention_mask: snake_case : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case : str = None if self.use_token_type_ids: snake_case : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case : str = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Optional[int] = self.prepare_config_and_inputs() snake_case , snake_case , snake_case , snake_case : str = config_and_inputs snake_case : int = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class lowerCamelCase__ ( lowerCamelCase_ , unittest.TestCase ): a__ : Optional[Any] = True a__ : List[str] = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : str = FlaxRoFormerModelTester(self ) @slow def lowerCamelCase_ ( self ): """simple docstring""" for model_class_name in self.all_model_classes: snake_case : List[Any] = model_class_name.from_pretrained("junnyu/roformer_chinese_small" , from_pt=SCREAMING_SNAKE_CASE ) snake_case : str = model(np.ones((1, 1) ) ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) @require_flax class lowerCamelCase__ ( unittest.TestCase ): @slow def lowerCamelCase_ ( self ): """simple docstring""" snake_case : List[str] = FlaxRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base" ) snake_case : Union[str, Any] = jnp.array([[0, 1, 2, 3, 4, 5]] ) snake_case : List[Any] = model(SCREAMING_SNAKE_CASE )[0] snake_case : List[Any] = 50_000 snake_case : List[str] = (1, 6, vocab_size) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE ) snake_case : Optional[int] = jnp.array( [[[-0.12_05, -1.02_65, 0.29_22], [-1.51_34, 0.19_74, 0.15_19], [-5.01_35, -3.90_03, -0.84_04]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) )
148
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) class UpperCamelCase ( lowercase_ ): lowercase = ['pixel_values'] def __init__( self ,__UpperCamelCase = True ,__UpperCamelCase = None ,__UpperCamelCase = PILImageResampling.BICUBIC ,__UpperCamelCase = True ,__UpperCamelCase = 1 / 255 ,__UpperCamelCase = True ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = True ,**__UpperCamelCase ,) -> None: '''simple docstring''' super().__init__(**__UpperCamelCase ) lowercase_ : str = size if size is not None else {'height': 384, 'width': 384} lowercase_ : int = get_size_dict(__UpperCamelCase ,default_to_square=__UpperCamelCase ) lowercase_ : int = do_resize lowercase_ : Tuple = size lowercase_ : Any = resample lowercase_ : Optional[Any] = do_rescale lowercase_ : Any = rescale_factor lowercase_ : List[Any] = do_normalize lowercase_ : Union[str, Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowercase_ : Optional[int] = image_std if image_std is not None else OPENAI_CLIP_STD lowercase_ : Any = do_convert_rgb def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = PILImageResampling.BICUBIC ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> np.ndarray: '''simple docstring''' lowercase_ : Tuple = get_size_dict(__UpperCamelCase ,default_to_square=__UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''' ) lowercase_ : str = (size['height'], size['width']) return resize(__UpperCamelCase ,size=__UpperCamelCase ,resample=__UpperCamelCase ,data_format=__UpperCamelCase ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> Dict: '''simple docstring''' return rescale(__UpperCamelCase ,scale=__UpperCamelCase ,data_format=__UpperCamelCase ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> np.ndarray: '''simple docstring''' return normalize(__UpperCamelCase ,mean=__UpperCamelCase ,std=__UpperCamelCase ,data_format=__UpperCamelCase ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = ChannelDimension.FIRST ,**__UpperCamelCase ,) -> PIL.Image.Image: '''simple docstring''' lowercase_ : Optional[int] = do_resize if do_resize is not None else self.do_resize lowercase_ : List[Any] = resample if resample is not None else self.resample lowercase_ : Tuple = do_rescale if do_rescale is not None else self.do_rescale lowercase_ : str = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase_ : Dict = do_normalize if do_normalize is not None else self.do_normalize lowercase_ : Dict = image_mean if image_mean is not None else self.image_mean lowercase_ : List[Any] = image_std if image_std is not None else self.image_std lowercase_ : Any = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowercase_ : str = size if size is not None else self.size lowercase_ : Tuple = get_size_dict(__UpperCamelCase ,default_to_square=__UpperCamelCase ) lowercase_ : Tuple = make_list_of_images(__UpperCamelCase ) if not valid_images(__UpperCamelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowercase_ : List[str] = [convert_to_rgb(__UpperCamelCase ) for image in images] # All transformations expect numpy arrays. lowercase_ : Optional[int] = [to_numpy_array(__UpperCamelCase ) for image in images] if do_resize: lowercase_ : Any = [self.resize(image=__UpperCamelCase ,size=__UpperCamelCase ,resample=__UpperCamelCase ) for image in images] if do_rescale: lowercase_ : Dict = [self.rescale(image=__UpperCamelCase ,scale=__UpperCamelCase ) for image in images] if do_normalize: lowercase_ : Any = [self.normalize(image=__UpperCamelCase ,mean=__UpperCamelCase ,std=__UpperCamelCase ) for image in images] lowercase_ : Union[str, Any] = [to_channel_dimension_format(__UpperCamelCase ,__UpperCamelCase ) for image in images] lowercase_ : Union[str, Any] = BatchFeature(data={'pixel_values': images} ,tensor_type=__UpperCamelCase ) return encoded_outputs
321
"""simple docstring""" import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class UpperCamelCase : def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> int: '''simple docstring''' return None class UpperCamelCase : def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> str: '''simple docstring''' return None class UpperCamelCase ( unittest.TestCase ): lowercase = [ # (model_name, model_kwargs) ('bert-base-cased', {}), ('gpt2', {'use_cache': False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def _UpperCAmelCase ( self ) -> str: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__UpperCamelCase ,'tf' ,12 ,**__UpperCamelCase ) @require_torch @slow def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__UpperCamelCase ,'pt' ,12 ,**__UpperCamelCase ) @require_torch @slow def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' from transformers import BertModel lowercase_ : Union[str, Any] = ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words'] with NamedTemporaryFile(mode='w+t' ) as vocab_file: vocab_file.write('\n'.join(__UpperCamelCase ) ) vocab_file.flush() lowercase_ : List[str] = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: lowercase_ : Optional[Any] = BertModel(BertConfig(vocab_size=len(__UpperCamelCase ) ) ) model.save_pretrained(__UpperCamelCase ) self._test_export(__UpperCamelCase ,'pt' ,12 ,__UpperCamelCase ) @require_tf @slow def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowercase_ : Optional[int] = self._test_export(__UpperCamelCase ,'tf' ,12 ,**__UpperCamelCase ) lowercase_ : int = quantize(Path(__UpperCamelCase ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__UpperCamelCase ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) @require_torch @slow def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowercase_ : Tuple = self._test_export(__UpperCamelCase ,'pt' ,12 ,**__UpperCamelCase ) lowercase_ : Tuple = quantize(__UpperCamelCase ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__UpperCamelCase ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=None ,**__UpperCamelCase ) -> Optional[int]: '''simple docstring''' try: # Compute path with TemporaryDirectory() as tempdir: lowercase_ : Dict = Path(__UpperCamelCase ).joinpath('model.onnx' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ) return path except Exception as e: self.fail(__UpperCamelCase ) @require_torch @require_tokenizers @slow def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' from transformers import BertModel lowercase_ : List[Any] = BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) lowercase_ : Union[str, Any] = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(__UpperCamelCase ,__UpperCamelCase ,'pt' ) @require_tf @require_tokenizers @slow def _UpperCAmelCase ( self ) -> str: '''simple docstring''' from transformers import TFBertModel lowercase_ : Optional[Any] = TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) lowercase_ : Any = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(__UpperCamelCase ,__UpperCamelCase ,'tf' ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Dict: '''simple docstring''' lowercase_ : Tuple = FeatureExtractionPipeline(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : Dict = ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1'] lowercase_ , lowercase_ , lowercase_ , lowercase_ : Any = infer_shapes(__UpperCamelCase ,__UpperCamelCase ) # Assert all variables are present self.assertEqual(len(__UpperCamelCase ) ,len(__UpperCamelCase ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] ,__UpperCamelCase ) self.assertSequenceEqual(variable_names[3:] ,__UpperCamelCase ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] ,{0: 'batch', 1: 'sequence'} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['output_0'] ,{0: 'batch', 1: 'sequence'} ) self.assertDictEqual(shapes['output_1'] ,{0: 'batch'} ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Any = ['input_ids', 'attention_mask', 'token_type_ids'] lowercase_ : List[Any] = {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]} lowercase_ , lowercase_ : int = ensure_valid_input(FuncContiguousArgs() ,__UpperCamelCase ,__UpperCamelCase ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(__UpperCamelCase ) ,3 ) # Should have exactly the same input names self.assertEqual(set(__UpperCamelCase ) ,set(__UpperCamelCase ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(__UpperCamelCase ,(tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) lowercase_ , lowercase_ : Optional[int] = ensure_valid_input(FuncNonContiguousArgs() ,__UpperCamelCase ,__UpperCamelCase ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(__UpperCamelCase ) ,1 ) self.assertEqual(len(__UpperCamelCase ) ,1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] ,tokens['input_ids'] ) self.assertEqual(ordered_input_names[0] ,'input_ids' ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Dict = generate_identified_filename(Path('/home/something/my_fake_model.onnx' ) ,'-test' ) self.assertEqual('/home/something/my_fake_model-test.onnx' ,generated.as_posix() )
321
1
'''simple docstring''' import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging lowercase : Optional[int] = logging.get_logger(__name__) def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : Union[str, Any] = R'''\w+[.]\d+''' A : Optional[int] = re.findall(snake_case__ , snake_case__ ) for pat in pats: A : List[Any] = key.replace(snake_case__ , '''_'''.join(pat.split('''.''' ) ) ) return key def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' A : Optional[Any] = pt_tuple_key[:-1] + ('''scale''',) if ( any('''norm''' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): A : Tuple = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: A : int = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: A : Dict = pt_tuple_key[:-1] + ('''embedding''',) return renamed_pt_tuple_key, pt_tensor # conv layer A : str = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: A : Dict = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer A : List[str] = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight": A : List[str] = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight A : List[str] = pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias A : Any = pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__=42 ): '''simple docstring''' A : Dict = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params A : Optional[int] = flax_model.init_weights(PRNGKey(snake_case__ ) ) A : Optional[Any] = flatten_dict(snake_case__ ) A : int = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): A : Any = rename_key(snake_case__ ) A : Dict = tuple(renamed_pt_key.split('''.''' ) ) # Correctly rename weight parameters A, A : Optional[Any] = rename_key_and_reshape_tensor(snake_case__ , snake_case__ , snake_case__ ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # also add unexpected weight so that warning is thrown A : Union[str, Any] = jnp.asarray(snake_case__ ) return unflatten_dict(snake_case__ )
3
import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __a : str = 1_6 __a : str = 3_2 def UpperCAmelCase ( lowercase ): """simple docstring""" return int(x / 2**20 ) class _UpperCamelCase : """simple docstring""" def __enter__( self ) -> str: '''simple docstring''' gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero __lowercase = torch.cuda.memory_allocated() return self def __exit__( self , *lowerCAmelCase__ ) -> int: '''simple docstring''' gc.collect() torch.cuda.empty_cache() __lowercase = torch.cuda.memory_allocated() __lowercase = torch.cuda.max_memory_allocated() __lowercase = bamb(self.end - self.begin ) __lowercase = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def UpperCAmelCase ( lowercase , lowercase = 16 , lowercase = "bert-base-cased" , lowercase = 320 , lowercase = 160 , ): """simple docstring""" __lowercase = AutoTokenizer.from_pretrained(lowercase ) __lowercase = load_dataset( '''glue''' , '''mrpc''' , split={'''train''': F"train[:{n_train}]", '''validation''': F"validation[:{n_val}]"} ) def tokenize_function(lowercase ): # max_length=None => use the model max length (it's actually the default) __lowercase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowercase , max_length=lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __lowercase = datasets.map( lowercase , batched=lowercase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=lowercase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowercase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowercase , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(lowercase , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. __lowercase = DataLoader( tokenized_datasets['''train'''] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase ) __lowercase = DataLoader( tokenized_datasets['''validation'''] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase ) return train_dataloader, eval_dataloader def UpperCAmelCase ( lowercase , lowercase ): """simple docstring""" __lowercase = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowercase = config['''lr'''] __lowercase = int(config['''num_epochs'''] ) __lowercase = int(config['''seed'''] ) __lowercase = int(config['''batch_size'''] ) __lowercase = args.model_name_or_path set_seed(lowercase ) __lowercase , __lowercase = get_dataloaders(lowercase , lowercase , lowercase , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowercase = AutoModelForSequenceClassification.from_pretrained(lowercase , return_dict=lowercase ) # Instantiate optimizer __lowercase = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __lowercase = optimizer_cls(params=model.parameters() , lr=lowercase ) if accelerator.state.deepspeed_plugin is not None: __lowercase = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: __lowercase = 1 __lowercase = (len(lowercase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __lowercase = get_linear_schedule_with_warmup( optimizer=lowercase , num_warmup_steps=0 , num_training_steps=lowercase , ) else: __lowercase = DummyScheduler(lowercase , total_num_steps=lowercase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = accelerator.prepare( lowercase , lowercase , lowercase , lowercase , lowercase ) # We need to keep track of how many total steps we have iterated over __lowercase = 0 # We also need to keep track of the stating epoch so files are named properly __lowercase = 0 # Now we train the model __lowercase = {} for epoch in range(lowercase , lowercase ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(lowercase ): __lowercase = model(**lowercase ) __lowercase = outputs.loss __lowercase = loss / gradient_accumulation_steps accelerator.backward(lowercase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print('''Memory before entering the train : {}'''.format(bamb(tracemalloc.begin ) ) ) accelerator.print('''Memory consumed at the end of the train (end-begin): {}'''.format(tracemalloc.used ) ) accelerator.print('''Peak Memory consumed during the train (max-begin): {}'''.format(tracemalloc.peaked ) ) accelerator.print( '''Total Peak Memory consumed during the train (max): {}'''.format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) __lowercase = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[F"epoch-{epoch}"] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , '''peak_memory_utilization.json''' ) , '''w''' ) as f: json.dump(lowercase , lowercase ) def UpperCAmelCase ( ): """simple docstring""" __lowercase = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=lowercase , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=lowercase , ) parser.add_argument( '''--output_dir''' , type=lowercase , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--peak_memory_upper_bound''' , type=lowercase , default=lowercase , help='''The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.''' , ) parser.add_argument( '''--n_train''' , type=lowercase , default=320 , help='''Number of training examples to use.''' , ) parser.add_argument( '''--n_val''' , type=lowercase , default=160 , help='''Number of validation examples to use.''' , ) parser.add_argument( '''--num_epochs''' , type=lowercase , default=1 , help='''Number of train epochs.''' , ) __lowercase = parser.parse_args() __lowercase = {'''lr''': 2E-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(lowercase , lowercase ) if __name__ == "__main__": main()
210
0
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): lowerCAmelCase : str ='''pt''' elif is_tf_available(): lowerCAmelCase : List[str] ='''tf''' else: lowerCAmelCase : int ='''jax''' class a_ ( _lowerCAmelCase , unittest.TestCase ): __A = PerceiverTokenizer __A = False def lowercase__ ( self : Any ): """simple docstring""" super().setUp() lowercase_ :Dict = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase__ ( self : List[Any] ): """simple docstring""" return PerceiverTokenizer.from_pretrained("deepmind/language-perceiver" ) def lowercase__ ( self : Tuple , **lowercase : List[str] ): """simple docstring""" return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase ) def lowercase__ ( self : Tuple , lowercase : Tuple , lowercase : Optional[int]=False , lowercase : List[Any]=20 , lowercase : str=5 ): """simple docstring""" lowercase_ :str = [] for i in range(len(lowercase ) ): try: lowercase_ :Union[str, Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=lowercase ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowercase_ :Any = list(filter(lambda lowercase : re.match(R"^[ a-zA-Z]+$" , t[1] ) , lowercase ) ) lowercase_ :Union[str, Any] = list(filter(lambda lowercase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=lowercase ) , lowercase ) ) if max_length is not None and len(lowercase ) > max_length: lowercase_ :Dict = toks[:max_length] if min_length is not None and len(lowercase ) < min_length and len(lowercase ) > 0: while len(lowercase ) < min_length: lowercase_ :Union[str, Any] = toks + toks # toks_str = [t[1] for t in toks] lowercase_ :Any = [t[0] for t in toks] # Ensure consistency lowercase_ :str = tokenizer.decode(lowercase , clean_up_tokenization_spaces=lowercase ) if " " not in output_txt and len(lowercase ) > 1: lowercase_ :Tuple = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowercase ) + " " + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowercase ) ) if with_prefix_space: lowercase_ :str = " " + output_txt lowercase_ :List[Any] = tokenizer.encode(lowercase , add_special_tokens=lowercase ) return output_txt, output_ids def lowercase__ ( self : Optional[Any] ): """simple docstring""" lowercase_ :Optional[Any] = self.perceiver_tokenizer lowercase_ :Dict = "Unicode €." lowercase_ :int = tokenizer(lowercase ) lowercase_ :List[str] = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded["input_ids"] , lowercase ) # decoding lowercase_ :Optional[int] = tokenizer.decode(lowercase ) self.assertEqual(lowercase , "[CLS]Unicode €.[SEP]" ) lowercase_ :List[str] = tokenizer("e è é ê ë" ) lowercase_ :Optional[int] = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded["input_ids"] , lowercase ) # decoding lowercase_ :Optional[Any] = tokenizer.decode(lowercase ) self.assertEqual(lowercase , "[CLS]e è é ê ë[SEP]" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë" ) ) , "[CLS]e è é ê ë[SEP]" ) def lowercase__ ( self : Optional[Any] ): """simple docstring""" lowercase_ :Any = self.perceiver_tokenizer lowercase_ :List[Any] = ["A long paragraph for summarization.", "Another paragraph for summarization."] # fmt: off lowercase_ :Optional[Any] = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on lowercase_ :Dict = tokenizer(lowercase , padding=lowercase , return_tensors=lowercase ) self.assertIsInstance(lowercase , lowercase ) if FRAMEWORK != "jax": lowercase_ :Union[str, Any] = list(batch.input_ids.numpy()[0] ) else: lowercase_ :Any = list(batch.input_ids.tolist()[0] ) self.assertListEqual(lowercase , lowercase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def lowercase__ ( self : Tuple ): """simple docstring""" lowercase_ :Tuple = self.perceiver_tokenizer lowercase_ :Optional[int] = ["A long paragraph for summarization.", "Another paragraph for summarization."] lowercase_ :List[str] = tokenizer(lowercase , padding=lowercase , return_tensors=lowercase ) # check if input_ids are returned and no decoder_input_ids self.assertIn("input_ids" , lowercase ) self.assertIn("attention_mask" , lowercase ) self.assertNotIn("decoder_input_ids" , lowercase ) self.assertNotIn("decoder_attention_mask" , lowercase ) def lowercase__ ( self : Union[str, Any] ): """simple docstring""" lowercase_ :Tuple = self.perceiver_tokenizer lowercase_ :int = [ "Summary of the text.", "Another summary.", ] lowercase_ :Union[str, Any] = tokenizer( text_target=lowercase , max_length=32 , padding="max_length" , truncation=lowercase , return_tensors=lowercase ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def lowercase__ ( self : Dict ): """simple docstring""" lowercase_ :int = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test lowercase_ :Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc lowercase_ :List[Any] = tempfile.mkdtemp() lowercase_ :Union[str, Any] = " He is very happy, UNwant\u00E9d,running" lowercase_ :Dict = tokenizer.encode(lowercase , add_special_tokens=lowercase ) tokenizer.save_pretrained(lowercase ) lowercase_ :Dict = tokenizer.__class__.from_pretrained(lowercase ) lowercase_ :str = after_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) shutil.rmtree(lowercase ) lowercase_ :List[Any] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc lowercase_ :Tuple = tempfile.mkdtemp() lowercase_ :Optional[int] = " He is very happy, UNwant\u00E9d,running" tokenizer.add_tokens(["bim", "bambam"] ) lowercase_ :str = tokenizer.additional_special_tokens additional_special_tokens.append("new_additional_special_token" ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) lowercase_ :Tuple = tokenizer.encode(lowercase , add_special_tokens=lowercase ) tokenizer.save_pretrained(lowercase ) lowercase_ :int = tokenizer.__class__.from_pretrained(lowercase ) lowercase_ :Tuple = after_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) self.assertIn("new_additional_special_token" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) lowercase_ :Tuple = tokenizer.__class__.from_pretrained(lowercase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(lowercase ) def lowercase__ ( self : Union[str, Any] ): """simple docstring""" lowercase_ :int = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowercase ) with open(os.path.join(lowercase , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: lowercase_ :List[Any] = json.load(lowercase ) with open(os.path.join(lowercase , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: lowercase_ :Optional[Any] = json.load(lowercase ) lowercase_ :List[Any] = [F'<extra_id_{i}>' for i in range(125 )] lowercase_ :int = added_tokens_extra_ids + [ "an_additional_special_token" ] lowercase_ :List[Any] = added_tokens_extra_ids + [ "an_additional_special_token" ] with open(os.path.join(lowercase , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(lowercase , lowercase ) with open(os.path.join(lowercase , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(lowercase , lowercase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowercase_ :Optional[int] = tokenizer_class.from_pretrained( lowercase , ) self.assertIn( "an_additional_special_token" , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ["an_additional_special_token"] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowercase_ :Union[str, Any] = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token" , lstrip=lowercase )] lowercase_ :Optional[Any] = tokenizer_class.from_pretrained( lowercase , additional_special_tokens=lowercase , ) self.assertIn("a_new_additional_special_token" , tokenizer.additional_special_tokens ) self.assertEqual( ["a_new_additional_special_token"] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"] ) ) , ) def lowercase__ ( self : Tuple ): """simple docstring""" lowercase_ :int = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , "�" ) def lowercase__ ( self : Any ): """simple docstring""" pass def lowercase__ ( self : Optional[Any] ): """simple docstring""" pass def lowercase__ ( self : Optional[Any] ): """simple docstring""" pass def lowercase__ ( self : Dict ): """simple docstring""" pass def lowercase__ ( self : Union[str, Any] ): """simple docstring""" lowercase_ :Optional[int] = self.get_tokenizers(fast=lowercase , do_lower_case=lowercase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): lowercase_ :Tuple = ["[CLS]", "t", "h", "i", "s", " ", "i", "s", " ", "a", " ", "t", "e", "s", "t", "[SEP]"] lowercase_ :int = tokenizer.convert_tokens_to_string(lowercase ) self.assertIsInstance(lowercase , lowercase )
352
'''simple docstring''' from abc import ABC, abstractmethod from argparse import ArgumentParser class a_ ( _lowerCAmelCase ): @staticmethod @abstractmethod def lowercase__ ( lowercase : ArgumentParser ): """simple docstring""" raise NotImplementedError() @abstractmethod def lowercase__ ( self : str ): """simple docstring""" raise NotImplementedError()
147
0
class SCREAMING_SNAKE_CASE_ : def __init__( self : int , _A : Optional[int] , _A : List[str] ) -> Optional[Any]: """simple docstring""" snake_case_ : List[Any] = name snake_case_ : str = val def __str__( self : str ) -> Union[str, Any]: """simple docstring""" return F"""{self.__class__.__name__}({self.name}, {self.val})""" def __lt__( self : Union[str, Any] , _A : str ) -> Dict: """simple docstring""" return self.val < other.val class SCREAMING_SNAKE_CASE_ : def __init__( self : Dict , _A : Union[str, Any] ) -> int: """simple docstring""" snake_case_ : Optional[int] = {} snake_case_ : Tuple = {} snake_case_ : Optional[int] = self.build_heap(__a ) def __getitem__( self : Optional[Any] , _A : Union[str, Any] ) -> Optional[int]: """simple docstring""" return self.get_value(__a ) def UpperCAmelCase_ ( self : Union[str, Any] , _A : List[str] ) -> str: """simple docstring""" return (idx - 1) // 2 def UpperCAmelCase_ ( self : Tuple , _A : List[str] ) -> Any: """simple docstring""" return idx * 2 + 1 def UpperCAmelCase_ ( self : Optional[int] , _A : Dict ) -> Optional[Any]: """simple docstring""" return idx * 2 + 2 def UpperCAmelCase_ ( self : Dict , _A : List[str] ) -> Dict: """simple docstring""" return self.heap_dict[key] def UpperCAmelCase_ ( self : str , _A : List[str] ) -> Optional[Any]: """simple docstring""" snake_case_ : List[Any] = len(__a ) - 1 snake_case_ : Tuple = self.get_parent_idx(__a ) for idx, i in enumerate(__a ): snake_case_ : Union[str, Any] = idx snake_case_ : Tuple = i.val for i in range(__a , -1 , -1 ): self.sift_down(__a , __a ) return array def UpperCAmelCase_ ( self : List[Any] , _A : Optional[Any] , _A : List[str] ) -> int: """simple docstring""" while True: snake_case_ : str = self.get_left_child_idx(__a ) # noqa: E741 snake_case_ : Tuple = self.get_right_child_idx(__a ) snake_case_ : int = idx if l < len(__a ) and array[l] < array[idx]: snake_case_ : Dict = l if r < len(__a ) and array[r] < array[smallest]: snake_case_ : List[Any] = r if smallest != idx: snake_case_ ,snake_case_ : Optional[int] = array[smallest], array[idx] ( ( snake_case_ ) ,( snake_case_ ) , ) : Union[str, Any] = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) snake_case_ : Optional[int] = smallest else: break def UpperCAmelCase_ ( self : int , _A : Optional[int] ) -> int: """simple docstring""" snake_case_ : Union[str, Any] = self.get_parent_idx(__a ) while p >= 0 and self.heap[p] > self.heap[idx]: snake_case_ ,snake_case_ : List[str] = self.heap[idx], self.heap[p] snake_case_ ,snake_case_ : Any = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) snake_case_ : List[str] = p snake_case_ : List[str] = self.get_parent_idx(__a ) def UpperCAmelCase_ ( self : Optional[Any] ) -> int: """simple docstring""" return self.heap[0] def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" snake_case_ ,snake_case_ : Dict = self.heap[-1], self.heap[0] snake_case_ ,snake_case_ : List[str] = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) snake_case_ : Optional[int] = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap ) return x def UpperCAmelCase_ ( self : Union[str, Any] , _A : Union[str, Any] ) -> Dict: """simple docstring""" self.heap.append(__a ) snake_case_ : int = len(self.heap ) - 1 snake_case_ : Union[str, Any] = node.val self.sift_up(len(self.heap ) - 1 ) def UpperCAmelCase_ ( self : Tuple ) -> str: """simple docstring""" return len(self.heap ) == 0 def UpperCAmelCase_ ( self : Any , _A : List[str] , _A : Any ) -> Optional[int]: """simple docstring""" assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" snake_case_ : Tuple = new_value snake_case_ : Dict = new_value self.sift_up(self.idx_of_element[node] ) _SCREAMING_SNAKE_CASE = Node("""R""", -1) _SCREAMING_SNAKE_CASE = Node("""B""", 6) _SCREAMING_SNAKE_CASE = Node("""A""", 3) _SCREAMING_SNAKE_CASE = Node("""X""", 1) _SCREAMING_SNAKE_CASE = Node("""E""", 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array _SCREAMING_SNAKE_CASE = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print("""Min Heap - before decrease key""") for i in my_min_heap.heap: print(i) print("""Min Heap - After decrease key of node [B -> -17]""") my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
327
"""simple docstring""" import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowerCamelCase ( _lowercase , unittest.TestCase ): UpperCAmelCase_ = KandinskyVaaControlnetPipeline UpperCAmelCase_ = ["image_embeds", "negative_image_embeds", "hint"] UpperCAmelCase_ = ["image_embeds", "negative_image_embeds", "hint"] UpperCAmelCase_ = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] UpperCAmelCase_ = False @property def snake_case_ (self ) -> Tuple: return 32 @property def snake_case_ (self ) -> Optional[int]: return 32 @property def snake_case_ (self ) -> int: return self.time_input_dim @property def snake_case_ (self ) -> Dict: return self.time_input_dim * 4 @property def snake_case_ (self ) -> List[str]: return 1_00 @property def snake_case_ (self ) -> Union[str, Any]: torch.manual_seed(0 ) UpperCamelCase = { "in_channels": 8, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image_hint", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } UpperCamelCase = UNetaDConditionModel(**__a ) return model @property def snake_case_ (self ) -> Dict: return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def snake_case_ (self ) -> Optional[Any]: torch.manual_seed(0 ) UpperCamelCase = VQModel(**self.dummy_movq_kwargs ) return model def snake_case_ (self ) -> Optional[Any]: UpperCamelCase = self.dummy_unet UpperCamelCase = self.dummy_movq UpperCamelCase = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule="linear" , beta_start=0.00085 , beta_end=0.012 , clip_sample=__a , set_alpha_to_one=__a , steps_offset=1 , prediction_type="epsilon" , thresholding=__a , ) UpperCamelCase = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def snake_case_ (self , __a , __a=0 ) -> Any: UpperCamelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__a ) ).to(__a ) UpperCamelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __a ) # create hint UpperCamelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(__a ) ).to(__a ) if str(__a ).startswith("mps" ): UpperCamelCase = torch.manual_seed(__a ) else: UpperCamelCase = torch.Generator(device=__a ).manual_seed(__a ) UpperCamelCase = { "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "hint": hint, "generator": generator, "height": 64, "width": 64, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs def snake_case_ (self ) -> int: UpperCamelCase = "cpu" UpperCamelCase = self.get_dummy_components() UpperCamelCase = self.pipeline_class(**__a ) UpperCamelCase = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) UpperCamelCase = pipe(**self.get_dummy_inputs(__a ) ) UpperCamelCase = output.images UpperCamelCase = pipe( **self.get_dummy_inputs(__a ) , return_dict=__a , )[0] UpperCamelCase = image[0, -3:, -3:, -1] UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase = np.array( [0.6959826, 0.868279, 0.7558092, 0.68769467, 0.85805804, 0.65977496, 0.44885302, 0.5959111, 0.4251595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class _lowerCamelCase ( unittest.TestCase ): def snake_case_ (self ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ (self ) -> Dict: UpperCamelCase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy" ) UpperCamelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/hint_image_cat.png" ) UpperCamelCase = torch.from_numpy(np.array(__a ) ).float() / 255.0 UpperCamelCase = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) UpperCamelCase = KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(__a ) UpperCamelCase = KandinskyVaaControlnetPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-controlnet-depth" , torch_dtype=torch.floataa ) UpperCamelCase = pipeline.to(__a ) pipeline.set_progress_bar_config(disable=__a ) UpperCamelCase = "A robot, 4k photo" UpperCamelCase = torch.Generator(device="cuda" ).manual_seed(0 ) UpperCamelCase , UpperCamelCase = pipe_prior( __a , generator=__a , num_inference_steps=5 , negative_prompt="" , ).to_tuple() UpperCamelCase = torch.Generator(device="cuda" ).manual_seed(0 ) UpperCamelCase = pipeline( image_embeds=__a , negative_image_embeds=__a , hint=__a , generator=__a , num_inference_steps=1_00 , output_type="np" , ) UpperCamelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(__a , __a )
153
0
'''simple docstring''' import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def __snake_case( _lowerCAmelCase ) -> Tuple: snake_case__ : int = SwinConfig() snake_case__ : Optional[int] = swin_name.split("""_""" ) snake_case__ : Any = name_split[1] snake_case__ : Optional[Any] = int(name_split[4] ) snake_case__ : int = int(name_split[3][-1] ) if model_size == "tiny": snake_case__ : List[str] = 96 snake_case__ : List[Any] = (2, 2, 6, 2) snake_case__ : Any = (3, 6, 12, 24) elif model_size == "small": snake_case__ : List[str] = 96 snake_case__ : Dict = (2, 2, 18, 2) snake_case__ : Dict = (3, 6, 12, 24) elif model_size == "base": snake_case__ : Union[str, Any] = 128 snake_case__ : List[str] = (2, 2, 18, 2) snake_case__ : Tuple = (4, 8, 16, 32) else: snake_case__ : str = 192 snake_case__ : Any = (2, 2, 18, 2) snake_case__ : Dict = (6, 12, 24, 48) if "in22k" in swin_name: snake_case__ : Dict = 21_841 else: snake_case__ : Tuple = 1_000 snake_case__ : Optional[int] = """huggingface/label-files""" snake_case__ : Any = """imagenet-1k-id2label.json""" snake_case__ : Any = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) ) snake_case__ : str = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} snake_case__ : str = idalabel snake_case__ : List[Any] = {v: k for k, v in idalabel.items()} snake_case__ : str = img_size snake_case__ : int = num_classes snake_case__ : Any = embed_dim snake_case__ : str = depths snake_case__ : List[Any] = num_heads snake_case__ : List[Any] = window_size return config def __snake_case( _lowerCAmelCase ) -> Optional[int]: if "patch_embed.proj" in name: snake_case__ : Union[str, Any] = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: snake_case__ : List[str] = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if "layers" in name: snake_case__ : int = """encoder.""" + name if "attn.proj" in name: snake_case__ : List[Any] = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: snake_case__ : Union[str, Any] = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: snake_case__ : int = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: snake_case__ : Optional[Any] = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: snake_case__ : Optional[int] = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: snake_case__ : Union[str, Any] = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "norm.weight": snake_case__ : int = """layernorm.weight""" if name == "norm.bias": snake_case__ : List[str] = """layernorm.bias""" if "head" in name: snake_case__ : int = name.replace("""head""" , """classifier""" ) else: snake_case__ : List[str] = """swin.""" + name return name def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> List[Any]: for key in orig_state_dict.copy().keys(): snake_case__ : str = orig_state_dict.pop(_lowerCAmelCase ) if "mask" in key: continue elif "qkv" in key: snake_case__ : List[Any] = key.split(""".""" ) snake_case__ : int = int(key_split[1] ) snake_case__ : Any = int(key_split[3] ) snake_case__ : Union[str, Any] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: snake_case__ : Union[str, Any] = val[:dim, :] snake_case__ : List[Any] = val[ dim : dim * 2, : ] snake_case__ : List[Any] = val[-dim:, :] else: snake_case__ : Union[str, Any] = val[ :dim ] snake_case__ : Any = val[ dim : dim * 2 ] snake_case__ : List[Any] = val[ -dim: ] else: snake_case__ : Tuple = val return orig_state_dict def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: snake_case__ : Tuple = timm.create_model(_lowerCAmelCase , pretrained=_lowerCAmelCase ) timm_model.eval() snake_case__ : Optional[int] = get_swin_config(_lowerCAmelCase ) snake_case__ : Dict = SwinForImageClassification(_lowerCAmelCase ) model.eval() snake_case__ : List[str] = convert_state_dict(timm_model.state_dict() , _lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) snake_case__ : Union[str, Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case__ : Any = AutoImageProcessor.from_pretrained("""microsoft/{}""".format(swin_name.replace("""_""" , """-""" ) ) ) snake_case__ : List[str] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) snake_case__ : str = image_processor(images=_lowerCAmelCase , return_tensors="""pt""" ) snake_case__ : Dict = timm_model(inputs["""pixel_values"""] ) snake_case__ : Optional[Any] = model(**_lowerCAmelCase ).logits assert torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ) print(f"Saving model {swin_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swin_name", default="swin_tiny_patch4_window7_224", type=str, help="Name of the Swin timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) __a = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
361
'''simple docstring''' import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever __a = logging.getLogger(__name__) class UpperCAmelCase_ ( _a ): """simple docstring""" def __init__( self : Union[str, Any] , snake_case_ : Any , snake_case_ : int , snake_case_ : str , snake_case_ : Tuple=None ): super().__init__( snake_case_ , question_encoder_tokenizer=snake_case_ , generator_tokenizer=snake_case_ , index=snake_case_ , init_retrieval=snake_case_ , ) snake_case__ : int = None def lowerCamelCase ( self : int , snake_case_ : int ): logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually snake_case__ : Optional[Any] = self._infer_socket_ifname() # avoid clash with the NCCL port snake_case__ : int = str(distributed_port + 1 ) snake_case__ : List[str] = dist.new_group(ranks=snake_case_ , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def lowerCamelCase ( self : Optional[Any] ): return dist.get_rank(group=self.process_group ) == 0 def lowerCamelCase ( self : int , snake_case_ : str , snake_case_ : int , snake_case_ : int=torch.floataa ): snake_case__ : str = torch.empty(snake_case_ , dtype=snake_case_ ) dist.scatter(snake_case_ , src=0 , scatter_list=snake_case_ , group=self.process_group ) return target_tensor def lowerCamelCase ( self : Union[str, Any] ): snake_case__ : Dict = psutil.net_if_addrs() # a hacky way to deal with varying network interface names snake_case__ : Dict = next((addr for addr in addrs if addr.startswith("""e""" )) , snake_case_ ) return ifname def lowerCamelCase ( self : Tuple , snake_case_ : np.ndarray , snake_case_ : int ): # single GPU training if not dist.is_initialized(): snake_case__ , snake_case__ : Union[str, Any] = self._main_retrieve(snake_case_ , snake_case_ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(snake_case_ ) # distributed training snake_case__ : Optional[int] = dist.get_world_size(group=self.process_group ) # gather logic snake_case__ : str = None if self._is_main(): snake_case__ : Any = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(snake_case_ )] dist.gather(torch.tensor(snake_case_ ) , dst=0 , gather_list=snake_case_ , group=self.process_group ) # scatter logic snake_case__ : Union[str, Any] = question_hidden_states.shape[0] snake_case__ : List[str] = [] snake_case__ : Dict = [] if self._is_main(): assert len(snake_case_ ) == world_size snake_case__ , snake_case__ : Union[str, Any] = self._main_retrieve(torch.cat(snake_case_ ).numpy() , snake_case_ ) snake_case__ , snake_case__ : Dict = torch.tensor(snake_case_ ), torch.tensor(snake_case_ ) snake_case__ : Union[str, Any] = self._chunk_tensor(snake_case_ , snake_case_ ) snake_case__ : Union[str, Any] = self._chunk_tensor(snake_case_ , snake_case_ ) snake_case__ : Union[str, Any] = self._scattered(snake_case_ , [n_queries, n_docs] , target_type=torch.intaa ) snake_case__ : Dict = self._scattered(snake_case_ , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(snake_case_ )
43
0
"""simple docstring""" import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py UpperCAmelCase__ : str = '\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation",\n author = "Lin, Chin-Yew and\n Och, Franz Josef",\n booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics",\n month = "aug 23{--}aug 27",\n year = "2004",\n address = "Geneva, Switzerland",\n publisher = "COLING",\n url = "https://www.aclweb.org/anthology/C04-1072",\n pages = "501--507",\n}\n' UpperCAmelCase__ : str = '\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation,\nthe better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n' UpperCAmelCase__ : Optional[int] = '\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n \'bleu\': bleu score,\n \'precisions\': geometric mean of n-gram precisions,\n \'brevity_penalty\': brevity penalty,\n \'length_ratio\': ratio of lengths,\n \'translation_length\': translation_length,\n \'reference_length\': reference_length\nExamples:\n\n >>> predictions = [\n ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample\n ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references)\n ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric("bleu")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results["bleu"])\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_ (datasets.Metric ): """simple docstring""" def __magic_name__ (self ) -> List[str]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ), """references""": datasets.Sequence( datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"""] , reference_urls=[ """https://en.wikipedia.org/wiki/BLEU""", """https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""", ] , ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=False ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = compute_bleu( reference_corpus=SCREAMING_SNAKE_CASE__ , translation_corpus=SCREAMING_SNAKE_CASE__ , max_order=SCREAMING_SNAKE_CASE__ , smooth=SCREAMING_SNAKE_CASE__ ) ((SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__)) : Union[str, Any] = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
25
"""simple docstring""" class _UpperCAmelCase : def __init__( self :List[str] , __UpperCamelCase :Union[str, Any] , __UpperCamelCase :Tuple ): A = name A = val def __str__( self :str ): return f"{self.__class__.__name__}({self.name}, {self.val})" def __lt__( self :List[Any] , __UpperCamelCase :Union[str, Any] ): return self.val < other.val class _UpperCAmelCase : def __init__( self :List[str] , __UpperCamelCase :Optional[Any] ): A = {} A = {} A = self.build_heap(__UpperCamelCase ) def __getitem__( self :int , __UpperCamelCase :Optional[int] ): return self.get_value(__UpperCamelCase ) def lowerCamelCase ( self :List[Any] , __UpperCamelCase :str ): return (idx - 1) // 2 def lowerCamelCase ( self :int , __UpperCamelCase :Optional[Any] ): return idx * 2 + 1 def lowerCamelCase ( self :Union[str, Any] , __UpperCamelCase :Optional[int] ): return idx * 2 + 2 def lowerCamelCase ( self :Optional[Any] , __UpperCamelCase :str ): return self.heap_dict[key] def lowerCamelCase ( self :int , __UpperCamelCase :Optional[Any] ): A = len(__UpperCamelCase ) - 1 A = self.get_parent_idx(__UpperCamelCase ) for idx, i in enumerate(__UpperCamelCase ): A = idx A = i.val for i in range(__UpperCamelCase , -1 , -1 ): self.sift_down(__UpperCamelCase , __UpperCamelCase ) return array def lowerCamelCase ( self :str , __UpperCamelCase :Optional[Any] , __UpperCamelCase :Dict ): while True: A = self.get_left_child_idx(__UpperCamelCase ) # noqa: E741 A = self.get_right_child_idx(__UpperCamelCase ) A = idx if l < len(__UpperCamelCase ) and array[l] < array[idx]: A = l if r < len(__UpperCamelCase ) and array[r] < array[smallest]: A = r if smallest != idx: A, A = array[smallest], array[idx] ( ( A ), ( A ), ) = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) A = smallest else: break def lowerCamelCase ( self :Optional[Any] , __UpperCamelCase :Optional[int] ): A = self.get_parent_idx(__UpperCamelCase ) while p >= 0 and self.heap[p] > self.heap[idx]: A, A = self.heap[idx], self.heap[p] A, A = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) A = p A = self.get_parent_idx(__UpperCamelCase ) def lowerCamelCase ( self :Any ): return self.heap[0] def lowerCamelCase ( self :Tuple ): A, A = self.heap[-1], self.heap[0] A, A = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) A = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap ) return x def lowerCamelCase ( self :Optional[int] , __UpperCamelCase :Optional[int] ): self.heap.append(__UpperCamelCase ) A = len(self.heap ) - 1 A = node.val self.sift_up(len(self.heap ) - 1 ) def lowerCamelCase ( self :Tuple ): return len(self.heap ) == 0 def lowerCamelCase ( self :Any , __UpperCamelCase :str , __UpperCamelCase :Dict ): assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" A = new_value A = new_value self.sift_up(self.idx_of_element[node] ) _snake_case : Optional[int] = Node('R', -1) _snake_case : Tuple = Node('B', 6) _snake_case : Tuple = Node('A', 3) _snake_case : Optional[int] = Node('X', 1) _snake_case : List[Any] = Node('E', 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array _snake_case : Tuple = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print('Min Heap - before decrease key') for i in my_min_heap.heap: print(i) print('Min Heap - After decrease key of node [B -> -17]') my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
292
0
def UpperCamelCase ( _A : Tuple )-> Any: """simple docstring""" for i in range(0 , UpperCAmelCase__ ): for _ in range(0 , n - i - 1 ): # printing spaces print(" " , end="" ) for _ in range(0 , i + 1 ): # printing stars print("* " , end="" ) print() def UpperCamelCase ( _A : List[Any] )-> Any: """simple docstring""" for i in range(UpperCAmelCase__ , 0 , -1 ): for _ in range(UpperCAmelCase__ , 0 , -1 ): # printing stars print("* " , end="" ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(" " , end="" ) def UpperCamelCase ( _A : str )-> str: """simple docstring""" if n <= 0: print(" ... .... nothing printing :(" ) return floyd(UpperCAmelCase__ ) # upper half reverse_floyd(UpperCAmelCase__ ) # lower half if __name__ == "__main__": print(R"| /\ | |- | |- |--| |\ /| |-") print(R"|/ \| |- |_ |_ |__| | \/ | |_") UpperCAmelCase_ : Dict = 1 while K: UpperCAmelCase_ : Optional[int] = int(input("enter the number and , and see the magic : ")) print() pretty_print(user_number) UpperCAmelCase_ : List[str] = int(input("press 0 to exit... and 1 to continue...")) print("Good Bye...")
