code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a : str = {'''configuration_yolos''': ['''YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''YolosConfig''', '''YolosOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = ['''YolosFeatureExtractor'''] a : List[str] = ['''YolosImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[str] = [ '''YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''YolosForObjectDetection''', '''YolosModel''', '''YolosPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys a : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
105
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( _lowercase : float , _lowercase : float ) ->float: '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(F'''{price_plus_tax(100, 0.25) = }''') print(F'''{price_plus_tax(125.50, 0.05) = }''')
105
1
'''simple docstring''' import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } lowerCamelCase_ = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> List[Any]: for attribute in key.split(""".""" ): UpperCamelCase = getattr(_a , _a ) if weight_type is not None: UpperCamelCase = getattr(_a , _a ).shape else: UpperCamelCase = hf_pointer.shape assert hf_shape == value.shape, ( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": UpperCamelCase = value elif weight_type == "weight_g": UpperCamelCase = value elif weight_type == "weight_v": UpperCamelCase = value elif weight_type == "bias": UpperCamelCase = value else: UpperCamelCase = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> Dict: UpperCamelCase = [] UpperCamelCase = fairseq_model.state_dict() UpperCamelCase = hf_model.feature_extractor UpperCamelCase = hf_model.adapter for name, value in fairseq_dict.items(): UpperCamelCase = False if "conv_layers" in name: load_conv_layer( _a , _a , _a , _a , hf_model.config.feat_extract_norm == """group""" , ) UpperCamelCase = True elif any(x in name for x in ["""adaptor""", """w2v_encoder.proj.""", """w2v_proj_ln."""] ): load_adapter(_a , _a , _a , _a ) UpperCamelCase = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: UpperCamelCase = True if "*" in mapped_key: UpperCamelCase = name.split(_a )[0].split(""".""" )[-2] UpperCamelCase = mapped_key.replace("""*""" , _a ) if "weight_g" in name: UpperCamelCase = """weight_g""" elif "weight_v" in name: UpperCamelCase = """weight_v""" elif "bias" in name: UpperCamelCase = """bias""" elif "weight" in name: UpperCamelCase = """weight""" else: UpperCamelCase = None set_recursively(_a , _a , _a , _a , _a ) continue if not is_used: unused_weights.append(_a ) logger.warning(F"Unused weights: {unused_weights}" ) def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Optional[int]: UpperCamelCase = full_name.split("""conv_layers.""" )[-1] UpperCamelCase = name.split(""".""" ) UpperCamelCase = int(items[0] ) UpperCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) UpperCamelCase = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) UpperCamelCase = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) UpperCamelCase = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) UpperCamelCase = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(_a ) def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Optional[Any]: UpperCamelCase = full_name.split("""adaptor.""" )[-1] UpperCamelCase = name.split(""".""" ) if items[1].isdigit(): UpperCamelCase = int(items[1] ) else: UpperCamelCase = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found." UpperCamelCase = value logger.info(F"Adapter proj layer norm bias was initialized from {full_name}." ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found." UpperCamelCase = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found." UpperCamelCase = value logger.info(F"Adapter proj layer bias was initialized from {full_name}." ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found." UpperCamelCase = value logger.info(F"Adapter proj layer weight was initialized from {full_name}." ) elif isinstance(_a , _a ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F"{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found." UpperCamelCase = value logger.info(F"Adapter layer {layer_id} bias was initialized from {full_name}." ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F"{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found." UpperCamelCase = value logger.info(F"Adapter layer {layer_id} bias was initialized from {full_name}." ) else: unused_weights.append(_a ) def lowercase__ ( __UpperCamelCase )-> Optional[Any]: UpperCamelCase ,UpperCamelCase = emb.weight.shape UpperCamelCase = nn.Linear(_a , _a , bias=_a ) UpperCamelCase = emb.weight.data return lin_layer @torch.no_grad() def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , )-> Optional[Any]: UpperCamelCase = WavaVecaConfig.from_pretrained( _a , add_adapter=_a , adapter_stride=_a , adapter_kernel_size=_a , use_auth_token=_a , output_hidden_size=_a , ) UpperCamelCase = MBartConfig.from_pretrained(_a ) # load model UpperCamelCase ,UpperCamelCase ,UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ """config_yaml""": config_yaml_path, """data""": """/""".join(dict_path.split("""/""" )[:-1] ), """w2v_path""": checkpoint_path, """load_pretrained_decoder_from""": None, } , ) UpperCamelCase = model[0].eval() # load feature extractor UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(_a , use_auth_token=_a ) # set weights for wav2vec2 encoder UpperCamelCase = WavaVecaModel(_a ) recursively_load_weights_wavaveca(model.encoder , _a ) # load decoder weights UpperCamelCase = MBartForCausalLM(_a ) UpperCamelCase ,UpperCamelCase = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=_a ) logger.warning(F"The following keys are missing when loading the decoder weights: {missing_keys}" ) logger.warning(F"The following keys are unexpected when loading the decoder weights: {unexpected_keys}" ) UpperCamelCase = SpeechEncoderDecoderModel(encoder=_a , decoder=_a ) UpperCamelCase = False UpperCamelCase = MBartaaTokenizer(_a ) tokenizer.save_pretrained(_a ) UpperCamelCase = hf_wavavec.config.to_dict() UpperCamelCase = tokenizer.pad_token_id UpperCamelCase = tokenizer.bos_token_id UpperCamelCase = tokenizer.eos_token_id UpperCamelCase = """mbart50""" UpperCamelCase = """wav2vec2""" UpperCamelCase = tokenizer.eos_token_id UpperCamelCase = 250004 UpperCamelCase = tokenizer.eos_token_id UpperCamelCase = SpeechEncoderDecoderConfig.from_dict(_a ) hf_wavavec.save_pretrained(_a ) feature_extractor.save_pretrained(_a ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_yaml_path', default=None, type=str, help='Path to yaml file of fine-tuned model') parser.add_argument( '--encoder_config_path', default='facebook/wav2vec2-xls-r-1b', type=str, help='Path to hf encoder wav2vec2 checkpoint config', ) parser.add_argument( '--decoder_config_path', default='facebook/mbart-large-50-one-to-many-mmt', type=str, help='Path to hf decoder checkpoint config', ) parser.add_argument('--add_adapter', default=True, type=bool, help='whethere to add model adapter layers') parser.add_argument('--adapter_stride', default=2, type=int, help='stride of adapter layers') parser.add_argument('--adapter_kernel_size', default=3, type=int, help='kernel size of adapter layers') parser.add_argument('--encoder_output_dim', default=1_0_2_4, type=int, help='encoder output dim') parser.add_argument('--start_token_id', default=2_5_0_0_0_4, type=int, help='`decoder_start_token_id` of model config') lowerCamelCase_ = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
361
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE__ = { 'configuration_nllb_moe': [ 'NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NllbMoeConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ 'NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST', 'NllbMoeForConditionalGeneration', 'NllbMoeModel', 'NllbMoePreTrainedModel', 'NllbMoeTop2Router', 'NllbMoeSparseMLP', ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
183
0
'''simple docstring''' from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING lowerCamelCase_ = logging.get_logger(__name__) @add_end_docstrings(snake_case_ ) class _UpperCAmelCase ( snake_case_ ): """simple docstring""" def __init__( self : List[str] , *__UpperCAmelCase : str , **__UpperCAmelCase : Optional[int] ): '''simple docstring''' super().__init__(*__UpperCAmelCase , **__UpperCAmelCase ) requires_backends(self , "vision" ) self.check_model_type(__UpperCAmelCase ) def __call__( self : List[Any] , __UpperCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **__UpperCAmelCase : Any ): '''simple docstring''' return super().__call__(__UpperCAmelCase , **__UpperCAmelCase ) def lowerCAmelCase ( self : Tuple , **__UpperCAmelCase : str ): '''simple docstring''' return {}, {}, {} def lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : Optional[Any] ): '''simple docstring''' _A = load_image(__UpperCAmelCase ) _A = image.size _A = self.image_processor(images=__UpperCAmelCase , return_tensors=self.framework ) return model_inputs def lowerCAmelCase ( self : List[str] , __UpperCAmelCase : int ): '''simple docstring''' _A = self.model(**__UpperCAmelCase ) return model_outputs def lowerCAmelCase ( self : Dict , __UpperCAmelCase : List[Any] ): '''simple docstring''' _A = model_outputs.predicted_depth _A = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode="bicubic" , align_corners=__UpperCAmelCase ) _A = prediction.squeeze().cpu().numpy() _A = (output * 255 / np.max(__UpperCAmelCase )).astype("uint8" ) _A = Image.fromarray(__UpperCAmelCase ) _A = {} _A = predicted_depth _A = depth return output_dict
79
"""simple docstring""" import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Dict = [ '''word_embeddings_layernorm.weight''', '''word_embeddings_layernorm.bias''', '''input_layernorm.weight''', '''input_layernorm.bias''', '''post_attention_layernorm.weight''', '''post_attention_layernorm.bias''', '''self_attention.dense.bias''', '''mlp.dense_4h_to_h.bias''', '''ln_f.weight''', '''ln_f.bias''', ] lowercase__ : str = [ '''mlp.dense_4h_to_h.weight''', '''self_attention.dense.weight''', ] def __lowercase ( _a , _a ): snake_case_ : Optional[int] = { '''word_embeddings.weight''': '''word_embeddings.weight''', '''word_embeddings.norm.weight''': '''word_embeddings_layernorm.weight''', '''word_embeddings.norm.bias''': '''word_embeddings_layernorm.bias''', '''weight''': '''ln_f.weight''', '''bias''': '''ln_f.bias''', } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks snake_case_ : List[Any] = int(re.match(r'''.*layer_(\d*).*''' , _a )[1] ) layer_number -= 3 return f"h.{layer_number}." + key def __lowercase ( _a ): if dtype == torch.bool: return 1 / 8 snake_case_ : Dict = re.search(r'''[^\d](\d+)$''' , str(_a ) ) if bit_search is None: raise ValueError(f"`dtype` is not a valid dtype: {dtype}." ) snake_case_ : Optional[int] = int(bit_search.groups()[0] ) return bit_size // 8 def __lowercase ( _a , _a , _a , _a , _a ): # Construct model if bloom_config_file == "": snake_case_ : int = BloomConfig() else: snake_case_ : List[str] = BloomConfig.from_json_file(_a ) if shard_model: snake_case_ : List[str] = os.listdir(_a ) snake_case_ : int = sorted(filter(lambda _a : s.startswith('''layer''' ) and "model_00" in s , _a ) ) snake_case_ : List[str] = {'''weight_map''': {}, '''metadata''': {}} snake_case_ : Any = 0 snake_case_ : Union[str, Any] = None snake_case_ : List[str] = BloomConfig() for j, file in enumerate(_a ): print('''Processing file: {}'''.format(_a ) ) snake_case_ : Dict = None for i in range(_a ): # load all TP files snake_case_ : Union[str, Any] = file.replace('''model_00''' , f"model_0{i}" ) snake_case_ : List[str] = torch.load(os.path.join(_a , _a ) , map_location='''cpu''' ) # Rename keys in the transformers names snake_case_ : str = list(temp.keys() ) for key in keys: snake_case_ : Any = temp.pop(_a ) if tensors is None: snake_case_ : Any = temp else: for key in tensors.keys(): if any(key.endswith(_a ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel snake_case_ : Tuple = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks snake_case_ : List[str] = torch.cat([tensors[key], temp[key]] , dim=_a ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(_a ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): snake_case_ : Any = tensors[key] / pretraining_tp torch.save( _a , os.path.join( _a , '''pytorch_model_{}-of-{}.bin'''.format(str(j + 1 ).zfill(5 ) , str(len(_a ) ).zfill(5 ) ) , ) , ) for key in tensors.keys(): snake_case_ : List[str] = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: snake_case_ : List[str] = '''pytorch_model_{}-of-{}.bin'''.format( str(j + 1 ).zfill(5 ) , str(len(_a ) ).zfill(5 ) ) snake_case_ : int = BloomConfig() snake_case_ : Any = pytorch_dump_folder_path + '''/''' + CONFIG_NAME snake_case_ : Dict = total_size with open(_a , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) with open(os.path.join(_a , WEIGHTS_NAME + '''.index.json''' ) , '''w''' , encoding='''utf-8''' ) as f: snake_case_ : Tuple = json.dumps(_a , indent=2 , sort_keys=_a ) + '''\n''' f.write(_a ) else: snake_case_ : Union[str, Any] = BloomModel(_a ) snake_case_ : List[str] = os.listdir(_a ) snake_case_ : Dict = sorted(filter(lambda _a : s.startswith('''layer''' ) and "model_00" in s , _a ) ) snake_case_ : List[Any] = None for i, file in enumerate(_a ): snake_case_ : Optional[Any] = None for i in range(_a ): # load all TP files snake_case_ : List[str] = file.replace('''model_00''' , f"model_0{i}" ) snake_case_ : Optional[Any] = torch.load(os.path.join(_a , _a ) , map_location='''cpu''' ) # Rename keys in the transformers names snake_case_ : str = list(temp.keys() ) for key in keys: snake_case_ : str = temp.pop(_a ) if tensors is None: snake_case_ : int = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(_a ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel snake_case_ : Tuple = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks snake_case_ : Optional[Any] = torch.cat([tensors[key], temp[key]] , dim=_a ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(_a ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): snake_case_ : Union[str, Any] = tensors[key] / pretraining_tp snake_case_ : Any = model.load_state_dict(_a , strict=_a ) assert not other_keys.unexpected_keys, f"The keys {other_keys.unexpected_keys} are unexpected" if missing_keys is None: snake_case_ : Optional[int] = set(other_keys.missing_keys ) else: snake_case_ : Tuple = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, f"The keys {missing_keys} are missing" # Save pytorch-model os.makedirs(_a , exist_ok=_a ) snake_case_ : List[str] = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME snake_case_ : Optional[Any] = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(f"Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}" ) if config.torch_dtype is not None: snake_case_ : Optional[Any] = model.to(config.torch_dtype ) torch.save(model.state_dict() , _a ) print(f"Save configuration file to {pytorch_config_dump_path}" ) with open(_a , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowercase__ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bloom_checkpoint_path''', default=None, type=str, required=True, help='''Path to the Megatron-LM checkpoint path.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--bloom_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--shard_model''', action='''store_true''', help='''An optional setting to shard the output model \nThis enables sharding the converted checkpoint''', ) parser.add_argument( '''--pretraining_tp''', default=4, type=int, help='''Pretraining TP rank that has been used when training the model in Megatron-LM \n''', ) lowercase__ : List[Any] = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
264
0
'''simple docstring''' import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node _snake_case = 4 _snake_case = 3 class a__ ( lowerCamelCase_ ): pass def _A ( snake_case ) -> List[Any]: for shard in shards: for i in range(snake_case ): yield {"i": i, "shard": shard} def _A ( ) -> Tuple: _lowercase : int = int(os.environ["RANK"] ) _lowercase : List[Any] = int(os.environ["WORLD_SIZE"] ) _lowercase : Union[str, Any] = ArgumentParser() parser.add_argument("--streaming" , type=snake_case ) parser.add_argument("--local_rank" , type=snake_case ) parser.add_argument("--num_workers" , type=snake_case , default=0 ) _lowercase : Tuple = parser.parse_args() _lowercase : Dict = args.streaming _lowercase : int = args.num_workers _lowercase : int = {"shards": [F'''shard_{shard_idx}''' for shard_idx in range(snake_case )]} _lowercase : Union[str, Any] = IterableDataset.from_generator(snake_case , gen_kwargs=snake_case ) if not streaming: _lowercase : Union[str, Any] = Dataset.from_list(list(snake_case ) ) _lowercase : List[str] = split_dataset_by_node(snake_case , rank=snake_case , world_size=snake_case ) _lowercase : Optional[Any] = torch.utils.data.DataLoader(snake_case , num_workers=snake_case ) _lowercase : Tuple = NUM_SHARDS * NUM_ITEMS_PER_SHARD _lowercase : List[str] = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) _lowercase : Tuple = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(F'''local_size {local_size} != expected_local_size {expected_local_size}''' ) if __name__ == "__main__": main()
199
'''simple docstring''' import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def _A ( snake_case=32 , snake_case=10 , snake_case=1_00 , snake_case=10_26 , snake_case=True , snake_case="data/tokenized_stories_train_wikitext103.jbl" , snake_case="igf_context_pairs.jbl" , ) -> Optional[int]: set_seed(3 ) # generate train_data and objective_set _lowercase , _lowercase : List[str] = generate_datasets( snake_case , snake_case , number=snake_case , min_len=10_26 , trim=snake_case ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? _lowercase : int = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" ) # load pretrained model _lowercase : str = load_gpta("gpt2" ).to(snake_case ) print("computing perplexity on objective set" ) _lowercase : Dict = compute_perplexity(snake_case , snake_case , snake_case ).item() print("perplexity on objective set:" , snake_case ) # collect igf pairs and save to file demo.jbl collect_objective_set(snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def _A ( snake_case , snake_case=15 , snake_case=1_28 , snake_case=1_00 , snake_case="igf_model.pt" , ) -> Optional[Any]: set_seed(42 ) # Load pre-trained model _lowercase : Tuple = GPTaLMHeadModel.from_pretrained("gpt2" ) # Initialize secondary learner to use embedding weights of model _lowercase : Any = SecondaryLearner(snake_case ) # Train secondary learner _lowercase : Any = train_secondary_learner( snake_case , snake_case , max_epochs=snake_case , batch_size=snake_case , eval_freq=1_00 , igf_model_path=snake_case , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def _A ( snake_case , snake_case , snake_case , snake_case=32 , snake_case=10_00 , snake_case=16 , snake_case=1.0 , snake_case=recopy_gpta , snake_case=None , snake_case=10 , snake_case="gpt2_finetuned.pt" , ) -> Dict: _lowercase : str = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" ) _lowercase : int = RandomSampler(snake_case ) _lowercase : int = DataLoader(snake_case , sampler=snake_case ) _lowercase : Tuple = max_steps // (len(snake_case )) + 1 _lowercase : Dict = 0 _lowercase : Union[str, Any] = torch.zeros((1, context_len) , dtype=torch.long , device=snake_case ) _lowercase , _lowercase , _lowercase : Union[str, Any] = recopy_model(snake_case , snake_case , snake_case ) model.train() if secondary_learner is not None: secondary_learner.to(snake_case ) secondary_learner.eval() _lowercase : Optional[Any] = [] _lowercase : Tuple = 0 _lowercase : int = [] _lowercase : Optional[Any] = [] # Compute the performance of the transformer model at the beginning _lowercase : Dict = compute_perplexity(snake_case , snake_case , snake_case ) test_perps.append(snake_case ) print("Test perplexity, step" , snake_case , ":" , snake_case ) for epoch in range(int(snake_case ) ): for step, example in enumerate(snake_case ): torch.cuda.empty_cache() _lowercase : Optional[Any] = random.randint(0 , example.size(2 ) - context_len - 1 ) _lowercase : Tuple = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() _lowercase : Tuple = model(snake_case , labels=snake_case ) _lowercase : List[Any] = True if secondary_learner is not None: _lowercase : Dict = secondary_learner.forward( torch.tensor(snake_case , dtype=torch.long , device=snake_case ).unsqueeze(0 ) )[0].item() observed_qs.append(float(snake_case ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: _lowercase : Optional[Any] = -1 if predicted_q < threshold: _lowercase : List[str] = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) _lowercase : Dict = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() _lowercase : Optional[Any] = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: _lowercase : Optional[Any] = compute_perplexity(snake_case , snake_case , snake_case ) test_perps.append(snake_case ) print("Test perplexity, step" , snake_case , ":" , snake_case ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , snake_case ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def _A ( ) -> Union[str, Any]: _lowercase : Optional[Any] = argparse.ArgumentParser(description="Fine-tune a transformer model with IGF on a language modeling task" ) # Required parameters parser.add_argument( "--data_dir" , default=snake_case , type=snake_case , required=snake_case , help="The input data dir. Should contain data files for WikiText." , ) parser.add_argument( "--model_name_or_path" , default=snake_case , type=snake_case , required=snake_case , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--data_file" , type=snake_case , default=snake_case , help=( "A jbl file containing tokenized data which can be split as objective dataset, " "train_dataset and test_dataset." ) , ) parser.add_argument( "--igf_data_file" , type=snake_case , default=snake_case , help="A jbl file containing the context and information gain pairs to train secondary learner." , ) parser.add_argument( "--output_dir" , default=snake_case , type=snake_case , required=snake_case , help="The output directory where the final fine-tuned model is stored." , ) parser.add_argument( "--tokenizer_name" , default=snake_case , type=snake_case , help="Pretrained tokenizer name or path if not the same as model_name" , ) parser.add_argument("--seed" , type=snake_case , default=snake_case , help="A seed for reproducible training." ) parser.add_argument( "--context_len" , default=32 , type=snake_case , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--size_objective_set" , default=1_00 , type=snake_case , help="number of articles that are long enough to be used as our objective set" , ) parser.add_argument( "--eval_freq" , default=1_00 , type=snake_case , help="secondary model evaluation is triggered at eval_freq" ) parser.add_argument("--max_steps" , default=10_00 , type=snake_case , help="To calculate training epochs" ) parser.add_argument( "--secondary_learner_batch_size" , default=1_28 , type=snake_case , help="batch size of training data for secondary learner" , ) parser.add_argument( "--batch_size" , default=16 , type=snake_case , help="batch size of training data of language model(gpt2) " ) parser.add_argument( "--eval_interval" , default=10 , type=snake_case , help=( "decay the selectivity of our secondary learner filter from" "1 standard deviation above average to 1 below average after 10 batches" ) , ) parser.add_argument( "--number" , default=1_00 , type=snake_case , help="The number of examples split to be used as objective_set/test_data" ) parser.add_argument( "--min_len" , default=10_26 , type=snake_case , help="The minimum length of the article to be used as objective set" ) parser.add_argument( "--secondary_learner_max_epochs" , default=15 , type=snake_case , help="number of epochs to train secondary learner" ) parser.add_argument("--trim" , default=snake_case , type=snake_case , help="truncate the example if it exceeds context length" ) parser.add_argument( "--threshold" , default=1.0 , type=snake_case , help=( "The threshold value used by secondary learner to filter the train_data and allow only" " informative data as input to the model" ) , ) parser.add_argument("--finetuned_model_name" , default="gpt2_finetuned.pt" , type=snake_case , help="finetuned_model_name" ) parser.add_argument( "--recopy_model" , default=snake_case , type=snake_case , help="Reset the model to the original pretrained GPT-2 weights after each iteration" , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=1_00 , min_len=10_26 , trim=snake_case , data_file="data/tokenized_stories_train_wikitext103.jbl" , igf_data_file="igf_context_pairs.jbl" , ) # Load train data for secondary learner _lowercase : Any = joblib.load("data/IGF_values.jbl" ) # Train secondary learner _lowercase : Union[str, Any] = training_secondary_learner( snake_case , secondary_learner_max_epochs=15 , secondary_learner_batch_size=1_28 , eval_freq=1_00 , igf_model_path="igf_model.pt" , ) # load pretrained gpt2 model _lowercase : Optional[Any] = GPTaLMHeadModel.from_pretrained("gpt2" ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model _lowercase , _lowercase : Optional[Any] = generate_datasets( context_len=32 , file="data/tokenized_stories_train_wikitext103.jbl" , number=1_00 , min_len=10_26 , trim=snake_case ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( snake_case , snake_case , snake_case , context_len=32 , max_steps=10_00 , batch_size=16 , threshold=1.0 , recopy_model=snake_case , secondary_learner=snake_case , eval_interval=10 , finetuned_model_name="gpt2_finetuned.pt" , ) if __name__ == "__main__": main()
199
1
"""simple docstring""" from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { "t5-small": "https://huggingface.co/t5-small/resolve/main/config.json", "t5-base": "https://huggingface.co/t5-base/resolve/main/config.json", "t5-large": "https://huggingface.co/t5-large/resolve/main/config.json", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/config.json", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/config.json", } class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = 't5' _SCREAMING_SNAKE_CASE = ['past_key_values'] _SCREAMING_SNAKE_CASE = {'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self , lowercase=32_128 , lowercase=512 , lowercase=64 , lowercase=2_048 , lowercase=6 , lowercase=None , lowercase=8 , lowercase=32 , lowercase=128 , lowercase=0.1 , lowercase=1e-6 , lowercase=1.0 , lowercase="relu" , lowercase=True , lowercase=True , lowercase=0 , lowercase=1 , **lowercase , ) -> Union[str, Any]: lowerCAmelCase = vocab_size lowerCAmelCase = d_model lowerCAmelCase = d_kv lowerCAmelCase = d_ff lowerCAmelCase = num_layers lowerCAmelCase = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry lowerCAmelCase = num_heads lowerCAmelCase = relative_attention_num_buckets lowerCAmelCase = relative_attention_max_distance lowerCAmelCase = dropout_rate lowerCAmelCase = layer_norm_epsilon lowerCAmelCase = initializer_factor lowerCAmelCase = feed_forward_proj lowerCAmelCase = use_cache lowerCAmelCase = self.feed_forward_proj.split("""-""" ) lowerCAmelCase = act_info[-1] lowerCAmelCase = act_info[0] == """gated""" if len(lowercase ) > 1 and act_info[0] != "gated" or len(lowercase ) > 2: raise ValueError( f'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.' """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """'gated-gelu' or 'relu'""" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": lowerCAmelCase = """gelu_new""" super().__init__( pad_token_id=lowercase , eos_token_id=lowercase , is_encoder_decoder=lowercase , **lowercase , ) class lowercase ( _UpperCAmelCase ): @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: lowerCAmelCase = { """input_ids""": {0: """batch""", 1: """encoder_sequence"""}, """attention_mask""": {0: """batch""", 1: """encoder_sequence"""}, } if self.use_past: lowerCAmelCase = """past_encoder_sequence + sequence""" lowerCAmelCase = {0: """batch"""} lowerCAmelCase = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: lowerCAmelCase = {0: """batch""", 1: """decoder_sequence"""} lowerCAmelCase = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(lowercase , direction="""inputs""" ) return common_inputs @property def _snake_case ( self ) -> int: return 13
46
def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): """simple docstring""" return base * power(SCREAMING_SNAKE_CASE , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print("Raise base to the power of exponent using recursion...") __UpperCamelCase : str = int(input("Enter the base: ").strip()) __UpperCamelCase : Dict = int(input("Enter the exponent: ").strip()) __UpperCamelCase : List[Any] = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents __UpperCamelCase : Tuple = 1 / result print(f"{base} to the power of {exponent} is {result}")
146
0
import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin UpperCAmelCase__ : Any = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class UpperCAmelCase : '''simple docstring''' def __init__( self : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int]=1_6 , lowerCAmelCase_ : List[Any]=1_3 , lowerCAmelCase_ : Union[str, Any]=7 , lowerCAmelCase_ : Dict=1_4 , lowerCAmelCase_ : Union[str, Any]=1_0 , lowerCAmelCase_ : Any=1_9 , lowerCAmelCase_ : Dict=5 , lowerCAmelCase_ : Dict=4 , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Union[str, Any]=1_6 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : Union[str, Any]=4 , lowerCAmelCase_ : Dict=4 , lowerCAmelCase_ : Union[str, Any]="gelu" , lowerCAmelCase_ : str=0.1 , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : str=[1, 2, 3, 4, 5] , lowerCAmelCase_ : Union[str, Any]=2_5 , lowerCAmelCase_ : Any=5 , ): """simple docstring""" _A: Tuple = d_model _A: Optional[int] = parent _A: Optional[int] = batch_size _A: Optional[Any] = prediction_length _A: Optional[Any] = context_length _A: List[Any] = cardinality _A: Union[str, Any] = num_time_features _A: Optional[int] = lags_sequence _A: Dict = embedding_dimension _A: Optional[int] = is_training _A: List[str] = hidden_size _A: int = num_hidden_layers _A: Tuple = num_attention_heads _A: List[str] = intermediate_size _A: str = hidden_act _A: Dict = hidden_dropout_prob _A: Dict = attention_probs_dropout_prob _A: List[Any] = context_length _A: str = prediction_length + label_length _A: Union[str, Any] = label_length _A: List[str] = moving_average _A: str = autocorrelation_factor def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : Dict ): """simple docstring""" _A: Optional[int] = config.context_length + max(config.lags_sequence ) _A: str = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) _A: Dict = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) _A: Dict = floats_tensor([self.batch_size, _past_length] ) _A: str = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs _A: Union[str, Any] = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) _A: Tuple = floats_tensor([self.batch_size, config.prediction_length] ) _A: int = { '''past_values''': past_values, '''static_categorical_features''': static_categorical_features, '''past_time_features''': past_time_features, '''past_observed_mask''': past_observed_mask, '''future_time_features''': future_time_features, '''future_values''': future_values, } return inputs_dict def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" _A: List[str] = self.get_config() _A: Optional[int] = self.prepare_autoformer_inputs_dict(lowerCAmelCase_ ) return config, inputs_dict def __magic_name__ ( self : List[Any] ): """simple docstring""" _A , _A: List[str] = self.prepare_config_and_inputs() return config, inputs_dict def __magic_name__ ( self : List[str] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple ): """simple docstring""" _A: str = AutoformerModel(config=lowerCAmelCase_ ).to(lowerCAmelCase_ ).eval() _A: Optional[int] = model(**lowerCAmelCase_ ) _A: Union[str, Any] = outputs.encoder_last_hidden_state _A: Tuple = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: _A: Tuple = model.get_encoder() encoder.save_pretrained(lowerCAmelCase_ ) _A: str = AutoformerEncoder.from_pretrained(lowerCAmelCase_ ).to(lowerCAmelCase_ ) _A , _A , _A , _A , _A: Optional[int] = model.create_network_inputs(**lowerCAmelCase_ ) _A , _A: Any = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) _A: Any = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) _A: Dict = encoder(inputs_embeds=lowerCAmelCase_ )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) _A: Dict = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) _A: Optional[Any] = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) _A: Union[str, Any] = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) _A: str = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: _A: Any = model.get_decoder() decoder.save_pretrained(lowerCAmelCase_ ) _A: Any = AutoformerDecoder.from_pretrained(lowerCAmelCase_ ).to(lowerCAmelCase_ ) _A: int = decoder( trend=lowerCAmelCase_ , inputs_embeds=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : List[Any] = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () __UpperCamelCase : Dict = (AutoformerForPrediction,) if is_torch_available() else () __UpperCamelCase : Optional[Any] = {'''feature-extraction''': AutoformerModel} if is_torch_available() else {} __UpperCamelCase : Tuple = False __UpperCamelCase : Any = False __UpperCamelCase : int = False __UpperCamelCase : Any = False __UpperCamelCase : Optional[Any] = False __UpperCamelCase : Tuple = False def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: Optional[Any] = AutoformerModelTester(self ) _A: Dict = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ ) def __magic_name__ ( self : int ): """simple docstring""" self.config_tester.run_common_tests() def __magic_name__ ( self : int ): """simple docstring""" _A , _A: Union[str, Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: _A: List[str] = model_class(lowerCAmelCase_ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCAmelCase_ ) _A , _A: List[Any] = model_class.from_pretrained(lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ ) self.assertEqual(info['''missing_keys'''] , [] ) def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*lowerCAmelCase_ ) @unittest.skip(reason='''Model has no tokens embeddings''' ) def __magic_name__ ( self : str ): """simple docstring""" pass def __magic_name__ ( self : int ): """simple docstring""" _A: Optional[Any] = inspect.signature(getattr(lowerCAmelCase_ , '''forward''' ) ) # The main input is the name of the argument after `self` _A: Dict = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , lowerCAmelCase_ ) def __magic_name__ ( self : Dict ): """simple docstring""" _A , _A: List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A: str = model_class(lowerCAmelCase_ ) _A: Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A: List[Any] = [*signature.parameters.keys()] _A: Dict = [ '''past_values''', '''past_time_features''', '''past_observed_mask''', '''static_categorical_features''', '''static_real_features''', '''future_values''', '''future_time_features''', ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append('''future_observed_mask''' ) expected_arg_names.extend( [ '''decoder_attention_mask''', '''head_mask''', '''decoder_head_mask''', '''cross_attn_head_mask''', '''encoder_outputs''', '''past_key_values''', '''output_hidden_states''', '''output_attentions''', '''use_cache''', '''return_dict''', ] ) self.assertListEqual(arg_names[: len(lowerCAmelCase_ )] , lowerCAmelCase_ ) def __magic_name__ ( self : Tuple ): """simple docstring""" _A , _A: Tuple = self.model_tester.prepare_config_and_inputs_for_common() _A: Dict = True _A: str = getattr(self.model_tester , '''seq_length''' , lowerCAmelCase_ ) _A: Optional[int] = getattr(self.model_tester , '''decoder_seq_length''' , lowerCAmelCase_ ) _A: Dict = getattr(self.model_tester , '''encoder_seq_length''' , lowerCAmelCase_ ) _A: List[str] = getattr(self.model_tester , '''d_model''' , lowerCAmelCase_ ) _A: Tuple = getattr(self.model_tester , '''num_attention_heads''' , lowerCAmelCase_ ) _A: Any = d_model // num_attention_heads for model_class in self.all_model_classes: _A: Optional[int] = True _A: Optional[int] = False _A: List[Any] = True _A: List[str] = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): _A: List[Any] = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _A: Dict = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _A: int = True _A: Union[str, Any] = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): _A: Optional[int] = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _A: Optional[int] = outputs.encoder_attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) _A: Optional[Any] = len(lowerCAmelCase_ ) _A: Optional[int] = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # decoder attentions _A: int = outputs.decoder_attentions self.assertIsInstance(lowerCAmelCase_ , (list, tuple) ) self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions _A: Dict = outputs.cross_attentions self.assertIsInstance(lowerCAmelCase_ , (list, tuple) ) self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine _A: Dict = True _A: Optional[int] = True _A: List[Any] = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): _A: List[str] = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) self.assertEqual(out_len + 2 , len(lowerCAmelCase_ ) ) _A: str = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def __magic_name__ ( self : Optional[Any] ): """simple docstring""" super().test_retain_grad_hidden_states_attentions() def lowerCamelCase__ ( a="train-batch.pt" ) -> List[str]: _A: int = hf_hub_download(repo_id='''hf-internal-testing/tourism-monthly-batch''' , filename=a , repo_type='''dataset''' ) _A: Any = torch.load(a , map_location=a ) return batch @require_torch @slow class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: str = AutoformerModel.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(lowerCAmelCase_ ) _A: List[str] = prepare_batch() with torch.no_grad(): _A: Optional[int] = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , future_values=batch['''future_values'''] , future_time_features=batch['''future_time_features'''] , )[0] _A: Dict = torch.Size( (6_4, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , lowerCAmelCase_ ) _A: Dict = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=lowerCAmelCase_ ) self.assertTrue(torch.allclose(output[0, :3, :3] , lowerCAmelCase_ , atol=lowerCAmelCase_ ) ) def __magic_name__ ( self : int ): """simple docstring""" _A: Dict = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(lowerCAmelCase_ ) _A: Union[str, Any] = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): _A: int = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , ).encoder_last_hidden_state _A: Any = torch.Size((6_4, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , lowerCAmelCase_ ) _A: str = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=lowerCAmelCase_ ) self.assertTrue(torch.allclose(output[0, :3, :3] , lowerCAmelCase_ , atol=lowerCAmelCase_ ) ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: int = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(lowerCAmelCase_ ) _A: List[Any] = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): _A: Union[str, Any] = model.generate( static_categorical_features=batch['''static_categorical_features'''] , past_time_features=batch['''past_time_features'''] , past_values=batch['''past_values'''] , future_time_features=batch['''future_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , ) _A: Optional[Any] = torch.Size((6_4, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , lowerCAmelCase_ ) _A: Any = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=lowerCAmelCase_ ) _A: str = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , lowerCAmelCase_ , rtol=1e-1 ) )
301
import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Any = (DDPMParallelScheduler,) def __magic_name__ ( self : Optional[int] , **lowerCAmelCase_ : Any ): """simple docstring""" _A: Optional[int] = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**lowerCAmelCase_ ) return config def __magic_name__ ( self : int ): """simple docstring""" for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowerCAmelCase_ ) def __magic_name__ ( self : Tuple ): """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=lowerCAmelCase_ , beta_end=lowerCAmelCase_ ) def __magic_name__ ( self : Optional[Any] ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCAmelCase_ ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=lowerCAmelCase_ ) def __magic_name__ ( self : Tuple ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCAmelCase_ ) def __magic_name__ ( self : List[str] ): """simple docstring""" self.check_over_configs(thresholding=lowerCAmelCase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=lowerCAmelCase_ , prediction_type=lowerCAmelCase_ , sample_max_value=lowerCAmelCase_ , ) def __magic_name__ ( self : Dict ): """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase_ ) def __magic_name__ ( self : int ): """simple docstring""" for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=lowerCAmelCase_ ) def __magic_name__ ( self : Any ): """simple docstring""" _A: List[Any] = self.scheduler_classes[0] _A: Union[str, Any] = self.get_scheduler_config() _A: Optional[Any] = scheduler_class(**lowerCAmelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.00979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1e-5 def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Any = self.scheduler_classes[0] _A: List[str] = self.get_scheduler_config() _A: Union[str, Any] = scheduler_class(**lowerCAmelCase_ ) _A: List[Any] = len(lowerCAmelCase_ ) _A: Union[str, Any] = self.dummy_model() _A: Dict = self.dummy_sample_deter _A: Dict = self.dummy_sample_deter + 0.1 _A: str = self.dummy_sample_deter - 0.1 _A: str = samplea.shape[0] _A: Optional[Any] = torch.stack([samplea, samplea, samplea] , dim=0 ) _A: List[str] = torch.arange(lowerCAmelCase_ )[0:3, None].repeat(1 , lowerCAmelCase_ ) _A: List[Any] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) _A: Optional[int] = scheduler.batch_step_no_noise(lowerCAmelCase_ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) _A: Dict = torch.sum(torch.abs(lowerCAmelCase_ ) ) _A: List[str] = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 1153.1833 ) < 1e-2 assert abs(result_mean.item() - 0.5005 ) < 1e-3 def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Optional[Any] = self.scheduler_classes[0] _A: List[Any] = self.get_scheduler_config() _A: Any = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = len(lowerCAmelCase_ ) _A: Any = self.dummy_model() _A: Optional[int] = self.dummy_sample_deter _A: List[str] = torch.manual_seed(0 ) for t in reversed(range(lowerCAmelCase_ ) ): # 1. predict noise residual _A: Optional[int] = model(lowerCAmelCase_ , lowerCAmelCase_ ) # 2. predict previous mean of sample x_t-1 _A: Optional[int] = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample _A: List[Any] = pred_prev_sample _A: Optional[int] = torch.sum(torch.abs(lowerCAmelCase_ ) ) _A: Any = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Optional[int] = self.scheduler_classes[0] _A: Union[str, Any] = self.get_scheduler_config(prediction_type='''v_prediction''' ) _A: List[str] = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = len(lowerCAmelCase_ ) _A: Any = self.dummy_model() _A: Any = self.dummy_sample_deter _A: str = torch.manual_seed(0 ) for t in reversed(range(lowerCAmelCase_ ) ): # 1. predict noise residual _A: Any = model(lowerCAmelCase_ , lowerCAmelCase_ ) # 2. predict previous mean of sample x_t-1 _A: int = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample _A: Tuple = pred_prev_sample _A: List[Any] = torch.sum(torch.abs(lowerCAmelCase_ ) ) _A: str = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Optional[int] = self.scheduler_classes[0] _A: Optional[Any] = self.get_scheduler_config() _A: Dict = scheduler_class(**lowerCAmelCase_ ) _A: Any = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=lowerCAmelCase_ ) _A: Tuple = scheduler.timesteps for i, timestep in enumerate(lowerCAmelCase_ ): if i == len(lowerCAmelCase_ ) - 1: _A: Dict = -1 else: _A: int = timesteps[i + 1] _A: List[str] = scheduler.previous_timestep(lowerCAmelCase_ ) _A: str = prev_t.item() self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Any ): """simple docstring""" _A: Tuple = self.scheduler_classes[0] _A: int = self.get_scheduler_config() _A: Any = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(lowerCAmelCase_ , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=lowerCAmelCase_ ) def __magic_name__ ( self : int ): """simple docstring""" _A: List[str] = self.scheduler_classes[0] _A: Optional[Any] = self.get_scheduler_config() _A: Union[str, Any] = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = [1_0_0, 8_7, 5_0, 1, 0] _A: Dict = len(lowerCAmelCase_ ) with self.assertRaises(lowerCAmelCase_ , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=lowerCAmelCase_ , timesteps=lowerCAmelCase_ ) def __magic_name__ ( self : Any ): """simple docstring""" _A: List[Any] = self.scheduler_classes[0] _A: int = self.get_scheduler_config() _A: str = scheduler_class(**lowerCAmelCase_ ) _A: Any = [scheduler.config.num_train_timesteps] with self.assertRaises( lowerCAmelCase_ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=lowerCAmelCase_ )
301
1
"""simple docstring""" from typing import TYPE_CHECKING from ..utils import _LazyModule a_ = { 'config': [ 'EXTERNAL_DATA_FORMAT_SIZE_LIMIT', 'OnnxConfig', 'OnnxConfigWithPast', 'OnnxSeq2SeqConfigWithPast', 'PatchingSpec', ], 'convert': ['export', 'validate_model_outputs'], 'features': ['FeaturesManager'], 'utils': ['ParameterFormat', 'compute_serialized_parameters_size'], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
249
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ = { 'configuration_xlm_roberta': [ 'XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMRobertaConfig', 'XLMRobertaOnnxConfig', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['XLMRobertaTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['XLMRobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMRobertaForCausalLM', 'XLMRobertaForMaskedLM', 'XLMRobertaForMultipleChoice', 'XLMRobertaForQuestionAnswering', 'XLMRobertaForSequenceClassification', 'XLMRobertaForTokenClassification', 'XLMRobertaModel', 'XLMRobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLMRobertaForCausalLM', 'TFXLMRobertaForMaskedLM', 'TFXLMRobertaForMultipleChoice', 'TFXLMRobertaForQuestionAnswering', 'TFXLMRobertaForSequenceClassification', 'TFXLMRobertaForTokenClassification', 'TFXLMRobertaModel', 'TFXLMRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxXLMRobertaForMaskedLM', 'FlaxXLMRobertaForCausalLM', 'FlaxXLMRobertaForMultipleChoice', 'FlaxXLMRobertaForQuestionAnswering', 'FlaxXLMRobertaForSequenceClassification', 'FlaxXLMRobertaForTokenClassification', 'FlaxXLMRobertaModel', 'FlaxXLMRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
249
1
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def snake_case( ) -> Tuple: '''simple docstring''' lowercase : List[str] = { '''repo_name''': ['''test_repo1''', '''test_repo2''', '''test_repo3'''], '''path''': ['''test_1.py''', '''test_2.py''', '''unit_test.py'''], '''content''': ['''a ''' * 20, '''a ''' * 30, '''b ''' * 7], } lowercase : Optional[Any] = Dataset.from_dict(__snake_case ) return dataset class _A ( lowerCamelCase__ ): def __a ( self : Optional[int] ) -> Any: """simple docstring""" lowercase : str = get_dataset() lowercase : Tuple = make_duplicate_clusters(_A , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def __a ( self : Dict ) -> Dict: """simple docstring""" lowercase : str = get_dataset() lowercase , lowercase : Dict = deduplicate_dataset(_A ) self.assertEqual(len(_A ) , 2 ) print(_A ) self.assertEqual(duplicate_clusters[0][0]['''copies'''] , 2 ) self.assertEqual(duplicate_clusters[0][0]['''is_extreme'''] , _A )
356
import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging lowerCAmelCase_ = logging.get_logger(__name__) class _A ( _lowerCamelCase ): _UpperCamelCase : str = ['''input_values''', '''attention_mask'''] def __init__( self : Optional[Any] , _A : int = 1 , _A : int = 16_000 , _A : float = 0.0 , _A : bool = False , _A : int = 80 , _A : int = 16 , _A : int = 64 , _A : str = "hann_window" , _A : float = 1.0 , _A : float = 80 , _A : float = 7_600 , _A : float = 1E-10 , _A : int = 2 , _A : bool = True , **_A : int , ) -> Union[str, Any]: """simple docstring""" super().__init__(feature_size=_A , sampling_rate=_A , padding_value=_A , **_A ) lowercase : str = do_normalize lowercase : int = return_attention_mask lowercase : Union[str, Any] = num_mel_bins lowercase : Union[str, Any] = hop_length lowercase : Dict = win_length lowercase : Union[str, Any] = win_function lowercase : int = frame_signal_scale lowercase : Dict = fmin lowercase : Optional[Any] = fmax lowercase : str = mel_floor lowercase : Dict = reduction_factor lowercase : List[Any] = win_length * sampling_rate // 1_000 lowercase : Union[str, Any] = hop_length * sampling_rate // 1_000 lowercase : Optional[Any] = optimal_fft_length(self.sample_size ) lowercase : Dict = (self.n_fft // 2) + 1 lowercase : Any = window_function(window_length=self.sample_size , name=self.win_function , periodic=_A ) lowercase : Dict = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='''slaney''' , mel_scale='''slaney''' , ) if frame_signal_scale != 1.0: warnings.warn( '''The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers''' , _A , ) if reduction_factor != 2.0: warnings.warn( '''The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers''' , _A , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def __a ( _A : List[np.ndarray] , _A : List[np.ndarray] , _A : float = 0.0 ) -> List[np.ndarray]: """simple docstring""" if attention_mask is not None: lowercase : Optional[int] = np.array(_A , np.intaa ) lowercase : Dict = [] for vector, length in zip(_A , attention_mask.sum(-1 ) ): lowercase : Dict = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: lowercase : List[str] = padding_value normed_input_values.append(_A ) else: lowercase : Dict = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def __a ( self : Any , _A : np.ndarray , ) -> np.ndarray: """simple docstring""" lowercase : Tuple = spectrogram( _A , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='''log10''' , ) return log_mel_spec.T def __call__( self : List[Any] , _A : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _A : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _A : Union[bool, str, PaddingStrategy] = False , _A : Optional[int] = None , _A : bool = False , _A : Optional[int] = None , _A : Optional[bool] = None , _A : Optional[Union[str, TensorType]] = None , _A : Optional[int] = None , **_A : Tuple , ) -> BatchFeature: """simple docstring""" if audio is None and audio_target is None: raise ValueError('''You must provide either `audio` or `audio_target` values.''' ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" f""" {self.sampling_rate}. Please make sure that the provided audio input was sampled with""" f""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the ``sampling_rate`` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) if audio is not None: lowercase : Any = self._process_audio( _A , _A , _A , _A , _A , _A , _A , _A , **_A , ) else: lowercase : Any = None if audio_target is not None: lowercase : Tuple = self._process_audio( _A , _A , _A , _A , _A , _A , _A , _A , **_A , ) if inputs is None: return inputs_target else: lowercase : Any = inputs_target['''input_values'''] lowercase : Dict = inputs_target.get('''attention_mask''' ) if decoder_attention_mask is not None: lowercase : Union[str, Any] = decoder_attention_mask return inputs def __a ( self : List[Any] , _A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _A : bool = False , _A : Union[bool, str, PaddingStrategy] = False , _A : Optional[int] = None , _A : bool = False , _A : Optional[int] = None , _A : Optional[bool] = None , _A : Optional[Union[str, TensorType]] = None , **_A : Any , ) -> BatchFeature: """simple docstring""" lowercase : Optional[int] = isinstance(_A , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) lowercase : int = is_batched_numpy or ( isinstance(_A , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowercase : Optional[int] = [np.asarray(_A , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(_A , np.ndarray ): lowercase : List[str] = np.asarray(_A , dtype=np.floataa ) elif isinstance(_A , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): lowercase : List[str] = speech.astype(np.floataa ) # always return batch if not is_batched: lowercase : Union[str, Any] = [speech] # needed to make pad() work on spectrogram inputs lowercase : Any = self.feature_size # convert into correct format for padding if is_target: lowercase : int = [self._extract_mel_features(_A ) for waveform in speech] lowercase : Any = BatchFeature({'''input_values''': features} ) lowercase : Optional[Any] = self.num_mel_bins else: lowercase : Optional[Any] = BatchFeature({'''input_values''': speech} ) lowercase : Optional[int] = self.pad( _A , padding=_A , max_length=_A , truncation=_A , pad_to_multiple_of=_A , return_attention_mask=_A , **_A , ) lowercase : str = feature_size_hack # convert input values to correct format lowercase : List[Any] = padded_inputs['''input_values'''] if not isinstance(input_values[0] , np.ndarray ): lowercase : List[str] = [np.asarray(_A , dtype=np.floataa ) for array in input_values] elif ( not isinstance(_A , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): lowercase : List[str] = [array.astype(np.floataa ) for array in input_values] elif isinstance(_A , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): lowercase : Optional[Any] = input_values.astype(np.floataa ) # convert attention_mask to correct format lowercase : int = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: lowercase : Union[str, Any] = [np.asarray(_A , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: lowercase : Any = ( attention_mask if self._get_padding_strategies(_A , max_length=_A ) is not PaddingStrategy.DO_NOT_PAD else None ) lowercase : Optional[int] = self.zero_mean_unit_var_norm( padded_inputs['''input_values'''] , attention_mask=_A , padding_value=self.padding_value ) if return_tensors is not None: lowercase : Tuple = padded_inputs.convert_to_tensors(_A ) return padded_inputs def __a ( self : Optional[Any] ) -> Dict[str, Any]: """simple docstring""" lowercase : Optional[Any] = super().to_dict() # Don't serialize these as they are derived from the other properties. lowercase : Optional[int] = ['''window''', '''mel_filters''', '''sample_size''', '''sample_stride''', '''n_fft''', '''n_freqs'''] for name in names: if name in output: del output[name] return output
116
0
'''simple docstring''' from torch import nn def a__ ( a__ ): """simple docstring""" if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(F'Unsupported activation function: {act_fn}' )
267
'''simple docstring''' from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def _lowerCAmelCase ( __snake_case : float , __snake_case : float , __snake_case : bool = False ) -> list[float]: if radian_mode: return [magnitude * cos(__snake_case ), magnitude * sin(__snake_case )] return [magnitude * cos(radians(__snake_case ) ), magnitude * sin(radians(__snake_case ) )] def _lowerCAmelCase ( __snake_case : NDArray[floataa] , __snake_case : NDArray[floataa] , __snake_case : float = 10**-1 ) -> bool: __A : NDArray[floataa] = cross(__snake_case , __snake_case ) __A : float = sum(__snake_case ) return abs(__snake_case ) < eps if __name__ == "__main__": # Test to check if it works lowercase__ : List[Any] = array( [ polar_force(718.4, 1_80 - 30), polar_force(879.54, 45), polar_force(1_00, -90), ] ) lowercase__ : NDArray[floataa] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg lowercase__ : Dict = array( [ polar_force(30 * 9.81, 15), polar_force(2_15, 1_80 - 45), polar_force(2_64, 90 - 30), ] ) lowercase__ : Any = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg lowercase__ : Optional[int] = array([[0, -20_00], [0, -12_00], [0, 1_56_00], [0, -1_24_00]]) lowercase__ : Optional[int] = array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
190
0
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch UpperCamelCase__ : Dict = logging.get_logger(__name__) class lowerCamelCase_ : def __init__( self : Optional[int] ,__lowerCamelCase : str = None ,__lowerCamelCase : uuid.UUID = None ,__lowerCamelCase : Optional[Any]=None ,__lowerCamelCase : List[str]=None ): '''simple docstring''' if not conversation_id: a = uuid.uuida() if past_user_inputs is None: a = [] if generated_responses is None: a = [] a = conversation_id a = past_user_inputs a = generated_responses a = text def __eq__( self : str ,__lowerCamelCase : Any ): '''simple docstring''' if not isinstance(__lowerCamelCase ,__lowerCamelCase ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ,__lowerCamelCase : str ,__lowerCamelCase : bool = False ): '''simple docstring''' if self.new_user_input: if overwrite: logger.warning( F"""User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten """ F"""with: \"{text}\".""" ) a = text else: logger.warning( F"""User input added while unprocessed input was existing: \"{self.new_user_input}\" new input """ F"""ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input""" ) else: a = text def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) a = None def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ,__lowerCamelCase : str ): '''simple docstring''' self.generated_responses.append(__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' for user_input, generated_response in zip(self.past_user_inputs ,self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self : Tuple ): '''simple docstring''' a = F"""Conversation id: {self.uuid} \n""" for is_user, text in self.iter_texts(): a = '''user''' if is_user else '''bot''' output += F"""{name} >> {text} \n""" return output @add_end_docstrings( a_ , R'\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n ' , ) class lowerCamelCase_ ( a_ ): def __init__( self : Any ,*__lowerCamelCase : Union[str, Any] ,**__lowerCamelCase : Optional[Any] ): '''simple docstring''' super().__init__(*__lowerCamelCase ,**__lowerCamelCase ) if self.tokenizer.pad_token_id is None: a = self.tokenizer.eos_token def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : Tuple=None ,__lowerCamelCase : str=None ,__lowerCamelCase : int=None ,**__lowerCamelCase : Dict ): '''simple docstring''' a = {} a = {} a = {} if min_length_for_response is not None: a = min_length_for_response if minimum_tokens is not None: a = minimum_tokens if "max_length" in generate_kwargs: a = generate_kwargs['''max_length'''] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: a = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(__lowerCamelCase ) return preprocess_params, forward_params, postprocess_params def __call__( self : List[Any] ,__lowerCamelCase : Union[Conversation, List[Conversation]] ,__lowerCamelCase : Union[str, Any]=0 ,**__lowerCamelCase : Dict ): '''simple docstring''' a = super().__call__(__lowerCamelCase ,num_workers=__lowerCamelCase ,**__lowerCamelCase ) if isinstance(__lowerCamelCase ,__lowerCamelCase ) and len(__lowerCamelCase ) == 1: return outputs[0] return outputs def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : Conversation ,__lowerCamelCase : int=32 ): '''simple docstring''' if not isinstance(__lowerCamelCase ,__lowerCamelCase ): raise ValueError('''ConversationalPipeline, expects Conversation as inputs''' ) if conversation.new_user_input is None: raise ValueError( F"""Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. """ '''Add user inputs with the conversation\'s `add_user_input` method''' ) if hasattr(self.tokenizer ,'''_build_conversation_input_ids''' ): a = self.tokenizer._build_conversation_input_ids(__lowerCamelCase ) else: # If the tokenizer cannot handle conversations, we default to only the old version a = self._legacy_parse_and_tokenize(__lowerCamelCase ) if self.framework == "pt": a = torch.LongTensor([input_ids] ) elif self.framework == "tf": a = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : Tuple ,__lowerCamelCase : Dict=10 ,**__lowerCamelCase : Dict ): '''simple docstring''' a = generate_kwargs.get('''max_length''' ,self.model.config.max_length ) a = model_inputs['''input_ids'''].shape[1] if max_length - minimum_tokens < n: logger.warning(F"""Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})""" ) a = max_length - minimum_tokens a = model_inputs['''input_ids'''][:, -trim:] if "attention_mask" in model_inputs: a = model_inputs['''attention_mask'''][:, -trim:] a = model_inputs.pop('''conversation''' ) a = max_length a = self.model.generate(**__lowerCamelCase ,**__lowerCamelCase ) if self.model.config.is_encoder_decoder: a = 1 else: a = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : int=True ): '''simple docstring''' a = model_outputs['''output_ids'''] a = self.tokenizer.decode( output_ids[0] ,skip_special_tokens=__lowerCamelCase ,clean_up_tokenization_spaces=__lowerCamelCase ,) a = model_outputs['''conversation'''] conversation.mark_processed() conversation.append_response(__lowerCamelCase ) return conversation def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : Conversation ): '''simple docstring''' a = self.tokenizer.eos_token_id a = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(__lowerCamelCase ,add_special_tokens=__lowerCamelCase ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(__lowerCamelCase ,add_special_tokens=__lowerCamelCase ) ) if len(__lowerCamelCase ) > self.tokenizer.model_max_length: a = input_ids[-self.tokenizer.model_max_length :] return input_ids
330
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Union[str, Any]: """simple docstring""" stooge(snake_case_, 0, len(snake_case_ ) - 1 ) return arr def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> Optional[Any]: """simple docstring""" if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: a , a = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: a = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(snake_case_, snake_case_, (h - t) ) # Recursively sort last 2/3 elements stooge(snake_case_, i + t, (snake_case_) ) # Recursively sort first 2/3 elements stooge(snake_case_, snake_case_, (h - t) ) if __name__ == "__main__": UpperCamelCase__ : Dict = input("""Enter numbers separated by a comma:\n""").strip() UpperCamelCase__ : Optional[int] = [int(item) for item in user_input.split(""",""")] print(stooge_sort(unsorted))
330
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _UpperCamelCase = { """configuration_owlvit""": [ """OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """OwlViTConfig""", """OwlViTOnnxConfig""", """OwlViTTextConfig""", """OwlViTVisionConfig""", ], """processing_owlvit""": ["""OwlViTProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ["""OwlViTFeatureExtractor"""] _UpperCamelCase = ["""OwlViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ """OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """OwlViTModel""", """OwlViTPreTrainedModel""", """OwlViTTextModel""", """OwlViTVisionModel""", """OwlViTForObjectDetection""", ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
275
'''simple docstring''' import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) a_ : List[Any] = logging.get_logger(__name__) a_ : Tuple = OrderedDict( [ ("""audio-spectrogram-transformer""", """ASTFeatureExtractor"""), ("""beit""", """BeitFeatureExtractor"""), ("""chinese_clip""", """ChineseCLIPFeatureExtractor"""), ("""clap""", """ClapFeatureExtractor"""), ("""clip""", """CLIPFeatureExtractor"""), ("""clipseg""", """ViTFeatureExtractor"""), ("""conditional_detr""", """ConditionalDetrFeatureExtractor"""), ("""convnext""", """ConvNextFeatureExtractor"""), ("""cvt""", """ConvNextFeatureExtractor"""), ("""data2vec-audio""", """Wav2Vec2FeatureExtractor"""), ("""data2vec-vision""", """BeitFeatureExtractor"""), ("""deformable_detr""", """DeformableDetrFeatureExtractor"""), ("""deit""", """DeiTFeatureExtractor"""), ("""detr""", """DetrFeatureExtractor"""), ("""dinat""", """ViTFeatureExtractor"""), ("""donut-swin""", """DonutFeatureExtractor"""), ("""dpt""", """DPTFeatureExtractor"""), ("""encodec""", """EncodecFeatureExtractor"""), ("""flava""", """FlavaFeatureExtractor"""), ("""glpn""", """GLPNFeatureExtractor"""), ("""groupvit""", """CLIPFeatureExtractor"""), ("""hubert""", """Wav2Vec2FeatureExtractor"""), ("""imagegpt""", """ImageGPTFeatureExtractor"""), ("""layoutlmv2""", """LayoutLMv2FeatureExtractor"""), ("""layoutlmv3""", """LayoutLMv3FeatureExtractor"""), ("""levit""", """LevitFeatureExtractor"""), ("""maskformer""", """MaskFormerFeatureExtractor"""), ("""mctct""", """MCTCTFeatureExtractor"""), ("""mobilenet_v1""", """MobileNetV1FeatureExtractor"""), ("""mobilenet_v2""", """MobileNetV2FeatureExtractor"""), ("""mobilevit""", """MobileViTFeatureExtractor"""), ("""nat""", """ViTFeatureExtractor"""), ("""owlvit""", """OwlViTFeatureExtractor"""), ("""perceiver""", """PerceiverFeatureExtractor"""), ("""poolformer""", """PoolFormerFeatureExtractor"""), ("""regnet""", """ConvNextFeatureExtractor"""), ("""resnet""", """ConvNextFeatureExtractor"""), ("""segformer""", """SegformerFeatureExtractor"""), ("""sew""", """Wav2Vec2FeatureExtractor"""), ("""sew-d""", """Wav2Vec2FeatureExtractor"""), ("""speech_to_text""", """Speech2TextFeatureExtractor"""), ("""speecht5""", """SpeechT5FeatureExtractor"""), ("""swiftformer""", """ViTFeatureExtractor"""), ("""swin""", """ViTFeatureExtractor"""), ("""swinv2""", """ViTFeatureExtractor"""), ("""table-transformer""", """DetrFeatureExtractor"""), ("""timesformer""", """VideoMAEFeatureExtractor"""), ("""tvlt""", """TvltFeatureExtractor"""), ("""unispeech""", """Wav2Vec2FeatureExtractor"""), ("""unispeech-sat""", """Wav2Vec2FeatureExtractor"""), ("""van""", """ConvNextFeatureExtractor"""), ("""videomae""", """VideoMAEFeatureExtractor"""), ("""vilt""", """ViltFeatureExtractor"""), ("""vit""", """ViTFeatureExtractor"""), ("""vit_mae""", """ViTFeatureExtractor"""), ("""vit_msn""", """ViTFeatureExtractor"""), ("""wav2vec2""", """Wav2Vec2FeatureExtractor"""), ("""wav2vec2-conformer""", """Wav2Vec2FeatureExtractor"""), ("""wavlm""", """Wav2Vec2FeatureExtractor"""), ("""whisper""", """WhisperFeatureExtractor"""), ("""xclip""", """CLIPFeatureExtractor"""), ("""yolos""", """YolosFeatureExtractor"""), ] ) a_ : Optional[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def a_ ( __snake_case : str ) -> Any: """simple docstring""" for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: lowerCamelCase_ =model_type_to_module_name(__snake_case ) lowerCamelCase_ =importlib.import_module(F'''.{module_name}''' , '''transformers.models''' ) try: return getattr(__snake_case , __snake_case ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(__snake_case , '''__name__''' , __snake_case ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. lowerCamelCase_ =importlib.import_module('''transformers''' ) if hasattr(__snake_case , __snake_case ): return getattr(__snake_case , __snake_case ) return None def a_ ( __snake_case : Union[str, os.PathLike] , __snake_case : Optional[Union[str, os.PathLike]] = None , __snake_case : bool = False , __snake_case : bool = False , __snake_case : Optional[Dict[str, str]] = None , __snake_case : Optional[Union[bool, str]] = None , __snake_case : Optional[str] = None , __snake_case : bool = False , **__snake_case : Union[str, Any] , ) -> List[str]: """simple docstring""" lowerCamelCase_ =get_file_from_repo( __snake_case , __snake_case , cache_dir=__snake_case , force_download=__snake_case , resume_download=__snake_case , proxies=__snake_case , use_auth_token=__snake_case , revision=__snake_case , local_files_only=__snake_case , ) if resolved_config_file is None: logger.info( '''Could not locate the feature extractor configuration file, will try to use the model config instead.''' ) return {} with open(__snake_case , encoding='''utf-8''' ) as reader: return json.load(__snake_case ) class __UpperCamelCase : def __init__( self ): """simple docstring""" raise EnvironmentError( '''AutoFeatureExtractor is designed to be instantiated ''' '''using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(lowerCAmelCase ) def lowercase__ ( cls, lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =kwargs.pop('''config''', lowerCAmelCase ) lowerCamelCase_ =kwargs.pop('''trust_remote_code''', lowerCAmelCase ) lowerCamelCase_ =True lowerCamelCase_, lowerCamelCase_ =FeatureExtractionMixin.get_feature_extractor_dict(lowerCAmelCase, **lowerCAmelCase ) lowerCamelCase_ =config_dict.get('''feature_extractor_type''', lowerCAmelCase ) lowerCamelCase_ =None if "AutoFeatureExtractor" in config_dict.get('''auto_map''', {} ): lowerCamelCase_ =config_dict['''auto_map''']['''AutoFeatureExtractor'''] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(lowerCAmelCase, lowerCAmelCase ): lowerCamelCase_ =AutoConfig.from_pretrained(lowerCAmelCase, **lowerCAmelCase ) # It could be in `config.feature_extractor_type`` lowerCamelCase_ =getattr(lowerCAmelCase, '''feature_extractor_type''', lowerCAmelCase ) if hasattr(lowerCAmelCase, '''auto_map''' ) and "AutoFeatureExtractor" in config.auto_map: lowerCamelCase_ =config.auto_map['''AutoFeatureExtractor'''] if feature_extractor_class is not None: lowerCamelCase_ =feature_extractor_class_from_name(lowerCAmelCase ) lowerCamelCase_ =feature_extractor_auto_map is not None lowerCamelCase_ =feature_extractor_class is not None or type(lowerCAmelCase ) in FEATURE_EXTRACTOR_MAPPING lowerCamelCase_ =resolve_trust_remote_code( lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) if has_remote_code and trust_remote_code: lowerCamelCase_ =get_class_from_dynamic_module( lowerCAmelCase, lowerCAmelCase, **lowerCAmelCase ) lowerCamelCase_ =kwargs.pop('''code_revision''', lowerCAmelCase ) if os.path.isdir(lowerCAmelCase ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(lowerCAmelCase, **lowerCAmelCase ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(lowerCAmelCase, **lowerCAmelCase ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(lowerCAmelCase ) in FEATURE_EXTRACTOR_MAPPING: lowerCamelCase_ =FEATURE_EXTRACTOR_MAPPING[type(lowerCAmelCase )] return feature_extractor_class.from_dict(lowerCAmelCase, **lowerCAmelCase ) raise ValueError( f'''Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a ''' f'''`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following ''' f'''`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def lowercase__ ( lowerCAmelCase, lowerCAmelCase ): """simple docstring""" FEATURE_EXTRACTOR_MAPPING.register(lowerCAmelCase, lowerCAmelCase )
75
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = ( "This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image." "It takes two arguments named `image` which should be the original image, and `label` which should be a text " "describing the elements what should be identified in the segmentation mask. The tool returns the mask." ) __magic_name__ = "CIDAS/clipseg-rd64-refined" __magic_name__ = "image_segmenter" __magic_name__ = CLIPSegForImageSegmentation __magic_name__ = ["image", "text"] __magic_name__ = ["image"] def __init__( self , *snake_case__ , **snake_case__ ): '''simple docstring''' requires_backends(self , ['vision'] ) super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def a ( self , snake_case__ , snake_case__ ): '''simple docstring''' return self.pre_processor(text=[label] , images=[image] , padding=_SCREAMING_SNAKE_CASE , return_tensors='pt' ) def a ( self , snake_case__ ): '''simple docstring''' with torch.no_grad(): _lowerCAmelCase : List[Any] = self.model(**_SCREAMING_SNAKE_CASE ).logits return logits def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : int = outputs.cpu().detach().numpy() _lowerCAmelCase : Any = 0 _lowerCAmelCase : Optional[Any] = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
370
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: lowerCAmelCase : Optional[int] = None lowerCAmelCase : List[Any] = logging.get_logger(__name__) lowerCAmelCase : Optional[Any] = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase : Any = { """vocab_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase : List[str] = { """facebook/nllb-large-en-ro""": 10_24, """facebook/nllb-200-distilled-600M""": 10_24, } # fmt: off lowerCAmelCase : Optional[int] = ["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""] class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = ["input_ids", "attention_mask"] __magic_name__ = NllbTokenizer __magic_name__ = [] __magic_name__ = [] def __init__( self , snake_case__=None , snake_case__=None , snake_case__="<s>" , snake_case__="</s>" , snake_case__="</s>" , snake_case__="<s>" , snake_case__="<unk>" , snake_case__="<pad>" , snake_case__="<mask>" , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=False , **snake_case__ , ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token _lowerCAmelCase : Dict = legacy_behaviour super().__init__( vocab_file=snake_case__ , tokenizer_file=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , src_lang=snake_case__ , tgt_lang=snake_case__ , additional_special_tokens=snake_case__ , legacy_behaviour=snake_case__ , **snake_case__ , ) _lowerCAmelCase : List[str] = vocab_file _lowerCAmelCase : int = False if not self.vocab_file else True _lowerCAmelCase : str = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) _lowerCAmelCase : Any = { lang_code: self.convert_tokens_to_ids(snake_case__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } _lowerCAmelCase : List[Any] = src_lang if src_lang is not None else 'eng_Latn' _lowerCAmelCase : str = self.convert_tokens_to_ids(self._src_lang ) _lowerCAmelCase : Tuple = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def a ( self ): '''simple docstring''' return self._src_lang @src_lang.setter def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Dict = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , **snake_case__ ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) _lowerCAmelCase : Optional[Any] = src_lang _lowerCAmelCase : Union[str, Any] = self(snake_case__ , add_special_tokens=snake_case__ , return_tensors=snake_case__ , **snake_case__ ) _lowerCAmelCase : int = self.convert_tokens_to_ids(snake_case__ ) _lowerCAmelCase : Optional[Any] = tgt_lang_id return inputs def a ( self , snake_case__ , snake_case__ = "eng_Latn" , snake_case__ = None , snake_case__ = "fra_Latn" , **snake_case__ , ): '''simple docstring''' _lowerCAmelCase : List[str] = src_lang _lowerCAmelCase : Optional[int] = tgt_lang return super().prepare_seqaseq_batch(snake_case__ , snake_case__ , **snake_case__ ) def a ( self ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def a ( self ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : str = self.convert_tokens_to_ids(snake_case__ ) if self.legacy_behaviour: _lowerCAmelCase : Dict = [] _lowerCAmelCase : List[str] = [self.eos_token_id, self.cur_lang_code] else: _lowerCAmelCase : int = [self.cur_lang_code] _lowerCAmelCase : int = [self.eos_token_id] _lowerCAmelCase : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) _lowerCAmelCase : List[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) _lowerCAmelCase : Any = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.convert_tokens_to_ids(snake_case__ ) if self.legacy_behaviour: _lowerCAmelCase : int = [] _lowerCAmelCase : Dict = [self.eos_token_id, self.cur_lang_code] else: _lowerCAmelCase : int = [self.cur_lang_code] _lowerCAmelCase : List[str] = [self.eos_token_id] _lowerCAmelCase : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) _lowerCAmelCase : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens ) _lowerCAmelCase : str = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(snake_case__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory.' ) return _lowerCAmelCase : Union[str, Any] = os.path.join( snake_case__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ): copyfile(self.vocab_file , snake_case__ ) return (out_vocab_file,)
25
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _SCREAMING_SNAKE_CASE = { """configuration_maskformer""": ["""MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MaskFormerConfig"""], """configuration_maskformer_swin""": ["""MaskFormerSwinConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ["""MaskFormerFeatureExtractor"""] _SCREAMING_SNAKE_CASE = ["""MaskFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """MaskFormerForInstanceSegmentation""", """MaskFormerModel""", """MaskFormerPreTrainedModel""", ] _SCREAMING_SNAKE_CASE = [ """MaskFormerSwinBackbone""", """MaskFormerSwinModel""", """MaskFormerSwinPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
343
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED _SCREAMING_SNAKE_CASE = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } _SCREAMING_SNAKE_CASE = { """allenai/led-base-16384""": 1_6_3_8_4, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowercase( ) -> List[str]: '''simple docstring''' UpperCamelCase = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) UpperCamelCase = bs[:] UpperCamelCase = 0 for b in range(2**8 ): if b not in bs: bs.append(UpperCamelCase_ ) cs.append(2**8 + n ) n += 1 UpperCamelCase = [chr(UpperCamelCase_ ) for n in cs] return dict(zip(UpperCamelCase_ , UpperCamelCase_ ) ) def lowercase( UpperCamelCase_ ) -> List[str]: '''simple docstring''' UpperCamelCase = set() UpperCamelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCamelCase = char return pairs class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = ["""input_ids""", """attention_mask"""] def __init__( self : str , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : str="replace" , lowerCamelCase_ : Any="<s>" , lowerCamelCase_ : List[Any]="</s>" , lowerCamelCase_ : List[Any]="</s>" , lowerCamelCase_ : str="<s>" , lowerCamelCase_ : str="<unk>" , lowerCamelCase_ : int="<pad>" , lowerCamelCase_ : List[str]="<mask>" , lowerCamelCase_ : str=False , **lowerCamelCase_ : str , ): """simple docstring""" UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else bos_token UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else eos_token UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else sep_token UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else cls_token UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else unk_token UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else mask_token super().__init__( errors=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , **lowerCamelCase_ , ) with open(lowerCamelCase_ , encoding="""utf-8""" ) as vocab_handle: UpperCamelCase = json.load(lowerCamelCase_ ) UpperCamelCase = {v: k for k, v in self.encoder.items()} UpperCamelCase = errors # how to handle errors in decoding UpperCamelCase = bytes_to_unicode() UpperCamelCase = {v: k for k, v in self.byte_encoder.items()} with open(lowerCamelCase_ , encoding="""utf-8""" ) as merges_handle: UpperCamelCase = merges_handle.read().split("""\n""" )[1:-1] UpperCamelCase = [tuple(merge.split() ) for merge in bpe_merges] UpperCamelCase = dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_ ) ) ) ) UpperCamelCase = {} UpperCamelCase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCamelCase = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def lowerCamelCase_ ( self : str ): """simple docstring""" return len(self.encoder ) def lowerCamelCase_ ( self : str ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : Dict ): """simple docstring""" if token in self.cache: return self.cache[token] UpperCamelCase = tuple(lowerCamelCase_ ) UpperCamelCase = get_pairs(lowerCamelCase_ ) if not pairs: return token while True: UpperCamelCase = min(lowerCamelCase_ , key=lambda lowerCamelCase_ : self.bpe_ranks.get(lowerCamelCase_ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break UpperCamelCase , UpperCamelCase = bigram UpperCamelCase = [] UpperCamelCase = 0 while i < len(lowerCamelCase_ ): try: UpperCamelCase = word.index(lowerCamelCase_ , lowerCamelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCamelCase = j if word[i] == first and i < len(lowerCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCamelCase = tuple(lowerCamelCase_ ) UpperCamelCase = new_word if len(lowerCamelCase_ ) == 1: break else: UpperCamelCase = get_pairs(lowerCamelCase_ ) UpperCamelCase = """ """.join(lowerCamelCase_ ) UpperCamelCase = word return word def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : Tuple ): """simple docstring""" UpperCamelCase = [] for token in re.findall(self.pat , lowerCamelCase_ ): UpperCamelCase = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase_ ).split(""" """ ) ) return bpe_tokens def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : str ): """simple docstring""" return self.encoder.get(lowerCamelCase_ , self.encoder.get(self.unk_token ) ) def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : Any ): """simple docstring""" return self.decoder.get(lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : str ): """simple docstring""" UpperCamelCase = """""".join(lowerCamelCase_ ) UpperCamelCase = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def lowerCamelCase_ ( self : int , lowerCamelCase_ : str , lowerCamelCase_ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(lowerCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(lowerCamelCase_ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase_ , ensure_ascii=lowerCamelCase_ ) + """\n""" ) UpperCamelCase = 0 with open(lowerCamelCase_ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase_ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" """ Please check that the tokenizer is not corrupted!""" ) UpperCamelCase = token_index writer.write(""" """.join(lowerCamelCase_ ) + """\n""" ) index += 1 return vocab_file, merge_file def lowerCamelCase_ ( self : str , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase = [self.cls_token_id] UpperCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None , lowerCamelCase_ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase_ )) + [1] return [1] + ([0] * len(lowerCamelCase_ )) + [1, 1] + ([0] * len(lowerCamelCase_ )) + [1] def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None ): """simple docstring""" UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self : str , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[int]=False , **lowerCamelCase_ : Any ): """simple docstring""" UpperCamelCase = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase_ ) > 0 and not text[0].isspace()): UpperCamelCase = """ """ + text return (text, kwargs) def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : Optional[bool] = None , ): """simple docstring""" UpperCamelCase = super()._pad( encoded_inputs=lowerCamelCase_ , max_length=lowerCamelCase_ , padding_strategy=lowerCamelCase_ , pad_to_multiple_of=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , ) # Load from model defaults if return_attention_mask is None: UpperCamelCase = """attention_mask""" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: UpperCamelCase = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. UpperCamelCase = len(encoded_inputs["""global_attention_mask"""] ) != len(lowerCamelCase_ ) if needs_to_be_padded: UpperCamelCase = len(lowerCamelCase_ ) - len(encoded_inputs["""global_attention_mask"""] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` UpperCamelCase = ( encoded_inputs["""global_attention_mask"""] + [-1] * difference ) elif self.padding_side == "left": UpperCamelCase = [-1] * difference + encoded_inputs[ """global_attention_mask""" ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return encoded_inputs
343
1
import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class __lowercase ( lowercase__ ): '''simple docstring''' _A : int = 0 _A : bool = False _A : float = 3.0 class __lowercase ( unittest.TestCase ): '''simple docstring''' def A_ ( self : Optional[Any] ): # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'''a''': 2} ) self.assertDictEqual(MockClass(a=2 , b=_UpperCamelCase ).to_kwargs() , {'''a''': 2, '''b''': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'''a''': 2, '''c''': 2.25} ) @require_cuda def A_ ( self : Optional[int] ): # If no defaults are changed, `to_kwargs` returns an empty dict. UpperCamelCase__ = GradScalerKwargs(init_scale=1_024 , growth_factor=2 ) AcceleratorState._reset_state() UpperCamelCase__ = Accelerator(mixed_precision='''fp16''' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) UpperCamelCase__ = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1_024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2_000 ) self.assertEqual(scaler._enabled , _UpperCamelCase ) @require_multi_gpu def A_ ( self : Union[str, Any] ): UpperCamelCase__ = ["""torchrun""", F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(_UpperCamelCase , env=os.environ.copy() ) if __name__ == "__main__": lowercase = DistributedDataParallelKwargs(bucket_cap_mb=1_5, find_unused_parameters=True) lowercase = Accelerator(kwargs_handlers=[ddp_scaler]) lowercase = torch.nn.Linear(1_0_0, 2_0_0) lowercase = accelerator.prepare(model) # Check the values changed in kwargs lowercase = '' lowercase = model.bucket_bytes_cap // (1_0_2_4 * 1_0_2_4) if observed_bucket_cap_map != 1_5: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
358
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() lowercase = logging.get_logger(__name__) lowercase = ["""model.decoder.embed_positions.weights"""] def lowerCamelCase_ ( UpperCamelCase__ : Any ): '''simple docstring''' if "emb" in name: UpperCamelCase__ = name.replace('''emb''', '''model.decoder.embed_tokens''' ) if "transformer" in name: UpperCamelCase__ = name.replace('''transformer''', '''model.decoder''' ) if "cross_attention" in name: UpperCamelCase__ = name.replace('''cross_attention''', '''encoder_attn''' ) if "linear1" in name: UpperCamelCase__ = name.replace('''linear1''', '''fc1''' ) if "linear2" in name: UpperCamelCase__ = name.replace('''linear2''', '''fc2''' ) if "norm1" in name: UpperCamelCase__ = name.replace('''norm1''', '''self_attn_layer_norm''' ) if "norm_cross" in name: UpperCamelCase__ = name.replace('''norm_cross''', '''encoder_attn_layer_norm''' ) if "norm2" in name: UpperCamelCase__ = name.replace('''norm2''', '''final_layer_norm''' ) if "out_norm" in name: UpperCamelCase__ = name.replace('''out_norm''', '''model.decoder.layer_norm''' ) if "linears" in name: UpperCamelCase__ = name.replace('''linears''', '''lm_heads''' ) if "condition_provider.conditioners.description.output_proj" in name: UpperCamelCase__ = name.replace('''condition_provider.conditioners.description.output_proj''', '''enc_to_dec_proj''' ) return name def lowerCamelCase_ ( UpperCamelCase__ : OrderedDict, UpperCamelCase__ : int ): '''simple docstring''' UpperCamelCase__ = list(state_dict.keys() ) UpperCamelCase__ = {} for key in keys: UpperCamelCase__ = state_dict.pop(UpperCamelCase__ ) UpperCamelCase__ = rename_keys(UpperCamelCase__ ) if "in_proj_weight" in key: # split fused qkv proj UpperCamelCase__ = val[:hidden_size, :] UpperCamelCase__ = val[hidden_size : 2 * hidden_size, :] UpperCamelCase__ = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: UpperCamelCase__ = val else: UpperCamelCase__ = val return state_dict, enc_dec_proj_state_dict def lowerCamelCase_ ( UpperCamelCase__ : str ): '''simple docstring''' if checkpoint == "small": # default config values UpperCamelCase__ = 1024 UpperCamelCase__ = 24 UpperCamelCase__ = 16 elif checkpoint == "medium": UpperCamelCase__ = 1536 UpperCamelCase__ = 48 UpperCamelCase__ = 24 elif checkpoint == "large": UpperCamelCase__ = 2048 UpperCamelCase__ = 48 UpperCamelCase__ = 32 else: raise ValueError(F"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" ) UpperCamelCase__ = MusicgenDecoderConfig( hidden_size=UpperCamelCase__, ffn_dim=hidden_size * 4, num_hidden_layers=UpperCamelCase__, num_attention_heads=UpperCamelCase__, ) return config @torch.no_grad() def lowerCamelCase_ ( UpperCamelCase__ : int, UpperCamelCase__ : Any=None, UpperCamelCase__ : Optional[Any]=None, UpperCamelCase__ : List[Any]="cpu" ): '''simple docstring''' UpperCamelCase__ = MusicGen.get_pretrained(UpperCamelCase__, device=UpperCamelCase__ ) UpperCamelCase__ = decoder_config_from_checkpoint(UpperCamelCase__ ) UpperCamelCase__ = fairseq_model.lm.state_dict() UpperCamelCase__ , UpperCamelCase__ = rename_state_dict( UpperCamelCase__, hidden_size=decoder_config.hidden_size ) UpperCamelCase__ = TaEncoderModel.from_pretrained('''t5-base''' ) UpperCamelCase__ = EncodecModel.from_pretrained('''facebook/encodec_32khz''' ) UpperCamelCase__ = MusicgenForCausalLM(UpperCamelCase__ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection UpperCamelCase__ , UpperCamelCase__ = decoder.load_state_dict(UpperCamelCase__, strict=UpperCamelCase__ ) for key in missing_keys.copy(): if key.startswith(('''text_encoder''', '''audio_encoder''') ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: raise ValueError(F"""Missing key(s) in state_dict: {missing_keys}""" ) if len(UpperCamelCase__ ) > 0: raise ValueError(F"""Unexpected key(s) in state_dict: {unexpected_keys}""" ) # init the composite model UpperCamelCase__ = MusicgenForConditionalGeneration(text_encoder=UpperCamelCase__, audio_encoder=UpperCamelCase__, decoder=UpperCamelCase__ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(UpperCamelCase__ ) # check we can do a forward pass UpperCamelCase__ = torch.arange(0, 8, dtype=torch.long ).reshape(2, -1 ) UpperCamelCase__ = input_ids.reshape(2 * 4, -1 ) with torch.no_grad(): UpperCamelCase__ = model(input_ids=UpperCamelCase__, decoder_input_ids=UpperCamelCase__ ).logits if logits.shape != (8, 1, 2048): raise ValueError('''Incorrect shape for logits''' ) # now construct the processor UpperCamelCase__ = AutoTokenizer.from_pretrained('''t5-base''' ) UpperCamelCase__ = AutoFeatureExtractor.from_pretrained('''facebook/encodec_32khz''', padding_side='''left''' ) UpperCamelCase__ = MusicgenProcessor(feature_extractor=UpperCamelCase__, tokenizer=UpperCamelCase__ ) # set the appropriate bos/pad token ids UpperCamelCase__ = 2048 UpperCamelCase__ = 2048 # set other default generation config params UpperCamelCase__ = int(30 * audio_encoder.config.frame_rate ) UpperCamelCase__ = True UpperCamelCase__ = 3.0 if pytorch_dump_folder is not None: Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) logger.info(F"""Saving model {checkpoint} to {pytorch_dump_folder}""" ) model.save_pretrained(UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) if repo_id: logger.info(F"""Pushing model {checkpoint} to {repo_id}""" ) model.push_to_hub(UpperCamelCase__ ) processor.push_to_hub(UpperCamelCase__ ) if __name__ == "__main__": lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint""", default="""small""", type=str, help="""Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.""", ) parser.add_argument( """--pytorch_dump_folder""", required=True, default=None, type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) parser.add_argument( """--device""", default="""cpu""", type=str, help="""Torch device to run the conversion, either cpu or cuda.""" ) lowercase = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
35
0
'''simple docstring''' def UpperCAmelCase_ ( ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] _UpperCAmelCase = 6 _UpperCAmelCase = 1 _UpperCAmelCase = 1901 _UpperCAmelCase = 0 while year < 2001: day += 7 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 _UpperCAmelCase = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 _UpperCAmelCase = day - 29 else: if day > days_per_month[month - 1]: month += 1 _UpperCAmelCase = day - days_per_month[month - 2] if month > 12: year += 1 _UpperCAmelCase = 1 if year < 2001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
22