371
import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class UpperCamelCase ( _UpperCAmelCase ): def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = False , UpperCAmelCase__ = False , UpperCAmelCase__ = None , UpperCAmelCase__ = None , **UpperCAmelCase__ , ): super().__init__( UpperCAmelCase__ , split=UpperCAmelCase__ , features=UpperCAmelCase__ , cache_dir=UpperCAmelCase__ , keep_in_memory=UpperCAmelCase__ , streaming=UpperCAmelCase__ , num_proc=UpperCAmelCase__ , **UpperCAmelCase__ , ) A__ = field A__ = path_or_paths if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else {self.split: path_or_paths} A__ = Json( cache_dir=UpperCAmelCase__ , data_files=UpperCAmelCase__ , features=UpperCAmelCase__ , field=UpperCAmelCase__ , **UpperCAmelCase__ , ) def __A ( self ): # Build iterable dataset if self.streaming: A__ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: A__ = None A__ = None A__ = None A__ = None self.builder.download_and_prepare( download_config=UpperCAmelCase__ , download_mode=UpperCAmelCase__ , verification_mode=UpperCAmelCase__ , base_path=UpperCAmelCase__ , num_proc=self.num_proc , ) A__ = self.builder.as_dataset( split=self.split , verification_mode=UpperCAmelCase__ , in_memory=self.keep_in_memory ) return dataset class UpperCamelCase : def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = None , **UpperCAmelCase__ , ): if num_proc is not None and num_proc <= 0: raise ValueError(F"""num_proc {num_proc} must be an integer > 0.""" ) A__ = dataset A__ = path_or_buf A__ = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE A__ = num_proc A__ = "utf-8" A__ = to_json_kwargs def __A ( self ): A__ = self.to_json_kwargs.pop("path_or_buf" , UpperCAmelCase__ ) A__ = self.to_json_kwargs.pop("orient" , "records" ) A__ = self.to_json_kwargs.pop("lines" , True if orient == "records" else False ) A__ = self.to_json_kwargs.pop("index" , False if orient in ["split", "table"] else True ) A__ = self.to_json_kwargs.pop("compression" , UpperCAmelCase__ ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F"""`datasets` currently does not support {compression} compression""" ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , "wb" , compression=UpperCAmelCase__ ) as buffer: A__ = self._write(file_obj=UpperCAmelCase__ , orient=UpperCAmelCase__ , lines=UpperCAmelCase__ , index=UpperCAmelCase__ , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( F"""The compression parameter is not supported when writing to a buffer, but compression={compression}""" " was passed. Please provide a local path instead." ) A__ = self._write( file_obj=self.path_or_buf , orient=UpperCAmelCase__ , lines=UpperCAmelCase__ , index=UpperCAmelCase__ , **self.to_json_kwargs ) return written def __A ( self , UpperCAmelCase__ ): A__ , A__ , A__ , A__ , A__ = args A__ = query_table( table=self.dataset.data , key=slice(UpperCAmelCase__ , offset + self.batch_size ) , indices=self.dataset._indices , ) A__ = batch.to_pandas().to_json( path_or_buf=UpperCAmelCase__ , orient=UpperCAmelCase__ , lines=UpperCAmelCase__ , index=UpperCAmelCase__ , **UpperCAmelCase__ ) if not json_str.endswith("\n" ): json_str += "\n" return json_str.encode(self.encoding ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ , ): A__ = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating json from Arrow format" , ): A__ = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(UpperCAmelCase__ ) else: A__ , A__ = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , UpperCAmelCase__ , UpperCAmelCase__ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating json from Arrow format" , ): written += file_obj.write(UpperCAmelCase__ ) return written
198
0
'''simple docstring''' import datasets UpperCamelCase__: Tuple = "\\n@InProceedings{conneau2018xnli,\n author = \"Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin\",\n title = \"XNLI: Evaluating Cross-lingual Sentence Representations\",\n booktitle = \"Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing\",\n year = \"2018\",\n publisher = \"Association for Computational Linguistics\",\n location = \"Brussels, Belgium\",\n}\n" UpperCamelCase__: List[str] = "\\nXNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n" UpperCamelCase__: List[Any] = "\nComputes XNLI score which is just simple accuracy.\nArgs:\n predictions: Predicted labels.\n references: Ground truth labels.\nReturns:\n 'accuracy': accuracy\nExamples:\n\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> xnli_metric = datasets.load_metric(\"xnli\")\n >>> results = xnli_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n" def snake_case_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple ) -> List[str]: return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE( datasets.Metric ): """simple docstring""" def A ( self : List[Any] ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' if self.config_name != '''sts-b''' else '''float32''' ), '''references''': datasets.Value('''int64''' if self.config_name != '''sts-b''' else '''float32''' ), } ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' , ) def A ( self : Dict , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] ) -> List[str]: return {"accuracy": simple_accuracy(__snake_case , __snake_case )}
23
'''simple docstring''' import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = """MCTCTFeatureExtractor""" lowerCamelCase__ = """AutoTokenizer""" def __init__( self : Dict , __snake_case : Optional[int] , __snake_case : List[str] ) -> str: super().__init__(__snake_case , __snake_case ) UpperCAmelCase : List[Any] = self.feature_extractor UpperCAmelCase : Union[str, Any] = False def __call__( self : Any , *__snake_case : List[str] , **__snake_case : Any ) -> List[Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__snake_case , **__snake_case ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) UpperCAmelCase : int = kwargs.pop('''raw_speech''' ) else: UpperCAmelCase : Union[str, Any] = kwargs.pop('''audio''' , __snake_case ) UpperCAmelCase : Optional[Any] = kwargs.pop('''sampling_rate''' , __snake_case ) UpperCAmelCase : Dict = kwargs.pop('''text''' , __snake_case ) if len(__snake_case ) > 0: UpperCAmelCase : Any = args[0] UpperCAmelCase : Optional[int] = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: UpperCAmelCase : List[str] = self.feature_extractor(__snake_case , *__snake_case , sampling_rate=__snake_case , **__snake_case ) if text is not None: UpperCAmelCase : int = self.tokenizer(__snake_case , **__snake_case ) if text is None: return inputs elif audio is None: return encodings else: UpperCAmelCase : str = encodings['''input_ids'''] return inputs def A ( self : List[Any] , *__snake_case : List[Any] , **__snake_case : List[Any] ) -> str: return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def A ( self : List[Any] , *__snake_case : int , **__snake_case : Optional[int] ) -> Any: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*__snake_case , **__snake_case ) UpperCAmelCase : List[Any] = kwargs.pop('''input_features''' , __snake_case ) UpperCAmelCase : Optional[Any] = kwargs.pop('''labels''' , __snake_case ) if len(__snake_case ) > 0: UpperCAmelCase : List[str] = args[0] UpperCAmelCase : List[Any] = args[1:] if input_features is not None: UpperCAmelCase : Tuple = self.feature_extractor.pad(__snake_case , *__snake_case , **__snake_case ) if labels is not None: UpperCAmelCase : Optional[int] = self.tokenizer.pad(__snake_case , **__snake_case ) if labels is None: return input_features elif input_features is None: return labels else: UpperCAmelCase : List[str] = labels['''input_ids'''] return input_features def A ( self : Union[str, Any] , *__snake_case : Optional[Any] , **__snake_case : Optional[int] ) -> Optional[Any]: return self.tokenizer.decode(*__snake_case , **__snake_case ) @contextmanager def A ( self : Any ) -> Optional[int]: warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) UpperCAmelCase : Dict = True UpperCAmelCase : List[Any] = self.tokenizer yield UpperCAmelCase : Tuple = self.feature_extractor UpperCAmelCase : List[Any] = False
23
1
"""simple docstring""" def lowercase ( _snake_case : list ) ->list: """simple docstring""" if len(_snake_case ) <= 1: return lst __snake_case : List[str] = 1 while i < len(_snake_case ): if lst[i - 1] <= lst[i]: i += 1 else: __snake_case : Any = lst[i], lst[i - 1] i -= 1 if i == 0: __snake_case : Any = 1 return lst if __name__ == "__main__": SCREAMING_SNAKE_CASE : str = input("""Enter numbers separated by a comma:\n""").strip() SCREAMING_SNAKE_CASE : List[str] = [int(item) for item in user_input.split(""",""")] print(gnome_sort(unsorted))
358
"""simple docstring""" import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ , a_ , a_ = None , a_ = None , a_ = False , **a_ , ): '''simple docstring''' super().__init__(features=a_ , cache_dir=a_ , keep_in_memory=a_ , **a_ ) __snake_case : Union[str, Any] = Sql( cache_dir=a_ , features=a_ , sql=a_ , con=a_ , **a_ , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = None __snake_case : Dict = None __snake_case : Dict = None __snake_case : List[str] = None self.builder.download_and_prepare( download_config=a_ , download_mode=a_ , verification_mode=a_ , base_path=a_ , ) # Build dataset for splits __snake_case : Any = self.builder.as_dataset( split='''train''' , verification_mode=a_ , in_memory=self.keep_in_memory ) return dataset class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_ , a_ , a_ = None , a_ = None , **a_ , ): '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(f"""num_proc {num_proc} must be an integer > 0.""" ) __snake_case : List[str] = dataset __snake_case : Tuple = name __snake_case : Optional[int] = con __snake_case : int = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __snake_case : Dict = num_proc __snake_case : Dict = to_sql_kwargs def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.to_sql_kwargs.pop('''sql''' , a_ ) __snake_case : Union[str, Any] = self.to_sql_kwargs.pop('''con''' , a_ ) __snake_case : Any = self.to_sql_kwargs.pop('''index''' , a_ ) __snake_case : Optional[Any] = self._write(index=a_ , **self.to_sql_kwargs ) return written def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case , __snake_case , __snake_case : Optional[Any] = args __snake_case : List[Any] = {**to_sql_kwargs, '''if_exists''': '''append'''} if offset > 0 else to_sql_kwargs __snake_case : Dict = query_table( table=self.dataset.data , key=slice(a_ , offset + self.batch_size ) , indices=self.dataset._indices , ) __snake_case : Tuple = batch.to_pandas() __snake_case : str = df.to_sql(self.name , self.con , index=a_ , **a_ ) return num_rows or len(a_ ) def SCREAMING_SNAKE_CASE (self , a_ , **a_ ): '''simple docstring''' __snake_case : int = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: __snake_case , __snake_case : Union[str, Any] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , a_ , a_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += num_rows return written
24
0
import copy import random from transformers import CLIPTokenizer class a__ ( A__ ): def __init__( self : List[Any],*_A : List[str],**_A : List[str] ): """simple docstring""" super().__init__(*_snake_case,**_snake_case ) SCREAMING_SNAKE_CASE_ : Optional[int] = {} def __UpperCamelCase ( self : Any,_A : List[Any],*_A : List[Any],**_A : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = super().add_tokens(_snake_case,*_snake_case,**_snake_case ) if num_added_tokens == 0: raise ValueError( F'The tokenizer already contains the token {placeholder_token}. Please pass a different' " `placeholder_token` that is not already in the tokenizer." ) def __UpperCamelCase ( self : Any,_A : Dict,*_A : int,_A : Optional[int]=1,**_A : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = [] if num_vec_per_token == 1: self.try_adding_tokens(_snake_case,*_snake_case,**_snake_case ) output.append(_snake_case ) else: SCREAMING_SNAKE_CASE_ : Optional[int] = [] for i in range(_snake_case ): SCREAMING_SNAKE_CASE_ : Any = placeholder_token + F'_{i}' self.try_adding_tokens(_snake_case,*_snake_case,**_snake_case ) output.append(_snake_case ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( F'The tokenizer already has placeholder token {token} that can get confused with' F' {placeholder_token}keep placeholder tokens independent' ) SCREAMING_SNAKE_CASE_ : Any = output def __UpperCamelCase ( self : int,_A : str,_A : int=False,_A : Optional[int]=1.0 ): """simple docstring""" if isinstance(_snake_case,_snake_case ): SCREAMING_SNAKE_CASE_ : List[Any] = [] for i in range(len(_snake_case ) ): output.append(self.replace_placeholder_tokens_in_text(text[i],vector_shuffle=_snake_case ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: SCREAMING_SNAKE_CASE_ : str = self.token_map[placeholder_token] SCREAMING_SNAKE_CASE_ : Optional[Any] = tokens[: 1 + int(len(_snake_case ) * prop_tokens_to_load )] if vector_shuffle: SCREAMING_SNAKE_CASE_ : List[Any] = copy.copy(_snake_case ) random.shuffle(_snake_case ) SCREAMING_SNAKE_CASE_ : Dict = text.replace(_snake_case," ".join(_snake_case ) ) return text def __call__( self : Tuple,_A : List[Any],*_A : Union[str, Any],_A : Optional[Any]=False,_A : Tuple=1.0,**_A : List[str] ): """simple docstring""" return super().__call__( self.replace_placeholder_tokens_in_text( _snake_case,vector_shuffle=_snake_case,prop_tokens_to_load=_snake_case ),*_snake_case,**_snake_case,) def __UpperCamelCase ( self : Any,_A : str,*_A : Optional[Any],_A : Tuple=False,_A : Optional[Any]=1.0,**_A : Tuple ): """simple docstring""" return super().encode( self.replace_placeholder_tokens_in_text( _snake_case,vector_shuffle=_snake_case,prop_tokens_to_load=_snake_case ),*_snake_case,**_snake_case,)
18
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal snake_case_ : Any = logging.get_logger(__name__) snake_case_ : Optional[int] = TypeVar("DatasetType", Dataset, IterableDataset) def A (__A : List[DatasetType] , __A : Optional[List[float]] = None , __A : Optional[int] = None , __A : Optional[DatasetInfo] = None , __A : Optional[NamedSplit] = None , __A : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ) -> DatasetType: """simple docstring""" from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('''Unable to interleave an empty list of datasets.''' ) for i, dataset in enumerate(__A ): if not isinstance(__A , (Dataset, IterableDataset) ): if isinstance(__A , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ '''is an empty dataset dictionary.''' ) raise ValueError( F"""Dataset at position {i} has at least one split: {list(__A )}\n""" F"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(__A ) )}']""" ) raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__A ).__name__}.""" ) if i == 0: UpperCAmelCase_ , UpperCAmelCase_ = ( (Dataset, IterableDataset) if isinstance(__A , __A ) else (IterableDataset, Dataset) ) elif not isinstance(__A , __A ): raise ValueError( F"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F"""{stopping_strategy} is not supported. Please enter a valid stopping_strategy.""" ) if dataset_type is Dataset: return _interleave_map_style_datasets( __A , __A , __A , info=__A , split=__A , stopping_strategy=__A ) else: return _interleave_iterable_datasets( __A , __A , __A , info=__A , split=__A , stopping_strategy=__A ) def A (__A : List[DatasetType] , __A : Optional[DatasetInfo] = None , __A : Optional[NamedSplit] = None , __A : int = 0 , ) -> DatasetType: """simple docstring""" if not dsets: raise ValueError('''Unable to concatenate an empty list of datasets.''' ) for i, dataset in enumerate(__A ): if not isinstance(__A , (Dataset, IterableDataset) ): if isinstance(__A , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ '''is an empty dataset dictionary.''' ) raise ValueError( F"""Dataset at position {i} has at least one split: {list(__A )}\n""" F"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(__A ) )}']""" ) raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__A ).__name__}.""" ) if i == 0: UpperCAmelCase_ , UpperCAmelCase_ = ( (Dataset, IterableDataset) if isinstance(__A , __A ) else (IterableDataset, Dataset) ) elif not isinstance(__A , __A ): raise ValueError( F"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if dataset_type is Dataset: return _concatenate_map_style_datasets(__A , info=__A , split=__A , axis=__A ) else: return _concatenate_iterable_datasets(__A , info=__A , split=__A , axis=__A )
51
0
import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class _a ( __SCREAMING_SNAKE_CASE ): def lowerCamelCase_ ( self: int ) -> Any: """simple docstring""" lowercase__ = tempfile.mkdtemp() lowercase__ = 8 # DPR tok lowercase__ = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] lowercase__ = os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) lowercase__ = os.path.join(__UpperCAmelCase , DPR_VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) # BART tok lowercase__ = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] lowercase__ = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) lowercase__ = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] lowercase__ = {"""unk_token""": """<unk>"""} lowercase__ = os.path.join(self.tmpdirname , '''bart_tokenizer''' ) os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) lowercase__ = os.path.join(__UpperCAmelCase , BART_VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__ = os.path.join(__UpperCAmelCase , BART_VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__UpperCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__UpperCAmelCase ) ) def lowerCamelCase_ ( self: Union[str, Any] ) -> DPRQuestionEncoderTokenizer: """simple docstring""" return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def lowerCamelCase_ ( self: Any ) -> DPRContextEncoderTokenizer: """simple docstring""" return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def lowerCamelCase_ ( self: str ) -> BartTokenizer: """simple docstring""" return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''' ) ) def lowerCamelCase_ ( self: int ) -> Tuple: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCamelCase_ ( self: str ) -> int: """simple docstring""" lowercase__ = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def lowerCamelCase_ ( self: Union[str, Any] ) -> str: """simple docstring""" lowercase__ = self.get_dummy_dataset() lowercase__ = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: lowercase__ = dataset lowercase__ = RagRetriever( __UpperCAmelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: int ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_dummy_dataset() lowercase__ = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''custom''' , ) if from_disk: lowercase__ = os.path.join(self.tmpdirname , '''dataset''' ) lowercase__ = os.path.join(self.tmpdirname , '''index.faiss''' ) dataset.get_index('''embeddings''' ).save(os.path.join(self.tmpdirname , '''index.faiss''' ) ) dataset.drop_index('''embeddings''' ) dataset.save_to_disk(os.path.join(self.tmpdirname , '''dataset''' ) ) del dataset lowercase__ = RagRetriever( __UpperCAmelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: lowercase__ = RagRetriever( __UpperCAmelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , __UpperCAmelCase ) , ) return retriever def lowerCamelCase_ ( self: Union[str, Any] ) -> int: """simple docstring""" lowercase__ = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) lowercase__ = os.path.join(self.tmpdirname , '''hf_bert_base.hnswSQ8_correct_phi_128.c_index''' ) dataset.save_faiss_index('''embeddings''' , index_file_name + '''.index.dpr''' ) pickle.dump(dataset['''id'''] , open(index_file_name + '''.index_meta.dpr''' , '''wb''' ) ) lowercase__ = os.path.join(self.tmpdirname , '''psgs_w100.tsv.pkl''' ) lowercase__ = {sample["""id"""]: [sample["""text"""], sample["""title"""]] for sample in dataset} pickle.dump(__UpperCAmelCase , open(__UpperCAmelCase , '''wb''' ) ) lowercase__ = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''legacy''' , index_path=self.tmpdirname , ) lowercase__ = RagRetriever( __UpperCAmelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def lowerCamelCase_ ( self: Tuple ) -> List[Any]: """simple docstring""" lowercase__ = 1 lowercase__ = self.get_dummy_canonical_hf_index_retriever() lowercase__ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ = retriever.retrieve(__UpperCAmelCase , n_docs=__UpperCAmelCase ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__UpperCAmelCase ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __UpperCAmelCase ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def lowerCamelCase_ ( self: List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: lowercase__ = self.get_dummy_dataset() retriever.save_pretrained(__UpperCAmelCase ) lowercase__ = RagRetriever.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) lowercase__ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ = retriever.retrieve(__UpperCAmelCase , n_docs=1 ) self.assertTrue(out is not None ) def lowerCamelCase_ ( self: Optional[int] ) -> Tuple: """simple docstring""" lowercase__ = 1 lowercase__ = self.get_dummy_custom_hf_index_retriever(from_disk=__UpperCAmelCase ) lowercase__ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ = retriever.retrieve(__UpperCAmelCase , n_docs=__UpperCAmelCase ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__UpperCAmelCase ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __UpperCAmelCase ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def lowerCamelCase_ ( self: Tuple ) -> str: """simple docstring""" lowercase__ = self.get_dummy_custom_hf_index_retriever(from_disk=__UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__UpperCAmelCase ) lowercase__ = RagRetriever.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) lowercase__ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ = retriever.retrieve(__UpperCAmelCase , n_docs=1 ) self.assertTrue(out is not None ) def lowerCamelCase_ ( self: List[Any] ) -> Tuple: """simple docstring""" lowercase__ = 1 lowercase__ = self.get_dummy_custom_hf_index_retriever(from_disk=__UpperCAmelCase ) lowercase__ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ = retriever.retrieve(__UpperCAmelCase , n_docs=__UpperCAmelCase ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__UpperCAmelCase ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __UpperCAmelCase ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.get_dummy_custom_hf_index_retriever(from_disk=__UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__UpperCAmelCase ) lowercase__ = RagRetriever.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) lowercase__ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ = retriever.retrieve(__UpperCAmelCase , n_docs=1 ) self.assertTrue(out is not None ) def lowerCamelCase_ ( self: int ) -> Optional[Any]: """simple docstring""" lowercase__ = 1 lowercase__ = self.get_dummy_legacy_index_retriever() lowercase__ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ = retriever.retrieve(__UpperCAmelCase , n_docs=__UpperCAmelCase ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__UpperCAmelCase ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''text'''] ) , __UpperCAmelCase ) self.assertEqual(doc_dicts[0]['''text'''][0] , '''bar''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''text'''][0] , '''foo''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def lowerCamelCase_ ( self: Any ) -> int: """simple docstring""" lowercase__ = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__UpperCAmelCase ) lowercase__ = RagRetriever.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) lowercase__ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ = retriever.retrieve(__UpperCAmelCase , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def lowerCamelCase_ ( self: Union[str, Any] ) -> Union[str, Any]: """simple docstring""" import torch lowercase__ = 1 lowercase__ = self.get_dummy_canonical_hf_index_retriever() lowercase__ = [[5, 7], [10, 11]] lowercase__ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ = retriever(__UpperCAmelCase , __UpperCAmelCase , prefix=retriever.config.generator.prefix , n_docs=__UpperCAmelCase ) lowercase__ = ( out["""context_input_ids"""], out["""context_attention_mask"""], out["""retrieved_doc_embeds"""], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , np.ndarray ) lowercase__ = retriever( __UpperCAmelCase , __UpperCAmelCase , prefix=retriever.config.generator.prefix , n_docs=__UpperCAmelCase , return_tensors='''pt''' , ) lowercase__ = ( # noqa: F841 out["""context_input_ids"""], out["""context_attention_mask"""], out["""retrieved_doc_embeds"""], out["""doc_ids"""], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__UpperCAmelCase , torch.Tensor ) self.assertIsInstance(__UpperCAmelCase , torch.Tensor ) self.assertIsInstance(__UpperCAmelCase , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def lowerCamelCase_ ( self: Union[str, Any] ) -> List[Any]: """simple docstring""" lowercase__ = self.get_dpr_ctx_encoder_tokenizer() lowercase__ = 1 lowercase__ = self.get_dummy_custom_hf_index_retriever(from_disk=__UpperCAmelCase ) retriever.set_ctx_encoder_tokenizer(__UpperCAmelCase ) lowercase__ = [[5, 7], [10, 11]] lowercase__ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ = retriever(__UpperCAmelCase , __UpperCAmelCase , prefix=retriever.config.generator.prefix , n_docs=__UpperCAmelCase ) self.assertEqual( len(__UpperCAmelCase ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ('''tokenized_doc_ids''', '''tokenized_doc_attention_mask''') ) , __UpperCAmelCase ) # check for doc token related keys in dictionary.
366
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { 'unc-nlp/lxmert-base-uncased': 'https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json', } class _a ( UpperCamelCase__ ): _lowercase : List[Any] = '''lxmert''' _lowercase : Any = {} def __init__( self: Any , UpperCamelCase_: List[Any]=30_522 , UpperCamelCase_: int=768 , UpperCamelCase_: Optional[Any]=12 , UpperCamelCase_: Dict=9_500 , UpperCamelCase_: List[Any]=1_600 , UpperCamelCase_: List[Any]=400 , UpperCamelCase_: List[str]=3_072 , UpperCamelCase_: int="gelu" , UpperCamelCase_: Any=0.1 , UpperCamelCase_: int=0.1 , UpperCamelCase_: List[str]=512 , UpperCamelCase_: Optional[int]=2 , UpperCamelCase_: Union[str, Any]=0.02 , UpperCamelCase_: Dict=1E-1_2 , UpperCamelCase_: List[Any]=9 , UpperCamelCase_: List[Any]=5 , UpperCamelCase_: Optional[Any]=5 , UpperCamelCase_: str=2_048 , UpperCamelCase_: Dict=4 , UpperCamelCase_: Any=6.67 , UpperCamelCase_: Dict=True , UpperCamelCase_: List[str]=True , UpperCamelCase_: Dict=True , UpperCamelCase_: Any=True , UpperCamelCase_: Tuple=True , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: Any=True , **UpperCamelCase_: Union[str, Any] , ) -> Union[str, Any]: """simple docstring""" lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = num_qa_labels lowercase__ = num_object_labels lowercase__ = num_attr_labels lowercase__ = l_layers lowercase__ = x_layers lowercase__ = r_layers lowercase__ = visual_feat_dim lowercase__ = visual_pos_dim lowercase__ = visual_loss_normalizer lowercase__ = task_matched lowercase__ = task_mask_lm lowercase__ = task_obj_predict lowercase__ = task_qa lowercase__ = visual_obj_loss lowercase__ = visual_attr_loss lowercase__ = visual_feat_loss lowercase__ = {'''vision''': r_layers, '''cross_encoder''': x_layers, '''language''': l_layers} super().__init__(**UpperCamelCase_ )
93
0
import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def _lowercase ( UpperCamelCase_ ) -> Any: '''simple docstring''' return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def _lowercase ( UpperCamelCase_ , UpperCamelCase_ ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE__ = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue SCREAMING_SNAKE_CASE__ = key.replace('heads.cmd.mim_head.cls.predictions' , 'mmm_image_head' ) SCREAMING_SNAKE_CASE__ = key.replace('heads.cmd.mlm_head.cls.predictions' , 'mmm_text_head' ) SCREAMING_SNAKE_CASE__ = key.replace('heads.cmd.itm_head.cls' , 'itm_head' ) SCREAMING_SNAKE_CASE__ = key.replace('heads.cmd.itm_head.pooler' , 'itm_head.pooler' ) SCREAMING_SNAKE_CASE__ = key.replace('heads.cmd.clip_head.logit_scale' , 'flava.logit_scale' ) SCREAMING_SNAKE_CASE__ = key.replace('heads.fairseq_mlm.cls.predictions' , 'mlm_head' ) SCREAMING_SNAKE_CASE__ = key.replace('heads.imagenet.mim_head.cls.predictions' , 'mim_head' ) SCREAMING_SNAKE_CASE__ = key.replace('mm_text_projection' , 'flava.text_to_mm_projection' ) SCREAMING_SNAKE_CASE__ = key.replace('mm_image_projection' , 'flava.image_to_mm_projection' ) SCREAMING_SNAKE_CASE__ = key.replace('image_encoder.module' , 'flava.image_model' ) SCREAMING_SNAKE_CASE__ = key.replace('text_encoder.module' , 'flava.text_model' ) SCREAMING_SNAKE_CASE__ = key.replace('mm_encoder.module.encoder.cls_token' , 'flava.multimodal_model.cls_token' ) SCREAMING_SNAKE_CASE__ = key.replace('mm_encoder.module' , 'flava.multimodal_model' ) SCREAMING_SNAKE_CASE__ = key.replace('text_projection' , 'flava.text_projection' ) SCREAMING_SNAKE_CASE__ = key.replace('image_projection' , 'flava.image_projection' ) SCREAMING_SNAKE_CASE__ = value.float() for key, value in codebook_state_dict.items(): SCREAMING_SNAKE_CASE__ = value return upgrade @torch.no_grad() def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None ) -> Dict: '''simple docstring''' if config_path is not None: SCREAMING_SNAKE_CASE__ = FlavaConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) else: SCREAMING_SNAKE_CASE__ = FlavaConfig() SCREAMING_SNAKE_CASE__ = FlavaForPreTraining(SCREAMING_SNAKE_CASE__ ).eval() SCREAMING_SNAKE_CASE__ = convert_dalle_checkpoint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , save_checkpoint=SCREAMING_SNAKE_CASE__ ) if os.path.exists(SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE__ = torch.load(SCREAMING_SNAKE_CASE__ , map_location='cpu' ) else: SCREAMING_SNAKE_CASE__ = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE__ , map_location='cpu' ) SCREAMING_SNAKE_CASE__ = upgrade_state_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) hf_model.load_state_dict(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ = hf_model.state_dict() SCREAMING_SNAKE_CASE__ = count_parameters(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ = count_parameters(SCREAMING_SNAKE_CASE__ ) + count_parameters(SCREAMING_SNAKE_CASE__ ) assert torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) hf_model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""") parser.add_argument("""--codebook_path""", default=None, type=str, help="""Path to flava codebook checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") __snake_case = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
176
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class A : UpperCamelCase__ : Union[str, Any] =XGLMConfig UpperCamelCase__ : Dict ={} UpperCamelCase__ : Tuple ='gelu' def __init__( self : List[Any] , lowercase_ : List[str] , lowercase_ : Union[str, Any]=14 , lowercase_ : Dict=7 , lowercase_ : Union[str, Any]=True , lowercase_ : Optional[Any]=True , lowercase_ : Any=True , lowercase_ : Optional[int]=99 , lowercase_ : List[Any]=32 , lowercase_ : List[Any]=2 , lowercase_ : Dict=4 , lowercase_ : List[str]=37 , lowercase_ : int="gelu" , lowercase_ : List[Any]=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : List[str]=512 , lowercase_ : Union[str, Any]=0.02 , ) -> Optional[Any]: """simple docstring""" _lowerCamelCase : Dict =parent _lowerCamelCase : Optional[Any] =batch_size _lowerCamelCase : Optional[int] =seq_length _lowerCamelCase : Union[str, Any] =is_training _lowerCamelCase : Tuple =use_input_mask _lowerCamelCase : str =use_labels _lowerCamelCase : Any =vocab_size _lowerCamelCase : List[str] =d_model _lowerCamelCase : List[Any] =num_hidden_layers _lowerCamelCase : Union[str, Any] =num_attention_heads _lowerCamelCase : List[Any] =ffn_dim _lowerCamelCase : Optional[Any] =activation_function _lowerCamelCase : Dict =activation_dropout _lowerCamelCase : Tuple =attention_dropout _lowerCamelCase : List[str] =max_position_embeddings _lowerCamelCase : int =initializer_range _lowerCamelCase : Optional[int] =None _lowerCamelCase : Optional[Any] =0 _lowerCamelCase : List[str] =2 _lowerCamelCase : Any =1 def lowerCamelCase ( self : str ) -> int: """simple docstring""" return XGLMConfig.from_pretrained('facebook/xglm-564M' ) def lowerCamelCase ( self : List[Any] ) -> Tuple: """simple docstring""" _lowerCamelCase : Union[str, Any] =tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) _lowerCamelCase : Any =None if self.use_input_mask: _lowerCamelCase : str =random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : Optional[int] =self.get_config() _lowerCamelCase : Optional[Any] =floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def lowerCamelCase ( self : List[str] ) -> Dict: """simple docstring""" return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=lowercase_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=lowercase_ , ) def lowerCamelCase ( self : Optional[int] ) -> str: """simple docstring""" _lowerCamelCase : str =self.prepare_config_and_inputs() ( ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ) : Any =config_and_inputs _lowerCamelCase : Union[str, Any] ={ 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class A ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): UpperCamelCase__ : Union[str, Any] =(TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () UpperCamelCase__ : List[str] =(TFXGLMForCausalLM,) if is_tf_available() else () UpperCamelCase__ : Any =( {'feature-extraction': TFXGLMModel, 'text-generation': TFXGLMForCausalLM} if is_tf_available() else {} ) UpperCamelCase__ : str =False UpperCamelCase__ : int =False UpperCamelCase__ : int =False def lowerCamelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" _lowerCamelCase : Tuple =TFXGLMModelTester(self ) _lowerCamelCase : str =ConfigTester(self , config_class=lowercase_ , n_embd=37 ) def lowerCamelCase ( self : str ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() @slow def lowerCamelCase ( self : Any ) -> int: """simple docstring""" for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : int =TFXGLMModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' ) def lowerCamelCase ( self : Optional[int] ) -> str: """simple docstring""" super().test_resize_token_embeddings() @require_tf class A ( unittest.TestCase ): @slow def lowerCamelCase ( self : str , lowercase_ : str=True ) -> Tuple: """simple docstring""" _lowerCamelCase : Any =TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) _lowerCamelCase : List[Any] =tf.convert_to_tensor([[2, 268, 9865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off _lowerCamelCase : int =[2, 268, 9865, 67, 11, 1988, 5_7252, 9865, 5, 984, 67, 1988, 21_3838, 1658, 53, 7_0446, 33, 6657, 278, 1581] # fmt: on _lowerCamelCase : Dict =model.generate(lowercase_ , do_sample=lowercase_ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , lowercase_ ) @slow def lowerCamelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase : List[str] =XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) _lowerCamelCase : Any =TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) tf.random.set_seed(0 ) _lowerCamelCase : Tuple =tokenizer('Today is a nice day and' , return_tensors='tf' ) _lowerCamelCase : Optional[int] =tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(':/CPU:0' ): _lowerCamelCase : List[Any] =model.generate(lowercase_ , do_sample=lowercase_ , seed=[7, 0] ) _lowerCamelCase : Union[str, Any] =tokenizer.decode(output_ids[0] , skip_special_tokens=lowercase_ ) _lowerCamelCase : Union[str, Any] =( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(lowercase_ , lowercase_ ) @slow def lowerCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase : int =TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) _lowerCamelCase : Any =XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) _lowerCamelCase : Optional[Any] ='left' # use different length sentences to test batching _lowerCamelCase : int =[ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] _lowerCamelCase : List[Any] =tokenizer(lowercase_ , return_tensors='tf' , padding=lowercase_ ) _lowerCamelCase : int =inputs['input_ids'] _lowerCamelCase : str =model.generate(input_ids=lowercase_ , attention_mask=inputs['attention_mask'] , max_new_tokens=12 ) _lowerCamelCase : Optional[Any] =tokenizer(sentences[0] , return_tensors='tf' ).input_ids _lowerCamelCase : List[str] =model.generate(input_ids=lowercase_ , max_new_tokens=12 ) _lowerCamelCase : Tuple =tokenizer(sentences[1] , return_tensors='tf' ).input_ids _lowerCamelCase : Dict =model.generate(input_ids=lowercase_ , max_new_tokens=12 ) _lowerCamelCase : str =tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) _lowerCamelCase : str =tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase_ ) _lowerCamelCase : int =tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase_ ) _lowerCamelCase : List[str] =[ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(lowercase_ , lowercase_ ) self.assertListEqual(lowercase_ , [non_padded_sentence, padded_sentence] )
199
0
import sys from collections import defaultdict class lowerCamelCase : '''simple docstring''' def __init__( self ) -> Optional[int]: UpperCAmelCase_ : str = [] def __UpperCAmelCase ( self , _UpperCamelCase ) -> int: return self.node_position[vertex] def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase ) -> Tuple: UpperCAmelCase_ : Any = pos def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Optional[Any]: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: UpperCAmelCase_ : str = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: UpperCAmelCase_ : Union[str, Any] = 2 * start + 1 else: UpperCAmelCase_ : Dict = 2 * start + 2 if heap[smallest_child] < heap[start]: UpperCAmelCase_ : List[Any] = heap[smallest_child], positions[smallest_child] UpperCAmelCase_ : List[str] = ( heap[start], positions[start], ) UpperCAmelCase_ : Any = temp, tempa UpperCAmelCase_ : Dict = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , snake_case_ ) self.top_to_bottom(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Optional[int]: UpperCAmelCase_ : Any = position[index] while index != 0: UpperCAmelCase_ : int = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: UpperCAmelCase_ : List[Any] = heap[parent] UpperCAmelCase_ : Dict = position[parent] self.set_position(position[parent] , snake_case_ ) else: UpperCAmelCase_ : Dict = val UpperCAmelCase_ : Tuple = temp self.set_position(snake_case_ , snake_case_ ) break UpperCAmelCase_ : Tuple = parent else: UpperCAmelCase_ : Optional[Any] = val UpperCAmelCase_ : List[str] = temp self.set_position(snake_case_ , 0 ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase ) -> Dict: UpperCAmelCase_ : List[str] = len(snake_case_ ) // 2 - 1 for i in range(snake_case_ , -1 , -1 ): self.top_to_bottom(snake_case_ , snake_case_ , len(snake_case_ ) , snake_case_ ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase ) -> Optional[int]: UpperCAmelCase_ : Optional[Any] = positions[0] UpperCAmelCase_ : Dict = sys.maxsize self.top_to_bottom(snake_case_ , 0 , len(snake_case_ ) , snake_case_ ) return temp def lowercase__ ( __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Tuple = Heap() UpperCAmelCase_ : Optional[int] = [0] * len(lowerCAmelCase__ ) UpperCAmelCase_ : Optional[Any] = [-1] * len(lowerCAmelCase__ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph UpperCAmelCase_ : Any = [] # Heap of Distance of vertices from their neighboring vertex UpperCAmelCase_ : Optional[int] = [] for vertex in range(len(lowerCAmelCase__ ) ): distance_tv.append(sys.maxsize ) positions.append(lowerCAmelCase__ ) heap.node_position.append(lowerCAmelCase__ ) UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : Tuple = 1 UpperCAmelCase_ : Tuple = sys.maxsize for neighbor, distance in adjacency_list[0]: UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ : Optional[int] = distance heap.heapify(lowerCAmelCase__ , lowerCAmelCase__ ) for _ in range(1 , len(lowerCAmelCase__ ) ): UpperCAmelCase_ : List[str] = heap.delete_minimum(lowerCAmelCase__ , lowerCAmelCase__ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) UpperCAmelCase_ : Union[str, Any] = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(lowerCAmelCase__ )] ): UpperCAmelCase_ : Union[str, Any] = distance heap.bottom_to_top( lowerCAmelCase__ , heap.get_position(lowerCAmelCase__ ) , lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ : List[str] = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > __UpperCAmelCase = int(input('Enter number of edges: ').strip()) __UpperCAmelCase = defaultdict(list) for _ in range(edges_number): __UpperCAmelCase = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
352
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput __UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCamelCase (_snake_case , _snake_case ): '''simple docstring''' @register_to_config def __init__( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None ) -> int: super().__init__() UpperCAmelCase_ : str = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" UpperCAmelCase_ : Optional[Any] = torch.zeros(_UpperCamelCase , _UpperCamelCase ) else: UpperCAmelCase_ : Any = None UpperCAmelCase_ : Any = torch.nn.Parameter(_UpperCamelCase ) class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : VQModel _snake_case : CLIPTextModel _snake_case : CLIPTokenizer _snake_case : TransformeraDModel _snake_case : LearnedClassifierFreeSamplingEmbeddings _snake_case : VQDiffusionScheduler def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) -> List[Any]: super().__init__() self.register_modules( vqvae=_UpperCamelCase , transformer=_UpperCamelCase , text_encoder=_UpperCamelCase , tokenizer=_UpperCamelCase , scheduler=_UpperCamelCase , learned_classifier_free_sampling_embeddings=_UpperCamelCase , ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> List[str]: UpperCAmelCase_ : Union[str, Any] = len(_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else 1 # get prompt text embeddings UpperCAmelCase_ : str = self.tokenizer( _UpperCamelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) UpperCAmelCase_ : Optional[Any] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCAmelCase_ : List[Any] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) UpperCAmelCase_ : str = text_input_ids[:, : self.tokenizer.model_max_length] UpperCAmelCase_ : str = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 UpperCAmelCase_ : Dict = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=_UpperCamelCase ) # duplicate text embeddings for each generation per prompt UpperCAmelCase_ : Dict = prompt_embeds.repeat_interleave(_UpperCamelCase , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: UpperCAmelCase_ : List[str] = self.learned_classifier_free_sampling_embeddings.embeddings UpperCAmelCase_ : List[str] = negative_prompt_embeds.unsqueeze(0 ).repeat(_UpperCamelCase , 1 , 1 ) else: UpperCAmelCase_ : List[Any] = [''] * batch_size UpperCAmelCase_ : List[Any] = text_input_ids.shape[-1] UpperCAmelCase_ : Dict = self.tokenizer( _UpperCamelCase , padding='max_length' , max_length=_UpperCamelCase , truncation=_UpperCamelCase , return_tensors='pt' , ) UpperCAmelCase_ : Tuple = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings UpperCAmelCase_ : Dict = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=_UpperCamelCase ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCAmelCase_ : List[Any] = negative_prompt_embeds.shape[1] UpperCAmelCase_ : Dict = negative_prompt_embeds.repeat(1 , _UpperCamelCase , 1 ) UpperCAmelCase_ : Any = negative_prompt_embeds.view(batch_size * num_images_per_prompt , _UpperCamelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase_ : Union[str, Any] = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self , _UpperCamelCase , _UpperCamelCase = 1_0_0 , _UpperCamelCase = 5.0 , _UpperCamelCase = 1.0 , _UpperCamelCase = 1 , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = "pil" , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = 1 , ) -> Union[ImagePipelineOutput, Tuple]: if isinstance(_UpperCamelCase , _UpperCamelCase ): UpperCAmelCase_ : Any = 1 elif isinstance(_UpperCamelCase , _UpperCamelCase ): UpperCAmelCase_ : Tuple = len(_UpperCamelCase ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(_UpperCamelCase )}" ) UpperCAmelCase_ : Union[str, Any] = batch_size * num_images_per_prompt UpperCAmelCase_ : Optional[int] = guidance_scale > 1.0 UpperCAmelCase_ : Any = self._encode_prompt(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_UpperCamelCase , _UpperCamelCase ) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(_UpperCamelCase )}." ) # get the initial completely masked latents unless the user supplied it UpperCAmelCase_ : Optional[int] = (batch_size, self.transformer.num_latent_pixels) if latents is None: UpperCAmelCase_ : Tuple = self.transformer.num_vector_embeds - 1 UpperCAmelCase_ : List[Any] = torch.full(_UpperCamelCase , _UpperCamelCase ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( 'Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,' f" {self.transformer.num_vector_embeds - 1} (inclusive)." ) UpperCAmelCase_ : Any = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(_UpperCamelCase , device=self.device ) UpperCAmelCase_ : List[str] = self.scheduler.timesteps.to(self.device ) UpperCAmelCase_ : Union[str, Any] = latents for i, t in enumerate(self.progress_bar(_UpperCamelCase ) ): # expand the sample if we are doing classifier free guidance UpperCAmelCase_ : Union[str, Any] = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` UpperCAmelCase_ : Dict = self.transformer(_UpperCamelCase , encoder_hidden_states=_UpperCamelCase , timestep=_UpperCamelCase ).sample if do_classifier_free_guidance: UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = model_output.chunk(2 ) UpperCAmelCase_ : Optional[int] = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(_UpperCamelCase , dim=1 , keepdim=_UpperCamelCase ) UpperCAmelCase_ : str = self.truncate(_UpperCamelCase , _UpperCamelCase ) # remove `log(0)`'s (`-inf`s) UpperCAmelCase_ : Optional[int] = model_output.clamp(-7_0 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase_ : Union[str, Any] = self.scheduler.step(_UpperCamelCase , timestep=_UpperCamelCase , sample=_UpperCamelCase , generator=_UpperCamelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : str = self.vqvae.config.vq_embed_dim UpperCAmelCase_ : Optional[int] = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) UpperCAmelCase_ : int = self.vqvae.quantize.get_codebook_entry(_UpperCamelCase , shape=_UpperCamelCase ) UpperCAmelCase_ : Dict = self.vqvae.decode(_UpperCamelCase , force_not_quantize=_UpperCamelCase ).sample UpperCAmelCase_ : List[str] = (image / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase_ : Any = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase_ : int = self.numpy_to_pil(_UpperCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase ) -> torch.FloatTensor: UpperCAmelCase_ , UpperCAmelCase_ : int = torch.sort(_UpperCamelCase , 1 , descending=_UpperCamelCase ) UpperCAmelCase_ : Dict = torch.exp(_UpperCamelCase ) UpperCAmelCase_ : int = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out UpperCAmelCase_ : Tuple = torch.full_like(keep_mask[:, 0:1, :] , _UpperCamelCase ) UpperCAmelCase_ : List[str] = torch.cat((all_true, keep_mask) , dim=1 ) UpperCAmelCase_ : int = keep_mask[:, :-1, :] UpperCAmelCase_ : Any = keep_mask.gather(1 , indices.argsort(1 ) ) UpperCAmelCase_ : str = log_p_x_0.clone() UpperCAmelCase_ : Any = -torch.inf # -inf = log(0) return rv
145
0
'''simple docstring''' from math import factorial def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' if successes > trials: raise ValueError('''successes must be lower or equal to trials''' ) if trials < 0 or successes < 0: raise ValueError('''the function is defined for non-negative integers''' ) if not isinstance(snake_case__ , snake_case__ ) or not isinstance(snake_case__ , snake_case__ ): raise ValueError('''the function is defined for non-negative integers''' ) if not 0 < prob < 1: raise ValueError('''prob has to be in range of 1 - 0''' ) A : Any = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! A : Tuple = float(factorial(snake_case__ ) ) coefficient /= factorial(snake_case__ ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('Probability of 2 successes out of 4 trails') print('with probability of 0.75 is:', end=' ') print(binomial_distribution(2, 4, 0.75))
3
'''simple docstring''' import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def __lowerCAmelCase ( snake_case__ ): __UpperCamelCase : Tuple = torch.exp(snake_case__ ) __UpperCamelCase : str = torch.sum(snake_case__ , dim=1 ) # sum of exp(x_i) __UpperCamelCase : int = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(snake_case__ ) - B / A class A ( nn.Module ): '''simple docstring''' def __init__(self , _UpperCAmelCase ) -> Union[str, Any]: super().__init__() __UpperCamelCase : Any = config.output_attentions __UpperCamelCase : Dict = config.output_hidden_states __UpperCamelCase : Union[str, Any] = nn.ModuleList([BertLayer(_UpperCAmelCase ) for _ in range(config.num_hidden_layers )] ) __UpperCamelCase : Tuple = nn.ModuleList([BertHighway(_UpperCAmelCase ) for _ in range(config.num_hidden_layers )] ) __UpperCamelCase : Optional[int] = [-1 for _ in range(config.num_hidden_layers )] def a_ (self , _UpperCAmelCase ) -> int: if (type(_UpperCAmelCase ) is float) or (type(_UpperCAmelCase ) is int): for i in range(len(self.early_exit_entropy ) ): __UpperCamelCase : str = x else: __UpperCamelCase : List[Any] = x def a_ (self , _UpperCAmelCase ) -> str: __UpperCamelCase : Tuple = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , ) -> List[Any]: __UpperCamelCase : Optional[Any] = () __UpperCamelCase : Tuple = () __UpperCamelCase : Dict = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: __UpperCamelCase : Tuple = all_hidden_states + (hidden_states,) __UpperCamelCase : Optional[int] = layer_module( _UpperCAmelCase , _UpperCAmelCase , head_mask[i] , _UpperCAmelCase , _UpperCAmelCase ) __UpperCamelCase : Tuple = layer_outputs[0] if self.output_attentions: __UpperCamelCase : Optional[Any] = all_attentions + (layer_outputs[1],) __UpperCamelCase : Any = (hidden_states,) if self.output_hidden_states: __UpperCamelCase : Any = current_outputs + (all_hidden_states,) if self.output_attentions: __UpperCamelCase : int = current_outputs + (all_attentions,) __UpperCamelCase : Optional[int] = self.highway[i](_UpperCAmelCase ) # logits, pooled_output if not self.training: __UpperCamelCase : Dict = highway_exit[0] __UpperCamelCase : Any = entropy(_UpperCAmelCase ) __UpperCamelCase : str = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy __UpperCamelCase : Optional[Any] = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: __UpperCamelCase : str = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(_UpperCAmelCase , i + 1 ) else: __UpperCamelCase : Optional[int] = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: __UpperCamelCase : int = all_hidden_states + (hidden_states,) __UpperCamelCase : Dict = (hidden_states,) if self.output_hidden_states: __UpperCamelCase : Union[str, Any] = outputs + (all_hidden_states,) if self.output_attentions: __UpperCamelCase : Optional[int] = outputs + (all_attentions,) __UpperCamelCase : List[Any] = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( "The Bert Model transformer with early exiting (DeeBERT). " , SCREAMING_SNAKE_CASE__ , ) class A ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__(self , _UpperCAmelCase ) -> Dict: super().__init__(_UpperCAmelCase ) __UpperCamelCase : Union[str, Any] = config __UpperCamelCase : Dict = BertEmbeddings(_UpperCAmelCase ) __UpperCamelCase : Optional[Any] = DeeBertEncoder(_UpperCAmelCase ) __UpperCamelCase : str = BertPooler(_UpperCAmelCase ) self.init_weights() def a_ (self ) -> Any: self.encoder.init_highway_pooler(self.pooler ) def a_ (self ) -> Optional[int]: return self.embeddings.word_embeddings def a_ (self , _UpperCAmelCase ) -> Dict: __UpperCamelCase : int = value def a_ (self , _UpperCAmelCase ) -> Tuple: for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(_UpperCAmelCase ) @add_start_docstrings_to_model_forward(_UpperCAmelCase ) def a_ (self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , ) -> Union[str, Any]: if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time" ) elif input_ids is not None: __UpperCamelCase : Tuple = input_ids.size() elif inputs_embeds is not None: __UpperCamelCase : Optional[int] = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds" ) __UpperCamelCase : List[str] = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __UpperCamelCase : int = torch.ones(_UpperCAmelCase , device=_UpperCAmelCase ) if encoder_attention_mask is None: __UpperCamelCase : Tuple = torch.ones(_UpperCAmelCase , device=_UpperCAmelCase ) if token_type_ids is None: __UpperCamelCase : Optional[Any] = torch.zeros(_UpperCAmelCase , dtype=torch.long , device=_UpperCAmelCase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __UpperCamelCase : torch.Tensor = self.get_extended_attention_mask(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: __UpperCamelCase : Tuple = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: __UpperCamelCase : Any = encoder_attention_mask[:, None, None, :] __UpperCamelCase : List[Any] = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility __UpperCamelCase : Dict = (1.0 - encoder_extended_attention_mask) * -10_000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __UpperCamelCase : Dict = self.get_head_mask(_UpperCAmelCase , self.config.num_hidden_layers ) __UpperCamelCase : Optional[int] = self.embeddings( input_ids=_UpperCAmelCase , position_ids=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , inputs_embeds=_UpperCAmelCase ) __UpperCamelCase : List[Any] = self.encoder( _UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , ) __UpperCamelCase : Union[str, Any] = encoder_outputs[0] __UpperCamelCase : Any = self.pooler(_UpperCAmelCase ) __UpperCamelCase : Union[str, Any] = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class A ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__(self , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: __UpperCamelCase : Tuple = message __UpperCamelCase : Union[str, Any] = exit_layer # start from 1! class A ( nn.Module ): '''simple docstring''' def __init__(self , _UpperCAmelCase ) -> Dict: super().__init__() __UpperCamelCase : Union[str, Any] = BertPooler(_UpperCAmelCase ) __UpperCamelCase : int = nn.Dropout(config.hidden_dropout_prob ) __UpperCamelCase : Union[str, Any] = nn.Linear(config.hidden_size , config.num_labels ) def a_ (self , _UpperCAmelCase ) -> Any: # Pooler __UpperCamelCase : Optional[int] = encoder_outputs[0] __UpperCamelCase : str = self.pooler(_UpperCAmelCase ) # "return" pooler_output # BertModel __UpperCamelCase : Tuple = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification __UpperCamelCase : Dict = bmodel_output[1] __UpperCamelCase : List[Any] = self.dropout(_UpperCAmelCase ) __UpperCamelCase : Any = self.classifier(_UpperCAmelCase ) return logits, pooled_output @add_start_docstrings( "Bert Model (with early exiting - DeeBERT) with a classifier on top,\n also takes care of multi-layer training. " , SCREAMING_SNAKE_CASE__ , ) class A ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__(self , _UpperCAmelCase ) -> Any: super().__init__(_UpperCAmelCase ) __UpperCamelCase : List[Any] = config.num_labels __UpperCamelCase : List[Any] = config.num_hidden_layers __UpperCamelCase : Optional[int] = DeeBertModel(_UpperCAmelCase ) __UpperCamelCase : List[str] = nn.Dropout(config.hidden_dropout_prob ) __UpperCamelCase : str = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(_UpperCAmelCase ) def a_ (self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=-1 , _UpperCAmelCase=False , ) -> int: __UpperCamelCase : int = self.num_layers try: __UpperCamelCase : Tuple = self.bert( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , position_ids=_UpperCAmelCase , head_mask=_UpperCAmelCase , inputs_embeds=_UpperCAmelCase , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits __UpperCamelCase : str = outputs[1] __UpperCamelCase : List[Any] = self.dropout(_UpperCAmelCase ) __UpperCamelCase : Dict = self.classifier(_UpperCAmelCase ) __UpperCamelCase : Tuple = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: __UpperCamelCase : int = e.message __UpperCamelCase : Optional[Any] = e.exit_layer __UpperCamelCase : Optional[int] = outputs[0] if not self.training: __UpperCamelCase : Optional[int] = entropy(_UpperCAmelCase ) __UpperCamelCase : Optional[Any] = [] __UpperCamelCase : Any = [] if labels is not None: if self.num_labels == 1: # We are doing regression __UpperCamelCase : List[str] = MSELoss() __UpperCamelCase : Tuple = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: __UpperCamelCase : Dict = CrossEntropyLoss() __UpperCamelCase : Any = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits __UpperCamelCase : List[Any] = [] for highway_exit in outputs[-1]: __UpperCamelCase : Union[str, Any] = highway_exit[0] if not self.training: highway_logits_all.append(_UpperCAmelCase ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression __UpperCamelCase : Union[str, Any] = MSELoss() __UpperCamelCase : str = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: __UpperCamelCase : Optional[Any] = CrossEntropyLoss() __UpperCamelCase : List[str] = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(_UpperCAmelCase ) if train_highway: __UpperCamelCase : int = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: __UpperCamelCase : Dict = (loss,) + outputs if not self.training: __UpperCamelCase : Optional[int] = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: __UpperCamelCase : int = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
298
0
"""simple docstring""" from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 10**-10 ): """simple docstring""" A__ = a while True: A__ = Decimal(UpperCamelCase__ ) - ( Decimal(eval(UpperCamelCase__ ) ) / Decimal(eval(str(diff(UpperCamelCase__ ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(UpperCamelCase__ ) ) < precision: # noqa: S307 return float(UpperCamelCase__ ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'''The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}''') # Find root of polynomial print(F'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}''') # Find Square Root of 5 print(F'''The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}''') # Exponential Roots print(F'''The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}''')