"""simple docstring""" import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class __snake_case ( __lowerCAmelCase ): a__ = 42 a__ = jnp.floataa a__ = True def lowerCamelCase_ ( self) -> int: '''simple docstring''' super().setup() a__: int = nn.Dense(5 , dtype=self.dtype) def __call__( self , *lowercase , **lowercase) -> Dict: '''simple docstring''' a__: Dict = super().__call__(*lowercase , **lowercase) a__: str = self.cls(outputs[2]) return outputs[:2] + (cls_out,) class __snake_case ( __lowerCAmelCase ): a__ = FlaxBigBirdForNaturalQuestionsModule def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Optional[Any]: def cross_entropy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ): a__: Any = logits.shape[-1] a__: List[Any] = (labels[..., None] == jnp.arange(_SCREAMING_SNAKE_CASE )[None]).astype('f4' ) a__: List[str] = jax.nn.log_softmax(_SCREAMING_SNAKE_CASE , axis=-1 ) a__: Dict = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: a__: str = reduction(_SCREAMING_SNAKE_CASE ) return loss a__: Tuple = partial(_SCREAMING_SNAKE_CASE , reduction=jnp.mean ) a__: List[str] = cross_entropy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a__: Union[str, Any] = cross_entropy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a__: Any = cross_entropy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class __snake_case : a__ = "google/bigbird-roberta-base" a__ = 3000 a__ = 1_0500 a__ = 128 a__ = 3 a__ = 1 a__ = 5 # tx_args a__ = 3e-5 a__ = 0.0 a__ = 2_0000 a__ = 0.0095 a__ = "bigbird-roberta-natural-questions" a__ = "training-expt" a__ = "data/nq-training.jsonl" a__ = "data/nq-validation.jsonl" def lowerCamelCase_ ( self) -> Optional[Any]: '''simple docstring''' os.makedirs(self.base_dir , exist_ok=lowercase) a__: str = os.path.join(self.base_dir , self.save_dir) a__: List[str] = self.batch_size_per_device * jax.device_count() @dataclass class __snake_case : a__ = 42 a__ = 4096 # no dynamic padding on TPUs def __call__( self , lowercase) -> List[Any]: '''simple docstring''' a__: int = self.collate_fn(lowercase) a__: Optional[int] = jax.tree_util.tree_map(lowercase , lowercase) return batch def lowerCamelCase_ ( self , lowercase) -> Dict: '''simple docstring''' a__ , a__: Dict = self.fetch_inputs(features['input_ids']) a__: List[Any] = { 'input_ids': jnp.array(lowercase , dtype=jnp.intaa), 'attention_mask': jnp.array(lowercase , dtype=jnp.intaa), 'start_labels': jnp.array(features['start_token'] , dtype=jnp.intaa), 'end_labels': jnp.array(features['end_token'] , dtype=jnp.intaa), 'pooled_labels': jnp.array(features['category'] , dtype=jnp.intaa), } return batch def lowerCamelCase_ ( self , lowercase) -> List[str]: '''simple docstring''' a__: List[Any] = [self._fetch_inputs(lowercase) for ids in input_ids] return zip(*lowercase) def lowerCamelCase_ ( self , lowercase) -> Dict: '''simple docstring''' a__: Union[str, Any] = [1 for _ in range(len(lowercase))] while len(lowercase) < self.max_length: input_ids.append(self.pad_id) attention_mask.append(0) return input_ids, attention_mask def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) ->List[Any]: if seed is not None: a__: int = dataset.shuffle(seed=_SCREAMING_SNAKE_CASE ) for i in range(len(_SCREAMING_SNAKE_CASE ) // batch_size ): a__: Union[str, Any] = dataset[i * batch_size : (i + 1) * batch_size] yield dict(_SCREAMING_SNAKE_CASE ) @partial(jax.pmap , axis_name='batch' ) def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) ->Any: def loss_fn(_SCREAMING_SNAKE_CASE ): a__: str = model_inputs.pop('start_labels' ) a__: Dict = model_inputs.pop('end_labels' ) a__: Optional[int] = model_inputs.pop('pooled_labels' ) a__: Optional[Any] = state.apply_fn(**_SCREAMING_SNAKE_CASE , params=_SCREAMING_SNAKE_CASE , dropout_rng=_SCREAMING_SNAKE_CASE , train=_SCREAMING_SNAKE_CASE ) a__ , a__ , a__: Optional[int] = outputs return state.loss_fn( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) a__ , a__: Union[str, Any] = jax.random.split(_SCREAMING_SNAKE_CASE ) a__: List[Any] = jax.value_and_grad(_SCREAMING_SNAKE_CASE ) a__ , a__: str = grad_fn(state.params ) a__: Optional[int] = jax.lax.pmean({'loss': loss} , axis_name='batch' ) a__: int = jax.lax.pmean(_SCREAMING_SNAKE_CASE , 'batch' ) a__: Union[str, Any] = state.apply_gradients(grads=_SCREAMING_SNAKE_CASE ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name='batch' ) def __a ( _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) ->Optional[Any]: a__: Optional[int] = model_inputs.pop('start_labels' ) a__: int = model_inputs.pop('end_labels' ) a__: Dict = model_inputs.pop('pooled_labels' ) a__: Union[str, Any] = state.apply_fn(**_SCREAMING_SNAKE_CASE , params=state.params , train=_SCREAMING_SNAKE_CASE ) a__ , a__ , a__: int = outputs a__: Optional[int] = state.loss_fn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a__: Tuple = jax.lax.pmean({'loss': loss} , axis_name='batch' ) return metrics class __snake_case ( train_state.TrainState ): a__ = struct.field(pytree_node=__lowerCAmelCase ) @dataclass class __snake_case : a__ = 42 a__ = 42 a__ = 42 a__ = 42 a__ = 42 a__ = 42 a__ = None def lowerCamelCase_ ( self , lowercase , lowercase , lowercase , lowercase=None) -> Optional[int]: '''simple docstring''' a__: Dict = model.params a__: Any = TrainState.create( apply_fn=model.__call__ , params=lowercase , tx=lowercase , loss_fn=lowercase , ) if ckpt_dir is not None: a__ , a__ , a__ , a__ , a__: Any = restore_checkpoint(lowercase , lowercase) a__: Any = { 'lr': args.lr, 'init_lr': args.init_lr, 'warmup_steps': args.warmup_steps, 'num_train_steps': num_train_steps, 'weight_decay': args.weight_decay, } a__ , a__: str = build_tx(**lowercase) a__: Optional[Any] = train_state.TrainState( step=lowercase , apply_fn=model.__call__ , params=lowercase , tx=lowercase , opt_state=lowercase , ) a__: int = args a__: Union[str, Any] = data_collator a__: Any = lr a__: Dict = params a__: Tuple = jax_utils.replicate(lowercase) return state def lowerCamelCase_ ( self , lowercase , lowercase , lowercase) -> int: '''simple docstring''' a__: int = self.args a__: str = len(lowercase) // args.batch_size a__: Tuple = jax.random.PRNGKey(0) a__: List[Any] = jax.random.split(lowercase , jax.device_count()) for epoch in range(args.max_epochs): a__: str = jnp.array(0 , dtype=jnp.floataa) a__: Tuple = get_batched_dataset(lowercase , args.batch_size , seed=lowercase) a__: Optional[int] = 0 for batch in tqdm(lowercase , total=lowercase , desc=f'Running EPOCH-{epoch}'): a__: List[str] = self.data_collator(lowercase) a__ , a__ , a__: int = self.train_step_fn(lowercase , lowercase , **lowercase) running_loss += jax_utils.unreplicate(metrics['loss']) i += 1 if i % args.logging_steps == 0: a__: List[Any] = jax_utils.unreplicate(state.step) a__: Tuple = running_loss.item() / i a__: Optional[Any] = self.scheduler_fn(state_step - 1) a__: List[Any] = self.evaluate(lowercase , lowercase) a__: List[str] = { 'step': state_step.item(), 'eval_loss': eval_loss.item(), 'tr_loss': tr_loss, 'lr': lr.item(), } tqdm.write(str(lowercase)) self.logger.log(lowercase , commit=lowercase) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f'-e{epoch}-s{i}' , state=lowercase) def lowerCamelCase_ ( self , lowercase , lowercase) -> List[Any]: '''simple docstring''' a__: Tuple = get_batched_dataset(lowercase , self.args.batch_size) a__: Dict = len(lowercase) // self.args.batch_size a__: Tuple = jnp.array(0 , dtype=jnp.floataa) a__: List[Any] = 0 for batch in tqdm(lowercase , total=lowercase , desc='Evaluating ... '): a__: str = self.data_collator(lowercase) a__: List[str] = self.val_step_fn(lowercase , **lowercase) running_loss += jax_utils.unreplicate(metrics['loss']) i += 1 return running_loss / i def lowerCamelCase_ ( self , lowercase , lowercase) -> Any: '''simple docstring''' a__: List[Any] = jax_utils.unreplicate(lowercase) print(f'SAVING CHECKPOINT IN {save_dir}' , end=' ... ') self.model_save_fn(lowercase , params=state.params) with open(os.path.join(lowercase , 'opt_state.msgpack') , 'wb') as f: f.write(to_bytes(state.opt_state)) joblib.dump(self.args , os.path.join(lowercase , 'args.joblib')) joblib.dump(self.data_collator , os.path.join(lowercase , 'data_collator.joblib')) with open(os.path.join(lowercase , 'training_state.json') , 'w') as f: json.dump({'step': state.step.item()} , lowercase) print('DONE') def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Optional[Any]: print(F'RESTORING CHECKPOINT FROM {save_dir}' , end=' ... ' ) with open(os.path.join(_SCREAMING_SNAKE_CASE , 'flax_model.msgpack' ) , 'rb' ) as f: a__: int = from_bytes(state.params , f.read() ) with open(os.path.join(_SCREAMING_SNAKE_CASE , 'opt_state.msgpack' ) , 'rb' ) as f: a__: Optional[Any] = from_bytes(state.opt_state , f.read() ) a__: Optional[Any] = joblib.load(os.path.join(_SCREAMING_SNAKE_CASE , 'args.joblib' ) ) a__: int = joblib.load(os.path.join(_SCREAMING_SNAKE_CASE , 'data_collator.joblib' ) ) with open(os.path.join(_SCREAMING_SNAKE_CASE , 'training_state.json' ) , 'r' ) as f: a__: Any = json.load(_SCREAMING_SNAKE_CASE ) a__: Optional[Any] = training_state['step'] print('DONE' ) return params, opt_state, step, args, data_collator def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Optional[int]: a__: str = num_train_steps - warmup_steps a__: str = optax.linear_schedule(init_value=_SCREAMING_SNAKE_CASE , end_value=_SCREAMING_SNAKE_CASE , transition_steps=_SCREAMING_SNAKE_CASE ) a__: List[Any] = optax.linear_schedule(init_value=_SCREAMING_SNAKE_CASE , end_value=1e-7 , transition_steps=_SCREAMING_SNAKE_CASE ) a__: int = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Tuple: def weight_decay_mask(_SCREAMING_SNAKE_CASE ): a__: List[Any] = traverse_util.flatten_dict(_SCREAMING_SNAKE_CASE ) a__: List[str] = {k: (v[-1] != 'bias' and v[-2:] != ('LayerNorm', 'scale')) for k, v in params.items()} return traverse_util.unflatten_dict(_SCREAMING_SNAKE_CASE ) a__: List[str] = scheduler_fn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a__: Any = optax.adamw(learning_rate=_SCREAMING_SNAKE_CASE , weight_decay=_SCREAMING_SNAKE_CASE , mask=_SCREAMING_SNAKE_CASE ) return tx, lr
290
0
from queue import PriorityQueue from typing import Any import numpy as np def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a , __a , __a , __a , __a , ): for nxt, d in graph[v]: if nxt in visited_forward: continue snake_case_ : Any = cst_fwd.get(__a , np.inf ) snake_case_ : Optional[int] = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) snake_case_ : Optional[Any] = new_cost_f snake_case_ : List[Any] = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: snake_case_ : str = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a ): snake_case_ : Union[str, Any] = -1 snake_case_ : List[Any] = set() snake_case_ : str = set() snake_case_ : List[Any] = {source: 0} snake_case_ : Union[str, Any] = {destination: 0} snake_case_ : Optional[Any] = {source: None} snake_case_ : Union[str, Any] = {destination: None} snake_case_ : PriorityQueue[Any] = PriorityQueue() snake_case_ : PriorityQueue[Any] = PriorityQueue() snake_case_ : Tuple = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): snake_case_ ,snake_case_ : List[Any] = queue_forward.get() visited_forward.add(__a ) snake_case_ ,snake_case_ : Dict = queue_backward.get() visited_backward.add(__a ) snake_case_ : Dict = pass_and_relaxation( __a , __a , __a , __a , __a , __a , __a , __a , __a , ) snake_case_ : str = pass_and_relaxation( __a , __a , __a , __a , __a , __a , __a , __a , __a , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: snake_case_ : Optional[int] = shortest_distance return shortest_path_distance _SCREAMING_SNAKE_CASE = { """B""": [["""C""", 1]], """C""": [["""D""", 1]], """D""": [["""F""", 1]], """E""": [["""B""", 1], ["""G""", 2]], """F""": [], """G""": [["""F""", 1]], } _SCREAMING_SNAKE_CASE = { """B""": [["""E""", 1]], """C""": [["""B""", 1]], """D""": [["""C""", 1]], """F""": [["""D""", 1], ["""G""", 1]], """E""": [[None, np.inf]], """G""": [["""E""", 2]], } if __name__ == "__main__": import doctest doctest.testmod()
88
_SCREAMING_SNAKE_CASE = { """Pillow""": """Pillow""", """accelerate""": """accelerate>=0.11.0""", """compel""": """compel==0.1.8""", """black""": """black~=23.1""", """datasets""": """datasets""", """filelock""": """filelock""", """flax""": """flax>=0.4.1""", """hf-doc-builder""": """hf-doc-builder>=0.3.0""", """huggingface-hub""": """huggingface-hub>=0.13.2""", """requests-mock""": """requests-mock==1.10.0""", """importlib_metadata""": """importlib_metadata""", """invisible-watermark""": """invisible-watermark""", """isort""": """isort>=5.5.4""", """jax""": """jax>=0.2.8,!=0.3.2""", """jaxlib""": """jaxlib>=0.1.65""", """Jinja2""": """Jinja2""", """k-diffusion""": """k-diffusion>=0.0.12""", """torchsde""": """torchsde""", """note_seq""": """note_seq""", """librosa""": """librosa""", """numpy""": """numpy""", """omegaconf""": """omegaconf""", """parameterized""": """parameterized""", """protobuf""": """protobuf>=3.20.3,<4""", """pytest""": """pytest""", """pytest-timeout""": """pytest-timeout""", """pytest-xdist""": """pytest-xdist""", """ruff""": """ruff>=0.0.241""", """safetensors""": """safetensors""", """sentencepiece""": """sentencepiece>=0.1.91,!=0.1.92""", """scipy""": """scipy""", """onnx""": """onnx""", """regex""": """regex!=2019.12.17""", """requests""": """requests""", """tensorboard""": """tensorboard""", """torch""": """torch>=1.4""", """torchvision""": """torchvision""", """transformers""": """transformers>=4.25.1""", """urllib3""": """urllib3<=2.0.0""", }
88
1
"""simple docstring""" def lowercase ( _snake_case : list[list[int]] , _snake_case : int , _snake_case : int , _snake_case : set ) ->int: """simple docstring""" __snake_case , __snake_case : Optional[Any] = len(_snake_case ), len(grid[0] ) if ( min(_snake_case , _snake_case ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) __snake_case : Tuple = 0 count += depth_first_search(_snake_case , row + 1 , _snake_case , _snake_case ) count += depth_first_search(_snake_case , row - 1 , _snake_case , _snake_case ) count += depth_first_search(_snake_case , _snake_case , col + 1 , _snake_case ) count += depth_first_search(_snake_case , _snake_case , col - 1 , _snake_case ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
102
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) _UpperCAmelCase : Any = { """configuration_trocr""": ["""TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrOCRConfig"""], """processing_trocr""": ["""TrOCRProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Dict = [ """TROCR_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrOCRForCausalLM""", """TrOCRPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys _UpperCAmelCase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
174
0
def snake_case_ ( snake_case ) -> Union[str, Any]: if not head: return True # split the list to two parts lowercase__ , lowercase__: Dict = head.next, head while fast and fast.next: lowercase__: Dict = fast.next.next lowercase__: Optional[int] = slow.next lowercase__: Tuple = slow.next lowercase__: List[str] = None # Don't forget here! But forget still works! # reverse the second part lowercase__: Optional[int] = None while second: lowercase__: str = second.next lowercase__: int = node lowercase__: Tuple = second lowercase__: Dict = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False lowercase__: Tuple = node.next lowercase__: List[Any] = head.next return True def snake_case_ ( snake_case ) -> List[str]: if not head or not head.next: return True # 1. Get the midpoint (slow) lowercase__: Optional[Any] = head while fast and fast.next: lowercase__ , lowercase__: Optional[int] = fast.next.next, slow.next # 2. Push the second half into the stack lowercase__: Dict = [slow.val] while slow.next: lowercase__: Optional[Any] = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False lowercase__: Tuple = cur.next return True def snake_case_ ( snake_case ) -> Any: if not head or not head.next: return True lowercase__: List[str] = {} lowercase__: int = 0 while head: if head.val in d: d[head.val].append(snake_case_ ) else: lowercase__: int = [pos] lowercase__: Any = head.next pos += 1 lowercase__: int = pos - 1 lowercase__: str = 0 for v in d.values(): if len(snake_case_ ) % 2 != 0: middle += 1 else: lowercase__: Union[str, Any] = 0 for i in range(0 , len(snake_case_ ) ): if v[i] + v[len(snake_case_ ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
370
from __future__ import annotations def snake_case_ ( snake_case , snake_case ) -> list[str]: if nth_term == "": return [""] lowercase__: Tuple = int(snake_case ) lowercase__: int = int(snake_case ) lowercase__: list[str] = [] for temp in range(int(snake_case ) ): series.append(f'1 / {pow(temp + 1 , int(snake_case ) )}' if series else '1' ) return series if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase = int(input('''Enter the last number (nth term) of the P-Series''')) __lowerCAmelCase = int(input('''Enter the power for P-Series''')) print('''Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p''') print(p_series(nth_term, power))
288
0
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _A = get_tests_dir('fixtures/spiece.model') @require_sentencepiece @require_tokenizers class UpperCAmelCase__ ( A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = DebertaVaTokenizer UpperCAmelCase__ : Tuple = DebertaVaTokenizerFast UpperCAmelCase__ : Optional[int] = True UpperCAmelCase__ : Optional[Any] = True def _a ( self ) -> List[str]: super().setUp() # We have a SentencePiece fixture for testing __UpperCamelCase =DebertaVaTokenizer(A_ , unk_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def _a ( self , A_ ) -> Dict: __UpperCamelCase ='this is a test' __UpperCamelCase ='this is a test' return input_text, output_text def _a ( self ) -> Tuple: __UpperCamelCase ='<pad>' __UpperCamelCase =0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A_ ) , A_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A_ ) , A_ ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '[PAD]' ) self.assertEqual(len(A_ ) , 30001 ) def _a ( self ) -> Dict: self.assertEqual(self.get_tokenizer().vocab_size , 30000 ) def _a ( self ) -> List[Any]: # fmt: off __UpperCamelCase =' \tHeLLo!how \n Are yoU? ' __UpperCamelCase =['▁hello', '!', 'how', '▁are', '▁you', '?'] # fmt: on __UpperCamelCase =DebertaVaTokenizer(A_ , do_lower_case=A_ ) __UpperCamelCase =tokenizer.convert_ids_to_tokens(tokenizer.encode(A_ , add_special_tokens=A_ ) ) self.assertListEqual(A_ , A_ ) __UpperCamelCase =DebertaVaTokenizerFast(A_ , do_lower_case=A_ ) __UpperCamelCase =rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(A_ , add_special_tokens=A_ ) ) self.assertListEqual(A_ , A_ ) @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.' ) def _a ( self ) -> Optional[int]: pass @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.' ) def _a ( self ) -> str: pass def _a ( self ) -> Dict: # fmt: off __UpperCamelCase ='I was born in 92000, and this is falsé.' __UpperCamelCase =['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on __UpperCamelCase =DebertaVaTokenizer(A_ , split_by_punct=A_ ) __UpperCamelCase =tokenizer.convert_ids_to_tokens(tokenizer.encode(A_ , add_special_tokens=A_ ) ) self.assertListEqual(A_ , A_ ) __UpperCamelCase =DebertaVaTokenizerFast(A_ , split_by_punct=A_ ) __UpperCamelCase =rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(A_ , add_special_tokens=A_ ) ) self.assertListEqual(A_ , A_ ) def _a ( self ) -> Optional[int]: # fmt: off __UpperCamelCase ='I was born in 92000, and this is falsé.' __UpperCamelCase =['▁i', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on __UpperCamelCase =DebertaVaTokenizer(A_ , do_lower_case=A_ , split_by_punct=A_ ) __UpperCamelCase =tokenizer.convert_ids_to_tokens(tokenizer.encode(A_ , add_special_tokens=A_ ) ) self.assertListEqual(A_ , A_ ) __UpperCamelCase =DebertaVaTokenizerFast(A_ , do_lower_case=A_ , split_by_punct=A_ ) __UpperCamelCase =rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(A_ , add_special_tokens=A_ ) ) self.assertListEqual(A_ , A_ ) def _a ( self ) -> Any: # fmt: off __UpperCamelCase ='I was born in 92000, and this is falsé.' __UpperCamelCase =['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ] # fmt: on __UpperCamelCase =DebertaVaTokenizer(A_ , do_lower_case=A_ , split_by_punct=A_ ) __UpperCamelCase =tokenizer.convert_ids_to_tokens(tokenizer.encode(A_ , add_special_tokens=A_ ) ) self.assertListEqual(A_ , A_ ) __UpperCamelCase =DebertaVaTokenizerFast(A_ , do_lower_case=A_ , split_by_punct=A_ ) __UpperCamelCase =rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(A_ , add_special_tokens=A_ ) ) self.assertListEqual(A_ , A_ ) def _a ( self ) -> Union[str, Any]: # fmt: off __UpperCamelCase ='I was born in 92000, and this is falsé.' __UpperCamelCase =['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on __UpperCamelCase =DebertaVaTokenizer(A_ , do_lower_case=A_ , split_by_punct=A_ ) __UpperCamelCase =tokenizer.convert_ids_to_tokens(tokenizer.encode(A_ , add_special_tokens=A_ ) ) self.assertListEqual(A_ , A_ ) __UpperCamelCase =DebertaVaTokenizerFast(A_ , do_lower_case=A_ , split_by_punct=A_ ) __UpperCamelCase =rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(A_ , add_special_tokens=A_ ) ) self.assertListEqual(A_ , A_ ) def _a ( self ) -> Tuple: # fmt: off __UpperCamelCase =' \tHeLLo!how \n Are yoU? ' __UpperCamelCase =['▁', '<unk>', 'e', '<unk>', 'o', '!', 'how', '▁', '<unk>', 're', '▁yo', '<unk>', '?'] # fmt: on __UpperCamelCase =DebertaVaTokenizer(A_ , do_lower_case=A_ , split_by_punct=A_ ) __UpperCamelCase =tokenizer.convert_ids_to_tokens(tokenizer.encode(A_ , add_special_tokens=A_ ) ) self.assertListEqual(A_ , A_ ) __UpperCamelCase =DebertaVaTokenizerFast(A_ , do_lower_case=A_ , split_by_punct=A_ ) __UpperCamelCase =rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(A_ , add_special_tokens=A_ ) ) self.assertListEqual(A_ , A_ ) def _a ( self ) -> Union[str, Any]: __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =self.get_rust_tokenizer() __UpperCamelCase ='I was born in 92000, and this is falsé.' __UpperCamelCase =tokenizer.convert_ids_to_tokens(tokenizer.encode(A_ , add_special_tokens=A_ ) ) __UpperCamelCase =rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(A_ , add_special_tokens=A_ ) ) self.assertListEqual(A_ , A_ ) __UpperCamelCase =tokenizer.encode(A_ , add_special_tokens=A_ ) __UpperCamelCase =rust_tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) __UpperCamelCase =self.get_rust_tokenizer() __UpperCamelCase =tokenizer.encode(A_ ) __UpperCamelCase =rust_tokenizer.encode(A_ ) self.assertListEqual(A_ , A_ ) def _a ( self ) -> Tuple: __UpperCamelCase ='This is a test' __UpperCamelCase =[13, 1, 4398, 25, 21, 1289] __UpperCamelCase =['▁', 'T', 'his', '▁is', '▁a', '▁test'] __UpperCamelCase =['▁', '<unk>', 'his', '▁is', '▁a', '▁test'] __UpperCamelCase =DebertaVaTokenizer(A_ , keep_accents=A_ ) __UpperCamelCase =DebertaVaTokenizerFast(A_ , keep_accents=A_ ) __UpperCamelCase =tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) __UpperCamelCase =tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) __UpperCamelCase =tokenizer.convert_ids_to_tokens(A_ ) self.assertListEqual(A_ , A_ ) __UpperCamelCase =rust_tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) __UpperCamelCase =rust_tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) __UpperCamelCase =rust_tokenizer.convert_ids_to_tokens(A_ ) self.assertListEqual(A_ , A_ ) # fmt: off __UpperCamelCase ='I was born in 92000, and this is falsé.' __UpperCamelCase =[13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] __UpperCamelCase =['▁', 'I', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.', ] __UpperCamelCase =['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ] # fmt: on __UpperCamelCase =tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) __UpperCamelCase =tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) __UpperCamelCase =tokenizer.convert_ids_to_tokens(A_ ) self.assertListEqual(A_ , A_ ) __UpperCamelCase =rust_tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) __UpperCamelCase =rust_tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) __UpperCamelCase =rust_tokenizer.convert_ids_to_tokens(A_ ) self.assertListEqual(A_ , A_ ) def _a ( self ) -> Optional[int]: __UpperCamelCase =DebertaVaTokenizer(A_ ) __UpperCamelCase =tokenizer.encode('sequence builders' ) __UpperCamelCase =tokenizer.encode('multi-sequence build' ) __UpperCamelCase =tokenizer.build_inputs_with_special_tokens(A_ ) __UpperCamelCase =tokenizer.build_inputs_with_special_tokens(A_ , A_ ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , A_ ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , A_ , ) @slow def _a ( self ) -> Optional[int]: # fmt: off __UpperCamelCase ={'input_ids': [[1, 39867, 36, 19390, 486, 27, 35052, 81436, 18, 60685, 1225, 7, 35052, 81436, 18, 9367, 16899, 18, 15937, 53, 594, 773, 18, 16287, 30465, 36, 15937, 6, 41139, 38, 36979, 60763, 191, 6, 34132, 99, 6, 50538, 390, 43230, 6, 34132, 2779, 20850, 14, 699, 1072, 1194, 36, 382, 10901, 53, 7, 699, 1072, 2084, 36, 20422, 630, 53, 19, 105, 3049, 1896, 1053, 16899, 1506, 11, 37978, 4243, 7, 1237, 31869, 200, 16566, 654, 6, 35052, 81436, 7, 55630, 13593, 4, 2], [1, 26, 15011, 13, 667, 8, 1053, 18, 23611, 1237, 72356, 12820, 34, 104134, 1209, 35, 13313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 15785, 14951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A_ , model_name='microsoft/deberta-v2-xlarge' , revision='ad6e42c1532ddf3a15c39246b63f5559d558b670' , )
62
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def UpperCAmelCase_ ( __UpperCAmelCase : Dict , __UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : int , __UpperCAmelCase : Optional[Any]=True , __UpperCAmelCase : Any="pt" ) -> List[str]: SCREAMING_SNAKE_CASE_ = {'add_prefix_space': True} if isinstance(__UpperCAmelCase , __UpperCAmelCase ) and not line.startswith(' ' ) else {} SCREAMING_SNAKE_CASE_ = padding_side return tokenizer( [line] , max_length=__UpperCAmelCase , padding='max_length' if pad_to_max_length else None , truncation=__UpperCAmelCase , return_tensors=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , **__UpperCAmelCase , ) def UpperCAmelCase_ ( __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Dict=None , ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = input_ids.ne(__UpperCAmelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : List[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : Dict , _lowerCAmelCase : Union[str, Any]="train" , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : Optional[int]=None , _lowerCAmelCase : Optional[int]="" , ): super().__init__() SCREAMING_SNAKE_CASE_ = Path(_lowerCAmelCase ).joinpath(type_path + '.source' ) SCREAMING_SNAKE_CASE_ = Path(_lowerCAmelCase ).joinpath(type_path + '.target' ) SCREAMING_SNAKE_CASE_ = self.get_char_lens(self.src_file ) SCREAMING_SNAKE_CASE_ = max_source_length SCREAMING_SNAKE_CASE_ = max_target_length assert min(self.src_lens ) > 0, F"found empty line in {self.src_file}" SCREAMING_SNAKE_CASE_ = tokenizer SCREAMING_SNAKE_CASE_ = prefix if n_obs is not None: SCREAMING_SNAKE_CASE_ = self.src_lens[:n_obs] SCREAMING_SNAKE_CASE_ = src_lang SCREAMING_SNAKE_CASE_ = tgt_lang def __len__( self : Tuple ): return len(self.src_lens ) def __getitem__( self : List[str] , _lowerCAmelCase : Any ): SCREAMING_SNAKE_CASE_ = index + 1 # linecache starts at 1 SCREAMING_SNAKE_CASE_ = self.prefix + linecache.getline(str(self.src_file ) , _lowerCAmelCase ).rstrip('\n' ) SCREAMING_SNAKE_CASE_ = linecache.getline(str(self.tgt_file ) , _lowerCAmelCase ).rstrip('\n' ) assert source_line, F"empty source line for index {index}" assert tgt_line, F"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer , _lowerCAmelCase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right SCREAMING_SNAKE_CASE_ = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , _lowerCAmelCase ) else self.tokenizer ) SCREAMING_SNAKE_CASE_ = self.tokenizer.generator if isinstance(self.tokenizer , _lowerCAmelCase ) else self.tokenizer SCREAMING_SNAKE_CASE_ = encode_line(_lowerCAmelCase , _lowerCAmelCase , self.max_source_length , 'right' ) SCREAMING_SNAKE_CASE_ = encode_line(_lowerCAmelCase , _lowerCAmelCase , self.max_target_length , 'right' ) SCREAMING_SNAKE_CASE_ = source_inputs['input_ids'].squeeze() SCREAMING_SNAKE_CASE_ = target_inputs['input_ids'].squeeze() SCREAMING_SNAKE_CASE_ = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def lowerCAmelCase_ ( _lowerCAmelCase : Optional[int] ): return [len(_lowerCAmelCase ) for x in Path(_lowerCAmelCase ).open().readlines()] def lowerCAmelCase_ ( self : int , _lowerCAmelCase : Optional[int] ): SCREAMING_SNAKE_CASE_ = torch.stack([x['input_ids'] for x in batch] ) SCREAMING_SNAKE_CASE_ = torch.stack([x['attention_mask'] for x in batch] ) SCREAMING_SNAKE_CASE_ = torch.stack([x['decoder_input_ids'] for x in batch] ) SCREAMING_SNAKE_CASE_ = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , _lowerCAmelCase ) else self.tokenizer.pad_token_id ) SCREAMING_SNAKE_CASE_ = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , _lowerCAmelCase ) else self.tokenizer.pad_token_id ) SCREAMING_SNAKE_CASE_ = trim_batch(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = trim_batch(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch lowerCamelCase__ : List[str] = getLogger(__name__) def UpperCAmelCase_ ( __UpperCAmelCase : List[List] ) -> Tuple: return list(itertools.chain.from_iterable(__UpperCAmelCase ) ) def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> None: SCREAMING_SNAKE_CASE_ = get_git_info() save_json(__UpperCAmelCase , os.path.join(__UpperCAmelCase , 'git_log.json' ) ) def UpperCAmelCase_ ( __UpperCAmelCase : Dict , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[int]=4 , **__UpperCAmelCase : Tuple ) -> str: with open(__UpperCAmelCase , 'w' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase , indent=__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : List[str] ) -> int: with open(__UpperCAmelCase ) as f: return json.load(__UpperCAmelCase ) def UpperCAmelCase_ ( ) -> Tuple: SCREAMING_SNAKE_CASE_ = git.Repo(search_parent_directories=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = { 'repo_id': str(__UpperCAmelCase ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def UpperCAmelCase_ ( __UpperCAmelCase : Callable , __UpperCAmelCase : Iterable ) -> List: return list(map(__UpperCAmelCase , __UpperCAmelCase ) ) def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : Dict ) -> Dict: with open(__UpperCAmelCase , 'wb' ) as f: return pickle.dump(__UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : List[Any] ) -> Any: def remove_articles(__UpperCAmelCase : Any ): return re.sub(r'\b(a|an|the)\b' , ' ' , __UpperCAmelCase ) def white_space_fix(__UpperCAmelCase : List[str] ): return " ".join(text.split() ) def remove_punc(__UpperCAmelCase : List[Any] ): SCREAMING_SNAKE_CASE_ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__UpperCAmelCase : Union[str, Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__UpperCAmelCase ) ) ) ) def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : Any ) -> List[str]: SCREAMING_SNAKE_CASE_ = normalize_answer(__UpperCAmelCase ).split() SCREAMING_SNAKE_CASE_ = normalize_answer(__UpperCAmelCase ).split() SCREAMING_SNAKE_CASE_ = Counter(__UpperCAmelCase ) & Counter(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = sum(common.values() ) if num_same == 0: return 0 SCREAMING_SNAKE_CASE_ = 1.0 * num_same / len(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = 1.0 * num_same / len(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = (2 * precision * recall) / (precision + recall) return fa def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : Optional[int] ) -> Any: return normalize_answer(__UpperCAmelCase ) == normalize_answer(__UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : List[str] , __UpperCAmelCase : List[str] ) -> Dict: assert len(__UpperCAmelCase ) == len(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = 0 for hypo, pred in zip(__UpperCAmelCase , __UpperCAmelCase ): em += exact_match_score(__UpperCAmelCase , __UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: em /= len(__UpperCAmelCase ) return {"em": em} def UpperCAmelCase_ ( __UpperCAmelCase : Union[str, Any] ) -> Dict: return model_prefix.startswith('rag' ) def UpperCAmelCase_ ( __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : List[str] ) -> Tuple: SCREAMING_SNAKE_CASE_ = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead SCREAMING_SNAKE_CASE_ = 'dropout_rate' for p in extra_params: if getattr(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): if not hasattr(__UpperCAmelCase , __UpperCAmelCase ) and not hasattr(__UpperCAmelCase , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(__UpperCAmelCase ) ) delattr(__UpperCAmelCase , __UpperCAmelCase ) continue SCREAMING_SNAKE_CASE_ = p if hasattr(__UpperCAmelCase , __UpperCAmelCase ) else equivalent_param[p] setattr(__UpperCAmelCase , __UpperCAmelCase , getattr(__UpperCAmelCase , __UpperCAmelCase ) ) delattr(__UpperCAmelCase , __UpperCAmelCase ) return hparams, config
225
0
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __SCREAMING_SNAKE_CASE :Union[str, Any] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt''') @dataclass class A_ : """simple docstring""" _lowerCamelCase : Optional[str] = field( default="""cifar10""" , metadata={"""help""": """Name of a dataset from the datasets package"""} ) _lowerCamelCase : Optional[str] = field( default=lowerCAmelCase_ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) _lowerCamelCase : Optional[str] = field( default=lowerCAmelCase_ , metadata={"""help""": """The column name of the images in the files."""} ) _lowerCamelCase : Optional[str] = field(default=lowerCAmelCase_ , metadata={"""help""": """A folder containing the training data."""} ) _lowerCamelCase : Optional[str] = field(default=lowerCAmelCase_ , metadata={"""help""": """A folder containing the validation data."""} ) _lowerCamelCase : Optional[float] = field( default=0.1_5 , metadata={"""help""": """Percent to split off of train for validation."""} ) _lowerCamelCase : Optional[int] = field( default=lowerCAmelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) _lowerCamelCase : Optional[int] = field( default=lowerCAmelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def lowercase ( self : Any ): _UpperCAmelCase = {} if self.train_dir is not None: _UpperCAmelCase = self.train_dir if self.validation_dir is not None: _UpperCAmelCase = self.validation_dir _UpperCAmelCase = data_files if data_files else None @dataclass class A_ : """simple docstring""" _lowerCamelCase : str = field( default=lowerCAmelCase_ , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) _lowerCamelCase : Optional[str] = field( default=lowerCAmelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name_or_path"""} ) _lowerCamelCase : Optional[str] = field( default=lowerCAmelCase_ , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) _lowerCamelCase : Optional[str] = field( default=lowerCAmelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""} ) _lowerCamelCase : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) _lowerCamelCase : str = field(default=lowerCAmelCase_ , metadata={"""help""": """Name or path of preprocessor config."""} ) _lowerCamelCase : bool = field( default=lowerCAmelCase_ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) _lowerCamelCase : float = field( default=0.7_5 , metadata={"""help""": """The ratio of the number of masked tokens in the input sequence."""} ) _lowerCamelCase : bool = field( default=lowerCAmelCase_ , metadata={"""help""": """Whether or not to train with normalized pixel values as target."""} ) @dataclass class A_ ( lowerCAmelCase_ ): """simple docstring""" _lowerCamelCase : float = field( default=1e-3 , metadata={"""help""": """Base learning rate: absolute_lr = base_lr * total_batch_size / 256."""} ) def UpperCAmelCase_ ( __lowercase : Dict ) -> Dict: '''simple docstring''' _UpperCAmelCase = torch.stack([example["pixel_values"] for example in examples] ) return {"pixel_values": pixel_values} def UpperCAmelCase_ ( ) -> Any: '''simple docstring''' _UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_mae" , __lowercase , __lowercase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _UpperCAmelCase = training_args.get_process_log_level() logger.setLevel(__lowercase ) transformers.utils.logging.set_verbosity(__lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. _UpperCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Initialize our dataset. _UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. _UpperCAmelCase = None if "validation" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , __lowercase ) and data_args.train_val_split > 0.0: _UpperCAmelCase = ds["train"].train_test_split(data_args.train_val_split ) _UpperCAmelCase = split["train"] _UpperCAmelCase = split["test"] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase = { "cache_dir": model_args.cache_dir, "revision": model_args.model_revision, "use_auth_token": True if model_args.use_auth_token else None, } if model_args.config_name: _UpperCAmelCase = ViTMAEConfig.from_pretrained(model_args.config_name , **__lowercase ) elif model_args.model_name_or_path: _UpperCAmelCase = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **__lowercase ) else: _UpperCAmelCase = ViTMAEConfig() logger.warning("You are instantiating a new config instance from scratch." ) if model_args.config_overrides is not None: logger.info(f'Overriding config: {model_args.config_overrides}' ) config.update_from_string(model_args.config_overrides ) logger.info(f'New config: {config}' ) # adapt config config.update( { "mask_ratio": model_args.mask_ratio, "norm_pix_loss": model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: _UpperCAmelCase = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **__lowercase ) elif model_args.model_name_or_path: _UpperCAmelCase = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **__lowercase ) else: _UpperCAmelCase = ViTImageProcessor() # create model if model_args.model_name_or_path: _UpperCAmelCase = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=__lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("Training new model from scratch" ) _UpperCAmelCase = ViTMAEForPreTraining(__lowercase ) if training_args.do_train: _UpperCAmelCase = ds["train"].column_names else: _UpperCAmelCase = ds["validation"].column_names if data_args.image_column_name is not None: _UpperCAmelCase = data_args.image_column_name elif "image" in column_names: _UpperCAmelCase = "image" elif "img" in column_names: _UpperCAmelCase = "img" else: _UpperCAmelCase = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: _UpperCAmelCase = image_processor.size["shortest_edge"] else: _UpperCAmelCase = (image_processor.size["height"], image_processor.size["width"]) _UpperCAmelCase = Compose( [ Lambda(lambda __lowercase : img.convert("RGB" ) if img.mode != "RGB" else img ), RandomResizedCrop(__lowercase , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(__lowercase : Dict ): _UpperCAmelCase = [transforms(__lowercase ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: _UpperCAmelCase = ds["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(__lowercase ) if training_args.do_eval: if "validation" not in ds: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: _UpperCAmelCase = ( ds["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(__lowercase ) # Compute absolute learning rate _UpperCAmelCase = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: _UpperCAmelCase = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer _UpperCAmelCase = Trainer( model=__lowercase , args=__lowercase , train_dataset=ds["train"] if training_args.do_train else None , eval_dataset=ds["validation"] if training_args.do_eval else None , tokenizer=__lowercase , data_collator=__lowercase , ) # Training if training_args.do_train: _UpperCAmelCase = None if training_args.resume_from_checkpoint is not None: _UpperCAmelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCAmelCase = last_checkpoint _UpperCAmelCase = trainer.train(resume_from_checkpoint=__lowercase ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _UpperCAmelCase = trainer.evaluate() trainer.log_metrics("eval" , __lowercase ) trainer.save_metrics("eval" , __lowercase ) # Write model card and (optionally) push to hub _UpperCAmelCase = { "tasks": "masked-auto-encoding", "dataset": data_args.dataset_name, "tags": ["masked-auto-encoding"], } if training_args.push_to_hub: trainer.push_to_hub(**__lowercase ) else: trainer.create_model_card(**__lowercase ) def UpperCAmelCase_ ( __lowercase : List[Any] ) -> Optional[Any]: '''simple docstring''' main() if __name__ == "__main__": main()
358
'''simple docstring''' import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __SCREAMING_SNAKE_CASE :Optional[int] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE :Dict = {'''vocab_file''': '''spiece.model'''} __SCREAMING_SNAKE_CASE :Any = { '''vocab_file''': { '''AI-Sweden/gpt-sw3-126m''': '''https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-350m''': '''https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-1.6b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-6.7b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-20b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model''', } } __SCREAMING_SNAKE_CASE :int = { '''AI-Sweden/gpt-sw3-126m''': 2048, '''AI-Sweden/gpt-sw3-350m''': 2048, '''AI-Sweden/gpt-sw3-1.6b''': 2048, '''AI-Sweden/gpt-sw3-6.7b''': 2048, '''AI-Sweden/gpt-sw3-20b''': 2048, } class A_ ( lowerCAmelCase_ ): _lowerCamelCase : Any = VOCAB_FILES_NAMES _lowerCamelCase : Dict = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : Optional[int] = ["""input_ids""", """attention_mask"""] def __init__( self : List[str] , snake_case_ : Any , snake_case_ : Optional[Any]=False , snake_case_ : int=False , snake_case_ : Any=False , snake_case_ : Optional[Any]=None , snake_case_ : List[Any]=None , snake_case_ : Tuple=None , snake_case_ : Any=None , snake_case_ : Optional[Dict[str, Any]] = None , **snake_case_ : Any , ): _UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs _UpperCAmelCase = kwargs.get("name_or_path" ) if name_or_path is None: logger.warning( "name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b," " you are testing the model, this can safely be ignored" ) _UpperCAmelCase = "None" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing _UpperCAmelCase = "<|endoftext|>" if eos_token is None else eos_token _UpperCAmelCase = "<unk>" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: _UpperCAmelCase = unk_token if pad_token is None else pad_token _UpperCAmelCase = eos_token if bos_token is None else bos_token else: _UpperCAmelCase = "<pad>" if pad_token is None else pad_token _UpperCAmelCase = "<s>" if bos_token is None else bos_token super().__init__( do_lower_case=snake_case_ , remove_space=snake_case_ , keep_accents=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , sp_model_kwargs=self.sp_model_kwargs , **snake_case_ , ) _UpperCAmelCase = do_lower_case _UpperCAmelCase = remove_space _UpperCAmelCase = keep_accents _UpperCAmelCase = vocab_file _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case_ ) # Used for whitespace normalization in input texts # fmt : off _UpperCAmelCase = {" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", "", "„"} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing _UpperCAmelCase = re.compile( f'[{"".join(map(snake_case_ , list(range(0 , 9 ) ) + list(range(1_1 , 3_2 ) ) + list(range(1_2_7 , 1_6_0 ) ) + [1_6_0, 1_7_3, 8_2_0_3] ) )}]' ) def __getstate__( self : Optional[Any] ): _UpperCAmelCase = self.__dict__.copy() _UpperCAmelCase = None return state def __setstate__( self : Any , snake_case_ : Union[str, Any] ): _UpperCAmelCase = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _UpperCAmelCase = {} _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def lowercase ( self : Dict ): return len(self.sp_model ) def lowercase ( self : Optional[Any] , snake_case_ : str ): _UpperCAmelCase = self.non_printing_characters_re.sub("" , snake_case_ ) # Normalize whitespaces _UpperCAmelCase = "".join([char if char not in self.whitespaces else " " for char in text] ) # NFC Unicode normalization _UpperCAmelCase = unicodedata.normalize("NFC" , snake_case_ ) return text def lowercase ( self : List[str] , snake_case_ : str , **snake_case_ : List[str] ): _UpperCAmelCase = self.preprocess_text(snake_case_ ) return self.sp_model.encode(snake_case_ , out_type=snake_case_ ) def lowercase ( self : str , snake_case_ : str ): return self.sp_model.PieceToId(snake_case_ ) def lowercase ( self : int , snake_case_ : int ): return self.sp_model.IdToPiece(snake_case_ ) @staticmethod def lowercase ( snake_case_ : str ): return out_string def lowercase ( self : Any , snake_case_ : List[str] ): _UpperCAmelCase = [] _UpperCAmelCase = "" _UpperCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(snake_case_ ) + token _UpperCAmelCase = True _UpperCAmelCase = [] else: current_sub_tokens.append(snake_case_ ) _UpperCAmelCase = False out_string += self.sp_model.decode(snake_case_ ) return out_string def lowercase ( self : Optional[Any] ): _UpperCAmelCase = {self.convert_ids_to_tokens(snake_case_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase ( self : Optional[int] , snake_case_ : str , snake_case_ : Optional[str] = None ): if not os.path.isdir(snake_case_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _UpperCAmelCase = os.path.join( snake_case_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case_ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case_ , "wb" ) as fi: _UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(snake_case_ ) return (out_vocab_file,) def lowercase ( self : Any , snake_case_ : Union[str, List[str]] , snake_case_ : Union[str, bool] = False ): if isinstance(snake_case_ , snake_case_ ): _UpperCAmelCase = self.preprocess_text(snake_case_ ) _UpperCAmelCase = self.sp_model.encode(snake_case_ ) else: _UpperCAmelCase = [self.preprocess_text(snake_case_ ) for t in text] _UpperCAmelCase = self.sp_model.encode(snake_case_ ) if return_tensors is True or return_tensors == "pt": _UpperCAmelCase = torch.tensor(snake_case_ ) return token_ids def lowercase ( self : Optional[Any] , snake_case_ : Union[int, List[int]] ): return self.sp_model.decode(snake_case_ ) def lowercase ( self : List[str] , snake_case_ : "Conversation" ): _UpperCAmelCase = [f'User: {text}' if is_user else f'Bot: {text}' for is_user, text in conversation.iter_texts()] _UpperCAmelCase = ( f'{self.eos_token}{self.bos_token}' + f'{self.bos_token}'.join(snake_case_ ) + f'{self.bos_token}Bot:' ) return self.encode(text=snake_case_ )
156
0
"""simple docstring""" import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def lowercase (SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Dict ) -> int: # Construct model if gpta_config_file == "": SCREAMING_SNAKE_CASE = GPTaConfig() else: SCREAMING_SNAKE_CASE = GPTaConfig.from_json_file(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = GPTaModel(SCREAMING_SNAKE_CASE_ ) # Load weights from numpy load_tf_weights_in_gpta(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save pytorch-model SCREAMING_SNAKE_CASE = pytorch_dump_folder_path + '/' + WEIGHTS_NAME SCREAMING_SNAKE_CASE = pytorch_dump_folder_path + '/' + CONFIG_NAME print(F'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE_ ) print(F'Save configuration file to {pytorch_config_dump_path}' ) with open(SCREAMING_SNAKE_CASE_ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--gpt2_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--gpt2_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained OpenAI model. \n''' '''This specifies the model architecture.''' ), ) __UpperCamelCase = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
113
import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() a_ :Tuple = logging.get_logger(__name__) a_ :List[Any] = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } a_ :Optional[int] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def lowercase_ (A : Union[str, Any] , A : str , A : Dict , A : Optional[Any] , A : Optional[Any] ): for attribute in key.split('.' ): snake_case__ : Any = getattr(A , A ) if weight_type is not None: snake_case__ : Optional[Any] = getattr(A , A ).shape else: snake_case__ : Optional[int] = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": snake_case__ : Tuple = value elif weight_type == "weight_g": snake_case__ : Tuple = value elif weight_type == "weight_v": snake_case__ : List[Any] = value elif weight_type == "bias": snake_case__ : List[Any] = value else: snake_case__ : Optional[Any] = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def lowercase_ (A : str , A : Any ): snake_case__ : Union[str, Any] = [] snake_case__ : Union[str, Any] = fairseq_model.state_dict() snake_case__ : Union[str, Any] = hf_model.feature_extractor snake_case__ : Any = hf_model.adapter for name, value in fairseq_dict.items(): snake_case__ : Any = False if "conv_layers" in name: load_conv_layer( A , A , A , A , hf_model.config.feat_extract_norm == 'group' , ) snake_case__ : List[Any] = True elif any(x in name for x in ['adaptor', 'w2v_encoder.proj.', 'w2v_proj_ln.'] ): load_adapter(A , A , A , A ) snake_case__ : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: snake_case__ : Tuple = True if "*" in mapped_key: snake_case__ : List[Any] = name.split(A )[0].split('.' )[-2] snake_case__ : Optional[int] = mapped_key.replace('*' , A ) if "weight_g" in name: snake_case__ : Optional[int] = 'weight_g' elif "weight_v" in name: snake_case__ : Optional[Any] = 'weight_v' elif "bias" in name: snake_case__ : Union[str, Any] = 'bias' elif "weight" in name: snake_case__ : Optional[int] = 'weight' else: snake_case__ : Tuple = None set_recursively(A , A , A , A , A ) continue if not is_used: unused_weights.append(A ) logger.warning(F'''Unused weights: {unused_weights}''' ) def lowercase_ (A : Union[str, Any] , A : Any , A : str , A : str , A : int ): snake_case__ : str = full_name.split('conv_layers.' )[-1] snake_case__ : Optional[int] = name.split('.' ) snake_case__ : Tuple = int(items[0] ) snake_case__ : Any = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) snake_case__ : Union[str, Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) snake_case__ : Union[str, Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) snake_case__ : Optional[int] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) snake_case__ : Optional[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(A ) def lowercase_ (A : Optional[Any] , A : Any , A : Tuple , A : Any ): snake_case__ : List[str] = full_name.split('adaptor.' )[-1] snake_case__ : Tuple = name.split('.' ) if items[1].isdigit(): snake_case__ : Optional[int] = int(items[1] ) else: snake_case__ : Any = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.''' snake_case__ : List[Any] = value logger.info(F'''Adapter proj layer norm bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.''' snake_case__ : int = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.''' snake_case__ : str = value logger.info(F'''Adapter proj layer bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.''' snake_case__ : Dict = value logger.info(F'''Adapter proj layer weight was initialized from {full_name}.''' ) elif isinstance(A , A ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.''' snake_case__ : List[str] = value logger.info(F'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.''' snake_case__ : List[str] = value logger.info(F'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) else: unused_weights.append(A ) def lowercase_ (A : int ): snake_case__ , snake_case__ : Union[str, Any] = emb.weight.shape snake_case__ : int = nn.Linear(A , A , bias=A ) snake_case__ : Optional[Any] = emb.weight.data return lin_layer @torch.no_grad() def lowercase_ (A : Tuple , A : Tuple , A : Any , A : Optional[Any] , A : int , A : Optional[Any] , A : Union[str, Any] , A : Union[str, Any] , A : Optional[Any] , A : List[Any] , A : Union[str, Any] , ): snake_case__ : Optional[Any] = WavaVecaConfig.from_pretrained( A , add_adapter=A , adapter_stride=A , adapter_kernel_size=A , use_auth_token=A , output_hidden_size=A , ) snake_case__ : Dict = MBartConfig.from_pretrained(A ) # load model snake_case__ , snake_case__ , snake_case__ : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ 'config_yaml': config_yaml_path, 'data': '/'.join(dict_path.split('/' )[:-1] ), 'w2v_path': checkpoint_path, 'load_pretrained_decoder_from': None, } , ) snake_case__ : List[Any] = model[0].eval() # load feature extractor snake_case__ : str = WavaVecaFeatureExtractor.from_pretrained(A , use_auth_token=A ) # set weights for wav2vec2 encoder snake_case__ : List[str] = WavaVecaModel(A ) recursively_load_weights_wavaveca(model.encoder , A ) # load decoder weights snake_case__ : Any = MBartForCausalLM(A ) snake_case__ , snake_case__ : int = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=A ) logger.warning(F'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(F'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) snake_case__ : Union[str, Any] = SpeechEncoderDecoderModel(encoder=A , decoder=A ) snake_case__ : str = False snake_case__ : int = MBartaaTokenizer(A ) tokenizer.save_pretrained(A ) snake_case__ : Any = hf_wavavec.config.to_dict() snake_case__ : Tuple = tokenizer.pad_token_id snake_case__ : Union[str, Any] = tokenizer.bos_token_id snake_case__ : Dict = tokenizer.eos_token_id snake_case__ : Optional[int] = 'mbart50' snake_case__ : Union[str, Any] = 'wav2vec2' snake_case__ : List[str] = tokenizer.eos_token_id snake_case__ : Union[str, Any] = 2_5_0_0_0_4 snake_case__ : int = tokenizer.eos_token_id snake_case__ : Union[str, Any] = SpeechEncoderDecoderConfig.from_dict(A ) hf_wavavec.save_pretrained(A ) feature_extractor.save_pretrained(A ) if __name__ == "__main__": a_ :str = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_yaml_path", default=None, type=str, help="Path to yaml file of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-xls-r-1b", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/mbart-large-50-one-to-many-mmt", type=str, help="Path to hf decoder checkpoint config", ) parser.add_argument("--add_adapter", default=True, type=bool, help="whethere to add model adapter layers") parser.add_argument("--adapter_stride", default=2, type=int, help="stride of adapter layers") parser.add_argument("--adapter_kernel_size", default=3, type=int, help="kernel size of adapter layers") parser.add_argument("--encoder_output_dim", default=1_024, type=int, help="encoder output dim") parser.add_argument("--start_token_id", default=250_004, type=int, help="`decoder_start_token_id` of model config") a_ :Union[str, Any] = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
277
0
'''simple docstring''' from string import ascii_lowercase, ascii_uppercase def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): if not sentence: return "" _snake_case = dict(zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
367
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowerCAmelCase = { 'configuration_resnet': ['RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ResNetConfig', 'ResNetOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'ResNetForImageClassification', 'ResNetModel', 'ResNetPreTrainedModel', 'ResNetBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFResNetForImageClassification', 'TFResNetModel', 'TFResNetPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'FlaxResNetForImageClassification', 'FlaxResNetModel', 'FlaxResNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure)
270
0
"""simple docstring""" from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging __UpperCamelCase = logging.get_logger(__name__) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> int: try: with open(UpperCAmelCase , 'rb' ) as flax_state_f: snake_case_ = from_bytes(UpperCAmelCase , flax_state_f.read() ) except UnpicklingError as e: try: with open(UpperCAmelCase ) as f: if f.read().startswith('version' ): raise OSError( 'You seem to have cloned a repository without having git-lfs installed. Please' ' install git-lfs and run `git lfs install` followed by `git lfs pull` in the' ' folder you cloned.' ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(f'Unable to convert {model_file} to Flax deserializable object. ' ) return load_flax_weights_in_pytorch_model(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[Any]: try: import torch # noqa: F401 except ImportError: logger.error( 'Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see' ' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation' ' instructions.' ) raise # check if we have bf16 weights snake_case_ = flatten_dict(jax.tree_util.tree_map(lambda UpperCAmelCase : x.dtype == jnp.bfloataa , UpperCAmelCase ) ).values() if any(UpperCAmelCase ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( 'Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ' 'before loading those in PyTorch model.' ) snake_case_ = jax.tree_util.tree_map( lambda UpperCAmelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , UpperCAmelCase ) snake_case_ = '' snake_case_ = flatten_dict(UpperCAmelCase , sep='.' ) snake_case_ = pt_model.state_dict() # keep track of unexpected & missing keys snake_case_ = [] snake_case_ = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): snake_case_ = flax_key_tuple.split('.' ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: snake_case_ = flax_key_tuple_array[:-1] + ['weight'] snake_case_ = jnp.transpose(UpperCAmelCase , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": snake_case_ = flax_key_tuple_array[:-1] + ['weight'] snake_case_ = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": snake_case_ = flax_key_tuple_array[:-1] + ['weight'] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(UpperCAmelCase ): snake_case_ = ( flax_key_tuple_string.replace('_0' , '.0' ) .replace('_1' , '.1' ) .replace('_2' , '.2' ) .replace('_3' , '.3' ) .replace('_4' , '.4' ) .replace('_5' , '.5' ) .replace('_6' , '.6' ) .replace('_7' , '.7' ) .replace('_8' , '.8' ) .replace('_9' , '.9' ) ) snake_case_ = '.'.join(UpperCAmelCase ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ' f'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) else: # add weight to pytorch dict snake_case_ = np.asarray(UpperCAmelCase ) if not isinstance(UpperCAmelCase , np.ndarray ) else flax_tensor snake_case_ = torch.from_numpy(UpperCAmelCase ) # remove from missing keys missing_keys.remove(UpperCAmelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(UpperCAmelCase ) pt_model.load_state_dict(UpperCAmelCase ) # re-transform missing_keys to list snake_case_ = list(UpperCAmelCase ) if len(UpperCAmelCase ) > 0: logger.warning( 'Some weights of the Flax model were not used when initializing the PyTorch model' f' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing' f' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture' ' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This' f' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect' ' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a' ' FlaxBertForSequenceClassification model).' ) if len(UpperCAmelCase ) > 0: logger.warning( f'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly' f' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to' ' use it for predictions and inference.' ) return pt_model
69
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() a_ :Dict = logging.get_logger(__name__) def lowercase_ (A : Optional[Any] , A : Any=False ): snake_case__ : List[Any] = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith('head' ): snake_case__ : str = 'segformer.encoder.' + key if key.startswith('backbone' ): snake_case__ : str = key.replace('backbone' , 'segformer.encoder' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 snake_case__ : Optional[int] = key[key.find('patch_embed' ) + len('patch_embed' )] snake_case__ : int = key.replace(F'''patch_embed{idx}''' , F'''patch_embeddings.{int(A )-1}''' ) if "norm" in key: snake_case__ : Optional[int] = key.replace('norm' , 'layer_norm' ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 snake_case__ : Tuple = key[key.find('segformer.encoder.layer_norm' ) + len('segformer.encoder.layer_norm' )] snake_case__ : Union[str, Any] = key.replace(F'''layer_norm{idx}''' , F'''layer_norm.{int(A )-1}''' ) if "layer_norm1" in key: snake_case__ : List[Any] = key.replace('layer_norm1' , 'layer_norm_1' ) if "layer_norm2" in key: snake_case__ : List[Any] = key.replace('layer_norm2' , 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 snake_case__ : List[Any] = key[key.find('block' ) + len('block' )] snake_case__ : List[Any] = key.replace(F'''block{idx}''' , F'''block.{int(A )-1}''' ) if "attn.q" in key: snake_case__ : int = key.replace('attn.q' , 'attention.self.query' ) if "attn.proj" in key: snake_case__ : str = key.replace('attn.proj' , 'attention.output.dense' ) if "attn" in key: snake_case__ : Optional[int] = key.replace('attn' , 'attention.self' ) if "fc1" in key: snake_case__ : str = key.replace('fc1' , 'dense1' ) if "fc2" in key: snake_case__ : Dict = key.replace('fc2' , 'dense2' ) if "linear_pred" in key: snake_case__ : Union[str, Any] = key.replace('linear_pred' , 'classifier' ) if "linear_fuse" in key: snake_case__ : List[str] = key.replace('linear_fuse.conv' , 'linear_fuse' ) snake_case__ : List[Any] = key.replace('linear_fuse.bn' , 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 snake_case__ : Optional[int] = key[key.find('linear_c' ) + len('linear_c' )] snake_case__ : Tuple = key.replace(F'''linear_c{idx}''' , F'''linear_c.{int(A )-1}''' ) if key.startswith('head' ): snake_case__ : Tuple = key.replace('head' , 'classifier' ) snake_case__ : Optional[int] = value return new_state_dict def lowercase_ (A : Tuple , A : Optional[int] ): # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) snake_case__ : List[str] = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.weight''' ) snake_case__ : Optional[Any] = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict snake_case__ : str = kv_weight[ : config.hidden_sizes[i], : ] snake_case__ : Dict = kv_bias[: config.hidden_sizes[i]] snake_case__ : List[str] = kv_weight[ config.hidden_sizes[i] :, : ] snake_case__ : List[Any] = kv_bias[ config.hidden_sizes[i] : ] def lowercase_ (): snake_case__ : Union[str, Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case__ : Dict = Image.open(requests.get(A , stream=A ).raw ) return image @torch.no_grad() def lowercase_ (A : Any , A : Union[str, Any] , A : Optional[Any] ): snake_case__ : List[str] = SegformerConfig() snake_case__ : Dict = False # set attributes based on model_name snake_case__ : Optional[int] = 'huggingface/label-files' if "segformer" in model_name: snake_case__ : str = model_name[len('segformer.' ) : len('segformer.' ) + 2] if "ade" in model_name: snake_case__ : Optional[int] = 1_5_0 snake_case__ : int = 'ade20k-id2label.json' snake_case__ : List[Any] = (1, 1_5_0, 1_2_8, 1_2_8) elif "city" in model_name: snake_case__ : str = 1_9 snake_case__ : List[str] = 'cityscapes-id2label.json' snake_case__ : Optional[Any] = (1, 1_9, 1_2_8, 1_2_8) else: raise ValueError(F'''Model {model_name} not supported''' ) elif "mit" in model_name: snake_case__ : str = True snake_case__ : Union[str, Any] = model_name[4:6] snake_case__ : Optional[Any] = 1_0_0_0 snake_case__ : Optional[int] = 'imagenet-1k-id2label.json' snake_case__ : List[Any] = (1, 1_0_0_0) else: raise ValueError(F'''Model {model_name} not supported''' ) # set config attributes snake_case__ : str = json.load(open(hf_hub_download(A , A , repo_type='dataset' ) , 'r' ) ) snake_case__ : List[Any] = {int(A ): v for k, v in idalabel.items()} snake_case__ : Union[str, Any] = idalabel snake_case__ : Tuple = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": snake_case__ : List[Any] = [6_4, 1_2_8, 3_2_0, 5_1_2] snake_case__ : Tuple = 2_5_6 elif size == "b2": snake_case__ : List[str] = [6_4, 1_2_8, 3_2_0, 5_1_2] snake_case__ : int = 7_6_8 snake_case__ : List[Any] = [3, 4, 6, 3] elif size == "b3": snake_case__ : Optional[Any] = [6_4, 1_2_8, 3_2_0, 5_1_2] snake_case__ : int = 7_6_8 snake_case__ : Optional[Any] = [3, 4, 1_8, 3] elif size == "b4": snake_case__ : str = [6_4, 1_2_8, 3_2_0, 5_1_2] snake_case__ : Optional[Any] = 7_6_8 snake_case__ : Union[str, Any] = [3, 8, 2_7, 3] elif size == "b5": snake_case__ : List[str] = [6_4, 1_2_8, 3_2_0, 5_1_2] snake_case__ : Optional[Any] = 7_6_8 snake_case__ : Any = [3, 6, 4_0, 3] else: raise ValueError(F'''Size {size} not supported''' ) # load image processor (only resize + normalize) snake_case__ : Dict = SegformerImageProcessor( image_scale=(5_1_2, 5_1_2) , keep_ratio=A , align=A , do_random_crop=A ) # prepare image snake_case__ : List[str] = prepare_img() snake_case__ : Dict = image_processor(images=A , return_tensors='pt' ).pixel_values logger.info(F'''Converting model {model_name}...''' ) # load original state dict if encoder_only: snake_case__ : Tuple = torch.load(A , map_location=torch.device('cpu' ) ) else: snake_case__ : int = torch.load(A , map_location=torch.device('cpu' ) )['state_dict'] # rename keys snake_case__ : List[Any] = rename_keys(A , encoder_only=A ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(A , A ) # create HuggingFace model and load state dict if encoder_only: snake_case__ : str = False snake_case__ : List[Any] = SegformerForImageClassification(A ) else: snake_case__ : Dict = SegformerForSemanticSegmentation(A ) model.load_state_dict(A ) model.eval() # forward pass snake_case__ : int = model(A ) snake_case__ : Any = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": snake_case__ : Dict = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": snake_case__ : Optional[int] = torch.tensor( [ [[-7.5820, -8.7231, -8.3215], [-8.0600, -10.3529, -10.0304], [-7.5208, -9.4103, -9.6239]], [[-12.6918, -13.8994, -13.7137], [-13.3196, -15.7523, -15.4789], [-12.9343, -14.8757, -14.9689]], [[-11.1911, -11.9421, -11.3243], [-11.3342, -13.6839, -13.3581], [-10.3909, -12.1832, -12.4858]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": snake_case__ : List[Any] = torch.tensor( [ [[-11.8173, -14.3850, -16.3128], [-14.5648, -16.5804, -18.6568], [-14.7223, -15.7387, -18.4218]], [[-15.7290, -17.9171, -19.4423], [-18.3105, -19.9448, -21.4661], [-17.9296, -18.6497, -20.7910]], [[-15.0783, -17.0336, -18.2789], [-16.8771, -18.6870, -20.1612], [-16.2454, -17.1426, -19.5055]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": snake_case__ : Union[str, Any] = torch.tensor( [ [[-9.0878, -10.2081, -10.1891], [-9.3144, -10.7941, -10.9843], [-9.2294, -10.3855, -10.5704]], [[-12.2316, -13.9068, -13.6102], [-12.9161, -14.3702, -14.3235], [-12.5233, -13.7174, -13.7932]], [[-14.6275, -15.2490, -14.9727], [-14.3400, -15.9687, -16.2827], [-14.1484, -15.4033, -15.8937]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": snake_case__ : Dict = torch.tensor( [ [[-12.3144, -13.2447, -14.0802], [-13.3614, -14.5816, -15.6117], [-13.3340, -14.4433, -16.2219]], [[-19.2781, -20.4128, -20.7506], [-20.6153, -21.6566, -22.0998], [-19.9800, -21.0430, -22.1494]], [[-18.8739, -19.7804, -21.1834], [-20.1233, -21.6765, -23.2944], [-20.0315, -21.2641, -23.6944]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": snake_case__ : List[Any] = torch.tensor( [ [[-9.5524, -12.0835, -11.7348], [-10.5229, -13.6446, -14.5662], [-9.5842, -12.8851, -13.9414]], [[-15.3432, -17.5323, -17.0818], [-16.3330, -18.9255, -19.2101], [-15.1340, -17.7848, -18.3971]], [[-12.6072, -14.9486, -14.6631], [-13.7629, -17.0907, -17.7745], [-12.7899, -16.1695, -17.1671]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": snake_case__ : str = torch.tensor( [ [[-11.9295, -13.4057, -14.8106], [-13.3431, -14.8179, -15.3781], [-14.2836, -15.5942, -16.1588]], [[-11.4906, -12.8067, -13.6564], [-13.1189, -14.0500, -14.1543], [-13.8748, -14.5136, -14.8789]], [[0.5374, 0.1067, -0.4742], [0.1141, -0.2255, -0.7099], [-0.3000, -0.5924, -1.3105]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": snake_case__ : Tuple = torch.tensor( [ [[-7.8217, -9.8767, -10.1717], [-9.4438, -10.9058, -11.4047], [-9.7939, -12.3495, -12.1079]], [[-7.1514, -9.5336, -10.0860], [-9.7776, -11.6822, -11.8439], [-10.1411, -12.7655, -12.8972]], [[0.3021, 0.0805, -0.2310], [-0.0328, -0.1605, -0.2714], [-0.1408, -0.5477, -0.6976]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": snake_case__ : Any = torch.tensor( [ [ [-1.1_372e01, -1.2_787e01, -1.3_477e01], [-1.2_536e01, -1.4_194e01, -1.4_409e01], [-1.3_217e01, -1.4_888e01, -1.5_327e01], ], [ [-1.4_791e01, -1.7_122e01, -1.8_277e01], [-1.7_163e01, -1.9_192e01, -1.9_533e01], [-1.7_897e01, -1.9_991e01, -2.0_315e01], ], [ [7.6_723e-01, 4.1_921e-01, -7.7_878e-02], [4.7_772e-01, 9.5_557e-03, -2.8_082e-01], [3.6_032e-01, -2.4_826e-01, -5.1_168e-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": snake_case__ : Optional[int] = torch.tensor( [ [[-9.4959, -11.3087, -11.7479], [-11.0025, -12.6540, -12.3319], [-11.4064, -13.0487, -12.9905]], [[-9.8905, -11.3084, -12.0854], [-11.1726, -12.7698, -12.9583], [-11.5985, -13.3278, -14.1774]], [[0.2213, 0.0192, -0.2466], [-0.1731, -0.4213, -0.4874], [-0.3126, -0.6541, -1.1389]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": snake_case__ : Union[str, Any] = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": snake_case__ : List[str] = torch.tensor( [ [[-16.0976, -16.4856, -17.3962], [-16.6234, -19.0342, -19.7685], [-16.0900, -18.0661, -19.1180]], [[-18.4750, -18.8488, -19.5074], [-19.4030, -22.1570, -22.5977], [-19.1191, -20.8486, -22.3783]], [[-4.5178, -5.5037, -6.5109], [-5.0884, -7.2174, -8.0334], [-4.4156, -5.8117, -7.2970]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": snake_case__ : List[Any] = torch.tensor( [ [[-14.2081, -14.4732, -14.1977], [-14.5867, -16.4423, -16.6356], [-13.4441, -14.9685, -16.8696]], [[-14.4576, -14.7073, -15.0451], [-15.0816, -17.6237, -17.9873], [-14.4213, -16.0199, -18.5992]], [[-4.7349, -4.9588, -5.0966], [-4.3210, -6.9325, -7.2591], [-3.4312, -4.7484, -7.1917]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": snake_case__ : str = torch.tensor( [ [[-11.7737, -11.9526, -11.3273], [-13.6692, -14.4574, -13.8878], [-13.8937, -14.6924, -15.9345]], [[-14.6706, -14.5330, -14.1306], [-16.1502, -16.8180, -16.4269], [-16.8338, -17.8939, -20.1746]], [[1.0491, 0.8289, 1.0310], [1.1044, 0.5219, 0.8055], [1.0899, 0.6926, 0.5590]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": snake_case__ : List[str] = torch.tensor( [ [[-12.5641, -13.4777, -13.0684], [-13.9587, -15.8983, -16.6557], [-13.3109, -15.7350, -16.3141]], [[-14.7074, -15.4352, -14.5944], [-16.6353, -18.1663, -18.6120], [-15.1702, -18.0329, -18.1547]], [[-1.7990, -2.0951, -1.7784], [-2.6397, -3.8245, -3.9686], [-1.5264, -2.8126, -2.9316]], ] ) else: snake_case__ : Tuple = logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , A , atol=1e-2 ) # finally, save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(A ).mkdir(exist_ok=A ) model.save_pretrained(A ) image_processor.save_pretrained(A ) if __name__ == "__main__": a_ :Optional[int] = argparse.ArgumentParser() parser.add_argument( "--model_name", default="segformer.b0.512x512.ade.160k", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) a_ :Union[str, Any] = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
277
0
"""simple docstring""" import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self :Any , lowercase_ :Optional[Any] , lowercase_ :int=13 , lowercase_ :Optional[Any]=7 , lowercase_ :List[str]=True , lowercase_ :Dict=True , lowercase_ :str=True , lowercase_ :Optional[Any]=True , lowercase_ :Dict=99 , lowercase_ :int=32 , lowercase_ :str=5 , lowercase_ :Dict=4 , lowercase_ :Tuple=37 , lowercase_ :Dict="gelu" , lowercase_ :List[str]=0.1 , lowercase_ :int=0.1 , lowercase_ :Any=5_12 , lowercase_ :Optional[Any]=16 , lowercase_ :Optional[int]=2 , lowercase_ :Union[str, Any]=0.02 , lowercase_ :Dict=False , lowercase_ :Tuple=True , lowercase_ :Optional[Any]="None" , lowercase_ :int=3 , lowercase_ :Tuple=4 , lowercase_ :Optional[int]=None , ) -> Tuple: UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_input_mask UpperCAmelCase = use_token_type_ids UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = num_labels UpperCAmelCase = num_choices UpperCAmelCase = relative_attention UpperCAmelCase = position_biased_input UpperCAmelCase = pos_att_type UpperCAmelCase = scope def UpperCAmelCase__ ( self :Any ) -> Tuple: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = None if self.use_input_mask: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) UpperCAmelCase = None if self.use_token_type_ids: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self :Tuple ) -> Tuple: return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def UpperCAmelCase__ ( self :Optional[int] , lowercase_ :str ) -> List[str]: self.parent.assertListEqual(list(result.loss.size() ) , [] ) def UpperCAmelCase__ ( self :Optional[int] , lowercase_ :str , lowercase_ :Tuple , lowercase_ :str , lowercase_ :int , lowercase_ :Union[str, Any] , lowercase_ :List[str] , lowercase_ :Optional[int] ) -> Optional[int]: UpperCAmelCase = DebertaVaModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ )[0] UpperCAmelCase = model(lowercase_ , token_type_ids=lowercase_ )[0] UpperCAmelCase = model(lowercase_ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def UpperCAmelCase__ ( self :Optional[Any] , lowercase_ :Dict , lowercase_ :List[str] , lowercase_ :Any , lowercase_ :List[str] , lowercase_ :Tuple , lowercase_ :List[Any] , lowercase_ :int ) -> Any: UpperCAmelCase = DebertaVaForMaskedLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self :Union[str, Any] , lowercase_ :Any , lowercase_ :List[Any] , lowercase_ :Any , lowercase_ :Dict , lowercase_ :str , lowercase_ :List[Any] , lowercase_ :Dict ) -> Union[str, Any]: UpperCAmelCase = self.num_labels UpperCAmelCase = DebertaVaForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(lowercase_ ) def UpperCAmelCase__ ( self :Any , lowercase_ :Union[str, Any] , lowercase_ :Dict , lowercase_ :Union[str, Any] , lowercase_ :Any , lowercase_ :Optional[int] , lowercase_ :Optional[Any] , lowercase_ :Any ) -> List[Any]: UpperCAmelCase = self.num_labels UpperCAmelCase = DebertaVaForTokenClassification(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase__ ( self :Any , lowercase_ :Any , lowercase_ :List[Any] , lowercase_ :Union[str, Any] , lowercase_ :Union[str, Any] , lowercase_ :Dict , lowercase_ :List[Any] , lowercase_ :Optional[int] ) -> Dict: UpperCAmelCase = DebertaVaForQuestionAnswering(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase = model( lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase__ ( self :Optional[int] , lowercase_ :str , lowercase_ :List[Any] , lowercase_ :Union[str, Any] , lowercase_ :List[Any] , lowercase_ :Union[str, Any] , lowercase_ :Any , lowercase_ :Any ) -> List[Any]: UpperCAmelCase = DebertaVaForMultipleChoice(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase = model( lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase__ ( self :Dict ) -> int: UpperCAmelCase = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) = config_and_inputs UpperCAmelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) __UpperCamelCase = ( { """feature-extraction""": DebertaVaModel, """fill-mask""": DebertaVaForMaskedLM, """question-answering""": DebertaVaForQuestionAnswering, """text-classification""": DebertaVaForSequenceClassification, """token-classification""": DebertaVaForTokenClassification, """zero-shot""": DebertaVaForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def UpperCAmelCase__ ( self :Optional[Any] ) -> Optional[int]: UpperCAmelCase = DebertaVaModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowercase_ , hidden_size=37 ) def UpperCAmelCase__ ( self :Optional[Any] ) -> Optional[Any]: self.config_tester.run_common_tests() def UpperCAmelCase__ ( self :Optional[Any] ) -> Tuple: UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*lowercase_ ) def UpperCAmelCase__ ( self :Any ) -> List[str]: UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*lowercase_ ) def UpperCAmelCase__ ( self :Optional[Any] ) -> List[Any]: UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*lowercase_ ) def UpperCAmelCase__ ( self :Optional[Any] ) -> Optional[int]: UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*lowercase_ ) def UpperCAmelCase__ ( self :Union[str, Any] ) -> Tuple: UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*lowercase_ ) def UpperCAmelCase__ ( self :Any ) -> Union[str, Any]: UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*lowercase_ ) @slow def UpperCAmelCase__ ( self :Any ) -> Optional[int]: for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = DebertaVaModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @require_torch @require_sentencepiece @require_tokenizers class A_ ( unittest.TestCase ): """simple docstring""" @unittest.skip(reason='Model not available yet' ) def UpperCAmelCase__ ( self :str ) -> Tuple: pass @slow def UpperCAmelCase__ ( self :List[Any] ) -> Any: UpperCAmelCase = DebertaVaModel.from_pretrained('microsoft/deberta-v2-xlarge' ) UpperCAmelCase = torch.tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) UpperCAmelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCAmelCase = model(lowercase_ , attention_mask=lowercase_ )[0] # compare the actual values for a slice. UpperCAmelCase = torch.tensor( [[[0.2356, 0.1948, 0.0369], [-0.1063, 0.3586, -0.5152], [-0.6399, -0.0259, -0.2525]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowercase_ , atol=1E-4 ) , f"""{output[:, 1:4, 1:4]}""" )
181
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case_ = { """configuration_rembert""": ["""REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RemBertConfig""", """RemBertOnnxConfig"""] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = ["""RemBertTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = ["""RemBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ """REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """RemBertForCausalLM""", """RemBertForMaskedLM""", """RemBertForMultipleChoice""", """RemBertForQuestionAnswering""", """RemBertForSequenceClassification""", """RemBertForTokenClassification""", """RemBertLayer""", """RemBertModel""", """RemBertPreTrainedModel""", """load_tf_weights_in_rembert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ """TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRemBertForCausalLM""", """TFRemBertForMaskedLM""", """TFRemBertForMultipleChoice""", """TFRemBertForQuestionAnswering""", """TFRemBertForSequenceClassification""", """TFRemBertForTokenClassification""", """TFRemBertLayer""", """TFRemBertModel""", """TFRemBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys snake_case_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
181
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : str ,A_ : Optional[int] ,A_ : Optional[int]=7 ,A_ : List[Any]=3 ,A_ : Optional[int]=10 ,A_ : Optional[Any]=18 ,A_ : Any=30 ,A_ : Union[str, Any]=400 ,A_ : Dict=True ,A_ : Union[str, Any]=None ,A_ : Any=True ,A_ : Optional[int]=[0.5, 0.5, 0.5] ,A_ : Union[str, Any]=[0.5, 0.5, 0.5] ,A_ : Union[str, Any]=None ,) -> Any: A = size if size is not None else {'shortest_edge': 18} A = crop_size if crop_size is not None else {'height': 18, 'width': 18} A = parent A = batch_size A = num_channels A = num_frames A = image_size A = min_resolution A = max_resolution A = do_resize A = size A = do_normalize A = image_mean A = image_std A = crop_size def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class lowerCAmelCase_ ( _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: str = VivitImageProcessor if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self : int ) -> str: A = VivitImageProcessingTester(self ) @property def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]: return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ ,'image_mean' ) ) self.assertTrue(hasattr(A_ ,'image_std' ) ) self.assertTrue(hasattr(A_ ,'do_normalize' ) ) self.assertTrue(hasattr(A_ ,'do_resize' ) ) self.assertTrue(hasattr(A_ ,'do_center_crop' ) ) self.assertTrue(hasattr(A_ ,'size' ) ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'shortest_edge': 18} ) self.assertEqual(image_processor.crop_size ,{'height': 18, 'width': 18} ) A = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size ,{'height': 84, 'width': 84} ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos A = prepare_video_inputs(self.image_processor_tester ,equal_resolution=A_ ) for video in video_inputs: self.assertIsInstance(A_ ,A_ ) self.assertIsInstance(video[0] ,Image.Image ) # Test not batched input A = image_processing(video_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape ,( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) # Test batched A = image_processing(A_ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A = prepare_video_inputs(self.image_processor_tester ,equal_resolution=A_ ,numpify=A_ ) for video in video_inputs: self.assertIsInstance(A_ ,A_ ) self.assertIsInstance(video[0] ,np.ndarray ) # Test not batched input A = image_processing(video_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape ,( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) # Test batched A = image_processing(A_ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A = prepare_video_inputs(self.image_processor_tester ,equal_resolution=A_ ,torchify=A_ ) for video in video_inputs: self.assertIsInstance(A_ ,A_ ) self.assertIsInstance(video[0] ,torch.Tensor ) # Test not batched input A = image_processing(video_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape ,( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) # Test batched A = image_processing(A_ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,)
74
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig _lowercase = logging.get_logger(__name__) _lowercase = { '''Intel/dpt-large''': '''https://huggingface.co/Intel/dpt-large/resolve/main/config.json''', # See all DPT models at https://huggingface.co/models?filter=dpt } class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Tuple = '''dpt''' def __init__( self : str ,A_ : Tuple=768 ,A_ : int=12 ,A_ : Optional[int]=12 ,A_ : Optional[int]=3072 ,A_ : List[str]="gelu" ,A_ : str=0.0 ,A_ : int=0.0 ,A_ : str=0.02 ,A_ : str=1e-12 ,A_ : str=384 ,A_ : Dict=16 ,A_ : Union[str, Any]=3 ,A_ : Dict=False ,A_ : Any=True ,A_ : Optional[int]=[2, 5, 8, 11] ,A_ : Optional[Any]="project" ,A_ : Tuple=[4, 2, 1, 0.5] ,A_ : int=[96, 192, 384, 768] ,A_ : int=256 ,A_ : str=-1 ,A_ : Optional[int]=False ,A_ : Optional[int]=True ,A_ : Union[str, Any]=0.4 ,A_ : Union[str, Any]=255 ,A_ : Union[str, Any]=0.1 ,A_ : List[str]=[1, 1024, 24, 24] ,A_ : List[str]=[0, 1] ,A_ : List[Any]=None ,**A_ : Tuple ,) -> Union[str, Any]: super().__init__(**A_ ) A = hidden_size A = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('Initializing the config with a `BiT` backbone.' ) A = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, } A = BitConfig(**A_ ) elif isinstance(A_ ,A_ ): logger.info('Initializing the config with a `BiT` backbone.' ) A = BitConfig(**A_ ) elif isinstance(A_ ,A_ ): A = backbone_config else: raise ValueError( F'backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.' ) A = backbone_featmap_shape A = neck_ignore_stages if readout_type != "project": raise ValueError('Readout type must be \'project\' when using `DPT-hybrid` mode.' ) else: A = None A = None A = [] A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = initializer_range A = layer_norm_eps A = image_size A = patch_size A = num_channels A = qkv_bias A = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('Readout_type must be one of [\'ignore\', \'add\', \'project\']' ) A = readout_type A = reassemble_factors A = neck_hidden_sizes A = fusion_hidden_size A = head_in_index A = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) A = use_auxiliary_head A = auxiliary_loss_weight A = semantic_loss_ignore_index A = semantic_classifier_dropout def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: A = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: A = self.backbone_config.to_dict() A = self.__class__.model_type return output
74
1
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS __a :Dict = logging.get_logger(__name__) __a :Optional[int] = { 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, 'constant': get_constant_schedule, 'constant_w_warmup': get_constant_schedule_with_warmup, } class _a ( snake_case_ ): """simple docstring""" def __init__( self : Optional[Any] , UpperCAmelCase : Dict=None , UpperCAmelCase : Tuple=None , *UpperCAmelCase : List[Any] , **UpperCAmelCase : List[str] ): super().__init__(*UpperCAmelCase , **UpperCAmelCase ) if config is None: assert isinstance(self.model , UpperCAmelCase ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f''' {self.model.__class__}''' ) A_ = self.model.config else: A_ = config A_ = data_args A_ = self.config.tgt_vocab_size if isinstance(self.config , UpperCAmelCase ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f'''The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for''' " padding.." ) if self.args.label_smoothing == 0: A_ = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss A_ = label_smoothed_nll_loss def __A ( self : Optional[int] , UpperCAmelCase : int ): if self.optimizer is None: A_ = ["bias", "LayerNorm.weight"] A_ = [ { "params": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], "weight_decay": self.args.weight_decay, }, { "params": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], "weight_decay": 0.0, }, ] A_ = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: A_ = Adafactor A_ = {"scale_parameter": False, "relative_step": False} else: A_ = AdamW A_ = { "betas": (self.args.adam_betaa, self.args.adam_betaa), "eps": self.args.adam_epsilon, } A_ = self.args.learning_rate if self.sharded_ddp: A_ = OSS( params=UpperCAmelCase , optim=UpperCAmelCase , **UpperCAmelCase , ) else: A_ = optimizer_cls(UpperCAmelCase , **UpperCAmelCase ) if self.lr_scheduler is None: A_ = self._get_lr_scheduler(UpperCAmelCase ) else: # ignoring --lr_scheduler logger.warning("scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored." ) def __A ( self : int , UpperCAmelCase : Optional[int] ): A_ = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": A_ = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": A_ = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: A_ = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=UpperCAmelCase ) return scheduler def __A ( self : Optional[Any] ): if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def __A ( self : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : List[Any] ): if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token A_ = model(**UpperCAmelCase , use_cache=UpperCAmelCase )[0] A_ = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models A_ , A_ = model(**UpperCAmelCase , labels=UpperCAmelCase , use_cache=UpperCAmelCase )[:2] else: # compute label smoothed loss A_ = model(**UpperCAmelCase , use_cache=UpperCAmelCase )[0] A_ = torch.nn.functional.log_softmax(UpperCAmelCase , dim=-1 ) A_ , A_ = self.loss_fn(UpperCAmelCase , UpperCAmelCase , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def __A ( self : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Any ): A_ = inputs.pop("labels" ) A_ , A_ = self._compute_loss(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) return loss def __A ( self : Any , UpperCAmelCase : nn.Module , UpperCAmelCase : Dict[str, Union[torch.Tensor, Any]] , UpperCAmelCase : bool , UpperCAmelCase : Optional[List[str]] = None , ): A_ = self._prepare_inputs(UpperCAmelCase ) A_ = { "max_length": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, "num_beams": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: A_ = self.model.generate( inputs["input_ids"] , attention_mask=inputs["attention_mask"] , **UpperCAmelCase , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: A_ = self._pad_tensors_to_max_len(UpperCAmelCase , gen_kwargs["max_length"] ) A_ = inputs.pop("labels" ) with torch.no_grad(): # compute loss on predict data A_ , A_ = self._compute_loss(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) A_ = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) A_ = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: A_ = self._pad_tensors_to_max_len(UpperCAmelCase , gen_kwargs["max_length"] ) return (loss, logits, labels) def __A ( self : List[str] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int ): # If PAD token is not defined at least EOS token has to be defined A_ = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( "Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be" f''' padded to `max_length`={max_length}''' ) A_ = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) A_ = tensor return padded_tensor
329
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : Dict=10 ): """simple docstring""" A_ = [] for _ in range(__UpperCamelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : Tuple=10 ): """simple docstring""" A_ = [] for step in range(__UpperCamelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: A_ = os.path.join(__UpperCamelCase ,"schedule.bin" ) torch.save(scheduler.state_dict() ,__UpperCamelCase ) A_ = torch.load(__UpperCamelCase ) scheduler.load_state_dict(__UpperCamelCase ) return lrs @require_torch class _a ( unittest.TestCase ): """simple docstring""" def __A ( self : Any , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] ): self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) for a, b in zip(UpperCAmelCase , UpperCAmelCase ): self.assertAlmostEqual(UpperCAmelCase , UpperCAmelCase , delta=UpperCAmelCase ) def __A ( self : List[Any] ): A_ = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCAmelCase ) A_ = torch.tensor([0.4, 0.2, -0.5] ) A_ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping A_ = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 ) for _ in range(100 ): A_ = criterion(UpperCAmelCase , UpperCAmelCase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) def __A ( self : Dict ): A_ = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCAmelCase ) A_ = torch.tensor([0.4, 0.2, -0.5] ) A_ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping A_ = Adafactor( params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=UpperCAmelCase , weight_decay=0.0 , relative_step=UpperCAmelCase , scale_parameter=UpperCAmelCase , warmup_init=UpperCAmelCase , ) for _ in range(1000 ): A_ = criterion(UpperCAmelCase , UpperCAmelCase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) @require_torch class _a ( unittest.TestCase ): """simple docstring""" _lowerCamelCase : Optional[int] = nn.Linear(5_0 , 5_0 ) if is_torch_available() else None _lowerCamelCase : Any = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None _lowerCamelCase : Any = 1_0 def __A ( self : str , UpperCAmelCase : int , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Dict=None ): self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) for a, b in zip(UpperCAmelCase , UpperCAmelCase ): self.assertAlmostEqual(UpperCAmelCase , UpperCAmelCase , delta=UpperCAmelCase , msg=UpperCAmelCase ) def __A ( self : List[Any] ): A_ = {"num_warmup_steps": 2, "num_training_steps": 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) A_ = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {"num_warmup_steps": 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, "num_cycles": 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, "power": 2.0, "lr_end": 1E-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {"num_warmup_steps": 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): A_ , A_ = data A_ = scheduler_func(self.optimizer , **UpperCAmelCase ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) A_ = unwrap_schedule(UpperCAmelCase , self.num_steps ) self.assertListAlmostEqual( UpperCAmelCase , UpperCAmelCase , tol=1E-2 , msg=f'''failed for {scheduler_func} in normal scheduler''' , ) A_ = scheduler_func(self.optimizer , **UpperCAmelCase ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(UpperCAmelCase ) # wrap to test picklability of the schedule A_ = unwrap_and_save_reload_schedule(UpperCAmelCase , self.num_steps ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase , msg=f'''failed for {scheduler_func} in save and reload''' ) class _a : """simple docstring""" def __init__( self : List[str] , UpperCAmelCase : List[str] ): A_ = fn def __call__( self : Union[str, Any] , *UpperCAmelCase : str , **UpperCAmelCase : Optional[Any] ): return self.fn(*UpperCAmelCase , **UpperCAmelCase ) @classmethod def __A ( self : Dict , UpperCAmelCase : List[str] ): A_ = list(map(self , scheduler.lr_lambdas ) )