154
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class UpperCamelCase__( unittest.TestCase ): def snake_case__ ( self ) -> int: A__ = tempfile.mkdtemp() A__ = BlipImageProcessor() A__ = GPTaTokenizer.from_pretrained('hf-internal-testing/tiny-random-GPT2Model' ) A__ = BertTokenizerFast.from_pretrained('hf-internal-testing/tiny-random-bert' ) A__ = InstructBlipProcessor(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def snake_case__ ( self ,**__UpperCAmelCase ) -> str: return AutoProcessor.from_pretrained(self.tmpdirname ,**__UpperCAmelCase ).tokenizer def snake_case__ ( self ,**__UpperCAmelCase ) -> Tuple: return AutoProcessor.from_pretrained(self.tmpdirname ,**__UpperCAmelCase ).image_processor def snake_case__ ( self ,**__UpperCAmelCase ) -> Tuple: return AutoProcessor.from_pretrained(self.tmpdirname ,**__UpperCAmelCase ).qformer_tokenizer def snake_case__ ( self ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) def snake_case__ ( self ) -> str: A__ = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )] A__ = [Image.fromarray(np.moveaxis(__UpperCAmelCase ,0 ,-1 ) ) for x in image_inputs] return image_inputs def snake_case__ ( self ) -> Any: A__ = InstructBlipProcessor( tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ,qformer_tokenizer=self.get_qformer_tokenizer() ,) processor.save_pretrained(self.tmpdirname ) A__ = self.get_tokenizer(bos_token='(BOS)' ,eos_token='(EOS)' ) A__ = self.get_image_processor(do_normalize=__UpperCAmelCase ,padding_value=1.0 ) A__ = InstructBlipProcessor.from_pretrained( self.tmpdirname ,bos_token='(BOS)' ,eos_token='(EOS)' ,do_normalize=__UpperCAmelCase ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,__UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,__UpperCAmelCase ) self.assertIsInstance(processor.qformer_tokenizer ,__UpperCAmelCase ) def snake_case__ ( self ) -> str: A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = self.get_qformer_tokenizer() A__ = InstructBlipProcessor( tokenizer=__UpperCAmelCase ,image_processor=__UpperCAmelCase ,qformer_tokenizer=__UpperCAmelCase ) A__ = self.prepare_image_inputs() A__ = image_processor(__UpperCAmelCase ,return_tensors='np' ) A__ = processor(images=__UpperCAmelCase ,return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1e-2 ) def snake_case__ ( self ) -> Tuple: A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = self.get_qformer_tokenizer() A__ = InstructBlipProcessor( tokenizer=__UpperCAmelCase ,image_processor=__UpperCAmelCase ,qformer_tokenizer=__UpperCAmelCase ) A__ = 'lower newer' A__ = processor(text=__UpperCAmelCase ) A__ = tokenizer(__UpperCAmelCase ,return_token_type_ids=__UpperCAmelCase ) A__ = qformer_tokenizer(__UpperCAmelCase ,return_token_type_ids=__UpperCAmelCase ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] ,encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] ,encoded_processor['qformer_' + key] ) def snake_case__ ( self ) -> str: A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = self.get_qformer_tokenizer() A__ = InstructBlipProcessor( tokenizer=__UpperCAmelCase ,image_processor=__UpperCAmelCase ,qformer_tokenizer=__UpperCAmelCase ) A__ = 'lower newer' A__ = self.prepare_image_inputs() A__ = processor(text=__UpperCAmelCase ,images=__UpperCAmelCase ) self.assertListEqual( list(inputs.keys() ) ,['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'] ,) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def snake_case__ ( self ) -> Tuple: A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = self.get_qformer_tokenizer() A__ = InstructBlipProcessor( tokenizer=__UpperCAmelCase ,image_processor=__UpperCAmelCase ,qformer_tokenizer=__UpperCAmelCase ) A__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A__ = processor.batch_decode(__UpperCAmelCase ) A__ = tokenizer.batch_decode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase ,__UpperCAmelCase ) def snake_case__ ( self ) -> Any: A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = self.get_qformer_tokenizer() A__ = InstructBlipProcessor( tokenizer=__UpperCAmelCase ,image_processor=__UpperCAmelCase ,qformer_tokenizer=__UpperCAmelCase ) A__ = 'lower newer' A__ = self.prepare_image_inputs() A__ = processor(text=__UpperCAmelCase ,images=__UpperCAmelCase ) self.assertListEqual( list(inputs.keys() ) ,['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'] ,)
154
1
import warnings from .generation import TFGenerationMixin class SCREAMING_SNAKE_CASE_ ( snake_case_ ): # warning at import time warnings.warn( "Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will " "be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead." , snake_case_ , )
327
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _SCREAMING_SNAKE_CASE = { """configuration_poolformer""": [ """POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PoolFormerConfig""", """PoolFormerOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ["""PoolFormerFeatureExtractor"""] _SCREAMING_SNAKE_CASE = ["""PoolFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """PoolFormerForImageClassification""", """PoolFormerModel""", """PoolFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
327
1
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _UpperCAmelCase : Optional[int] = logging.get_logger(__name__) class lowercase ( lowerCAmelCase__ ): __lowercase : List[str] = ["input_features", "is_longer"] def __init__( self , A_=64 , A_=48_000 , A_=480 , A_=10 , A_=1_024 , A_=0.0 , A_=False , A_ = 0 , A_ = 14_000 , A_ = None , A_ = "fusion" , A_ = "repeatpad" , **A_ , ) -> Any: """simple docstring""" super().__init__( feature_size=_SCREAMING_SNAKE_CASE , sampling_rate=_SCREAMING_SNAKE_CASE , padding_value=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) UpperCamelCase = top_db UpperCamelCase = truncation UpperCamelCase = padding UpperCamelCase = fft_window_size UpperCamelCase = (fft_window_size >> 1) + 1 UpperCamelCase = hop_length UpperCamelCase = max_length_s UpperCamelCase = max_length_s * sampling_rate UpperCamelCase = sampling_rate UpperCamelCase = frequency_min UpperCamelCase = frequency_max UpperCamelCase = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_SCREAMING_SNAKE_CASE , min_frequency=_SCREAMING_SNAKE_CASE , max_frequency=_SCREAMING_SNAKE_CASE , sampling_rate=_SCREAMING_SNAKE_CASE , norm=_SCREAMING_SNAKE_CASE , mel_scale='htk' , ) UpperCamelCase = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_SCREAMING_SNAKE_CASE , min_frequency=_SCREAMING_SNAKE_CASE , max_frequency=_SCREAMING_SNAKE_CASE , sampling_rate=_SCREAMING_SNAKE_CASE , norm='slaney' , mel_scale='slaney' , ) def __UpperCamelCase ( self ) -> Dict[str, Any]: """simple docstring""" UpperCamelCase = copy.deepcopy(self.__dict__ ) UpperCamelCase = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def __UpperCamelCase ( self , A_ , A_ = None ) -> np.ndarray: """simple docstring""" UpperCamelCase = spectrogram( _SCREAMING_SNAKE_CASE , window_function(self.fft_window_size , 'hann' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=_SCREAMING_SNAKE_CASE , log_mel='dB' , ) return log_mel_spectrogram.T def __UpperCamelCase ( self , A_ , A_ , A_ ) -> Optional[Any]: """simple docstring""" UpperCamelCase = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk UpperCamelCase = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk UpperCamelCase = [0] # randomly choose index for each part UpperCamelCase = np.random.choice(ranges[0] ) UpperCamelCase = np.random.choice(ranges[1] ) UpperCamelCase = np.random.choice(ranges[2] ) UpperCamelCase = mel[idx_front : idx_front + chunk_frames, :] UpperCamelCase = mel[idx_middle : idx_middle + chunk_frames, :] UpperCamelCase = mel[idx_back : idx_back + chunk_frames, :] UpperCamelCase = torch.tensor(mel[None, None, :] ) UpperCamelCase = torch.nn.functional.interpolate( _SCREAMING_SNAKE_CASE , size=[chunk_frames, 64] , mode='bilinear' , align_corners=_SCREAMING_SNAKE_CASE ) UpperCamelCase = mel_shrink[0][0].numpy() UpperCamelCase = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def __UpperCamelCase ( self , A_ , A_ , A_ , A_ ) -> np.array: """simple docstring""" if waveform.shape[0] > max_length: if truncation == "rand_trunc": UpperCamelCase = True # random crop to max_length (for compatibility) -> this should be handled by self.pad UpperCamelCase = len(_SCREAMING_SNAKE_CASE ) - max_length UpperCamelCase = np.random.randint(0 , overflow + 1 ) UpperCamelCase = waveform[idx : idx + max_length] UpperCamelCase = self._np_extract_fbank_features(_SCREAMING_SNAKE_CASE , self.mel_filters_slaney )[None, :] elif truncation == "fusion": UpperCamelCase = self._np_extract_fbank_features(_SCREAMING_SNAKE_CASE , self.mel_filters ) UpperCamelCase = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed UpperCamelCase = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. UpperCamelCase = np.stack([mel, mel, mel, mel] , axis=0 ) UpperCamelCase = False else: UpperCamelCase = self._random_mel_fusion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = True else: raise NotImplementedError(F'''data_truncating {truncation} not implemented''' ) else: UpperCamelCase = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": UpperCamelCase = int(max_length / len(_SCREAMING_SNAKE_CASE ) ) UpperCamelCase = np.stack(np.tile(_SCREAMING_SNAKE_CASE , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": UpperCamelCase = int(max_length / len(_SCREAMING_SNAKE_CASE ) ) UpperCamelCase = np.stack(np.tile(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) UpperCamelCase = np.pad(_SCREAMING_SNAKE_CASE , (0, max_length - waveform.shape[0]) , mode='constant' , constant_values=0 ) if truncation == "fusion": UpperCamelCase = self._np_extract_fbank_features(_SCREAMING_SNAKE_CASE , self.mel_filters ) UpperCamelCase = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: UpperCamelCase = self._np_extract_fbank_features(_SCREAMING_SNAKE_CASE , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self , A_ , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , **A_ , ) -> BatchFeature: """simple docstring""" UpperCamelCase = truncation if truncation is not None else self.truncation UpperCamelCase = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) UpperCamelCase = isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) UpperCamelCase = is_batched_numpy or ( isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCamelCase = [np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ): UpperCamelCase = np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.floataa ) elif isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): UpperCamelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: UpperCamelCase = [np.asarray(_SCREAMING_SNAKE_CASE )] # convert to mel spectrogram, truncate and pad if needed. UpperCamelCase = [ self._get_input_mel(_SCREAMING_SNAKE_CASE , max_length if max_length else self.nb_max_samples , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for waveform in raw_speech ] UpperCamelCase = [] UpperCamelCase = [] for mel, longer in padded_inputs: input_mel.append(_SCREAMING_SNAKE_CASE ) is_longer.append(_SCREAMING_SNAKE_CASE ) if truncation == "fusion" and sum(_SCREAMING_SNAKE_CASE ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer UpperCamelCase = np.random.randint(0 , len(_SCREAMING_SNAKE_CASE ) ) UpperCamelCase = True if isinstance(input_mel[0] , _SCREAMING_SNAKE_CASE ): UpperCamelCase = [np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool UpperCamelCase = [[longer] for longer in is_longer] UpperCamelCase = {'input_features': input_mel, 'is_longer': is_longer} UpperCamelCase = BatchFeature(_SCREAMING_SNAKE_CASE ) if return_tensors is not None: UpperCamelCase = input_features.convert_to_tensors(_SCREAMING_SNAKE_CASE ) return input_features
355
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class lowercase : def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=False , A_=True , A_=99 , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.02 , A_=3 , A_=4 , A_=None , ) -> Tuple: """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_input_mask UpperCamelCase = use_token_type_ids UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = num_labels UpperCamelCase = num_choices UpperCamelCase = scope def __UpperCamelCase ( self ) -> Any: """simple docstring""" UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase = None if self.use_input_mask: UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase = None if self.use_token_type_ids: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A_ , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> int: """simple docstring""" UpperCamelCase = LlamaModel(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ , attention_mask=A_ ) UpperCamelCase = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> List[Any]: """simple docstring""" UpperCamelCase = True UpperCamelCase = LlamaModel(A_ ) model.to(A_ ) model.eval() UpperCamelCase = model( A_ , attention_mask=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , ) UpperCamelCase = model( A_ , attention_mask=A_ , encoder_hidden_states=A_ , ) UpperCamelCase = model(A_ , attention_mask=A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> str: """simple docstring""" UpperCamelCase = LlamaForCausalLM(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ , attention_mask=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[int]: """simple docstring""" UpperCamelCase = True UpperCamelCase = True UpperCamelCase = LlamaForCausalLM(config=A_ ) model.to(A_ ) model.eval() # first forward pass UpperCamelCase = model( A_ , attention_mask=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , use_cache=A_ , ) UpperCamelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCamelCase = model( A_ , attention_mask=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , output_hidden_states=A_ , )['hidden_states'][0] UpperCamelCase = model( A_ , attention_mask=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , past_key_values=A_ , output_hidden_states=A_ , )['hidden_states'][0] # select random slice UpperCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A_ , A_ , atol=1e-3 ) ) def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) = config_and_inputs UpperCamelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): __lowercase : str = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () __lowercase : str = (LlamaForCausalLM,) if is_torch_available() else () __lowercase : Any = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) __lowercase : int = False __lowercase : Optional[int] = False def __UpperCamelCase ( self ) -> int: """simple docstring""" UpperCamelCase = LlamaModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=A_ , hidden_size=37 ) def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase = type self.model_tester.create_and_check_model(*A_ ) def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = 3 UpperCamelCase = input_dict['input_ids'] UpperCamelCase = input_ids.ne(1 ).to(A_ ) UpperCamelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCamelCase = LlamaForSequenceClassification(A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ , attention_mask=A_ , labels=A_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __UpperCamelCase ( self ) -> Dict: """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = 3 UpperCamelCase = 'single_label_classification' UpperCamelCase = input_dict['input_ids'] UpperCamelCase = input_ids.ne(1 ).to(A_ ) UpperCamelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCamelCase = LlamaForSequenceClassification(A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ , attention_mask=A_ , labels=A_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = 3 UpperCamelCase = 'multi_label_classification' UpperCamelCase = input_dict['input_ids'] UpperCamelCase = input_ids.ne(1 ).to(A_ ) UpperCamelCase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCamelCase = LlamaForSequenceClassification(A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ , attention_mask=A_ , labels=A_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('LLaMA buffers include complex numbers, which breaks this test' ) def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" pass @parameterized.expand([('linear',), ('dynamic',)] ) def __UpperCamelCase ( self , A_ ) -> Optional[int]: """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = ids_tensor([1, 10] , config.vocab_size ) UpperCamelCase = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCamelCase = LlamaModel(A_ ) original_model.to(A_ ) original_model.eval() UpperCamelCase = original_model(A_ ).last_hidden_state UpperCamelCase = original_model(A_ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCamelCase = {'type': scaling_type, 'factor': 10.0} UpperCamelCase = LlamaModel(A_ ) scaled_model.to(A_ ) scaled_model.eval() UpperCamelCase = scaled_model(A_ ).last_hidden_state UpperCamelCase = scaled_model(A_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(A_ , A_ , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(A_ , A_ , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(A_ , A_ , atol=1e-5 ) ) @require_torch class lowercase ( unittest.TestCase ): @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] UpperCamelCase = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf' , device_map='auto' ) UpperCamelCase = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 UpperCamelCase = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) , A_ , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off UpperCamelCase = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , A_ , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] UpperCamelCase = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-hf' , device_map='auto' ) UpperCamelCase = model(torch.tensor(A_ ) ) # Expected mean on dim = -1 UpperCamelCase = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) , A_ , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off UpperCamelCase = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , A_ , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] UpperCamelCase = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-chat-hf' , device_map='auto' ) UpperCamelCase = model(torch.tensor(A_ ) ) # Expected mean on dim = -1 UpperCamelCase = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) , A_ , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off UpperCamelCase = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , A_ , atol=1e-2 , rtol=1e-2 ) @unittest.skip( 'Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test' ) @slow def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] UpperCamelCase = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-70b-hf' , device_map='auto' ) UpperCamelCase = model(torch.tensor(A_ ) ) UpperCamelCase = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , A_ , atol=1e-2 , rtol=1e-2 ) # fmt: off UpperCamelCase = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , A_ , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Model is curently gated' ) @slow def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = 'Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi' UpperCamelCase = 'Simply put, the theory of relativity states that ' UpperCamelCase = LlamaTokenizer.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ) UpperCamelCase = tokenizer.encode(A_ , return_tensors='pt' ) UpperCamelCase = LlamaForCausalLM.from_pretrained( 'meta-llama/Llama-2-13b-chat-hf' , device_map='sequential' , use_safetensors=A_ ) # greedy generation outputs UpperCamelCase = model.generate(A_ , max_new_tokens=64 , top_p=A_ , temperature=1 , do_sample=A_ ) UpperCamelCase = tokenizer.decode(generated_ids[0] , skip_special_tokens=A_ ) self.assertEqual(A_ , A_ )
110
0
def lowerCamelCase__ ( _A = 1000 ): '''simple docstring''' snake_case_ = 2**power snake_case_ = 0 while n: snake_case_ , snake_case_ = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
187
import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self : Any ): """simple docstring""" snake_case_ = 0 @slow def snake_case__ ( self : Dict ): """simple docstring""" for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): snake_case_ = AutoTokenizer.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(__lowercase ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): snake_case_ = AutoTokenizer.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(__lowercase ) , 0 ) def snake_case__ ( self : int ): """simple docstring""" snake_case_ = AutoTokenizer.from_pretrained(__lowercase ) self.assertIsInstance(__lowercase , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def snake_case__ ( self : int ): """simple docstring""" snake_case_ = AutoTokenizer.from_pretrained(__lowercase ) self.assertIsInstance(__lowercase , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 20 ) def snake_case__ ( self : Dict ): """simple docstring""" snake_case_ = AutoConfig.from_pretrained(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) # Check that tokenizer_type ≠ model_type snake_case_ = AutoTokenizer.from_pretrained(__lowercase , config=__lowercase ) self.assertIsInstance(__lowercase , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def snake_case__ ( self : str ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.txt" , os.path.join(__lowercase , "vocab.txt" ) ) snake_case_ = AutoTokenizer.from_pretrained(__lowercase , tokenizer_type="bert" , use_fast=__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.json" , os.path.join(__lowercase , "vocab.json" ) ) shutil.copy("./tests/fixtures/merges.txt" , os.path.join(__lowercase , "merges.txt" ) ) snake_case_ = AutoTokenizer.from_pretrained(__lowercase , tokenizer_type="gpt2" , use_fast=__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @require_tokenizers def snake_case__ ( self : Tuple ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.txt" , os.path.join(__lowercase , "vocab.txt" ) ) snake_case_ = AutoTokenizer.from_pretrained(__lowercase , tokenizer_type="bert" ) self.assertIsInstance(__lowercase , __lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.json" , os.path.join(__lowercase , "vocab.json" ) ) shutil.copy("./tests/fixtures/merges.txt" , os.path.join(__lowercase , "merges.txt" ) ) snake_case_ = AutoTokenizer.from_pretrained(__lowercase , tokenizer_type="gpt2" ) self.assertIsInstance(__lowercase , __lowercase ) def snake_case__ ( self : List[Any] ): """simple docstring""" with pytest.raises(__lowercase ): AutoTokenizer.from_pretrained("./" , tokenizer_type="xxx" ) @require_tokenizers def snake_case__ ( self : Union[str, Any] ): """simple docstring""" for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: snake_case_ = tokenizer_class.from_pretrained("wietsedv/bert-base-dutch-cased" ) self.assertIsInstance(__lowercase , (BertTokenizer, BertTokenizerFast) ) if isinstance(__lowercase , __lowercase ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , __lowercase ) else: self.assertEqual(tokenizer.do_lower_case , __lowercase ) self.assertEqual(tokenizer.model_max_length , 5_12 ) @require_tokenizers def snake_case__ ( self : Any ): """simple docstring""" for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( __lowercase , "julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier" , ): snake_case_ = tokenizer_class.from_pretrained("julien-c/herlolip-not-exists" ) def snake_case__ ( self : Union[str, Any] ): """simple docstring""" snake_case_ = TOKENIZER_MAPPING.values() snake_case_ = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(__lowercase ) @require_tokenizers def snake_case__ ( self : Tuple ): """simple docstring""" self.assertIsInstance(AutoTokenizer.from_pretrained("bert-base-cased" , use_fast=__lowercase ) , __lowercase ) self.assertIsInstance(AutoTokenizer.from_pretrained("bert-base-cased" ) , __lowercase ) @require_tokenizers def snake_case__ ( self : Union[str, Any] ): """simple docstring""" snake_case_ = AutoTokenizer.from_pretrained("distilbert-base-uncased" , do_lower_case=__lowercase ) snake_case_ = "Hello, world. How are you?" snake_case_ = tokenizer.tokenize(__lowercase ) self.assertEqual("[UNK]" , tokens[0] ) snake_case_ = AutoTokenizer.from_pretrained("microsoft/mpnet-base" , do_lower_case=__lowercase ) snake_case_ = tokenizer.tokenize(__lowercase ) self.assertEqual("[UNK]" , tokens[0] ) @require_tokenizers def snake_case__ ( self : str ): """simple docstring""" snake_case_ = AutoTokenizer.from_pretrained("robot-test/dummy-tokenizer-fast-with-model-config" ) self.assertEqual(type(__lowercase ) , __lowercase ) self.assertEqual(tokenizer.model_max_length , 5_12 ) self.assertEqual(tokenizer.vocab_size , 3_00_00 ) self.assertEqual(tokenizer.unk_token , "[UNK]" ) self.assertEqual(tokenizer.padding_side , "right" ) self.assertEqual(tokenizer.truncation_side , "right" ) def snake_case__ ( self : str ): """simple docstring""" snake_case_ = AutoTokenizer.from_pretrained(__lowercase ) self.assertIsInstance(__lowercase , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowercase ) snake_case_ = AutoTokenizer.from_pretrained(__lowercase ) self.assertIsInstance(__lowercase , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 12 ) def snake_case__ ( self : Tuple ): """simple docstring""" snake_case_ = AutoTokenizer.from_pretrained("ctrl" ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(__lowercase , __lowercase ) def snake_case__ ( self : Any ): """simple docstring""" snake_case_ = get_tokenizer_config("bert-base-cased" ) snake_case_ = config.pop("_commit_hash" , __lowercase ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(__lowercase , {"do_lower_case": False} ) # This model does not have a tokenizer_config so we get back an empty dict. snake_case_ = get_tokenizer_config(__lowercase ) self.assertDictEqual(__lowercase , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. snake_case_ = AutoTokenizer.from_pretrained(__lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowercase ) snake_case_ = get_tokenizer_config(__lowercase ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config["tokenizer_class"] , "BertTokenizer" ) def snake_case__ ( self : int ): """simple docstring""" try: AutoConfig.register("custom" , __lowercase ) AutoTokenizer.register(__lowercase , slow_tokenizer_class=__lowercase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowercase ): AutoTokenizer.register(__lowercase , slow_tokenizer_class=__lowercase ) snake_case_ = CustomTokenizer.from_pretrained(__lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowercase ) snake_case_ = AutoTokenizer.from_pretrained(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def snake_case__ ( self : List[Any] ): """simple docstring""" try: AutoConfig.register("custom" , __lowercase ) # Can register in two steps AutoTokenizer.register(__lowercase , slow_tokenizer_class=__lowercase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(__lowercase , fast_tokenizer_class=__lowercase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( __lowercase , slow_tokenizer_class=__lowercase , fast_tokenizer_class=__lowercase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowercase ): AutoTokenizer.register(__lowercase , fast_tokenizer_class=__lowercase ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = BertTokenizerFast.from_pretrained(__lowercase ) bert_tokenizer.save_pretrained(__lowercase ) snake_case_ = CustomTokenizerFast.from_pretrained(__lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowercase ) snake_case_ = AutoTokenizer.from_pretrained(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) snake_case_ = AutoTokenizer.from_pretrained(__lowercase , use_fast=__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def snake_case__ ( self : str ): """simple docstring""" with self.assertRaises(__lowercase ): snake_case_ = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__lowercase ): snake_case_ = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=__lowercase ) snake_case_ = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=__lowercase ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowercase ) snake_case_ = AutoTokenizer.from_pretrained(__lowercase , trust_remote_code=__lowercase ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , "NewTokenizerFast" ) # Test we can also load the slow version snake_case_ = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=__lowercase , use_fast=__lowercase ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowercase ) snake_case_ = AutoTokenizer.from_pretrained(__lowercase , trust_remote_code=__lowercase , use_fast=__lowercase ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , "NewTokenizer" ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , "NewTokenizer" ) @require_tokenizers def snake_case__ ( self : Any ): """simple docstring""" class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = False class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = NewTokenizer lowerCAmelCase_ = False try: AutoConfig.register("custom" , __lowercase ) AutoTokenizer.register(__lowercase , slow_tokenizer_class=__lowercase ) AutoTokenizer.register(__lowercase , fast_tokenizer_class=__lowercase ) # If remote code is not set, the default is to use local snake_case_ = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" ) self.assertFalse(tokenizer.special_attribute_present ) snake_case_ = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" , use_fast=__lowercase ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. snake_case_ = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=__lowercase ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" ) self.assertFalse(tokenizer.special_attribute_present ) snake_case_ = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=__lowercase , use_fast=__lowercase ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub snake_case_ = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=__lowercase ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" ) self.assertTrue(tokenizer.special_attribute_present ) snake_case_ = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=__lowercase , use_fast=__lowercase ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def snake_case__ ( self : List[Any] ): """simple docstring""" snake_case_ = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer_legacy" , trust_remote_code=__lowercase ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" ) # Test we can also load the slow version snake_case_ = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer_legacy" , trust_remote_code=__lowercase , use_fast=__lowercase ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) else: self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) def snake_case__ ( self : List[Any] ): """simple docstring""" with self.assertRaisesRegex( __lowercase , "bert-base is not a local folder and is not a valid model identifier" ): snake_case_ = AutoTokenizer.from_pretrained("bert-base" ) def snake_case__ ( self : Union[str, Any] ): """simple docstring""" with self.assertRaisesRegex( __lowercase , r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): snake_case_ = AutoTokenizer.from_pretrained(__lowercase , revision="aaaaaa" ) def snake_case__ ( self : Any ): """simple docstring""" snake_case_ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) with RequestCounter() as counter: snake_case_ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
187
1
def UpperCamelCase ( __magic_name__ : List[str] , __magic_name__ : str ) -> str: """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError("""both inputs must be positive integers""" ) lowercase__ = str(bin(__snake_case ) ) binary_number += "0" * shift_amount return binary_number def UpperCamelCase ( __magic_name__ : int , __magic_name__ : str ) -> str: """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError("""both inputs must be positive integers""" ) lowercase__ = str(bin(__snake_case ) )[2:] if shift_amount >= len(__snake_case ): return "0b0" lowercase__ = binary_number[: len(__snake_case ) - shift_amount] return "0b" + shifted_binary_number def UpperCamelCase ( __magic_name__ : Tuple , __magic_name__ : int ) -> str: """simple docstring""" if number >= 0: # Get binary representation of positive number lowercase__ = """0""" + str(bin(__snake_case ) ).strip("""-""" )[2:] else: # Get binary (2's complement) representation of negative number lowercase__ = len(bin(__snake_case )[3:] ) # Find 2's complement of number lowercase__ = bin(abs(__snake_case ) - (1 << binary_number_length) )[3:] lowercase__ = ( """1""" + """0""" * (binary_number_length - len(__snake_case )) + binary_number ) if shift_amount >= len(__snake_case ): return "0b" + binary_number[0] * len(__snake_case ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(__snake_case ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
362
class A : '''simple docstring''' def __init__(self : int , _UpperCAmelCase : list ) -> None: """simple docstring""" lowercase__ = set_counts lowercase__ = max(_UpperCAmelCase ) lowercase__ = len(_UpperCAmelCase ) lowercase__ = [1] * num_sets lowercase__ = list(range(_UpperCAmelCase ) ) def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> bool: """simple docstring""" lowercase__ = self.get_parent(_UpperCAmelCase ) lowercase__ = self.get_parent(_UpperCAmelCase ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] lowercase__ = 0 lowercase__ = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 lowercase__ = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] lowercase__ = 0 lowercase__ = src_parent lowercase__ = self.set_counts[src_parent] lowercase__ = max(self.max_set , _UpperCAmelCase ) return True def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : int ) -> int: """simple docstring""" if self.parents[disj_set] == disj_set: return disj_set lowercase__ = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
146
0
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def A ( _lowerCamelCase = True , *_lowerCamelCase , **_lowerCamelCase ): '''simple docstring''' if not is_tqdm_available(): raise ImportError("Accelerate\'s `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`." ) _lowerCAmelCase : int = False if main_process_only: _lowerCAmelCase : Union[str, Any] = PartialState().local_process_index == 0 return _tqdm(*_lowerCamelCase , **_lowerCamelCase , disable=_lowerCamelCase )
36
import math import qiskit def lowerCamelCase ( SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = 1 ): '''simple docstring''' if ( isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ): raise TypeError('''inputs must be integers.''' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('''inputs must be positive.''' ) if ( (math.floor(SCREAMING_SNAKE_CASE ) != input_a) or (math.floor(SCREAMING_SNAKE_CASE ) != input_a) or (math.floor(SCREAMING_SNAKE_CASE ) != carry_in) ): raise ValueError('''inputs must be exact integers.''' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('''inputs must be less or equal to 2.''' ) # build registers __UpperCamelCase :List[str] = qiskit.QuantumRegister(4 , '''qr''' ) __UpperCamelCase :str = qiskit.ClassicalRegister(2 , '''cr''' ) # list the entries __UpperCamelCase :Tuple = [input_a, input_a, carry_in] __UpperCamelCase :Optional[int] = qiskit.QuantumCircuit(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(SCREAMING_SNAKE_CASE ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(SCREAMING_SNAKE_CASE ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(SCREAMING_SNAKE_CASE ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , SCREAMING_SNAKE_CASE ) # measure the last two qbits __UpperCamelCase :Optional[Any] = qiskit.Aer.get_backend('''aer_simulator''' ) __UpperCamelCase :Tuple = qiskit.execute(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , shots=1_000 ) return job.result().get_counts(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(F'Total sum count for state is: {quantum_full_adder(1, 1, 1)}')
43
0
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class lowerCamelCase : """simple docstring""" UpperCAmelCase_ = 42 # [batch_size x 3] UpperCAmelCase_ = 42 # [batch_size x 3] UpperCAmelCase_ = 42 # [batch_size x 3] UpperCAmelCase_ = 42 # [batch_size x 3] UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 def A_ ( self : str ) -> Optional[int]: """simple docstring""" assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def A_ ( self : str ) -> Dict: """simple docstring""" return torch.from_numpy(np.array([self.width, self.height], dtype=np.floataa ) ) def A_ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" return torch.from_numpy(np.array([self.x_fov, self.y_fov], dtype=np.floataa ) ) def A_ ( self : Any ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = torch.arange(self.height * self.width ) SCREAMING_SNAKE_CASE__ : List[str] = torch.stack( [ pixel_indices % self.width, torch.div(__a, self.width, rounding_mode="trunc" ), ], axis=1, ) return coords @property def A_ ( self : List[str] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ ,*SCREAMING_SNAKE_CASE__ : str = self.shape SCREAMING_SNAKE_CASE__ : int = int(np.prod(__a ) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_image_coords() SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.broadcast_to(coords.unsqueeze(0 ), [batch_size * inner_batch_size, *coords.shape] ) SCREAMING_SNAKE_CASE__ : List[str] = self.get_camera_rays(__a ) SCREAMING_SNAKE_CASE__ : Tuple = rays.view(__a, inner_batch_size * self.height * self.width, 2, 3 ) return rays def A_ ( self : List[str], _UpperCAmelCase : torch.Tensor ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ ,*SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Tuple = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] SCREAMING_SNAKE_CASE__ : Dict = coords.view(__a, -1, 2 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.resolution() SCREAMING_SNAKE_CASE__ : Optional[Any] = self.fov() SCREAMING_SNAKE_CASE__ : Union[str, Any] = (flat.float() / (res - 1)) * 2 - 1 SCREAMING_SNAKE_CASE__ : Dict = fracs * torch.tan(fov / 2 ) SCREAMING_SNAKE_CASE__ : Tuple = fracs.view(__a, -1, 2 ) SCREAMING_SNAKE_CASE__ : Dict = ( self.z.view(__a, 1, 3 ) + self.x.view(__a, 1, 3 ) * fracs[:, :, :1] + self.y.view(__a, 1, 3 ) * fracs[:, :, 1:] ) SCREAMING_SNAKE_CASE__ : Dict = directions / directions.norm(dim=-1, keepdim=__a ) SCREAMING_SNAKE_CASE__ : Tuple = torch.stack( [ torch.broadcast_to(self.origin.view(__a, 1, 3 ), [batch_size, directions.shape[1], 3] ), directions, ], dim=2, ) return rays.view(__a, *__a, 2, 3 ) def A_ ( self : Optional[int], _UpperCAmelCase : int, _UpperCAmelCase : int ) -> int: """simple docstring""" assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin, x=self.x, y=self.y, z=self.z, width=__a, height=__a, x_fov=self.x_fov, y_fov=self.y_fov, ) def _a ( SCREAMING_SNAKE_CASE__ : int ) -> DifferentiableProjectiveCamera: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = [] SCREAMING_SNAKE_CASE__ : Optional[Any] = [] SCREAMING_SNAKE_CASE__ : int = [] SCREAMING_SNAKE_CASE__ : Dict = [] for theta in np.linspace(0 , 2 * np.pi , num=20 ): SCREAMING_SNAKE_CASE__ : Tuple = np.array([np.sin(snake_case_ ), np.cos(snake_case_ ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = -z * 4 SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.array([np.cos(snake_case_ ), -np.sin(snake_case_ ), 0.0] ) SCREAMING_SNAKE_CASE__ : Dict = np.cross(snake_case_ , snake_case_ ) origins.append(snake_case_ ) xs.append(snake_case_ ) ys.append(snake_case_ ) zs.append(snake_case_ ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(snake_case_ , axis=0 ) ).float() , x=torch.from_numpy(np.stack(snake_case_ , axis=0 ) ).float() , y=torch.from_numpy(np.stack(snake_case_ , axis=0 ) ).float() , z=torch.from_numpy(np.stack(snake_case_ , axis=0 ) ).float() , width=snake_case_ , height=snake_case_ , x_fov=0.7 , y_fov=0.7 , shape=(1, len(snake_case_ )) , )
368
import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class lowerCamelCase : """simple docstring""" def __init__( self : Dict, _UpperCAmelCase : Any, _UpperCAmelCase : List[Any]=sys.maxsize ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = "bilinear" SCREAMING_SNAKE_CASE__ : Optional[int] = max_size SCREAMING_SNAKE_CASE__ : Optional[int] = short_edge_length def __call__( self : Optional[int], _UpperCAmelCase : Union[str, Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = [] for img in imgs: SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Tuple = img.shape[:2] # later: provide list and randomly choose index for resize SCREAMING_SNAKE_CASE__ : List[str] = np.random.randint(self.short_edge_length[0], self.short_edge_length[1] + 1 ) if size == 0: return img SCREAMING_SNAKE_CASE__ : int = size * 1.0 / min(_UpperCAmelCase, _UpperCAmelCase ) if h < w: SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Optional[int] = size, scale * w else: SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : List[str] = scale * h, size if max(_UpperCAmelCase, _UpperCAmelCase ) > self.max_size: SCREAMING_SNAKE_CASE__ : str = self.max_size * 1.0 / max(_UpperCAmelCase, _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Any = newh * scale SCREAMING_SNAKE_CASE__ : List[str] = neww * scale SCREAMING_SNAKE_CASE__ : Any = int(neww + 0.5 ) SCREAMING_SNAKE_CASE__ : List[Any] = int(newh + 0.5 ) if img.dtype == np.uinta: SCREAMING_SNAKE_CASE__ : List[Any] = Image.fromarray(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = pil_image.resize((neww, newh), PILImageResampling.BILINEAR ) SCREAMING_SNAKE_CASE__ : List[str] = np.asarray(_UpperCAmelCase ) else: SCREAMING_SNAKE_CASE__ : str = img.permute(2, 0, 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw SCREAMING_SNAKE_CASE__ : Tuple = nn.functional.interpolate( _UpperCAmelCase, (newh, neww), mode=self.interp_method, align_corners=_UpperCAmelCase ).squeeze(0 ) img_augs.append(_UpperCAmelCase ) return img_augs class lowerCamelCase : """simple docstring""" def __init__( self : Dict, _UpperCAmelCase : Optional[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST], cfg.INPUT.MAX_SIZE_TEST ) SCREAMING_SNAKE_CASE__ : Any = cfg.INPUT.FORMAT SCREAMING_SNAKE_CASE__ : List[str] = cfg.SIZE_DIVISIBILITY SCREAMING_SNAKE_CASE__ : List[Any] = cfg.PAD_VALUE SCREAMING_SNAKE_CASE__ : Dict = cfg.INPUT.MAX_SIZE_TEST SCREAMING_SNAKE_CASE__ : Optional[int] = cfg.MODEL.DEVICE SCREAMING_SNAKE_CASE__ : int = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ), 1, 1 ) SCREAMING_SNAKE_CASE__ : str = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ), 1, 1 ) SCREAMING_SNAKE_CASE__ : Optional[Any] = lambda _UpperCAmelCase : (x - self.pixel_mean) / self.pixel_std def A_ ( self : str, _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = tuple(max(_UpperCAmelCase ) for s in zip(*[img.shape for img in images] ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = [im.shape[-2:] for im in images] SCREAMING_SNAKE_CASE__ : Union[str, Any] = [ nn.functional.pad( _UpperCAmelCase, [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]], value=self.pad_value, ) for size, im in zip(_UpperCAmelCase, _UpperCAmelCase ) ] return torch.stack(_UpperCAmelCase ), torch.tensor(_UpperCAmelCase ) def __call__( self : Any, _UpperCAmelCase : Dict, _UpperCAmelCase : List[str]=False ) -> Optional[Any]: """simple docstring""" with torch.no_grad(): if not isinstance(_UpperCAmelCase, _UpperCAmelCase ): SCREAMING_SNAKE_CASE__ : str = [images] if single_image: assert len(_UpperCAmelCase ) == 1 for i in range(len(_UpperCAmelCase ) ): if isinstance(images[i], torch.Tensor ): images.insert(_UpperCAmelCase, images.pop(_UpperCAmelCase ).to(self.device ).float() ) elif not isinstance(images[i], torch.Tensor ): images.insert( _UpperCAmelCase, torch.as_tensor(img_tensorize(images.pop(_UpperCAmelCase ), input_format=self.input_format ) ) .to(self.device ) .float(), ) # resize smallest edge SCREAMING_SNAKE_CASE__ : List[str] = torch.tensor([im.shape[:2] for im in images] ) SCREAMING_SNAKE_CASE__ : Tuple = self.aug(_UpperCAmelCase ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic SCREAMING_SNAKE_CASE__ : List[Any] = [self.normalizer(_UpperCAmelCase ) for x in images] # now pad them to do the following operations SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : List[str] = self.pad(_UpperCAmelCase ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.true_divide(_UpperCAmelCase, _UpperCAmelCase ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def _a ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Dict ) -> Union[str, Any]: '''simple docstring''' boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def _a ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple[int, int] ) -> List[Any]: '''simple docstring''' assert torch.isfinite(SCREAMING_SNAKE_CASE__ ).all(), "Box tensor contains infinite or NaN!" SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : int = box_size tensor[:, 0].clamp_(min=0 , max=SCREAMING_SNAKE_CASE__ ) tensor[:, 1].clamp_(min=0 , max=SCREAMING_SNAKE_CASE__ ) tensor[:, 2].clamp_(min=0 , max=SCREAMING_SNAKE_CASE__ ) tensor[:, 3].clamp_(min=0 , max=SCREAMING_SNAKE_CASE__ )
191
0
from __future__ import annotations import math def __magic_name__ ( A : float, A : int ): '''simple docstring''' a = u for i in range(1, A ): a = temp * (u - i) return temp def __magic_name__ ( ): '''simple docstring''' a = int(input("enter the numbers of values: " ) ) a = [] for _ in range(A ): y.append([] ) for i in range(A ): for j in range(A ): y[i].append(A ) a = 0 print("enter the values of parameters in a list: " ) a = list(map(A, input().split() ) ) print("enter the values of corresponding parameters: " ) for i in range(A ): a = float(input() ) a = int(input("enter the value to interpolate: " ) ) a = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1, A ): for j in range(n - i ): a = y[j + 1][i - 1] - y[j][i - 1] a = y[0][0] for i in range(1, A ): summ += (ucal(A, A ) * y[0][i]) / math.factorial(A ) print(F"""the value at {value} is {summ}""" ) if __name__ == "__main__": main()
107
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _A = { '''configuration_mega''': ['''MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegaConfig''', '''MegaOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ '''MEGA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegaForCausalLM''', '''MegaForMaskedLM''', '''MegaForMultipleChoice''', '''MegaForQuestionAnswering''', '''MegaForSequenceClassification''', '''MegaForTokenClassification''', '''MegaModel''', '''MegaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
122
0
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path SCREAMING_SNAKE_CASE : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) SCREAMING_SNAKE_CASE : list[int] = [ord(letter) for letter in string.ascii_lowercase] SCREAMING_SNAKE_CASE : set[int] = {ord(char) for char in VALID_CHARS} SCREAMING_SNAKE_CASE : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def __UpperCAmelCase ( snake_case_ : list[int] , snake_case_ : tuple[int, ...] ) -> str | None: """simple docstring""" _lowerCAmelCase = "" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 for keychar, cipherchar in zip(cycle(snake_case_ ) , snake_case_ ): _lowerCAmelCase = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(snake_case_ ) return decoded def __UpperCAmelCase ( snake_case_ : list[int] ) -> list[str]: """simple docstring""" _lowerCAmelCase = [] for key in product(snake_case_ , repeat=3 ): _lowerCAmelCase = try_key(snake_case_ , snake_case_ ) if encoded is not None: possibles.append(snake_case_ ) return possibles def __UpperCAmelCase ( snake_case_ : list[str] , snake_case_ : str ) -> list[str]: """simple docstring""" return [possible for possible in possibles if common_word in possible.lower()] def __UpperCAmelCase ( snake_case_ : str = "p059_cipher.txt" ) -> int: """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = Path(snake_case_ ).parent.joinpath(snake_case_ ).read_text(encoding="""utf-8""" ) _lowerCAmelCase = [int(snake_case_ ) for number in data.strip().split(""",""" )] _lowerCAmelCase = filter_valid_chars(snake_case_ ) for common_word in COMMON_WORDS: _lowerCAmelCase = filter_common_word(snake_case_ , snake_case_ ) if len(snake_case_ ) == 1: break _lowerCAmelCase = possibles[0] return sum(ord(snake_case_ ) for char in decoded_text ) if __name__ == "__main__": print(F'{solution() = }')
317
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : list ) -> list: """simple docstring""" for i in range(len(snake_case_ ) - 1 , 0 , -1 ): _lowerCAmelCase = False for j in range(snake_case_ , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: _lowerCAmelCase , _lowerCAmelCase = unsorted[j - 1], unsorted[j] _lowerCAmelCase = True for j in range(snake_case_ ): if unsorted[j] > unsorted[j + 1]: _lowerCAmelCase , _lowerCAmelCase = unsorted[j + 1], unsorted[j] _lowerCAmelCase = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE : List[Any] = input('''Enter numbers separated by a comma:\n''').strip() SCREAMING_SNAKE_CASE : List[str] = [int(item) for item in user_input.split(''',''')] print(F'{cocktail_shaker_sort(unsorted) = }')
317
1
'''simple docstring''' import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def a_ ( __snake_case : Optional[Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ =checkpoints.load_tax_checkpoint(snake_case_ ) lowerCamelCase_ =flatten_dict(snake_case_ ) return flax_params def a_ ( __snake_case : Dict ) -> Optional[int]: """simple docstring""" lowerCamelCase_ ={} lowerCamelCase_ ={ '''token_embedder''': '''embeddings''', '''encoder_norm''': '''layernorm''', '''kernel''': '''weight''', '''.out''': '''.output''', '''scale''': '''weight''', '''embedders_0.pos_embedding''': '''row_embedder.weight''', '''embedders_1.pos_embedding''': '''column_embedder.weight''', } lowerCamelCase_ ={ '''query''': '''attention.query''', '''key''': '''attention.key''', '''value''': '''attention.value''', '''output.dense''': '''output''', '''encoder_decoder_attention.o''': '''encoder_decoder_attention.attention.o''', '''pre_self_attention_layer_norm''': '''self_attention.layer_norm''', '''pre_cross_attention_layer_norm''': '''encoder_decoder_attention.layer_norm''', '''mlp.''': '''mlp.DenseReluDense.''', '''pre_mlp_layer_norm''': '''mlp.layer_norm''', '''self_attention.o''': '''self_attention.attention.o''', '''decoder.embeddings.embedding''': '''decoder.embed_tokens.weight''', '''decoder.relpos_bias.rel_embedding''': '''decoder.layer.0.self_attention.attention.relative_attention_bias.weight''', '''decoder.decoder_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.logits_dense.weight''': '''decoder.lm_head.weight''', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key lowerCamelCase_ ='''.'''.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): lowerCamelCase_ =new_key.replace(snake_case_ , snake_case_ ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): lowerCamelCase_ =new_key.replace(snake_case_ , snake_case_ ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number lowerCamelCase_ =re.sub(r'''layers_(\d+)''' , r'''layer.\1''' , snake_case_ ) lowerCamelCase_ =new_key.replace('''encoder''' , '''encoder.encoder''' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number lowerCamelCase_ =re.sub(r'''layers_(\d+)''' , r'''layer.\1''' , snake_case_ ) lowerCamelCase_ =flax_dict[key] lowerCamelCase_ ={} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): lowerCamelCase_ =torch.from_numpy(converted_dict[key].T ) else: lowerCamelCase_ =torch.from_numpy(converted_dict[key] ) return converted_torch_dict def a_ ( __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : Union[str, Any]=False , __snake_case : Optional[int]=False ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ =get_flax_param(snake_case_ ) if not use_large: lowerCamelCase_ =PixaStructVisionConfig() lowerCamelCase_ =PixaStructTextConfig() else: lowerCamelCase_ =PixaStructVisionConfig( hidden_size=1536 , d_ff=3968 , num_attention_heads=24 , num_hidden_layers=18 ) lowerCamelCase_ =PixaStructTextConfig(hidden_size=1536 , d_ff=3968 , num_heads=24 , num_layers=18 ) lowerCamelCase_ =PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=snake_case_ ) lowerCamelCase_ =PixaStructForConditionalGeneration(snake_case_ ) lowerCamelCase_ =rename_and_convert_flax_params(snake_case_ ) model.load_state_dict(snake_case_ ) lowerCamelCase_ =AutoTokenizer.from_pretrained('''ybelkada/test-pix2struct-tokenizer''' ) lowerCamelCase_ =PixaStructImageProcessor() lowerCamelCase_ =PixaStructProcessor(image_processor=snake_case_ , tokenizer=snake_case_ ) if use_large: lowerCamelCase_ =4096 lowerCamelCase_ =True # mkdir if needed os.makedirs(snake_case_ , exist_ok=snake_case_ ) model.save_pretrained(snake_case_ ) processor.save_pretrained(snake_case_ ) print('''Model saved in {}'''.format(snake_case_ ) ) if __name__ == "__main__": a_ : Tuple = argparse.ArgumentParser() parser.add_argument("""--t5x_checkpoint_path""", default=None, type=str, help="""Path to the original T5x checkpoint.""") parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--use_large""", action="""store_true""", help="""Use large model.""") parser.add_argument("""--is_vqa""", action="""store_true""", help="""Use large model.""") a_ : Dict = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
75
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING snake_case_ = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def __init__(self : Optional[int] , *a__ : Any , **a__ : Dict ): """simple docstring""" super().__init__(*a__ , **a__ ) requires_backends(self , '''vision''' ) self.check_model_type(a__ ) def __call__(self : Optional[int] , a__ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **a__ : Tuple ): """simple docstring""" return super().__call__(a__ , **a__ ) def a (self : Dict , **a__ : Any ): """simple docstring""" return {}, {}, {} def a (self : List[str] , a__ : Any ): """simple docstring""" __snake_case = load_image(a__ ) __snake_case = image.size __snake_case = self.image_processor(images=a__ , return_tensors=self.framework ) return model_inputs def a (self : int , a__ : List[Any] ): """simple docstring""" __snake_case = self.model(**a__ ) return model_outputs def a (self : int , a__ : str ): """simple docstring""" __snake_case = model_outputs.predicted_depth __snake_case = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode='''bicubic''' , align_corners=a__ ) __snake_case = prediction.squeeze().cpu().numpy() __snake_case = (output * 255 / np.max(a__ )).astype('''uint8''' ) __snake_case = Image.fromarray(a__ ) __snake_case = {} __snake_case = predicted_depth __snake_case = depth return output_dict
24
0
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch lowercase = logging.get_logger(__name__) @add_end_docstrings( A, r''' top_k (`int`, defaults to 5): The number of predictions to return. targets (`str` or `List[str]`, *optional*): When passed, the model will limit the scores to the passed targets instead of looking up in the whole vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning, and that might be slower). ''', ) class __lowercase ( A ): '''simple docstring''' def A_ ( self : str , _a : GenericTensor ): if self.framework == "tf": UpperCamelCase__ = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": UpperCamelCase__ = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_a ) else: raise ValueError('''Unsupported framework''' ) return masked_index def A_ ( self : Tuple , _a : GenericTensor ): UpperCamelCase__ = self.get_masked_index(_a ) UpperCamelCase__ = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , F"""No mask_token ({self.tokenizer.mask_token}) found on the input""" , ) def A_ ( self : int , _a : GenericTensor ): if isinstance(_a , _a ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['''input_ids'''][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(_a ) def A_ ( self : List[Any] , _a : int , _a : Dict=None , **_a : int ): if return_tensors is None: UpperCamelCase__ = self.framework UpperCamelCase__ = self.tokenizer(_a , return_tensors=_a ) self.ensure_exactly_one_mask_token(_a ) return model_inputs def A_ ( self : Tuple , _a : Any ): UpperCamelCase__ = self.model(**_a ) UpperCamelCase__ = model_inputs['''input_ids'''] return model_outputs def A_ ( self : str , _a : str , _a : Dict=5 , _a : str=None ): # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: UpperCamelCase__ = target_ids.shape[0] UpperCamelCase__ = model_outputs['''input_ids'''][0] UpperCamelCase__ = model_outputs['''logits'''] if self.framework == "tf": UpperCamelCase__ = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] UpperCamelCase__ = outputs.numpy() UpperCamelCase__ = outputs[0, masked_index, :] UpperCamelCase__ = stable_softmax(_a , axis=-1 ) if target_ids is not None: UpperCamelCase__ = tf.gather_nd(tf.squeeze(_a , 0 ) , target_ids.reshape(-1 , 1 ) ) UpperCamelCase__ = tf.expand_dims(_a , 0 ) UpperCamelCase__ = tf.math.top_k(_a , k=_a ) UpperCamelCase__ , UpperCamelCase__ = topk.values.numpy(), topk.indices.numpy() else: UpperCamelCase__ = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_a ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample UpperCamelCase__ = outputs[0, masked_index, :] UpperCamelCase__ = logits.softmax(dim=-1 ) if target_ids is not None: UpperCamelCase__ = probs[..., target_ids] UpperCamelCase__ , UpperCamelCase__ = probs.topk(_a ) UpperCamelCase__ = [] UpperCamelCase__ = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): UpperCamelCase__ = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place UpperCamelCase__ = input_ids.numpy().copy() if target_ids is not None: UpperCamelCase__ = target_ids[p].tolist() UpperCamelCase__ = p # Filter padding out: UpperCamelCase__ = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back UpperCamelCase__ = self.tokenizer.decode(_a , skip_special_tokens=_a ) UpperCamelCase__ = {'''score''': v, '''token''': p, '''token_str''': self.tokenizer.decode([p] ), '''sequence''': sequence} row.append(_a ) result.append(_a ) if single_mask: return result[0] return result def A_ ( self : List[str] , _a : List[str] , _a : List[Any]=None ): if isinstance(_a , _a ): UpperCamelCase__ = [targets] try: UpperCamelCase__ = self.tokenizer.get_vocab() except Exception: UpperCamelCase__ = {} UpperCamelCase__ = [] for target in targets: UpperCamelCase__ = vocab.get(_a , _a ) if id_ is None: UpperCamelCase__ = self.tokenizer( _a , add_special_tokens=_a , return_attention_mask=_a , return_token_type_ids=_a , max_length=1 , truncation=_a , )['''input_ids'''] if len(_a ) == 0: logger.warning( F"""The specified target token `{target}` does not exist in the model vocabulary. """ '''We cannot replace it with anything meaningful, ignoring it''' ) continue UpperCamelCase__ = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F"""The specified target token `{target}` does not exist in the model vocabulary. """ F"""Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.""" ) target_ids.append(id_ ) UpperCamelCase__ = list(set(_a ) ) if len(_a ) == 0: raise ValueError('''At least one target must be provided when passed.''' ) UpperCamelCase__ = np.array(_a ) return target_ids def A_ ( self : Any , _a : Any=None , _a : Optional[Any]=None ): UpperCamelCase__ = {} if targets is not None: UpperCamelCase__ = self.get_target_ids(_a , _a ) UpperCamelCase__ = target_ids if top_k is not None: UpperCamelCase__ = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , '''The tokenizer does not define a `mask_token`.''' ) return {}, {}, postprocess_params def __call__( self : Tuple , _a : Any , *_a : Optional[Any] , **_a : List[str] ): UpperCamelCase__ = super().__call__(_a , **_a ) if isinstance(_a , _a ) and len(_a ) == 1: return outputs[0] return outputs