329
1
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings A_ = r''' [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: title_sep (`str`, *optional*, defaults to `" / "`): Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`]. doc_sep (`str`, *optional*, defaults to `" // "`): Separator inserted between the text of the retrieved document and the original input when calling [`RagRetriever`]. n_docs (`int`, *optional*, defaults to 5): Number of documents to retrieve. max_combined_length (`int`, *optional*, defaults to 300): Max length of contextualized input returned by [`~RagRetriever.__call__`]. retrieval_vector_size (`int`, *optional*, defaults to 768): Dimensionality of the document embeddings indexed by [`RagRetriever`]. retrieval_batch_size (`int`, *optional*, defaults to 8): Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated [`RagRetriever`]. dataset (`str`, *optional*, defaults to `"wiki_dpr"`): A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids using `datasets.list_datasets()`). dataset_split (`str`, *optional*, defaults to `"train"`) Which split of the `dataset` to load. index_name (`str`, *optional*, defaults to `"compressed"`) The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and `"compressed"`. index_path (`str`, *optional*) The path to the serialized faiss index on disk. passages_path (`str`, *optional*): A path to text passages compatible with the faiss index. Required if using [`~models.rag.retrieval_rag.LegacyIndex`] use_dummy_dataset (`bool`, *optional*, defaults to `False`) Whether to load a "dummy" variant of the dataset specified by `dataset`. label_smoothing (`float`, *optional*, defaults to 0.0): Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. do_marginalize (`bool`, *optional*, defaults to `False`): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*, defaults to `False`): Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation. do_deduplication (`bool`, *optional*, defaults to `True`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. exclude_bos_score (`bool`, *optional*, defaults to `False`): Whether or not to disregard the BOS token when computing the loss. output_retrieved(`bool`, *optional*, defaults to `False`): If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask` are returned. See returned tensors for more detail. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). forced_eos_token_id (`int`, *optional*): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. ''' @add_start_docstrings(__a ) class lowercase( __a ): '''simple docstring''' lowercase__ = "rag" lowercase__ = True def __init__( self: Union[str, Any], a_: int=None, a_: Tuple=True, a_: Optional[int]=None, a_: List[str]=None, a_: int=None, a_: Optional[Any]=None, a_: List[str]=None, a_: Optional[Any]=" / ", a_: Tuple=" // ", a_: List[Any]=5, a_: Dict=300, a_: Tuple=768, a_: Optional[Any]=8, a_: int="wiki_dpr", a_: Any="train", a_: Optional[int]="compressed", a_: Optional[int]=None, a_: List[Any]=None, a_: Optional[Any]=False, a_: str=False, a_: Dict=0.0, a_: Union[str, Any]=True, a_: Union[str, Any]=False, a_: str=False, a_: List[str]=False, a_: Union[str, Any]=True, a_: Any=None, **a_: List[Any], ): '''simple docstring''' super().__init__( bos_token_id=a_, pad_token_id=a_, eos_token_id=a_, decoder_start_token_id=a_, forced_eos_token_id=a_, is_encoder_decoder=a_, prefix=a_, vocab_size=a_, **a_, ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" _snake_case : Union[str, Any] = kwargs.pop("""question_encoder""" ) _snake_case : List[str] = question_encoder_config.pop("""model_type""" ) _snake_case : Union[str, Any] = kwargs.pop("""generator""" ) _snake_case : Any = decoder_config.pop("""model_type""" ) from ..auto.configuration_auto import AutoConfig _snake_case : Union[str, Any] = AutoConfig.for_model(a_, **a_ ) _snake_case : Optional[Any] = AutoConfig.for_model(a_, **a_ ) _snake_case : Any = reduce_loss _snake_case : Optional[int] = label_smoothing _snake_case : Dict = exclude_bos_score _snake_case : int = do_marginalize _snake_case : Optional[Any] = title_sep _snake_case : Any = doc_sep _snake_case : List[str] = n_docs _snake_case : Tuple = max_combined_length _snake_case : Optional[Any] = dataset _snake_case : Union[str, Any] = dataset_split _snake_case : Tuple = index_name _snake_case : Any = retrieval_vector_size _snake_case : Union[str, Any] = retrieval_batch_size _snake_case : str = passages_path _snake_case : Tuple = index_path _snake_case : List[Any] = use_dummy_dataset _snake_case : Optional[Any] = output_retrieved _snake_case : Tuple = do_deduplication _snake_case : Union[str, Any] = use_cache if self.forced_eos_token_id is None: _snake_case : Dict = getattr(self.generator, """forced_eos_token_id""", a_ ) @classmethod def UpperCamelCase_ ( cls: Any, a_: PretrainedConfig, a_: PretrainedConfig, **a_: Optional[Any] ): '''simple docstring''' return cls(question_encoder=question_encoder_config.to_dict(), generator=generator_config.to_dict(), **a_ ) def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : Optional[int] = copy.deepcopy(self.__dict__ ) _snake_case : List[str] = self.question_encoder.to_dict() _snake_case : Tuple = self.generator.to_dict() _snake_case : Dict = self.__class__.model_type return output
64
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase__ : Dict = { 'MIT/ast-finetuned-audioset-10-10-0.4593': ( 'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json' ), } class lowerCAmelCase_ (a__ ): """simple docstring""" __UpperCamelCase : Optional[int] = '''audio-spectrogram-transformer''' def __init__(self , SCREAMING_SNAKE_CASE__=7_68 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=30_72 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1E-12 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=10 , SCREAMING_SNAKE_CASE__=10 , SCREAMING_SNAKE_CASE__=10_24 , SCREAMING_SNAKE_CASE__=1_28 , **SCREAMING_SNAKE_CASE__ , ) -> Tuple: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = hidden_size SCREAMING_SNAKE_CASE__ : str = num_hidden_layers SCREAMING_SNAKE_CASE__ : int = num_attention_heads SCREAMING_SNAKE_CASE__ : Tuple = intermediate_size SCREAMING_SNAKE_CASE__ : Optional[int] = hidden_act SCREAMING_SNAKE_CASE__ : Any = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : List[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : int = initializer_range SCREAMING_SNAKE_CASE__ : int = layer_norm_eps SCREAMING_SNAKE_CASE__ : Dict = patch_size SCREAMING_SNAKE_CASE__ : Optional[int] = qkv_bias SCREAMING_SNAKE_CASE__ : Optional[int] = frequency_stride SCREAMING_SNAKE_CASE__ : Any = time_stride SCREAMING_SNAKE_CASE__ : Optional[int] = max_length SCREAMING_SNAKE_CASE__ : Any = num_mel_bins
25
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCamelCase : Any = { "configuration_convbert": ["CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvBertConfig", "ConvBertOnnxConfig"], "tokenization_convbert": ["ConvBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[Any] = ["ConvBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[int] = [ "CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvBertForMaskedLM", "ConvBertForMultipleChoice", "ConvBertForQuestionAnswering", "ConvBertForSequenceClassification", "ConvBertForTokenClassification", "ConvBertLayer", "ConvBertModel", "ConvBertPreTrainedModel", "load_tf_weights_in_convbert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Union[str, Any] = [ "TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFConvBertForMaskedLM", "TFConvBertForMultipleChoice", "TFConvBertForQuestionAnswering", "TFConvBertForSequenceClassification", "TFConvBertForTokenClassification", "TFConvBertLayer", "TFConvBertModel", "TFConvBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys _lowerCamelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
371
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowerCamelCase : Any = {"configuration_vit_mae": ["VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTMAEConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : int = [ "VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTMAEForPreTraining", "ViTMAELayer", "ViTMAEModel", "ViTMAEPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Union[str, Any] = [ "TFViTMAEForPreTraining", "TFViTMAEModel", "TFViTMAEPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys _lowerCamelCase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
249
0
import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase = OpenAIGPTTokenizer lowerCamelCase = OpenAIGPTTokenizerFast lowerCamelCase = True lowerCamelCase = False def snake_case__ ( self : List[Any] )-> str: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt A__ = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] A__ = dict(zip(lowercase_,range(len(lowercase_ ) ) ) ) A__ = ['#version: 0.2', 'l o', 'lo w', 'e r</w>', ''] A__ = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['vocab_file'] ) A__ = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file,'w' ) as fp: fp.write(json.dumps(lowercase_ ) ) with open(self.merges_file,'w' ) as fp: fp.write('\n'.join(lowercase_ ) ) def snake_case__ ( self : Optional[int],lowercase_ : int )-> Optional[int]: '''simple docstring''' return "lower newer", "lower newer" def snake_case__ ( self : List[str] )-> Union[str, Any]: '''simple docstring''' A__ = OpenAIGPTTokenizer(self.vocab_file,self.merges_file ) A__ = 'lower' A__ = ['low', 'er</w>'] A__ = tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_,lowercase_ ) A__ = tokens + ['<unk>'] A__ = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_ ),lowercase_ ) def snake_case__ ( self : Optional[Any],lowercase_ : Optional[int]=1_5 )-> str: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): A__ = self.rust_tokenizer_class.from_pretrained(lowercase_,**lowercase_ ) # Simple input A__ = 'This is a simple input' A__ = ['This is a simple input 1', 'This is a simple input 2'] A__ = ('This is a simple input', 'This is a pair') A__ = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(lowercase_,tokenizer_r.encode,lowercase_,max_length=lowercase_,padding='max_length' ) # Simple input self.assertRaises(lowercase_,tokenizer_r.encode_plus,lowercase_,max_length=lowercase_,padding='max_length' ) # Simple input self.assertRaises( lowercase_,tokenizer_r.batch_encode_plus,lowercase_,max_length=lowercase_,padding='max_length',) # Pair input self.assertRaises(lowercase_,tokenizer_r.encode,lowercase_,max_length=lowercase_,padding='max_length' ) # Pair input self.assertRaises(lowercase_,tokenizer_r.encode_plus,lowercase_,max_length=lowercase_,padding='max_length' ) # Pair input self.assertRaises( lowercase_,tokenizer_r.batch_encode_plus,lowercase_,max_length=lowercase_,padding='max_length',) def snake_case__ ( self : List[str] )-> Optional[int]: '''simple docstring''' pass @require_ftfy @require_spacy @require_tokenizers class A ( _UpperCAmelCase ): """simple docstring""" pass
7
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def __snake_case( _lowerCAmelCase ) -> Optional[int]: snake_case__ : int = FileLock(str(tmpdir / """foo.lock""" ) ) snake_case__ : Dict = FileLock(str(tmpdir / """foo.lock""" ) ) snake_case__ : List[str] = 0.01 with locka.acquire(): with pytest.raises(_lowerCAmelCase ): snake_case__ : str = time.time() locka.acquire(_lowerCAmelCase ) assert time.time() - _start > timeout def __snake_case( _lowerCAmelCase ) -> Tuple: snake_case__ : Dict = """a""" * 1_000 + """.lock""" snake_case__ : int = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(_lowerCAmelCase ) assert len(os.path.basename(locka._lock_file ) ) <= 255 snake_case__ : Dict = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(_lowerCAmelCase ): locka.acquire(0 )
35
0
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class UpperCamelCase__( unittest.TestCase , __A ): def snake_case__ ( self ) -> int: A__ = load_tool('text-classification' ) self.tool.setup() A__ = load_tool('text-classification' ,remote=lowerCAmelCase__ ) def snake_case__ ( self ) -> List[Any]: A__ = self.tool('That\'s quite cool' ,['positive', 'negative'] ) self.assertEqual(lowerCAmelCase__ ,'positive' ) def snake_case__ ( self ) -> Optional[Any]: A__ = self.remote_tool('That\'s quite cool' ,['positive', 'negative'] ) self.assertEqual(lowerCAmelCase__ ,'positive' ) def snake_case__ ( self ) -> Dict: A__ = self.tool(text='That\'s quite cool' ,labels=['positive', 'negative'] ) self.assertEqual(lowerCAmelCase__ ,'positive' ) def snake_case__ ( self ) -> Dict: A__ = self.remote_tool(text='That\'s quite cool' ,labels=['positive', 'negative'] ) self.assertEqual(lowerCAmelCase__ ,'positive' )
367
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class UpperCamelCase__( unittest.TestCase ): def snake_case__ ( self ) -> int: A__ = tempfile.mkdtemp() A__ = BlipImageProcessor() A__ = GPTaTokenizer.from_pretrained('hf-internal-testing/tiny-random-GPT2Model' ) A__ = BertTokenizerFast.from_pretrained('hf-internal-testing/tiny-random-bert' ) A__ = InstructBlipProcessor(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def snake_case__ ( self ,**__UpperCAmelCase ) -> str: return AutoProcessor.from_pretrained(self.tmpdirname ,**__UpperCAmelCase ).tokenizer def snake_case__ ( self ,**__UpperCAmelCase ) -> Tuple: return AutoProcessor.from_pretrained(self.tmpdirname ,**__UpperCAmelCase ).image_processor def snake_case__ ( self ,**__UpperCAmelCase ) -> Tuple: return AutoProcessor.from_pretrained(self.tmpdirname ,**__UpperCAmelCase ).qformer_tokenizer def snake_case__ ( self ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) def snake_case__ ( self ) -> str: A__ = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )] A__ = [Image.fromarray(np.moveaxis(__UpperCAmelCase ,0 ,-1 ) ) for x in image_inputs] return image_inputs def snake_case__ ( self ) -> Any: A__ = InstructBlipProcessor( tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ,qformer_tokenizer=self.get_qformer_tokenizer() ,) processor.save_pretrained(self.tmpdirname ) A__ = self.get_tokenizer(bos_token='(BOS)' ,eos_token='(EOS)' ) A__ = self.get_image_processor(do_normalize=__UpperCAmelCase ,padding_value=1.0 ) A__ = InstructBlipProcessor.from_pretrained( self.tmpdirname ,bos_token='(BOS)' ,eos_token='(EOS)' ,do_normalize=__UpperCAmelCase ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,__UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,__UpperCAmelCase ) self.assertIsInstance(processor.qformer_tokenizer ,__UpperCAmelCase ) def snake_case__ ( self ) -> str: A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = self.get_qformer_tokenizer() A__ = InstructBlipProcessor( tokenizer=__UpperCAmelCase ,image_processor=__UpperCAmelCase ,qformer_tokenizer=__UpperCAmelCase ) A__ = self.prepare_image_inputs() A__ = image_processor(__UpperCAmelCase ,return_tensors='np' ) A__ = processor(images=__UpperCAmelCase ,return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1e-2 ) def snake_case__ ( self ) -> Tuple: A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = self.get_qformer_tokenizer() A__ = InstructBlipProcessor( tokenizer=__UpperCAmelCase ,image_processor=__UpperCAmelCase ,qformer_tokenizer=__UpperCAmelCase ) A__ = 'lower newer' A__ = processor(text=__UpperCAmelCase ) A__ = tokenizer(__UpperCAmelCase ,return_token_type_ids=__UpperCAmelCase ) A__ = qformer_tokenizer(__UpperCAmelCase ,return_token_type_ids=__UpperCAmelCase ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] ,encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] ,encoded_processor['qformer_' + key] ) def snake_case__ ( self ) -> str: A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = self.get_qformer_tokenizer() A__ = InstructBlipProcessor( tokenizer=__UpperCAmelCase ,image_processor=__UpperCAmelCase ,qformer_tokenizer=__UpperCAmelCase ) A__ = 'lower newer' A__ = self.prepare_image_inputs() A__ = processor(text=__UpperCAmelCase ,images=__UpperCAmelCase ) self.assertListEqual( list(inputs.keys() ) ,['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'] ,) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def snake_case__ ( self ) -> Tuple: A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = self.get_qformer_tokenizer() A__ = InstructBlipProcessor( tokenizer=__UpperCAmelCase ,image_processor=__UpperCAmelCase ,qformer_tokenizer=__UpperCAmelCase ) A__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A__ = processor.batch_decode(__UpperCAmelCase ) A__ = tokenizer.batch_decode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase ,__UpperCAmelCase ) def snake_case__ ( self ) -> Any: A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = self.get_qformer_tokenizer() A__ = InstructBlipProcessor( tokenizer=__UpperCAmelCase ,image_processor=__UpperCAmelCase ,qformer_tokenizer=__UpperCAmelCase ) A__ = 'lower newer' A__ = self.prepare_image_inputs() A__ = processor(text=__UpperCAmelCase ,images=__UpperCAmelCase ) self.assertListEqual( list(inputs.keys() ) ,['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'] ,)
154
0
def a__ ( A_, A_ = False ): '''simple docstring''' if not isinstance(A_, A_ ): __magic_name__ = f'''Expected string as input, found {type(A_ )}''' raise ValueError(A_ ) if not isinstance(A_, A_ ): __magic_name__ = f'''Expected boolean as use_pascal parameter, found {type(A_ )}''' raise ValueError(A_ ) __magic_name__ = input_str.split("""_""" ) __magic_name__ = 0 if use_pascal else 1 __magic_name__ = words[start_index:] __magic_name__ = [word[0].upper() + word[1:] for word in words_to_capitalize] __magic_name__ = """""" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
88
from __future__ import annotations from collections.abc import Iterator class UpperCAmelCase_ : '''simple docstring''' def __init__( self : Dict , UpperCamelCase__ : int ) -> None: """simple docstring""" __magic_name__ = value __magic_name__ = None __magic_name__ = None class UpperCAmelCase_ : '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase__ : Node ) -> None: """simple docstring""" __magic_name__ = tree def _lowercase ( self : Optional[Any] , UpperCamelCase__ : Node | None ) -> int: """simple docstring""" if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : int ) -> Iterator[int]: """simple docstring""" yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
88
1
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : Optional[Any] = (PNDMScheduler,) A : Union[str, Any] = (("num_inference_steps", 50),) def snake_case__ ( self : Any , **_lowerCAmelCase : Optional[Any] ): __snake_case : int = { """num_train_timesteps""": 10_00, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**_lowerCAmelCase ) return config def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Optional[int]=0 , **_lowerCAmelCase : Dict ): __snake_case : Tuple = dict(self.forward_default_kwargs ) __snake_case : int = kwargs.pop("""num_inference_steps""" , _lowerCAmelCase ) __snake_case : Any = self.dummy_sample __snake_case : int = 0.1 * sample __snake_case : Optional[Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __snake_case : str = self.get_scheduler_config(**_lowerCAmelCase ) __snake_case : Optional[Any] = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(_lowerCAmelCase ) # copy over dummy past residuals __snake_case : int = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowerCAmelCase ) __snake_case : str = scheduler_class.from_pretrained(_lowerCAmelCase ) new_scheduler.set_timesteps(_lowerCAmelCase ) # copy over dummy past residuals __snake_case : Union[str, Any] = dummy_past_residuals[:] __snake_case : Union[str, Any] = scheduler.step_prk(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample __snake_case : int = new_scheduler.step_prk(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" __snake_case : List[Any] = scheduler.step_plms(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample __snake_case : Optional[int] = new_scheduler.step_plms(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case__ ( self : int ): pass def snake_case__ ( self : Optional[int] , _lowerCAmelCase : str=0 , **_lowerCAmelCase : Tuple ): __snake_case : str = dict(self.forward_default_kwargs ) __snake_case : Any = kwargs.pop("""num_inference_steps""" , _lowerCAmelCase ) __snake_case : Optional[Any] = self.dummy_sample __snake_case : str = 0.1 * sample __snake_case : Union[str, Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __snake_case : Optional[int] = self.get_scheduler_config() __snake_case : int = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(_lowerCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) __snake_case : Optional[int] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowerCAmelCase ) __snake_case : Union[str, Any] = scheduler_class.from_pretrained(_lowerCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(_lowerCAmelCase ) # copy over dummy past residual (must be after setting timesteps) __snake_case : Any = dummy_past_residuals[:] __snake_case : List[Any] = scheduler.step_prk(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample __snake_case : Union[str, Any] = new_scheduler.step_prk(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" __snake_case : str = scheduler.step_plms(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample __snake_case : str = new_scheduler.step_plms(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case__ ( self : Dict , **_lowerCAmelCase : str ): __snake_case : Dict = self.scheduler_classes[0] __snake_case : Union[str, Any] = self.get_scheduler_config(**_lowerCAmelCase ) __snake_case : str = scheduler_class(**_lowerCAmelCase ) __snake_case : int = 10 __snake_case : int = self.dummy_model() __snake_case : int = self.dummy_sample_deter scheduler.set_timesteps(_lowerCAmelCase ) for i, t in enumerate(scheduler.prk_timesteps ): __snake_case : int = model(_lowerCAmelCase , _lowerCAmelCase ) __snake_case : Tuple = scheduler.step_prk(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): __snake_case : Union[str, Any] = model(_lowerCAmelCase , _lowerCAmelCase ) __snake_case : Optional[Any] = scheduler.step_plms(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample return sample def snake_case__ ( self : Any ): __snake_case : List[Any] = dict(self.forward_default_kwargs ) __snake_case : Union[str, Any] = kwargs.pop("""num_inference_steps""" , _lowerCAmelCase ) for scheduler_class in self.scheduler_classes: __snake_case : Optional[Any] = self.get_scheduler_config() __snake_case : Tuple = scheduler_class(**_lowerCAmelCase ) __snake_case : Any = self.dummy_sample __snake_case : int = 0.1 * sample if num_inference_steps is not None and hasattr(_lowerCAmelCase , """set_timesteps""" ): scheduler.set_timesteps(_lowerCAmelCase ) elif num_inference_steps is not None and not hasattr(_lowerCAmelCase , """set_timesteps""" ): __snake_case : List[str] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __snake_case : int = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] __snake_case : Optional[int] = dummy_past_residuals[:] __snake_case : List[Any] = scheduler.step_prk(_lowerCAmelCase , 0 , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample __snake_case : int = scheduler.step_prk(_lowerCAmelCase , 1 , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) __snake_case : Optional[Any] = scheduler.step_plms(_lowerCAmelCase , 0 , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample __snake_case : Tuple = scheduler.step_plms(_lowerCAmelCase , 1 , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def snake_case__ ( self : Dict ): for timesteps in [1_00, 10_00]: self.check_over_configs(num_train_timesteps=_lowerCAmelCase ) def snake_case__ ( self : Dict ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_lowerCAmelCase ) __snake_case : Optional[Any] = self.scheduler_classes[0] __snake_case : str = self.get_scheduler_config(steps_offset=1 ) __snake_case : Dict = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [9_01, 8_51, 8_51, 8_01, 8_01, 7_51, 7_51, 7_01, 7_01, 6_51, 6_51, 6_01, 6_01, 5_01, 4_01, 3_01, 2_01, 1_01, 1] ) , ) def snake_case__ ( self : int ): for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=_lowerCAmelCase , beta_end=_lowerCAmelCase ) def snake_case__ ( self : Dict ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowerCAmelCase ) def snake_case__ ( self : List[str] ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCAmelCase ) def snake_case__ ( self : Dict ): for t in [1, 5, 10]: self.check_over_forward(time_step=_lowerCAmelCase ) def snake_case__ ( self : List[str] ): for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 1_00] ): self.check_over_forward(num_inference_steps=_lowerCAmelCase ) def snake_case__ ( self : Optional[int] ): # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 __snake_case : str = 27 for scheduler_class in self.scheduler_classes: __snake_case : List[str] = self.dummy_sample __snake_case : int = 0.1 * sample __snake_case : str = self.get_scheduler_config() __snake_case : Dict = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(_lowerCAmelCase ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): __snake_case : Optional[int] = scheduler.step_prk(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample def snake_case__ ( self : Optional[int] ): with self.assertRaises(_lowerCAmelCase ): __snake_case : Any = self.scheduler_classes[0] __snake_case : Tuple = self.get_scheduler_config() __snake_case : List[str] = scheduler_class(**_lowerCAmelCase ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def snake_case__ ( self : Dict ): __snake_case : Union[str, Any] = self.full_loop() __snake_case : Tuple = torch.sum(torch.abs(_lowerCAmelCase ) ) __snake_case : Optional[int] = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 198.1318 ) < 1e-2 assert abs(result_mean.item() - 0.2580 ) < 1e-3 def snake_case__ ( self : Tuple ): __snake_case : Dict = self.full_loop(prediction_type="""v_prediction""" ) __snake_case : List[str] = torch.sum(torch.abs(_lowerCAmelCase ) ) __snake_case : Union[str, Any] = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 67.3986 ) < 1e-2 assert abs(result_mean.item() - 0.0878 ) < 1e-3 def snake_case__ ( self : int ): # We specify different beta, so that the first alpha is 0.99 __snake_case : List[str] = self.full_loop(set_alpha_to_one=_lowerCAmelCase , beta_start=0.01 ) __snake_case : Tuple = torch.sum(torch.abs(_lowerCAmelCase ) ) __snake_case : Optional[int] = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 230.0399 ) < 1e-2 assert abs(result_mean.item() - 0.2995 ) < 1e-3 def snake_case__ ( self : List[str] ): # We specify different beta, so that the first alpha is 0.99 __snake_case : int = self.full_loop(set_alpha_to_one=_lowerCAmelCase , beta_start=0.01 ) __snake_case : Dict = torch.sum(torch.abs(_lowerCAmelCase ) ) __snake_case : List[str] = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 186.9482 ) < 1e-2 assert abs(result_mean.item() - 0.2434 ) < 1e-3
356
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : Optional[int] = "microsoft/speecht5_tts" A : List[Any] = ( "This is a tool that reads an English text out loud. It takes an input named `text` which should contain the " "text to read (in English) and returns a waveform object containing the sound." ) A : str = "text_reader" A : Optional[Any] = SpeechTaProcessor A : Any = SpeechTaForTextToSpeech A : Optional[Any] = SpeechTaHifiGan A : str = ["text"] A : Union[str, Any] = ["audio"] def snake_case__ ( self : List[Any] ): if self.post_processor is None: __snake_case : Tuple = """microsoft/speecht5_hifigan""" super().setup() def snake_case__ ( self : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple=None ): __snake_case : str = self.pre_processor(text=_lowerCAmelCase , return_tensors="""pt""" , truncation=_lowerCAmelCase ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("""Datasets needs to be installed if not passing speaker embeddings.""" ) __snake_case : List[Any] = load_dataset("""Matthijs/cmu-arctic-xvectors""" , split="""validation""" ) __snake_case : str = torch.tensor(embeddings_dataset[73_05]["""xvector"""] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def snake_case__ ( self : List[Any] , _lowerCAmelCase : Dict ): with torch.no_grad(): return self.model.generate_speech(**_lowerCAmelCase ) def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : int ): with torch.no_grad(): return self.post_processor(_lowerCAmelCase ).cpu().detach()
20
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available a_ : Dict = { """configuration_xlm""": ["""XLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMConfig""", """XLMOnnxConfig"""], """tokenization_xlm""": ["""XLMTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[Any] = [ """XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMForMultipleChoice""", """XLMForQuestionAnswering""", """XLMForQuestionAnsweringSimple""", """XLMForSequenceClassification""", """XLMForTokenClassification""", """XLMModel""", """XLMPreTrainedModel""", """XLMWithLMHeadModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : str = [ """TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLMForMultipleChoice""", """TFXLMForQuestionAnsweringSimple""", """TFXLMForSequenceClassification""", """TFXLMForTokenClassification""", """TFXLMMainLayer""", """TFXLMModel""", """TFXLMPreTrainedModel""", """TFXLMWithLMHeadModel""", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys a_ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
75
'''simple docstring''' from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class __UpperCamelCase ( lowerCamelCase__ ): def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" return 0.0 def a_ ( __snake_case : np.ndarray , __snake_case : int ) -> tuple[int | float, int | float]: """simple docstring""" lowerCamelCase_ =min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) lowerCamelCase_ =max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def a_ ( __snake_case : FilterType , __snake_case : int ) -> None: """simple docstring""" lowerCamelCase_ =512 lowerCamelCase_ =[1] + [0] * (size - 1) lowerCamelCase_ =[filter_type.process(__snake_case ) for item in inputs] lowerCamelCase_ =[0] * (samplerate - size) # zero-padding outputs += filler lowerCamelCase_ =np.abs(np.fft.fft(__snake_case ) ) lowerCamelCase_ =20 * np.logaa(__snake_case ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('''Frequency (Hz)''' ) plt.xscale('''log''' ) # Display within reasonable bounds lowerCamelCase_ =get_bounds(__snake_case , __snake_case ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel('''Gain (dB)''' ) plt.plot(__snake_case ) plt.show() def a_ ( __snake_case : FilterType , __snake_case : int ) -> None: """simple docstring""" lowerCamelCase_ =512 lowerCamelCase_ =[1] + [0] * (size - 1) lowerCamelCase_ =[filter_type.process(__snake_case ) for item in inputs] lowerCamelCase_ =[0] * (samplerate - size) # zero-padding outputs += filler lowerCamelCase_ =np.angle(np.fft.fft(__snake_case ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('''Frequency (Hz)''' ) plt.xscale('''log''' ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel('''Phase shift (Radians)''' ) plt.plot(np.unwrap(__snake_case , -2 * pi ) ) plt.show()
75
1
import unittest import torch from torch import nn from diffusers.models.activations import get_activation class a_ ( unittest.TestCase ): def __a ( self :Optional[Any]) -> Dict: UpperCAmelCase_ = get_activation('''swish''') self.assertIsInstance(_lowercase , nn.SiLU) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa)).item() , 0) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa)).item() , 20) def __a ( self :List[Any]) -> List[Any]: UpperCAmelCase_ = get_activation('''silu''') self.assertIsInstance(_lowercase , nn.SiLU) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa)).item() , 0) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa)).item() , 20) def __a ( self :str) -> Any: UpperCAmelCase_ = get_activation('''mish''') self.assertIsInstance(_lowercase , nn.Mish) self.assertEqual(act(torch.tensor(-200 , dtype=torch.floataa)).item() , 0) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa)).item() , 20) def __a ( self :Dict) -> Union[str, Any]: UpperCAmelCase_ = get_activation('''gelu''') self.assertIsInstance(_lowercase , nn.GELU) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa)).item() , 0) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa)).item() , 20)
360
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "s-JoL/Open-Llama-V1": "https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json", } class a_ ( _snake_case ): UpperCamelCase__ : Dict ="open-llama" def __init__( self :Union[str, Any] , _lowercase :List[Any]=100000 , _lowercase :Dict=4096 , _lowercase :List[Any]=11008 , _lowercase :Optional[int]=32 , _lowercase :Union[str, Any]=32 , _lowercase :List[str]="silu" , _lowercase :Union[str, Any]=2048 , _lowercase :Any=0.02 , _lowercase :Optional[Any]=1E-6 , _lowercase :str=True , _lowercase :str=0 , _lowercase :Any=1 , _lowercase :Optional[Any]=2 , _lowercase :str=False , _lowercase :Dict=True , _lowercase :Optional[Any]=0.1 , _lowercase :Tuple=0.1 , _lowercase :Dict=True , _lowercase :List[Any]=True , _lowercase :Dict=None , **_lowercase :Optional[int] , ) -> List[Any]: UpperCAmelCase_ = vocab_size UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = initializer_range UpperCAmelCase_ = rms_norm_eps UpperCAmelCase_ = use_cache UpperCAmelCase_ = kwargs.pop( '''use_memorry_efficient_attention''' , _lowercase) UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_dropout_prob UpperCAmelCase_ = use_stable_embedding UpperCAmelCase_ = shared_input_output_embedding UpperCAmelCase_ = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , tie_word_embeddings=_lowercase , **_lowercase , ) def __a ( self :int) -> str: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _lowercase) or len(self.rope_scaling) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f"got {self.rope_scaling}") UpperCAmelCase_ = self.rope_scaling.get('''type''' , _lowercase) UpperCAmelCase_ = self.rope_scaling.get('''factor''' , _lowercase) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}") if rope_scaling_factor is None or not isinstance(_lowercase , _lowercase) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}")
344
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __init__( self : List[str] ,lowercase_ : Tuple ,lowercase_ : int=7 ,lowercase_ : List[str]=3 ,lowercase_ : Any=3_0 ,lowercase_ : int=4_0_0 ,lowercase_ : List[str]=True ,lowercase_ : Tuple=None ,lowercase_ : int=0.9 ,lowercase_ : str=None ,lowercase_ : List[str]=True ,lowercase_ : str=[0.5, 0.5, 0.5] ,lowercase_ : Optional[Any]=[0.5, 0.5, 0.5] ,): lowerCAmelCase__ : Optional[int] = size if size is not None else {'''shortest_edge''': 3_0} lowerCAmelCase__ : int = crop_size if crop_size is not None else {'''height''': 3_0, '''width''': 3_0} lowerCAmelCase__ : List[str] = parent lowerCAmelCase__ : Any = batch_size lowerCAmelCase__ : Union[str, Any] = num_channels lowerCAmelCase__ : List[str] = min_resolution lowerCAmelCase__ : int = max_resolution lowerCAmelCase__ : Any = do_resize_and_center_crop lowerCAmelCase__ : Tuple = size lowerCAmelCase__ : List[str] = crop_pct lowerCAmelCase__ : Union[str, Any] = crop_size lowerCAmelCase__ : Any = do_normalize lowerCAmelCase__ : int = image_mean lowerCAmelCase__ : List[Any] = image_std def __lowerCAmelCase ( self : Dict ): return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class SCREAMING_SNAKE_CASE ( a_ , unittest.TestCase ): """simple docstring""" lowercase__ = PoolFormerImageProcessor if is_vision_available() else None def __lowerCAmelCase ( self : int ): lowerCAmelCase__ : str = PoolFormerImageProcessingTester(self ) @property def __lowerCAmelCase ( self : List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self : Tuple ): lowerCAmelCase__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ ,'''do_resize_and_center_crop''' ) ) self.assertTrue(hasattr(lowercase_ ,'''size''' ) ) self.assertTrue(hasattr(lowercase_ ,'''crop_pct''' ) ) self.assertTrue(hasattr(lowercase_ ,'''do_normalize''' ) ) self.assertTrue(hasattr(lowercase_ ,'''image_mean''' ) ) self.assertTrue(hasattr(lowercase_ ,'''image_std''' ) ) def __lowerCAmelCase ( self : str ): lowerCAmelCase__ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'''shortest_edge''': 3_0} ) self.assertEqual(image_processor.crop_size ,{'''height''': 3_0, '''width''': 3_0} ) lowerCAmelCase__ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ,size=4_2 ,crop_size=8_4 ) self.assertEqual(image_processor.size ,{'''shortest_edge''': 4_2} ) self.assertEqual(image_processor.crop_size ,{'''height''': 8_4, '''width''': 8_4} ) def __lowerCAmelCase ( self : List[Any] ): pass def __lowerCAmelCase ( self : Optional[int] ): # Initialize image_processing lowerCAmelCase__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase__ : Tuple = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ ,Image.Image ) # Test not batched input lowerCAmelCase__ : Dict = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) # Test batched lowerCAmelCase__ : Optional[Any] = image_processing(lowercase_ ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) def __lowerCAmelCase ( self : Tuple ): # Initialize image_processing lowerCAmelCase__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase__ : List[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowercase_ ,numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ ,np.ndarray ) # Test not batched input lowerCAmelCase__ : Optional[Any] = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) # Test batched lowerCAmelCase__ : Any = image_processing(lowercase_ ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) def __lowerCAmelCase ( self : Optional[int] ): # Initialize image_processing lowerCAmelCase__ : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase__ : List[str] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowercase_ ,torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ ,torch.Tensor ) # Test not batched input lowerCAmelCase__ : List[str] = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) # Test batched lowerCAmelCase__ : List[str] = image_processing(lowercase_ ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,)
106
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __init__( self : List[str] ,lowercase_ : Dict ,lowercase_ : Dict=7 ,lowercase_ : Optional[int]=3 ,lowercase_ : int=3_0 ,lowercase_ : Optional[Any]=4_0_0 ,lowercase_ : Any=True ,lowercase_ : List[str]=None ,lowercase_ : str=True ,lowercase_ : List[Any]=[0.5, 0.5, 0.5] ,lowercase_ : List[str]=[0.5, 0.5, 0.5] ,lowercase_ : Any=True ,lowercase_ : Union[str, Any]=1 / 2_5_5 ,lowercase_ : str=True ,): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowerCAmelCase__ : str = size if size is not None else {'''shortest_edge''': 1_8, '''longest_edge''': 1_3_3_3} lowerCAmelCase__ : Any = parent lowerCAmelCase__ : Tuple = batch_size lowerCAmelCase__ : List[str] = num_channels lowerCAmelCase__ : Optional[Any] = min_resolution lowerCAmelCase__ : Union[str, Any] = max_resolution lowerCAmelCase__ : Optional[int] = do_resize lowerCAmelCase__ : str = size lowerCAmelCase__ : Union[str, Any] = do_normalize lowerCAmelCase__ : List[str] = image_mean lowerCAmelCase__ : str = image_std lowerCAmelCase__ : Optional[Any] = do_rescale lowerCAmelCase__ : Union[str, Any] = rescale_factor lowerCAmelCase__ : Optional[Any] = do_pad def __lowerCAmelCase ( self : Optional[Any] ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def __lowerCAmelCase ( self : List[str] ,lowercase_ : List[Any] ,lowercase_ : int=False ): if not batched: lowerCAmelCase__ : Tuple = image_inputs[0] if isinstance(lowercase_ ,Image.Image ): lowerCAmelCase__ ,lowerCAmelCase__ : List[str] = image.size else: lowerCAmelCase__ ,lowerCAmelCase__ : Optional[int] = image.shape[1], image.shape[2] if w < h: lowerCAmelCase__ : Any = int(self.size['''shortest_edge'''] * h / w ) lowerCAmelCase__ : str = self.size['''shortest_edge'''] elif w > h: lowerCAmelCase__ : Union[str, Any] = self.size['''shortest_edge'''] lowerCAmelCase__ : Dict = int(self.size['''shortest_edge'''] * w / h ) else: lowerCAmelCase__ : List[str] = self.size['''shortest_edge'''] lowerCAmelCase__ : str = self.size['''shortest_edge'''] else: lowerCAmelCase__ : Optional[Any] = [] for image in image_inputs: lowerCAmelCase__ ,lowerCAmelCase__ : Any = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCAmelCase__ : List[str] = max(lowercase_ ,key=lambda lowercase_ : item[0] )[0] lowerCAmelCase__ : Any = max(lowercase_ ,key=lambda lowercase_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE ( a_ , unittest.TestCase ): """simple docstring""" lowercase__ = DetaImageProcessor if is_vision_available() else None def __lowerCAmelCase ( self : Any ): lowerCAmelCase__ : Optional[Any] = DetaImageProcessingTester(self ) @property def __lowerCAmelCase ( self : Any ): return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self : List[str] ): lowerCAmelCase__ : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ ,'''image_mean''' ) ) self.assertTrue(hasattr(lowercase_ ,'''image_std''' ) ) self.assertTrue(hasattr(lowercase_ ,'''do_normalize''' ) ) self.assertTrue(hasattr(lowercase_ ,'''do_resize''' ) ) self.assertTrue(hasattr(lowercase_ ,'''do_rescale''' ) ) self.assertTrue(hasattr(lowercase_ ,'''do_pad''' ) ) self.assertTrue(hasattr(lowercase_ ,'''size''' ) ) def __lowerCAmelCase ( self : Dict ): lowerCAmelCase__ : Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'''shortest_edge''': 1_8, '''longest_edge''': 1_3_3_3} ) self.assertEqual(image_processor.do_pad ,lowercase_ ) def __lowerCAmelCase ( self : List[str] ): pass def __lowerCAmelCase ( self : Union[str, Any] ): # Initialize image_processing lowerCAmelCase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase__ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ ,Image.Image ) # Test not batched input lowerCAmelCase__ : List[Any] = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values lowerCAmelCase__ ,lowerCAmelCase__ : Tuple = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched lowerCAmelCase__ ,lowerCAmelCase__ : Optional[int] = self.image_processor_tester.get_expected_values(lowercase_ ,batched=lowercase_ ) lowerCAmelCase__ : Optional[int] = image_processing(lowercase_ ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) def __lowerCAmelCase ( self : Dict ): # Initialize image_processing lowerCAmelCase__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase__ : Tuple = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowercase_ ,numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ ,np.ndarray ) # Test not batched input lowerCAmelCase__ : List[str] = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values lowerCAmelCase__ ,lowerCAmelCase__ : Any = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched lowerCAmelCase__ : str = image_processing(lowercase_ ,return_tensors='''pt''' ).pixel_values lowerCAmelCase__ ,lowerCAmelCase__ : Optional[Any] = self.image_processor_tester.get_expected_values(lowercase_ ,batched=lowercase_ ) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) def __lowerCAmelCase ( self : Union[str, Any] ): # Initialize image_processing lowerCAmelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase__ : Any = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowercase_ ,torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ ,torch.Tensor ) # Test not batched input lowerCAmelCase__ : List[Any] = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values lowerCAmelCase__ ,lowerCAmelCase__ : Any = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched lowerCAmelCase__ : str = image_processing(lowercase_ ,return_tensors='''pt''' ).pixel_values lowerCAmelCase__ ,lowerCAmelCase__ : List[Any] = self.image_processor_tester.get_expected_values(lowercase_ ,batched=lowercase_ ) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) @slow def __lowerCAmelCase ( self : Tuple ): # prepare image and target lowerCAmelCase__ : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' ,'''r''' ) as f: lowerCAmelCase__ : Union[str, Any] = json.loads(f.read() ) lowerCAmelCase__ : str = {'''image_id''': 3_9_7_6_9, '''annotations''': target} # encode them lowerCAmelCase__ : Optional[Any] = DetaImageProcessor() lowerCAmelCase__ : Optional[int] = image_processing(images=lowercase_ ,annotations=lowercase_ ,return_tensors='''pt''' ) # verify pixel values lowerCAmelCase__ : Dict = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['''pixel_values'''].shape ,lowercase_ ) lowerCAmelCase__ : Any = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] ,lowercase_ ,atol=1E-4 ) ) # verify area lowerCAmelCase__ : Tuple = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] ,lowercase_ ) ) # verify boxes lowerCAmelCase__ : List[str] = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape ,lowercase_ ) lowerCAmelCase__ : Tuple = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] ,lowercase_ ,atol=1E-3 ) ) # verify image_id lowerCAmelCase__ : Optional[int] = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] ,lowercase_ ) ) # verify is_crowd lowerCAmelCase__ : List[str] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] ,lowercase_ ) ) # verify class_labels lowerCAmelCase__ : Any = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] ,lowercase_ ) ) # verify orig_size lowerCAmelCase__ : int = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] ,lowercase_ ) ) # verify size lowerCAmelCase__ : str = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] ,lowercase_ ) ) @slow def __lowerCAmelCase ( self : Any ): # prepare image, target and masks_path lowerCAmelCase__ : Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' ,'''r''' ) as f: lowerCAmelCase__ : str = json.loads(f.read() ) lowerCAmelCase__ : Tuple = {'''file_name''': '''000000039769.png''', '''image_id''': 3_9_7_6_9, '''segments_info''': target} lowerCAmelCase__ : Optional[Any] = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them lowerCAmelCase__ : str = DetaImageProcessor(format='''coco_panoptic''' ) lowerCAmelCase__ : Optional[int] = image_processing(images=lowercase_ ,annotations=lowercase_ ,masks_path=lowercase_ ,return_tensors='''pt''' ) # verify pixel values lowerCAmelCase__ : Any = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['''pixel_values'''].shape ,lowercase_ ) lowerCAmelCase__ : int = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] ,lowercase_ ,atol=1E-4 ) ) # verify area lowerCAmelCase__ : Tuple = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] ,lowercase_ ) ) # verify boxes lowerCAmelCase__ : Optional[Any] = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape ,lowercase_ ) lowerCAmelCase__ : str = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] ,lowercase_ ,atol=1E-3 ) ) # verify image_id lowerCAmelCase__ : Union[str, Any] = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] ,lowercase_ ) ) # verify is_crowd lowerCAmelCase__ : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] ,lowercase_ ) ) # verify class_labels lowerCAmelCase__ : List[str] = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] ,lowercase_ ) ) # verify masks lowerCAmelCase__ : Optional[int] = 8_2_2_8_7_3 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() ,lowercase_ ) # verify orig_size lowerCAmelCase__ : List[Any] = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] ,lowercase_ ) ) # verify size lowerCAmelCase__ : Optional[Any] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] ,lowercase_ ) )
106
1
'''simple docstring''' import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def UpperCamelCase ( _lowerCamelCase : Dict , _lowerCamelCase : Dict , _lowerCamelCase : Union[str, Any] ): A__ = AutoConfig.from_pretrained(__lowerCamelCase ) A__ = FlaxAutoModelForSeqaSeqLM.from_config(config=__lowerCamelCase ) A__ = checkpoints.load_tax_checkpoint(__lowerCamelCase ) A__ = "wi_0" in tax_model["target"]["encoder"]["layers_0"]["mlp"] if config.model_type == "t5": A__ = "SelfAttention" if config.model_type == "longt5" and config.encoder_attention_type == "local": A__ = "LocalSelfAttention" elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": A__ = "TransientGlobalSelfAttention" else: raise ValueError( "Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`" " attribute with a value from ['local', 'transient-global]." ) # Encoder for layer_index in range(config.num_layers ): A__ = F"layers_{str(__lowerCamelCase )}" # Self-Attention A__ = tax_model["target"]["encoder"][layer_name]["attention"]["key"]["kernel"] A__ = tax_model["target"]["encoder"][layer_name]["attention"]["out"]["kernel"] A__ = tax_model["target"]["encoder"][layer_name]["attention"]["query"]["kernel"] A__ = tax_model["target"]["encoder"][layer_name]["attention"]["value"]["kernel"] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": A__ = tax_model["target"]["encoder"][layer_name]["attention"]["T5LayerNorm_0"]["scale"] # Layer Normalization A__ = tax_model["target"]["encoder"][layer_name]["pre_attention_layer_norm"]["scale"] if split_mlp_wi: A__ = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_0"]["kernel"] A__ = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: A__ = tax_model["target"]["encoder"][layer_name]["mlp"]["wi"]["kernel"] A__ = tax_model["target"]["encoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization A__ = tax_model["target"]["encoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning A__ = flax_model.params["encoder"]["block"][str(__lowerCamelCase )]["layer"] A__ = tax_attention_key A__ = tax_attention_out A__ = tax_attention_query A__ = tax_attention_value A__ = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": A__ = tax_global_layer_norm if split_mlp_wi: A__ = tax_mlp_wi_a A__ = tax_mlp_wi_a else: A__ = tax_mlp_wi A__ = tax_mlp_wo A__ = tax_mlp_layer_norm A__ = flax_model_encoder_layer_block # Only for layer 0: A__ = tax_model["target"]["encoder"]["relpos_bias"]["rel_embedding"].T A__ = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": A__ = tax_model["target"]["encoder"]["side_relpos_bias"]["rel_embedding"].T A__ = tax_encoder_global_rel_embedding # Assigning A__ = tax_model["target"]["encoder"]["encoder_norm"]["scale"] A__ = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): A__ = F"layers_{str(__lowerCamelCase )}" # Self-Attention A__ = tax_model["target"]["decoder"][layer_name]["self_attention"]["key"]["kernel"] A__ = tax_model["target"]["decoder"][layer_name]["self_attention"]["out"]["kernel"] A__ = tax_model["target"]["decoder"][layer_name]["self_attention"]["query"]["kernel"] A__ = tax_model["target"]["decoder"][layer_name]["self_attention"]["value"]["kernel"] # Layer Normalization A__ = tax_model["target"]["decoder"][layer_name]["pre_self_attention_layer_norm"][ "scale" ] # Encoder-Decoder-Attention A__ = tax_model["target"]["decoder"][layer_name]["encoder_decoder_attention"] A__ = tax_enc_dec_attention_module["key"]["kernel"] A__ = tax_enc_dec_attention_module["out"]["kernel"] A__ = tax_enc_dec_attention_module["query"]["kernel"] A__ = tax_enc_dec_attention_module["value"]["kernel"] # Layer Normalization A__ = tax_model["target"]["decoder"][layer_name]["pre_cross_attention_layer_norm"]["scale"] # MLP if split_mlp_wi: A__ = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_0"]["kernel"] A__ = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: A__ = tax_model["target"]["decoder"][layer_name]["mlp"]["wi"]["kernel"] A__ = tax_model["target"]["decoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization A__ = tax_model["target"]["decoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning A__ = flax_model.params["decoder"]["block"][str(__lowerCamelCase )]["layer"] A__ = tax_attention_key A__ = tax_attention_out A__ = tax_attention_query A__ = tax_attention_value A__ = tax_pre_attention_layer_norm A__ = tax_enc_dec_attention_key A__ = tax_enc_dec_attention_out A__ = tax_enc_dec_attention_query A__ = tax_enc_dec_attention_value A__ = tax_cross_layer_norm if split_mlp_wi: A__ = tax_mlp_wi_a A__ = tax_mlp_wi_a else: A__ = tax_mlp_wi A__ = tax_mlp_wo A__ = txa_mlp_layer_norm A__ = flax_model_decoder_layer_block # Decoder Normalization A__ = tax_model["target"]["decoder"]["decoder_norm"]["scale"] A__ = txa_decoder_norm # Only for layer 0: A__ = tax_model["target"]["decoder"]["relpos_bias"]["rel_embedding"].T A__ = tax_decoder_rel_embedding # Token Embeddings A__ = tax_model["target"]["token_embedder"]["embedding"] A__ = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: A__ = tax_model["target"]["decoder"]["logits_dense"]["kernel"] flax_model.save_pretrained(__lowerCamelCase ) print("T5X Model was sucessfully converted!" ) if __name__ == "__main__": __lowerCAmelCase =argparse.ArgumentParser() # Required parameters parser.add_argument( "--t5x_checkpoint_path", default=None, type=str, required=True, help="Path the T5X checkpoint." ) parser.add_argument("--config_name", default=None, type=str, required=True, help="Config name of LongT5/T5 model.") parser.add_argument( "--flax_dump_folder_path", default=None, type=str, required=True, help="Path to the output FLAX model." ) __lowerCAmelCase =parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
351
'''simple docstring''' def UpperCamelCase ( ): A__ = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] A__ = 6 A__ = 1 A__ = 19_01 A__ = 0 while year < 20_01: day += 7 if (year % 4 == 0 and year % 1_00 != 0) or (year % 4_00 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 A__ = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 A__ = day - 29 else: if day > days_per_month[month - 1]: month += 1 A__ = day - days_per_month[month - 2] if month > 12: year += 1 A__ = 1 if year < 20_01 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
123
0
"""simple docstring""" __snake_case = '''0.21.0''' from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
320
"""simple docstring""" def A_ ( _lowerCAmelCase : int = 50 ): """simple docstring""" _a = [1] * (length + 1) for row_length in range(3, length + 1 ): for block_length in range(3, row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f'{solution() = }')
320
1
"""simple docstring""" import torch from transformers import AutoModel class _lowerCamelCase ( torch.nn.Module ): def __init__(self , __a="sayef/fsner-bert-base-uncased" ) -> Tuple: super(__a , self ).__init__() UpperCamelCase = AutoModel.from_pretrained(__a , return_dict=__a ) UpperCamelCase = torch.nn.CosineSimilarity(3 , 1e-0_8 ) UpperCamelCase = torch.nn.Softmax(dim=1 ) def snake_case_ (self , **__a ) -> int: return self.bert(**__a ).last_hidden_state def snake_case_ (self , __a ) -> str: return token_embeddings.sum(2 , keepdim=__a ) def snake_case_ (self , __a , __a , __a=1 ) -> int: return self.softmax(T * self.cos(__a , __a ) ) def snake_case_ (self , __a , __a ) -> List[Any]: UpperCamelCase = W_supports["sizes"].tolist() UpperCamelCase = W_supports["start_token_id"].item() UpperCamelCase = W_supports["end_token_id"].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] UpperCamelCase = self.BERT(**__a ) UpperCamelCase = self.BERT(**__a ) UpperCamelCase = None UpperCamelCase = None UpperCamelCase = W_supports["input_ids"] == start_token_id UpperCamelCase = W_supports["input_ids"] == end_token_id for i, size in enumerate(__a ): if i == 0: UpperCamelCase = 0 else: UpperCamelCase = support_sizes[i - 1] UpperCamelCase = S[s : s + size][start_token_masks[s : s + size]] UpperCamelCase = S[s : s + size][end_token_masks[s : s + size]] UpperCamelCase = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) UpperCamelCase = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: UpperCamelCase = torch.vstack((p_starts, p_start) ) UpperCamelCase = torch.vstack((p_ends, p_end) ) else: UpperCamelCase = p_start UpperCamelCase = p_end return p_starts, p_ends
356
"""simple docstring""" import math def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = len(_SCREAMING_SNAKE_CASE ) UpperCamelCase = int(math.floor(math.sqrt(_SCREAMING_SNAKE_CASE ) ) ) UpperCamelCase = 0 while arr[min(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) - 1] < x: UpperCamelCase = step step += int(math.floor(math.sqrt(_SCREAMING_SNAKE_CASE ) ) ) if prev >= n: return -1 while arr[prev] < x: UpperCamelCase = prev + 1 if prev == min(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": lowerCAmelCase__ = input('''Enter numbers separated by a comma:\n''').strip() lowerCAmelCase__ = [int(item) for item in user_input.split(''',''')] lowerCAmelCase__ = int(input('''Enter the number to be searched:\n''')) lowerCAmelCase__ = jump_search(arr, x) if res == -1: print('''Number not found!''') else: print(f'''Number {x} is at index {res}''')
244
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} UpperCAmelCase__ = { '''vocab_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt''' ), '''google/realm-orqa-nq-openqa''': '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-nq-reader''': '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt''', '''google/realm-orqa-wq-openqa''': '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-wq-reader''': '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-openqa''': ( '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-reader''': ( '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-openqa''': ( '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-reader''': ( '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json''' ), }, } UpperCAmelCase__ = { '''google/realm-cc-news-pretrained-embedder''': 512, '''google/realm-cc-news-pretrained-encoder''': 512, '''google/realm-cc-news-pretrained-scorer''': 512, '''google/realm-cc-news-pretrained-openqa''': 512, '''google/realm-orqa-nq-openqa''': 512, '''google/realm-orqa-nq-reader''': 512, '''google/realm-orqa-wq-openqa''': 512, '''google/realm-orqa-wq-reader''': 512, } UpperCAmelCase__ = { '''google/realm-cc-news-pretrained-embedder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-encoder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-scorer''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-reader''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-reader''': {'''do_lower_case''': True}, } class lowerCamelCase__ ( lowerCAmelCase): SCREAMING_SNAKE_CASE__ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ = RealmTokenizer def __init__(self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=True , UpperCAmelCase="[UNK]" , UpperCAmelCase="[SEP]" , UpperCAmelCase="[PAD]" , UpperCAmelCase="[CLS]" , UpperCAmelCase="[MASK]" , UpperCAmelCase=True , UpperCAmelCase=None , **UpperCAmelCase , ) -> Optional[Any]: super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , ) _lowercase =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , UpperCAmelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , UpperCAmelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , UpperCAmelCase ) != tokenize_chinese_chars ): _lowercase =getattr(UpperCAmelCase , normalizer_state.pop('''type''' ) ) _lowercase =do_lower_case _lowercase =strip_accents _lowercase =tokenize_chinese_chars _lowercase =normalizer_class(**UpperCAmelCase ) _lowercase =do_lower_case def __A (self , UpperCAmelCase , **UpperCAmelCase ) -> Any: _lowercase =PaddingStrategy.MAX_LENGTH _lowercase =text _lowercase =kwargs.pop('''text_pair''' , UpperCAmelCase ) _lowercase =kwargs.pop('''return_tensors''' , UpperCAmelCase ) _lowercase ={ '''input_ids''': [], '''attention_mask''': [], '''token_type_ids''': [], } for idx, candidate_text in enumerate(UpperCAmelCase ): if batch_text_pair is not None: _lowercase =batch_text_pair[idx] else: _lowercase =None _lowercase =super().__call__(UpperCAmelCase , UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) _lowercase =encoded_candidates.get('''input_ids''' ) _lowercase =encoded_candidates.get('''attention_mask''' ) _lowercase =encoded_candidates.get('''token_type_ids''' ) if encoded_input_ids is not None: output_data["input_ids"].append(UpperCAmelCase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(UpperCAmelCase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(UpperCAmelCase ) _lowercase ={key: item for key, item in output_data.items() if len(UpperCAmelCase ) != 0} return BatchEncoding(UpperCAmelCase , tensor_type=UpperCAmelCase ) def __A (self , UpperCAmelCase , UpperCAmelCase=None ) -> Dict: _lowercase =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A (self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: _lowercase =[self.sep_token_id] _lowercase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A (self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: _lowercase =self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
5
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class __A ( lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = (UnCLIPScheduler,) def __lowerCamelCase ( self , **__lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = { '''num_train_timesteps''': 1_0_0_0, '''variance_type''': '''fixed_small_log''', '''clip_sample''': True, '''clip_sample_range''': 1.0, '''prediction_type''': '''epsilon''', } config.update(**__lowerCAmelCase ) return config def __lowerCamelCase ( self ): '''simple docstring''' for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' for clip_sample_range in [1, 5, 1_0, 2_0]: self.check_over_configs(clip_sample_range=__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' for time_step in [0, 5_0_0, 9_9_9]: for prev_timestep in [None, 5, 1_0_0, 2_5_0, 5_0_0, 7_5_0]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=__lowerCAmelCase , prev_timestep=__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.scheduler_classes[0] lowerCamelCase__ = self.get_scheduler_config(variance_type='''fixed_small_log''' ) lowerCamelCase__ = scheduler_class(**__lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.054_9625 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.999_4987 ) ) < 1E-5 def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.scheduler_classes[0] lowerCamelCase__ = self.get_scheduler_config(variance_type='''learned_range''' ) lowerCamelCase__ = scheduler_class(**__lowerCAmelCase ) lowerCamelCase__ = 0.5 assert scheduler._get_variance(1 , predicted_variance=__lowerCAmelCase ) - -10.171_2790 < 1E-5 assert scheduler._get_variance(4_8_7 , predicted_variance=__lowerCAmelCase ) - -5.799_8052 < 1E-5 assert scheduler._get_variance(9_9_9 , predicted_variance=__lowerCAmelCase ) - -0.001_0011 < 1E-5 def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.scheduler_classes[0] lowerCamelCase__ = self.get_scheduler_config() lowerCamelCase__ = scheduler_class(**__lowerCAmelCase ) lowerCamelCase__ = scheduler.timesteps lowerCamelCase__ = self.dummy_model() lowerCamelCase__ = self.dummy_sample_deter lowerCamelCase__ = torch.manual_seed(0 ) for i, t in enumerate(__lowerCAmelCase ): # 1. predict noise residual lowerCamelCase__ = model(__lowerCAmelCase , __lowerCAmelCase ) # 2. predict previous mean of sample x_t-1 lowerCamelCase__ = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , generator=__lowerCAmelCase ).prev_sample lowerCamelCase__ = pred_prev_sample lowerCamelCase__ = torch.sum(torch.abs(__lowerCAmelCase ) ) lowerCamelCase__ = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 252.268_2495 ) < 1E-2 assert abs(result_mean.item() - 0.328_4743 ) < 1E-3 def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.scheduler_classes[0] lowerCamelCase__ = self.get_scheduler_config() lowerCamelCase__ = scheduler_class(**__lowerCAmelCase ) scheduler.set_timesteps(2_5 ) lowerCamelCase__ = scheduler.timesteps lowerCamelCase__ = self.dummy_model() lowerCamelCase__ = self.dummy_sample_deter lowerCamelCase__ = torch.manual_seed(0 ) for i, t in enumerate(__lowerCAmelCase ): # 1. predict noise residual lowerCamelCase__ = model(__lowerCAmelCase , __lowerCAmelCase ) if i + 1 == timesteps.shape[0]: lowerCamelCase__ = None else: lowerCamelCase__ = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 lowerCamelCase__ = scheduler.step( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , prev_timestep=__lowerCAmelCase , generator=__lowerCAmelCase ).prev_sample lowerCamelCase__ = pred_prev_sample lowerCamelCase__ = torch.sum(torch.abs(__lowerCAmelCase ) ) lowerCamelCase__ = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 258.204_4983 ) < 1E-2 assert abs(result_mean.item() - 0.336_2038 ) < 1E-3 def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' pass
209
0
'''simple docstring''' import math def __UpperCamelCase ( _UpperCAmelCase = 100 ): __UpperCAmelCase : List[Any] = sum(i * i for i in range(1, n + 1 ) ) __UpperCAmelCase : List[Any] = int(math.pow(sum(range(1, n + 1 ) ), 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f"{solution() = }")
37
'''simple docstring''' from heapq import heappop, heappush import numpy as np def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, ): __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = grid.shape __UpperCAmelCase : List[str] = [-1, 1, 0, 0] __UpperCAmelCase : Optional[Any] = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] __UpperCAmelCase , __UpperCAmelCase : Tuple = [(0, source)], set() __UpperCAmelCase : Any = np.full((rows, cols), np.inf ) __UpperCAmelCase : List[str] = 0 __UpperCAmelCase : Union[str, Any] = np.empty((rows, cols), dtype=_UpperCAmelCase ) __UpperCAmelCase : Any = None while queue: ((__UpperCAmelCase) , (__UpperCAmelCase)) : Optional[Any] = heappop(_UpperCAmelCase ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: __UpperCAmelCase : int = [] while (x, y) != source: path.append((x, y) ) __UpperCAmelCase , __UpperCAmelCase : Tuple = predecessors[x, y] path.append(_UpperCAmelCase ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(_UpperCAmelCase ) ): __UpperCAmelCase , __UpperCAmelCase : int = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: __UpperCAmelCase : Optional[Any] = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(_UpperCAmelCase, (dist + 1, (nx, ny)) ) __UpperCAmelCase : List[str] = dist + 1 __UpperCAmelCase : int = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
37
1
"""simple docstring""" import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def _a (self ): """simple docstring""" super().tearDown() gc.collect() def _a (self ): """simple docstring""" UpperCAmelCase__ : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) UpperCAmelCase__ : Optional[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) UpperCAmelCase__ : List[str] = """xvjiarui/stable-diffusion-2-inpainting""" UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = FlaxStableDiffusionInpaintPipeline.from_pretrained(_lowerCamelCase , safety_checker=_lowerCamelCase ) UpperCAmelCase__ : Dict = """Face of a yellow cat, high resolution, sitting on a park bench""" UpperCAmelCase__ : int = jax.random.PRNGKey(0 ) UpperCAmelCase__ : Optional[Any] = 50 UpperCAmelCase__ : Dict = jax.device_count() UpperCAmelCase__ : Optional[Any] = num_samples * [prompt] UpperCAmelCase__ : str = num_samples * [init_image] UpperCAmelCase__ : List[str] = num_samples * [mask_image] UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = pipeline.prepare_inputs(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # shard inputs and rng UpperCAmelCase__ : Tuple = replicate(_lowerCamelCase ) UpperCAmelCase__ : List[Any] = jax.random.split(_lowerCamelCase , jax.device_count() ) UpperCAmelCase__ : Tuple = shard(_lowerCamelCase ) UpperCAmelCase__ : Tuple = shard(_lowerCamelCase ) UpperCAmelCase__ : List[str] = shard(_lowerCamelCase ) UpperCAmelCase__ : Optional[Any] = pipeline( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , jit=_lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = output.images.reshape(_lowerCamelCase , 512 , 512 , 3 ) UpperCAmelCase__ : Union[str, Any] = images[0, 253:256, 253:256, -1] UpperCAmelCase__ : List[str] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) UpperCAmelCase__ : Union[str, Any] = jnp.array( [0.3_611_307, 0.37_649_736, 0.3_757_408, 0.38_213_953, 0.39_295_167, 0.3_841_631, 0.41_554_978, 0.4_137_475, 0.4_217_084] ) print(F"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
171
"""simple docstring""" import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> float: UpperCAmelCase__ : int = np.array([[1, item, train_mtch[i]] for i, item in enumerate(lowerCAmelCase )] ) UpperCAmelCase__ : Any = np.array(lowerCAmelCase ) UpperCAmelCase__ : List[Any] = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , lowerCAmelCase ) ) , x.transpose() ) , lowerCAmelCase ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> float: UpperCAmelCase__ : Union[str, Any] = (1, 2, 1) UpperCAmelCase__ : Tuple = (1, 1, 0, 7) UpperCAmelCase__ : int = SARIMAX( lowerCAmelCase , exog=lowerCAmelCase , order=lowerCAmelCase , seasonal_order=lowerCAmelCase ) UpperCAmelCase__ : Any = model.fit(disp=lowerCAmelCase , maxiter=6_00 , method="""nm""" ) UpperCAmelCase__ : Optional[Any] = model_fit.predict(1 , len(lowerCAmelCase ) , exog=[test_match] ) return result[0] def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> float: UpperCAmelCase__ : Union[str, Any] = SVR(kernel="""rbf""" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase__ : int = regressor.predict(lowerCAmelCase ) return y_pred[0] def a__ ( lowerCAmelCase ) -> float: train_user.sort() UpperCAmelCase__ : Optional[Any] = np.percentile(lowerCAmelCase , 25 ) UpperCAmelCase__ : str = np.percentile(lowerCAmelCase , 75 ) UpperCAmelCase__ : int = qa - qa UpperCAmelCase__ : Union[str, Any] = qa - (iqr * 0.1) return low_lim def a__ ( lowerCAmelCase , lowerCAmelCase ) -> bool: UpperCAmelCase__ : Dict = 0 UpperCAmelCase__ : str = 0 for i in list_vote: if i > actual_result: UpperCAmelCase__ : Tuple = not_safe + 1 else: if abs(abs(lowerCAmelCase ) - abs(lowerCAmelCase ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) _A = [[1_82_31, 0.0, 1], [2_26_21, 1.0, 2], [1_56_75, 0.0, 3], [2_35_83, 1.0, 4]] _A = pd.DataFrame( data_input, columns=["""total_user""", """total_even""", """days"""] ) _A = Normalizer().fit_transform(data_input_df.values) # split data _A = normalize_df[:, 2].tolist() _A = normalize_df[:, 0].tolist() _A = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) _A = normalize_df[:, [1, 2]].tolist() _A = x[: len(x) - 1] _A = x[len(x) - 1 :] # for linear regression & sarimax _A = total_date[: len(total_date) - 1] _A = total_user[: len(total_user) - 1] _A = total_match[: len(total_match) - 1] _A = total_date[len(total_date) - 1 :] _A = total_user[len(total_user) - 1 :] _A = total_match[len(total_match) - 1 :] # voting system with forecasting _A = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data _A = """""" if data_safety_checker(res_vote, tst_user) else """not """ print("""Today's data is {not_str}safe.""")
171
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: _UpperCAmelCase = None _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = '▁' _UpperCAmelCase = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} _UpperCAmelCase = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'}, 'tokenizer_file': { 'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json' }, } _UpperCAmelCase = { 'google/pegasus-xsum': 5_1_2, } class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : List[Any] = VOCAB_FILES_NAMES _UpperCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Union[str, Any] = PegasusTokenizer _UpperCamelCase : Any = ['''input_ids''', '''attention_mask'''] def __init__( self: Any , _SCREAMING_SNAKE_CASE: Union[str, Any]=None , _SCREAMING_SNAKE_CASE: Dict=None , _SCREAMING_SNAKE_CASE: str="<pad>" , _SCREAMING_SNAKE_CASE: List[str]="</s>" , _SCREAMING_SNAKE_CASE: int="<unk>" , _SCREAMING_SNAKE_CASE: str="<mask_2>" , _SCREAMING_SNAKE_CASE: Dict="<mask_1>" , _SCREAMING_SNAKE_CASE: List[Any]=None , _SCREAMING_SNAKE_CASE: Optional[int]=103 , **_SCREAMING_SNAKE_CASE: Optional[Any] , ) -> int: """simple docstring""" UpperCamelCase_ = offset if additional_special_tokens is not None: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError( f'''additional_special_tokens should be of type {type(_SCREAMING_SNAKE_CASE )}, but is''' f''' {type(_SCREAMING_SNAKE_CASE )}''' ) UpperCamelCase_ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(_SCREAMING_SNAKE_CASE ) , self.offset - 1 ) ] if len(set(_SCREAMING_SNAKE_CASE ) ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) UpperCamelCase_ = additional_special_tokens_extended else: UpperCamelCase_ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] super().__init__( _SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , mask_token_sent=_SCREAMING_SNAKE_CASE , offset=_SCREAMING_SNAKE_CASE , additional_special_tokens=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) UpperCamelCase_ = vocab_file UpperCamelCase_ = False if not self.vocab_file else True def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: Any ) -> Tuple: """simple docstring""" UpperCamelCase_ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( "There should be 3 special tokens: mask_token, pad_token, and eos_token +" f''' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}''' ) return [1 if x in all_special_ids else 0 for x in seq] def lowercase ( self: int , _SCREAMING_SNAKE_CASE: List , _SCREAMING_SNAKE_CASE: Optional[List] = None , _SCREAMING_SNAKE_CASE: bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return self._special_token_mask(_SCREAMING_SNAKE_CASE ) elif token_ids_a is None: return self._special_token_mask(_SCREAMING_SNAKE_CASE ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowercase ( self: Dict , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Union[str, Any]=None ) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase_ = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
328
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _UpperCamelCase : List[Any] = IFImgaImgSuperResolutionPipeline _UpperCamelCase : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''width''', '''height'''} _UpperCamelCase : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''original_image'''} ) _UpperCamelCase : List[Any] = PipelineTesterMixin.required_optional_params - {'''latents'''} def lowercase ( self: List[str] ) -> Any: """simple docstring""" return self._get_superresolution_dummy_components() def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: Optional[int]=0 ) -> List[Any]: """simple docstring""" if str(_SCREAMING_SNAKE_CASE ).startswith("mps" ): UpperCamelCase_ = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: UpperCamelCase_ = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = floats_tensor((1, 3, 16, 16) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def lowercase ( self: Any ) -> Union[str, Any]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def lowercase ( self: int ) -> Tuple: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def lowercase ( self: Optional[Any] ) -> Union[str, Any]: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1e-1 ) def lowercase ( self: List[Any] ) -> Union[str, Any]: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def lowercase ( self: Dict ) -> Any: """simple docstring""" self._test_save_load_local() def lowercase ( self: Any ) -> Dict: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
328
1
'''simple docstring''' from PIL import Image def a_ ( __snake_case : Image , __snake_case : int ) -> Image: """simple docstring""" lowerCamelCase_ =(259 * (level + 255)) / (255 * (259 - level)) def contrast(__snake_case : int ) -> int: return int(128 + factor * (c - 128) ) return img.point(__snake_case ) if __name__ == "__main__": # Load image with Image.open("""image_data/lena.jpg""") as img: # Change contrast to 170 a_ : List[str] = change_contrast(img, 1_70) cont_img.save("""image_data/lena_high_contrast.png""", format="""png""")
75
"""simple docstring""" import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast a_ = datasets.utils.logging.get_logger(__name__) @dataclass class UpperCAmelCase_ ( datasets.BuilderConfig ): UpperCamelCase =1_00_00 UpperCamelCase =None UpperCamelCase =None class UpperCAmelCase_ ( datasets.ArrowBasedBuilder ): UpperCamelCase =ParquetConfig def _lowerCamelCase ( self ) -> List[str]: return datasets.DatasetInfo(features=self.config.features ) def _lowerCamelCase ( self , UpperCamelCase_ ) -> Tuple: if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) __lowercase : Optional[Any] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(UpperCamelCase_ , (str, list, tuple) ): __lowercase : str = data_files if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowercase : Union[str, Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __lowercase : int = [dl_manager.iter_files(UpperCamelCase_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] __lowercase : int = [] for split_name, files in data_files.items(): if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowercase : List[str] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __lowercase : Any = [dl_manager.iter_files(UpperCamelCase_ ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(UpperCamelCase_ ): with open(UpperCamelCase_ , '''rb''' ) as f: __lowercase : Any = datasets.Features.from_arrow_schema(pq.read_schema(UpperCamelCase_ ) ) break splits.append(datasets.SplitGenerator(name=UpperCamelCase_ , gen_kwargs={'''files''': files} ) ) return splits def _lowerCamelCase ( self , UpperCamelCase_ ) -> pa.Table: if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __lowercase : Tuple = table_cast(UpperCamelCase_ , self.info.features.arrow_schema ) return pa_table def _lowerCamelCase ( self , UpperCamelCase_ ) -> Tuple: __lowercase : Union[str, Any] = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( F"""Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'""" ) for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCamelCase_ ) ): with open(UpperCamelCase_ , '''rb''' ) as f: __lowercase : Union[str, Any] = pq.ParquetFile(UpperCamelCase_ ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): __lowercase : Dict = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield F"""{file_idx}_{batch_idx}""", self._cast_table(UpperCamelCase_ ) except ValueError as e: logger.error(F"""Failed to read file '{file}' with error {type(UpperCamelCase_ )}: {e}""" ) raise
249
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case : List[str] = logging.get_logger(__name__) __snake_case : Optional[Any] = { """distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/config.json""", """distilbert-base-uncased-distilled-squad""": ( """https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json""" ), """distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/config.json""", """distilbert-base-cased-distilled-squad""": ( """https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json""" ), """distilbert-base-german-cased""": """https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json""", """distilbert-base-multilingual-cased""": ( """https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json""" ), """distilbert-base-uncased-finetuned-sst-2-english""": ( """https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json""" ), } class __SCREAMING_SNAKE_CASE ( __lowercase): _SCREAMING_SNAKE_CASE : List[Any] = '''distilbert''' _SCREAMING_SNAKE_CASE : str = { '''hidden_size''': '''dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', } def __init__( self , _UpperCamelCase=3_05_22 , _UpperCamelCase=5_12 , _UpperCamelCase=False , _UpperCamelCase=6 , _UpperCamelCase=12 , _UpperCamelCase=7_68 , _UpperCamelCase=4 * 7_68 , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase="gelu" , _UpperCamelCase=0.02 , _UpperCamelCase=0.1 , _UpperCamelCase=0.2 , _UpperCamelCase=0 , **_UpperCamelCase , ): """simple docstring""" lowerCAmelCase__ = vocab_size lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = sinusoidal_pos_embds lowerCAmelCase__ = n_layers lowerCAmelCase__ = n_heads lowerCAmelCase__ = dim lowerCAmelCase__ = hidden_dim lowerCAmelCase__ = dropout lowerCAmelCase__ = attention_dropout lowerCAmelCase__ = activation lowerCAmelCase__ = initializer_range lowerCAmelCase__ = qa_dropout lowerCAmelCase__ = seq_classif_dropout super().__init__(**_UpperCamelCase , pad_token_id=_UpperCamelCase ) class __SCREAMING_SNAKE_CASE ( __lowercase): @property def UpperCamelCase__ ( self ): """simple docstring""" if self.task == "multiple-choice": lowerCAmelCase__ = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase__ = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
122
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __SCREAMING_SNAKE_CASE ( __lowercase , unittest.TestCase): _SCREAMING_SNAKE_CASE : int = KandinskyVaaInpaintPipeline _SCREAMING_SNAKE_CASE : int = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image'''] _SCREAMING_SNAKE_CASE : Optional[Any] = [ '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image''', ] _SCREAMING_SNAKE_CASE : List[Any] = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _SCREAMING_SNAKE_CASE : Optional[Any] = False @property def UpperCamelCase__ ( self ): """simple docstring""" return 32 @property def UpperCamelCase__ ( self ): """simple docstring""" return 32 @property def UpperCamelCase__ ( self ): """simple docstring""" return self.time_input_dim @property def UpperCamelCase__ ( self ): """simple docstring""" return self.time_input_dim * 4 @property def UpperCamelCase__ ( self ): """simple docstring""" return 1_00 @property def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase__ = { 'in_channels': 9, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } lowerCAmelCase__ = UNetaDConditionModel(**_UpperCamelCase ) return model @property def UpperCamelCase__ ( self ): """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase__ = VQModel(**self.dummy_movq_kwargs ) return model def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = self.dummy_unet lowerCAmelCase__ = self.dummy_movq lowerCAmelCase__ = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule='linear' , beta_start=0.0_00_85 , beta_end=0.0_12 , clip_sample=_UpperCamelCase , set_alpha_to_one=_UpperCamelCase , steps_offset=1 , prediction_type='epsilon' , thresholding=_UpperCamelCase , ) lowerCAmelCase__ = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase=0 ): """simple docstring""" lowerCAmelCase__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) lowerCAmelCase__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _UpperCamelCase ) # create init_image lowerCAmelCase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) lowerCAmelCase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase__ = Image.fromarray(np.uinta(_UpperCamelCase ) ).convert('RGB' ).resize((2_56, 2_56) ) # create mask lowerCAmelCase__ = np.ones((64, 64) , dtype=np.floataa ) lowerCAmelCase__ = 0 if str(_UpperCamelCase ).startswith('mps' ): lowerCAmelCase__ = torch.manual_seed(_UpperCamelCase ) else: lowerCAmelCase__ = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) lowerCAmelCase__ = { 'image': init_image, 'mask_image': mask, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 2, 'guidance_scale': 4.0, 'output_type': 'np', } return inputs def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = 'cpu' lowerCAmelCase__ = self.get_dummy_components() lowerCAmelCase__ = self.pipeline_class(**_UpperCamelCase ) lowerCAmelCase__ = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) lowerCAmelCase__ = pipe(**self.get_dummy_inputs(_UpperCamelCase ) ) lowerCAmelCase__ = output.images lowerCAmelCase__ = pipe( **self.get_dummy_inputs(_UpperCamelCase ) , return_dict=_UpperCamelCase , )[0] lowerCAmelCase__ = image[0, -3:, -3:, -1] lowerCAmelCase__ = image_from_tuple[0, -3:, -3:, -1] print(F"image.shape {image.shape}" ) assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ = np.array( [0.50_77_59_03, 0.49_52_71_95, 0.48_82_45_43, 0.50_19_22_37, 0.48_64_49_06, 0.49_37_38_14, 0.4_78_05_98, 0.47_23_48_27, 0.48_32_78_48] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" def UpperCamelCase__ ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase): def UpperCamelCase__ ( self ): """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy' ) lowerCAmelCase__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) lowerCAmelCase__ = np.ones((7_68, 7_68) , dtype=np.floataa ) lowerCAmelCase__ = 0 lowerCAmelCase__ = 'a hat' lowerCAmelCase__ = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(_UpperCamelCase ) lowerCAmelCase__ = KandinskyVaaInpaintPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder-inpaint' , torch_dtype=torch.floataa ) lowerCAmelCase__ = pipeline.to(_UpperCamelCase ) pipeline.set_progress_bar_config(disable=_UpperCamelCase ) lowerCAmelCase__ = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCAmelCase__ , lowerCAmelCase__ = pipe_prior( _UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=5 , negative_prompt='' , ).to_tuple() lowerCAmelCase__ = pipeline( image=_UpperCamelCase , mask_image=_UpperCamelCase , image_embeds=_UpperCamelCase , negative_image_embeds=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type='np' , ) lowerCAmelCase__ = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase )
122
1
'''simple docstring''' import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class __UpperCamelCase ( lowerCAmelCase_ , unittest.TestCase ): A_ = CpmAntTokenizer A_ = False def __UpperCAmelCase ( self ): '''simple docstring''' super().setUp() __a : Any = [ '<d>', '</d>', '<s>', '</s>', '</_>', '<unk>', '<pad>', '</n>', '我', '是', 'C', 'P', 'M', 'A', 'n', 't', ] __a : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) @tooslow def __UpperCAmelCase ( self ): '''simple docstring''' __a : Union[str, Any] = CpmAntTokenizer.from_pretrained('openbmb/cpm-ant-10b' ) __a : Any = '今天天气真好!' __a : int = ['今天', '天气', '真', '好', '!'] __a : int = tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) __a : int = '今天天气真好!' __a : Tuple = [tokenizer.bos_token] + tokens __a : Optional[Any] = [6, 9802, 1_4962, 2082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) __a : Tuple = tokenizer.decode(__a ) self.assertEqual(__a , __a )
27
import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def __UpperCamelCase ( _A : List[str] , _A : Union[str, Any] , _A : Any , _A : Optional[int] ) ->List[str]: """simple docstring""" lowerCamelCase_ =s.rsplit(_A , _A ) return new.join(_A ) def __UpperCamelCase ( _A : List[Any] ) ->Dict: """simple docstring""" # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def __UpperCamelCase ( _A : str ) ->Union[str, Any]: """simple docstring""" lowerCamelCase_ ={} lowerCamelCase_ =["""group_1""", """group_2""", """group_3""", """group_4"""] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: lowerCamelCase_ =key.replace(f'{group_key}.' , f'{group_key}.group.' ) if "res_path" in key: lowerCamelCase_ =key.replace("""res_path.""" , """res_path.path.""" ) if key.endswith(""".w""" ): lowerCamelCase_ =rreplace(_A , """.w""" , """.weight""" , 1 ) if key.endswith(""".b""" ): lowerCamelCase_ =rreplace(_A , """.b""" , """.bias""" , 1 ) lowerCamelCase_ =value.float() return upgrade @torch.no_grad() def __UpperCamelCase ( _A : Optional[int] , _A : Union[str, Any] , _A : List[Any]=None , _A : Dict=True ) ->Optional[int]: """simple docstring""" from dall_e import Encoder lowerCamelCase_ =Encoder() if os.path.exists(_A ): lowerCamelCase_ =torch.load(_A ) else: lowerCamelCase_ =torch.hub.load_state_dict_from_url(_A ) if isinstance(_A , _A ): lowerCamelCase_ =ckpt.state_dict() encoder.load_state_dict(_A ) if config_path is not None: lowerCamelCase_ =FlavaImageCodebookConfig.from_pretrained(_A ) else: lowerCamelCase_ =FlavaImageCodebookConfig() lowerCamelCase_ =FlavaImageCodebook(_A ).eval() lowerCamelCase_ =encoder.state_dict() lowerCamelCase_ =upgrade_state_dict(_A ) hf_model.load_state_dict(_A ) lowerCamelCase_ =hf_model.state_dict() lowerCamelCase_ =count_parameters(_A ) lowerCamelCase_ =count_parameters(_A ) assert torch.allclose(_A , _A , atol=1E-3 ) if save_checkpoint: hf_model.save_pretrained(_A ) else: return hf_state_dict if __name__ == "__main__": __A : Dict = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') __A : List[Any] = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
154
0
import baseaa def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> bytes: return baseaa.baaencode(string.encode('''utf-8''' ) ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : bytes ) -> str: return baseaa.baadecode(__UpperCamelCase ).decode('''utf-8''' ) if __name__ == "__main__": _lowerCamelCase = 'Hello World!' _lowerCamelCase = baseaa_encode(test) print(encoded) _lowerCamelCase = baseaa_decode(encoded) print(decoded)
177
from __future__ import annotations from fractions import Fraction def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : int ) -> bool: return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> list[str]: UpperCAmelCase_ = [] UpperCAmelCase_ = 11 UpperCAmelCase_ = int('''1''' + '''0''' * digit_len ) for num in range(__UpperCamelCase , __UpperCamelCase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(__UpperCamelCase , __UpperCamelCase ): solutions.append(f'{num}/{den}' ) den += 1 num += 1 UpperCAmelCase_ = 10 return solutions def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int = 2 ) -> int: UpperCAmelCase_ = 1.0 for fraction in fraction_list(__UpperCamelCase ): UpperCAmelCase_ = Fraction(__UpperCamelCase ) result *= frac.denominator / frac.numerator return int(__UpperCamelCase ) if __name__ == "__main__": print(solution())
177
1
"""simple docstring""" import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class __lowerCamelCase ( A__ , unittest.TestCase ): '''simple docstring''' a_ : Tuple = CpmAntTokenizer a_ : Union[str, Any] = False def lowerCamelCase ( self : Dict ): super().setUp() lowerCAmelCase_ : Optional[Any] = [ """<d>""", """</d>""", """<s>""", """</s>""", """</_>""", """<unk>""", """<pad>""", """</n>""", """我""", """是""", """C""", """P""", """M""", """A""", """n""", """t""", ] lowerCAmelCase_ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) @tooslow def lowerCamelCase ( self : Any ): lowerCAmelCase_ : Tuple = CpmAntTokenizer.from_pretrained("openbmb/cpm-ant-10b" ) lowerCAmelCase_ : List[Any] = """今天天气真好!""" lowerCAmelCase_ : List[str] = ["""今天""", """天气""", """真""", """好""", """!"""] lowerCAmelCase_ : Optional[Any] = tokenizer.tokenize(a_ ) self.assertListEqual(a_ , a_ ) lowerCAmelCase_ : str = """今天天气真好!""" lowerCAmelCase_ : Union[str, Any] = [tokenizer.bos_token] + tokens lowerCAmelCase_ : int = [6, 98_02, 1_49_62, 20_82, 8_31, 2_44] self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ) , a_ ) lowerCAmelCase_ : str = tokenizer.decode(a_ ) self.assertEqual(a_ , a_ )
241