35
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class __lowercase : '''simple docstring''' _A : int = MBartConfig _A : str = {} _A : str = '''gelu''' def __init__( self : Tuple , _a : Dict , _a : Optional[Any]=13 , _a : List[Any]=7 , _a : Any=True , _a : List[Any]=False , _a : List[Any]=99 , _a : int=32 , _a : Optional[Any]=2 , _a : Optional[Any]=4 , _a : Any=37 , _a : Any=0.1 , _a : Any=0.1 , _a : Dict=20 , _a : Optional[Any]=2 , _a : List[str]=1 , _a : List[str]=0 , ): UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = eos_token_id UpperCamelCase__ = pad_token_id UpperCamelCase__ = bos_token_id def A_ ( self : Any ): UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCamelCase__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCamelCase__ = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCamelCase__ = prepare_mbart_inputs_dict(_a , _a , _a ) return config, inputs_dict def A_ ( self : Union[str, Any] , _a : Tuple , _a : Dict ): UpperCamelCase__ = TFMBartModel(config=_a ).get_decoder() UpperCamelCase__ = inputs_dict['''input_ids'''] UpperCamelCase__ = input_ids[:1, :] UpperCamelCase__ = inputs_dict['''attention_mask'''][:1, :] UpperCamelCase__ = inputs_dict['''head_mask'''] UpperCamelCase__ = 1 # first forward pass UpperCamelCase__ = model(_a , attention_mask=_a , head_mask=_a , use_cache=_a ) UpperCamelCase__ , UpperCamelCase__ = outputs.to_tuple() UpperCamelCase__ = past_key_values[1] def lowerCamelCase_ ( UpperCamelCase__ : Dict, UpperCamelCase__ : Optional[int], UpperCamelCase__ : Optional[int], UpperCamelCase__ : Optional[Any]=None, UpperCamelCase__ : Tuple=None, UpperCamelCase__ : Dict=None, UpperCamelCase__ : Tuple=None, UpperCamelCase__ : Tuple=None, ): '''simple docstring''' if attention_mask is None: UpperCamelCase__ = tf.cast(tf.math.not_equal(UpperCamelCase__, config.pad_token_id ), tf.inta ) if decoder_attention_mask is None: UpperCamelCase__ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ), tf.inta ), ], axis=-1, ) if head_mask is None: UpperCamelCase__ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCamelCase__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCamelCase__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __lowercase ( A, A, unittest.TestCase ): '''simple docstring''' _A : List[str] = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () _A : List[str] = (TFMBartForConditionalGeneration,) if is_tf_available() else () _A : List[Any] = ( { '''conversational''': TFMBartForConditionalGeneration, '''feature-extraction''': TFMBartModel, '''summarization''': TFMBartForConditionalGeneration, '''text2text-generation''': TFMBartForConditionalGeneration, '''translation''': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) _A : List[Any] = True _A : Any = False _A : List[Any] = False def A_ ( self : Any , _a : Tuple , _a : List[Any] , _a : Tuple , _a : List[str] , _a : List[Any] ): if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def A_ ( self : List[Any] ): UpperCamelCase__ = TFMBartModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=_a ) def A_ ( self : Tuple ): self.config_tester.run_common_tests() def A_ ( self : Optional[Any] ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_a ) @require_sentencepiece @require_tokenizers @require_tf class __lowercase ( unittest.TestCase ): '''simple docstring''' _A : Union[str, Any] = [ ''' UN Chief Says There Is No Military Solution in Syria''', ] _A : Dict = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', ] _A : Dict = '''facebook/mbart-large-en-ro''' @cached_property def A_ ( self : Any ): return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def A_ ( self : str ): UpperCamelCase__ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def A_ ( self : Optional[int] , **_a : Optional[int] ): UpperCamelCase__ = self.translate_src_text(**_a ) self.assertListEqual(self.expected_text , _a ) def A_ ( self : List[str] , **_a : Dict ): UpperCamelCase__ = self.tokenizer(self.src_text , **_a , return_tensors='''tf''' ) UpperCamelCase__ = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) UpperCamelCase__ = self.tokenizer.batch_decode(_a , skip_special_tokens=_a ) return generated_words @slow def A_ ( self : Optional[Any] ): self._assert_generated_batch_equal_expected()
35
1
import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class _lowercase : """simple docstring""" def __init__(self , lowerCamelCase_ , lowerCamelCase_=sys.maxsize ): """simple docstring""" a = "bilinear" a = max_size a = short_edge_length def __call__(self , lowerCamelCase_ ): """simple docstring""" a = [] for img in imgs: a , a = img.shape[:2] # later: provide list and randomly choose index for resize a = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img a = size * 1.0 / min(lowerCamelCase_ , lowerCamelCase_ ) if h < w: a , a = size, scale * w else: a , a = scale * h, size if max(lowerCamelCase_ , lowerCamelCase_ ) > self.max_size: a = self.max_size * 1.0 / max(lowerCamelCase_ , lowerCamelCase_ ) a = newh * scale a = neww * scale a = int(neww + 0.5 ) a = int(newh + 0.5 ) if img.dtype == np.uinta: a = Image.fromarray(lowerCamelCase_ ) a = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) a = np.asarray(lowerCamelCase_ ) else: a = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw a = nn.functional.interpolate( lowerCamelCase_ , (newh, neww) , mode=self.interp_method , align_corners=lowerCamelCase_ ).squeeze(0 ) img_augs.append(lowerCamelCase_ ) return img_augs class _lowercase : """simple docstring""" def __init__(self , lowerCamelCase_ ): """simple docstring""" a = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) a = cfg.INPUT.FORMAT a = cfg.SIZE_DIVISIBILITY a = cfg.PAD_VALUE a = cfg.INPUT.MAX_SIZE_TEST a = cfg.MODEL.DEVICE a = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) a = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) a = lambda lowerCamelCase_ : (x - self.pixel_mean) / self.pixel_std def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" a = tuple(max(lowerCamelCase_ ) for s in zip(*[img.shape for img in images] ) ) a = [im.shape[-2:] for im in images] a = [ nn.functional.pad( lowerCamelCase_ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(lowerCamelCase_ , lowerCamelCase_ ) ] return torch.stack(lowerCamelCase_ ), torch.tensor(lowerCamelCase_ ) def __call__(self , lowerCamelCase_ , lowerCamelCase_=False ): """simple docstring""" with torch.no_grad(): if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): a = [images] if single_image: assert len(lowerCamelCase_ ) == 1 for i in range(len(lowerCamelCase_ ) ): if isinstance(images[i] , torch.Tensor ): images.insert(lowerCamelCase_ , images.pop(lowerCamelCase_ ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( lowerCamelCase_ , torch.as_tensor(img_tensorize(images.pop(lowerCamelCase_ ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge a = torch.tensor([im.shape[:2] for im in images] ) a = self.aug(lowerCamelCase_ ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic a = [self.normalizer(lowerCamelCase_ ) for x in images] # now pad them to do the following operations a , a = self.pad(lowerCamelCase_ ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad a = torch.true_divide(lowerCamelCase_ , lowerCamelCase_ ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def a( A : Optional[Any] , A : Optional[Any] ) -> List[str]: """simple docstring""" boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def a( A : Dict , A : Tuple[int, int] ) -> List[str]: """simple docstring""" assert torch.isfinite(A ).all(), "Box tensor contains infinite or NaN!" a , a = box_size tensor[:, 0].clamp_(min=0 , max=A ) tensor[:, 1].clamp_(min=0 , max=A ) tensor[:, 2].clamp_(min=0 , max=A ) tensor[:, 3].clamp_(min=0 , max=A )
227
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def a( A : Tuple ) -> Optional[Any]: """simple docstring""" a = model.config a = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) a = MBartConfig( is_decoder=A , is_encoder_decoder=A , add_cross_attention=A , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=A , add_final_layer_norm=A , ) return encoder_config, decoder_config def a( A : List[Any] ) -> Union[str, Any]: """simple docstring""" if "encoder.model" in name: a = name.replace("encoder.model" , "encoder" ) if "decoder.model" in name: a = name.replace("decoder.model" , "decoder" ) if "patch_embed.proj" in name: a = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: a = name.replace("patch_embed.norm" , "embeddings.norm" ) if name.startswith("encoder" ): if "layers" in name: a = "encoder." + name if "attn.proj" in name: a = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name and "mask" not in name: a = name.replace("attn" , "attention.self" ) if "norm1" in name: a = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: a = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: a = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: a = name.replace("mlp.fc2" , "output.dense" ) if name == "encoder.norm.weight": a = "encoder.layernorm.weight" if name == "encoder.norm.bias": a = "encoder.layernorm.bias" return name def a( A : Union[str, Any] , A : Tuple ) -> List[Any]: """simple docstring""" for key in orig_state_dict.copy().keys(): a = orig_state_dict.pop(A ) if "qkv" in key: a = key.split("." ) a = int(key_split[3] ) a = int(key_split[5] ) a = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: a = val[:dim, :] a = val[dim : dim * 2, :] a = val[-dim:, :] else: a = val[:dim] a = val[dim : dim * 2] a = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: a = val return orig_state_dict def a( A : List[Any] , A : Tuple=None , A : List[Any]=False ) -> Optional[int]: """simple docstring""" a = DonutModel.from_pretrained(A ).eval() # load HuggingFace model a , a = get_configs(A ) a = DonutSwinModel(A ) a = MBartForCausalLM(A ) a = VisionEncoderDecoderModel(encoder=A , decoder=A ) model.eval() a = original_model.state_dict() a = convert_state_dict(A , A ) model.load_state_dict(A ) # verify results on scanned document a = load_dataset("hf-internal-testing/example-documents" ) a = dataset["test"][0]["image"].convert("RGB" ) a = XLMRobertaTokenizerFast.from_pretrained(A , from_slow=A ) a = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) a = DonutProcessor(A , A ) a = processor(A , return_tensors="pt" ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": a = "<s_docvqa><s_question>{user_input}</s_question><s_answer>" a = "When is the coffee break?" a = task_prompt.replace("{user_input}" , A ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": a = "<s_rvlcdip>" elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: a = "<s_cord>" elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": a = "s_cord-v2>" elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": a = "<s_zhtrainticket>" elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt a = "hello world" else: raise ValueError("Model name not supported" ) a = original_model.decoder.tokenizer(A , add_special_tokens=A , return_tensors="pt" )[ "input_ids" ] a = original_model.encoder.model.patch_embed(A ) a , a = model.encoder.embeddings(A ) assert torch.allclose(A , A , atol=1e-3 ) # verify encoder hidden states a = original_model.encoder(A ) a = model.encoder(A ).last_hidden_state assert torch.allclose(A , A , atol=1e-2 ) # verify decoder hidden states a = original_model(A , A , A ).logits a = model(A , decoder_input_ids=A ).logits assert torch.allclose(A , A , atol=1e-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(A ) processor.save_pretrained(A ) if push_to_hub: model.push_to_hub("nielsr/" + model_name.split("/" )[-1] , commit_message="Update model" ) processor.push_to_hub("nielsr/" + model_name.split("/" )[-1] , commit_message="Update model" ) if __name__ == "__main__": _lowercase: Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="naver-clova-ix/donut-base-finetuned-docvqa", required=False, type=str, help="Name of the original model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, required=False, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub.", ) _lowercase: Optional[Any] = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
227
1
"""simple docstring""" import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { '''facebook/encodec_24khz''': '''https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json''', '''facebook/encodec_48khz''': '''https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json''', } class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''encodec''' def __init__( self , _UpperCAmelCase=[1.5, 3.0, 6.0, 12.0, 24.0] , _UpperCAmelCase=24000 , _UpperCAmelCase=1 , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=128 , _UpperCAmelCase=32 , _UpperCAmelCase=1 , _UpperCAmelCase=[8, 5, 4, 2] , _UpperCAmelCase="weight_norm" , _UpperCAmelCase=7 , _UpperCAmelCase=7 , _UpperCAmelCase=3 , _UpperCAmelCase=2 , _UpperCAmelCase=True , _UpperCAmelCase="reflect" , _UpperCAmelCase=2 , _UpperCAmelCase=2 , _UpperCAmelCase=1.0 , _UpperCAmelCase=1024 , _UpperCAmelCase=None , _UpperCAmelCase=True , **_UpperCAmelCase , ): __a : List[str] = target_bandwidths __a : List[Any] = sampling_rate __a : Union[str, Any] = audio_channels __a : Tuple = normalize __a : str = chunk_length_s __a : Optional[Any] = overlap __a : Tuple = hidden_size __a : List[Any] = num_filters __a : str = num_residual_layers __a : Optional[Any] = upsampling_ratios __a : List[str] = norm_type __a : List[Any] = kernel_size __a : int = last_kernel_size __a : Tuple = residual_kernel_size __a : Dict = dilation_growth_rate __a : Any = use_causal_conv __a : List[Any] = pad_mode __a : List[Any] = compress __a : Any = num_lstm_layers __a : Optional[int] = trim_right_ratio __a : Tuple = codebook_size __a : str = codebook_dim if codebook_dim is not None else hidden_size __a : Optional[int] = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f"""self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}""" ) super().__init__(**_UpperCAmelCase ) @property def _lowerCamelCase ( self ): if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def _lowerCamelCase ( self ): if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def _lowerCamelCase ( self ): __a : Tuple = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def _lowerCamelCase ( self ): return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
360
"""simple docstring""" def __A ( a_ :int = 1_00_00_00) -> int: __a : Tuple = [i - 1 for i in range(limit + 1)] for i in range(2 , limit + 1): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , a_): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1]) if __name__ == "__main__": print(solution())
188
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) lowercase__ : int = {'''configuration_vit''': ['''VIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTConfig''', '''ViTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Any = ['''ViTFeatureExtractor'''] lowercase__ : Tuple = ['''ViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : List[Any] = [ '''VIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTForImageClassification''', '''ViTForMaskedImageModeling''', '''ViTModel''', '''ViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Union[str, Any] = [ '''TFViTForImageClassification''', '''TFViTModel''', '''TFViTPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Tuple = [ '''FlaxViTForImageClassification''', '''FlaxViTModel''', '''FlaxViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys lowercase__ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
190
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase__ : int = logging.get_logger(__name__) lowercase__ : int = { '''andreasmadsen/efficient_mlm_m0.40''': ( '''https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''roberta-prelayernorm''' def __init__( self , _UpperCAmelCase=5_0265 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=1 , _UpperCAmelCase=0 , _UpperCAmelCase=2 , _UpperCAmelCase="absolute" , _UpperCAmelCase=True , _UpperCAmelCase=None , **_UpperCAmelCase , ): '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase) __A : Optional[int] = vocab_size __A : List[Any] = hidden_size __A : Optional[int] = num_hidden_layers __A : Optional[Any] = num_attention_heads __A : List[str] = hidden_act __A : Dict = intermediate_size __A : Optional[int] = hidden_dropout_prob __A : Optional[Any] = attention_probs_dropout_prob __A : Tuple = max_position_embeddings __A : Union[str, Any] = type_vocab_size __A : Any = initializer_range __A : str = layer_norm_eps __A : int = position_embedding_type __A : Optional[Any] = use_cache __A : Any = classifier_dropout class SCREAMING_SNAKE_CASE (a__ ): @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' if self.task == "multiple-choice": __A : Dict = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __A : Union[str, Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ])
190
1
"""simple docstring""" import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn.grep_linear""": """encoder.layers.*.attention.gru_rel_pos_linear""", """self_attn.relative_attention_bias""": """encoder.layers.*.attention.rel_attn_embed""", """self_attn.grep_a""": """encoder.layers.*.attention.gru_rel_pos_const""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """ctc_proj""", """mask_emb""": """masked_spec_embed""", } lowerCamelCase__ = [ """ctc_proj""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): for attribute in key.split('.' ): __lowerCAmelCase : str = getattr(_UpperCamelCase , _UpperCamelCase ) if weight_type is not None: __lowerCAmelCase : Optional[int] = getattr(_UpperCamelCase , _UpperCamelCase ).shape else: __lowerCAmelCase : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": __lowerCAmelCase : Union[str, Any] = value elif weight_type == "weight_g": __lowerCAmelCase : Any = value elif weight_type == "weight_v": __lowerCAmelCase : Dict = value elif weight_type == "bias": __lowerCAmelCase : int = value else: __lowerCAmelCase : List[Any] = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : List[str] = [] __lowerCAmelCase : Optional[int] = fairseq_model.state_dict() __lowerCAmelCase : Union[str, Any] = hf_model.feature_extractor for name, value in fairseq_dict.items(): __lowerCAmelCase : Optional[Any] = False if "conv_layers" in name: load_conv_layer( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , hf_model.config.feat_extract_norm == 'group' , ) __lowerCAmelCase : Any = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: __lowerCAmelCase : List[Any] = True if "*" in mapped_key: __lowerCAmelCase : List[Any] = name.split(_UpperCamelCase )[0].split('.' )[-2] __lowerCAmelCase : Tuple = mapped_key.replace('*' , _UpperCamelCase ) if "weight_g" in name: __lowerCAmelCase : Optional[int] = 'weight_g' elif "weight_v" in name: __lowerCAmelCase : Union[str, Any] = 'weight_v' elif "bias" in name and "relative_attention_bias" not in name: __lowerCAmelCase : Union[str, Any] = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowerCAmelCase : List[str] = 'weight' else: __lowerCAmelCase : Optional[Any] = None set_recursively(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) continue if not is_used: unused_weights.append(_UpperCamelCase ) logger.warning(F"Unused weights: {unused_weights}" ) def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : Any = full_name.split('conv_layers.' )[-1] __lowerCAmelCase : List[str] = name.split('.' ) __lowerCAmelCase : Dict = int(items[0] ) __lowerCAmelCase : List[str] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) __lowerCAmelCase : List[Any] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) __lowerCAmelCase : Union[str, Any] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) __lowerCAmelCase : str = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) __lowerCAmelCase : List[str] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(_UpperCamelCase ) @torch.no_grad() def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None ): # load the pre-trained checkpoints __lowerCAmelCase : int = torch.load(_UpperCamelCase ) __lowerCAmelCase : Union[str, Any] = WavLMConfigOrig(checkpoint['cfg'] ) __lowerCAmelCase : Any = WavLMOrig(_UpperCamelCase ) model.load_state_dict(checkpoint['model'] ) model.eval() if config_path is not None: __lowerCAmelCase : Union[str, Any] = WavLMConfig.from_pretrained(_UpperCamelCase ) else: __lowerCAmelCase : List[str] = WavLMConfig() __lowerCAmelCase : List[str] = WavLMModel(_UpperCamelCase ) recursively_load_weights(_UpperCamelCase , _UpperCamelCase ) hf_wavlm.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") lowerCamelCase__ = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
182
"""simple docstring""" import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params lowerCamelCase__ = getLogger(__name__) lowerCamelCase__ = """cuda""" if torch.cuda.is_available() else """cpu""" def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 8 , _UpperCamelCase = DEFAULT_DEVICE , _UpperCamelCase=False , _UpperCamelCase="summarization" , _UpperCamelCase=None , **_UpperCamelCase , ): __lowerCAmelCase : str = Path(_UpperCamelCase ).open('w' , encoding='utf-8' ) __lowerCAmelCase : Union[str, Any] = str(_UpperCamelCase ) __lowerCAmelCase : List[str] = AutoModelForSeqaSeqLM.from_pretrained(_UpperCamelCase ).to(_UpperCamelCase ) if fpaa: __lowerCAmelCase : Optional[Any] = model.half() __lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(_UpperCamelCase ) logger.info(F"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type. __lowerCAmelCase : List[Any] = time.time() # update config with task specific params use_task_specific_params(_UpperCamelCase , _UpperCamelCase ) if prefix is None: __lowerCAmelCase : Optional[int] = prefix or getattr(model.config , 'prefix' , '' ) or '' for examples_chunk in tqdm(list(chunks(_UpperCamelCase , _UpperCamelCase ) ) ): __lowerCAmelCase : List[str] = [prefix + text for text in examples_chunk] __lowerCAmelCase : List[str] = tokenizer(_UpperCamelCase , return_tensors='pt' , truncation=_UpperCamelCase , padding='longest' ).to(_UpperCamelCase ) __lowerCAmelCase : str = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **_UpperCamelCase , ) __lowerCAmelCase : str = tokenizer.batch_decode(_UpperCamelCase , skip_special_tokens=_UpperCamelCase , clean_up_tokenization_spaces=_UpperCamelCase ) for hypothesis in dec: fout.write(hypothesis + '\n' ) fout.flush() fout.close() __lowerCAmelCase : Optional[int] = int(time.time() - start_time ) # seconds __lowerCAmelCase : List[Any] = len(_UpperCamelCase ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def __lowerCAmelCase (): return datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' ) def __lowerCAmelCase (_UpperCamelCase=True ): __lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument('model_name' , type=_UpperCamelCase , help='like facebook/bart-large-cnn,t5-base, etc.' ) parser.add_argument('input_path' , type=_UpperCamelCase , help='like cnn_dm/test.source' ) parser.add_argument('save_path' , type=_UpperCamelCase , help='where to save summaries' ) parser.add_argument('--reference_path' , type=_UpperCamelCase , required=_UpperCamelCase , help='like cnn_dm/test.target' ) parser.add_argument('--score_path' , type=_UpperCamelCase , required=_UpperCamelCase , default='metrics.json' , help='where to save metrics' ) parser.add_argument('--device' , type=_UpperCamelCase , required=_UpperCamelCase , default=_UpperCamelCase , help='cuda, cuda:1, cpu etc.' ) parser.add_argument( '--prefix' , type=_UpperCamelCase , required=_UpperCamelCase , default=_UpperCamelCase , help='will be added to the begininng of src examples' ) parser.add_argument('--task' , type=_UpperCamelCase , default='summarization' , help='used for task_specific_params + metrics' ) parser.add_argument('--bs' , type=_UpperCamelCase , default=8 , required=_UpperCamelCase , help='batch size' ) parser.add_argument( '--n_obs' , type=_UpperCamelCase , default=-1 , required=_UpperCamelCase , help='How many observations. Defaults to all.' ) parser.add_argument('--fp16' , action='store_true' ) parser.add_argument('--dump-args' , action='store_true' , help='print the custom hparams with the results' ) parser.add_argument( '--info' , nargs='?' , type=_UpperCamelCase , const=datetime_now() , help=( 'use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.' ' lang=en-ru. If no value is passed, the current datetime string will be used.' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate __lowerCAmelCase , __lowerCAmelCase : Optional[int] = parser.parse_known_args() __lowerCAmelCase : Optional[int] = parse_numeric_n_bool_cl_kwargs(_UpperCamelCase ) if parsed_args and verbose: print(F"parsed the following generate kwargs: {parsed_args}" ) __lowerCAmelCase : Dict = [' ' + x.rstrip() if 't5' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: __lowerCAmelCase : int = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=_UpperCamelCase ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(F"score_path {args.score_path} will be overwritten unless you type ctrl-c." ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('Can\'t mix --fp16 and --device cpu' ) __lowerCAmelCase : Optional[Any] = generate_summaries_or_translations( _UpperCamelCase , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **_UpperCamelCase , ) if args.reference_path is None: return {} # Compute scores __lowerCAmelCase : str = calculate_bleu if 'translation' in args.task else calculate_rouge __lowerCAmelCase : Dict = [x.rstrip() for x in open(args.save_path ).readlines()] __lowerCAmelCase : Dict = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(_UpperCamelCase )] __lowerCAmelCase : dict = score_fn(_UpperCamelCase , _UpperCamelCase ) scores.update(_UpperCamelCase ) if args.dump_args: scores.update(_UpperCamelCase ) if args.info: __lowerCAmelCase : Optional[Any] = args.info if verbose: print(_UpperCamelCase ) if args.score_path is not None: json.dump(_UpperCamelCase , open(args.score_path , 'w' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
182
1
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = ['vqvae'] def __init__( self , lowercase , lowercase , lowercase , lowercase , ) -> Dict: super().__init__() self.register_modules(unet=lowercase , scheduler=lowercase , mel=lowercase , vqvae=lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> int: return 50 if isinstance(self.scheduler , lowercase ) else 1000 @torch.no_grad() def __call__( self , lowercase = 1 , lowercase = None , lowercase = None , lowercase = 0 , lowercase = 0 , lowercase = None , lowercase = None , lowercase = 0 , lowercase = 0 , lowercase = None , lowercase = 0 , lowercase = None , lowercase = None , lowercase=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: lowerCamelCase_ = steps or self.get_default_steps() self.scheduler.set_timesteps(lowercase ) lowerCamelCase_ = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: lowerCamelCase_ = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: lowerCamelCase_ = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=lowercase , device=self.device , ) lowerCamelCase_ = noise lowerCamelCase_ = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(lowercase , lowercase ) lowerCamelCase_ = self.mel.audio_slice_to_image(lowercase ) lowerCamelCase_ = np.frombuffer(input_image.tobytes() , dtype="uint8" ).reshape( (input_image.height, input_image.width) ) lowerCamelCase_ = (input_image / 255) * 2 - 1 lowerCamelCase_ = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: lowerCamelCase_ = self.vqvae.encode(torch.unsqueeze(lowercase , 0 ) ).latent_dist.sample( generator=lowercase )[0] lowerCamelCase_ = self.vqvae.config.scaling_factor * input_images if start_step > 0: lowerCamelCase_ = self.scheduler.add_noise(lowercase , lowercase , self.scheduler.timesteps[start_step - 1] ) lowerCamelCase_ = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) lowerCamelCase_ = int(mask_start_secs * pixels_per_second ) lowerCamelCase_ = int(mask_end_secs * pixels_per_second ) lowerCamelCase_ = self.scheduler.add_noise(lowercase , lowercase , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , lowercase ): lowerCamelCase_ = self.unet(lowercase , lowercase , lowercase )["sample"] else: lowerCamelCase_ = self.unet(lowercase , lowercase )["sample"] if isinstance(self.scheduler , lowercase ): lowerCamelCase_ = self.scheduler.step( model_output=lowercase , timestep=lowercase , sample=lowercase , eta=lowercase , generator=lowercase , )["prev_sample"] else: lowerCamelCase_ = self.scheduler.step( model_output=lowercase , timestep=lowercase , sample=lowercase , generator=lowercase , )["prev_sample"] if mask is not None: if mask_start > 0: lowerCamelCase_ = mask[:, step, :, :mask_start] if mask_end > 0: lowerCamelCase_ = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance lowerCamelCase_ = 1 / self.vqvae.config.scaling_factor * images lowerCamelCase_ = self.vqvae.decode(lowercase )["sample"] lowerCamelCase_ = (images / 2 + 0.5).clamp(0 , 1 ) lowerCamelCase_ = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() lowerCamelCase_ = (images * 255).round().astype("uint8" ) lowerCamelCase_ = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(lowercase , mode="RGB" ).convert("L" ) for _ in images) ) lowerCamelCase_ = [self.mel.image_to_audio(lowercase ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(lowercase )[:, np.newaxis, :] ) , **ImagePipelineOutput(lowercase ) ) @torch.no_grad() def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = 50 ) -> np.ndarray: assert isinstance(self.scheduler , lowercase ) self.scheduler.set_timesteps(lowercase ) lowerCamelCase_ = np.array( [np.frombuffer(image.tobytes() , dtype="uint8" ).reshape((1, image.height, image.width) ) for image in images] ) lowerCamelCase_ = (sample / 255) * 2 - 1 lowerCamelCase_ = torch.Tensor(lowercase ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): lowerCamelCase_ = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps lowerCamelCase_ = self.scheduler.alphas_cumprod[t] lowerCamelCase_ = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) lowerCamelCase_ = 1 - alpha_prod_t lowerCamelCase_ = self.unet(lowercase , lowercase )["sample"] lowerCamelCase_ = (1 - alpha_prod_t_prev) ** 0.5 * model_output lowerCamelCase_ = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) lowerCamelCase_ = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def SCREAMING_SNAKE_CASE_( lowercase , lowercase , lowercase ) -> torch.Tensor: lowerCamelCase_ = acos(torch.dot(torch.flatten(lowercase ) , torch.flatten(lowercase ) ) / torch.norm(lowercase ) / torch.norm(lowercase ) ) return sin((1 - alpha) * theta ) * xa / sin(lowercase ) + sin(alpha * theta ) * xa / sin(lowercase )
19
"""simple docstring""" import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def _UpperCAmelCase ( __lowerCamelCase : Tuple ) -> Optional[int]: _snake_case = checkpoints.load_tax_checkpoint(__lowerCamelCase ) _snake_case = flatten_dict(__lowerCamelCase ) return flax_params def _UpperCAmelCase ( __lowerCamelCase : Dict ) -> Optional[int]: _snake_case = {} _snake_case = { '''token_embedder''': '''embeddings''', '''encoder_norm''': '''layernorm''', '''kernel''': '''weight''', '''.out''': '''.output''', '''scale''': '''weight''', '''embedders_0.pos_embedding''': '''row_embedder.weight''', '''embedders_1.pos_embedding''': '''column_embedder.weight''', } _snake_case = { '''query''': '''attention.query''', '''key''': '''attention.key''', '''value''': '''attention.value''', '''output.dense''': '''output''', '''encoder_decoder_attention.o''': '''encoder_decoder_attention.attention.o''', '''pre_self_attention_layer_norm''': '''self_attention.layer_norm''', '''pre_cross_attention_layer_norm''': '''encoder_decoder_attention.layer_norm''', '''mlp.''': '''mlp.DenseReluDense.''', '''pre_mlp_layer_norm''': '''mlp.layer_norm''', '''self_attention.o''': '''self_attention.attention.o''', '''decoder.embeddings.embedding''': '''decoder.embed_tokens.weight''', '''decoder.relpos_bias.rel_embedding''': '''decoder.layer.0.self_attention.attention.relative_attention_bias.weight''', '''decoder.decoder_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.logits_dense.weight''': '''decoder.lm_head.weight''', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key _snake_case = '''.'''.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): _snake_case = new_key.replace(__lowerCamelCase , __lowerCamelCase ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): _snake_case = new_key.replace(__lowerCamelCase , __lowerCamelCase ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number _snake_case = re.sub(R'''layers_(\d+)''' , R'''layer.\1''' , __lowerCamelCase ) _snake_case = new_key.replace('''encoder''' , '''encoder.encoder''' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number _snake_case = re.sub(R'''layers_(\d+)''' , R'''layer.\1''' , __lowerCamelCase ) _snake_case = flax_dict[key] _snake_case = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): _snake_case = torch.from_numpy(converted_dict[key].T ) else: _snake_case = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def _UpperCAmelCase ( __lowerCamelCase : List[str] , __lowerCamelCase : Dict , __lowerCamelCase : Any=False , __lowerCamelCase : Optional[int]=False ) -> int: _snake_case = get_flax_param(__lowerCamelCase ) if not use_large: _snake_case = PixaStructVisionConfig() _snake_case = PixaStructTextConfig() else: _snake_case = PixaStructVisionConfig( hidden_size=15_36 , d_ff=39_68 , num_attention_heads=24 , num_hidden_layers=18 ) _snake_case = PixaStructTextConfig(hidden_size=15_36 , d_ff=39_68 , num_heads=24 , num_layers=18 ) _snake_case = PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=__lowerCamelCase ) _snake_case = PixaStructForConditionalGeneration(__lowerCamelCase ) _snake_case = rename_and_convert_flax_params(__lowerCamelCase ) model.load_state_dict(__lowerCamelCase ) _snake_case = AutoTokenizer.from_pretrained('''ybelkada/test-pix2struct-tokenizer''' ) _snake_case = PixaStructImageProcessor() _snake_case = PixaStructProcessor(image_processor=__lowerCamelCase , tokenizer=__lowerCamelCase ) if use_large: _snake_case = 40_96 _snake_case = True # mkdir if needed os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) print('''Model saved in {}'''.format(__lowerCamelCase ) ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument('--t5x_checkpoint_path', default=None, type=str, help='Path to the original T5x checkpoint.') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--use_large', action='store_true', help='Use large model.') parser.add_argument('--is_vqa', action='store_true', help='Use large model.') UpperCAmelCase__ = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
288
0
"""simple docstring""" from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES A_ = logging.get_logger(__name__) A_ = OrderedDict( [ # Base model mapping ('''albert''', '''FlaxAlbertModel'''), ('''bart''', '''FlaxBartModel'''), ('''beit''', '''FlaxBeitModel'''), ('''bert''', '''FlaxBertModel'''), ('''big_bird''', '''FlaxBigBirdModel'''), ('''blenderbot''', '''FlaxBlenderbotModel'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallModel'''), ('''clip''', '''FlaxCLIPModel'''), ('''distilbert''', '''FlaxDistilBertModel'''), ('''electra''', '''FlaxElectraModel'''), ('''gpt-sw3''', '''FlaxGPT2Model'''), ('''gpt2''', '''FlaxGPT2Model'''), ('''gpt_neo''', '''FlaxGPTNeoModel'''), ('''gptj''', '''FlaxGPTJModel'''), ('''longt5''', '''FlaxLongT5Model'''), ('''marian''', '''FlaxMarianModel'''), ('''mbart''', '''FlaxMBartModel'''), ('''mt5''', '''FlaxMT5Model'''), ('''opt''', '''FlaxOPTModel'''), ('''pegasus''', '''FlaxPegasusModel'''), ('''regnet''', '''FlaxRegNetModel'''), ('''resnet''', '''FlaxResNetModel'''), ('''roberta''', '''FlaxRobertaModel'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormModel'''), ('''roformer''', '''FlaxRoFormerModel'''), ('''t5''', '''FlaxT5Model'''), ('''vision-text-dual-encoder''', '''FlaxVisionTextDualEncoderModel'''), ('''vit''', '''FlaxViTModel'''), ('''wav2vec2''', '''FlaxWav2Vec2Model'''), ('''whisper''', '''FlaxWhisperModel'''), ('''xglm''', '''FlaxXGLMModel'''), ('''xlm-roberta''', '''FlaxXLMRobertaModel'''), ] ) A_ = OrderedDict( [ # Model for pre-training mapping ('''albert''', '''FlaxAlbertForPreTraining'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForPreTraining'''), ('''big_bird''', '''FlaxBigBirdForPreTraining'''), ('''electra''', '''FlaxElectraForPreTraining'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ('''wav2vec2''', '''FlaxWav2Vec2ForPreTraining'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) A_ = OrderedDict( [ # Model for Masked LM mapping ('''albert''', '''FlaxAlbertForMaskedLM'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForMaskedLM'''), ('''big_bird''', '''FlaxBigBirdForMaskedLM'''), ('''distilbert''', '''FlaxDistilBertForMaskedLM'''), ('''electra''', '''FlaxElectraForMaskedLM'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) A_ = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''blenderbot''', '''FlaxBlenderbotForConditionalGeneration'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallForConditionalGeneration'''), ('''encoder-decoder''', '''FlaxEncoderDecoderModel'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''marian''', '''FlaxMarianMTModel'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''pegasus''', '''FlaxPegasusForConditionalGeneration'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ] ) A_ = OrderedDict( [ # Model for Image-classsification ('''beit''', '''FlaxBeitForImageClassification'''), ('''regnet''', '''FlaxRegNetForImageClassification'''), ('''resnet''', '''FlaxResNetForImageClassification'''), ('''vit''', '''FlaxViTForImageClassification'''), ] ) A_ = OrderedDict( [ ('''vision-encoder-decoder''', '''FlaxVisionEncoderDecoderModel'''), ] ) A_ = OrderedDict( [ # Model for Causal LM mapping ('''bart''', '''FlaxBartForCausalLM'''), ('''bert''', '''FlaxBertForCausalLM'''), ('''big_bird''', '''FlaxBigBirdForCausalLM'''), ('''electra''', '''FlaxElectraForCausalLM'''), ('''gpt-sw3''', '''FlaxGPT2LMHeadModel'''), ('''gpt2''', '''FlaxGPT2LMHeadModel'''), ('''gpt_neo''', '''FlaxGPTNeoForCausalLM'''), ('''gptj''', '''FlaxGPTJForCausalLM'''), ('''opt''', '''FlaxOPTForCausalLM'''), ('''roberta''', '''FlaxRobertaForCausalLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForCausalLM'''), ('''xglm''', '''FlaxXGLMForCausalLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForCausalLM'''), ] ) A_ = OrderedDict( [ # Model for Sequence Classification mapping ('''albert''', '''FlaxAlbertForSequenceClassification'''), ('''bart''', '''FlaxBartForSequenceClassification'''), ('''bert''', '''FlaxBertForSequenceClassification'''), ('''big_bird''', '''FlaxBigBirdForSequenceClassification'''), ('''distilbert''', '''FlaxDistilBertForSequenceClassification'''), ('''electra''', '''FlaxElectraForSequenceClassification'''), ('''mbart''', '''FlaxMBartForSequenceClassification'''), ('''roberta''', '''FlaxRobertaForSequenceClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForSequenceClassification'''), ('''roformer''', '''FlaxRoFormerForSequenceClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForSequenceClassification'''), ] ) A_ = OrderedDict( [ # Model for Question Answering mapping ('''albert''', '''FlaxAlbertForQuestionAnswering'''), ('''bart''', '''FlaxBartForQuestionAnswering'''), ('''bert''', '''FlaxBertForQuestionAnswering'''), ('''big_bird''', '''FlaxBigBirdForQuestionAnswering'''), ('''distilbert''', '''FlaxDistilBertForQuestionAnswering'''), ('''electra''', '''FlaxElectraForQuestionAnswering'''), ('''mbart''', '''FlaxMBartForQuestionAnswering'''), ('''roberta''', '''FlaxRobertaForQuestionAnswering'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForQuestionAnswering'''), ('''roformer''', '''FlaxRoFormerForQuestionAnswering'''), ('''xlm-roberta''', '''FlaxXLMRobertaForQuestionAnswering'''), ] ) A_ = OrderedDict( [ # Model for Token Classification mapping ('''albert''', '''FlaxAlbertForTokenClassification'''), ('''bert''', '''FlaxBertForTokenClassification'''), ('''big_bird''', '''FlaxBigBirdForTokenClassification'''), ('''distilbert''', '''FlaxDistilBertForTokenClassification'''), ('''electra''', '''FlaxElectraForTokenClassification'''), ('''roberta''', '''FlaxRobertaForTokenClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForTokenClassification'''), ('''roformer''', '''FlaxRoFormerForTokenClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForTokenClassification'''), ] ) A_ = OrderedDict( [ # Model for Multiple Choice mapping ('''albert''', '''FlaxAlbertForMultipleChoice'''), ('''bert''', '''FlaxBertForMultipleChoice'''), ('''big_bird''', '''FlaxBigBirdForMultipleChoice'''), ('''distilbert''', '''FlaxDistilBertForMultipleChoice'''), ('''electra''', '''FlaxElectraForMultipleChoice'''), ('''roberta''', '''FlaxRobertaForMultipleChoice'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMultipleChoice'''), ('''roformer''', '''FlaxRoFormerForMultipleChoice'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMultipleChoice'''), ] ) A_ = OrderedDict( [ ('''bert''', '''FlaxBertForNextSentencePrediction'''), ] ) A_ = OrderedDict( [ ('''speech-encoder-decoder''', '''FlaxSpeechEncoderDecoderModel'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ] ) A_ = OrderedDict( [ ('''whisper''', '''FlaxWhisperForAudioClassification'''), ] ) A_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) A_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) A_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) A_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) A_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) A_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) A_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) A_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) A_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) A_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) A_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) A_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) A_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) A_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class __SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): snake_case_ = FLAX_MODEL_MAPPING A_ = auto_class_update(FlaxAutoModel) class __SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): snake_case_ = FLAX_MODEL_FOR_PRETRAINING_MAPPING A_ = auto_class_update(FlaxAutoModelForPreTraining, head_doc='''pretraining''') class __SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): snake_case_ = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING A_ = auto_class_update(FlaxAutoModelForCausalLM, head_doc='''causal language modeling''') class __SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): snake_case_ = FLAX_MODEL_FOR_MASKED_LM_MAPPING A_ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='''masked language modeling''') class __SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): snake_case_ = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING A_ = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='''sequence-to-sequence language modeling''', checkpoint_for_example='''t5-base''' ) class __SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): snake_case_ = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING A_ = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='''sequence classification''' ) class __SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): snake_case_ = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING A_ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='''question answering''') class __SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): snake_case_ = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING A_ = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='''token classification''' ) class __SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): snake_case_ = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING A_ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='''multiple choice''') class __SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): snake_case_ = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING A_ = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='''next sentence prediction''' ) class __SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): snake_case_ = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING A_ = auto_class_update( FlaxAutoModelForImageClassification, head_doc='''image classification''' ) class __SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): snake_case_ = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING A_ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='''vision-to-text modeling''') class __SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): snake_case_ = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING A_ = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='''sequence-to-sequence speech-to-text modeling''' )
351
"""simple docstring""" import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class __SCREAMING_SNAKE_CASE : def __init__( self : Optional[int] , snake_case : Optional[Any] , snake_case : Tuple=13 , snake_case : Dict=7 , snake_case : Optional[int]=True , snake_case : Union[str, Any]=True , snake_case : Dict=True , snake_case : Any=True , snake_case : List[str]=99 , snake_case : str=64 , snake_case : Optional[int]=5 , snake_case : str=4 , snake_case : List[Any]=37 , snake_case : Optional[Any]="gelu" , snake_case : List[str]=0.1 , snake_case : str=0.1 , snake_case : Optional[int]=512 , snake_case : Dict=16 , snake_case : List[Any]=2 , snake_case : Optional[int]=0.02 , snake_case : Any=3 , snake_case : Union[str, Any]=4 , snake_case : Dict=None , ): '''simple docstring''' A__ : Tuple = parent A__ : Union[str, Any] = batch_size A__ : List[str] = seq_length A__ : Optional[int] = is_training A__ : Dict = use_input_mask A__ : Any = use_token_type_ids A__ : Optional[Any] = use_labels A__ : List[str] = vocab_size A__ : Optional[int] = hidden_size A__ : Optional[Any] = num_hidden_layers A__ : Any = num_attention_heads A__ : List[Any] = intermediate_size A__ : Optional[Any] = hidden_act A__ : Optional[int] = hidden_dropout_prob A__ : Tuple = attention_probs_dropout_prob A__ : str = max_position_embeddings A__ : List[str] = type_vocab_size A__ : Union[str, Any] = type_sequence_label_size A__ : List[Any] = initializer_range A__ : Optional[int] = num_labels A__ : Dict = num_choices A__ : Dict = scope A__ : List[Any] = vocab_size - 1 def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' A__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : List[Any] = None if self.use_input_mask: A__ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) A__ : Union[str, Any] = None if self.use_labels: A__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ : Tuple = self.get_config() return config, input_ids, input_mask, token_labels def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def _UpperCamelCase ( self : List[str] ): '''simple docstring''' A__ , A__ , A__ , A__ : str = self.prepare_config_and_inputs() A__ : Union[str, Any] = True return config, input_ids, input_mask, token_labels def _UpperCamelCase ( self : Union[str, Any] , snake_case : Optional[int] , snake_case : List[str] , snake_case : int ): '''simple docstring''' A__ : Any = GPTNeoXModel(config=snake_case ) model.to(snake_case ) model.eval() A__ : int = model(snake_case , attention_mask=snake_case ) A__ : Optional[int] = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self : Union[str, Any] , snake_case : str , snake_case : Any , snake_case : Union[str, Any] ): '''simple docstring''' A__ : int = True A__ : str = GPTNeoXModel(snake_case ) model.to(snake_case ) model.eval() A__ : Tuple = model(snake_case , attention_mask=snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self : Dict , snake_case : List[Any] , snake_case : str , snake_case : Optional[Any] , snake_case : Any ): '''simple docstring''' A__ : Any = GPTNeoXForCausalLM(config=snake_case ) model.to(snake_case ) model.eval() A__ : Tuple = model(snake_case , attention_mask=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self : List[str] , snake_case : Optional[Any] , snake_case : Optional[Any] , snake_case : Union[str, Any] , snake_case : Tuple ): '''simple docstring''' A__ : int = self.num_labels A__ : int = GPTNeoXForQuestionAnswering(snake_case ) model.to(snake_case ) model.eval() A__ : Optional[Any] = model(snake_case , attention_mask=snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCamelCase ( self : str , snake_case : Tuple , snake_case : int , snake_case : int , snake_case : Dict ): '''simple docstring''' A__ : List[Any] = self.num_labels A__ : Tuple = GPTNeoXForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() A__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ : List[str] = model(snake_case , attention_mask=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self : Any , snake_case : Union[str, Any] , snake_case : int , snake_case : Tuple , snake_case : Any ): '''simple docstring''' A__ : Tuple = self.num_labels A__ : Any = GPTNeoXForTokenClassification(snake_case ) model.to(snake_case ) model.eval() A__ : Dict = model(snake_case , attention_mask=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCamelCase ( self : List[str] , snake_case : List[str] , snake_case : Tuple , snake_case : Any ): '''simple docstring''' A__ : Optional[int] = True A__ : Any = GPTNeoXForCausalLM(config=snake_case ) model.to(snake_case ) model.eval() # first forward pass A__ : Tuple = model(snake_case , attention_mask=snake_case , use_cache=snake_case ) A__ : str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids A__ : Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) A__ : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and A__ : Any = torch.cat([input_ids, next_tokens] , dim=-1 ) A__ : Any = torch.cat([input_mask, next_mask] , dim=-1 ) A__ : Tuple = model(snake_case , attention_mask=snake_case , output_hidden_states=snake_case ) A__ : List[Any] = output_from_no_past["""hidden_states"""][0] A__ : List[str] = model( snake_case , attention_mask=snake_case , past_key_values=snake_case , output_hidden_states=snake_case , )["""hidden_states"""][0] # select random slice A__ : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item() A__ : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() A__ : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case , snake_case , atol=1e-3 ) ) def _UpperCamelCase ( self : str ): '''simple docstring''' A__ : str = self.prepare_config_and_inputs() A__ , A__ , A__ , A__ : Dict = config_and_inputs A__ : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , unittest.TestCase ): snake_case_ = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) snake_case_ = (GPTNeoXForCausalLM,) if is_torch_available() else () snake_case_ = ( { 'feature-extraction': GPTNeoXModel, 'question-answering': GPTNeoXForQuestionAnswering, 'text-classification': GPTNeoXForSequenceClassification, 'text-generation': GPTNeoXForCausalLM, 'token-classification': GPTNeoXForTokenClassification, 'zero-shot': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' A__ : Any = GPTNeoXModelTester(self ) A__ : Any = ConfigTester(self , config_class=snake_case , hidden_size=64 , num_attention_heads=8 ) def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def _UpperCamelCase ( self : Any ): '''simple docstring''' A__ , A__ , A__ , A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(snake_case , snake_case , snake_case ) def _UpperCamelCase ( self : Dict ): '''simple docstring''' A__ , A__ , A__ , A__ : Dict = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(snake_case , snake_case , snake_case ) def _UpperCamelCase ( self : Dict ): '''simple docstring''' A__ , A__ , A__ , A__ : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() A__ : Optional[Any] = None self.model_tester.create_and_check_model_as_decoder(snake_case , snake_case , snake_case ) def _UpperCamelCase ( self : str ): '''simple docstring''' A__ , A__ , A__ , A__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(snake_case , snake_case , snake_case ) def _UpperCamelCase ( self : Optional[Any] ): '''simple docstring''' A__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*snake_case ) def _UpperCamelCase ( self : List[str] ): '''simple docstring''' A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case ) def _UpperCamelCase ( self : str ): '''simple docstring''' A__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case ) def _UpperCamelCase ( self : str ): '''simple docstring''' A__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case ) @unittest.skip(reason="""Feed forward chunking is not implemented""" ) def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def _UpperCamelCase ( self : Optional[Any] , snake_case : Optional[Any] ): '''simple docstring''' A__ , A__ : int = self.model_tester.prepare_config_and_inputs_for_common() A__ : List[Any] = ids_tensor([1, 10] , config.vocab_size ) A__ : str = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights A__ : Union[str, Any] = GPTNeoXModel(snake_case ) original_model.to(snake_case ) original_model.eval() A__ : Optional[int] = original_model(snake_case ).last_hidden_state A__ : List[str] = original_model(snake_case ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights A__ : Optional[int] = {"""type""": scaling_type, """factor""": 10.0} A__ : Optional[int] = GPTNeoXModel(snake_case ) scaled_model.to(snake_case ) scaled_model.eval() A__ : List[str] = scaled_model(snake_case ).last_hidden_state A__ : Tuple = scaled_model(snake_case ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(snake_case , snake_case , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(snake_case , snake_case , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(snake_case , snake_case , atol=1e-5 ) ) @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ : Any = AutoTokenizer.from_pretrained("""EleutherAI/pythia-410m-deduped""" ) for checkpointing in [True, False]: A__ : Optional[Any] = GPTNeoXForCausalLM.from_pretrained("""EleutherAI/pythia-410m-deduped""" ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(snake_case ) A__ : Optional[Any] = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(snake_case ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 A__ : Union[str, Any] = """My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI'm not sure""" A__ : Tuple = model.generate(**snake_case , do_sample=snake_case , max_new_tokens=20 ) A__ : Tuple = tokenizer.batch_decode(snake_case )[0] self.assertEqual(snake_case , snake_case )
296
0
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax UpperCamelCase = logging.get_logger(__name__) @add_end_docstrings(__A ) class snake_case_ ( __A ): def __init__( self : List[Any] , **lowercase_ : Union[str, Any] ) -> Tuple: super().__init__(**lowercase_ ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Optional[int] , lowercase_ : Union[str, List[str], "Image", List["Image"]] , **lowercase_ : str ) -> Optional[int]: return super().__call__(lowercase_ , **lowercase_ ) def __UpperCamelCase ( self : Any , **lowercase_ : Tuple ) -> Optional[Any]: lowercase__ : List[Any] = {} if "candidate_labels" in kwargs: lowercase__ : int = kwargs["candidate_labels"] if "hypothesis_template" in kwargs: lowercase__ : Dict = kwargs["hypothesis_template"] return preprocess_params, {}, {} def __UpperCamelCase ( self : str , lowercase_ : List[Any] , lowercase_ : Tuple=None , lowercase_ : List[str]="This is a photo of {}." ) -> Tuple: lowercase__ : str = load_image(lowercase_ ) lowercase__ : List[Any] = self.image_processor(images=[image] , return_tensors=self.framework ) lowercase__ : Optional[int] = candidate_labels lowercase__ : Optional[Any] = [hypothesis_template.format(lowercase_ ) for x in candidate_labels] lowercase__ : Union[str, Any] = self.tokenizer(lowercase_ , return_tensors=self.framework , padding=lowercase_ ) lowercase__ : int = [text_inputs] return inputs def __UpperCamelCase ( self : Dict , lowercase_ : List[Any] ) -> Optional[int]: lowercase__ : Tuple = model_inputs.pop("candidate_labels" ) lowercase__ : List[Any] = model_inputs.pop("text_inputs" ) if isinstance(text_inputs[0] , lowercase_ ): lowercase__ : List[str] = text_inputs[0] else: # Batching case. lowercase__ : Any = text_inputs[0][0] lowercase__ : List[str] = self.model(**lowercase_ , **lowercase_ ) lowercase__ : str = { "candidate_labels": candidate_labels, "logits": outputs.logits_per_image, } return model_outputs def __UpperCamelCase ( self : str , lowercase_ : int ) -> List[Any]: lowercase__ : Any = model_outputs.pop("candidate_labels" ) lowercase__ : Tuple = model_outputs["logits"][0] if self.framework == "pt": lowercase__ : List[str] = logits.softmax(dim=-1 ).squeeze(-1 ) lowercase__ : str = probs.tolist() if not isinstance(lowercase_ , lowercase_ ): lowercase__ : Union[str, Any] = [scores] elif self.framework == "tf": lowercase__ : Optional[Any] = stable_softmax(lowercase_ , axis=-1 ) lowercase__ : List[Any] = probs.numpy().tolist() else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) lowercase__ : Optional[Any] = [ {"score": score, "label": candidate_label} for score, candidate_label in sorted(zip(lowercase_ , lowercase_ ) , key=lambda lowercase_ : -x[0] ) ] return result
87