import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Any: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: lowercase : Union[str, Any] = tmp_path / """cache""" lowercase : Optional[Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowercase : Any = SqlDatasetReader( """dataset""" , """sqlite:///""" + sqlite_path , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ ).read() _check_sql_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @require_sqlalchemy @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Tuple: lowercase : Union[str, Any] = tmp_path / """cache""" lowercase : int = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} lowercase : str = features.copy() if features else default_expected_features lowercase : Optional[Any] = ( Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None ) lowercase : Optional[int] = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_sql_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ ) -> List[Any]: with contextlib.closing(sqlitea.connect(SCREAMING_SNAKE_CASE__ ) ) as con: lowercase : Optional[int] = con.cursor() cur.execute("""SELECT * FROM dataset""" ) for row in cur: yield row @require_sqlalchemy def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: lowercase : Any = tmp_path / """cache""" lowercase : int = os.path.join(SCREAMING_SNAKE_CASE__ , """tmp.sql""" ) lowercase : List[str] = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=SCREAMING_SNAKE_CASE__ ).read() SqlDatasetWriter(SCREAMING_SNAKE_CASE__ , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=1 ).write() lowercase : List[str] = iter_sql_file(SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = iter_sql_file(SCREAMING_SNAKE_CASE__ ) for rowa, rowa in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): assert rowa == rowa @require_sqlalchemy def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Dict: lowercase : Dict = tmp_path / """cache""" lowercase : List[str] = os.path.join(SCREAMING_SNAKE_CASE__ , """tmp.sql""" ) lowercase : List[str] = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=SCREAMING_SNAKE_CASE__ ).read() SqlDatasetWriter(SCREAMING_SNAKE_CASE__ , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=2 ).write() lowercase : Optional[int] = iter_sql_file(SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = iter_sql_file(SCREAMING_SNAKE_CASE__ ) for rowa, rowa in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): assert rowa == rowa @require_sqlalchemy def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]: lowercase : str = tmp_path / """cache""" lowercase : Optional[int] = os.path.join(SCREAMING_SNAKE_CASE__ , """tmp.sql""" ) lowercase : Optional[Any] = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=SCREAMING_SNAKE_CASE__ ).read() with pytest.raises(SCREAMING_SNAKE_CASE__ ): SqlDatasetWriter(SCREAMING_SNAKE_CASE__ , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=0 ).write()
20
0
"""simple docstring""" import os # Precomputes a list of the 100 first triangular numbers __lowerCamelCase = [int(0.5 * n * (n + 1)) for n in range(1, 1_01)] def UpperCAmelCase ( ): """simple docstring""" A__ = os.path.dirname(os.path.realpath(__UpperCAmelCase ) ) A__ = os.path.join(__UpperCAmelCase , 'words.txt' ) A__ = '' with open(__UpperCAmelCase ) as f: A__ = f.readline() A__ = [word.strip('"' ) for word in words.strip('\r\n' ).split(',' )] A__ = [ word for word in [sum(ord(__UpperCAmelCase ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(__UpperCAmelCase ) if __name__ == "__main__": print(solution())
356
"""simple docstring""" import os import jsonlines import numpy as np from tqdm import tqdm __lowerCamelCase = 20_48 __lowerCamelCase = 40_96 __lowerCamelCase = 42 __lowerCamelCase = os.environ.pop("PROCESS_TRAIN", "false") __lowerCamelCase = {"null": 0, "short": 1, "long": 2, "yes": 3, "no": 4} def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" def choose_first(UpperCamelCase__ , UpperCamelCase__=False ): assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) if len(UpperCamelCase__ ) == 1: A__ = answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: A__ = {k: [a[k]] for k in a} if len(a['start_token'] ) > 0: break return a A__ = {'id': example['id']} A__ = example['annotations'] A__ = annotation['yes_no_answer'] if 0 in yes_no_answer or 1 in yes_no_answer: A__ = ['yes'] if 1 in yes_no_answer else ['no'] A__ = A__ = [] A__ = A__ = [] A__ = ['<cls>'] else: A__ = ['short'] A__ = choose_first(annotation['short_answers'] ) if len(out['start_token'] ) == 0: # answer will be long if short is not available A__ = ['long'] A__ = choose_first(annotation['long_answer'] , is_long_answer=UpperCamelCase__ ) A__ = [] answer.update(UpperCamelCase__ ) # disregard some samples if len(answer['start_token'] ) > 1 or answer["start_token"] == answer["end_token"]: A__ = True else: A__ = False A__ = ['start_token', 'end_token', 'start_byte', 'end_byte', 'text'] if not all(isinstance(answer[k] , UpperCamelCase__ ) for k in cols ): raise ValueError('Issue in ID' , example['id'] ) return answer def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__=False ): """simple docstring""" A__ = _get_single_answer(UpperCamelCase__ ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element A__ = example['document']['tokens'] A__ = [] for i in range(len(doc['token'] ) ): if not doc["is_html"][i]: context.append(doc['token'][i] ) return { "context": " ".join(UpperCamelCase__ ), "answer": { "start_token": -100, # ignore index in cross-entropy "end_token": -100, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples A__ = ['start_token', 'end_token'] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 A__ = example['document']['tokens'] A__ = answer['start_token'] A__ = answer['end_token'] A__ = [] for i in range(len(doc['token'] ) ): if not doc["is_html"][i]: context.append(doc['token'][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 A__ = ' '.join(context[start_token:end_token] ) # checking above code if assertion: A__ = doc['is_html'][answer['start_token'] : answer['end_token']] A__ = doc['token'][answer['start_token'] : answer['end_token']] A__ = ' '.join([old[i] for i in range(len(UpperCamelCase__ ) ) if not is_html[i]] ) if new != old: print('ID:' , example['id'] ) print('New:' , UpperCamelCase__ , end='\n' ) print('Old:' , UpperCamelCase__ , end='\n\n' ) return { "context": " ".join(UpperCamelCase__ ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=2_048 , UpperCamelCase__=4_096 , UpperCamelCase__=True ): """simple docstring""" A__ = get_context_and_ans(UpperCamelCase__ , assertion=UpperCamelCase__ ) A__ = out['answer'] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } A__ = tokenizer(example['question']['text'] , out['context'] ).input_ids A__ = input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element A__ = [] A__ = [] A__ = input_ids[:q_len] A__ = range(UpperCamelCase__ , len(UpperCamelCase__ ) , max_length - doc_stride ) for i in doc_start_indices: A__ = i + max_length - q_len A__ = input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer['category'][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-100] * len(UpperCamelCase__ ), "end_token": [-100] * len(UpperCamelCase__ ), "category": category, }, } A__ = out['context'].split() A__ = splitted_context[answer['end_token']] A__ = len( tokenizer( ' '.join(splitted_context[: answer['start_token']] ) , add_special_tokens=UpperCamelCase__ , ).input_ids ) A__ = len( tokenizer(' '.join(splitted_context[: answer['end_token']] ) , add_special_tokens=UpperCamelCase__ ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token A__ = len(tokenizer(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 A__ = input_ids[answer['start_token'] : answer['end_token'] + 1] # right & left are inclusive A__ = answer['start_token'] A__ = answer['end_token'] if assertion: A__ = tokenizer.decode(UpperCamelCase__ ) if answer["span"] != new: print('ISSUE IN TOKENIZATION' ) print('OLD:' , answer['span'] ) print('NEW:' , UpperCamelCase__ , end='\n\n' ) if len(UpperCamelCase__ ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } A__ = input_ids[:q_len] A__ = range(UpperCamelCase__ , len(UpperCamelCase__ ) , max_length - doc_stride ) A__ = [] A__ = [] A__ = [] A__ = [] # null, yes, no, long, short for i in doc_start_indices: A__ = i + max_length - q_len A__ = input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: A__ = start_token - i + q_len A__ = end_token - i + q_len answers_category.append(answer['category'][0] ) # ["short"] -> "short" else: A__ = -100 A__ = -100 answers_category.append('null' ) A__ = inputs[-1][start_token : end_token + 1] answers_start_token.append(UpperCamelCase__ ) answers_end_token.append(UpperCamelCase__ ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print('ISSUE in strided for ID:' , example['id'] ) print('New:' , tokenizer.decode(UpperCamelCase__ ) ) print('Old:' , tokenizer.decode(UpperCamelCase__ ) , end='\n\n' ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=2_048 , UpperCamelCase__=4_096 , UpperCamelCase__=False ): """simple docstring""" A__ = get_strided_contexts_and_ans( UpperCamelCase__ , UpperCamelCase__ , doc_stride=UpperCamelCase__ , max_length=UpperCamelCase__ , assertion=UpperCamelCase__ , ) return example def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" with jsonlines.open(UpperCamelCase__ , 'a' ) as writer: for example in tqdm(UpperCamelCase__ , total=len(UpperCamelCase__ ) , desc='Saving samples ... ' ): A__ = example['labels'] for ids, start, end, cat in zip( example['input_ids'] , labels['start_token'] , labels['end_token'] , labels['category'] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { 'input_ids': ids, 'start_token': start, 'end_token': end, 'category': CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer __lowerCamelCase = load_dataset("natural_questions") __lowerCamelCase = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base") __lowerCamelCase = data["train" if PROCESS_TRAIN == "true" else "validation"] __lowerCamelCase = { "tokenizer": tokenizer, "doc_stride": DOC_STRIDE, "max_length": MAX_LENGTH, "assertion": False, } __lowerCamelCase = data.map(prepare_inputs, fn_kwargs=fn_kwargs) __lowerCamelCase = data.remove_columns(["annotations", "document", "id", "question"]) print(data) np.random.seed(SEED) __lowerCamelCase = "nq-training.jsonl" if PROCESS_TRAIN == "true" else "nq-validation.jsonl" save_to_disk(data, file_name=cache_file_name)
154
0
"""simple docstring""" import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets _a : List[str]= "\\n @inproceedings{kakwani2020indicnlpsuite,\n title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}},\n author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar},\n year={2020},\n booktitle={Findings of EMNLP},\n}\n" _a : List[str]= "\\n IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide\n variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te.\n" _a : Tuple= "\nCompute IndicGLUE evaluation metric associated to each IndicGLUE dataset.\nArgs:\n predictions: list of predictions to score (as int64),\n except for 'cvit-mkb-clsr' where each prediction is a vector (of float32).\n references: list of ground truth labels corresponding to the predictions (as int64),\n except for 'cvit-mkb-clsr' where each reference is a vector (of float32).\nReturns: depending on the IndicGLUE subset, one or several of:\n \"accuracy\": Accuracy\n \"f1\": F1 score\n \"precision\": Precision@10\nExamples:\n\n >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wnli') # 'wnli' or any of [\"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wiki-ner')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric('indic_glue', 'cvit-mkb-clsr')\n >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'precision@10': 1.0}\n\n" def __UpperCAmelCase ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[Any] ) -> Optional[int]: '''simple docstring''' return float((preds == labels).mean() ) def __UpperCAmelCase ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] ) -> Any: '''simple docstring''' __snake_case : List[Any] = simple_accuracy(UpperCAmelCase_ , UpperCAmelCase_ ) __snake_case : Any = float(fa_score(y_true=UpperCAmelCase_ , y_pred=UpperCAmelCase_ ) ) return { "accuracy": acc, "f1": fa, } def __UpperCAmelCase ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int ) -> Dict: '''simple docstring''' __snake_case : Optional[int] = np.array(UpperCAmelCase_ ) __snake_case : str = np.array(UpperCAmelCase_ ) __snake_case : Any = en_sentvecs.shape[0] # mean centering __snake_case : List[Any] = en_sentvecs - np.mean(UpperCAmelCase_ , axis=0 ) __snake_case : Optional[Any] = in_sentvecs - np.mean(UpperCAmelCase_ , axis=0 ) __snake_case : Optional[int] = cdist(UpperCAmelCase_ , UpperCAmelCase_ , 'cosine' ) __snake_case : int = np.array(range(UpperCAmelCase_ ) ) __snake_case : Optional[Any] = sim.argsort(axis=1 )[:, :10] __snake_case : List[str] = np.any(preds == actual[:, None] , axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase ( datasets.Metric ): def _lowercase (self : List[Any]) -> Union[str, Any]: if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( 'You should supply a configuration name selected in ' '["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ' '"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ' '"wiki-ner"]') return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64') if self.config_name != 'cvit-mkb-clsr' else datasets.Sequence(datasets.Value('float32')), 'references': datasets.Value('int64') if self.config_name != 'cvit-mkb-clsr' else datasets.Sequence(datasets.Value('float32')), }) , codebase_urls=[] , reference_urls=[] , format='numpy' if self.config_name != 'cvit-mkb-clsr' else None , ) def _lowercase (self : Optional[Any] , _A : List[Any] , _A : Dict) -> List[Any]: if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(_A , _A)} elif self.config_name in ["wiki-ner"]: return acc_and_fa(_A , _A) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(_A , _A)} else: raise KeyError( 'You should supply a configuration name selected in ' '["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ' '"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ' '"wiki-ner"]')
172
"""simple docstring""" def __UpperCAmelCase ( UpperCAmelCase_ : Tuple ) -> Optional[int]: '''simple docstring''' __snake_case : List[str] = [] __snake_case : Optional[Any] = set({'(', '[', '{'} ) __snake_case : Union[str, Any] = set({')', ']', '}'} ) __snake_case : Tuple = {'{': '}', '[': ']', '(': ')'} for i in range(len(UpperCAmelCase_ ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(UpperCAmelCase_ ) == 0 or (len(UpperCAmelCase_ ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(UpperCAmelCase_ ) == 0 def __UpperCAmelCase ( ) -> Any: '''simple docstring''' __snake_case : Optional[Any] = input('Enter sequence of brackets: ' ) if is_balanced(UpperCAmelCase_ ): print(UpperCAmelCase_ , 'is balanced' ) else: print(UpperCAmelCase_ , 'is not balanced' ) if __name__ == "__main__": main()
172
1
'''simple docstring''' import random def UpperCAmelCase_ ( __lowercase : int ) -> bool: '''simple docstring''' _UpperCAmelCase = num - 1 _UpperCAmelCase = 0 while s % 2 == 0: _UpperCAmelCase = s // 2 t += 1 for _ in range(5 ): _UpperCAmelCase = random.randrange(2 , num - 1 ) _UpperCAmelCase = pow(__lowercase , __lowercase , __lowercase ) if v != 1: _UpperCAmelCase = 0 while v != (num - 1): if i == t - 1: return False else: _UpperCAmelCase = i + 1 _UpperCAmelCase = (v**2) % num return True def UpperCAmelCase_ ( __lowercase : int ) -> bool: '''simple docstring''' if num < 2: return False _UpperCAmelCase = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(__lowercase ) def UpperCAmelCase_ ( __lowercase : int = 1024 ) -> int: '''simple docstring''' while True: _UpperCAmelCase = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(__lowercase ): return num if __name__ == "__main__": __SCREAMING_SNAKE_CASE :Optional[int] = generate_large_prime() print(('''Prime number:''', num)) print(('''is_prime_low_num:''', is_prime_low_num(num)))
156
'''simple docstring''' import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def UpperCAmelCase_ ( __lowercase : str , __lowercase : Tuple , __lowercase : Union[str, Any] , __lowercase : str , __lowercase : Dict=True , __lowercase : Dict="pt" ) -> List[str]: '''simple docstring''' _UpperCAmelCase = {"add_prefix_space": True} if isinstance(__lowercase , __lowercase ) and not line.startswith(" " ) else {} _UpperCAmelCase = padding_side return tokenizer( [line] , max_length=__lowercase , padding="max_length" if pad_to_max_length else None , truncation=__lowercase , return_tensors=__lowercase , add_special_tokens=__lowercase , **__lowercase , ) def UpperCAmelCase_ ( __lowercase : List[Any] , __lowercase : Union[str, Any] , __lowercase : Tuple=None , ) -> Dict: '''simple docstring''' _UpperCAmelCase = input_ids.ne(__lowercase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class A_ ( lowerCAmelCase_ ): def __init__( self : Union[str, Any] , snake_case_ : int , snake_case_ : str , snake_case_ : Optional[Any] , snake_case_ : List[Any] , snake_case_ : int="train" , snake_case_ : Tuple=None , snake_case_ : str=None , snake_case_ : Optional[Any]=None , snake_case_ : Any="" , ): super().__init__() _UpperCAmelCase = Path(snake_case_ ).joinpath(type_path + ".source" ) _UpperCAmelCase = Path(snake_case_ ).joinpath(type_path + ".target" ) _UpperCAmelCase = self.get_char_lens(self.src_file ) _UpperCAmelCase = max_source_length _UpperCAmelCase = max_target_length assert min(self.src_lens ) > 0, f'found empty line in {self.src_file}' _UpperCAmelCase = tokenizer _UpperCAmelCase = prefix if n_obs is not None: _UpperCAmelCase = self.src_lens[:n_obs] _UpperCAmelCase = src_lang _UpperCAmelCase = tgt_lang def __len__( self : List[Any] ): return len(self.src_lens ) def __getitem__( self : Optional[Any] , snake_case_ : List[Any] ): _UpperCAmelCase = index + 1 # linecache starts at 1 _UpperCAmelCase = self.prefix + linecache.getline(str(self.src_file ) , snake_case_ ).rstrip("\n" ) _UpperCAmelCase = linecache.getline(str(self.tgt_file ) , snake_case_ ).rstrip("\n" ) assert source_line, f'empty source line for index {index}' assert tgt_line, f'empty tgt line for index {index}' # Need to add eos token manually for T5 if isinstance(self.tokenizer , snake_case_ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right _UpperCAmelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , snake_case_ ) else self.tokenizer ) _UpperCAmelCase = self.tokenizer.generator if isinstance(self.tokenizer , snake_case_ ) else self.tokenizer _UpperCAmelCase = encode_line(snake_case_ , snake_case_ , self.max_source_length , "right" ) _UpperCAmelCase = encode_line(snake_case_ , snake_case_ , self.max_target_length , "right" ) _UpperCAmelCase = source_inputs["input_ids"].squeeze() _UpperCAmelCase = target_inputs["input_ids"].squeeze() _UpperCAmelCase = source_inputs["attention_mask"].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def lowercase ( snake_case_ : Optional[Any] ): return [len(snake_case_ ) for x in Path(snake_case_ ).open().readlines()] def lowercase ( self : List[str] , snake_case_ : Optional[int] ): _UpperCAmelCase = torch.stack([x["input_ids"] for x in batch] ) _UpperCAmelCase = torch.stack([x["attention_mask"] for x in batch] ) _UpperCAmelCase = torch.stack([x["decoder_input_ids"] for x in batch] ) _UpperCAmelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , snake_case_ ) else self.tokenizer.pad_token_id ) _UpperCAmelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , snake_case_ ) else self.tokenizer.pad_token_id ) _UpperCAmelCase = trim_batch(snake_case_ , snake_case_ ) _UpperCAmelCase , _UpperCAmelCase = trim_batch(snake_case_ , snake_case_ , attention_mask=snake_case_ ) _UpperCAmelCase = { "input_ids": source_ids, "attention_mask": source_mask, "decoder_input_ids": y, } return batch __SCREAMING_SNAKE_CASE :Union[str, Any] = getLogger(__name__) def UpperCAmelCase_ ( __lowercase : List[List] ) -> List[Any]: '''simple docstring''' return list(itertools.chain.from_iterable(__lowercase ) ) def UpperCAmelCase_ ( __lowercase : str ) -> None: '''simple docstring''' _UpperCAmelCase = get_git_info() save_json(__lowercase , os.path.join(__lowercase , "git_log.json" ) ) def UpperCAmelCase_ ( __lowercase : int , __lowercase : Dict , __lowercase : Union[str, Any]=4 , **__lowercase : Any ) -> int: '''simple docstring''' with open(__lowercase , "w" ) as f: json.dump(__lowercase , __lowercase , indent=__lowercase , **__lowercase ) def UpperCAmelCase_ ( __lowercase : Union[str, Any] ) -> List[str]: '''simple docstring''' with open(__lowercase ) as f: return json.load(__lowercase ) def UpperCAmelCase_ ( ) -> Dict: '''simple docstring''' _UpperCAmelCase = git.Repo(search_parent_directories=__lowercase ) _UpperCAmelCase = { "repo_id": str(__lowercase ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), "hostname": str(socket.gethostname() ), } return repo_infos def UpperCAmelCase_ ( __lowercase : Callable , __lowercase : Iterable ) -> List: '''simple docstring''' return list(map(__lowercase , __lowercase ) ) def UpperCAmelCase_ ( __lowercase : Any , __lowercase : str ) -> List[Any]: '''simple docstring''' with open(__lowercase , "wb" ) as f: return pickle.dump(__lowercase , __lowercase ) def UpperCAmelCase_ ( __lowercase : str ) -> int: '''simple docstring''' def remove_articles(__lowercase : Union[str, Any] ): return re.sub(r"\b(a|an|the)\b" , " " , __lowercase ) def white_space_fix(__lowercase : str ): return " ".join(text.split() ) def remove_punc(__lowercase : Union[str, Any] ): _UpperCAmelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__lowercase : Union[str, Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__lowercase ) ) ) ) def UpperCAmelCase_ ( __lowercase : int , __lowercase : Union[str, Any] ) -> int: '''simple docstring''' _UpperCAmelCase = normalize_answer(__lowercase ).split() _UpperCAmelCase = normalize_answer(__lowercase ).split() _UpperCAmelCase = Counter(__lowercase ) & Counter(__lowercase ) _UpperCAmelCase = sum(common.values() ) if num_same == 0: return 0 _UpperCAmelCase = 1.0 * num_same / len(__lowercase ) _UpperCAmelCase = 1.0 * num_same / len(__lowercase ) _UpperCAmelCase = (2 * precision * recall) / (precision + recall) return fa def UpperCAmelCase_ ( __lowercase : Any , __lowercase : Optional[Any] ) -> int: '''simple docstring''' return normalize_answer(__lowercase ) == normalize_answer(__lowercase ) def UpperCAmelCase_ ( __lowercase : List[str] , __lowercase : List[str] ) -> Dict: '''simple docstring''' assert len(__lowercase ) == len(__lowercase ) _UpperCAmelCase = 0 for hypo, pred in zip(__lowercase , __lowercase ): em += exact_match_score(__lowercase , __lowercase ) if len(__lowercase ) > 0: em /= len(__lowercase ) return {"em": em} def UpperCAmelCase_ ( __lowercase : Tuple ) -> List[str]: '''simple docstring''' return model_prefix.startswith("rag" ) def UpperCAmelCase_ ( __lowercase : List[str] , __lowercase : int , __lowercase : int ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead _UpperCAmelCase = "dropout_rate" for p in extra_params: if getattr(__lowercase , __lowercase , __lowercase ): if not hasattr(__lowercase , __lowercase ) and not hasattr(__lowercase , equivalent_param[p] ): logger.info("config doesn't have a `{}` attribute".format(__lowercase ) ) delattr(__lowercase , __lowercase ) continue _UpperCAmelCase = p if hasattr(__lowercase , __lowercase ) else equivalent_param[p] setattr(__lowercase , __lowercase , getattr(__lowercase , __lowercase ) ) delattr(__lowercase , __lowercase ) return hparams, config
156
1
"""simple docstring""" import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class snake_case ( unittest.TestCase ): a_ : Any = JukeboxTokenizer a_ : Any = { """artist""": """Zac Brown Band""", """genres""": """Country""", """lyrics""": """I met a traveller from an antique land, Who said \"Two vast and trunkless legs of stone Stand in the desert. . . . Near them, on the sand, Half sunk a shattered visage lies, whose frown, And wrinkled lip, and sneer of cold command, Tell that its sculptor well those passions read Which yet survive, stamped on these lifeless things, The hand that mocked them, and the heart that fed; And on the pedestal, these words appear: My name is Ozymandias, King of Kings; Look on my Works, ye Mighty, and despair! Nothing beside remains. Round the decay Of that colossal Wreck, boundless and bare The lone and level sands stretch far away """, } @require_torch def UpperCAmelCase__ ( self) ->Any: import torch a_ = JukeboxTokenizer.from_pretrained("openai/jukebox-1b-lyrics") a_ = tokenizer(**self.metas)["input_ids"] # fmt: off a_ = [ torch.tensor([[ 0, 0, 0, 71_69, 5_07, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]]), torch.tensor([[0, 0, 0, 10_69, 11]]), torch.tensor([[0, 0, 0, 10_69, 11]]), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0])) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1])) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2])) @require_torch def UpperCAmelCase__ ( self) ->Tuple: import torch a_ = JukeboxTokenizer.from_pretrained("openai/jukebox-5b-lyrics") a_ = tokenizer(**self.metas)["input_ids"] # fmt: off a_ = [ torch.tensor([[ 0, 0, 0, 10_69, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]]), torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]]), torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]]), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0])) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1])) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2]))
243
"""simple docstring""" import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : int = (KDPMaDiscreteScheduler,) a_ : List[str] = 10 def UpperCAmelCase__ ( self , **__UpperCAmelCase) ->Tuple: a_ = { "num_train_timesteps": 11_00, "beta_start": 0.0_001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**__UpperCAmelCase) return config def UpperCAmelCase__ ( self) ->Optional[Any]: for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Optional[int]: for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02]): self.check_over_configs(beta_start=__UpperCAmelCase , beta_end=__UpperCAmelCase) def UpperCAmelCase__ ( self) ->List[Any]: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Dict: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Optional[int]: a_ = self.scheduler_classes[0] a_ = self.get_scheduler_config(prediction_type="v_prediction") a_ = scheduler_class(**__UpperCAmelCase) scheduler.set_timesteps(self.num_inference_steps) a_ = self.dummy_model() a_ = self.dummy_sample_deter * scheduler.init_noise_sigma a_ = sample.to(__UpperCAmelCase) for i, t in enumerate(scheduler.timesteps): a_ = scheduler.scale_model_input(__UpperCAmelCase , __UpperCAmelCase) a_ = model(__UpperCAmelCase , __UpperCAmelCase) a_ = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) a_ = output.prev_sample a_ = torch.sum(torch.abs(__UpperCAmelCase)) a_ = torch.mean(torch.abs(__UpperCAmelCase)) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6934E-07) < 1E-2 assert abs(result_mean.item() - 6.1112E-10) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.693_4286_5017_0972E-07) < 1E-2 assert abs(result_mean.item() - 0.0_002) < 1E-3 def UpperCAmelCase__ ( self) ->str: if torch_device == "mps": return a_ = self.scheduler_classes[0] a_ = self.get_scheduler_config() a_ = scheduler_class(**__UpperCAmelCase) scheduler.set_timesteps(self.num_inference_steps) a_ = self.dummy_model() a_ = self.dummy_sample_deter * scheduler.init_noise_sigma a_ = sample.to(__UpperCAmelCase) for i, t in enumerate(scheduler.timesteps): a_ = scheduler.scale_model_input(__UpperCAmelCase , __UpperCAmelCase) a_ = model(__UpperCAmelCase , __UpperCAmelCase) a_ = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) a_ = output.prev_sample a_ = torch.sum(torch.abs(__UpperCAmelCase)) a_ = torch.mean(torch.abs(__UpperCAmelCase)) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4_125) < 1E-2 assert abs(result_mean.item() - 0.0_266) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4_125) < 1E-2 assert abs(result_mean.item() - 0.0_266) < 1E-3 def UpperCAmelCase__ ( self) ->Any: if torch_device == "mps": return a_ = self.scheduler_classes[0] a_ = self.get_scheduler_config() a_ = scheduler_class(**__UpperCAmelCase) scheduler.set_timesteps(self.num_inference_steps , device=__UpperCAmelCase) a_ = self.dummy_model() a_ = self.dummy_sample_deter.to(__UpperCAmelCase) * scheduler.init_noise_sigma for t in scheduler.timesteps: a_ = scheduler.scale_model_input(__UpperCAmelCase , __UpperCAmelCase) a_ = model(__UpperCAmelCase , __UpperCAmelCase) a_ = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) a_ = output.prev_sample a_ = torch.sum(torch.abs(__UpperCAmelCase)) a_ = torch.mean(torch.abs(__UpperCAmelCase)) if str(__UpperCAmelCase).startswith("cpu"): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4_125) < 1E-2 assert abs(result_mean.item() - 0.0_266) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4_125) < 1E-2 assert abs(result_mean.item() - 0.0_266) < 1E-3
243
1
"""simple docstring""" from __future__ import annotations def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[Any]: A__ = [] A__ = [] A__ = 0 A__ = sum(_a ) create_state_space_tree(_a , _a , _a , _a , _a , _a ) return result def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Any: if sum(_a ) > max_sum or (remaining_nums_sum + sum(_a )) < max_sum: return if sum(_a ) == max_sum: result.append(_a ) return for index in range(_a , len(_a ) ): create_state_space_tree( _a , _a , index + 1 , [*path, nums[index]] , _a , remaining_nums_sum - nums[index] , ) SCREAMING_SNAKE_CASE = [3, 34, 4, 12, 5, 2] SCREAMING_SNAKE_CASE = 9 SCREAMING_SNAKE_CASE = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
365
"""simple docstring""" import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {name: getattr(transformers, name + "Fast") for name in SLOW_TO_FAST_CONVERTERS} def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Any: if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(f"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" ) if tokenizer_name is None: A__ = TOKENIZER_CLASSES else: A__ = {tokenizer_name: getattr(lowercase_ , tokenizer_name + "Fast" )} logger.info(f"""Loading tokenizer classes: {tokenizer_names}""" ) for tokenizer_name in tokenizer_names: A__ = TOKENIZER_CLASSES[tokenizer_name] A__ = True if checkpoint_name is None: A__ = list(tokenizer_class.max_model_input_sizes.keys() ) else: A__ = [checkpoint_name] logger.info(f"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" ) for checkpoint in checkpoint_names: logger.info(f"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" ) # Load tokenizer A__ = tokenizer_class.from_pretrained(lowercase_ , force_download=lowercase_ ) # Save fast tokenizer logger.info(f"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" ) # For organization names we create sub-directories if "/" in checkpoint: A__, A__ = checkpoint.split("/" ) A__ = os.path.join(lowercase_ , lowercase_ ) elif add_prefix: A__ = checkpoint A__ = dump_path else: A__ = None A__ = dump_path logger.info(f"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: A__ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] A__ = file_path.split(lowercase_ )[-1][0] if next_char == "/": A__ = os.path.join(lowercase_ , lowercase_ ) A__ = None logger.info(f"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) A__ = tokenizer.save_pretrained( lowercase_ , legacy_format=lowercase_ , filename_prefix=lowercase_ ) logger.info(f"""=> File names {file_names}""" ) for file_name in file_names: if not file_name.endswith("tokenizer.json" ): os.remove(lowercase_ ) logger.info(f"""=> removing {file_name}""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--dump_path", default=None, type=str, required=True, help="Path to output generated fast tokenizer files." ) parser.add_argument( "--tokenizer_name", default=None, type=str, help=( f'Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will ' "download and convert all the checkpoints from AWS." ), ) parser.add_argument( "--checkpoint_name", default=None, type=str, help="Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.", ) parser.add_argument( "--force_download", action="store_true", help="Re-download checkpoints.", ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
230
0
from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
90
from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. __A = 10 def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : list[int] , UpperCamelCase__ : int ) -> int: """simple docstring""" for i in range(UpperCamelCase__ , UpperCamelCase__ ): if array[i] == target: return i return -1 def lowerCamelCase_ ( UpperCamelCase__ : list[int] , UpperCamelCase__ : int ) -> int: """simple docstring""" __lowerCamelCase = 0 __lowerCamelCase = len(UpperCamelCase__ ) while left <= right: if right - left < precision: return lin_search(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = (left + right) // 3 + 1 __lowerCamelCase = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: __lowerCamelCase = one_third - 1 elif array[two_third] < target: __lowerCamelCase = two_third + 1 else: __lowerCamelCase = one_third + 1 __lowerCamelCase = two_third - 1 else: return -1 def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : list[int] , UpperCamelCase__ : int ) -> int: """simple docstring""" if left < right: if right - left < precision: return lin_search(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = (left + right) // 3 + 1 __lowerCamelCase = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(UpperCamelCase__ , one_third - 1 , UpperCamelCase__ , UpperCamelCase__ ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , UpperCamelCase__ , UpperCamelCase__ ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() __A = input("Enter numbers separated by comma:\n").strip() __A = [int(item.strip()) for item in user_input.split(",")] assert collection == sorted(collection), f"List must be ordered.\n{collection}." __A = int(input("Enter the number to be found in the list:\n").strip()) __A = ite_ternary_search(collection, target) __A = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(f'''Iterative search: {target} found at positions: {resulta}''') print(f'''Recursive search: {target} found at positions: {resulta}''') else: print("Not found")
90
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__ = { """configuration_time_series_transformer""": [ """TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TimeSeriesTransformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ """TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TimeSeriesTransformerForPrediction""", """TimeSeriesTransformerModel""", """TimeSeriesTransformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
102
import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex UpperCamelCase__ = logging.getLogger(__name__) class a__ : def __init__( self ): """simple docstring""" __lowerCAmelCase = False def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A ): """simple docstring""" if not self.initialized: __lowerCAmelCase = RagRetriever( _A , question_encoder_tokenizer=_A , generator_tokenizer=_A , index=_A , init_retrieval=_A , ) __lowerCAmelCase = True def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" self.retriever.index.init_index() def __SCREAMING_SNAKE_CASE( self , _A , _A ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase = self.retriever._main_retrieve(_A , _A ) return doc_ids, retrieved_doc_embeds class a__ ( snake_case__ ): def __init__( self , _A , _A , _A , _A , _A=None ): """simple docstring""" if index is not None and index.is_initialized() and len(_A ) > 0: raise ValueError( "When using Ray for distributed fine-tuning, " "you'll need to provide the paths instead, " "as the dataset and the index are loaded " "separately. More info in examples/rag/use_own_knowledge_dataset.py " ) super().__init__( _A , question_encoder_tokenizer=_A , generator_tokenizer=_A , index=_A , init_retrieval=_A , ) __lowerCAmelCase = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(_A , _A , _A , _A ) for worker in self.retrieval_workers ] ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" logger.info("initializing retrieval" ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def __SCREAMING_SNAKE_CASE( self , _A , _A ): """simple docstring""" if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. __lowerCAmelCase = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] __lowerCAmelCase , __lowerCAmelCase = ray.get(random_worker.retrieve.remote(_A , _A ) ) else: __lowerCAmelCase , __lowerCAmelCase = self._main_retrieve(_A , _A ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(_A ) @classmethod def __SCREAMING_SNAKE_CASE( cls , _A , _A=None , **_A ): """simple docstring""" return super(_A , cls ).get_tokenizers(_A , _A , **_A ) @classmethod def __SCREAMING_SNAKE_CASE( cls , _A , _A , _A=None , **_A ): """simple docstring""" __lowerCAmelCase = kwargs.pop("config" , _A ) or RagConfig.from_pretrained(_A , **_A ) __lowerCAmelCase = RagTokenizer.from_pretrained(_A , config=_A ) __lowerCAmelCase = rag_tokenizer.question_encoder __lowerCAmelCase = rag_tokenizer.generator if indexed_dataset is not None: __lowerCAmelCase = "custom" __lowerCAmelCase = CustomHFIndex(config.retrieval_vector_size , _A ) else: __lowerCAmelCase = cls._build_index(_A ) return cls( _A , question_encoder_tokenizer=_A , generator_tokenizer=_A , retrieval_workers=_A , index=_A , )
102
1
'''simple docstring''' _lowerCAmelCase = frozenset( [ '''prompt''', '''height''', '''width''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', '''cross_attention_kwargs''', ] ) _lowerCAmelCase = frozenset(['''prompt''', '''negative_prompt''']) _lowerCAmelCase = frozenset([]) _lowerCAmelCase = frozenset(['''image''']) _lowerCAmelCase = frozenset( [ '''image''', '''height''', '''width''', '''guidance_scale''', ] ) _lowerCAmelCase = frozenset(['''image''']) _lowerCAmelCase = frozenset( [ '''prompt''', '''image''', '''height''', '''width''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', ] ) _lowerCAmelCase = frozenset(['''prompt''', '''image''', '''negative_prompt''']) _lowerCAmelCase = frozenset( [ # Text guided image variation with an image mask '''prompt''', '''image''', '''mask_image''', '''height''', '''width''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', ] ) _lowerCAmelCase = frozenset(['''prompt''', '''image''', '''mask_image''', '''negative_prompt''']) _lowerCAmelCase = frozenset( [ # image variation with an image mask '''image''', '''mask_image''', '''height''', '''width''', '''guidance_scale''', ] ) _lowerCAmelCase = frozenset(['''image''', '''mask_image''']) _lowerCAmelCase = frozenset( [ '''example_image''', '''image''', '''mask_image''', '''height''', '''width''', '''guidance_scale''', ] ) _lowerCAmelCase = frozenset(['''example_image''', '''image''', '''mask_image''']) _lowerCAmelCase = frozenset(['''class_labels''']) _lowerCAmelCase = frozenset(['''class_labels''']) _lowerCAmelCase = frozenset(['''batch_size''']) _lowerCAmelCase = frozenset([]) _lowerCAmelCase = frozenset(['''batch_size''']) _lowerCAmelCase = frozenset([]) _lowerCAmelCase = frozenset( [ '''prompt''', '''audio_length_in_s''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', '''cross_attention_kwargs''', ] ) _lowerCAmelCase = frozenset(['''prompt''', '''negative_prompt''']) _lowerCAmelCase = frozenset(['''input_tokens''']) _lowerCAmelCase = frozenset(['''input_tokens'''])
37
'''simple docstring''' import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class lowerCAmelCase_: '''simple docstring''' def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Optional[Any]: return None class lowerCAmelCase_: '''simple docstring''' def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Tuple: return None class lowerCAmelCase_( unittest.TestCase ): '''simple docstring''' __lowercase : Dict = [ # (model_name, model_kwargs) ('''bert-base-cased''', {}), ('''gpt2''', {'''use_cache''': False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def UpperCAmelCase_ ( self ) -> int: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__UpperCAmelCase ,"""tf""" ,12 ,**__UpperCAmelCase ) @require_torch @slow def UpperCAmelCase_ ( self ) -> Union[str, Any]: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__UpperCAmelCase ,"""pt""" ,12 ,**__UpperCAmelCase ) @require_torch @slow def UpperCAmelCase_ ( self ) -> Any: from transformers import BertModel lowerCAmelCase__ : Optional[int] = ["""[UNK]""", """[SEP]""", """[CLS]""", """[PAD]""", """[MASK]""", """some""", """other""", """words"""] with NamedTemporaryFile(mode="""w+t""" ) as vocab_file: vocab_file.write("""\n""".join(__UpperCAmelCase ) ) vocab_file.flush() lowerCAmelCase__ : Dict = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: lowerCAmelCase__ : Tuple = BertModel(BertConfig(vocab_size=len(__UpperCAmelCase ) ) ) model.save_pretrained(__UpperCAmelCase ) self._test_export(__UpperCAmelCase ,"""pt""" ,12 ,__UpperCAmelCase ) @require_tf @slow def UpperCAmelCase_ ( self ) -> List[str]: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowerCAmelCase__ : Dict = self._test_export(__UpperCAmelCase ,"""tf""" ,12 ,**__UpperCAmelCase ) lowerCAmelCase__ : List[str] = quantize(Path(__UpperCAmelCase ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__UpperCAmelCase ).stat().st_size: self.fail("""Quantized model is bigger than initial ONNX model""" ) @require_torch @slow def UpperCAmelCase_ ( self ) -> List[Any]: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowerCAmelCase__ : Any = self._test_export(__UpperCAmelCase ,"""pt""" ,12 ,**__UpperCAmelCase ) lowerCAmelCase__ : Dict = quantize(__UpperCAmelCase ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__UpperCAmelCase ).stat().st_size: self.fail("""Quantized model is bigger than initial ONNX model""" ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase=None ,**__UpperCAmelCase ) -> Optional[Any]: try: # Compute path with TemporaryDirectory() as tempdir: lowerCAmelCase__ : Optional[int] = Path(__UpperCAmelCase ).joinpath("""model.onnx""" ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,**__UpperCAmelCase ) return path except Exception as e: self.fail(__UpperCAmelCase ) @require_torch @require_tokenizers @slow def UpperCAmelCase_ ( self ) -> Union[str, Any]: from transformers import BertModel lowerCAmelCase__ : List[Any] = BertModel(BertConfig.from_pretrained("""lysandre/tiny-bert-random""" ) ) lowerCAmelCase__ : Union[str, Any] = BertTokenizerFast.from_pretrained("""lysandre/tiny-bert-random""" ) self._test_infer_dynamic_axis(__UpperCAmelCase ,__UpperCAmelCase ,"""pt""" ) @require_tf @require_tokenizers @slow def UpperCAmelCase_ ( self ) -> Optional[int]: from transformers import TFBertModel lowerCAmelCase__ : int = TFBertModel(BertConfig.from_pretrained("""lysandre/tiny-bert-random""" ) ) lowerCAmelCase__ : Optional[int] = BertTokenizerFast.from_pretrained("""lysandre/tiny-bert-random""" ) self._test_infer_dynamic_axis(__UpperCAmelCase ,__UpperCAmelCase ,"""tf""" ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Tuple: lowerCAmelCase__ : Any = FeatureExtractionPipeline(__UpperCAmelCase ,__UpperCAmelCase ) lowerCAmelCase__ : List[str] = ["""input_ids""", """token_type_ids""", """attention_mask""", """output_0""", """output_1"""] lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = infer_shapes(__UpperCAmelCase ,__UpperCAmelCase ) # Assert all variables are present self.assertEqual(len(__UpperCAmelCase ) ,len(__UpperCAmelCase ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] ,__UpperCAmelCase ) self.assertSequenceEqual(variable_names[3:] ,__UpperCAmelCase ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] ,{0: """batch""", 1: """sequence"""} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes["""output_0"""] ,{0: """batch""", 1: """sequence"""} ) self.assertDictEqual(shapes["""output_1"""] ,{0: """batch"""} ) def UpperCAmelCase_ ( self ) -> Optional[int]: lowerCAmelCase__ : List[str] = ["""input_ids""", """attention_mask""", """token_type_ids"""] lowerCAmelCase__ : Union[str, Any] = {"""input_ids""": [1, 2, 3, 4], """attention_mask""": [0, 0, 0, 0], """token_type_ids""": [1, 1, 1, 1]} lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = ensure_valid_input(FuncContiguousArgs() ,__UpperCAmelCase ,__UpperCAmelCase ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(__UpperCAmelCase ) ,3 ) # Should have exactly the same input names self.assertEqual(set(__UpperCAmelCase ) ,set(__UpperCAmelCase ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(__UpperCAmelCase ,(tokens["""input_ids"""], tokens["""token_type_ids"""], tokens["""attention_mask"""]) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) lowerCAmelCase__ , lowerCAmelCase__ : int = ensure_valid_input(FuncNonContiguousArgs() ,__UpperCAmelCase ,__UpperCAmelCase ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(__UpperCAmelCase ) ,1 ) self.assertEqual(len(__UpperCAmelCase ) ,1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] ,tokens["""input_ids"""] ) self.assertEqual(ordered_input_names[0] ,"""input_ids""" ) def UpperCAmelCase_ ( self ) -> Tuple: lowerCAmelCase__ : Dict = generate_identified_filename(Path("""/home/something/my_fake_model.onnx""" ) ,"""-test""" ) self.assertEqual("""/home/something/my_fake_model-test.onnx""" ,generated.as_posix() )
37
1
"""simple docstring""" import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class SCREAMING_SNAKE_CASE__ ( lowercase__ , unittest.TestCase ): snake_case__ : Union[str, Any] = BlenderbotSmallTokenizer snake_case__ : Union[str, Any] = False def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: super().setUp() a_ : Union[str, Any] = ['__start__', 'adapt', 'act', 'ap@@', 'te', '__end__', '__unk__'] a_ : Optional[Any] = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) ) a_ : Tuple = ['#version: 0.2', 'a p', 't e</w>', 'ap t</w>', 'a d', 'ad apt</w>', 'a c', 'ac t</w>', ''] a_ : Dict = {'unk_token': '__unk__', 'bos_token': '__start__', 'eos_token': '__end__'} a_ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) a_ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE__ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(SCREAMING_SNAKE_CASE__ ) ) def SCREAMING_SNAKE_CASE ( self : List[str] , **SCREAMING_SNAKE_CASE__ : Any ) -> List[Any]: kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Dict , SCREAMING_SNAKE_CASE__ : Tuple ) -> Tuple: a_ : Tuple = 'adapt act apte' a_ : List[str] = 'adapt act apte' return input_text, output_text def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[str]: a_ : Union[str, Any] = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) a_ : Any = 'adapt act apte' a_ : Optional[int] = ['adapt', 'act', 'ap@@', 'te'] a_ : List[str] = tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) a_ : int = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] a_ : str = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : str ) -> int: a_ : int = BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) assert tok('sam' ).input_ids == [1_3_8_4] a_ : Optional[int] = 'I am a small frog.' a_ : Tuple = tok([src_text] , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ )['input_ids'] a_ : str = tok.batch_decode(SCREAMING_SNAKE_CASE__ , skip_special_tokens=SCREAMING_SNAKE_CASE__ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: a_ : Any = BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) a_ : Tuple = 'I am a small frog .' a_ : Optional[Any] = '.' a_ : Optional[int] = tok(SCREAMING_SNAKE_CASE__ )['input_ids'] a_ : Union[str, Any] = tok(SCREAMING_SNAKE_CASE__ )['input_ids'] assert encoded[-1] == encoded_dot[0]