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _A = { 'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'], 'tokenization_convbert': ['ConvBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ['ConvBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvBertForMaskedLM', 'ConvBertForMultipleChoice', 'ConvBertForQuestionAnswering', 'ConvBertForSequenceClassification', 'ConvBertForTokenClassification', 'ConvBertLayer', 'ConvBertModel', 'ConvBertPreTrainedModel', 'load_tf_weights_in_convbert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFConvBertForMaskedLM', 'TFConvBertForMultipleChoice', 'TFConvBertForQuestionAnswering', 'TFConvBertForSequenceClassification', 'TFConvBertForTokenClassification', 'TFConvBertLayer', 'TFConvBertModel', 'TFConvBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
62
0
import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets __A = "\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" __A = "\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n" __A = "\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=[\"About 95 species are currently accepted .\"]\n >>> predictions=[\"About 95 you now get in .\"]\n >>> references=[[\"About 95 species are currently known .\"]]\n >>> wiki_split = datasets.load_metric(\"wiki_split\")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0}\n" def lowerCamelCase_ ( UpperCamelCase__ : List[str] ) -> Dict: """simple docstring""" def remove_articles(UpperCamelCase__ : Any ): __lowerCamelCase = re.compile(R'\b(a|an|the)\b' , re.UNICODE ) return re.sub(UpperCamelCase__ , ' ' , UpperCamelCase__ ) def white_space_fix(UpperCamelCase__ : Optional[int] ): return " ".join(text.split() ) def remove_punc(UpperCamelCase__ : List[Any] ): __lowerCamelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(UpperCamelCase__ : Tuple ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(UpperCamelCase__ ) ) ) ) def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : Dict ) -> Union[str, Any]: """simple docstring""" return int(normalize_answer(UpperCamelCase__ ) == normalize_answer(UpperCamelCase__ ) ) def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : str ) -> int: """simple docstring""" __lowerCamelCase = [any(compute_exact(UpperCamelCase__ , UpperCamelCase__ ) for ref in refs ) for pred, refs in zip(UpperCamelCase__ , UpperCamelCase__ )] return (sum(UpperCamelCase__ ) / len(UpperCamelCase__ )) * 100 def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[Any] ) -> List[str]: """simple docstring""" __lowerCamelCase = [rgram for rgrams in rgramslist for rgram in rgrams] __lowerCamelCase = Counter(UpperCamelCase__ ) __lowerCamelCase = Counter(UpperCamelCase__ ) __lowerCamelCase = Counter() for sgram, scount in sgramcounter.items(): __lowerCamelCase = scount * numref __lowerCamelCase = Counter(UpperCamelCase__ ) __lowerCamelCase = Counter() for cgram, ccount in cgramcounter.items(): __lowerCamelCase = ccount * numref # KEEP __lowerCamelCase = sgramcounter_rep & cgramcounter_rep __lowerCamelCase = keepgramcounter_rep & rgramcounter __lowerCamelCase = sgramcounter_rep & rgramcounter __lowerCamelCase = 0 __lowerCamelCase = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. __lowerCamelCase = 1 __lowerCamelCase = 1 if len(UpperCamelCase__ ) > 0: __lowerCamelCase = keeptmpscorea / len(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) __lowerCamelCase = keeptmpscorea / sum(keepgramcounterall_rep.values() ) __lowerCamelCase = 0 if keepscore_precision > 0 or keepscore_recall > 0: __lowerCamelCase = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION __lowerCamelCase = sgramcounter_rep - cgramcounter_rep __lowerCamelCase = delgramcounter_rep - rgramcounter __lowerCamelCase = sgramcounter_rep - rgramcounter __lowerCamelCase = 0 __lowerCamelCase = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. __lowerCamelCase = 1 if len(UpperCamelCase__ ) > 0: __lowerCamelCase = deltmpscorea / len(UpperCamelCase__ ) # ADDITION __lowerCamelCase = set(UpperCamelCase__ ) - set(UpperCamelCase__ ) __lowerCamelCase = set(UpperCamelCase__ ) & set(UpperCamelCase__ ) __lowerCamelCase = set(UpperCamelCase__ ) - set(UpperCamelCase__ ) __lowerCamelCase = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. __lowerCamelCase = 1 __lowerCamelCase = 1 if len(UpperCamelCase__ ) > 0: __lowerCamelCase = addtmpscore / len(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: __lowerCamelCase = addtmpscore / len(UpperCamelCase__ ) __lowerCamelCase = 0 if addscore_precision > 0 or addscore_recall > 0: __lowerCamelCase = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[Any] ) -> List[Any]: """simple docstring""" __lowerCamelCase = len(UpperCamelCase__ ) __lowerCamelCase = ssent.split(' ' ) __lowerCamelCase = csent.split(' ' ) __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = [] for rsent in rsents: __lowerCamelCase = rsent.split(' ' ) __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = [] ragramslist.append(UpperCamelCase__ ) for i in range(0 , len(UpperCamelCase__ ) - 1 ): if i < len(UpperCamelCase__ ) - 1: __lowerCamelCase = ragrams[i] + ' ' + ragrams[i + 1] ragrams.append(UpperCamelCase__ ) if i < len(UpperCamelCase__ ) - 2: __lowerCamelCase = ragrams[i] + ' ' + ragrams[i + 1] + ' ' + ragrams[i + 2] ragrams.append(UpperCamelCase__ ) if i < len(UpperCamelCase__ ) - 3: __lowerCamelCase = ragrams[i] + ' ' + ragrams[i + 1] + ' ' + ragrams[i + 2] + ' ' + ragrams[i + 3] ragrams.append(UpperCamelCase__ ) ragramslist.append(UpperCamelCase__ ) ragramslist.append(UpperCamelCase__ ) ragramslist.append(UpperCamelCase__ ) for i in range(0 , len(UpperCamelCase__ ) - 1 ): if i < len(UpperCamelCase__ ) - 1: __lowerCamelCase = sagrams[i] + ' ' + sagrams[i + 1] sagrams.append(UpperCamelCase__ ) if i < len(UpperCamelCase__ ) - 2: __lowerCamelCase = sagrams[i] + ' ' + sagrams[i + 1] + ' ' + sagrams[i + 2] sagrams.append(UpperCamelCase__ ) if i < len(UpperCamelCase__ ) - 3: __lowerCamelCase = sagrams[i] + ' ' + sagrams[i + 1] + ' ' + sagrams[i + 2] + ' ' + sagrams[i + 3] sagrams.append(UpperCamelCase__ ) for i in range(0 , len(UpperCamelCase__ ) - 1 ): if i < len(UpperCamelCase__ ) - 1: __lowerCamelCase = cagrams[i] + ' ' + cagrams[i + 1] cagrams.append(UpperCamelCase__ ) if i < len(UpperCamelCase__ ) - 2: __lowerCamelCase = cagrams[i] + ' ' + cagrams[i + 1] + ' ' + cagrams[i + 2] cagrams.append(UpperCamelCase__ ) if i < len(UpperCamelCase__ ) - 3: __lowerCamelCase = cagrams[i] + ' ' + cagrams[i + 1] + ' ' + cagrams[i + 2] + ' ' + cagrams[i + 3] cagrams.append(UpperCamelCase__ ) ((__lowerCamelCase) , (__lowerCamelCase) , (__lowerCamelCase)) = SARIngram(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ((__lowerCamelCase) , (__lowerCamelCase) , (__lowerCamelCase)) = SARIngram(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ((__lowerCamelCase) , (__lowerCamelCase) , (__lowerCamelCase)) = SARIngram(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ((__lowerCamelCase) , (__lowerCamelCase) , (__lowerCamelCase)) = SARIngram(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 __lowerCamelCase = sum([delascore, delascore, delascore, delascore] ) / 4 __lowerCamelCase = sum([addascore, addascore, addascore, addascore] ) / 4 __lowerCamelCase = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def lowerCamelCase_ ( UpperCamelCase__ : Dict , UpperCamelCase__ : bool = True , UpperCamelCase__ : str = "13a" , UpperCamelCase__ : bool = True ) -> List[str]: """simple docstring""" if lowercase: __lowerCamelCase = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: __lowerCamelCase = sacrebleu.metrics.bleu._get_tokenizer(UpperCamelCase__ )()(UpperCamelCase__ ) else: __lowerCamelCase = sacrebleu.TOKENIZERS[tokenizer]()(UpperCamelCase__ ) elif tokenizer == "moses": __lowerCamelCase = sacremoses.MosesTokenizer().tokenize(UpperCamelCase__ , return_str=UpperCamelCase__ , escape=UpperCamelCase__ ) elif tokenizer == "penn": __lowerCamelCase = sacremoses.MosesTokenizer().penn_tokenize(UpperCamelCase__ , return_str=UpperCamelCase__ ) else: __lowerCamelCase = sentence if not return_str: __lowerCamelCase = normalized_sent.split() return normalized_sent def lowerCamelCase_ ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] ) -> int: """simple docstring""" if not (len(UpperCamelCase__ ) == len(UpperCamelCase__ ) == len(UpperCamelCase__ )): raise ValueError('Sources length must match predictions and references lengths.' ) __lowerCamelCase = 0 for src, pred, refs in zip(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): sari_score += SARIsent(normalize(UpperCamelCase__ ) , normalize(UpperCamelCase__ ) , [normalize(UpperCamelCase__ ) for sent in refs] ) __lowerCamelCase = sari_score / len(UpperCamelCase__ ) return 100 * sari_score def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str]="exp" , UpperCamelCase__ : int=None , UpperCamelCase__ : List[Any]=False , UpperCamelCase__ : Any=False , UpperCamelCase__ : Union[str, Any]=False , ) -> List[str]: """simple docstring""" __lowerCamelCase = len(references[0] ) if any(len(UpperCamelCase__ ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) __lowerCamelCase = [[refs[i] for refs in references] for i in range(UpperCamelCase__ )] __lowerCamelCase = sacrebleu.corpus_bleu( UpperCamelCase__ , UpperCamelCase__ , smooth_method=UpperCamelCase__ , smooth_value=UpperCamelCase__ , force=UpperCamelCase__ , lowercase=UpperCamelCase__ , use_effective_order=UpperCamelCase__ , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): """simple docstring""" def lowercase_ ( self ) -> Any: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=[ 'https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py', 'https://github.com/cocoxu/simplification/blob/master/SARI.py', 'https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py', 'https://github.com/mjpost/sacreBLEU', ] , reference_urls=[ 'https://www.aclweb.org/anthology/Q16-1029.pdf', 'https://github.com/mjpost/sacreBLEU', 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: '''simple docstring''' __lowerCamelCase = {} result.update({'sari': compute_sari(sources=lowerCamelCase__ , predictions=lowerCamelCase__ , references=lowerCamelCase__ )} ) result.update({'sacrebleu': compute_sacrebleu(predictions=lowerCamelCase__ , references=lowerCamelCase__ )} ) result.update({'exact': compute_em(predictions=lowerCamelCase__ , references=lowerCamelCase__ )} ) return result
354
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=2 , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=10 , lowerCamelCase__=3 , lowerCamelCase__=32 * 8 , lowerCamelCase__=32 * 8 , lowerCamelCase__=4 , lowerCamelCase__=64 , ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = is_training __lowerCamelCase = use_auxiliary_loss __lowerCamelCase = num_queries __lowerCamelCase = num_channels __lowerCamelCase = min_size __lowerCamelCase = max_size __lowerCamelCase = num_labels __lowerCamelCase = hidden_dim __lowerCamelCase = hidden_dim def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( lowerCamelCase__ ) __lowerCamelCase = torch.ones([self.batch_size, self.min_size, self.max_size] , device=lowerCamelCase__ ) __lowerCamelCase = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=lowerCamelCase__ ) > 0.5 ).float() __lowerCamelCase = (torch.rand((self.batch_size, self.num_labels) , device=lowerCamelCase__ ) > 0.5).long() __lowerCamelCase = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = MaskaFormerConfig( hidden_size=self.hidden_dim , ) __lowerCamelCase = self.num_queries __lowerCamelCase = self.num_labels __lowerCamelCase = [1, 1, 1, 1] __lowerCamelCase = self.num_channels __lowerCamelCase = 64 __lowerCamelCase = 128 __lowerCamelCase = self.hidden_dim __lowerCamelCase = self.hidden_dim __lowerCamelCase = self.hidden_dim return config def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Any: '''simple docstring''' __lowerCamelCase = output.encoder_hidden_states __lowerCamelCase = output.pixel_decoder_hidden_states __lowerCamelCase = output.transformer_decoder_hidden_states self.parent.assertTrue(len(lowerCamelCase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCamelCase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCamelCase__ ) , config.decoder_layers ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=False ) -> Tuple: '''simple docstring''' with torch.no_grad(): __lowerCamelCase = MaskaFormerModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ ) __lowerCamelCase = model(lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: '''simple docstring''' __lowerCamelCase = MaskaFormerForUniversalSegmentation(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() def comm_check_on_output(lowerCamelCase__ ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): __lowerCamelCase = model(pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ ) __lowerCamelCase = model(lowerCamelCase__ ) comm_check_on_output(lowerCamelCase__ ) __lowerCamelCase = model( pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ) comm_check_on_output(lowerCamelCase__ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () snake_case_ = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {} snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = MaskaFormerModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' self.config_tester.run_common_tests() def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(lowerCamelCase__ , **lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*lowerCamelCase__ ) @unittest.skip(reason='Mask2Former does not use inputs_embeds' ) def lowercase_ ( self ) -> Any: '''simple docstring''' pass @unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' pass @unittest.skip(reason='Mask2Former is not a generative model' ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason='Mask2Former does not use token embeddings' ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def lowercase_ ( self ) -> Dict: '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase_ ( self ) -> List[str]: '''simple docstring''' pass def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(lowerCamelCase__ ) __lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase = [*signature.parameters.keys()] __lowerCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) @slow def lowercase_ ( self ) -> int: '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: __lowerCamelCase = MaskaFormerModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = (self.model_tester.min_size,) * 2 __lowerCamelCase = { 'pixel_values': torch.randn((2, 3, *size) , device=lowerCamelCase__ ), 'mask_labels': torch.randn((2, 10, *size) , device=lowerCamelCase__ ), 'class_labels': torch.zeros(2 , 10 , device=lowerCamelCase__ ).long(), } __lowerCamelCase = self.model_tester.get_config() __lowerCamelCase = MaskaFormerForUniversalSegmentation(lowerCamelCase__ ).to(lowerCamelCase__ ) __lowerCamelCase = model(**lowerCamelCase__ ) self.assertTrue(outputs.loss is not None ) def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(lowerCamelCase__ , **lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(lowerCamelCase__ ).to(lowerCamelCase__ ) __lowerCamelCase = model(**lowerCamelCase__ , output_attentions=lowerCamelCase__ ) self.assertTrue(outputs.attentions is not None ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' if not self.model_tester.is_training: return __lowerCamelCase = self.all_model_classes[1] __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs() __lowerCamelCase = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.train() __lowerCamelCase = model(lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ).loss loss.backward() def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = self.all_model_classes[1] __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs() __lowerCamelCase = True __lowerCamelCase = True __lowerCamelCase = model_class(lowerCamelCase__ ).to(lowerCamelCase__ ) model.train() __lowerCamelCase = model(lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ) __lowerCamelCase = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() __lowerCamelCase = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() __lowerCamelCase = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() __lowerCamelCase = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=lowerCamelCase__ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __A = 1e-4 def lowerCamelCase_ ( ) -> List[Any]: """simple docstring""" __lowerCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase_ ( self ) -> List[str]: '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def lowercase_ ( self ) -> Dict: '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ) __lowerCamelCase = self.default_image_processor __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(lowerCamelCase__ , return_tensors='pt' ).to(lowerCamelCase__ ) __lowerCamelCase = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCamelCase__ , (1, 3, 384, 384) ) with torch.no_grad(): __lowerCamelCase = model(**lowerCamelCase__ ) __lowerCamelCase = torch.tensor( [[-0.27_90, -1.07_17, -1.16_68], [-0.51_28, -0.31_28, -0.49_87], [-0.58_32, 0.19_71, -0.01_97]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) __lowerCamelCase = torch.tensor( [[0.89_73, 1.18_47, 1.17_76], [1.19_34, 1.50_40, 1.51_28], [1.11_53, 1.44_86, 1.49_51]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) __lowerCamelCase = torch.tensor( [[2.11_52, 1.70_00, -0.86_03], [1.58_08, 1.80_04, -0.93_53], [1.60_43, 1.74_95, -0.59_99]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ).eval() __lowerCamelCase = self.default_image_processor __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(lowerCamelCase__ , return_tensors='pt' ).to(lowerCamelCase__ ) __lowerCamelCase = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCamelCase__ , (1, 3, 384, 384) ) with torch.no_grad(): __lowerCamelCase = model(**lowerCamelCase__ ) # masks_queries_logits __lowerCamelCase = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) __lowerCamelCase = [ [-8.78_39, -9.00_56, -8.81_21], [-7.41_04, -7.03_13, -6.54_01], [-6.61_05, -6.34_27, -6.46_75], ] __lowerCamelCase = torch.tensor(lowerCamelCase__ ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) # class_queries_logits __lowerCamelCase = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) __lowerCamelCase = torch.tensor( [ [1.83_24, -8.08_35, -4.19_22], [0.84_50, -9.00_50, -3.60_53], [0.30_45, -7.72_93, -3.02_75], ] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ).eval() __lowerCamelCase = self.default_image_processor __lowerCamelCase = image_processor( [np.zeros((3, 800, 1_333) ), np.zeros((3, 800, 1_333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='pt' , ) __lowerCamelCase = inputs['pixel_values'].to(lowerCamelCase__ ) __lowerCamelCase = [el.to(lowerCamelCase__ ) for el in inputs['mask_labels']] __lowerCamelCase = [el.to(lowerCamelCase__ ) for el in inputs['class_labels']] with torch.no_grad(): __lowerCamelCase = model(**lowerCamelCase__ ) self.assertTrue(outputs.loss is not None )
348
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCamelCase : Tuple = { "uw-madison/mra-base-512-4": "https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json", } class SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ): """simple docstring""" _SCREAMING_SNAKE_CASE = "mra" def __init__( self : List[str] , UpperCamelCase__ : int=5_0_2_6_5 , UpperCamelCase__ : Union[str, Any]=7_6_8 , UpperCamelCase__ : List[Any]=1_2 , UpperCamelCase__ : str=1_2 , UpperCamelCase__ : int=3_0_7_2 , UpperCamelCase__ : str="gelu" , UpperCamelCase__ : List[str]=0.1 , UpperCamelCase__ : Union[str, Any]=0.1 , UpperCamelCase__ : Optional[int]=5_1_2 , UpperCamelCase__ : Union[str, Any]=1 , UpperCamelCase__ : List[Any]=0.0_2 , UpperCamelCase__ : str=1E-5 , UpperCamelCase__ : int="absolute" , UpperCamelCase__ : int=4 , UpperCamelCase__ : str="full" , UpperCamelCase__ : Optional[Any]=0 , UpperCamelCase__ : Any=0 , UpperCamelCase__ : List[str]=1 , UpperCamelCase__ : Union[str, Any]=0 , UpperCamelCase__ : Union[str, Any]=2 , **UpperCamelCase__ : Optional[Any] , ): """simple docstring""" super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ ) UpperCamelCase = vocab_size UpperCamelCase = max_position_embeddings UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = initializer_range UpperCamelCase = type_vocab_size UpperCamelCase = layer_norm_eps UpperCamelCase = position_embedding_type UpperCamelCase = block_per_row UpperCamelCase = approx_mode UpperCamelCase = initial_prior_first_n_blocks UpperCamelCase = initial_prior_diagonal_n_blocks
28
'''simple docstring''' import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging __UpperCAmelCase =logging.get_logger(__name__) def __lowerCAmelCase ( UpperCamelCase__=None , UpperCamelCase__=None ) -> int: return field(default_factory=lambda: default , metadata=UpperCamelCase__ ) @dataclass class a__ : lowerCamelCase : List[str] =list_field( default=[] , metadata={ "help": ( "Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version" " of all available models" ) } , ) lowerCamelCase : List[int] =list_field( default=[8] , metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"} ) lowerCamelCase : List[int] =list_field( default=[8, 3_2, 1_2_8, 5_1_2] , metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"} , ) lowerCamelCase : bool =field( default=UpperCAmelCase__ , metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."} , ) lowerCamelCase : bool =field( default=UpperCAmelCase__ , metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."} , ) lowerCamelCase : bool =field( default=UpperCAmelCase__ , metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."} ) lowerCamelCase : bool =field(default=UpperCAmelCase__ , metadata={"help": "Use FP16 to accelerate inference."} ) lowerCamelCase : bool =field(default=UpperCAmelCase__ , metadata={"help": "Benchmark training of model"} ) lowerCamelCase : bool =field(default=UpperCAmelCase__ , metadata={"help": "Verbose memory tracing"} ) lowerCamelCase : bool =field( default=UpperCAmelCase__ , metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."} , ) lowerCamelCase : bool =field( default=UpperCAmelCase__ , metadata={ "help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory" } , ) lowerCamelCase : bool =field(default=UpperCAmelCase__ , metadata={"help": "Trace memory line by line"} ) lowerCamelCase : bool =field(default=UpperCAmelCase__ , metadata={"help": "Save result to a CSV file"} ) lowerCamelCase : bool =field(default=UpperCAmelCase__ , metadata={"help": "Save all print statements in a log file"} ) lowerCamelCase : bool =field(default=UpperCAmelCase__ , metadata={"help": "Whether to print environment information"} ) lowerCamelCase : bool =field( default=UpperCAmelCase__ , metadata={ "help": ( "Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use" " multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled" " for debugging / testing and on TPU." ) } , ) lowerCamelCase : str =field( default=F'''inference_time_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving time results to csv."} , ) lowerCamelCase : str =field( default=F'''inference_memory_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving memory results to csv."} , ) lowerCamelCase : str =field( default=F'''train_time_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving time results to csv for training."} , ) lowerCamelCase : str =field( default=F'''train_memory_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving memory results to csv for training."} , ) lowerCamelCase : str =field( default=F'''env_info_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving environment information."} , ) lowerCamelCase : str =field( default=F'''log_{round(time() )}.csv''' , metadata={"help": "Log filename used if print statements are saved in log."} , ) lowerCamelCase : int =field(default=3 , metadata={"help": "Times an experiment will be run."} ) lowerCamelCase : bool =field( default=UpperCAmelCase__ , metadata={ "help": ( "Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain" " model weights." ) } , ) def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" warnings.warn( f"""The class {self.__class__} is deprecated. Hugging Face Benchmarking utils""" ''' are deprecated in general and it is advised to use external Benchmarking libraries ''' ''' to benchmark Transformer models.''' , a , ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" if len(self.models ) <= 0: raise ValueError( '''Please make sure you provide at least one model name / model identifier, *e.g.* `--models''' ''' bert-base-cased` or `args.models = [\'bert-base-cased\'].''' ) return self.models @property def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" if not self.multi_process: return False elif self.is_tpu: logger.info('''Multiprocessing is currently not possible on TPU.''' ) return False else: return True
67
0
def lowerCAmelCase_ (lowerCAmelCase__: int ): """simple docstring""" UpperCAmelCase_: Tuple = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
82
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer a : List[str] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} a : str = { 'vocab_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt' ), 'google/electra-base-generator': 'https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt', 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json' ), 'google/electra-base-generator': ( 'https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json' ), 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json' ), }, } a : Dict = { 'google/electra-small-generator': 512, 'google/electra-base-generator': 512, 'google/electra-large-generator': 512, 'google/electra-small-discriminator': 512, 'google/electra-base-discriminator': 512, 'google/electra-large-discriminator': 512, } a : Optional[Any] = { 'google/electra-small-generator': {'do_lower_case': True}, 'google/electra-base-generator': {'do_lower_case': True}, 'google/electra-large-generator': {'do_lower_case': True}, 'google/electra-small-discriminator': {'do_lower_case': True}, 'google/electra-base-discriminator': {'do_lower_case': True}, 'google/electra-large-discriminator': {'do_lower_case': True}, } class _a ( _lowerCAmelCase ): A = VOCAB_FILES_NAMES A = PRETRAINED_VOCAB_FILES_MAP A = PRETRAINED_INIT_CONFIGURATION A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = ElectraTokenizer def __init__(self, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_="[UNK]", SCREAMING_SNAKE_CASE_="[SEP]", SCREAMING_SNAKE_CASE_="[PAD]", SCREAMING_SNAKE_CASE_="[CLS]", SCREAMING_SNAKE_CASE_="[MASK]", SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=None, **SCREAMING_SNAKE_CASE_, ) -> Optional[int]: super().__init__( SCREAMING_SNAKE_CASE_, tokenizer_file=SCREAMING_SNAKE_CASE_, do_lower_case=SCREAMING_SNAKE_CASE_, unk_token=SCREAMING_SNAKE_CASE_, sep_token=SCREAMING_SNAKE_CASE_, pad_token=SCREAMING_SNAKE_CASE_, cls_token=SCREAMING_SNAKE_CASE_, mask_token=SCREAMING_SNAKE_CASE_, tokenize_chinese_chars=SCREAMING_SNAKE_CASE_, strip_accents=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, ) UpperCAmelCase_: List[str] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""", SCREAMING_SNAKE_CASE_ ) != do_lower_case or normalizer_state.get("""strip_accents""", SCREAMING_SNAKE_CASE_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""", SCREAMING_SNAKE_CASE_ ) != tokenize_chinese_chars ): UpperCAmelCase_: Optional[int] = getattr(SCREAMING_SNAKE_CASE_, normalizer_state.pop("""type""" ) ) UpperCAmelCase_: Union[str, Any] = do_lower_case UpperCAmelCase_: Dict = strip_accents UpperCAmelCase_: List[Any] = tokenize_chinese_chars UpperCAmelCase_: int = normalizer_class(**SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Tuple = do_lower_case def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=None ) -> Optional[Any]: UpperCAmelCase_: Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> List[int]: UpperCAmelCase_: Optional[int] = [self.sep_token_id] UpperCAmelCase_: Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: UpperCAmelCase_: Tuple = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_, name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ )
82
1
'''simple docstring''' import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __UpperCAmelCase ( _lowerCamelCase , unittest.TestCase ): __lowercase = GPTaTokenizer __lowercase = GPTaTokenizerFast __lowercase = True __lowercase = {'''add_prefix_space''': True} __lowercase = False def lowerCamelCase ( self ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _snake_case = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', '''<|endoftext|>''', ] _snake_case = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) ) _snake_case = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] _snake_case = {'''unk_token''': '''<unk>'''} _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE__ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(SCREAMING_SNAKE_CASE__ ) ) def lowerCamelCase ( self , **lowerCAmelCase_ ): """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def lowerCamelCase ( self , **lowerCAmelCase_ ): """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = '''lower newer''' _snake_case = '''lower newer''' return input_text, output_text def lowerCamelCase ( self ): """simple docstring""" _snake_case = GPTaTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _snake_case = '''lower newer''' _snake_case = ['''\u0120low''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] _snake_case = tokenizer.tokenize(SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case = tokens + [tokenizer.unk_token] _snake_case = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) def lowerCamelCase ( self ): """simple docstring""" if not self.test_rust_tokenizer: return _snake_case = self.get_tokenizer() _snake_case = self.get_rust_tokenizer(add_prefix_space=SCREAMING_SNAKE_CASE__ ) _snake_case = '''lower newer''' # Testing tokenization _snake_case = tokenizer.tokenize(SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ ) _snake_case = rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Testing conversion to ids without special tokens _snake_case = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ ) _snake_case = rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Testing conversion to ids with special tokens _snake_case = self.get_rust_tokenizer(add_prefix_space=SCREAMING_SNAKE_CASE__ ) _snake_case = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ ) _snake_case = rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Testing the unknown token _snake_case = tokens + [rust_tokenizer.unk_token] _snake_case = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) def lowerCamelCase ( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" pass def lowerCamelCase ( self , lowerCAmelCase_=15 ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): _snake_case = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) # Simple input _snake_case = '''This is a simple input''' _snake_case = ['''This is a simple input 1''', '''This is a simple input 2'''] _snake_case = ('''This is a simple input''', '''This is a pair''') _snake_case = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(SCREAMING_SNAKE_CASE__ , tokenizer_r.encode , SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , padding='max_length' ) # Simple input self.assertRaises(SCREAMING_SNAKE_CASE__ , tokenizer_r.encode_plus , SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , padding='max_length' ) # Simple input self.assertRaises( SCREAMING_SNAKE_CASE__ , tokenizer_r.batch_encode_plus , SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , padding='max_length' , ) # Pair input self.assertRaises(SCREAMING_SNAKE_CASE__ , tokenizer_r.encode , SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , padding='max_length' ) # Pair input self.assertRaises(SCREAMING_SNAKE_CASE__ , tokenizer_r.encode_plus , SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , padding='max_length' ) # Pair input self.assertRaises( SCREAMING_SNAKE_CASE__ , tokenizer_r.batch_encode_plus , SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , padding='max_length' , ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = GPTaTokenizer.from_pretrained(self.tmpdirname , pad_token='<pad>' ) # Simple input _snake_case = '''This is a simple input''' _snake_case = ['''This is a simple input looooooooong''', '''This is a simple input'''] _snake_case = ('''This is a simple input''', '''This is a pair''') _snake_case = [ ('''This is a simple input loooooong''', '''This is a simple input'''), ('''This is a simple pair loooooong''', '''This is a simple pair'''), ] _snake_case = tokenizer.pad_token_id _snake_case = tokenizer(SCREAMING_SNAKE_CASE__ , padding='max_length' , max_length=30 , return_tensors='np' ) _snake_case = tokenizer(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , truncate=SCREAMING_SNAKE_CASE__ , return_tensors='np' ) _snake_case = tokenizer(*SCREAMING_SNAKE_CASE__ , padding='max_length' , max_length=60 , return_tensors='np' ) _snake_case = tokenizer(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , truncate=SCREAMING_SNAKE_CASE__ , return_tensors='np' ) # s # test single string max_length padding self.assertEqual(out_s['input_ids'].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s['input_ids'] ) self.assertTrue(0 in out_s['attention_mask'] ) # s2 # test automatic padding self.assertEqual(out_sa['input_ids'].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['input_ids'][0] ) self.assertFalse(0 in out_sa['attention_mask'][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['input_ids'][1] ) self.assertTrue(0 in out_sa['attention_mask'][1] ) # p # test single pair max_length padding self.assertEqual(out_p['input_ids'].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p['input_ids'] ) self.assertTrue(0 in out_p['attention_mask'] ) # p2 # test automatic padding pair self.assertEqual(out_pa['input_ids'].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['input_ids'][0] ) self.assertFalse(0 in out_pa['attention_mask'][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['input_ids'][1] ) self.assertTrue(0 in out_pa['attention_mask'][1] ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = '''$$$''' _snake_case = GPTaTokenizer.from_pretrained(self.tmpdirname , bos_token=SCREAMING_SNAKE_CASE__ , add_bos_token=SCREAMING_SNAKE_CASE__ ) _snake_case = '''This is a simple input''' _snake_case = ['''This is a simple input 1''', '''This is a simple input 2'''] _snake_case = tokenizer.bos_token_id _snake_case = tokenizer(SCREAMING_SNAKE_CASE__ ) _snake_case = tokenizer(SCREAMING_SNAKE_CASE__ ) self.assertEqual(out_s.input_ids[0] , SCREAMING_SNAKE_CASE__ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _snake_case = tokenizer.decode(out_s.input_ids ) _snake_case = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , SCREAMING_SNAKE_CASE__ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def lowerCamelCase ( self ): """simple docstring""" pass def lowerCamelCase ( self ): """simple docstring""" _snake_case = [self.get_tokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , add_bos_token=SCREAMING_SNAKE_CASE__ )] for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): _snake_case = '''Encode this.''' _snake_case = '''This one too please.''' _snake_case = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) encoded_sequence += tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) _snake_case = tokenizer.encode_plus( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_special_tokens_mask=SCREAMING_SNAKE_CASE__ , ) _snake_case = encoded_sequence_dict['''input_ids'''] _snake_case = encoded_sequence_dict['''special_tokens_mask'''] self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) ) _snake_case = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(SCREAMING_SNAKE_CASE__ ) ] _snake_case = [x for x in filtered_sequence if x is not None] self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @require_tokenizers class __UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self ): """simple docstring""" _snake_case = AutoTokenizer.from_pretrained('facebook/opt-350m' , from_slow=SCREAMING_SNAKE_CASE__ ) _snake_case = '''A photo of a cat''' _snake_case = tokenizer.encode( SCREAMING_SNAKE_CASE__ , ) self.assertEqual(SCREAMING_SNAKE_CASE__ , [2, 2_50, 13_45, 9, 10, 47_58] ) tokenizer.save_pretrained('test_opt' ) _snake_case = AutoTokenizer.from_pretrained('./test_opt' ) _snake_case = tokenizer.encode( SCREAMING_SNAKE_CASE__ , ) self.assertEqual(SCREAMING_SNAKE_CASE__ , [2, 2_50, 13_45, 9, 10, 47_58] ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = AutoTokenizer.from_pretrained('facebook/opt-350m' , use_slow=SCREAMING_SNAKE_CASE__ ) _snake_case = '''A photo of a cat''' _snake_case = tokenizer.encode( SCREAMING_SNAKE_CASE__ , ) # Same as above self.assertEqual(SCREAMING_SNAKE_CASE__ , [2, 2_50, 13_45, 9, 10, 47_58] ) @unittest.skip('This test is failing because of a bug in the fast tokenizer' ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = AutoTokenizer.from_pretrained('facebook/opt-350m' , from_slow=SCREAMING_SNAKE_CASE__ ) _snake_case = '''bos''' _snake_case = tokenizer.get_vocab()['''bos'''] _snake_case = '''A photo of a cat''' _snake_case = tokenizer.encode( SCREAMING_SNAKE_CASE__ , ) # We changed the bos token self.assertEqual(SCREAMING_SNAKE_CASE__ , [3_19_57, 2_50, 13_45, 9, 10, 47_58] ) tokenizer.save_pretrained('./tok' ) _snake_case = AutoTokenizer.from_pretrained('./tok' ) self.assertTrue(tokenizer.is_fast ) _snake_case = tokenizer.encode( SCREAMING_SNAKE_CASE__ , ) self.assertEqual(SCREAMING_SNAKE_CASE__ , [3_19_57, 2_50, 13_45, 9, 10, 47_58] )
42
"""simple docstring""" from typing import Any def __lowerCamelCase ( a_ : list ) -> list[Any]: if not input_list: return [] __SCREAMING_SNAKE_CASE :int = [input_list.count(a_ ) for value in input_list] __SCREAMING_SNAKE_CASE :str = max(a_ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(a_ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
191
0
'''simple docstring''' import operator as op _SCREAMING_SNAKE_CASE = "scaler.pt" _SCREAMING_SNAKE_CASE = "pytorch_model" _SCREAMING_SNAKE_CASE = "random_states" _SCREAMING_SNAKE_CASE = "optimizer" _SCREAMING_SNAKE_CASE = "scheduler" _SCREAMING_SNAKE_CASE = "pytorch_model.bin" _SCREAMING_SNAKE_CASE = "pytorch_model.bin.index.json" _SCREAMING_SNAKE_CASE = "model.safetensors" _SCREAMING_SNAKE_CASE = "model.safetensors.index.json" _SCREAMING_SNAKE_CASE = "1.10.2" _SCREAMING_SNAKE_CASE = "py38" _SCREAMING_SNAKE_CASE = "4.17.0" _SCREAMING_SNAKE_CASE = ["ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.p4dn.24xlarge"] _SCREAMING_SNAKE_CASE = ["FULL_SHARD", "SHARD_GRAD_OP", "NO_SHARD", "HYBRID_SHARD", "HYBRID_SHARD_ZERO2"] _SCREAMING_SNAKE_CASE = ["TRANSFORMER_BASED_WRAP", "SIZE_BASED_WRAP", "NO_WRAP"] _SCREAMING_SNAKE_CASE = ["BACKWARD_PRE", "BACKWARD_POST", "NO_PREFETCH"] _SCREAMING_SNAKE_CASE = ["FULL_STATE_DICT", "LOCAL_STATE_DICT", "SHARDED_STATE_DICT"] _SCREAMING_SNAKE_CASE = "2.0.1" _SCREAMING_SNAKE_CASE = ["pdsh", "standard", "openmpi", "mvapich"] _SCREAMING_SNAKE_CASE = ["default", "reduce-overhead", "max-autotune"] _SCREAMING_SNAKE_CASE = {">": op.gt, ">=": op.ge, "==": op.eq, "!=": op.ne, "<=": op.le, "<": op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 _SCREAMING_SNAKE_CASE = [ "nnodes", "nproc_per_node", "rdzv_backend", "rdzv_endpoint", "rdzv_id", "rdzv_conf", "standalone", "max_restarts", "monitor_interval", "start_method", "role", "module", "m", "no_python", "run_path", "log_dir", "r", "redirects", "t", "tee", "node_rank", "master_addr", "master_port", ] _SCREAMING_SNAKE_CASE = ["DEEPSPEED", "MULTI_GPU", "FSDP", "MEGATRON_LM"] _SCREAMING_SNAKE_CASE = ["DEEPSPEED", "MULTI_XPU", "FSDP"]
3
'''simple docstring''' import requests from bsa import BeautifulSoup def __lowerCamelCase ( __lowerCAmelCase : str = "https://www.worldometers.info/coronavirus" ) -> dict: snake_case = BeautifulSoup(requests.get(__lowerCAmelCase ).text , """html.parser""" ) snake_case = soup.findAll("""h1""" ) snake_case = soup.findAll("""div""" , {"""class""": """maincounter-number"""} ) keys += soup.findAll("""span""" , {"""class""": """panel-title"""} ) values += soup.findAll("""div""" , {"""class""": """number-table-main"""} ) return {key.text.strip(): value.text.strip() for key, value in zip(__lowerCAmelCase , __lowerCAmelCase )} if __name__ == "__main__": print("\033[1m" + "COVID-19 Status of the World" + "\033[0m\n") for key, value in world_covidaa_stats().items(): print(F"""{key}\n{value}\n""")
3
1
'''simple docstring''' def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ ): def count_of_possible_combinations(snake_case__ ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(snake_case__ ) def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ ): def count_of_possible_combinations_with_dp_array( snake_case__ , snake_case__ ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] __UpperCamelCase : Any = sum( count_of_possible_combinations_with_dp_array(target - item , snake_case__ ) for item in array ) __UpperCamelCase : List[str] = answer return answer __UpperCamelCase : Optional[int] = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(snake_case__ , snake_case__ ) def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ ): __UpperCamelCase : Optional[int] = [0] * (target + 1) __UpperCamelCase : Tuple = 1 for i in range(1 , target + 1 ): for j in range(snake_case__ ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase = 3 _lowerCAmelCase = 5 _lowerCAmelCase = [1, 2, 5] print(combination_sum_iv(n, array, target))
298
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig _lowerCAmelCase = logging.get_logger(__name__) # General docstring _lowerCAmelCase = '''RegNetConfig''' # Base docstring _lowerCAmelCase = '''facebook/regnet-y-040''' _lowerCAmelCase = [1, 1088, 7, 7] # Image classification docstring _lowerCAmelCase = '''facebook/regnet-y-040''' _lowerCAmelCase = '''tabby, tabby cat''' _lowerCAmelCase = [ '''facebook/regnet-y-040''', # See all regnet models at https://huggingface.co/models?filter=regnet ] class A ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self , _UpperCAmelCase , _UpperCAmelCase = 3 , _UpperCAmelCase = 1 , _UpperCAmelCase = 1 , _UpperCAmelCase = "relu" , **_UpperCAmelCase , ) -> Optional[int]: super().__init__(**_UpperCAmelCase ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb __UpperCamelCase : List[Any] = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) __UpperCamelCase : Tuple = tf.keras.layers.ConvaD( filters=_UpperCAmelCase , kernel_size=_UpperCAmelCase , strides=_UpperCAmelCase , padding="VALID" , groups=_UpperCAmelCase , use_bias=_UpperCAmelCase , name="convolution" , ) __UpperCamelCase : int = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) __UpperCamelCase : List[str] = ACTaFN[activation] if activation is not None else tf.identity def a_ (self , _UpperCAmelCase ) -> Dict: __UpperCamelCase : str = self.convolution(self.padding(_UpperCAmelCase ) ) __UpperCamelCase : Dict = self.normalization(_UpperCAmelCase ) __UpperCamelCase : Dict = self.activation(_UpperCAmelCase ) return hidden_state class A ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self , _UpperCAmelCase , **_UpperCAmelCase ) -> Optional[Any]: super().__init__(**_UpperCAmelCase ) __UpperCamelCase : Any = config.num_channels __UpperCamelCase : str = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="embedder" , ) def a_ (self , _UpperCAmelCase ) -> Tuple: __UpperCamelCase : Dict = shape_list(_UpperCAmelCase )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) __UpperCamelCase : Any = tf.transpose(_UpperCAmelCase , perm=(0, 2, 3, 1) ) __UpperCamelCase : List[Any] = self.embedder(_UpperCAmelCase ) return hidden_state class A ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self , _UpperCAmelCase , _UpperCAmelCase = 2 , **_UpperCAmelCase ) -> Any: super().__init__(**_UpperCAmelCase ) __UpperCamelCase : Any = tf.keras.layers.ConvaD( filters=_UpperCAmelCase , kernel_size=1 , strides=_UpperCAmelCase , use_bias=_UpperCAmelCase , name="convolution" ) __UpperCamelCase : Tuple = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase = False ) -> tf.Tensor: return self.normalization(self.convolution(_UpperCAmelCase ) , training=_UpperCAmelCase ) class A ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) -> Any: super().__init__(**_UpperCAmelCase ) __UpperCamelCase : List[str] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=_UpperCAmelCase , name="pooler" ) __UpperCamelCase : Optional[Any] = [ tf.keras.layers.ConvaD(filters=_UpperCAmelCase , kernel_size=1 , activation="relu" , name="attention.0" ), tf.keras.layers.ConvaD(filters=_UpperCAmelCase , kernel_size=1 , activation="sigmoid" , name="attention.2" ), ] def a_ (self , _UpperCAmelCase ) -> Tuple: # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] __UpperCamelCase : List[str] = self.pooler(_UpperCAmelCase ) for layer_module in self.attention: __UpperCamelCase : str = layer_module(_UpperCAmelCase ) __UpperCamelCase : List[Any] = hidden_state * pooled return hidden_state class A ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 1 , **_UpperCAmelCase ) -> int: super().__init__(**_UpperCAmelCase ) __UpperCamelCase : List[Any] = in_channels != out_channels or stride != 1 __UpperCamelCase : List[str] = max(1 , out_channels // config.groups_width ) __UpperCamelCase : List[Any] = ( TFRegNetShortCut(_UpperCAmelCase , stride=_UpperCAmelCase , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. __UpperCamelCase : Optional[Any] = [ TFRegNetConvLayer(_UpperCAmelCase , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( _UpperCAmelCase , stride=_UpperCAmelCase , groups=_UpperCAmelCase , activation=config.hidden_act , name="layer.1" ), TFRegNetConvLayer(_UpperCAmelCase , kernel_size=1 , activation=_UpperCAmelCase , name="layer.2" ), ] __UpperCamelCase : Dict = ACTaFN[config.hidden_act] def a_ (self , _UpperCAmelCase ) -> Union[str, Any]: __UpperCamelCase : List[Any] = hidden_state for layer_module in self.layers: __UpperCamelCase : Dict = layer_module(_UpperCAmelCase ) __UpperCamelCase : List[Any] = self.shortcut(_UpperCAmelCase ) hidden_state += residual __UpperCamelCase : Tuple = self.activation(_UpperCAmelCase ) return hidden_state class A ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 1 , **_UpperCAmelCase ) -> Any: super().__init__(**_UpperCAmelCase ) __UpperCamelCase : str = in_channels != out_channels or stride != 1 __UpperCamelCase : Optional[int] = max(1 , out_channels // config.groups_width ) __UpperCamelCase : Union[str, Any] = ( TFRegNetShortCut(_UpperCAmelCase , stride=_UpperCAmelCase , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) __UpperCamelCase : Union[str, Any] = [ TFRegNetConvLayer(_UpperCAmelCase , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( _UpperCAmelCase , stride=_UpperCAmelCase , groups=_UpperCAmelCase , activation=config.hidden_act , name="layer.1" ), TFRegNetSELayer(_UpperCAmelCase , reduced_channels=int(round(in_channels / 4 ) ) , name="layer.2" ), TFRegNetConvLayer(_UpperCAmelCase , kernel_size=1 , activation=_UpperCAmelCase , name="layer.3" ), ] __UpperCamelCase : Union[str, Any] = ACTaFN[config.hidden_act] def a_ (self , _UpperCAmelCase ) -> int: __UpperCamelCase : str = hidden_state for layer_module in self.layers: __UpperCamelCase : Any = layer_module(_UpperCAmelCase ) __UpperCamelCase : Optional[Any] = self.shortcut(_UpperCAmelCase ) hidden_state += residual __UpperCamelCase : Union[str, Any] = self.activation(_UpperCAmelCase ) return hidden_state class A ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 2 , _UpperCAmelCase = 2 , **_UpperCAmelCase ) -> int: super().__init__(**_UpperCAmelCase ) __UpperCamelCase : List[str] = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer __UpperCamelCase : Tuple = [ # downsampling is done in the first layer with stride of 2 layer(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase , name="layers.0" ), *[layer(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , name=f"layers.{i+1}" ) for i in range(depth - 1 )], ] def a_ (self , _UpperCAmelCase ) -> Any: for layer_module in self.layers: __UpperCamelCase : Dict = layer_module(_UpperCAmelCase ) return hidden_state class A ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self , _UpperCAmelCase , **_UpperCAmelCase ) -> str: super().__init__(**_UpperCAmelCase ) __UpperCamelCase : Dict = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( _UpperCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="stages.0" , ) ) __UpperCamelCase : Union[str, Any] = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(_UpperCAmelCase , config.depths[1:] ) ): self.stages.append(TFRegNetStage(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , depth=_UpperCAmelCase , name=f"stages.{i+1}" ) ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase = False , _UpperCAmelCase = True ) -> TFBaseModelOutputWithNoAttention: __UpperCamelCase : List[Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __UpperCamelCase : Any = hidden_states + (hidden_state,) __UpperCamelCase : Any = stage_module(_UpperCAmelCase ) if output_hidden_states: __UpperCamelCase : List[Any] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=_UpperCAmelCase , hidden_states=_UpperCAmelCase ) @keras_serializable class A ( tf.keras.layers.Layer ): '''simple docstring''' A = RegNetConfig def __init__(self , _UpperCAmelCase , **_UpperCAmelCase ) -> List[Any]: super().__init__(**_UpperCAmelCase ) __UpperCamelCase : Optional[int] = config __UpperCamelCase : List[Any] = TFRegNetEmbeddings(_UpperCAmelCase , name="embedder" ) __UpperCamelCase : Union[str, Any] = TFRegNetEncoder(_UpperCAmelCase , name="encoder" ) __UpperCamelCase : Optional[Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=_UpperCAmelCase , name="pooler" ) @unpack_inputs def a_ (self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = False , ) -> TFBaseModelOutputWithPoolingAndNoAttention: __UpperCamelCase : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __UpperCamelCase : Dict = return_dict if return_dict is not None else self.config.use_return_dict __UpperCamelCase : Union[str, Any] = self.embedder(_UpperCAmelCase , training=_UpperCAmelCase ) __UpperCamelCase : str = self.encoder( _UpperCAmelCase , output_hidden_states=_UpperCAmelCase , return_dict=_UpperCAmelCase , training=_UpperCAmelCase ) __UpperCamelCase : List[str] = encoder_outputs[0] __UpperCamelCase : Tuple = self.pooler(_UpperCAmelCase ) # Change to NCHW output format have uniformity in the modules __UpperCamelCase : List[str] = tf.transpose(_UpperCAmelCase , perm=(0, 3, 1, 2) ) __UpperCamelCase : List[Any] = tf.transpose(_UpperCAmelCase , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: __UpperCamelCase : List[str] = tuple([tf.transpose(_UpperCAmelCase , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_UpperCAmelCase , pooler_output=_UpperCAmelCase , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class A ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A = RegNetConfig A = "regnet" A = "pixel_values" @property def a_ (self ) -> List[Any]: return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_2_4, 2_2_4) , dtype=tf.floataa )} _lowerCAmelCase = R''' Parameters: This model is a Tensorflow [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior. config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. ''' _lowerCAmelCase = R''' Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConveNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , SCREAMING_SNAKE_CASE__ , ) class A ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__(self , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) -> Tuple: super().__init__(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) __UpperCamelCase : Optional[Any] = TFRegNetMainLayer(_UpperCAmelCase , name="regnet" ) @unpack_inputs @add_start_docstrings_to_model_forward(_UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_UpperCAmelCase , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase=False , ) -> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: __UpperCamelCase : List[str] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __UpperCamelCase : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict __UpperCamelCase : Tuple = self.regnet( pixel_values=_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , return_dict=_UpperCAmelCase , training=_UpperCAmelCase , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , SCREAMING_SNAKE_CASE__ , ) class A ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__(self , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) -> int: super().__init__(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) __UpperCamelCase : Optional[Any] = config.num_labels __UpperCamelCase : Any = TFRegNetMainLayer(_UpperCAmelCase , name="regnet" ) # classification head __UpperCamelCase : List[str] = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="classifier.1" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(_UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_UpperCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def a_ (self , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase=False , ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: __UpperCamelCase : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __UpperCamelCase : str = return_dict if return_dict is not None else self.config.use_return_dict __UpperCamelCase : Dict = self.regnet( _UpperCAmelCase , output_hidden_states=_UpperCAmelCase , return_dict=_UpperCAmelCase , training=_UpperCAmelCase ) __UpperCamelCase : Union[str, Any] = outputs.pooler_output if return_dict else outputs[1] __UpperCamelCase : List[str] = self.classifier[0](_UpperCAmelCase ) __UpperCamelCase : Optional[int] = self.classifier[1](_UpperCAmelCase ) __UpperCamelCase : str = None if labels is None else self.hf_compute_loss(labels=_UpperCAmelCase , logits=_UpperCAmelCase ) if not return_dict: __UpperCamelCase : Union[str, Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=_UpperCAmelCase , logits=_UpperCAmelCase , hidden_states=outputs.hidden_states )
298
1
import re def snake_case (UpperCAmelCase__ ) -> bool: UpperCamelCase_: List[str] = re.compile( R'^(?:0|94|\+94|0{2}94)' R'7(0|1|2|4|5|6|7|8)' R'(-| |)' R'\d{7}$' ) return bool(re.search(UpperCAmelCase__ , UpperCAmelCase__ ) ) if __name__ == "__main__": A_ : Any = '0094702343221' print(is_sri_lankan_phone_number(phone))
292
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> np.array: UpperCamelCase_: Dict = F'''{sampling_rate}''' UpperCamelCase_: Any = '1' UpperCamelCase_: Any = 'f32le' UpperCamelCase_: Union[str, Any] = [ 'ffmpeg', '-i', 'pipe:0', '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] try: with subprocess.Popen(UpperCAmelCase__ , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: UpperCamelCase_: Optional[Any] = ffmpeg_process.communicate(UpperCAmelCase__ ) except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to load audio files from filename' ) from error UpperCamelCase_: Union[str, Any] = output_stream[0] UpperCamelCase_: List[str] = np.frombuffer(UpperCAmelCase__ , np.floataa ) if audio.shape[0] == 0: raise ValueError('Malformed soundfile' ) return audio def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = "f32le" , ) -> Tuple: UpperCamelCase_: Any = F'''{sampling_rate}''' UpperCamelCase_: Union[str, Any] = '1' if format_for_conversion == "s16le": UpperCamelCase_: Optional[Any] = 2 elif format_for_conversion == "f32le": UpperCamelCase_: Any = 4 else: raise ValueError(F'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) UpperCamelCase_: int = platform.system() if system == "Linux": UpperCamelCase_: Tuple = 'alsa' UpperCamelCase_: List[str] = 'default' elif system == "Darwin": UpperCamelCase_: int = 'avfoundation' UpperCamelCase_: Union[str, Any] = ':0' elif system == "Windows": UpperCamelCase_: Tuple = 'dshow' UpperCamelCase_: Dict = 'default' UpperCamelCase_: Any = [ 'ffmpeg', '-f', format_, '-i', input_, '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-fflags', 'nobuffer', '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] UpperCamelCase_: Tuple = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample UpperCamelCase_: Optional[int] = _ffmpeg_stream(UpperCAmelCase__ , UpperCAmelCase__ ) for item in iterator: yield item def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = "f32le" , ) -> Any: if stream_chunk_s is not None: UpperCamelCase_: List[Any] = stream_chunk_s else: UpperCamelCase_: Dict = chunk_length_s UpperCamelCase_: List[str] = ffmpeg_microphone(UpperCAmelCase__ , UpperCAmelCase__ , format_for_conversion=UpperCAmelCase__ ) if format_for_conversion == "s16le": UpperCamelCase_: Union[str, Any] = np.intaa UpperCamelCase_: List[Any] = 2 elif format_for_conversion == "f32le": UpperCamelCase_: str = np.floataa UpperCamelCase_: Tuple = 4 else: raise ValueError(F'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) if stride_length_s is None: UpperCamelCase_: int = chunk_length_s / 6 UpperCamelCase_: Tuple = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(UpperCAmelCase__ , (int, float) ): UpperCamelCase_: Union[str, Any] = [stride_length_s, stride_length_s] UpperCamelCase_: Any = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample UpperCamelCase_: Dict = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample UpperCamelCase_: Optional[int] = datetime.datetime.now() UpperCamelCase_: Optional[int] = datetime.timedelta(seconds=UpperCAmelCase__ ) for item in chunk_bytes_iter(UpperCAmelCase__ , UpperCAmelCase__ , stride=(stride_left, stride_right) , stream=UpperCAmelCase__ ): # Put everything back in numpy scale UpperCamelCase_: Tuple = np.frombuffer(item['raw'] , dtype=UpperCAmelCase__ ) UpperCamelCase_: Optional[int] = ( item['stride'][0] // size_of_sample, item['stride'][1] // size_of_sample, ) UpperCamelCase_: int = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 1_0 * delta: # We're late !! SKIP continue yield item def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = False ) -> int: UpperCamelCase_: str = b'' UpperCamelCase_ ,UpperCamelCase_: Union[str, Any] = stride if stride_left + stride_right >= chunk_len: raise ValueError( F'''Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}''' ) UpperCamelCase_: List[str] = 0 for raw in iterator: acc += raw if stream and len(UpperCAmelCase__ ) < chunk_len: UpperCamelCase_: Optional[Any] = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(UpperCAmelCase__ ) >= chunk_len: # We are flushing the accumulator UpperCamelCase_: int = (_stride_left, stride_right) UpperCamelCase_: Optional[Any] = {'raw': acc[:chunk_len], 'stride': stride} if stream: UpperCamelCase_: Any = False yield item UpperCamelCase_: Optional[int] = stride_left UpperCamelCase_: Optional[Any] = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(UpperCAmelCase__ ) > stride_left: UpperCamelCase_: int = {'raw': acc, 'stride': (_stride_left, 0)} if stream: UpperCamelCase_: Optional[Any] = False yield item def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> int: UpperCamelCase_: Any = 2**2_4 # 16Mo try: with subprocess.Popen(UpperCAmelCase__ , stdout=subprocess.PIPE , bufsize=UpperCAmelCase__ ) as ffmpeg_process: while True: UpperCamelCase_: Any = ffmpeg_process.stdout.read(UpperCAmelCase__ ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to stream audio files from filename' ) from error
292
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __a = { "configuration_mvp": ["MVP_PRETRAINED_CONFIG_ARCHIVE_MAP", "MvpConfig", "MvpOnnxConfig"], "tokenization_mvp": ["MvpTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ["MvpTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "MVP_PRETRAINED_MODEL_ARCHIVE_LIST", "MvpForCausalLM", "MvpForConditionalGeneration", "MvpForQuestionAnswering", "MvpForSequenceClassification", "MvpModel", "MvpPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
35
'''simple docstring''' __a = frozenset( [ "prompt", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) __a = frozenset(["prompt", "negative_prompt"]) __a = frozenset([]) __a = frozenset(["image"]) __a = frozenset( [ "image", "height", "width", "guidance_scale", ] ) __a = frozenset(["image"]) __a = frozenset( [ "prompt", "image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) __a = frozenset(["prompt", "image", "negative_prompt"]) __a = frozenset( [ # Text guided image variation with an image mask "prompt", "image", "mask_image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) __a = frozenset(["prompt", "image", "mask_image", "negative_prompt"]) __a = frozenset( [ # image variation with an image mask "image", "mask_image", "height", "width", "guidance_scale", ] ) __a = frozenset(["image", "mask_image"]) __a = frozenset( [ "example_image", "image", "mask_image", "height", "width", "guidance_scale", ] ) __a = frozenset(["example_image", "image", "mask_image"]) __a = frozenset(["class_labels"]) __a = frozenset(["class_labels"]) __a = frozenset(["batch_size"]) __a = frozenset([]) __a = frozenset(["batch_size"]) __a = frozenset([]) __a = frozenset( [ "prompt", "audio_length_in_s", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) __a = frozenset(["prompt", "negative_prompt"]) __a = frozenset(["input_tokens"]) __a = frozenset(["input_tokens"])
35
1
"""simple docstring""" from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def lowerCamelCase__ ( ) -> Tuple: """simple docstring""" _UpperCamelCase = { '''repo_name''': ['''test_repo1''', '''test_repo2''', '''test_repo3'''], '''path''': ['''test_1.py''', '''test_2.py''', '''unit_test.py'''], '''content''': ['''a ''' * 20, '''a ''' * 30, '''b ''' * 7], } _UpperCamelCase = Dataset.from_dict(SCREAMING_SNAKE_CASE__ ) return dataset class _UpperCAmelCase( lowerCamelCase_ ): def UpperCAmelCase ( self) -> Union[str, Any]: _UpperCamelCase = get_dataset() _UpperCamelCase = make_duplicate_clusters(_UpperCAmelCase , 0.85) self.assertEqual(len(duplicate_clusters[0]) , 2) def UpperCAmelCase ( self) -> int: _UpperCamelCase = get_dataset() _UpperCamelCase , _UpperCamelCase = deduplicate_dataset(_UpperCAmelCase) self.assertEqual(len(_UpperCAmelCase) , 2) print(_UpperCAmelCase) self.assertEqual(duplicate_clusters[0][0]['''copies'''] , 2) self.assertEqual(duplicate_clusters[0][0]['''is_extreme'''] , _UpperCAmelCase)
367
"""simple docstring""" class _UpperCAmelCase: def __init__( self , __a , __a , __a) -> List[Any]: '''simple docstring''' _UpperCamelCase = name _UpperCamelCase = value _UpperCamelCase = weight def __repr__( self) -> List[str]: '''simple docstring''' return F'''{self.__class__.__name__}({self.name}, {self.value}, {self.weight})''' def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' return self.value def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' return self.name def UpperCAmelCase ( self) -> int: '''simple docstring''' return self.weight def UpperCAmelCase ( self) -> Any: '''simple docstring''' return self.value / self.weight def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = [] for i in range(len(__snake_case ) ): menu.append(Things(name[i], value[i], weight[i] ) ) return menu def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> List[str]: """simple docstring""" _UpperCamelCase = sorted(__snake_case, key=__snake_case, reverse=__snake_case ) _UpperCamelCase = [] _UpperCamelCase , _UpperCamelCase = 0.0, 0.0 for i in range(len(__snake_case ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def lowerCamelCase__ ( ) -> List[str]: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
100
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json""" ), } class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __UpperCamelCase = """dpr""" def __init__( self :Optional[Any] , lowercase_ :Tuple=3_05_22 , lowercase_ :Optional[int]=7_68 , lowercase_ :List[str]=12 , lowercase_ :Optional[int]=12 , lowercase_ :Union[str, Any]=30_72 , lowercase_ :int="gelu" , lowercase_ :int=0.1 , lowercase_ :int=0.1 , lowercase_ :int=5_12 , lowercase_ :Union[str, Any]=2 , lowercase_ :str=0.02 , lowercase_ :Optional[int]=1E-12 , lowercase_ :List[str]=0 , lowercase_ :Any="absolute" , lowercase_ :int = 0 , **lowercase_ :Dict , ) -> int: super().__init__(pad_token_id=lowercase_ , **lowercase_ ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = projection_dim UpperCAmelCase = position_embedding_type
78
"""simple docstring""" from collections import deque from math import floor from random import random from time import time class A_ : """simple docstring""" def __init__( self :Union[str, Any] ) -> str: UpperCAmelCase = {} def UpperCAmelCase__ ( self :Any , lowercase_ :List[Any] , lowercase_ :List[str] , lowercase_ :Dict=1 ) -> List[Any]: if self.graph.get(lowercase_ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: UpperCAmelCase = [[w, v]] if not self.graph.get(lowercase_ ): UpperCAmelCase = [] def UpperCAmelCase__ ( self :Any ) -> Optional[int]: return list(self.graph ) def UpperCAmelCase__ ( self :List[Any] , lowercase_ :Optional[int] , lowercase_ :Optional[Any] ) -> Dict: if self.graph.get(lowercase_ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowercase_ ) def UpperCAmelCase__ ( self :List[str] , lowercase_ :Tuple=-2 , lowercase_ :List[Any]=-1 ) -> List[Any]: if s == d: return [] UpperCAmelCase = [] UpperCAmelCase = [] if s == -2: UpperCAmelCase = list(self.graph )[0] stack.append(lowercase_ ) visited.append(lowercase_ ) UpperCAmelCase = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCAmelCase = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowercase_ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) UpperCAmelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowercase_ ) != 0: UpperCAmelCase = stack[len(lowercase_ ) - 1] else: UpperCAmelCase = ss # check if se have reached the starting point if len(lowercase_ ) == 0: return visited def UpperCAmelCase__ ( self :List[str] , lowercase_ :int=-1 ) -> Tuple: if c == -1: UpperCAmelCase = floor(random() * 1_00_00 ) + 10 for i in range(lowercase_ ): # every vertex has max 100 edges for _ in range(floor(random() * 1_02 ) + 1 ): UpperCAmelCase = floor(random() * c ) + 1 if n != i: self.add_pair(lowercase_ , lowercase_ , 1 ) def UpperCAmelCase__ ( self :Tuple , lowercase_ :Optional[Any]=-2 ) -> Optional[int]: UpperCAmelCase = deque() UpperCAmelCase = [] if s == -2: UpperCAmelCase = list(self.graph )[0] d.append(lowercase_ ) visited.append(lowercase_ ) while d: UpperCAmelCase = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def UpperCAmelCase__ ( self :Any , lowercase_ :Optional[int] ) -> List[Any]: UpperCAmelCase = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def UpperCAmelCase__ ( self :Tuple , lowercase_ :List[str] ) -> List[str]: return len(self.graph[u] ) def UpperCAmelCase__ ( self :Optional[int] , lowercase_ :Any=-2 ) -> int: UpperCAmelCase = [] UpperCAmelCase = [] if s == -2: UpperCAmelCase = list(self.graph )[0] stack.append(lowercase_ ) visited.append(lowercase_ ) UpperCAmelCase = s UpperCAmelCase = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCAmelCase = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) UpperCAmelCase = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(lowercase_ ) != 0: UpperCAmelCase = stack[len(lowercase_ ) - 1] else: UpperCAmelCase = ss # check if se have reached the starting point if len(lowercase_ ) == 0: return sorted_nodes def UpperCAmelCase__ ( self :str ) -> str: UpperCAmelCase = [] UpperCAmelCase = [] UpperCAmelCase = list(self.graph )[0] stack.append(lowercase_ ) visited.append(lowercase_ ) UpperCAmelCase = -2 UpperCAmelCase = [] UpperCAmelCase = s UpperCAmelCase = False UpperCAmelCase = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCAmelCase = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): UpperCAmelCase = len(lowercase_ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) UpperCAmelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() UpperCAmelCase = True if len(lowercase_ ) != 0: UpperCAmelCase = stack[len(lowercase_ ) - 1] else: UpperCAmelCase = False indirect_parents.append(lowercase_ ) UpperCAmelCase = s UpperCAmelCase = ss # check if se have reached the starting point if len(lowercase_ ) == 0: return list(lowercase_ ) def UpperCAmelCase__ ( self :Optional[int] ) -> Tuple: UpperCAmelCase = [] UpperCAmelCase = [] UpperCAmelCase = list(self.graph )[0] stack.append(lowercase_ ) visited.append(lowercase_ ) UpperCAmelCase = -2 UpperCAmelCase = [] UpperCAmelCase = s UpperCAmelCase = False UpperCAmelCase = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCAmelCase = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): UpperCAmelCase = len(lowercase_ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) UpperCAmelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() UpperCAmelCase = True if len(lowercase_ ) != 0: UpperCAmelCase = stack[len(lowercase_ ) - 1] else: UpperCAmelCase = False indirect_parents.append(lowercase_ ) UpperCAmelCase = s UpperCAmelCase = ss # check if se have reached the starting point if len(lowercase_ ) == 0: return False def UpperCAmelCase__ ( self :Optional[Any] , lowercase_ :int=-2 , lowercase_ :List[str]=-1 ) -> Any: UpperCAmelCase = time() self.dfs(lowercase_ , lowercase_ ) UpperCAmelCase = time() return end - begin def UpperCAmelCase__ ( self :Union[str, Any] , lowercase_ :List[str]=-2 ) -> str: UpperCAmelCase = time() self.bfs(lowercase_ ) UpperCAmelCase = time() return end - begin class A_ : """simple docstring""" def __init__( self :List[str] ) -> Union[str, Any]: UpperCAmelCase = {} def UpperCAmelCase__ ( self :str , lowercase_ :Dict , lowercase_ :Optional[Any] , lowercase_ :Optional[int]=1 ) -> Dict: # check if the u exists if self.graph.get(lowercase_ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist UpperCAmelCase = [[w, v]] # add the other way if self.graph.get(lowercase_ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist UpperCAmelCase = [[w, u]] def UpperCAmelCase__ ( self :Any , lowercase_ :Union[str, Any] , lowercase_ :Tuple ) -> Optional[Any]: if self.graph.get(lowercase_ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowercase_ ) # the other way round if self.graph.get(lowercase_ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(lowercase_ ) def UpperCAmelCase__ ( self :Optional[Any] , lowercase_ :Optional[int]=-2 , lowercase_ :Optional[int]=-1 ) -> List[str]: if s == d: return [] UpperCAmelCase = [] UpperCAmelCase = [] if s == -2: UpperCAmelCase = list(self.graph )[0] stack.append(lowercase_ ) visited.append(lowercase_ ) UpperCAmelCase = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCAmelCase = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowercase_ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) UpperCAmelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowercase_ ) != 0: UpperCAmelCase = stack[len(lowercase_ ) - 1] else: UpperCAmelCase = ss # check if se have reached the starting point if len(lowercase_ ) == 0: return visited def UpperCAmelCase__ ( self :List[str] , lowercase_ :Optional[int]=-1 ) -> Any: if c == -1: UpperCAmelCase = floor(random() * 1_00_00 ) + 10 for i in range(lowercase_ ): # every vertex has max 100 edges for _ in range(floor(random() * 1_02 ) + 1 ): UpperCAmelCase = floor(random() * c ) + 1 if n != i: self.add_pair(lowercase_ , lowercase_ , 1 ) def UpperCAmelCase__ ( self :Dict , lowercase_ :int=-2 ) -> int: UpperCAmelCase = deque() UpperCAmelCase = [] if s == -2: UpperCAmelCase = list(self.graph )[0] d.append(lowercase_ ) visited.append(lowercase_ ) while d: UpperCAmelCase = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def UpperCAmelCase__ ( self :Union[str, Any] , lowercase_ :List[Any] ) -> str: return len(self.graph[u] ) def UpperCAmelCase__ ( self :Optional[Any] ) -> Any: UpperCAmelCase = [] UpperCAmelCase = [] UpperCAmelCase = list(self.graph )[0] stack.append(lowercase_ ) visited.append(lowercase_ ) UpperCAmelCase = -2 UpperCAmelCase = [] UpperCAmelCase = s UpperCAmelCase = False UpperCAmelCase = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCAmelCase = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): UpperCAmelCase = len(lowercase_ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) UpperCAmelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() UpperCAmelCase = True if len(lowercase_ ) != 0: UpperCAmelCase = stack[len(lowercase_ ) - 1] else: UpperCAmelCase = False indirect_parents.append(lowercase_ ) UpperCAmelCase = s UpperCAmelCase = ss # check if se have reached the starting point if len(lowercase_ ) == 0: return list(lowercase_ ) def UpperCAmelCase__ ( self :Optional[int] ) -> str: UpperCAmelCase = [] UpperCAmelCase = [] UpperCAmelCase = list(self.graph )[0] stack.append(lowercase_ ) visited.append(lowercase_ ) UpperCAmelCase = -2 UpperCAmelCase = [] UpperCAmelCase = s UpperCAmelCase = False UpperCAmelCase = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCAmelCase = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): UpperCAmelCase = len(lowercase_ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) UpperCAmelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() UpperCAmelCase = True if len(lowercase_ ) != 0: UpperCAmelCase = stack[len(lowercase_ ) - 1] else: UpperCAmelCase = False indirect_parents.append(lowercase_ ) UpperCAmelCase = s UpperCAmelCase = ss # check if se have reached the starting point if len(lowercase_ ) == 0: return False def UpperCAmelCase__ ( self :Union[str, Any] ) -> Union[str, Any]: return list(self.graph ) def UpperCAmelCase__ ( self :List[Any] , lowercase_ :Union[str, Any]=-2 , lowercase_ :List[str]=-1 ) -> str: UpperCAmelCase = time() self.dfs(lowercase_ , lowercase_ ) UpperCAmelCase = time() return end - begin def UpperCAmelCase__ ( self :Any , lowercase_ :int=-2 ) -> str: UpperCAmelCase = time() self.bfs(lowercase_ ) UpperCAmelCase = time() return end - begin
78
1
"""simple docstring""" import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html a_ = "platform" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def a__ ( __lowercase , __lowercase , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , ) -> Optional[Any]: if attention_mask is None: _A = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: _A = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: _A = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _A = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _A = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class snake_case : def __init__( self : Optional[Any] , a__ : Tuple , a__ : List[Any]=13 , a__ : Tuple=7 , a__ : Tuple=True , a__ : Any=False , a__ : List[Any]=99 , a__ : int=16 , a__ : List[str]=2 , a__ : Optional[Any]=4 , a__ : List[str]=4 , a__ : str="gelu" , a__ : Tuple=0.1 , a__ : Tuple=0.1 , a__ : Tuple=32 , a__ : Optional[Any]=2 , a__ : Dict=1 , a__ : Tuple=0 , a__ : Optional[Any]=0.0_2 , ) -> List[str]: '''simple docstring''' _A = parent _A = batch_size _A = seq_length _A = is_training _A = use_labels _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = eos_token_id _A = pad_token_id _A = bos_token_id _A = initializer_range def a_ ( self : int ) -> Dict: '''simple docstring''' _A = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) _A = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) _A = shift_tokens_right(a__ , 1 , 2 ) _A = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=a__ , ) _A = prepare_blenderbot_inputs_dict(a__ , a__ , a__ ) return config, inputs_dict def a_ ( self : str ) -> Tuple: '''simple docstring''' _A , _A = self.prepare_config_and_inputs() return config, inputs_dict def a_ ( self : List[str] , a__ : Optional[Any] , a__ : Tuple , a__ : List[Any] ) -> List[str]: '''simple docstring''' _A = 20 _A = model_class_name(a__ ) _A = model.encode(inputs_dict["input_ids"] ) _A , _A = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) _A = model.init_cache(decoder_input_ids.shape[0] , a__ , a__ ) _A = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" ) _A = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _A = model.decode( decoder_input_ids[:, :-1] , a__ , decoder_attention_mask=a__ , past_key_values=a__ , decoder_position_ids=a__ , ) _A = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) _A = model.decode( decoder_input_ids[:, -1:] , a__ , decoder_attention_mask=a__ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=a__ , ) _A = model.decode(a__ , a__ ) _A = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) def a_ ( self : List[Any] , a__ : Optional[Any] , a__ : Union[str, Any] , a__ : Tuple ) -> str: '''simple docstring''' _A = 20 _A = model_class_name(a__ ) _A = model.encode(inputs_dict["input_ids"] ) _A , _A = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) _A = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) _A = model.init_cache(decoder_input_ids.shape[0] , a__ , a__ ) _A = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _A = model.decode( decoder_input_ids[:, :-1] , a__ , decoder_attention_mask=a__ , past_key_values=a__ , decoder_position_ids=a__ , ) _A = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) _A = model.decode( decoder_input_ids[:, -1:] , a__ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=a__ , decoder_position_ids=a__ , ) _A = model.decode(a__ , a__ , decoder_attention_mask=a__ ) _A = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) @require_flax class snake_case ( unittest.TestCase): __UpperCamelCase = 99 def a_ ( self : Union[str, Any] ) -> int: '''simple docstring''' _A = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) _A = input_ids.shape[0] _A = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def a_ ( self : List[Any] ) -> Dict: '''simple docstring''' _A , _A , _A = self._get_config_and_data() _A = FlaxBlenderbotForConditionalGeneration(a__ ) _A = lm_model(input_ids=a__ ) _A = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["logits"].shape , a__ ) def a_ ( self : Optional[int] ) -> Any: '''simple docstring''' _A = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) _A = FlaxBlenderbotForConditionalGeneration(a__ ) _A = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) _A = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) _A = lm_model(input_ids=a__ , decoder_input_ids=a__ ) _A = (*summary.shape, config.vocab_size) self.assertEqual(outputs["logits"].shape , a__ ) def a_ ( self : Any ) -> Optional[int]: '''simple docstring''' _A = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) _A = shift_tokens_right(a__ , 1 , 2 ) _A = np.equal(a__ , 1 ).astype(np.floataa ).sum() _A = np.equal(a__ , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(a__ , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class snake_case ( _UpperCamelCase , unittest.TestCase , _UpperCamelCase): __UpperCamelCase = True __UpperCamelCase = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) __UpperCamelCase = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def a_ ( self : int ) -> Dict: '''simple docstring''' _A = FlaxBlenderbotModelTester(self ) def a_ ( self : str ) -> List[Any]: '''simple docstring''' _A , _A = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(a__ , a__ , a__ ) def a_ ( self : Tuple ) -> Dict: '''simple docstring''' _A , _A = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(a__ , a__ , a__ ) def a_ ( self : Any ) -> List[Any]: '''simple docstring''' _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _A = self._prepare_for_class(a__ , a__ ) _A = model_class(a__ ) @jax.jit def encode_jitted(a__ : List[Any] , a__ : Optional[Any]=None , **a__ : Dict ): return model.encode(input_ids=a__ , attention_mask=a__ ) with self.subTest("JIT Enabled" ): _A = encode_jitted(**a__ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): _A = encode_jitted(**a__ ).to_tuple() self.assertEqual(len(a__ ) , len(a__ ) ) for jitted_output, output in zip(a__ , a__ ): self.assertEqual(jitted_output.shape , output.shape ) def a_ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _A = model_class(a__ ) _A = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] ) _A = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(a__ : List[str] , a__ : int , a__ : Optional[Any] ): return model.decode( decoder_input_ids=a__ , decoder_attention_mask=a__ , encoder_outputs=a__ , ) with self.subTest("JIT Enabled" ): _A = decode_jitted(**a__ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): _A = decode_jitted(**a__ ).to_tuple() self.assertEqual(len(a__ ) , len(a__ ) ) for jitted_output, output in zip(a__ , a__ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def a_ ( self : Dict ) -> List[str]: '''simple docstring''' for model_class_name in self.all_model_classes: _A = model_class_name.from_pretrained("facebook/blenderbot-400M-distill" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids _A = np.ones((1, 1) ) * model.config.eos_token_id _A = model(a__ ) self.assertIsNotNone(a__ ) @unittest.skipUnless(jax_device != "cpu" , "3B test too slow on CPU." ) @slow def a_ ( self : List[str] ) -> List[Any]: '''simple docstring''' _A = {"num_beams": 1, "early_stopping": True, "min_length": 15, "max_length": 25} _A = {"skip_special_tokens": True, "clean_up_tokenization_spaces": True} _A = FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-3B" , from_pt=a__ ) _A = BlenderbotTokenizer.from_pretrained("facebook/blenderbot-3B" ) _A = ["Sam"] _A = tokenizer(a__ , return_tensors="jax" ) _A = model.generate(**a__ , **a__ ) _A = "Sam is a great name. It means \"sun\" in Gaelic." _A = tokenizer.batch_decode(a__ , **a__ ) assert generated_txt[0].strip() == tgt_text
163
"""simple docstring""" import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin a_ = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right a_ = 25_60_47 a_ = 25_61_45 @require_sentencepiece @require_tokenizers class snake_case ( _UpperCamelCase , unittest.TestCase): __UpperCamelCase = NllbTokenizer __UpperCamelCase = NllbTokenizerFast __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = {} def a_ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _A = NllbTokenizer(a__ , keep_accents=a__ ) tokenizer.save_pretrained(self.tmpdirname ) def a_ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' _A = NllbTokenizer(a__ , keep_accents=a__ ) _A = tokenizer.tokenize("This is a test" ) self.assertListEqual(a__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a__ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) _A = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( a__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) _A = tokenizer.convert_tokens_to_ids(a__ ) self.assertListEqual( a__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) _A = tokenizer.convert_ids_to_tokens(a__ ) self.assertListEqual( a__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) def a_ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' _A = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-nllb", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _A = self.rust_tokenizer_class.from_pretrained(a__ , **a__ ) _A = self.tokenizer_class.from_pretrained(a__ , **a__ ) _A = tempfile.mkdtemp() _A = tokenizer_r.save_pretrained(a__ ) _A = tokenizer_p.save_pretrained(a__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) _A = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f ) self.assertSequenceEqual(a__ , a__ ) # Checks everything loads correctly in the same way _A = tokenizer_r.from_pretrained(a__ ) _A = tokenizer_p.from_pretrained(a__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(a__ , a__ ) ) shutil.rmtree(a__ ) # Save tokenizer rust, legacy_format=True _A = tempfile.mkdtemp() _A = tokenizer_r.save_pretrained(a__ , legacy_format=a__ ) _A = tokenizer_p.save_pretrained(a__ ) # Checks it save with the same files self.assertSequenceEqual(a__ , a__ ) # Checks everything loads correctly in the same way _A = tokenizer_r.from_pretrained(a__ ) _A = tokenizer_p.from_pretrained(a__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(a__ , a__ ) ) shutil.rmtree(a__ ) # Save tokenizer rust, legacy_format=False _A = tempfile.mkdtemp() _A = tokenizer_r.save_pretrained(a__ , legacy_format=a__ ) _A = tokenizer_p.save_pretrained(a__ ) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way _A = tokenizer_r.from_pretrained(a__ ) _A = tokenizer_p.from_pretrained(a__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(a__ , a__ ) ) shutil.rmtree(a__ ) @require_torch def a_ ( self : Dict ) -> Optional[Any]: '''simple docstring''' if not self.test_seqaseq: return _A = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Longer text that will definitely require truncation. _A = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for" " Syria is that 'there is no military solution' to the nearly five-year conflict and more weapons" " will only worsen the violence and misery for millions of people.", ] _A = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al" " Rusiei pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi" " că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] try: _A = tokenizer.prepare_seqaseq_batch( src_texts=a__ , tgt_texts=a__ , max_length=3 , max_target_length=10 , return_tensors="pt" , src_lang="eng_Latn" , tgt_lang="ron_Latn" , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 10 ) # max_target_length will default to max_length if not specified _A = tokenizer.prepare_seqaseq_batch( a__ , tgt_texts=a__ , max_length=3 , return_tensors="pt" ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 3 ) _A = tokenizer.prepare_seqaseq_batch( src_texts=a__ , max_length=3 , max_target_length=10 , return_tensors="pt" ) self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 ) self.assertNotIn("decoder_input_ids" , a__ ) @unittest.skip("Unfortunately way too slow to build a BPE with SentencePiece." ) def a_ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' pass def a_ ( self : Optional[Any] ) -> Any: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _A = [AddedToken("<special>" , lstrip=a__ )] _A = self.rust_tokenizer_class.from_pretrained( a__ , additional_special_tokens=a__ , **a__ ) _A = tokenizer_r.encode("Hey this is a <special> token" ) _A = tokenizer_r.encode("<special>" , add_special_tokens=a__ )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: _A = self.rust_tokenizer_class.from_pretrained( a__ , additional_special_tokens=a__ , **a__ , ) _A = self.tokenizer_class.from_pretrained( a__ , additional_special_tokens=a__ , **a__ ) _A = tokenizer_p.encode("Hey this is a <special> token" ) _A = tokenizer_cr.encode("Hey this is a <special> token" ) self.assertEqual(a__ , a__ ) self.assertEqual(a__ , a__ ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class snake_case ( unittest.TestCase): __UpperCamelCase = 'facebook/nllb-200-distilled-600M' __UpperCamelCase = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] __UpperCamelCase = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] __UpperCamelCase = [ 25_6047, 1_6297, 13_4408, 8165, 24_8066, 1_4734, 950, 1135, 10_5721, 3573, 83, 2_7352, 108, 4_9486, 2, ] @classmethod def a_ ( cls : Optional[Any] ) -> Any: '''simple docstring''' _A = NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang="eng_Latn" , tgt_lang="ron_Latn" ) _A = 1 return cls def a_ ( self : Dict ) -> List[str]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ace_Arab"] , 25_60_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ace_Latn"] , 25_60_02 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["fra_Latn"] , 25_60_57 ) def a_ ( self : str ) -> Tuple: '''simple docstring''' _A = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , a__ ) def a_ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' self.assertIn(a__ , self.tokenizer.all_special_ids ) # fmt: off _A = [RO_CODE, 42_54, 9_80_68, 11_29_23, 3_90_72, 39_09, 7_13, 10_27_67, 26, 1_73_14, 3_56_42, 1_46_83, 3_31_18, 20_22, 6_69_87, 2, 25_60_47] # fmt: on _A = self.tokenizer.decode(a__ , skip_special_tokens=a__ ) _A = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=a__ ) self.assertEqual(a__ , a__ ) self.assertNotIn(self.tokenizer.eos_token , a__ ) def a_ ( self : Dict ) -> str: '''simple docstring''' _A = ["this is gunna be a long sentence " * 20] assert isinstance(src_text[0] , a__ ) _A = 10 _A = self.tokenizer(a__ , max_length=a__ , truncation=a__ ).input_ids[0] self.assertEqual(ids[-1] , 2 ) self.assertEqual(ids[0] , a__ ) self.assertEqual(len(a__ ) , a__ ) def a_ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"] ) , [25_62_03, 3] ) def a_ ( self : Optional[Any] ) -> str: '''simple docstring''' _A = tempfile.mkdtemp() _A = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(a__ ) _A = NllbTokenizer.from_pretrained(a__ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , a__ ) @require_torch def a_ ( self : str ) -> str: '''simple docstring''' _A = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=a__ , truncation=a__ , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) _A = shift_tokens_right( batch["labels"] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id["ron_Latn"] ) self.assertIsInstance(a__ , a__ ) self.assertEqual((2, 15) , batch.input_ids.shape ) self.assertEqual((2, 15) , batch.attention_mask.shape ) _A = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , a__ ) self.assertEqual(a__ , batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def a_ ( self : List[Any] ) -> Tuple: '''simple docstring''' _A = self.tokenizer(self.src_text , padding=a__ , truncation=a__ , max_length=3 , return_tensors="pt" ) _A = self.tokenizer( text_target=self.tgt_text , padding=a__ , truncation=a__ , max_length=10 , return_tensors="pt" ) _A = targets["input_ids"] _A = shift_tokens_right( a__ , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def a_ ( self : Dict ) -> List[Any]: '''simple docstring''' _A = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="eng_Latn" , tgt_lang="fra_Latn" ) self.assertEqual( nested_simplify(a__ ) , { # A, test, EOS, en_XX "input_ids": [[25_60_47, 70, 73_56, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 25_60_57, } , ) @require_torch def a_ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' _A = True _A = self.tokenizer( "UN Chief says there is no military solution in Syria" , src_lang="eng_Latn" , tgt_lang="fra_Latn" ) self.assertEqual( inputs.input_ids , [1_62_97, 13_44_08, 2_56_53, 63_70, 2_48, 2_54, 10_39_29, 9_49_95, 1_08, 4_94_86, 2, 25_60_47] ) _A = False _A = self.tokenizer( "UN Chief says there is no military solution in Syria" , src_lang="eng_Latn" , tgt_lang="fra_Latn" ) self.assertEqual( inputs.input_ids , [25_60_47, 1_62_97, 13_44_08, 2_56_53, 63_70, 2_48, 2_54, 10_39_29, 9_49_95, 1_08, 4_94_86, 2] )
163
1
'''simple docstring''' import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging snake_case_ : Any = logging.get_logger(__name__) snake_case_ : Dict = r"\n Args:\n input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax\n or scores for each vocabulary token after SoftMax.\n kwargs (`Dict[str, Any]`, *optional*):\n Additional stopping criteria specific kwargs.\n\n Return:\n `bool`. `False` indicates we should continue, `True` indicates we should stop.\n\n" class __a (lowerCamelCase ): @add_start_docstrings(__magic_name__ ) def __call__( self : Optional[Any] , __magic_name__ : torch.LongTensor , __magic_name__ : torch.FloatTensor , **__magic_name__ : Any ) -> bool: """simple docstring""" raise NotImplementedError('''StoppingCriteria needs to be subclassed''' ) class __a (lowerCamelCase ): def __init__( self : str , __magic_name__ : int , __magic_name__ : Optional[int] = None ) -> Any: """simple docstring""" UpperCAmelCase_ : str = max_length UpperCAmelCase_ : str = max_position_embeddings @add_start_docstrings(__magic_name__ ) def __call__( self : int , __magic_name__ : torch.LongTensor , __magic_name__ : torch.FloatTensor , **__magic_name__ : Optional[int] ) -> bool: """simple docstring""" UpperCAmelCase_ : List[str] = input_ids.shape[-1] UpperCAmelCase_ : str = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( '''This is a friendly reminder - the current text generation call will exceed the model\'s predefined ''' F"""maximum length ({self.max_position_embeddings}). Depending on the model, you may observe """ '''exceptions, performance degradation, or nothing at all.''' ) return is_done class __a (lowerCamelCase ): def __init__( self : str , __magic_name__ : int , __magic_name__ : int ) -> str: """simple docstring""" warnings.warn( '''The class `MaxNewTokensCriteria` is deprecated. ''' F"""Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` """ '''with `max_length = start_length + max_new_tokens` instead.''' , __magic_name__ , ) UpperCAmelCase_ : List[Any] = start_length UpperCAmelCase_ : Tuple = max_new_tokens UpperCAmelCase_ : Dict = start_length + max_new_tokens @add_start_docstrings(__magic_name__ ) def __call__( self : Any , __magic_name__ : torch.LongTensor , __magic_name__ : torch.FloatTensor , **__magic_name__ : Optional[int] ) -> bool: """simple docstring""" return input_ids.shape[-1] >= self.max_length class __a (lowerCamelCase ): def __init__( self : Tuple , __magic_name__ : float , __magic_name__ : Optional[float] = None ) -> Any: """simple docstring""" UpperCAmelCase_ : Dict = max_time UpperCAmelCase_ : List[Any] = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(__magic_name__ ) def __call__( self : str , __magic_name__ : torch.LongTensor , __magic_name__ : torch.FloatTensor , **__magic_name__ : int ) -> bool: """simple docstring""" return time.time() - self.initial_timestamp > self.max_time class __a (lowerCamelCase ): @add_start_docstrings(__magic_name__ ) def __call__( self : str , __magic_name__ : torch.LongTensor , __magic_name__ : torch.FloatTensor , **__magic_name__ : Optional[Any] ) -> bool: """simple docstring""" return any(criteria(__magic_name__ , __magic_name__ ) for criteria in self ) @property def UpperCAmelCase__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" for stopping_criterium in self: if isinstance(__magic_name__ , __magic_name__ ): return stopping_criterium.max_length elif isinstance(__magic_name__ , __magic_name__ ): return stopping_criterium.max_length return None def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : StoppingCriteriaList, SCREAMING_SNAKE_CASE__ : int ) -> StoppingCriteriaList: UpperCAmelCase_ : Optional[Any] = stopping_criteria.max_length UpperCAmelCase_ : Tuple = deepcopy(SCREAMING_SNAKE_CASE__ ) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn('''You set different `max_length` for stopping criteria and `max_length` parameter''', SCREAMING_SNAKE_CASE__ ) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=SCREAMING_SNAKE_CASE__ ) ) return new_stopping_criteria
125
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available snake_case_ : Union[str, Any] = { "configuration_mask2former": [ "MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "Mask2FormerConfig", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Optional[Any] = ["Mask2FormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Union[str, Any] = [ "MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "Mask2FormerForUniversalSegmentation", "Mask2FormerModel", "Mask2FormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys snake_case_ : str = _LazyModule(__name__, globals()["__file__"], _import_structure)
125
1
'''simple docstring''' import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _lowerCAmelCase ( __A, unittest.TestCase ): """simple docstring""" pass @nightly @require_onnxruntime @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @property def UpperCAmelCase_ ( self ) -> Dict: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ : Dict = ort.SessionOptions() A_ : List[Any] = False return options def UpperCAmelCase_ ( self ) -> int: A_ : Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) A_ : List[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) A_ : int = OnnxStableDiffusionInpaintPipeline.from_pretrained( """runwayml/stable-diffusion-inpainting""" , revision="""onnx""" , safety_checker=_lowerCamelCase , feature_extractor=_lowerCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) A_ : Union[str, Any] = """A red cat sitting on a park bench""" A_ : Union[str, Any] = np.random.RandomState(0 ) A_ : Tuple = pipe( prompt=_lowerCamelCase , image=_lowerCamelCase , mask_image=_lowerCamelCase , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowerCamelCase , output_type="""np""" , ) A_ : str = output.images A_ : Optional[int] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) A_ : Dict = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCAmelCase_ ( self ) -> Tuple: A_ : List[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) A_ : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) A_ : Union[str, Any] = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-inpainting""" , subfolder="""scheduler""" , revision="""onnx""" ) A_ : int = OnnxStableDiffusionInpaintPipeline.from_pretrained( """runwayml/stable-diffusion-inpainting""" , revision="""onnx""" , scheduler=_lowerCamelCase , safety_checker=_lowerCamelCase , feature_extractor=_lowerCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) A_ : int = """A red cat sitting on a park bench""" A_ : List[str] = np.random.RandomState(0 ) A_ : Dict = pipe( prompt=_lowerCamelCase , image=_lowerCamelCase , mask_image=_lowerCamelCase , guidance_scale=7.5 , num_inference_steps=20 , generator=_lowerCamelCase , output_type="""np""" , ) A_ : Tuple = output.images A_ : Tuple = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) A_ : Union[str, Any] = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
357
'''simple docstring''' import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ ) -> float: """simple docstring""" A_ : Optional[Any] = np.array([[1, item, train_mtch[i]] for i, item in enumerate(a_ )] ) A_ : Optional[Any] = np.array(a_ ) A_ : Optional[int] = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , a_ ) ) , x.transpose() ) , a_ ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def UpperCAmelCase ( a_ , a_ , a_ ) -> float: """simple docstring""" A_ : List[str] = (1, 2, 1) A_ : Tuple = (1, 1, 0, 7) A_ : List[Any] = SARIMAX( a_ , exog=a_ , order=a_ , seasonal_order=a_ ) A_ : Tuple = model.fit(disp=a_ , maxiter=6_0_0 , method="""nm""" ) A_ : List[Any] = model_fit.predict(1 , len(a_ ) , exog=[test_match] ) return result[0] def UpperCAmelCase ( a_ , a_ , a_ ) -> float: """simple docstring""" A_ : int = SVR(kernel="""rbf""" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(a_ , a_ ) A_ : Tuple = regressor.predict(a_ ) return y_pred[0] def UpperCAmelCase ( a_ ) -> float: """simple docstring""" train_user.sort() A_ : Any = np.percentile(a_ , 2_5 ) A_ : Union[str, Any] = np.percentile(a_ , 7_5 ) A_ : str = qa - qa A_ : List[Any] = qa - (iqr * 0.1) return low_lim def UpperCAmelCase ( a_ , a_ ) -> bool: """simple docstring""" A_ : Dict = 0 A_ : Optional[Any] = 0 for i in list_vote: if i > actual_result: A_ : Optional[Any] = not_safe + 1 else: if abs(abs(a_ ) - abs(a_ ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) UpperCamelCase__ : List[str] = [[18_231, 0.0, 1], [22_621, 1.0, 2], [15_675, 0.0, 3], [23_583, 1.0, 4]] UpperCamelCase__ : Optional[Any] = pd.DataFrame( data_input, columns=['total_user', 'total_even', 'days'] ) UpperCamelCase__ : Union[str, Any] = Normalizer().fit_transform(data_input_df.values) # split data UpperCamelCase__ : List[Any] = normalize_df[:, 2].tolist() UpperCamelCase__ : Tuple = normalize_df[:, 0].tolist() UpperCamelCase__ : Union[str, Any] = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) UpperCamelCase__ : Any = normalize_df[:, [1, 2]].tolist() UpperCamelCase__ : Optional[int] = x[: len(x) - 1] UpperCamelCase__ : Optional[Any] = x[len(x) - 1 :] # for linear regression & sarimax UpperCamelCase__ : Optional[int] = total_date[: len(total_date) - 1] UpperCamelCase__ : str = total_user[: len(total_user) - 1] UpperCamelCase__ : Tuple = total_match[: len(total_match) - 1] UpperCamelCase__ : List[str] = total_date[len(total_date) - 1 :] UpperCamelCase__ : List[Any] = total_user[len(total_user) - 1 :] UpperCamelCase__ : Dict = total_match[len(total_match) - 1 :] # voting system with forecasting UpperCamelCase__ : List[Any] = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data UpperCamelCase__ : Tuple = '' if data_safety_checker(res_vote, tst_user) else 'not ' print('Today\'s data is {not_str}safe.')
164
0
'''simple docstring''' from __future__ import annotations def lowerCamelCase__ ( _A , _A ): a : Union[str, Any] = get_failure_array(_SCREAMING_SNAKE_CASE ) # 2) Step through text searching for pattern a , a : str = 0, 0 # index into text, pattern while i < len(_SCREAMING_SNAKE_CASE ): if pattern[j] == text[i]: if j == (len(_SCREAMING_SNAKE_CASE ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: a : int = failure[j - 1] continue i += 1 return False def lowerCamelCase__ ( _A ): a : List[str] = [0] a : Dict = 0 a : Union[str, Any] = 1 while j < len(_SCREAMING_SNAKE_CASE ): if pattern[i] == pattern[j]: i += 1 elif i > 0: a : Any = failure[i - 1] continue j += 1 failure.append(_SCREAMING_SNAKE_CASE ) return failure if __name__ == "__main__": # Test 1) lowerCAmelCase: int = 'abc1abc12' lowerCAmelCase: List[Any] = 'alskfjaldsabc1abc1abc12k23adsfabcabc' lowerCAmelCase: Any = 'alskfjaldsk23adsfabcabc' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) lowerCAmelCase: List[Any] = 'ABABX' lowerCAmelCase: Tuple = 'ABABZABABYABABX' assert kmp(pattern, text) # Test 3) lowerCAmelCase: List[Any] = 'AAAB' lowerCAmelCase: str = 'ABAAAAAB' assert kmp(pattern, text) # Test 4) lowerCAmelCase: Optional[Any] = 'abcdabcy' lowerCAmelCase: List[str] = 'abcxabcdabxabcdabcdabcy' assert kmp(pattern, text) # Test 5) lowerCAmelCase: List[str] = 'aabaabaaa' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
297
import random class UpperCamelCase__ : '''simple docstring''' @staticmethod def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ : str ) -> tuple[list[int], list[int]]: '''simple docstring''' SCREAMING_SNAKE_CASE = [ord(lowerCamelCase__ ) for i in text] SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] for i in plain: SCREAMING_SNAKE_CASE = random.randint(1 ,300 ) SCREAMING_SNAKE_CASE = (i + k) * k cipher.append(lowerCamelCase__ ) key.append(lowerCamelCase__ ) return cipher, key @staticmethod def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ : list[int] ,lowerCamelCase__ : list[int] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = [] for i in range(len(lowerCamelCase__ ) ): SCREAMING_SNAKE_CASE = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(lowerCamelCase__ ) ) return "".join(lowerCamelCase__ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = Onepad().encrypt("""Hello""") print(c, k) print(Onepad().decrypt(c, k))
296
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A_ = { '''configuration_mvp''': ['''MVP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MvpConfig''', '''MvpOnnxConfig'''], '''tokenization_mvp''': ['''MvpTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ['''MvpTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ '''MVP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MvpForCausalLM''', '''MvpForConditionalGeneration''', '''MvpForQuestionAnswering''', '''MvpForSequenceClassification''', '''MvpModel''', '''MvpPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
296
"""simple docstring""" import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class __SCREAMING_SNAKE_CASE : def __init__( self : Union[str, Any] , snake_case : str , snake_case : List[Any]=13 , snake_case : Union[str, Any]=7 , snake_case : Optional[Any]=True , snake_case : str=True , snake_case : Dict=False , snake_case : Union[str, Any]=True , snake_case : Optional[Any]=99 , snake_case : str=32 , snake_case : Tuple=5 , snake_case : List[str]=4 , snake_case : Optional[int]=37 , snake_case : str="gelu" , snake_case : Tuple=0.1 , snake_case : Optional[int]=0.1 , snake_case : int=512 , snake_case : List[str]=16 , snake_case : str=2 , snake_case : Optional[int]=0.02 , snake_case : str=3 , snake_case : Dict=4 , snake_case : Optional[Any]=None , ): '''simple docstring''' A__ : int = parent A__ : Union[str, Any] = batch_size A__ : Optional[int] = seq_length A__ : List[Any] = is_training A__ : List[str] = use_input_mask A__ : Optional[Any] = use_token_type_ids A__ : List[Any] = use_labels A__ : Union[str, Any] = vocab_size A__ : List[Any] = hidden_size A__ : Any = num_hidden_layers A__ : Any = num_attention_heads A__ : Optional[int] = intermediate_size A__ : Any = hidden_act A__ : Tuple = hidden_dropout_prob A__ : Dict = attention_probs_dropout_prob A__ : Optional[int] = max_position_embeddings A__ : Tuple = type_vocab_size A__ : Union[str, Any] = type_sequence_label_size A__ : List[str] = initializer_range A__ : Any = num_labels A__ : Any = num_choices A__ : int = scope def _UpperCamelCase ( self : int ): '''simple docstring''' A__ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : Tuple = None if self.use_input_mask: A__ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) A__ : Union[str, Any] = None if self.use_token_type_ids: A__ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A__ : int = None A__ : int = None A__ : List[str] = None if self.use_labels: A__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ : Dict = ids_tensor([self.batch_size] , self.num_choices ) A__ : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCamelCase ( self : Tuple ): '''simple docstring''' return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case , initializer_range=self.initializer_range , ) def _UpperCamelCase ( self : Optional[int] , snake_case : Dict , snake_case : Any , snake_case : Dict , snake_case : Any , snake_case : Union[str, Any] , snake_case : Tuple , snake_case : Optional[Any] ): '''simple docstring''' A__ : Optional[Any] = BioGptModel(config=snake_case ) model.to(snake_case ) model.eval() A__ : List[Any] = model(snake_case , attention_mask=snake_case ) A__ : Dict = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self : Optional[int] , snake_case : Dict , snake_case : Optional[int] , snake_case : List[str] , snake_case : str , snake_case : Optional[Any] , snake_case : List[str] , snake_case : List[Any] , snake_case : Tuple , snake_case : Optional[Any] , ): '''simple docstring''' A__ : List[str] = BioGptForCausalLM(config=snake_case ) model.to(snake_case ) model.eval() A__ : Union[str, Any] = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self : Any , snake_case : str , snake_case : Tuple , snake_case : int , snake_case : Optional[Any] , snake_case : Any , *snake_case : Dict ): '''simple docstring''' A__ : Union[str, Any] = BioGptModel(config=snake_case ) model.to(snake_case ) model.eval() # create attention mask A__ : List[Any] = torch.ones(input_ids.shape , dtype=torch.long , device=snake_case ) A__ : Any = self.seq_length // 2 A__ : str = 0 # first forward pass A__ , A__ : List[Any] = model(snake_case , attention_mask=snake_case ).to_tuple() # create hypothetical next token and extent to next_input_ids A__ : int = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids A__ : List[str] = ids_tensor((1,) , snake_case ).item() + 1 A__ : Optional[int] = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) A__ : int = random_other_next_tokens # append to next input_ids and attn_mask A__ : str = torch.cat([input_ids, next_tokens] , dim=-1 ) A__ : List[Any] = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=snake_case )] , dim=1 , ) # get two different outputs A__ : Union[str, Any] = model(snake_case , attention_mask=snake_case )["""last_hidden_state"""] A__ : Optional[int] = model(snake_case , past_key_values=snake_case , attention_mask=snake_case )["""last_hidden_state"""] # select random slice A__ : List[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() A__ : List[str] = output_from_no_past[:, -1, random_slice_idx].detach() A__ : Any = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case , snake_case , atol=1e-3 ) ) def _UpperCamelCase ( self : int , snake_case : Optional[Any] , snake_case : Optional[Any] , snake_case : str , snake_case : int , snake_case : Optional[Any] , *snake_case : str ): '''simple docstring''' A__ : Dict = BioGptModel(config=snake_case ).to(snake_case ).eval() A__ : Tuple = torch.ones(input_ids.shape , dtype=torch.long , device=snake_case ) # first forward pass A__ : Dict = model(snake_case , attention_mask=snake_case , use_cache=snake_case ) A__ , A__ : List[Any] = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids A__ : Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) A__ : int = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and A__ : str = torch.cat([input_ids, next_tokens] , dim=-1 ) A__ : Optional[int] = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) A__ : Any = model(snake_case , attention_mask=snake_case )["""last_hidden_state"""] A__ : Union[str, Any] = model(snake_case , attention_mask=snake_case , past_key_values=snake_case )[ """last_hidden_state""" ] # select random slice A__ : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() A__ : Any = output_from_no_past[:, -3:, random_slice_idx].detach() A__ : List[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case , snake_case , atol=1e-3 ) ) def _UpperCamelCase ( self : Optional[Any] , snake_case : Tuple , snake_case : Union[str, Any] , snake_case : Optional[Any] , snake_case : Any , snake_case : Tuple , *snake_case : Union[str, Any] , snake_case : Union[str, Any]=False ): '''simple docstring''' A__ : Tuple = BioGptForCausalLM(snake_case ) model.to(snake_case ) if gradient_checkpointing: model.gradient_checkpointing_enable() A__ : Optional[Any] = model(snake_case , labels=snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def _UpperCamelCase ( self : int , snake_case : Optional[Any] , *snake_case : Optional[int] ): '''simple docstring''' A__ : int = BioGptModel(snake_case ) A__ : Union[str, Any] = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def _UpperCamelCase ( self : Any , snake_case : Dict , snake_case : Tuple , snake_case : int , snake_case : Union[str, Any] , snake_case : Dict , *snake_case : Any ): '''simple docstring''' A__ : Union[str, Any] = self.num_labels A__ : int = BioGptForTokenClassification(snake_case ) model.to(snake_case ) model.eval() A__ : str = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCamelCase ( self : int ): '''simple docstring''' A__ : List[str] = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) : str = config_and_inputs A__ : Union[str, Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , unittest.TestCase ): snake_case_ = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) snake_case_ = (BioGptForCausalLM,) if is_torch_available() else () snake_case_ = ( { 'feature-extraction': BioGptModel, 'text-classification': BioGptForSequenceClassification, 'text-generation': BioGptForCausalLM, 'token-classification': BioGptForTokenClassification, 'zero-shot': BioGptForSequenceClassification, } if is_torch_available() else {} ) snake_case_ = False def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' A__ : List[str] = BioGptModelTester(self ) A__ : List[Any] = ConfigTester(self , config_class=snake_case , hidden_size=37 ) def _UpperCamelCase ( self : int ): '''simple docstring''' self.config_tester.run_common_tests() def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' A__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def _UpperCamelCase ( self : Any ): '''simple docstring''' A__ : int = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A__ : str = type self.model_tester.create_and_check_model(*snake_case ) def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' A__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*snake_case ) def _UpperCamelCase ( self : Optional[Any] ): '''simple docstring''' A__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*snake_case , gradient_checkpointing=snake_case ) def _UpperCamelCase ( self : Optional[int] ): '''simple docstring''' A__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*snake_case ) def _UpperCamelCase ( self : int ): '''simple docstring''' A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*snake_case ) def _UpperCamelCase ( self : List[str] ): '''simple docstring''' A__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*snake_case ) @slow def _UpperCamelCase ( self : str ): '''simple docstring''' A__ : Tuple = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" ) model.to(snake_case ) A__ : Optional[int] = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) A__ : Any = """left""" # Define PAD Token = EOS Token = 50256 A__ : Optional[int] = tokenizer.eos_token A__ : Dict = model.config.eos_token_id # use different length sentences to test batching A__ : Union[str, Any] = [ """Hello, my dog is a little""", """Today, I""", ] A__ : List[str] = tokenizer(snake_case , return_tensors="""pt""" , padding=snake_case ) A__ : str = inputs["""input_ids"""].to(snake_case ) A__ : Dict = model.generate( input_ids=snake_case , attention_mask=inputs["""attention_mask"""].to(snake_case ) , ) A__ : Optional[int] = tokenizer(sentences[0] , return_tensors="""pt""" ).input_ids.to(snake_case ) A__ : Any = model.generate(input_ids=snake_case ) A__ : List[str] = inputs_non_padded.shape[-1] - inputs["""attention_mask"""][-1].long().sum().cpu().item() A__ : str = tokenizer(sentences[1] , return_tensors="""pt""" ).input_ids.to(snake_case ) A__ : Dict = model.generate(input_ids=snake_case , max_length=model.config.max_length - num_paddings ) A__ : Optional[Any] = tokenizer.batch_decode(snake_case , skip_special_tokens=snake_case ) A__ : List[Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=snake_case ) A__ : str = tokenizer.decode(output_padded[0] , skip_special_tokens=snake_case ) A__ : Optional[int] = [ """Hello, my dog is a little bit bigger than a little bit.""", """Today, I have a good idea of how to use the information""", ] self.assertListEqual(snake_case , snake_case ) self.assertListEqual(snake_case , [non_padded_sentence, padded_sentence] ) @slow def _UpperCamelCase ( self : Optional[Any] ): '''simple docstring''' for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : Optional[Any] = BioGptModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def _UpperCamelCase ( self : str ): '''simple docstring''' A__ , A__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() A__ : Optional[int] = 3 A__ : List[Any] = input_dict["""input_ids"""] A__ : Dict = input_ids.ne(1 ).to(snake_case ) A__ : Optional[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) A__ : Union[str, Any] = BioGptForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() A__ : int = model(snake_case , attention_mask=snake_case , labels=snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _UpperCamelCase ( self : int ): '''simple docstring''' A__ , A__ : str = self.model_tester.prepare_config_and_inputs_for_common() A__ : Any = 3 A__ : List[Any] = """multi_label_classification""" A__ : Dict = input_dict["""input_ids"""] A__ : Tuple = input_ids.ne(1 ).to(snake_case ) A__ : Any = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) A__ : Tuple = BioGptForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() A__ : List[str] = model(snake_case , attention_mask=snake_case , labels=snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def _UpperCamelCase ( self : List[str] ): '''simple docstring''' A__ : Optional[Any] = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" ) A__ : str = torch.tensor([[2, 4805, 9, 656, 21]] ) A__ : Dict = model(snake_case )[0] A__ : Tuple = 4_2384 A__ : str = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , snake_case ) A__ : str = torch.tensor( [[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=1e-4 ) ) @slow def _UpperCamelCase ( self : Dict ): '''simple docstring''' A__ : Tuple = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) A__ : Any = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" ) model.to(snake_case ) torch.manual_seed(0 ) A__ : Tuple = tokenizer("""COVID-19 is""" , return_tensors="""pt""" ).to(snake_case ) A__ : Optional[int] = model.generate( **snake_case , min_length=100 , max_length=1024 , num_beams=5 , early_stopping=snake_case , ) A__ : Optional[int] = tokenizer.decode(output_ids[0] , skip_special_tokens=snake_case ) A__ : List[str] = ( """COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the""" """ causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and""" """ territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),""" """ and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and""" """ more than 800,000 deaths.""" ) self.assertEqual(snake_case , snake_case )
296
1
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def __UpperCAmelCase ( ) -> str: """simple docstring""" _a : Optional[int] = HfArgumentParser(__a ) _a : List[str] = parser.parse_args_into_dataclasses()[0] _a : Optional[Any] = TensorFlowBenchmark(args=__a ) try: _a : Optional[int] = parser.parse_args_into_dataclasses()[0] except ValueError as e: _a : int = '''Arg --no_{0} is no longer used, please use --no-{0} instead.''' _a : Optional[int] = ''' '''.join(str(__a ).split(''' ''' )[:-1] ) _a : int = '''''' _a : List[str] = eval(str(__a ).split(''' ''' )[-1] ) _a : Optional[int] = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(__a ) if len(__a ) > 0: _a : Optional[int] = full_error_msg + begin_error_msg + str(__a ) raise ValueError(__a ) benchmark.run() if __name__ == "__main__": main()
235
from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class UpperCAmelCase_ : """simple docstring""" pass
235
1
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCAmelCase_ = logging.get_logger(__name__) # TODO: upload to AWS lowerCAmelCase_ = { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json''' ), } class __A ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase : Optional[Any] = '''retribert''' def __init__( self : int ,_snake_case : List[Any]=30_522 ,_snake_case : Union[str, Any]=768 ,_snake_case : Any=8 ,_snake_case : List[str]=12 ,_snake_case : List[Any]=3_072 ,_snake_case : List[Any]="gelu" ,_snake_case : List[str]=0.1 ,_snake_case : List[str]=0.1 ,_snake_case : List[Any]=512 ,_snake_case : Optional[Any]=2 ,_snake_case : str=0.02 ,_snake_case : Tuple=1e-12 ,_snake_case : Union[str, Any]=True ,_snake_case : Tuple=128 ,_snake_case : Tuple=0 ,**_snake_case : List[str] ,) -> Optional[int]: """simple docstring""" super().__init__(pad_token_id=__snake_case ,**__snake_case ) lowercase__ : Tuple = vocab_size lowercase__ : str = hidden_size lowercase__ : Any = num_hidden_layers lowercase__ : Tuple = num_attention_heads lowercase__ : Tuple = hidden_act lowercase__ : Tuple = intermediate_size lowercase__ : Optional[int] = hidden_dropout_prob lowercase__ : Union[str, Any] = attention_probs_dropout_prob lowercase__ : List[str] = max_position_embeddings lowercase__ : int = type_vocab_size lowercase__ : Union[str, Any] = initializer_range lowercase__ : Any = layer_norm_eps lowercase__ : Dict = share_encoders lowercase__ : List[Any] = projection_dim
371
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = { 'configuration_roberta': ['ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RobertaConfig', 'RobertaOnnxConfig'], 'tokenization_roberta': ['RobertaTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['RobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'RobertaForCausalLM', 'RobertaForMaskedLM', 'RobertaForMultipleChoice', 'RobertaForQuestionAnswering', 'RobertaForSequenceClassification', 'RobertaForTokenClassification', 'RobertaModel', 'RobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRobertaForCausalLM', 'TFRobertaForMaskedLM', 'TFRobertaForMultipleChoice', 'TFRobertaForQuestionAnswering', 'TFRobertaForSequenceClassification', 'TFRobertaForTokenClassification', 'TFRobertaMainLayer', 'TFRobertaModel', 'TFRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'FlaxRobertaForCausalLM', 'FlaxRobertaForMaskedLM', 'FlaxRobertaForMultipleChoice', 'FlaxRobertaForQuestionAnswering', 'FlaxRobertaForSequenceClassification', 'FlaxRobertaForTokenClassification', 'FlaxRobertaModel', 'FlaxRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
302
0
from manim import * class A_ ( SCREAMING_SNAKE_CASE ): def lowerCAmelCase ( self : Tuple): __lowerCamelCase : List[str] = Rectangle(height=0.5 ,width=0.5) __lowerCamelCase : Optional[int] = Rectangle(height=0.46 ,width=0.46).set_stroke(width=0) __lowerCamelCase : Dict = [mem.copy() for i in range(6)] __lowerCamelCase : List[Any] = [mem.copy() for i in range(6)] __lowerCamelCase : Dict = VGroup(*SCREAMING_SNAKE_CASE__).arrange(SCREAMING_SNAKE_CASE__ ,buff=0) __lowerCamelCase : Optional[Any] = VGroup(*SCREAMING_SNAKE_CASE__).arrange(SCREAMING_SNAKE_CASE__ ,buff=0) __lowerCamelCase : Any = VGroup(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__).arrange(SCREAMING_SNAKE_CASE__ ,buff=0) __lowerCamelCase : Union[str, Any] = Text('CPU' ,font_size=2_4) __lowerCamelCase : Union[str, Any] = Group(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__).arrange(SCREAMING_SNAKE_CASE__ ,buff=0.5 ,aligned_edge=SCREAMING_SNAKE_CASE__) cpu.move_to([-2.5, -0.5, 0]) self.add(SCREAMING_SNAKE_CASE__) __lowerCamelCase : str = [mem.copy() for i in range(1)] __lowerCamelCase : Optional[Any] = VGroup(*SCREAMING_SNAKE_CASE__).arrange(SCREAMING_SNAKE_CASE__ ,buff=0) __lowerCamelCase : int = Text('GPU' ,font_size=2_4) __lowerCamelCase : Union[str, Any] = Group(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__).arrange(SCREAMING_SNAKE_CASE__ ,buff=0.5 ,aligned_edge=SCREAMING_SNAKE_CASE__) gpu.align_to(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) gpu.set_x(gpu.get_x() - 1) self.add(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Tuple = [mem.copy() for i in range(6)] __lowerCamelCase : List[str] = VGroup(*SCREAMING_SNAKE_CASE__).arrange(SCREAMING_SNAKE_CASE__ ,buff=0) __lowerCamelCase : int = Text('Model' ,font_size=2_4) __lowerCamelCase : Dict = Group(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__).arrange(SCREAMING_SNAKE_CASE__ ,buff=0.5 ,aligned_edge=SCREAMING_SNAKE_CASE__) model.move_to([3, -1.0, 0]) self.play( Create(SCREAMING_SNAKE_CASE__ ,run_time=1) ,Create(SCREAMING_SNAKE_CASE__ ,run_time=1) ,Create(SCREAMING_SNAKE_CASE__ ,run_time=1) ,) __lowerCamelCase : List[Any] = MarkupText( F"First, an empty model skeleton is loaded\ninto <span fgcolor='{YELLOW}'>memory</span> without using much RAM." ,font_size=2_4 ,) __lowerCamelCase : Tuple = Square(side_length=2.2) key.move_to([-5, 2, 0]) __lowerCamelCase : Any = MarkupText( F"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" ,font_size=1_8 ,) key_text.move_to([-5, 2.4, 0]) step_a.move_to([2, 2, 0]) self.play(Write(SCREAMING_SNAKE_CASE__ ,run_time=2.5) ,Write(SCREAMING_SNAKE_CASE__) ,Write(SCREAMING_SNAKE_CASE__)) self.add(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = [] __lowerCamelCase : List[str] = [] __lowerCamelCase : Tuple = [] for i, rect in enumerate(SCREAMING_SNAKE_CASE__): __lowerCamelCase : Optional[int] = Rectangle(height=0.46 ,width=0.46).set_stroke(width=0.0).set_fill(SCREAMING_SNAKE_CASE__ ,opacity=0.7) cpu_target.move_to(SCREAMING_SNAKE_CASE__) cpu_target.generate_target() __lowerCamelCase : Optional[Any] = 0.46 / 4 __lowerCamelCase : Tuple = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT) ,buff=0.02 ,direction=SCREAMING_SNAKE_CASE__) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target ,direction=SCREAMING_SNAKE_CASE__ ,buff=0.0) else: cpu_target.target.next_to(cpu_targs[i - 1].target ,direction=SCREAMING_SNAKE_CASE__ ,buff=0.0) cpu_targs.append(SCREAMING_SNAKE_CASE__) first_animations.append(rect.animate(run_time=0.5).set_stroke(SCREAMING_SNAKE_CASE__)) second_animations.append(MoveToTarget(SCREAMING_SNAKE_CASE__ ,run_time=1.5)) self.play(*SCREAMING_SNAKE_CASE__) self.play(*SCREAMING_SNAKE_CASE__) self.wait()
73
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """uw-madison/mra-base-512-4""": """https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json""", } class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = '''mra''' def __init__( self : str , _A : List[str]=5_0265 , _A : int=768 , _A : Union[str, Any]=12 , _A : Union[str, Any]=12 , _A : Union[str, Any]=3072 , _A : Any="gelu" , _A : List[Any]=0.1 , _A : List[Any]=0.1 , _A : List[str]=512 , _A : Tuple=1 , _A : List[str]=0.02 , _A : Union[str, Any]=1e-5 , _A : Optional[int]="absolute" , _A : Union[str, Any]=4 , _A : List[Any]="full" , _A : Union[str, Any]=0 , _A : Union[str, Any]=0 , _A : Optional[Any]=1 , _A : Union[str, Any]=0 , _A : Any=2 , **_A : List[str] , ): """simple docstring""" super().__init__(pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A ) __SCREAMING_SNAKE_CASE : Dict = vocab_size __SCREAMING_SNAKE_CASE : str = max_position_embeddings __SCREAMING_SNAKE_CASE : Optional[int] = hidden_size __SCREAMING_SNAKE_CASE : str = num_hidden_layers __SCREAMING_SNAKE_CASE : Tuple = num_attention_heads __SCREAMING_SNAKE_CASE : str = intermediate_size __SCREAMING_SNAKE_CASE : Tuple = hidden_act __SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob __SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Tuple = initializer_range __SCREAMING_SNAKE_CASE : Any = type_vocab_size __SCREAMING_SNAKE_CASE : str = layer_norm_eps __SCREAMING_SNAKE_CASE : Union[str, Any] = position_embedding_type __SCREAMING_SNAKE_CASE : str = block_per_row __SCREAMING_SNAKE_CASE : Union[str, Any] = approx_mode __SCREAMING_SNAKE_CASE : Optional[int] = initial_prior_first_n_blocks __SCREAMING_SNAKE_CASE : List[Any] = initial_prior_diagonal_n_blocks
303
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json''', '''google/bigbird-roberta-large''': '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json''', '''google/bigbird-base-trivia-itc''': '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json''', # See all BigBird models at https://huggingface.co/models?filter=big_bird } class A ( __UpperCAmelCase ): __snake_case = 'big_bird' def __init__( self, UpperCamelCase__=5_0358, UpperCamelCase__=768, UpperCamelCase__=12, UpperCamelCase__=12, UpperCamelCase__=3072, UpperCamelCase__="gelu_new", UpperCamelCase__=0.1, UpperCamelCase__=0.1, UpperCamelCase__=4096, UpperCamelCase__=2, UpperCamelCase__=0.02, UpperCamelCase__=1E-12, UpperCamelCase__=True, UpperCamelCase__=0, UpperCamelCase__=1, UpperCamelCase__=2, UpperCamelCase__=66, UpperCamelCase__="block_sparse", UpperCamelCase__=True, UpperCamelCase__=False, UpperCamelCase__=64, UpperCamelCase__=3, UpperCamelCase__=None, **UpperCamelCase__, ): """simple docstring""" super().__init__( pad_token_id=UpperCamelCase__, bos_token_id=UpperCamelCase__, eos_token_id=UpperCamelCase__, sep_token_id=UpperCamelCase__, **UpperCamelCase__, ) lowerCAmelCase_ = vocab_size lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = initializer_range lowerCAmelCase_ = type_vocab_size lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = use_cache lowerCAmelCase_ = rescale_embeddings lowerCAmelCase_ = attention_type lowerCAmelCase_ = use_bias lowerCAmelCase_ = block_size lowerCAmelCase_ = num_random_blocks lowerCAmelCase_ = classifier_dropout class A ( __UpperCAmelCase ): @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" if self.task == "multiple-choice": lowerCAmelCase_ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCAmelCase_ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
363
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _A = { '''configuration_rembert''': ['''REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RemBertConfig''', '''RemBertOnnxConfig'''] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ['''RemBertTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ['''RemBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ '''REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RemBertForCausalLM''', '''RemBertForMaskedLM''', '''RemBertForMultipleChoice''', '''RemBertForQuestionAnswering''', '''RemBertForSequenceClassification''', '''RemBertForTokenClassification''', '''RemBertLayer''', '''RemBertModel''', '''RemBertPreTrainedModel''', '''load_tf_weights_in_rembert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ '''TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRemBertForCausalLM''', '''TFRemBertForMaskedLM''', '''TFRemBertForMultipleChoice''', '''TFRemBertForQuestionAnswering''', '''TFRemBertForSequenceClassification''', '''TFRemBertForTokenClassification''', '''TFRemBertLayer''', '''TFRemBertModel''', '''TFRemBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
167
0
'''simple docstring''' import operator as op lowercase : List[Any] = 'scaler.pt' lowercase : Dict = 'pytorch_model' lowercase : int = 'random_states' lowercase : List[str] = 'optimizer' lowercase : List[Any] = 'scheduler' lowercase : int = 'pytorch_model.bin' lowercase : Optional[int] = 'pytorch_model.bin.index.json' lowercase : str = 'model.safetensors' lowercase : List[str] = 'model.safetensors.index.json' lowercase : Optional[int] = '1.10.2' lowercase : Optional[Any] = 'py38' lowercase : List[Any] = '4.17.0' lowercase : Tuple = ['ml.p3.16xlarge', 'ml.p3dn.24xlarge', 'ml.p4dn.24xlarge'] lowercase : Optional[Any] = ['FULL_SHARD', 'SHARD_GRAD_OP', 'NO_SHARD', 'HYBRID_SHARD', 'HYBRID_SHARD_ZERO2'] lowercase : Dict = ['TRANSFORMER_BASED_WRAP', 'SIZE_BASED_WRAP', 'NO_WRAP'] lowercase : int = ['BACKWARD_PRE', 'BACKWARD_POST', 'NO_PREFETCH'] lowercase : str = ['FULL_STATE_DICT', 'LOCAL_STATE_DICT', 'SHARDED_STATE_DICT'] lowercase : int = '2.0.1' lowercase : int = ['pdsh', 'standard', 'openmpi', 'mvapich'] lowercase : Union[str, Any] = ['default', 'reduce-overhead', 'max-autotune'] lowercase : str = {'>': op.gt, '>=': op.ge, '==': op.eq, '!=': op.ne, '<=': op.le, '<': op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 lowercase : int = [ 'nnodes', 'nproc_per_node', 'rdzv_backend', 'rdzv_endpoint', 'rdzv_id', 'rdzv_conf', 'standalone', 'max_restarts', 'monitor_interval', 'start_method', 'role', 'module', 'm', 'no_python', 'run_path', 'log_dir', 'r', 'redirects', 't', 'tee', 'node_rank', 'master_addr', 'master_port', ] lowercase : List[Any] = ['DEEPSPEED', 'MULTI_GPU', 'FSDP', 'MEGATRON_LM'] lowercase : Optional[Any] = ['DEEPSPEED', 'MULTI_XPU', 'FSDP']
3
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) lowercase : Dict = { 'configuration_speech_to_text': ['SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Speech2TextConfig'], 'processing_speech_to_text': ['Speech2TextProcessor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[Any] = ['Speech2TextTokenizer'] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[str] = ['Speech2TextFeatureExtractor'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Dict = [ 'TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFSpeech2TextForConditionalGeneration', 'TFSpeech2TextModel', 'TFSpeech2TextPreTrainedModel', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Any = [ 'SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Speech2TextForConditionalGeneration', 'Speech2TextModel', 'Speech2TextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys lowercase : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
3
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: lowerCamelCase = None lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = {"""vocab_file""": """sentencepiece.model""", """tokenizer_file""": """tokenizer.json"""} lowerCamelCase = { """vocab_file""": { """google/rembert""": """https://huggingface.co/google/rembert/resolve/main/sentencepiece.model""", }, """tokenizer_file""": { """google/rembert""": """https://huggingface.co/google/rembert/resolve/main/tokenizer.json""", }, } lowerCamelCase = { """google/rembert""": 256, } lowerCamelCase = """▁""" class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = RemBertTokenizer def __init__( self : Dict , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : str=None , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Dict=False , _UpperCAmelCase : List[str]="[CLS]" , _UpperCAmelCase : List[str]="[SEP]" , _UpperCAmelCase : List[str]="<unk>" , _UpperCAmelCase : Optional[int]="[SEP]" , _UpperCAmelCase : Optional[int]="<pad>" , _UpperCAmelCase : List[Any]="[CLS]" , _UpperCAmelCase : str="[MASK]" , **_UpperCAmelCase : Any , ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , do_lower_case=_UpperCAmelCase , remove_space=_UpperCAmelCase , keep_accents=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , **_UpperCAmelCase , ) UpperCAmelCase_ = do_lower_case UpperCAmelCase_ = remove_space UpperCAmelCase_ = keep_accents UpperCAmelCase_ = vocab_file UpperCAmelCase_ = False if not self.vocab_file else True def lowercase__ ( self : List[Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowercase__ ( self : Optional[int] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None , _UpperCAmelCase : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_UpperCAmelCase )) + [1] + ([0] * len(_UpperCAmelCase )) + [1] return [1] + ([0] * len(_UpperCAmelCase )) + [1] def lowercase__ ( self : Tuple , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase__ ( self : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(_UpperCAmelCase ): logger.error("Vocabulary path ({}) should be a directory".format(_UpperCAmelCase ) ) return UpperCAmelCase_ = os.path.join( _UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ): copyfile(self.vocab_file , _UpperCAmelCase ) return (out_vocab_file,)
357
"""simple docstring""" import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class lowercase__ ( unittest.TestCase ): '''simple docstring''' @property def lowercase__ ( self : Tuple ) -> Any: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowercase__ ( self : List[str] ) -> int: '''simple docstring''' UpperCAmelCase_ = ort.SessionOptions() UpperCAmelCase_ = False return options def lowercase__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) UpperCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy" ) # using the PNDM scheduler by default UpperCAmelCase_ = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="onnx" , safety_checker=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase_ = "A red cat sitting on a park bench" UpperCAmelCase_ = np.random.RandomState(0 ) UpperCAmelCase_ = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , mask_image=_UpperCAmelCase , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=_UpperCAmelCase , output_type="np" , ) UpperCAmelCase_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1e-2
241
0
"""simple docstring""" import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def _snake_case ( _snake_case : Tuple , _snake_case : int , _snake_case : Any , _snake_case : Optional[Any] ) -> Tuple: '''simple docstring''' _A = s.rsplit(_snake_case , _snake_case ) return new.join(_snake_case ) def _snake_case ( _snake_case : Union[str, Any] ) -> Optional[int]: '''simple docstring''' return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def _snake_case ( _snake_case : List[str] ) -> Optional[int]: '''simple docstring''' _A = {} _A = ['group_1', 'group_2', 'group_3', 'group_4'] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: _A = key.replace(F'''{group_key}.''' , F'''{group_key}.group.''' ) if "res_path" in key: _A = key.replace('res_path.' , 'res_path.path.' ) if key.endswith('.w' ): _A = rreplace(_snake_case , '.w' , '.weight' , 1 ) if key.endswith('.b' ): _A = rreplace(_snake_case , '.b' , '.bias' , 1 ) _A = value.float() return upgrade @torch.no_grad() def _snake_case ( _snake_case : List[str] , _snake_case : Union[str, Any] , _snake_case : Any=None , _snake_case : str=True ) -> Optional[int]: '''simple docstring''' from dall_e import Encoder _A = Encoder() if os.path.exists(_snake_case ): _A = torch.load(_snake_case ) else: _A = torch.hub.load_state_dict_from_url(_snake_case ) if isinstance(_snake_case , _snake_case ): _A = ckpt.state_dict() encoder.load_state_dict(_snake_case ) if config_path is not None: _A = FlavaImageCodebookConfig.from_pretrained(_snake_case ) else: _A = FlavaImageCodebookConfig() _A = FlavaImageCodebook(_snake_case ).eval() _A = encoder.state_dict() _A = upgrade_state_dict(_snake_case ) hf_model.load_state_dict(_snake_case ) _A = hf_model.state_dict() _A = count_parameters(_snake_case ) _A = count_parameters(_snake_case ) assert torch.allclose(_snake_case , _snake_case , atol=1E-3 ) if save_checkpoint: hf_model.save_pretrained(_snake_case ) else: return hf_state_dict if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to flava checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') a = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
315
"""simple docstring""" import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class snake_case ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): @register_to_config def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = False , ) ->int: super().__init__() a_ = nn.Embedding(__UpperCAmelCase , __UpperCAmelCase) a_ = nn.Embedding(__UpperCAmelCase , __UpperCAmelCase) a_ = False a_ = nn.Dropout(p=__UpperCAmelCase) a_ = TaConfig( vocab_size=__UpperCAmelCase , d_model=__UpperCAmelCase , num_heads=__UpperCAmelCase , d_kv=__UpperCAmelCase , d_ff=__UpperCAmelCase , dropout_rate=__UpperCAmelCase , feed_forward_proj=__UpperCAmelCase , is_decoder=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , ) a_ = nn.ModuleList() for lyr_num in range(__UpperCAmelCase): a_ = TaBlock(__UpperCAmelCase) self.encoders.append(__UpperCAmelCase) a_ = TaLayerNorm(__UpperCAmelCase) a_ = nn.Dropout(p=__UpperCAmelCase) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase) ->Union[str, Any]: a_ = self.token_embedder(__UpperCAmelCase) a_ = encoder_input_tokens.shape[1] a_ = torch.arange(__UpperCAmelCase , device=encoder_input_tokens.device) x += self.position_encoding(__UpperCAmelCase) a_ = self.dropout_pre(__UpperCAmelCase) # inverted the attention mask a_ = encoder_input_tokens.size() a_ = self.get_extended_attention_mask(__UpperCAmelCase , __UpperCAmelCase) for lyr in self.encoders: a_ = lyr(__UpperCAmelCase , __UpperCAmelCase)[0] a_ = self.layer_norm(__UpperCAmelCase) return self.dropout_post(__UpperCAmelCase), encoder_inputs_mask
243
0
"""simple docstring""" from __future__ import annotations import typing from collections import Counter def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] ) -> List[Any]: '''simple docstring''' lowercase = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(lowerCAmelCase__ , max_perimeter + 1 ): lowercase = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(lowerCAmelCase__ ): lowercase = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] = 1_0_0_0 ) -> str: '''simple docstring''' lowercase = pythagorean_triple(lowerCAmelCase__ ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(F"""Perimeter {solution()} has maximum solutions""")
370
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :list[list] ) -> list[list]: '''simple docstring''' lowercase = current_set.copy() for row_index, row in enumerate(lowerCAmelCase__ ): lowercase = row[0] for column_index, column in enumerate(lowerCAmelCase__ ): if magnitude == 0: lowercase = column continue lowercase = column / magnitude # Subtract to cancel term lowercase = current_set[0] lowercase = [first_row] lowercase = current_set[1::] for row in current_set: lowercase = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(lowerCAmelCase__ ) continue for column_index in range(len(lowerCAmelCase__ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(lowerCAmelCase__ ) # Create next recursion iteration set if len(final_set[0] ) != 3: lowercase = final_set[0] lowercase = [] lowercase = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) lowercase = simplify(lowerCAmelCase__ ) for i in range(len(lowerCAmelCase__ ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , lowerCAmelCase__ ) lowercase = resultant return final_set def UpperCAmelCase__ ( lowerCAmelCase__ :list[list] ) -> list: '''simple docstring''' if len(lowerCAmelCase__ ) == 0: raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) lowercase = len(lowerCAmelCase__ ) + 1 if any(len(lowerCAmelCase__ ) != _length for item in equations ): raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) for row in equations: if any(not isinstance(lowerCAmelCase__ , (int, float) ) for column in row ): raise ValueError("""solve_simultaneous() requires lists of integers""" ) if len(lowerCAmelCase__ ) == 1: return [equations[0][-1] / equations[0][0]] lowercase = equations.copy() if any(0 in row for row in data_set ): lowercase = data_set.copy() lowercase = [] for row_index, row in enumerate(lowerCAmelCase__ ): if 0 not in row: lowercase = data_set.pop(lowerCAmelCase__ ) break if not full_row: raise ValueError("""solve_simultaneous() requires at least 1 full equation""" ) data_set.insert(0 , lowerCAmelCase__ ) lowercase = data_set.copy() lowercase = simplify(lowerCAmelCase__ ) lowercase = simplified[::-1] lowercase = [] for row in simplified: lowercase = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue lowercase = row.copy()[: len(lowerCAmelCase__ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(lowerCAmelCase__ ) == 0: solutions.append(0 ) continue lowercase = temp_row[1::] lowercase = temp_row[::-1] for column_index, column in enumerate(lowerCAmelCase__ ): current_solution -= column * solutions[column_index] solutions.append(lowerCAmelCase__ ) lowercase = [] for item in solutions: final.append(float(round(lowerCAmelCase__ , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase : List[str] =[ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
32
0
def A_ ( a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : list[list[float]] = [] for data in source_data: for i, el in enumerate(a ): if len(a ) < i + 1: data_lists.append([] ) data_lists[i].append(float(a ) ) return data_lists def A_ ( a , a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : list[list[float]] = [] for dlist, weight in zip(a , a ): SCREAMING_SNAKE_CASE_ : Optional[Any] = min(a ) SCREAMING_SNAKE_CASE_ : Optional[Any] = max(a ) SCREAMING_SNAKE_CASE_ : list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: SCREAMING_SNAKE_CASE_ : Optional[Any] = f"Invalid weight of {weight:f} provided" raise ValueError(a ) score_lists.append(a ) return score_lists def A_ ( a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : list[float] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(a ): SCREAMING_SNAKE_CASE_ : Optional[int] = final_scores[j] + ele return final_scores def A_ ( a , a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = get_data(a ) SCREAMING_SNAKE_CASE_ : int = calculate_each_score(a , a ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = generate_final_scores(a ) # append scores to source data for i, ele in enumerate(a ): source_data[i].append(a ) return source_data
253
from jiwer import compute_measures import datasets lowerCAmelCase : Tuple = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' lowerCAmelCase : List[Any] = '\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n' lowerCAmelCase : Dict = '\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> wer = datasets.load_metric("wer")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class _A ( datasets.Metric): def UpperCAmelCase ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/jitsi/jiwer/'] , reference_urls=[ 'https://en.wikipedia.org/wiki/Word_error_rate', ] , ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=False ): """simple docstring""" if concatenate_texts: return compute_measures(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )["wer"] else: SCREAMING_SNAKE_CASE_ : str = 0 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0 for prediction, reference in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : str = compute_measures(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
253
1
from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) _A = 2_9979_2458 # Symbols _A , _A , _A , _A = symbols('ct x y z') def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : float ): if velocity > c: raise ValueError('Speed must not exceed light speed 299,792,458 [m/s]!' ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError('Speed must be greater than or equal to 1!' ) return velocity / c def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : float ): return 1 / sqrt(1 - beta(SCREAMING_SNAKE_CASE__ ) ** 2 ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : float ): return np.array( [ [gamma(SCREAMING_SNAKE_CASE__ ), -gamma(SCREAMING_SNAKE_CASE__ ) * beta(SCREAMING_SNAKE_CASE__ ), 0, 0], [-gamma(SCREAMING_SNAKE_CASE__ ) * beta(SCREAMING_SNAKE_CASE__ ), gamma(SCREAMING_SNAKE_CASE__ ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : np.ndarray | None = None ): # Ensure event is not empty if event is None: __UpperCamelCase =np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(SCREAMING_SNAKE_CASE__ ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: _A = transform(2997_9245) print('Example of four vector: ') print(f"""ct' = {four_vector[0]}""") print(f"""x' = {four_vector[1]}""") print(f"""y' = {four_vector[2]}""") print(f"""z' = {four_vector[3]}""") # Substitute symbols with numerical values _A = {ct: c, x: 1, y: 1, z: 1} _A = [four_vector[i].subs(sub_dict) for i in range(4)] print(f"""\n{numerical_vector}""")
351
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _A = logging.get_logger(__name__) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] ): __UpperCamelCase =SwinConfig( embed_dim=1_92 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['stage2', 'stage3', 'stage4'] , ) __UpperCamelCase =DetaConfig( backbone_config=SCREAMING_SNAKE_CASE__ , num_queries=9_00 , encoder_ffn_dim=20_48 , decoder_ffn_dim=20_48 , num_feature_levels=5 , assign_first_stage=SCREAMING_SNAKE_CASE__ , with_box_refine=SCREAMING_SNAKE_CASE__ , two_stage=SCREAMING_SNAKE_CASE__ , ) # set labels __UpperCamelCase ='huggingface/label-files' if "o365" in model_name: __UpperCamelCase =3_66 __UpperCamelCase ='object365-id2label.json' else: __UpperCamelCase =91 __UpperCamelCase ='coco-detection-id2label.json' __UpperCamelCase =num_labels __UpperCamelCase =json.load(open(cached_download(hf_hub_url(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type='dataset' ) ) , 'r' ) ) __UpperCamelCase ={int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} __UpperCamelCase =idalabel __UpperCamelCase ={v: k for k, v in idalabel.items()} return config def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] ): __UpperCamelCase =[] # stem # fmt: off rename_keys.append(('backbone.0.body.patch_embed.proj.weight', 'model.backbone.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.0.body.patch_embed.proj.bias', 'model.backbone.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.0.body.patch_embed.norm.weight', 'model.backbone.model.embeddings.norm.weight') ) rename_keys.append(('backbone.0.body.patch_embed.norm.bias', 'model.backbone.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.norm1.weight', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.norm1.bias', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.norm2.weight', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.norm2.bias', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((F'backbone.0.body.layers.{i}.downsample.reduction.weight', F'model.backbone.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((F'backbone.0.body.layers.{i}.downsample.norm.weight', F'model.backbone.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((F'backbone.0.body.layers.{i}.downsample.norm.bias', F'model.backbone.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append(('backbone.0.body.norm1.weight', 'model.backbone.model.hidden_states_norms.stage2.weight') ) rename_keys.append(('backbone.0.body.norm1.bias', 'model.backbone.model.hidden_states_norms.stage2.bias') ) rename_keys.append(('backbone.0.body.norm2.weight', 'model.backbone.model.hidden_states_norms.stage3.weight') ) rename_keys.append(('backbone.0.body.norm2.bias', 'model.backbone.model.hidden_states_norms.stage3.bias') ) rename_keys.append(('backbone.0.body.norm3.weight', 'model.backbone.model.hidden_states_norms.stage4.weight') ) rename_keys.append(('backbone.0.body.norm3.bias', 'model.backbone.model.hidden_states_norms.stage4.bias') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight', F'model.encoder.layers.{i}.self_attn.sampling_offsets.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias', F'model.encoder.layers.{i}.self_attn.sampling_offsets.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.attention_weights.weight', F'model.encoder.layers.{i}.self_attn.attention_weights.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.attention_weights.bias', F'model.encoder.layers.{i}.self_attn.attention_weights.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.value_proj.weight', F'model.encoder.layers.{i}.self_attn.value_proj.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.value_proj.bias', F'model.encoder.layers.{i}.self_attn.value_proj.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.output_proj.weight', F'model.encoder.layers.{i}.self_attn.output_proj.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.output_proj.bias', F'model.encoder.layers.{i}.self_attn.output_proj.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm1.weight', F'model.encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm1.bias', F'model.encoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.weight', F'model.encoder.layers.{i}.fc1.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.bias', F'model.encoder.layers.{i}.fc1.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.weight', F'model.encoder.layers.{i}.fc2.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.bias', F'model.encoder.layers.{i}.fc2.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.weight', F'model.encoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.bias', F'model.encoder.layers.{i}.final_layer_norm.bias') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight', F'model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias', F'model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.attention_weights.weight', F'model.decoder.layers.{i}.encoder_attn.attention_weights.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.attention_weights.bias', F'model.decoder.layers.{i}.encoder_attn.attention_weights.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.value_proj.weight', F'model.decoder.layers.{i}.encoder_attn.value_proj.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.value_proj.bias', F'model.decoder.layers.{i}.encoder_attn.value_proj.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.output_proj.weight', F'model.decoder.layers.{i}.encoder_attn.output_proj.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.output_proj.bias', F'model.decoder.layers.{i}.encoder_attn.output_proj.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm1.weight', F'model.decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm1.bias', F'model.decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.self_attn.out_proj.weight', F'model.decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.self_attn.out_proj.bias', F'model.decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm2.weight', F'model.decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm2.bias', F'model.decoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.weight', F'model.decoder.layers.{i}.fc1.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.bias', F'model.decoder.layers.{i}.fc1.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.weight', F'model.decoder.layers.{i}.fc2.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.bias', F'model.decoder.layers.{i}.fc2.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.weight', F'model.decoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.bias', F'model.decoder.layers.{i}.final_layer_norm.bias') ) # fmt: on return rename_keys def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] ): __UpperCamelCase =dct.pop(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =val def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str ): __UpperCamelCase =[int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __UpperCamelCase =num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __UpperCamelCase =state_dict.pop(F'backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight' ) __UpperCamelCase =state_dict.pop(F'backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __UpperCamelCase =in_proj_weight[:dim, :] __UpperCamelCase =in_proj_bias[: dim] __UpperCamelCase =in_proj_weight[ dim : dim * 2, : ] __UpperCamelCase =in_proj_bias[ dim : dim * 2 ] __UpperCamelCase =in_proj_weight[ -dim :, : ] __UpperCamelCase =in_proj_bias[-dim :] # fmt: on def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] ): # transformer decoder self-attention layers __UpperCamelCase =config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention __UpperCamelCase =state_dict.pop(F'transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) __UpperCamelCase =state_dict.pop(F'transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __UpperCamelCase =in_proj_weight[:hidden_size, :] __UpperCamelCase =in_proj_bias[:hidden_size] __UpperCamelCase =in_proj_weight[ hidden_size : hidden_size * 2, : ] __UpperCamelCase =in_proj_bias[hidden_size : hidden_size * 2] __UpperCamelCase =in_proj_weight[-hidden_size:, :] __UpperCamelCase =in_proj_bias[-hidden_size:] def _UpperCAmelCase ( ): __UpperCamelCase ='http://images.cocodataset.org/val2017/000000039769.jpg' __UpperCamelCase =Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) return im @torch.no_grad() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple ): __UpperCamelCase =get_deta_config(SCREAMING_SNAKE_CASE__ ) # load original state dict if model_name == "deta-swin-large": __UpperCamelCase =hf_hub_download(repo_id='nielsr/deta-checkpoints' , filename='adet_swin_ft.pth' ) elif model_name == "deta-swin-large-o365": __UpperCamelCase =hf_hub_download(repo_id='jozhang97/deta-swin-l-o365' , filename='deta_swin_pt_o365.pth' ) else: raise ValueError(F'Model name {model_name} not supported' ) __UpperCamelCase =torch.load(SCREAMING_SNAKE_CASE__ , map_location='cpu' )['model'] # original state dict for name, param in state_dict.items(): print(SCREAMING_SNAKE_CASE__ , param.shape ) # rename keys __UpperCamelCase =create_rename_keys(SCREAMING_SNAKE_CASE__ ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) read_in_swin_q_k_v(SCREAMING_SNAKE_CASE__ , config.backbone_config ) read_in_decoder_q_k_v(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: __UpperCamelCase =state_dict.pop(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =val if "input_proj" in key: __UpperCamelCase =state_dict.pop(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: __UpperCamelCase =state_dict.pop(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =val # finally, create HuggingFace model and load state dict __UpperCamelCase =DetaForObjectDetection(SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) model.eval() __UpperCamelCase ='cuda' if torch.cuda.is_available() else 'cpu' model.to(SCREAMING_SNAKE_CASE__ ) # load image processor __UpperCamelCase =DetaImageProcessor(format='coco_detection' ) # verify our conversion on image __UpperCamelCase =prepare_img() __UpperCamelCase =processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ) __UpperCamelCase =encoding['pixel_values'] __UpperCamelCase =model(pixel_values.to(SCREAMING_SNAKE_CASE__ ) ) # verify logits print('Logits:' , outputs.logits[0, :3, :3] ) print('Boxes:' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": __UpperCamelCase =torch.tensor( [[-7.6308, -2.8485, -5.3737], [-7.2037, -4.5505, -4.8027], [-7.2943, -4.2611, -4.6617]] ) __UpperCamelCase =torch.tensor([[0.4987, 0.4969, 0.9999], [0.2549, 0.5498, 0.4805], [0.5498, 0.2757, 0.0569]] ) elif model_name == "deta-swin-large-o365": __UpperCamelCase =torch.tensor( [[-8.0122, -3.5720, -4.9717], [-8.1547, -3.6886, -4.6389], [-7.6610, -3.6194, -5.0134]] ) __UpperCamelCase =torch.tensor([[0.2523, 0.5549, 0.4881], [0.7715, 0.4149, 0.4601], [0.5503, 0.2753, 0.0575]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(SCREAMING_SNAKE_CASE__ ) , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(SCREAMING_SNAKE_CASE__ ) , atol=1E-4 ) print('Everything ok!' ) if pytorch_dump_folder_path: # Save model and processor logger.info(F'Saving PyTorch model and processor to {pytorch_dump_folder_path}...' ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) # Push to hub if push_to_hub: print('Pushing model and processor to hub...' ) model.push_to_hub(F'jozhang97/{model_name}' ) processor.push_to_hub(F'jozhang97/{model_name}' ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument( '--model_name', type=str, default='deta-swin-large', choices=['deta-swin-large', 'deta-swin-large-o365'], help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _A = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
117
0
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __UpperCAmelCase = 16 __UpperCAmelCase = 32 def _snake_case ( lowercase__ : Accelerator , lowercase__ : int = 1_6 , lowercase__ : str = "bert-base-cased" ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ :List[str] = AutoTokenizer.from_pretrained(lowercase__ ) lowerCAmelCase_ :Tuple = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(lowercase__ : Dict ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase_ :Tuple = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowercase__ , max_length=lowercase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowerCAmelCase_ :Union[str, Any] = datasets.map( lowercase__ , batched=lowercase__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=lowercase__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase_ :List[Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowercase__ : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowercase__ , padding="""max_length""" , max_length=1_2_8 , return_tensors="""pt""" ) return tokenizer.pad(lowercase__ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. lowerCAmelCase_ :Any = DataLoader( tokenized_datasets["""train"""] , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=lowercase__ ) lowerCAmelCase_ :int = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=lowercase__ ) return train_dataloader, eval_dataloader def _snake_case ( lowercase__ : str , lowercase__ : List[str] ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ :str = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase_ :List[Any] = config["""lr"""] lowerCAmelCase_ :Optional[Any] = int(config["""num_epochs"""] ) lowerCAmelCase_ :str = int(config["""seed"""] ) lowerCAmelCase_ :Dict = int(config["""batch_size"""] ) lowerCAmelCase_ :Union[str, Any] = args.model_name_or_path set_seed(lowercase__ ) lowerCAmelCase_ , lowerCAmelCase_ :Union[str, Any] = get_dataloaders(lowercase__ , lowercase__ , lowercase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase_ :Optional[Any] = AutoModelForSequenceClassification.from_pretrained(lowercase__ , return_dict=lowercase__ ) # Instantiate optimizer lowerCAmelCase_ :List[str] = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowerCAmelCase_ :Optional[Any] = optimizer_cls(params=model.parameters() , lr=lowercase__ ) if accelerator.state.deepspeed_plugin is not None: lowerCAmelCase_ :List[Any] = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: lowerCAmelCase_ :int = 1 lowerCAmelCase_ :str = (len(lowercase__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowerCAmelCase_ :Union[str, Any] = get_linear_schedule_with_warmup( optimizer=lowercase__ , num_warmup_steps=0 , num_training_steps=lowercase__ , ) else: lowerCAmelCase_ :Optional[Any] = DummyScheduler(lowercase__ , total_num_steps=lowercase__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ :List[str] = accelerator.prepare( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # We need to keep track of how many total steps we have iterated over lowerCAmelCase_ :Dict = 0 # We also need to keep track of the stating epoch so files are named properly lowerCAmelCase_ :Union[str, Any] = 0 # Now we train the model lowerCAmelCase_ :List[str] = evaluate.load("""glue""" , """mrpc""" ) lowerCAmelCase_ :List[str] = 0 lowerCAmelCase_ :Optional[Any] = {} for epoch in range(lowercase__ , lowercase__ ): model.train() for step, batch in enumerate(lowercase__ ): lowerCAmelCase_ :List[Any] = model(**lowercase__ ) lowerCAmelCase_ :Optional[int] = outputs.loss lowerCAmelCase_ :str = loss / gradient_accumulation_steps accelerator.backward(lowercase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() lowerCAmelCase_ :Tuple = 0 for step, batch in enumerate(lowercase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase_ :Union[str, Any] = model(**lowercase__ ) lowerCAmelCase_ :str = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times lowerCAmelCase_ , lowerCAmelCase_ :Optional[Any] = accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(lowercase__ ) - 1: lowerCAmelCase_ :Union[str, Any] = predictions[: len(eval_dataloader.dataset ) - samples_seen] lowerCAmelCase_ :List[str] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=lowercase__ , references=lowercase__ , ) lowerCAmelCase_ :List[str] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , lowercase__ ) lowerCAmelCase_ :str = eval_metric["""accuracy"""] if best_performance < eval_metric["accuracy"]: lowerCAmelCase_ :Dict = eval_metric["""accuracy"""] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f"""Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}""" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , """all_results.json""" ) , """w""" ) as f: json.dump(lowercase__ , lowercase__ ) def _snake_case ( ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ :List[Any] = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=lowercase__ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=lowercase__ , ) parser.add_argument( """--output_dir""" , type=lowercase__ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--performance_lower_bound""" , type=lowercase__ , default=lowercase__ , help="""Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.""" , ) parser.add_argument( """--num_epochs""" , type=lowercase__ , default=3 , help="""Number of train epochs.""" , ) lowerCAmelCase_ :Optional[Any] = parser.parse_args() lowerCAmelCase_ :Optional[Any] = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 4_2, """batch_size""": 1_6} training_function(lowercase__ , lowercase__ ) if __name__ == "__main__": main()
84
def UpperCamelCase ( __magic_name__ : str ) -> int: """simple docstring""" assert column_title.isupper() lowercase__ = 0 lowercase__ = len(__magic_name__ ) - 1 lowercase__ = 0 while index >= 0: lowercase__ = (ord(column_title[index] ) - 64) * pow(26 , __magic_name__ ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
305
0
import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowercase ( a__ , a__ , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = IFInpaintingSuperResolutionPipeline __SCREAMING_SNAKE_CASE = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} __SCREAMING_SNAKE_CASE = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"""original_image"""} ) __SCREAMING_SNAKE_CASE = PipelineTesterMixin.required_optional_params - {"""latents"""} def snake_case_ ( self ) -> Optional[Any]: """simple docstring""" return self._get_superresolution_dummy_components() def snake_case_ ( self , _snake_case , _snake_case=0 ) -> str: """simple docstring""" if str(_snake_case ).startswith('''mps''' ): UpperCAmelCase = torch.manual_seed(_snake_case ) else: UpperCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) UpperCAmelCase = floats_tensor((1, 3, 16, 16) , rng=random.Random(_snake_case ) ).to(_snake_case ) UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_snake_case ) ).to(_snake_case ) UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_snake_case ) ).to(_snake_case ) UpperCAmelCase = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def snake_case_ ( self ) -> List[str]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def snake_case_ ( self ) -> Optional[int]: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def snake_case_ ( self ) -> Union[str, Any]: """simple docstring""" # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def snake_case_ ( self ) -> Dict: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def snake_case_ ( self ) -> List[str]: """simple docstring""" self._test_save_load_local() def snake_case_ ( self ) -> Optional[int]: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
370
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available __magic_name__ = { "configuration_ernie": ["ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ErnieConfig", "ErnieOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ "ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST", "ErnieForCausalLM", "ErnieForMaskedLM", "ErnieForMultipleChoice", "ErnieForNextSentencePrediction", "ErnieForPreTraining", "ErnieForQuestionAnswering", "ErnieForSequenceClassification", "ErnieForTokenClassification", "ErnieModel", "ErniePreTrainedModel", ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
152
0
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def __magic_name__ ( __a : Dict[str, torch.Tensor] ): '''simple docstring''' UpperCamelCase__ = [] UpperCamelCase__ = [] UpperCamelCase__ = [] for rt in rc.restypes: UpperCamelCase__ = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) UpperCamelCase__ = {name: i for i, name in enumerate(__a )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) UpperCamelCase__ = torch.tensor( __a , dtype=torch.intaa , device=protein["""aatype"""].device , ) UpperCamelCase__ = torch.tensor( __a , dtype=torch.intaa , device=protein["""aatype"""].device , ) UpperCamelCase__ = torch.tensor( __a , dtype=torch.floataa , device=protein["""aatype"""].device , ) UpperCamelCase__ = protein["""aatype"""].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein UpperCamelCase__ = restype_atomaa_to_atomaa[protein_aatype] UpperCamelCase__ = restype_atomaa_mask[protein_aatype] UpperCamelCase__ = residx_atomaa_mask UpperCamelCase__ = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back UpperCamelCase__ = restype_atomaa_to_atomaa[protein_aatype] UpperCamelCase__ = residx_atomaa_to_atomaa.long() # create the corresponding mask UpperCamelCase__ = torch.zeros([21, 37] , dtype=torch.floataa , device=protein["""aatype"""].device ) for restype, restype_letter in enumerate(rc.restypes ): UpperCamelCase__ = rc.restype_atoa[restype_letter] UpperCamelCase__ = rc.residue_atoms[restype_name] for atom_name in atom_names: UpperCamelCase__ = rc.atom_order[atom_name] UpperCamelCase__ = 1 UpperCamelCase__ = restype_atomaa_mask[protein_aatype] UpperCamelCase__ = residx_atomaa_mask return protein def __magic_name__ ( __a : Dict[str, torch.Tensor] ): '''simple docstring''' UpperCamelCase__ = tree_map(lambda __a : torch.tensor(__a , device=batch["""aatype"""].device ) , __a , np.ndarray ) UpperCamelCase__ = tensor_tree_map(lambda __a : np.array(__a ) , make_atomaa_masks(__a ) ) return out
244
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __A: """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=None , ): UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = image_size UpperCamelCase__ = patch_size UpperCamelCase__ = num_channels UpperCamelCase__ = is_training UpperCamelCase__ = use_labels UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range UpperCamelCase__ = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCamelCase__ = (image_size // patch_size) ** 2 UpperCamelCase__ = num_patches + 1 def UpperCAmelCase_ (self ): UpperCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ (self ): return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = TFViTModel(config=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. UpperCamelCase__ = self.image_size // 2 UpperCamelCase__ = pixel_values[:, :, :image_size, :image_size] UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , interpolate_pos_encoding=SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = self.type_sequence_label_size UpperCamelCase__ = TFViTForImageClassification(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. UpperCamelCase__ = self.image_size // 2 UpperCamelCase__ = pixel_values[:, :, :image_size, :image_size] UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , interpolate_pos_encoding=SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase__ = 1 UpperCamelCase__ = TFViTForImageClassification(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = config_and_inputs UpperCamelCase__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class __A( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () SCREAMING_SNAKE_CASE__ = ( {"""feature-extraction""": TFViTModel, """image-classification""": TFViTForImageClassification} if is_tf_available() else {} ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False def UpperCAmelCase_ (self ): UpperCamelCase__ = TFViTModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ , hidden_size=37 ) def UpperCAmelCase_ (self ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def UpperCAmelCase_ (self ): pass @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def UpperCAmelCase_ (self ): pass def UpperCAmelCase_ (self ): UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ = model_class(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) UpperCamelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_ , tf.keras.layers.Layer ) ) def UpperCAmelCase_ (self ): UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ = model_class(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ = [*signature.parameters.keys()] UpperCamelCase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) @slow def UpperCAmelCase_ (self ): UpperCamelCase__ = TFViTModel.from_pretrained("""google/vit-base-patch16-224""" ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def __magic_name__ ( ): '''simple docstring''' UpperCamelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class __A( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase_ (self ): return ViTImageProcessor.from_pretrained("""google/vit-base-patch16-224""" ) if is_vision_available() else None @slow def UpperCAmelCase_ (self ): UpperCamelCase__ = TFViTForImageClassification.from_pretrained("""google/vit-base-patch16-224""" ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors="""tf""" ) # forward pass UpperCamelCase__ = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits UpperCamelCase__ = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tf.constant([-0.2744, 0.8215, -0.0836] ) tf.debugging.assert_near(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 )
244
1
'''simple docstring''' import fire from utils import calculate_rouge, save_json def __lowercase ( __lowercase , __lowercase , __lowercase=None , **__lowercase ) -> Optional[int]: '''simple docstring''' _A = [x.strip() for x in open(__lowercase ).readlines()] _A = [x.strip() for x in open(__lowercase ).readlines()][: len(__lowercase )] _A = calculate_rouge(__lowercase , __lowercase , **__lowercase ) if save_path is not None: save_json(__lowercase , __lowercase , indent=__lowercase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
174
'''simple docstring''' from collections import defaultdict from math import gcd def __lowercase ( __lowercase = 150_0000 ) -> int: '''simple docstring''' _A = defaultdict(__lowercase ) _A = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , __lowercase , 2 ): if gcd(__lowercase , __lowercase ) > 1: continue _A = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(__lowercase , limit + 1 , __lowercase ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F"""{solution() = }""")
174
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor __SCREAMING_SNAKE_CASE :Union[str, Any] = logging.get_logger(__name__) class A_ ( lowerCAmelCase_ ): def __init__( self : Tuple , *snake_case_ : str , **snake_case_ : Union[str, Any] ): warnings.warn( "The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DeiTImageProcessor instead." , snake_case_ , ) super().__init__(*snake_case_ , **snake_case_ )
22
"""simple docstring""" import unittest import torch from torch import nn from diffusers.models.activations import get_activation class a ( unittest.TestCase ): """simple docstring""" def UpperCamelCase ( self: str ): """simple docstring""" A__ = get_activation("""swish""" ) self.assertIsInstance(UpperCamelCase , nn.SiLU ) self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def UpperCamelCase ( self: Any ): """simple docstring""" A__ = get_activation("""silu""" ) self.assertIsInstance(UpperCamelCase , nn.SiLU ) self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def UpperCamelCase ( self: Optional[int] ): """simple docstring""" A__ = get_activation("""mish""" ) self.assertIsInstance(UpperCamelCase , nn.Mish ) self.assertEqual(act(torch.tensor(-2_00 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def UpperCamelCase ( self: Any ): """simple docstring""" A__ = get_activation("""gelu""" ) self.assertIsInstance(UpperCamelCase , nn.GELU ) self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
335
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _UpperCAmelCase : str = logging.get_logger(__name__) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: snake_case_ = [144, 192, 240] snake_case_ = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: snake_case_ = [96, 120, 144] snake_case_ = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: snake_case_ = [64, 80, 96] snake_case_ = [16, 16, 24, 48, 64, 80, 320] snake_case_ = 0.05 snake_case_ = 2.0 if mobilevit_name.startswith('deeplabv3_' ): snake_case_ = 512 snake_case_ = 16 snake_case_ = 21 snake_case_ = 'pascal-voc-id2label.json' else: snake_case_ = 1000 snake_case_ = 'imagenet-1k-id2label.json' snake_case_ = 'huggingface/label-files' snake_case_ = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type='dataset' ) , 'r' ) ) snake_case_ = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} snake_case_ = idalabel snake_case_ = {v: k for k, v in idalabel.items()} return config def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__=False ): '''simple docstring''' for i in range(1 , 6 ): if F'''layer_{i}.''' in name: snake_case_ = name.replace(F'''layer_{i}.''' , F'''encoder.layer.{i - 1}.''' ) if "conv_1." in name: snake_case_ = name.replace('conv_1.' , 'conv_stem.' ) if ".block." in name: snake_case_ = name.replace('.block.' , '.' ) if "exp_1x1" in name: snake_case_ = name.replace('exp_1x1' , 'expand_1x1' ) if "red_1x1" in name: snake_case_ = name.replace('red_1x1' , 'reduce_1x1' ) if ".local_rep.conv_3x3." in name: snake_case_ = name.replace('.local_rep.conv_3x3.' , '.conv_kxk.' ) if ".local_rep.conv_1x1." in name: snake_case_ = name.replace('.local_rep.conv_1x1.' , '.conv_1x1.' ) if ".norm." in name: snake_case_ = name.replace('.norm.' , '.normalization.' ) if ".conv." in name: snake_case_ = name.replace('.conv.' , '.convolution.' ) if ".conv_proj." in name: snake_case_ = name.replace('.conv_proj.' , '.conv_projection.' ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F'''.{i}.{j}.''' in name: snake_case_ = name.replace(F'''.{i}.{j}.''' , F'''.{i}.layer.{j}.''' ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F'''.{i}.{j}.''' in name: snake_case_ = name.replace(F'''.{i}.{j}.''' , F'''.{i}.''' ) if "expand_1x1" in name: snake_case_ = name.replace('expand_1x1' , 'downsampling_layer.expand_1x1' ) if "conv_3x3" in name: snake_case_ = name.replace('conv_3x3' , 'downsampling_layer.conv_3x3' ) if "reduce_1x1" in name: snake_case_ = name.replace('reduce_1x1' , 'downsampling_layer.reduce_1x1' ) for i in range(2 , 5 ): if F'''.global_rep.{i}.weight''' in name: snake_case_ = name.replace(F'''.global_rep.{i}.weight''' , '.layernorm.weight' ) if F'''.global_rep.{i}.bias''' in name: snake_case_ = name.replace(F'''.global_rep.{i}.bias''' , '.layernorm.bias' ) if ".global_rep." in name: snake_case_ = name.replace('.global_rep.' , '.transformer.' ) if ".pre_norm_mha.0." in name: snake_case_ = name.replace('.pre_norm_mha.0.' , '.layernorm_before.' ) if ".pre_norm_mha.1.out_proj." in name: snake_case_ = name.replace('.pre_norm_mha.1.out_proj.' , '.attention.output.dense.' ) if ".pre_norm_ffn.0." in name: snake_case_ = name.replace('.pre_norm_ffn.0.' , '.layernorm_after.' ) if ".pre_norm_ffn.1." in name: snake_case_ = name.replace('.pre_norm_ffn.1.' , '.intermediate.dense.' ) if ".pre_norm_ffn.4." in name: snake_case_ = name.replace('.pre_norm_ffn.4.' , '.output.dense.' ) if ".transformer." in name: snake_case_ = name.replace('.transformer.' , '.transformer.layer.' ) if ".aspp_layer." in name: snake_case_ = name.replace('.aspp_layer.' , '.' ) if ".aspp_pool." in name: snake_case_ = name.replace('.aspp_pool.' , '.' ) if "seg_head." in name: snake_case_ = name.replace('seg_head.' , 'segmentation_head.' ) if "segmentation_head.classifier.classifier." in name: snake_case_ = name.replace('segmentation_head.classifier.classifier.' , 'segmentation_head.classifier.' ) if "classifier.fc." in name: snake_case_ = name.replace('classifier.fc.' , 'classifier.' ) elif (not base_model) and ("segmentation_head." not in name): snake_case_ = 'mobilevit.' + name return name def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False ): '''simple docstring''' if base_model: snake_case_ = '' else: snake_case_ = 'mobilevit.' for key in orig_state_dict.copy().keys(): snake_case_ = orig_state_dict.pop(UpperCamelCase__ ) if key[:8] == "encoder.": snake_case_ = key[8:] if "qkv" in key: snake_case_ = key.split('.' ) snake_case_ = int(key_split[0][6:] ) - 1 snake_case_ = int(key_split[3] ) snake_case_ = model.get_submodule(F'''{model_prefix}encoder.layer.{layer_num}''' ) snake_case_ = layer.transformer.layer[transformer_num].attention.attention.all_head_size snake_case_ = ( F'''{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.''' ) if "weight" in key: snake_case_ = val[:dim, :] snake_case_ = val[dim : dim * 2, :] snake_case_ = val[-dim:, :] else: snake_case_ = val[:dim] snake_case_ = val[dim : dim * 2] snake_case_ = val[-dim:] else: snake_case_ = val return orig_state_dict def __lowerCamelCase ( ): '''simple docstring''' snake_case_ = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case_ = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ) return im @torch.no_grad() def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False ): '''simple docstring''' snake_case_ = get_mobilevit_config(UpperCamelCase__ ) # load original state_dict snake_case_ = torch.load(UpperCamelCase__ , map_location='cpu' ) # load 🤗 model if mobilevit_name.startswith('deeplabv3_' ): snake_case_ = MobileViTForSemanticSegmentation(UpperCamelCase__ ).eval() else: snake_case_ = MobileViTForImageClassification(UpperCamelCase__ ).eval() snake_case_ = convert_state_dict(UpperCamelCase__ , UpperCamelCase__ ) model.load_state_dict(UpperCamelCase__ ) # Check outputs on an image, prepared by MobileViTImageProcessor snake_case_ = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) snake_case_ = image_processor(images=prepare_img() , return_tensors='pt' ) snake_case_ = model(**UpperCamelCase__ ) snake_case_ = outputs.logits if mobilevit_name.startswith('deeplabv3_' ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": snake_case_ = torch.tensor( [ [[6.20_65, 6.12_92, 6.20_70], [6.10_79, 6.12_54, 6.17_47], [6.00_42, 6.10_71, 6.10_34]], [[-6.92_53, -6.86_53, -7.03_98], [-7.32_18, -7.39_83, -7.36_70], [-7.19_61, -7.24_82, -7.15_69]], [[-4.47_23, -4.43_48, -4.37_69], [-5.36_29, -5.46_32, -5.45_98], [-5.15_87, -5.34_02, -5.50_59]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": snake_case_ = torch.tensor( [ [[5.44_49, 5.57_33, 5.63_14], [5.18_15, 5.39_30, 5.59_63], [5.16_56, 5.43_33, 5.48_53]], [[-9.44_23, -9.77_66, -9.67_14], [-9.15_81, -9.57_20, -9.55_19], [-9.10_06, -9.64_58, -9.57_03]], [[-7.77_21, -7.37_16, -7.15_83], [-8.45_99, -8.06_24, -7.79_44], [-8.41_72, -7.83_66, -7.50_25]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": snake_case_ = torch.tensor( [ [[6.98_11, 6.97_43, 7.31_23], [7.17_77, 7.19_31, 7.39_38], [7.56_33, 7.80_50, 7.89_01]], [[-10.55_36, -10.23_32, -10.29_24], [-10.23_36, -9.86_24, -9.59_64], [-10.88_40, -10.81_58, -10.66_59]], [[-3.49_38, -3.06_31, -2.86_20], [-3.42_05, -2.81_35, -2.68_75], [-3.41_79, -2.79_45, -2.87_50]], ] ) else: raise ValueError(F'''Unknown mobilevit_name: {mobilevit_name}''' ) assert torch.allclose(logits[0, :3, :3, :3] , UpperCamelCase__ , atol=1E-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": snake_case_ = torch.tensor([-0.98_66, 0.23_92, -1.12_41] ) elif mobilevit_name == "mobilevit_xs": snake_case_ = torch.tensor([-2.47_61, -0.93_99, -1.95_87] ) elif mobilevit_name == "mobilevit_xxs": snake_case_ = torch.tensor([-1.93_64, -1.23_27, -0.46_53] ) else: raise ValueError(F'''Unknown mobilevit_name: {mobilevit_name}''' ) assert torch.allclose(logits[0, :3] , UpperCamelCase__ , atol=1E-4 ) Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) print(F'''Saving model {mobilevit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCamelCase__ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCamelCase__ ) if push_to_hub: snake_case_ = { 'mobilevit_s': 'mobilevit-small', 'mobilevit_xs': 'mobilevit-x-small', 'mobilevit_xxs': 'mobilevit-xx-small', 'deeplabv3_mobilevit_s': 'deeplabv3-mobilevit-small', 'deeplabv3_mobilevit_xs': 'deeplabv3-mobilevit-x-small', 'deeplabv3_mobilevit_xxs': 'deeplabv3-mobilevit-xx-small', } print('Pushing to the hub...' ) snake_case_ = model_mapping[mobilevit_name] image_processor.push_to_hub(UpperCamelCase__ , organization='apple' ) model.push_to_hub(UpperCamelCase__ , organization='apple' ) if __name__ == "__main__": _UpperCAmelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--mobilevit_name""", default="""mobilevit_s""", type=str, help=( """Name of the MobileViT model you'd like to convert. Should be one of 'mobilevit_s', 'mobilevit_xs',""" """ 'mobilevit_xxs', 'deeplabv3_mobilevit_s', 'deeplabv3_mobilevit_xs', 'deeplabv3_mobilevit_xxs'.""" ), ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original state dict (.pt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _UpperCAmelCase : Union[str, Any] = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
353
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class lowercase ( lowercase_ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[str] = BarthezTokenizer __SCREAMING_SNAKE_CASE : str = BarthezTokenizerFast __SCREAMING_SNAKE_CASE : Optional[Any] = True __SCREAMING_SNAKE_CASE : str = True def a ( self ): super().setUp() snake_case_ = BarthezTokenizerFast.from_pretrained('moussaKam/mbarthez' ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=snake_case ) snake_case_ = tokenizer def a ( self ): snake_case_ = '<pad>' snake_case_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case ) , snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case ) , snake_case ) def a ( self ): snake_case_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(snake_case ) , 10_1122 ) def a ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 10_1122 ) @require_torch def a ( self ): snake_case_ = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] snake_case_ = [0, 57, 3018, 7_0307, 91, 2] snake_case_ = self.tokenizer( snake_case , max_length=len(snake_case ) , padding=snake_case , truncation=snake_case , return_tensors='pt' ) self.assertIsInstance(snake_case , snake_case ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) snake_case_ = batch.input_ids.tolist()[0] self.assertListEqual(snake_case , snake_case ) def a ( self ): if not self.test_rust_tokenizer: return snake_case_ = self.get_tokenizer() snake_case_ = self.get_rust_tokenizer() snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = tokenizer.tokenize(snake_case ) snake_case_ = rust_tokenizer.tokenize(snake_case ) self.assertListEqual(snake_case , snake_case ) snake_case_ = tokenizer.encode(snake_case , add_special_tokens=snake_case ) snake_case_ = rust_tokenizer.encode(snake_case , add_special_tokens=snake_case ) self.assertListEqual(snake_case , snake_case ) snake_case_ = self.get_rust_tokenizer() snake_case_ = tokenizer.encode(snake_case ) snake_case_ = rust_tokenizer.encode(snake_case ) self.assertListEqual(snake_case , snake_case ) @slow def a ( self ): # fmt: off snake_case_ = {'input_ids': [[0, 490, 1_4328, 4507, 354, 47, 4_3669, 95, 25, 7_8117, 2_0215, 1_9779, 190, 22, 400, 4, 3_5343, 8_0310, 603, 86, 2_4937, 105, 3_3438, 9_4762, 196, 3_9642, 7, 15, 1_5933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0534, 87, 25, 66, 3358, 196, 5_5289, 8, 8_2961, 81, 2204, 7_5203, 7, 15, 763, 1_2956, 216, 178, 1_4328, 9595, 1377, 6_9693, 7, 448, 7_1021, 196, 1_8106, 1437, 1_3974, 108, 9083, 4, 4_9315, 7, 39, 86, 1326, 2793, 4_6333, 4, 448, 196, 7_4588, 7, 4_9315, 7, 39, 21, 822, 3_8470, 74, 21, 6_6723, 6_2480, 8, 2_2050, 5, 2]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. snake_case_ = [ 'Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ' 'utilisé principalement dans le domaine du traitement automatique des langues (TAL).', 'À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ' 'pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ' 'telles que la traduction et la synthèse de texte.', ] self.tokenizer_integration_test_util( expected_encoding=snake_case , model_name='moussaKam/mbarthez' , revision='c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6' , sequences=snake_case , )
200
0
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class snake_case__ ( unittest.TestCase ): def __magic_name__ ( self ) -> List[str]: __magic_name__ : str = tempfile.mkdtemp() # fmt: off __magic_name__ : Tuple = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest"""] # fmt: on __magic_name__ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) __magic_name__ : Any = { """do_resize""": True, """size""": {"""height""": 18, """width""": 18}, """do_normalize""": True, """image_mean""": [0.5, 0.5, 0.5], """image_std""": [0.5, 0.5, 0.5], } __magic_name__ : Tuple = os.path.join(self.tmpdirname , __lowercase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(__lowercase , __lowercase ) def __magic_name__ ( self , **lowerCAmelCase__ ) -> List[str]: return BertTokenizer.from_pretrained(self.tmpdirname , **__lowercase ) def __magic_name__ ( self , **lowerCAmelCase__ ) -> List[Any]: return ViTImageProcessor.from_pretrained(self.tmpdirname , **__lowercase ) def __magic_name__ ( self ) -> str: shutil.rmtree(self.tmpdirname ) def __magic_name__ ( self ) -> List[Any]: __magic_name__ : List[str] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __magic_name__ : int = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : str = self.get_tokenizer() __magic_name__ : Any = self.get_image_processor() __magic_name__ : List[Any] = VisionTextDualEncoderProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor.save_pretrained(self.tmpdirname ) __magic_name__ : Optional[Any] = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowercase ) def __magic_name__ ( self ) -> Tuple: __magic_name__ : int = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __magic_name__ : Optional[int] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __magic_name__ : List[Any] = self.get_image_processor(do_normalize=__lowercase , padding_value=1.0 ) __magic_name__ : int = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__lowercase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowercase ) def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : Optional[int] = self.get_image_processor() __magic_name__ : Optional[Any] = self.get_tokenizer() __magic_name__ : Optional[Any] = VisionTextDualEncoderProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __magic_name__ : List[Any] = self.prepare_image_inputs() __magic_name__ : Optional[Any] = image_processor(__lowercase , return_tensors="""np""" ) __magic_name__ : List[Any] = processor(images=__lowercase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __magic_name__ ( self ) -> List[Any]: __magic_name__ : str = self.get_image_processor() __magic_name__ : Union[str, Any] = self.get_tokenizer() __magic_name__ : List[str] = VisionTextDualEncoderProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __magic_name__ : List[Any] = """lower newer""" __magic_name__ : Union[str, Any] = processor(text=__lowercase ) __magic_name__ : Optional[Any] = tokenizer(__lowercase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __magic_name__ ( self ) -> List[str]: __magic_name__ : Optional[Any] = self.get_image_processor() __magic_name__ : Dict = self.get_tokenizer() __magic_name__ : Tuple = VisionTextDualEncoderProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __magic_name__ : List[str] = """lower newer""" __magic_name__ : Optional[int] = self.prepare_image_inputs() __magic_name__ : int = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with self.assertRaises(__lowercase ): processor() def __magic_name__ ( self ) -> int: __magic_name__ : Optional[Any] = self.get_image_processor() __magic_name__ : str = self.get_tokenizer() __magic_name__ : Optional[int] = VisionTextDualEncoderProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __magic_name__ : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __magic_name__ : List[str] = processor.batch_decode(__lowercase ) __magic_name__ : List[Any] = tokenizer.batch_decode(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) def __magic_name__ ( self ) -> str: __magic_name__ : List[str] = self.get_image_processor() __magic_name__ : List[str] = self.get_tokenizer() __magic_name__ : List[Any] = VisionTextDualEncoderProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __magic_name__ : int = """lower newer""" __magic_name__ : Tuple = self.prepare_image_inputs() __magic_name__ : List[str] = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
342
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCamelCase__ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : Dict =['pixel_values'] def __init__( self : Optional[int] , __lowercase : bool = True , __lowercase : Optional[Dict[str, int]] = None , __lowercase : PILImageResampling = PILImageResampling.BICUBIC , __lowercase : bool = True , __lowercase : bool = True , __lowercase : Union[int, float] = 1 / 255 , __lowercase : Dict[str, int] = None , __lowercase : bool = True , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[float, List[float]]] = None , **__lowercase : Dict , ): '''simple docstring''' super().__init__(**__lowercase ) __a = size if size is not None else {"""height""": 224, """width""": 224} __a = get_size_dict(__lowercase ) __a = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __a = get_size_dict(__lowercase , default_to_square=__lowercase , param_name="""crop_size""" ) __a = do_resize __a = do_rescale __a = do_normalize __a = do_center_crop __a = crop_size __a = size __a = resample __a = rescale_factor __a = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __a = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCamelCase_ ( self : Any , __lowercase : np.ndarray , __lowercase : Dict[str, int] , __lowercase : PILImageResampling = PILImageResampling.BILINEAR , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : Optional[Any] , ): '''simple docstring''' __a = get_size_dict(__lowercase ) if "shortest_edge" in size: __a = get_resize_output_image_size(__lowercase , size=size["""shortest_edge"""] , default_to_square=__lowercase ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: __a = (size["""height"""], size["""width"""]) else: raise ValueError(F"Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}" ) return resize(__lowercase , size=__lowercase , resample=__lowercase , data_format=__lowercase , **__lowercase ) def UpperCamelCase_ ( self : str , __lowercase : np.ndarray , __lowercase : Dict[str, int] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : List[Any] , ): '''simple docstring''' __a = get_size_dict(__lowercase ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(__lowercase , size=(size["""height"""], size["""width"""]) , data_format=__lowercase , **__lowercase ) def UpperCamelCase_ ( self : Any , __lowercase : np.ndarray , __lowercase : float , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : str ): '''simple docstring''' return rescale(__lowercase , scale=__lowercase , data_format=__lowercase , **__lowercase ) def UpperCamelCase_ ( self : List[Any] , __lowercase : np.ndarray , __lowercase : Union[float, List[float]] , __lowercase : Union[float, List[float]] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : Any , ): '''simple docstring''' return normalize(__lowercase , mean=__lowercase , std=__lowercase , data_format=__lowercase , **__lowercase ) def UpperCamelCase_ ( self : Tuple , __lowercase : ImageInput , __lowercase : Optional[bool] = None , __lowercase : Dict[str, int] = None , __lowercase : PILImageResampling = None , __lowercase : bool = None , __lowercase : int = None , __lowercase : Optional[bool] = None , __lowercase : Optional[float] = None , __lowercase : Optional[bool] = None , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[str, TensorType]] = None , __lowercase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__lowercase : List[Any] , ): '''simple docstring''' __a = do_resize if do_resize is not None else self.do_resize __a = do_rescale if do_rescale is not None else self.do_rescale __a = do_normalize if do_normalize is not None else self.do_normalize __a = do_center_crop if do_center_crop is not None else self.do_center_crop __a = crop_size if crop_size is not None else self.crop_size __a = get_size_dict(__lowercase , param_name="""crop_size""" , default_to_square=__lowercase ) __a = resample if resample is not None else self.resample __a = rescale_factor if rescale_factor is not None else self.rescale_factor __a = image_mean if image_mean is not None else self.image_mean __a = image_std if image_std is not None else self.image_std __a = size if size is not None else self.size __a = get_size_dict(__lowercase ) if not is_batched(__lowercase ): __a = [images] if not valid_images(__lowercase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. __a = [to_numpy_array(__lowercase ) for image in images] if do_resize: __a = [self.resize(image=__lowercase , size=__lowercase , resample=__lowercase ) for image in images] if do_center_crop: __a = [self.center_crop(image=__lowercase , size=__lowercase ) for image in images] if do_rescale: __a = [self.rescale(image=__lowercase , scale=__lowercase ) for image in images] if do_normalize: __a = [self.normalize(image=__lowercase , mean=__lowercase , std=__lowercase ) for image in images] __a = [to_channel_dimension_format(__lowercase , __lowercase ) for image in images] __a = {"""pixel_values""": images} return BatchFeature(data=__lowercase , tensor_type=__lowercase )
302
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available snake_case_ = { """configuration_groupvit""": [ """GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GroupViTConfig""", """GroupViTOnnxConfig""", """GroupViTTextConfig""", """GroupViTVisionConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ """GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GroupViTModel""", """GroupViTPreTrainedModel""", """GroupViTTextModel""", """GroupViTVisionModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ """TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFGroupViTModel""", """TFGroupViTPreTrainedModel""", """TFGroupViTTextModel""", """TFGroupViTVisionModel""", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys snake_case_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
181
"""simple docstring""" import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class A_ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = WavaVecaPhonemeCTCTokenizer __UpperCamelCase = False def UpperCAmelCase__ ( self :Optional[int] ) -> int: super().setUp() UpperCAmelCase = ( '<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː ' 'ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː ' 'ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 ' 'oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ ' 'pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ ' 'yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ ' 'əʊ S ɡʲ onɡ2 u" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ ' 'ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ ' 'ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ ' 'uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ ' 'ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ ' 'ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ ' 'ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4' ).split(' ' ) UpperCAmelCase = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) UpperCAmelCase = {'pad_token': '<pad>', 'unk_token': '<unk>', 'bos_token': '<s>', 'eos_token': '</s>'} UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowercase_ ) + '\n' ) def UpperCAmelCase__ ( self :Dict , lowercase_ :Any , lowercase_ :Union[str, Any]=False , lowercase_ :int=20 , lowercase_ :Dict=5 ) -> Tuple[str, list]: UpperCAmelCase = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=lowercase_ )) for i in range(len(lowercase_ ) )] UpperCAmelCase = list(filter(lambda lowercase_ : [t[0]] == tokenizer.encode(t[1] , do_phonemize=lowercase_ ) , lowercase_ ) ) if max_length is not None and len(lowercase_ ) > max_length: UpperCAmelCase = toks[:max_length] if min_length is not None and len(lowercase_ ) < min_length and len(lowercase_ ) > 0: while len(lowercase_ ) < min_length: UpperCAmelCase = toks + toks # toks_str = [t[1] for t in toks] UpperCAmelCase = [t[0] for t in toks] # Ensure consistency UpperCAmelCase = tokenizer.decode(lowercase_ , clean_up_tokenization_spaces=lowercase_ ) if " " not in output_txt and len(lowercase_ ) > 1: UpperCAmelCase = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowercase_ ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowercase_ ) ) if with_prefix_space: UpperCAmelCase = ' ' + output_txt UpperCAmelCase = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) return output_txt, output_ids def UpperCAmelCase__ ( self :Union[str, Any] , **lowercase_ :Union[str, Any] ) -> Optional[Any]: kwargs.update(self.special_tokens_map ) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **lowercase_ ) def UpperCAmelCase__ ( self :int ) -> str: UpperCAmelCase = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) # check adding a single token tokenizer.add_tokens('xxx' ) UpperCAmelCase = tokenizer('m xxx ɪ' , do_phonemize=lowercase_ ).input_ids self.assertEqual(lowercase_ , [13, 3_92, 17] ) # xxx should be last token tokenizer.add_tokens(['aaa', 'bbb', 'ccc'] ) UpperCAmelCase = tokenizer('m aaa ɪ ccc' , do_phonemize=lowercase_ ).input_ids self.assertEqual(lowercase_ , [13, 3_93, 17, 3_95] ) # aaa and ccc should be after xxx and 2 after aaa UpperCAmelCase = tokenizer('maɪ c' , do_phonemize=lowercase_ ).input_ids self.assertEqual(lowercase_ , [3, 2_00] ) # mai should be <unk> (=3) def UpperCAmelCase__ ( self :Tuple ) -> Union[str, Any]: UpperCAmelCase = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) UpperCAmelCase = 'Hello how are you' UpperCAmelCase = tokenizer.phonemize(lowercase_ , phonemizer_lang='en-us' ) self.assertEqual(lowercase_ , 'h ə l oʊ h aʊ ɑːɹ j uː' ) def UpperCAmelCase__ ( self :Dict ) -> int: UpperCAmelCase = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) UpperCAmelCase = 'Hello how are you' UpperCAmelCase = tokenizer.phonemize(lowercase_ , phonemizer_lang='en-us' ) self.assertEqual(tokenizer(lowercase_ ).input_ids , tokenizer(lowercase_ , do_phonemize=lowercase_ ).input_ids ) def UpperCAmelCase__ ( self :Optional[Any] ) -> Dict: UpperCAmelCase = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) UpperCAmelCase = 'Hello how are you' UpperCAmelCase = tokenizer.phonemize(lowercase_ , phonemizer_lang='en-us' ) UpperCAmelCase = tokenizer.decode(tokenizer(lowercase_ ).input_ids ) self.assertEqual(lowercase_ , lowercase_ ) def UpperCAmelCase__ ( self :Optional[int] ) -> str: UpperCAmelCase = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) UpperCAmelCase = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98], [24, 22, 5, 24, 22, 5, 77], ] UpperCAmelCase = tokenizer.decode(sample_ids[0] ) UpperCAmelCase = tokenizer.batch_decode(lowercase_ ) self.assertEqual(lowercase_ , batch_tokens[0] ) self.assertEqual(lowercase_ , ['k s ɾ ɾ l ɭʲ', 'j ð s j ð s oːɹ'] ) def UpperCAmelCase__ ( self :Any ) -> str: UpperCAmelCase = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) UpperCAmelCase = 'Hello how are you' UpperCAmelCase = tokenizer.phonemize(lowercase_ , phonemizer_lang='en-us' ) self.assertEqual(lowercase_ , 'h ə l oʊ | h aʊ | ɑːɹ | j uː |' ) def UpperCAmelCase__ ( self :Any ) -> Any: UpperCAmelCase = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) UpperCAmelCase = 'Hello how are you' UpperCAmelCase = tokenizer.phonemize(lowercase_ , phonemizer_lang='en-us' ) self.assertEqual(tokenizer(lowercase_ ).input_ids , tokenizer(lowercase_ , do_phonemize=lowercase_ ).input_ids ) def UpperCAmelCase__ ( self :Dict ) -> Union[str, Any]: UpperCAmelCase = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) # fmt: off UpperCAmelCase = [ [11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98], [tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77], ] # fmt: on # decode with word_del_token filter UpperCAmelCase = tokenizer.decode(sample_ids[0] ) UpperCAmelCase = tokenizer.batch_decode(lowercase_ ) self.assertEqual(lowercase_ , batch_tokens[0] ) self.assertEqual(lowercase_ , ['k s ɾ ɾ l ɭʲ', 'j ð s j ð s oːɹ'] ) # decode with no word_del_token filter UpperCAmelCase = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=lowercase_ ) UpperCAmelCase = tokenizer.batch_decode(lowercase_ , filter_word_delimiter_token=lowercase_ ) self.assertEqual(lowercase_ , batch_tokens[0] ) self.assertEqual(lowercase_ , ['k s ɾ | ɾ l | ɭʲ', '| j ð | s j ð s oːɹ'] ) def UpperCAmelCase__ ( self :int ) -> int: UpperCAmelCase = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) UpperCAmelCase = 'Hello how are you' UpperCAmelCase = tokenizer.phonemize(lowercase_ , phonemizer_lang='en-us' ) UpperCAmelCase = tokenizer.decode(tokenizer(lowercase_ ).input_ids , filter_word_delimiter_token=lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) def UpperCAmelCase__ ( self :Union[str, Any] ) -> Optional[Any]: UpperCAmelCase = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) UpperCAmelCase = 'Hello how are you' UpperCAmelCase = tokenizer.phonemize(lowercase_ , phonemizer_lang='en-us' ) UpperCAmelCase = tokenizer.decode(tokenizer(lowercase_ ).input_ids , filter_word_delimiter_token=lowercase_ ) self.assertEqual(' '.join([p.strip() for p in phonemes.split(' |' )] ).strip() , lowercase_ ) def UpperCAmelCase__ ( self :int ) -> Optional[Any]: UpperCAmelCase = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token=lowercase_ ) UpperCAmelCase = 'Hello how are you' UpperCAmelCase = tokenizer(lowercase_ , phonemizer_lang='en-us' ).input_ids UpperCAmelCase = tokenizer(lowercase_ , phonemizer_lang='fr-fr' ).input_ids self.assertNotEqual(lowercase_ , lowercase_ ) UpperCAmelCase = tokenizer.decode(lowercase_ ) UpperCAmelCase = tokenizer.decode(lowercase_ ) self.assertEqual(lowercase_ , 'h ə l oʊ h aʊ ɑːɹ j uː' ) self.assertEqual(lowercase_ , 'ɛ l o h aʊ a ʁ j u' ) def UpperCAmelCase__ ( self :int ) -> List[Any]: UpperCAmelCase = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) UpperCAmelCase = 'Hello how Are you' UpperCAmelCase = 'hello how are you' UpperCAmelCase = tokenizer(lowercase_ ).input_ids UpperCAmelCase = tokenizer(lowercase_ ).input_ids self.assertEqual(lowercase_ , lowercase_ ) def UpperCAmelCase__ ( self :Optional[Any] ) -> int: UpperCAmelCase = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) tokenizer.add_tokens(['!', '?'] ) tokenizer.add_special_tokens({'cls_token': '$$$'} ) # fmt: off UpperCAmelCase = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 3_92, 3_92, 3_93, 3_92, 3_92, 3_93, 3_94, 3_94], [24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 3_94, 3_94], ] # fmt: on UpperCAmelCase = tokenizer.batch_decode(lowercase_ ) self.assertEqual(lowercase_ , ['k s ɾ ɾ l ɭʲ!?!? $$$', 'j ð s j ð s oːɹ $$$'] ) @staticmethod def UpperCAmelCase__ ( lowercase_ :List[str] , lowercase_ :List[str] ) -> List[str]: UpperCAmelCase = [d[key] for d in offsets] return retrieved_list def UpperCAmelCase__ ( self :str ) -> Optional[int]: UpperCAmelCase = self.get_tokenizer(word_delimiter_token='|' ) tokenizer.add_tokens('|' ) # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" UpperCAmelCase = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98] # fmt: on UpperCAmelCase = tokenizer.decode(lowercase_ , output_char_offsets=lowercase_ , filter_word_delimiter_token=lowercase_ ) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys() ) , 2 ) self.assertTrue('text' in outputs ) self.assertTrue('char_offsets' in outputs ) self.assertTrue(isinstance(lowercase_ , lowercase_ ) ) # check that order of chars is correct and identical for both outputs self.assertEqual(' '.join(self.get_from_offsets(outputs['char_offsets'] , 'char' ) ) , outputs.text ) self.assertListEqual( self.get_from_offsets(outputs['char_offsets'] , 'char' ) , ['k', 's', 'ɾ', 'ɾ', '|', 'ɾ', 'l', '|', 'ɭʲ'] ) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs['char_offsets'] , 'start_offset' ) , [0, 1, 4, 7, 9, 11, 12, 15, 16] ) self.assertListEqual( self.get_from_offsets(outputs['char_offsets'] , 'end_offset' ) , [1, 4, 6, 9, 10, 12, 15, 16, 17] ) def UpperCAmelCase__ ( self :Optional[int] ) -> Optional[int]: UpperCAmelCase = self.get_tokenizer(word_delimiter_token='|' ) def check_list_tuples_equal(lowercase_ :List[Any] , lowercase_ :str ): self.assertTrue(isinstance(lowercase_ , lowercase_ ) ) self.assertTrue(isinstance(outputs_list[0] , lowercase_ ) ) # transform list to ModelOutput UpperCAmelCase = WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]} ) self.assertListEqual(outputs_batch['text'] , outputs_batch_a['text'] ) def recursive_check(lowercase_ :Any , lowercase_ :str ): if isinstance(lowercase_ , lowercase_ ): [recursive_check(lowercase_ , lowercase_ ) for la, la in zip(lowercase_ , lowercase_ )] self.assertEqual(lowercase_ , lowercase_ ) if "char_offsets" in outputs_batch: recursive_check(outputs_batch['char_offsets'] , outputs_batch_a['char_offsets'] ) # fmt: off UpperCAmelCase = [ [11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34], [24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char UpperCAmelCase = tokenizer.batch_decode(lowercase_ , output_char_offsets=lowercase_ ) UpperCAmelCase = [tokenizer.decode(lowercase_ , output_char_offsets=lowercase_ ) for ids in sample_ids] check_list_tuples_equal(lowercase_ , lowercase_ ) @unittest.skip('Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes' ) def UpperCAmelCase__ ( self :Any ) -> str: pass @unittest.skip('Wav2Vec2PhonemeTokenizer always puts spaces between phonemes' ) def UpperCAmelCase__ ( self :str ) -> List[str]: pass @unittest.skip('encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency' ) def UpperCAmelCase__ ( self :List[str] ) -> int: pass @unittest.skip('Wav2Vec2PhonemeModel has no max model length => no testing' ) def UpperCAmelCase__ ( self :List[Any] ) -> Optional[int]: pass def UpperCAmelCase__ ( self :int ) -> Optional[Any]: UpperCAmelCase = self.get_tokenizers(do_lower_case=lowercase_ ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): UpperCAmelCase = tokenizer.vocab_size UpperCAmelCase = len(lowercase_ ) self.assertNotEqual(lowercase_ , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) UpperCAmelCase = ['aaaaa bbbbbb', 'cccccccccdddddddd'] UpperCAmelCase = tokenizer.add_tokens(lowercase_ ) UpperCAmelCase = tokenizer.vocab_size UpperCAmelCase = len(lowercase_ ) self.assertNotEqual(lowercase_ , 0 ) self.assertEqual(lowercase_ , lowercase_ ) self.assertEqual(lowercase_ , len(lowercase_ ) ) self.assertEqual(lowercase_ , all_size + len(lowercase_ ) ) UpperCAmelCase = tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' , add_special_tokens=lowercase_ ) self.assertGreaterEqual(len(lowercase_ ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) UpperCAmelCase = {'eos_token': '>>>>|||<||<<|<<', 'pad_token': '<<<<<|||>|>>>>|>'} UpperCAmelCase = tokenizer.add_special_tokens(lowercase_ ) UpperCAmelCase = tokenizer.vocab_size UpperCAmelCase = len(lowercase_ ) self.assertNotEqual(lowercase_ , 0 ) self.assertEqual(lowercase_ , lowercase_ ) self.assertEqual(lowercase_ , len(lowercase_ ) ) self.assertEqual(lowercase_ , all_size_a + len(lowercase_ ) ) UpperCAmelCase = tokenizer.encode( '>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' , add_special_tokens=lowercase_ ) self.assertGreaterEqual(len(lowercase_ ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) @unittest.skip('The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.' ) def UpperCAmelCase__ ( self :Tuple ) -> Optional[Any]: pass @unittest.skip('The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.' ) def UpperCAmelCase__ ( self :int ) -> Any: pass def UpperCAmelCase__ ( self :Tuple ) -> Dict: # The default common tokenizer tests assumes that the output of `convert_tokens_to_string` is a string which # is not the case for Wav2Vec2PhonemeCTCTokenizer. UpperCAmelCase = self.get_tokenizers(fast=lowercase_ , do_lower_case=lowercase_ ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): UpperCAmelCase = ['ð', 'ɪ', 's', 'ɪ', 'z', 'ɐ', 't', 'ɛ', 'k', 's', 't'] UpperCAmelCase = tokenizer.convert_tokens_to_string(lowercase_ ) self.assertIsInstance(output['text'] , lowercase_ )
181
1
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class UpperCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : Any = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __UpperCAmelCase : Optional[Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowerCamelCase ) __UpperCAmelCase : Any = -1 __UpperCAmelCase : Union[str, Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) __UpperCAmelCase : Any = model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase ) __UpperCAmelCase : Any = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: __UpperCAmelCase : List[str] = TextStreamer(_lowerCamelCase ) model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase , streamer=_lowerCamelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __UpperCAmelCase : List[Any] = cs.out[:-1] self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def snake_case__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __UpperCAmelCase : List[str] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowerCamelCase ) __UpperCAmelCase : Optional[int] = -1 __UpperCAmelCase : str = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) __UpperCAmelCase : str = model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase ) __UpperCAmelCase : List[str] = tokenizer.decode(greedy_ids[0] ) __UpperCAmelCase : Dict = TextIteratorStreamer(_lowerCamelCase ) __UpperCAmelCase : Dict = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} __UpperCAmelCase : str = Thread(target=model.generate , kwargs=_lowerCamelCase ) thread.start() __UpperCAmelCase : Dict = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def snake_case__ ( self : Optional[int] ): '''simple docstring''' __UpperCAmelCase : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __UpperCAmelCase : Tuple = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = -1 __UpperCAmelCase : str = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) __UpperCAmelCase : List[str] = model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase ) __UpperCAmelCase : List[str] = greedy_ids[:, input_ids.shape[1] :] __UpperCAmelCase : Optional[Any] = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: __UpperCAmelCase : Union[str, Any] = TextStreamer(_lowerCamelCase , skip_prompt=_lowerCamelCase ) model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase , streamer=_lowerCamelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __UpperCAmelCase : Any = cs.out[:-1] self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def snake_case__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : int = AutoTokenizer.from_pretrained('''distilgpt2''' ) __UpperCAmelCase : List[str] = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(_lowerCamelCase ) __UpperCAmelCase : Tuple = -1 __UpperCAmelCase : str = torch.ones((1, 5) , device=_lowerCamelCase ).long() * model.config.bos_token_id with CaptureStdout() as cs: __UpperCAmelCase : Any = TextStreamer(_lowerCamelCase , skip_special_tokens=_lowerCamelCase ) model.generate(_lowerCamelCase , max_new_tokens=1 , do_sample=_lowerCamelCase , streamer=_lowerCamelCase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token __UpperCAmelCase : Optional[int] = cs.out[:-1] # Remove the final "\n" __UpperCAmelCase : int = tokenizer(_lowerCamelCase , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def snake_case__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __UpperCAmelCase : Optional[int] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowerCamelCase ) __UpperCAmelCase : List[Any] = -1 __UpperCAmelCase : Union[str, Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) __UpperCAmelCase : str = TextIteratorStreamer(_lowerCamelCase , timeout=0.0_0_1 ) __UpperCAmelCase : Union[str, Any] = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} __UpperCAmelCase : Tuple = Thread(target=model.generate , kwargs=_lowerCamelCase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(_lowerCamelCase ): __UpperCAmelCase : List[str] = '''''' for new_text in streamer: streamer_text += new_text
226
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowerCamelCase : int = { 'configuration_maskformer': ['MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MaskFormerConfig'], 'configuration_maskformer_swin': ['MaskFormerSwinConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Tuple = ['MaskFormerFeatureExtractor'] _lowerCamelCase : Tuple = ['MaskFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Tuple = [ 'MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'MaskFormerForInstanceSegmentation', 'MaskFormerModel', 'MaskFormerPreTrainedModel', ] _lowerCamelCase : Optional[int] = [ 'MaskFormerSwinBackbone', 'MaskFormerSwinModel', 'MaskFormerSwinPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys _lowerCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure)
167
0
from torch import nn def UpperCAmelCase ( UpperCAmelCase ) -> Optional[Any]: if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f'Unsupported activation function: {act_fn}' )
350
"""simple docstring""" import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: __UpperCamelCase = False __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = '''ybelkada/fonts''' def UpperCAmelCase ( ) -> Dict: if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( f'You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use ' 'Pix2StructImageProcessor. Please upgrade torch.' ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> str: requires_backends(UpperCAmelCase , ['torch'] ) _check_torch_version() snake_case_ = image_tensor.unsqueeze(0 ) snake_case_ = torch.nn.functional.unfold(UpperCAmelCase , (patch_height, patch_width) , stride=(patch_height, patch_width) ) snake_case_ = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , UpperCAmelCase , UpperCAmelCase , -1 ) snake_case_ = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase = 36 , UpperCAmelCase = "black" , UpperCAmelCase = "white" , UpperCAmelCase = 5 , UpperCAmelCase = 5 , UpperCAmelCase = 5 , UpperCAmelCase = 5 , UpperCAmelCase = None , UpperCAmelCase = None , ) -> Image.Image: requires_backends(UpperCAmelCase , 'vision' ) # Add new lines so that each line is no more than 80 characters. snake_case_ = textwrap.TextWrapper(width=80 ) snake_case_ = wrapper.wrap(text=UpperCAmelCase ) snake_case_ = '\n'.join(UpperCAmelCase ) if font_bytes is not None and font_path is None: snake_case_ = io.BytesIO(UpperCAmelCase ) elif font_path is not None: snake_case_ = font_path else: snake_case_ = hf_hub_download(UpperCAmelCase , 'Arial.TTF' ) snake_case_ = ImageFont.truetype(UpperCAmelCase , encoding='UTF-8' , size=UpperCAmelCase ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. snake_case_ = ImageDraw.Draw(Image.new('RGB' , (1, 1) , UpperCAmelCase ) ) snake_case_ , snake_case_ , snake_case_ , snake_case_ = temp_draw.textbbox((0, 0) , UpperCAmelCase , UpperCAmelCase ) # Create the actual image with a bit of padding around the text. snake_case_ = text_width + left_padding + right_padding snake_case_ = text_height + top_padding + bottom_padding snake_case_ = Image.new('RGB' , (image_width, image_height) , UpperCAmelCase ) snake_case_ = ImageDraw.Draw(UpperCAmelCase ) draw.text(xy=(left_padding, top_padding) , text=UpperCAmelCase , fill=UpperCAmelCase , font=UpperCAmelCase ) return image def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Any: requires_backends(UpperCAmelCase , 'vision' ) # Convert to PIL image if necessary snake_case_ = to_pil_image(UpperCAmelCase ) snake_case_ = render_text(UpperCAmelCase , **UpperCAmelCase ) snake_case_ = max(header_image.width , image.width ) snake_case_ = int(image.height * (new_width / image.width) ) snake_case_ = int(header_image.height * (new_width / header_image.width) ) snake_case_ = Image.new('RGB' , (new_width, new_height + new_header_height) , 'white' ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary snake_case_ = to_numpy_array(UpperCAmelCase ) if infer_channel_dimension_format(UpperCAmelCase ) == ChannelDimension.LAST: snake_case_ = to_channel_dimension_format(UpperCAmelCase , ChannelDimension.LAST ) return new_image class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = ["flattened_patches"] def __init__( self, lowerCAmelCase__ = True, lowerCAmelCase__ = True, lowerCAmelCase__ = None, lowerCAmelCase__ = 2048, lowerCAmelCase__ = False, **lowerCAmelCase__, ) -> None: super().__init__(**lowerCAmelCase__) snake_case_ = patch_size if patch_size is not None else {'height': 16, 'width': 16} snake_case_ = do_normalize snake_case_ = do_convert_rgb snake_case_ = max_patches snake_case_ = is_vqa def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, **lowerCAmelCase__) -> np.ndarray: requires_backends(self.extract_flattened_patches, 'torch') _check_torch_version() # convert to torch snake_case_ = to_channel_dimension_format(lowerCAmelCase__, ChannelDimension.FIRST) snake_case_ = torch.from_numpy(lowerCAmelCase__) snake_case_ , snake_case_ = patch_size['height'], patch_size['width'] snake_case_ , snake_case_ = get_image_size(lowerCAmelCase__) # maximize scale s.t. snake_case_ = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width)) snake_case_ = max(min(math.floor(scale * image_height / patch_height), lowerCAmelCase__), 1) snake_case_ = max(min(math.floor(scale * image_width / patch_width), lowerCAmelCase__), 1) snake_case_ = max(num_feasible_rows * patch_height, 1) snake_case_ = max(num_feasible_cols * patch_width, 1) snake_case_ = torch.nn.functional.interpolate( image.unsqueeze(0), size=(resized_height, resized_width), mode='bilinear', align_corners=lowerCAmelCase__, antialias=lowerCAmelCase__, ).squeeze(0) # [1, rows, columns, patch_height * patch_width * image_channels] snake_case_ = torch_extract_patches(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) snake_case_ = patches.shape snake_case_ = patches_shape[1] snake_case_ = patches_shape[2] snake_case_ = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] snake_case_ = patches.reshape([rows * columns, depth]) # [rows * columns, 1] snake_case_ = torch.arange(lowerCAmelCase__).reshape([rows, 1]).repeat(1, lowerCAmelCase__).reshape([rows * columns, 1]) snake_case_ = torch.arange(lowerCAmelCase__).reshape([1, columns]).repeat(lowerCAmelCase__, 1).reshape([rows * columns, 1]) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] snake_case_ = row_ids.to(torch.floataa) snake_case_ = col_ids.to(torch.floataa) # [rows * columns, 2 + patch_height * patch_width * image_channels] snake_case_ = torch.cat([row_ids, col_ids, patches], -1) # [max_patches, 2 + patch_height * patch_width * image_channels] snake_case_ = torch.nn.functional.pad(lowerCAmelCase__, [0, 0, 0, max_patches - (rows * columns)]).float() snake_case_ = to_numpy_array(lowerCAmelCase__) return result def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None, **lowerCAmelCase__) -> np.ndarray: if image.dtype == np.uinta: snake_case_ = image.astype(np.floataa) # take mean across the whole `image` snake_case_ = np.mean(lowerCAmelCase__) snake_case_ = np.std(lowerCAmelCase__) snake_case_ = max(lowerCAmelCase__, 1.0 / math.sqrt(np.prod(image.shape))) return normalize(lowerCAmelCase__, mean=lowerCAmelCase__, std=lowerCAmelCase__, **lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = ChannelDimension.FIRST, **lowerCAmelCase__, ) -> ImageInput: snake_case_ = do_normalize if do_normalize is not None else self.do_normalize snake_case_ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb snake_case_ = patch_size if patch_size is not None else self.patch_size snake_case_ = max_patches if max_patches is not None else self.max_patches snake_case_ = self.is_vqa if kwargs.get('data_format', lowerCAmelCase__) is not None: raise ValueError('data_format is not an accepted input as the outputs are ') snake_case_ = make_list_of_images(lowerCAmelCase__) if not valid_images(lowerCAmelCase__): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') # PIL RGBA images are converted to RGB if do_convert_rgb: snake_case_ = [convert_to_rgb(lowerCAmelCase__) for image in images] # All transformations expect numpy arrays. snake_case_ = [to_numpy_array(lowerCAmelCase__) for image in images] if is_vqa: if header_text is None: raise ValueError('A header text must be provided for VQA models.') snake_case_ = kwargs.pop('font_bytes', lowerCAmelCase__) snake_case_ = kwargs.pop('font_path', lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__): snake_case_ = [header_text] * len(lowerCAmelCase__) snake_case_ = [ render_header(lowerCAmelCase__, header_text[i], font_bytes=lowerCAmelCase__, font_path=lowerCAmelCase__) for i, image in enumerate(lowerCAmelCase__) ] if do_normalize: snake_case_ = [self.normalize(image=lowerCAmelCase__) for image in images] # convert to torch tensor and permute snake_case_ = [ self.extract_flattened_patches(image=lowerCAmelCase__, max_patches=lowerCAmelCase__, patch_size=lowerCAmelCase__) for image in images ] # create attention mask in numpy snake_case_ = [(image.sum(axis=-1) != 0).astype(np.floataa) for image in images] snake_case_ = BatchFeature( data={'flattened_patches': images, 'attention_mask': attention_masks}, tensor_type=lowerCAmelCase__) return encoded_outputs
312
0
'''simple docstring''' import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask __A : Any = logging.getLogger(__name__) class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" def __init__( self : Optional[Any] , lowerCamelCase : int=-1 ) -> List[str]: lowerCAmelCase_ : int = label_idx def __lowercase ( self : Union[str, Any] , lowerCamelCase : Tuple , lowerCamelCase : Optional[Any] ) -> Dict: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowerCAmelCase_ : int = mode.value lowerCAmelCase_ : Any = os.path.join(_SCREAMING_SNAKE_CASE , F'{mode}.txt' ) lowerCAmelCase_ : List[Any] = 1 lowerCAmelCase_ : Union[str, Any] = [] with open(_SCREAMING_SNAKE_CASE , encoding="""utf-8""" ) as f: lowerCAmelCase_ : Dict = [] lowerCAmelCase_ : Any = [] for line in f: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=F'{mode}-{guid_index}' , words=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) ) guid_index += 1 lowerCAmelCase_ : Any = [] lowerCAmelCase_ : Dict = [] else: lowerCAmelCase_ : List[str] = line.split(""" """ ) words.append(splits[0] ) if len(_SCREAMING_SNAKE_CASE ) > 1: labels.append(splits[self.label_idx].replace("""\n""" , """""" ) ) else: # Examples could have no label for mode = "test" labels.append("""O""" ) if words: examples.append(InputExample(guid=F'{mode}-{guid_index}' , words=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) ) return examples def __lowercase ( self : Optional[int] , lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[Any] ) -> Tuple: lowerCAmelCase_ : Tuple = 0 for line in test_input_reader: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": writer.write(_SCREAMING_SNAKE_CASE ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: lowerCAmelCase_ : List[str] = line.split()[0] + ' ' + preds_list[example_id].pop(0 ) + '\n' writer.write(_SCREAMING_SNAKE_CASE ) else: logger.warning("""Maximum sequence length exceeded: No prediction for \'%s\'.""" , line.split()[0] ) def __lowercase ( self : Dict , lowerCamelCase : Any ) -> Tuple: if path: with open(_SCREAMING_SNAKE_CASE , """r""" ) as f: lowerCAmelCase_ : Tuple = f.read().splitlines() if "O" not in labels: lowerCAmelCase_ : Union[str, Any] = ['O'] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" def __init__( self : Tuple ) -> Tuple: super().__init__(label_idx=-2 ) def __lowercase ( self : Union[str, Any] , lowerCamelCase : str ) -> Any: if path: with open(_SCREAMING_SNAKE_CASE , """r""" ) as f: lowerCAmelCase_ : int = f.read().splitlines() if "O" not in labels: lowerCAmelCase_ : int = ['O'] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" def __lowercase ( self : Dict , lowerCamelCase : str , lowerCamelCase : int ) -> Dict: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowerCAmelCase_ : Dict = mode.value lowerCAmelCase_ : str = os.path.join(_SCREAMING_SNAKE_CASE , F'{mode}.txt' ) lowerCAmelCase_ : Optional[int] = 1 lowerCAmelCase_ : Tuple = [] with open(_SCREAMING_SNAKE_CASE , encoding="""utf-8""" ) as f: for sentence in parse_incr(_SCREAMING_SNAKE_CASE ): lowerCAmelCase_ : List[str] = [] lowerCAmelCase_ : List[str] = [] for token in sentence: words.append(token["""form"""] ) labels.append(token["""upos"""] ) assert len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ) if words: examples.append(InputExample(guid=F'{mode}-{guid_index}' , words=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) ) guid_index += 1 return examples def __lowercase ( self : Tuple , lowerCamelCase : List[Any] , lowerCamelCase : str , lowerCamelCase : Optional[Any] ) -> List[Any]: lowerCAmelCase_ : int = 0 for sentence in parse_incr(_SCREAMING_SNAKE_CASE ): lowerCAmelCase_ : List[str] = preds_list[example_id] lowerCAmelCase_ : Any = '' for token in sentence: out += F'{token["form"]} ({token["upos"]}|{s_p.pop(0 )}) ' out += "\n" writer.write(_SCREAMING_SNAKE_CASE ) example_id += 1 def __lowercase ( self : Tuple , lowerCamelCase : Optional[int] ) -> int: if path: with open(_SCREAMING_SNAKE_CASE , """r""" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
120
lowerCAmelCase : Optional[Any] = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' lowerCAmelCase : Dict = [{'type': 'code', 'content': INSTALL_CONTENT}] lowerCAmelCase : int = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
253
0
"""simple docstring""" import heapq import sys import numpy as np __lowercase = tuple[int, int] class _lowercase : """simple docstring""" def __init__( self : List[str] ) -> List[str]: '''simple docstring''' __UpperCamelCase =[] __UpperCamelCase =set() def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' if not self.empty(): return self.elements[0][0] else: return float('''inf''' ) def UpperCAmelCase_ ( self : str ) -> List[str]: '''simple docstring''' return len(self.elements ) == 0 def UpperCAmelCase_ ( self : Optional[int] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] ) -> Union[str, Any]: '''simple docstring''' if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(UpperCamelCase__ ) else: # update # print("update", item) __UpperCamelCase =[] ((__UpperCamelCase) , (__UpperCamelCase)) =heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((__UpperCamelCase) , (__UpperCamelCase)) =heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def UpperCAmelCase_ ( self : Any , UpperCamelCase__ : int ) -> List[str]: '''simple docstring''' if item in self.set: self.set.remove(UpperCamelCase__ ) __UpperCamelCase =[] ((__UpperCamelCase) , (__UpperCamelCase)) =heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((__UpperCamelCase) , (__UpperCamelCase)) =heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def UpperCAmelCase_ ( self : List[str] ) -> List[str]: '''simple docstring''' return self.elements[0][1] def UpperCAmelCase_ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' ((__UpperCamelCase) , (__UpperCamelCase)) =heapq.heappop(self.elements ) self.set.remove(UpperCamelCase__ ) return (priority, item) def lowerCAmelCase (__UpperCamelCase : TPos , __UpperCamelCase : TPos ): """simple docstring""" __UpperCamelCase =np.array(__UpperCamelCase ) __UpperCamelCase =np.array(__UpperCamelCase ) return np.linalg.norm(a - b ) def lowerCAmelCase (__UpperCamelCase : TPos , __UpperCamelCase : TPos ): """simple docstring""" return consistent_heuristic(__UpperCamelCase , __UpperCamelCase ) // t def lowerCAmelCase (__UpperCamelCase : TPos , __UpperCamelCase : TPos ): """simple docstring""" return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def lowerCAmelCase (__UpperCamelCase : TPos , __UpperCamelCase : int , __UpperCamelCase : TPos , __UpperCamelCase : dict[TPos, float] ): """simple docstring""" __UpperCamelCase =g_function[start] + Wa * heuristics[i](__UpperCamelCase , __UpperCamelCase ) return ans def lowerCAmelCase (__UpperCamelCase : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : int ): """simple docstring""" __UpperCamelCase =np.chararray((n, n) ) for i in range(__UpperCamelCase ): for j in range(__UpperCamelCase ): __UpperCamelCase ='''*''' for i in range(__UpperCamelCase ): for j in range(__UpperCamelCase ): if (j, (n - 1) - i) in blocks: __UpperCamelCase ='''#''' __UpperCamelCase ='''-''' __UpperCamelCase =back_pointer[goal] while x != start: ((__UpperCamelCase) , (__UpperCamelCase)) =x # print(x) __UpperCamelCase ='''-''' __UpperCamelCase =back_pointer[x] __UpperCamelCase ='''-''' for i in range(__UpperCamelCase ): for j in range(__UpperCamelCase ): if (i, j) == (0, n - 1): print(grid[i][j] , end=''' ''' ) print('''<-- End position''' , end=''' ''' ) else: print(grid[i][j] , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) print('''PATH TAKEN BY THE ALGORITHM IS:-''' ) __UpperCamelCase =back_pointer[goal] while x != start: print(__UpperCamelCase , end=''' ''' ) __UpperCamelCase =back_pointer[x] print(__UpperCamelCase ) sys.exit() def lowerCAmelCase (__UpperCamelCase : TPos ): """simple docstring""" if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def lowerCAmelCase (__UpperCamelCase : str , __UpperCamelCase : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : str , __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : str , ): """simple docstring""" for itera in range(__UpperCamelCase ): open_list[itera].remove_element(__UpperCamelCase ) # print("s", s) # print("j", j) ((__UpperCamelCase) , (__UpperCamelCase)) =s __UpperCamelCase =(x - 1, y) __UpperCamelCase =(x + 1, y) __UpperCamelCase =(x, y + 1) __UpperCamelCase =(x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(__UpperCamelCase ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(__UpperCamelCase ) __UpperCamelCase =-1 __UpperCamelCase =float('''inf''' ) if valid(__UpperCamelCase ) and g_function[neighbours] > g_function[s] + 1: __UpperCamelCase =g_function[s] + 1 __UpperCamelCase =s if neighbours not in close_list_anchor: open_list[0].put(__UpperCamelCase , key(__UpperCamelCase , 0 , __UpperCamelCase , __UpperCamelCase ) ) if neighbours not in close_list_inad: for var in range(1 , __UpperCamelCase ): if key(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) <= Wa * key( __UpperCamelCase , 0 , __UpperCamelCase , __UpperCamelCase ): open_list[j].put( __UpperCamelCase , key(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) ) def lowerCAmelCase (): """simple docstring""" __UpperCamelCase =[] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(1_5 , 2_0 ): some_list.append((x, 1_7) ) for x in range(1_0 , 1_9 ): for y in range(1 , 1_5 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(1_2 , 1_9 ): some_list.append((x, y) ) for x in range(3 , 1_3 ): for y in range(1_6 , 1_9 ): some_list.append((x, y) ) return some_list __lowercase = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} __lowercase = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] __lowercase = make_common_ground() __lowercase = blocks_blk # hyper parameters __lowercase = 1 __lowercase = 1 __lowercase = 20 __lowercase = 3 # one consistent and two other inconsistent # start and end destination __lowercase = (0, 0) __lowercase = (n - 1, n - 1) __lowercase = 1 def lowerCAmelCase (__UpperCamelCase : TPos , __UpperCamelCase : TPos , __UpperCamelCase : int ): """simple docstring""" __UpperCamelCase ={start: 0, goal: float('''inf''' )} __UpperCamelCase ={start: -1, goal: -1} __UpperCamelCase =[] __UpperCamelCase =set() for i in range(__UpperCamelCase ): open_list.append(PriorityQueue() ) open_list[i].put(__UpperCamelCase , key(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) ) __UpperCamelCase =[] __UpperCamelCase =[] while open_list[0].minkey() < float('''inf''' ): for i in range(1 , __UpperCamelCase ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('''inf''' ): do_something(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) else: __UpperCamelCase , __UpperCamelCase =open_list[i].top_show() visited.add(__UpperCamelCase ) expand_state( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) close_list_inad.append(__UpperCamelCase ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('''inf''' ): do_something(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) else: __UpperCamelCase =open_list[0].top_show() visited.add(__UpperCamelCase ) expand_state( __UpperCamelCase , 0 , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) close_list_anchor.append(__UpperCamelCase ) print('''No path found to goal''' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(__UpperCamelCase ): if (j, i) in blocks: print('''#''' , end=''' ''' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('''*''' , end=''' ''' ) else: print('''-''' , end=''' ''' ) else: print('''*''' , end=''' ''' ) if (j, i) == (n - 1, n - 1): print('''<-- End position''' , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
85
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowercase = { '''configuration_conditional_detr''': [ '''CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConditionalDetrConfig''', '''ConditionalDetrOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = ['''ConditionalDetrFeatureExtractor'''] __lowercase = ['''ConditionalDetrImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConditionalDetrForObjectDetection''', '''ConditionalDetrForSegmentation''', '''ConditionalDetrModel''', '''ConditionalDetrPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
85
1