366
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : str = { 'Salesforce/instruct-blip-flan-t5': 'https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json', } class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : int = '''instructblip_vision_model''' def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any]=1_4_0_8 , SCREAMING_SNAKE_CASE__ : int=6_1_4_4 , SCREAMING_SNAKE_CASE__ : Dict=3_9 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1_6 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2_2_4 , SCREAMING_SNAKE_CASE__ : Optional[int]=1_4 , SCREAMING_SNAKE_CASE__ : List[Any]="gelu" , SCREAMING_SNAKE_CASE__ : List[str]=1E-6 , SCREAMING_SNAKE_CASE__ : Tuple=0.0 , SCREAMING_SNAKE_CASE__ : List[str]=1E-10 , SCREAMING_SNAKE_CASE__ : str=True , **SCREAMING_SNAKE_CASE__ : Dict , ) -> int: super().__init__(**SCREAMING_SNAKE_CASE__ ) a_ : List[str] = hidden_size a_ : Any = intermediate_size a_ : str = num_hidden_layers a_ : Dict = num_attention_heads a_ : str = patch_size a_ : Any = image_size a_ : Dict = initializer_range a_ : List[Any] = attention_dropout a_ : Union[str, Any] = layer_norm_eps a_ : Optional[Any] = hidden_act a_ : Optional[Any] = qkv_bias @classmethod def SCREAMING_SNAKE_CASE ( cls : Any , SCREAMING_SNAKE_CASE__ : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE__ : List[str] ) -> "PretrainedConfig": cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE__ ) a_ , a_ : Dict = cls.get_config_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": a_ : List[Any] = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : List[Any] = '''instructblip_qformer''' def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=3_0_5_2_2 , SCREAMING_SNAKE_CASE__ : str=7_6_8 , SCREAMING_SNAKE_CASE__ : List[str]=1_2 , SCREAMING_SNAKE_CASE__ : Any=1_2 , SCREAMING_SNAKE_CASE__ : Optional[int]=3_0_7_2 , SCREAMING_SNAKE_CASE__ : List[str]="gelu" , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : int=0.1 , SCREAMING_SNAKE_CASE__ : Optional[int]=5_1_2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.02 , SCREAMING_SNAKE_CASE__ : int=1E-12 , SCREAMING_SNAKE_CASE__ : Dict=0 , SCREAMING_SNAKE_CASE__ : Optional[Any]="absolute" , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE__ : str=1_4_0_8 , **SCREAMING_SNAKE_CASE__ : Dict , ) -> Optional[Any]: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = vocab_size a_ : List[str] = hidden_size a_ : Any = num_hidden_layers a_ : Dict = num_attention_heads a_ : Optional[int] = hidden_act a_ : List[str] = intermediate_size a_ : Tuple = hidden_dropout_prob a_ : Union[str, Any] = attention_probs_dropout_prob a_ : List[str] = max_position_embeddings a_ : List[str] = initializer_range a_ : Any = layer_norm_eps a_ : Tuple = position_embedding_type a_ : List[str] = cross_attention_frequency a_ : Union[str, Any] = encoder_hidden_size @classmethod def SCREAMING_SNAKE_CASE ( cls : str , SCREAMING_SNAKE_CASE__ : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> "PretrainedConfig": cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE__ ) a_ , a_ : Union[str, Any] = cls.get_config_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": a_ : Dict = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : Union[str, Any] = '''instructblip''' snake_case__ : List[str] = True def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : int=3_2 , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Tuple: super().__init__(**SCREAMING_SNAKE_CASE__ ) if vision_config is None: a_ : Dict = {} logger.info('vision_config is None. initializing the InstructBlipVisionConfig with default values.' ) if qformer_config is None: a_ : List[str] = {} logger.info('qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.' ) if text_config is None: a_ : Any = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) a_ : int = InstructBlipVisionConfig(**SCREAMING_SNAKE_CASE__ ) a_ : int = InstructBlipQFormerConfig(**SCREAMING_SNAKE_CASE__ ) a_ : Optional[Any] = text_config['model_type'] if 'model_type' in text_config else 'opt' a_ : List[Any] = CONFIG_MAPPING[text_model_type](**SCREAMING_SNAKE_CASE__ ) a_ : Tuple = self.text_config.tie_word_embeddings a_ : List[Any] = self.text_config.is_encoder_decoder a_ : Optional[Any] = num_query_tokens a_ : int = self.vision_config.hidden_size a_ : List[str] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES a_ : Optional[int] = 1.0 a_ : Any = 0.02 @classmethod def SCREAMING_SNAKE_CASE ( cls : List[Any] , SCREAMING_SNAKE_CASE__ : InstructBlipVisionConfig , SCREAMING_SNAKE_CASE__ : InstructBlipQFormerConfig , SCREAMING_SNAKE_CASE__ : PretrainedConfig , **SCREAMING_SNAKE_CASE__ : List[str] , ) -> Any: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **SCREAMING_SNAKE_CASE__ , ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: a_ : List[Any] = copy.deepcopy(self.__dict__ ) a_ : Optional[int] = self.vision_config.to_dict() a_ : Optional[Any] = self.qformer_config.to_dict() a_ : Union[str, Any] = self.text_config.to_dict() a_ : Optional[Any] = self.__class__.model_type return output
120
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: lowercase__ : List[Any] = None lowercase__ : List[str] = logging.get_logger(__name__) lowercase__ : Optional[Any] = "▁" lowercase__ : Dict = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} lowercase__ : Union[str, Any] = { "vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"}, "tokenizer_file": { "google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json" }, } lowercase__ : int = { "google/pegasus-xsum": 5_1_2, } class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = PegasusTokenizer _snake_case = ['input_ids', 'attention_mask'] def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_="<pad>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="<unk>" , SCREAMING_SNAKE_CASE_="<mask_2>" , SCREAMING_SNAKE_CASE_="<mask_1>" , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=103 , **SCREAMING_SNAKE_CASE_ , )-> List[str]: '''simple docstring''' __UpperCamelCase = offset if additional_special_tokens is not None: if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise TypeError( F"additional_special_tokens should be of type {type(SCREAMING_SNAKE_CASE_ )}, but is" F" {type(SCREAMING_SNAKE_CASE_ )}" ) __UpperCamelCase = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F"<unk_{i}>" for i in range(len(SCREAMING_SNAKE_CASE_ ) , self.offset - 1 ) ] if len(set(SCREAMING_SNAKE_CASE_ ) ) != len(SCREAMING_SNAKE_CASE_ ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' F" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}." ) __UpperCamelCase = additional_special_tokens_extended else: __UpperCamelCase = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F"<unk_{i}>" for i in range(2 , self.offset )] super().__init__( SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , mask_token_sent=SCREAMING_SNAKE_CASE_ , offset=SCREAMING_SNAKE_CASE_ , additional_special_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) __UpperCamelCase = vocab_file __UpperCamelCase = False if not self.vocab_file else True def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Optional[Any]: '''simple docstring''' __UpperCamelCase = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( '''There should be 3 special tokens: mask_token, pad_token, and eos_token +''' F" {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}" ) return [1 if x in all_special_ids else 0 for x in seq] def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False )-> List[int]: '''simple docstring''' if already_has_special_tokens: return self._special_token_mask(SCREAMING_SNAKE_CASE_ ) elif token_ids_a is None: return self._special_token_mask(SCREAMING_SNAKE_CASE_ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None )-> List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None )-> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __UpperCamelCase = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE_ ) return (out_vocab_file,)
328
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase__ : List[str] = 1_6 lowercase__ : str = 3_2 def A_ ( snake_case : Accelerator , snake_case : int = 16 ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) __UpperCamelCase = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(snake_case : Union[str, Any] ): # max_length=None => use the model max length (it's actually the default) __UpperCamelCase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=snake_case , max_length=snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __UpperCamelCase = datasets.map( snake_case , batched=snake_case , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __UpperCamelCase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(snake_case : str ): # On TPU it's best to pad everything to the same length or training will be very slow. __UpperCamelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __UpperCamelCase = 16 elif accelerator.mixed_precision != "no": __UpperCamelCase = 8 else: __UpperCamelCase = None return tokenizer.pad( snake_case , padding='''longest''' , max_length=snake_case , pad_to_multiple_of=snake_case , return_tensors='''pt''' , ) # Instantiate dataloaders. __UpperCamelCase = DataLoader( tokenized_datasets['''train'''] , shuffle=snake_case , collate_fn=snake_case , batch_size=snake_case ) __UpperCamelCase = DataLoader( tokenized_datasets['''validation'''] , shuffle=snake_case , collate_fn=snake_case , batch_size=snake_case ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowercase__ : Union[str, Any] = mocked_dataloaders # noqa: F811 def A_ ( snake_case : List[str] , snake_case : List[Any] ) -> Tuple: '''simple docstring''' if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , snake_case ) == "1": __UpperCamelCase = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: __UpperCamelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: __UpperCamelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __UpperCamelCase = config['''lr'''] __UpperCamelCase = int(config['''num_epochs'''] ) __UpperCamelCase = int(config['''seed'''] ) __UpperCamelCase = int(config['''batch_size'''] ) set_seed(snake_case ) __UpperCamelCase , __UpperCamelCase = get_dataloaders(snake_case , snake_case ) __UpperCamelCase = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation __UpperCamelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __UpperCamelCase = batch_size // MAX_GPU_BATCH_SIZE __UpperCamelCase = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) __UpperCamelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=snake_case ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __UpperCamelCase = model.to(accelerator.device ) # Instantiate optimizer __UpperCamelCase = AdamW(params=model.parameters() , lr=snake_case ) # Instantiate scheduler __UpperCamelCase = get_linear_schedule_with_warmup( optimizer=snake_case , num_warmup_steps=100 , num_training_steps=(len(snake_case ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( snake_case , snake_case , snake_case , snake_case , snake_case ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: __UpperCamelCase = os.path.split(snake_case )[-1].split('''.''' )[0] accelerator.init_trackers(snake_case , snake_case ) # Now we train the model for epoch in range(snake_case ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: __UpperCamelCase = 0 for step, batch in enumerate(snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __UpperCamelCase = model(**snake_case ) __UpperCamelCase = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() __UpperCamelCase = loss / gradient_accumulation_steps accelerator.backward(snake_case ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): __UpperCamelCase = model(**snake_case ) __UpperCamelCase = outputs.logits.argmax(dim=-1 ) __UpperCamelCase , __UpperCamelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=snake_case , references=snake_case , ) __UpperCamelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , snake_case ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { '''accuracy''': eval_metric['''accuracy'''], '''f1''': eval_metric['''f1'''], '''train_loss''': total_loss.item() / len(snake_case ), '''epoch''': epoch, } , step=snake_case , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def A_ ( ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=snake_case , default=snake_case , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=snake_case , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) __UpperCamelCase = parser.parse_args() __UpperCamelCase = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(snake_case , snake_case ) if __name__ == "__main__": main()
328
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer lowercase : Tuple = logging.get_logger(__name__) lowercase : List[Any] = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowercase : List[str] = { """vocab_file""": { """squeezebert/squeezebert-uncased""": ( """https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt""" ), """squeezebert/squeezebert-mnli""": """https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt""", """squeezebert/squeezebert-mnli-headless""": ( """https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """squeezebert/squeezebert-uncased""": ( """https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json""" ), """squeezebert/squeezebert-mnli""": ( """https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json""" ), """squeezebert/squeezebert-mnli-headless""": ( """https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json""" ), }, } lowercase : Tuple = { """squeezebert/squeezebert-uncased""": 512, """squeezebert/squeezebert-mnli""": 512, """squeezebert/squeezebert-mnli-headless""": 512, } lowercase : Dict = { """squeezebert/squeezebert-uncased""": {"""do_lower_case""": True}, """squeezebert/squeezebert-mnli""": {"""do_lower_case""": True}, """squeezebert/squeezebert-mnli-headless""": {"""do_lower_case""": True}, } class __snake_case ( __a ): _a : Optional[Any]= VOCAB_FILES_NAMES _a : int= PRETRAINED_VOCAB_FILES_MAP _a : int= PRETRAINED_INIT_CONFIGURATION _a : Dict= PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a : List[str]= SqueezeBertTokenizer def __init__( self ,snake_case=None ,snake_case=None ,snake_case=True ,snake_case="[UNK]" ,snake_case="[SEP]" ,snake_case="[PAD]" ,snake_case="[CLS]" ,snake_case="[MASK]" ,snake_case=True ,snake_case=None ,**snake_case ,): '''simple docstring''' super().__init__( UpperCamelCase__ ,tokenizer_file=UpperCamelCase__ ,do_lower_case=UpperCamelCase__ ,unk_token=UpperCamelCase__ ,sep_token=UpperCamelCase__ ,pad_token=UpperCamelCase__ ,cls_token=UpperCamelCase__ ,mask_token=UpperCamelCase__ ,tokenize_chinese_chars=UpperCamelCase__ ,strip_accents=UpperCamelCase__ ,**UpperCamelCase__ ,) lowercase : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" ,UpperCamelCase__ ) != do_lower_case or normalizer_state.get("""strip_accents""" ,UpperCamelCase__ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" ,UpperCamelCase__ ) != tokenize_chinese_chars ): lowercase : List[str] = getattr(UpperCamelCase__ ,normalizer_state.pop("""type""" ) ) lowercase : Optional[int] = do_lower_case lowercase : Dict = strip_accents lowercase : Tuple = tokenize_chinese_chars lowercase : List[str] = normalizer_class(**UpperCamelCase__ ) lowercase : str = do_lower_case def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=None ): '''simple docstring''' lowercase : int = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = None ): '''simple docstring''' lowercase : Union[str, Any] = [self.sep_token_id] lowercase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = None ): '''simple docstring''' lowercase : Tuple = self._tokenizer.model.save(UpperCamelCase__ ,name=UpperCamelCase__ ) return tuple(UpperCamelCase__ )
369
import math from datetime import datetime, timedelta def _snake_case( SCREAMING_SNAKE_CASE__ ) -> datetime: lowercase : Any = year % 19 lowercase : Optional[int] = year % 4 lowercase : Any = year % 7 lowercase : str = math.floor(year / 100 ) lowercase : List[str] = math.floor((13 + 8 * leap_day_inhibits) / 25 ) lowercase : Tuple = leap_day_inhibits / 4 lowercase : Any = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 lowercase : Union[str, Any] = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 lowercase : str = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon lowercase : List[Any] = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(SCREAMING_SNAKE_CASE__ , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(SCREAMING_SNAKE_CASE__ , 4 , 18 ) else: return datetime(SCREAMING_SNAKE_CASE__ , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1994, 2000, 2010, 2021, 2023): lowercase : List[str] = """will be""" if year > datetime.now().year else """was""" print(F'''Easter in {year} {tense} {gauss_easter(year)}''')
285
0
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class a__ ( unittest.TestCase , A__ ): def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = load_tool("text-to-speech" ) self.tool.setup() def __UpperCamelCase ( self : Tuple ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Dict = self.tool("hey" ) SCREAMING_SNAKE_CASE_ : Optional[int] = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3],torch.tensor([-0.0005966668832115829, -0.0003657640190795064, -0.00013439502799883485] ),) ) def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : List[Any] = self.tool("hey" ) SCREAMING_SNAKE_CASE_ : Any = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3],torch.tensor([-0.0005966668832115829, -0.0003657640190795064, -0.00013439502799883485] ),) )
18
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=__snake_case ) class _snake_case ( __snake_case ): '''simple docstring''' A__ : str = field(default="automatic-speech-recognition" , metadata={"include_in_asdict_even_if_is_default": True} ) A__ : ClassVar[Features] = Features({"audio": Audio()} ) A__ : ClassVar[Features] = Features({"transcription": Value("string" )} ) A__ : str = "audio" A__ : str = "transcription" def A__ ( self: int ,lowerCamelCase_: Union[str, Any] ) -> Optional[Any]: if self.audio_column not in features: raise ValueError(F'''Column {self.audio_column} is not present in features.''' ) if not isinstance(features[self.audio_column] ,lowerCamelCase_ ): raise ValueError(F'''Column {self.audio_column} is not an Audio type.''' ) UpperCAmelCase_ : Any = copy.deepcopy(self ) UpperCAmelCase_ : Union[str, Any] = self.input_schema.copy() UpperCAmelCase_ : Any = features[self.audio_column] UpperCAmelCase_ : Union[str, Any] = input_schema return task_template @property def A__ ( self: List[str] ) -> Dict[str, str]: return {self.audio_column: "audio", self.transcription_column: "transcription"}
345
0
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowercase : Optional[Any] = logging.get_logger(__name__) lowercase : Union[str, Any] = {'vocab_file': 'spiece.model'} lowercase : Tuple = { 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', } } lowercase : List[Any] = { 'albert-base-v1': 5_12, 'albert-large-v1': 5_12, 'albert-xlarge-v1': 5_12, 'albert-xxlarge-v1': 5_12, 'albert-base-v2': 5_12, 'albert-large-v2': 5_12, 'albert-xlarge-v2': 5_12, 'albert-xxlarge-v2': 5_12, } lowercase : Any = '▁' class A ( __snake_case ): __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE="[CLS]" , SCREAMING_SNAKE_CASE="[SEP]" , SCREAMING_SNAKE_CASE="<unk>" , SCREAMING_SNAKE_CASE="[SEP]" , SCREAMING_SNAKE_CASE="<pad>" , SCREAMING_SNAKE_CASE="[CLS]" , SCREAMING_SNAKE_CASE="[MASK]" , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> None: """simple docstring""" A : Dict = ( AddedToken(SCREAMING_SNAKE_CASE , lstrip=SCREAMING_SNAKE_CASE , rstrip=SCREAMING_SNAKE_CASE , normalized=SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else mask_token ) A : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=SCREAMING_SNAKE_CASE , remove_space=SCREAMING_SNAKE_CASE , keep_accents=SCREAMING_SNAKE_CASE , bos_token=SCREAMING_SNAKE_CASE , eos_token=SCREAMING_SNAKE_CASE , unk_token=SCREAMING_SNAKE_CASE , sep_token=SCREAMING_SNAKE_CASE , pad_token=SCREAMING_SNAKE_CASE , cls_token=SCREAMING_SNAKE_CASE , mask_token=SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE , ) A : List[Any] = do_lower_case A : int = remove_space A : str = keep_accents A : Any = vocab_file A : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(SCREAMING_SNAKE_CASE ) @property def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" return len(self.sp_model ) def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" A : Tuple = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Tuple: """simple docstring""" A : Dict = self.__dict__.copy() A : Dict = None return state def __setstate__( self , SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" A : Optional[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): A : Dict = {} A : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if self.remove_space: A : Optional[int] = ''' '''.join(inputs.strip().split() ) else: A : Dict = inputs A : int = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: A : List[str] = unicodedata.normalize('''NFKD''' , SCREAMING_SNAKE_CASE ) A : List[Any] = ''''''.join([c for c in outputs if not unicodedata.combining(SCREAMING_SNAKE_CASE )] ) if self.do_lower_case: A : List[Any] = outputs.lower() return outputs def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" A : Dict = self.preprocess_text(SCREAMING_SNAKE_CASE ) A : Union[str, Any] = self.sp_model.encode(SCREAMING_SNAKE_CASE , out_type=SCREAMING_SNAKE_CASE ) A : Dict = [] for piece in pieces: if len(SCREAMING_SNAKE_CASE ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): A : int = self.sp_model.EncodeAsPieces(piece[:-1].replace(SCREAMING_SNAKE_CASE , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: A : Dict = cur_pieces[1:] else: A : Tuple = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(SCREAMING_SNAKE_CASE ) else: new_pieces.append(SCREAMING_SNAKE_CASE ) return new_pieces def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" return self.sp_model.PieceToId(SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" return self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" A : List[Any] = [] A : int = '''''' A : Optional[int] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE ) + token A : Any = True A : Optional[int] = [] else: current_sub_tokens.append(SCREAMING_SNAKE_CASE ) A : Dict = False out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE ) return out_string.strip() def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> List[int]: """simple docstring""" A : Dict = [self.sep_token_id] A : str = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE , token_ids_a=SCREAMING_SNAKE_CASE , already_has_special_tokens=SCREAMING_SNAKE_CASE ) if token_ids_a is not None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1] def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> List[int]: """simple docstring""" A : Tuple = [self.sep_token_id] A : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(SCREAMING_SNAKE_CASE ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return A : List[str] = os.path.join( SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE , '''wb''' ) as fi: A : Dict = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
311
'''simple docstring''' from __future__ import annotations def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : List[str] = 2 A : Dict = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(snake_case__ ) if n > 1: factors.append(snake_case__ ) return factors if __name__ == "__main__": import doctest doctest.testmod()
311
1
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def a ( _UpperCAmelCase : Any , _UpperCAmelCase : int , _UpperCAmelCase : Any ): '''simple docstring''' return params[f'{prefix}/{prefix}/relpos_bias/rel_embedding'][:, i, :] def a ( _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any]="attention" ): '''simple docstring''' __UpperCAmelCase : List[Any] = np.ascontiguousarray(params[f'{prefix}/{prefix}/{layer_name}/key/kernel'][:, i, :, :] ) __UpperCAmelCase : List[str] = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) __UpperCAmelCase : Optional[int] = np.ascontiguousarray(params[f'{prefix}/{prefix}/{layer_name}/out/kernel'][:, i, :, :] ) __UpperCAmelCase : str = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) __UpperCAmelCase : Optional[Any] = np.ascontiguousarray(params[f'{prefix}/{prefix}/{layer_name}/query/kernel'][:, i, :, :] ) __UpperCAmelCase : Optional[Any] = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) __UpperCAmelCase : Any = np.ascontiguousarray(params[f'{prefix}/{prefix}/{layer_name}/value/kernel'][:, i, :, :] ) __UpperCAmelCase : int = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def a ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Dict=False ): '''simple docstring''' if split_mlp_wi: __UpperCAmelCase : List[str] = params[f'{prefix}/{prefix}/mlp/wi_0/kernel'][:, i, :] __UpperCAmelCase : Dict = params[f'{prefix}/{prefix}/mlp/wi_1/kernel'][:, i, :] __UpperCAmelCase : Optional[int] = (wi_a, wi_a) else: __UpperCAmelCase : Optional[int] = params[f'{prefix}/{prefix}/mlp/wi/kernel'][:, i, :] __UpperCAmelCase : Any = params[f'{prefix}/{prefix}/mlp/wo/kernel'][:, i, :] return wi, wo def a ( _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple ): '''simple docstring''' return params[f'{prefix}/{prefix}/{layer_name}/scale'][:, i] def a ( _UpperCAmelCase : dict , *, _UpperCAmelCase : int , _UpperCAmelCase : bool , _UpperCAmelCase : bool = False ): '''simple docstring''' __UpperCAmelCase : Dict = traverse_util.flatten_dict(variables['''target'''] ) __UpperCAmelCase : List[str] = {'''/'''.join(_UpperCAmelCase ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi __UpperCAmelCase : Dict = '''encoder/encoder/mlp/wi_0/kernel''' in old print('''Split MLP:''' , _UpperCAmelCase ) __UpperCAmelCase : Any = collections.OrderedDict() # Shared embeddings. __UpperCAmelCase : Tuple = old['''token_embedder/embedding'''] # Encoder. for i in range(_UpperCAmelCase ): # Block i, layer 0 (Self Attention). __UpperCAmelCase : Optional[Any] = tax_layer_norm_lookup(_UpperCAmelCase , _UpperCAmelCase , '''encoder''' , '''pre_attention_layer_norm''' ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = tax_attention_lookup(_UpperCAmelCase , _UpperCAmelCase , '''encoder''' , '''attention''' ) __UpperCAmelCase : int = layer_norm __UpperCAmelCase : Tuple = k.T __UpperCAmelCase : int = o.T __UpperCAmelCase : Any = q.T __UpperCAmelCase : List[str] = v.T # Block i, layer 1 (MLP). __UpperCAmelCase : Union[str, Any] = tax_layer_norm_lookup(_UpperCAmelCase , _UpperCAmelCase , '''encoder''' , '''pre_mlp_layer_norm''' ) __UpperCAmelCase , __UpperCAmelCase : str = tax_mlp_lookup(_UpperCAmelCase , _UpperCAmelCase , '''encoder''' , _UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = layer_norm if split_mlp_wi: __UpperCAmelCase : str = wi[0].T __UpperCAmelCase : Dict = wi[1].T else: __UpperCAmelCase : Union[str, Any] = wi.T __UpperCAmelCase : Union[str, Any] = wo.T if scalable_attention: # convert the rel_embedding of each layer __UpperCAmelCase : Union[str, Any] = tax_relpos_bias_lookup( _UpperCAmelCase , _UpperCAmelCase , '''encoder''' ).T __UpperCAmelCase : Optional[int] = old['''encoder/encoder_norm/scale'''] if not scalable_attention: __UpperCAmelCase : Union[str, Any] = tax_relpos_bias_lookup( _UpperCAmelCase , 0 , '''encoder''' ).T __UpperCAmelCase : str = tax_relpos_bias_lookup( _UpperCAmelCase , 0 , '''decoder''' ).T if not is_encoder_only: # Decoder. for i in range(_UpperCAmelCase ): # Block i, layer 0 (Self Attention). __UpperCAmelCase : Optional[Any] = tax_layer_norm_lookup(_UpperCAmelCase , _UpperCAmelCase , '''decoder''' , '''pre_self_attention_layer_norm''' ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Dict = tax_attention_lookup(_UpperCAmelCase , _UpperCAmelCase , '''decoder''' , '''self_attention''' ) __UpperCAmelCase : str = layer_norm __UpperCAmelCase : Tuple = k.T __UpperCAmelCase : List[str] = o.T __UpperCAmelCase : Union[str, Any] = q.T __UpperCAmelCase : Tuple = v.T # Block i, layer 1 (Cross Attention). __UpperCAmelCase : str = tax_layer_norm_lookup(_UpperCAmelCase , _UpperCAmelCase , '''decoder''' , '''pre_cross_attention_layer_norm''' ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = tax_attention_lookup(_UpperCAmelCase , _UpperCAmelCase , '''decoder''' , '''encoder_decoder_attention''' ) __UpperCAmelCase : Union[str, Any] = layer_norm __UpperCAmelCase : List[Any] = k.T __UpperCAmelCase : Union[str, Any] = o.T __UpperCAmelCase : Union[str, Any] = q.T __UpperCAmelCase : Any = v.T # Block i, layer 2 (MLP). __UpperCAmelCase : Dict = tax_layer_norm_lookup(_UpperCAmelCase , _UpperCAmelCase , '''decoder''' , '''pre_mlp_layer_norm''' ) __UpperCAmelCase , __UpperCAmelCase : str = tax_mlp_lookup(_UpperCAmelCase , _UpperCAmelCase , '''decoder''' , _UpperCAmelCase ) __UpperCAmelCase : Any = layer_norm if split_mlp_wi: __UpperCAmelCase : int = wi[0].T __UpperCAmelCase : List[Any] = wi[1].T else: __UpperCAmelCase : int = wi.T __UpperCAmelCase : Dict = wo.T if scalable_attention: # convert the rel_embedding of each layer __UpperCAmelCase : Any = tax_relpos_bias_lookup(_UpperCAmelCase , _UpperCAmelCase , '''decoder''' ).T __UpperCAmelCase : Any = old['''decoder/decoder_norm/scale'''] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: __UpperCAmelCase : Any = old['''decoder/logits_dense/kernel'''].T return new def a ( _UpperCAmelCase : Tuple , _UpperCAmelCase : bool ): '''simple docstring''' __UpperCAmelCase : str = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: __UpperCAmelCase : List[Any] = state_dict['''shared.weight'''] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: __UpperCAmelCase : int = state_dict['''shared.weight'''] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('''Using shared word embeddings as lm_head.''' ) __UpperCAmelCase : List[Any] = state_dict['''shared.weight'''] return state_dict def a ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] ): '''simple docstring''' __UpperCAmelCase : List[Any] = checkpoints.load_tax_checkpoint(_UpperCAmelCase ) __UpperCAmelCase : Optional[int] = convert_tax_to_pytorch( _UpperCAmelCase , num_layers=config.num_layers , is_encoder_only=_UpperCAmelCase , scalable_attention=_UpperCAmelCase ) __UpperCAmelCase : List[Any] = make_state_dict(_UpperCAmelCase , _UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) def a ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , ): '''simple docstring''' __UpperCAmelCase : int = MTaConfig.from_json_file(_UpperCAmelCase ) print(f'Building PyTorch model from configuration: {config}' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: __UpperCAmelCase : List[str] = UMTaEncoderModel(_UpperCAmelCase ) else: __UpperCAmelCase : Optional[Any] = UMTaForConditionalGeneration(_UpperCAmelCase ) # Load weights from tf checkpoint load_tax_weights_in_ta(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(_UpperCAmelCase ) # Verify that we can load the checkpoint. model.from_pretrained(_UpperCAmelCase ) print('''Done''' ) if __name__ == "__main__": __A =argparse.ArgumentParser(description="Converts a native T5X checkpoint into a PyTorch checkpoint.") # Required parameters parser.add_argument( "--t5x_checkpoint_path", default=None, type=str, required=True, help="Path to the T5X checkpoint." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_encoder_only", action="store_true", help="Check if the model is encoder-decoder model", default=False ) parser.add_argument( "--scalable_attention", action="store_true", help="Whether the model uses scaled attention (umt5 model)", default=False, ) __A =parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
226
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class UpperCAmelCase__ ( unittest.TestCase ,__UpperCamelCase ): '''simple docstring''' def snake_case__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : Tuple = load_tool('''text-to-speech''' ) self.tool.setup() def snake_case__ ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) __UpperCAmelCase : List[Any] = self.tool('''hey''' ) __UpperCAmelCase : Union[str, Any] = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) ) def snake_case__ ( self : Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) __UpperCAmelCase : Optional[int] = self.tool('''hey''' ) __UpperCAmelCase : List[str] = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) )
226
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE :Optional[Any] = { 'configuration_blenderbot_small': [ 'BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlenderbotSmallConfig', 'BlenderbotSmallOnnxConfig', ], 'tokenization_blenderbot_small': ['BlenderbotSmallTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :int = ['BlenderbotSmallTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :int = [ 'BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlenderbotSmallForCausalLM', 'BlenderbotSmallForConditionalGeneration', 'BlenderbotSmallModel', 'BlenderbotSmallPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Optional[Any] = [ 'TFBlenderbotSmallForConditionalGeneration', 'TFBlenderbotSmallModel', 'TFBlenderbotSmallPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Union[str, Any] = [ 'FlaxBlenderbotSmallForConditionalGeneration', 'FlaxBlenderbotSmallModel', 'FlaxBlenderbotSmallPreTrainedModel', ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE :List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
363
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging SCREAMING_SNAKE_CASE :Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :Union[str, Any] = { 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/resolve/main/config.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/config.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/config.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json', } class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = "bloom" snake_case_ = ["past_key_values"] snake_case_ = { "num_hidden_layers": "n_layer", "num_attention_heads": "n_head", } def __init__( self : Optional[Any] ,A : List[Any]=25_08_80 ,A : Optional[int]=64 ,A : List[Any]=2 ,A : Optional[int]=8 ,A : str=1E-5 ,A : str=0.02 ,A : int=True ,A : Optional[Any]=1 ,A : int=2 ,A : str=False ,A : Dict=0.0 ,A : List[Any]=0.0 ,A : str=1 ,A : List[Any]=False ,**A : List[Any] ,): __A = vocab_size # Backward compatibility with n_embed kwarg __A = kwargs.pop("n_embed" ,A ) __A = hidden_size if n_embed is None else n_embed __A = n_layer __A = n_head __A = layer_norm_epsilon __A = initializer_range __A = use_cache __A = pretraining_tp __A = apply_residual_connection_post_layernorm __A = hidden_dropout __A = attention_dropout __A = bos_token_id __A = eos_token_id __A = slow_but_exact super().__init__(bos_token_id=A ,eos_token_id=A ,**A ) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = version.parse("1.12" ) def __init__( self : str ,A : PretrainedConfig ,A : str = "default" ,A : List[PatchingSpec] = None ,A : bool = False ,): super().__init__(A ,task=A ,patching_specs=A ,use_past=A ) if not getattr(self._config ,"pad_token_id" ,A ): # TODO: how to do that better? __A = 0 @property def UpperCamelCase_ ( self : Union[str, Any] ): __A = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(A ,direction="inputs" ,inverted_values_shape=A ) __A = {0: "batch", 1: "past_sequence + sequence"} else: __A = {0: "batch", 1: "sequence"} return common_inputs @property def UpperCamelCase_ ( self : Optional[Any] ): return self._config.n_layer @property def UpperCamelCase_ ( self : List[Any] ): return self._config.n_head @property def UpperCamelCase_ ( self : Optional[int] ): return 1E-3 def UpperCamelCase_ ( self : Any ,A : "PreTrainedTokenizer" ,A : int = -1 ,A : int = -1 ,A : bool = False ,A : Optional["TensorType"] = None ,): __A = super(A ,self ).generate_dummy_inputs( A ,batch_size=A ,seq_length=A ,is_pair=A ,framework=A ) # We need to order the input in the way they appears in the forward() __A = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch __A , __A = common_inputs["input_ids"].shape # Not using the same length for past_key_values __A = seqlen + 2 __A = self._config.hidden_size // self.num_attention_heads __A = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) __A = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) __A = [ (torch.zeros(A ), torch.zeros(A )) for _ in range(self.num_layers ) ] __A = common_inputs["attention_mask"] if self.use_past: __A = ordered_inputs["attention_mask"].dtype __A = torch.cat( [ordered_inputs["attention_mask"], torch.ones(A ,A ,dtype=A )] ,dim=1 ) return ordered_inputs @property def UpperCamelCase_ ( self : int ): return 13
124
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A__: str = {'''configuration_yolos''': ['''YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''YolosConfig''', '''YolosOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__: Union[str, Any] = ['''YolosFeatureExtractor'''] A__: Optional[int] = ['''YolosImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__: str = [ '''YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''YolosForObjectDetection''', '''YolosModel''', '''YolosPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys A__: Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
149
import os from datetime import datetime as dt from github import Github A__: int = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''enhancement''', '''new pipeline/model''', '''new scheduler''', '''wip''', ] def lowerCAmelCase_ ( ): UpperCamelCase__: Dict = Github(os.environ["GITHUB_TOKEN"]) UpperCamelCase__: Union[str, Any] = g.get_repo("huggingface/diffusers") UpperCamelCase__: str = repo.get_issues(state="open") for issue in open_issues: UpperCamelCase__: Union[str, Any] = sorted(issue.get_comments() ,key=lambda A_: i.created_at ,reverse=A_) UpperCamelCase__: Tuple = comments[0] if len(A_) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels()) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state="closed") elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state="open") issue.remove_from_labels("stale") elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels()) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) " "are likely to be ignored.") issue.add_to_labels("stale") if __name__ == "__main__": main()
149
1
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { 'BridgeTower/bridgetower-base': 'https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json', 'BridgeTower/bridgetower-base-itm-mlm': ( 'https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json' ), } class UpperCamelCase ( snake_case_ ): UpperCamelCase : str = '''bridgetower_vision_model''' def __init__( self : List[Any] , UpperCAmelCase__ : Optional[int]=768 , UpperCAmelCase__ : int=12 , UpperCAmelCase__ : Any=3 , UpperCAmelCase__ : List[str]=16 , UpperCAmelCase__ : Dict=288 , UpperCAmelCase__ : List[str]=1 , UpperCAmelCase__ : int=1E-05 , UpperCAmelCase__ : List[Any]=False , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : Any=False , **UpperCAmelCase__ : Optional[int] , ) -> Optional[int]: super().__init__(**UpperCAmelCase__ ) _a : str = hidden_size _a : str = num_hidden_layers _a : Any = num_channels _a : List[Any] = patch_size _a : Dict = image_size _a : int = initializer_factor _a : Dict = layer_norm_eps _a : Optional[int] = stop_gradient _a : Any = share_layernorm _a : Tuple = remove_last_layer @classmethod def _lowercase ( cls : Union[str, Any] , UpperCAmelCase__ : Union[str, os.PathLike] , **UpperCAmelCase__ : List[Any] ) -> "PretrainedConfig": _a : Optional[Any] = cls.get_config_dict(UpperCAmelCase__ , **UpperCAmelCase__ ) if config_dict.get("""model_type""" ) == "bridgetower": _a : Union[str, Any] = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCAmelCase__ , **UpperCAmelCase__ ) class UpperCamelCase ( snake_case_ ): UpperCamelCase : Dict = '''bridgetower_text_model''' def __init__( self : List[Any] , UpperCAmelCase__ : Dict=50265 , UpperCAmelCase__ : List[Any]=768 , UpperCAmelCase__ : List[Any]=12 , UpperCAmelCase__ : int=12 , UpperCAmelCase__ : Union[str, Any]=1 , UpperCAmelCase__ : List[str]=3072 , UpperCAmelCase__ : int="gelu" , UpperCAmelCase__ : Optional[Any]=0.1 , UpperCAmelCase__ : Optional[int]=0.1 , UpperCAmelCase__ : List[Any]=514 , UpperCAmelCase__ : List[str]=1 , UpperCAmelCase__ : Optional[Any]=1E-05 , UpperCAmelCase__ : str=1 , UpperCAmelCase__ : Union[str, Any]=0 , UpperCAmelCase__ : Union[str, Any]=2 , UpperCAmelCase__ : Union[str, Any]="absolute" , UpperCAmelCase__ : Optional[int]=True , **UpperCAmelCase__ : Optional[Any] , ) -> str: super().__init__(**UpperCAmelCase__ ) _a : List[Any] = vocab_size _a : Optional[Any] = hidden_size _a : Union[str, Any] = num_hidden_layers _a : str = num_attention_heads _a : Union[str, Any] = hidden_act _a : str = initializer_factor _a : Tuple = intermediate_size _a : Optional[Any] = hidden_dropout_prob _a : List[str] = attention_probs_dropout_prob _a : Dict = max_position_embeddings _a : Optional[int] = type_vocab_size _a : Any = layer_norm_eps _a : Optional[Any] = position_embedding_type _a : Optional[Any] = use_cache _a : Optional[int] = pad_token_id _a : Optional[Any] = bos_token_id _a : Any = eos_token_id @classmethod def _lowercase ( cls : List[str] , UpperCAmelCase__ : Union[str, os.PathLike] , **UpperCAmelCase__ : List[Any] ) -> "PretrainedConfig": _a : Dict = cls.get_config_dict(UpperCAmelCase__ , **UpperCAmelCase__ ) if config_dict.get("""model_type""" ) == "bridgetower": _a : str = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCAmelCase__ , **UpperCAmelCase__ ) class UpperCamelCase ( snake_case_ ): UpperCamelCase : Optional[Any] = '''bridgetower''' def __init__( self : Tuple , UpperCAmelCase__ : Union[str, Any]=True , UpperCAmelCase__ : Union[str, Any]="gelu" , UpperCAmelCase__ : Any=768 , UpperCAmelCase__ : List[str]=1 , UpperCAmelCase__ : Optional[int]=1E-05 , UpperCAmelCase__ : Optional[int]=False , UpperCAmelCase__ : List[str]="add" , UpperCAmelCase__ : Dict=12 , UpperCAmelCase__ : int=6 , UpperCAmelCase__ : Optional[Any]=False , UpperCAmelCase__ : str=False , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : Tuple=None , **UpperCAmelCase__ : int , ) -> Tuple: # TODO: remove this once the Hub files are updated. _a : Optional[Any] = kwargs.pop("""text_config_dict""" , UpperCAmelCase__ ) _a : Union[str, Any] = kwargs.pop("""vision_config_dict""" , UpperCAmelCase__ ) super().__init__(**UpperCAmelCase__ ) _a : Optional[Any] = share_cross_modal_transformer_layers _a : Optional[Any] = hidden_act _a : Tuple = hidden_size _a : Dict = initializer_factor _a : int = layer_norm_eps _a : Optional[int] = share_link_tower_layers _a : Optional[Any] = link_tower_type _a : Optional[int] = num_attention_heads _a : Union[str, Any] = num_hidden_layers _a : List[Any] = tie_word_embeddings _a : List[Any] = init_layernorm_from_vision_encoder if text_config is None: _a : Union[str, Any] = {} logger.info("""`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.""" ) if vision_config is None: _a : Tuple = {} logger.info("""`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.""" ) _a : List[Any] = BridgeTowerTextConfig(**UpperCAmelCase__ ) _a : Union[str, Any] = BridgeTowerVisionConfig(**UpperCAmelCase__ ) @classmethod def _lowercase ( cls : Optional[Any] , UpperCAmelCase__ : BridgeTowerTextConfig , UpperCAmelCase__ : BridgeTowerVisionConfig , **UpperCAmelCase__ : Optional[Any] ) -> Any: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **UpperCAmelCase__ ) def _lowercase ( self : Any ) -> Dict: _a : Any = copy.deepcopy(self.__dict__ ) _a : List[str] = self.text_config.to_dict() _a : Tuple = self.vision_config.to_dict() _a : Optional[int] = self.__class__.model_type return output
360
"""simple docstring""" import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class UpperCamelCase ( unittest.TestCase , snake_case_ ): def _lowercase ( self : int ) -> int: _a : Optional[Any] = load_tool("""text-to-speech""" ) self.tool.setup() def _lowercase ( self : List[str] ) -> Union[str, Any]: # SpeechT5 isn't deterministic torch.manual_seed(0 ) _a : str = self.tool("""hey""" ) _a : List[str] = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) ) def _lowercase ( self : Optional[int] ) -> Optional[Any]: # SpeechT5 isn't deterministic torch.manual_seed(0 ) _a : int = self.tool("""hey""" ) _a : str = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) )
324
0
import argparse import collections import json import os import re import string import sys import numpy as np UpperCAmelCase : Optional[int] =re.compile(r"""\b(a|an|the)\b""", re.UNICODE) UpperCAmelCase : str =None def _lowerCAmelCase (): UpperCamelCase_ = argparse.ArgumentParser("Official evaluation script for SQuAD version 2.0.") parser.add_argument("data_file" , metavar="data.json" , help="Input data JSON file.") parser.add_argument("pred_file" , metavar="pred.json" , help="Model predictions.") parser.add_argument( "--out-file" , "-o" , metavar="eval.json" , help="Write accuracy metrics to file (default is stdout).") parser.add_argument( "--na-prob-file" , "-n" , metavar="na_prob.json" , help="Model estimates of probability of no answer.") parser.add_argument( "--na-prob-thresh" , "-t" , type=__UpperCAmelCase , default=1.0 , help="Predict \"\" if no-answer probability exceeds this (default = 1.0)." , ) parser.add_argument( "--out-image-dir" , "-p" , metavar="out_images" , default=__UpperCAmelCase , help="Save precision-recall curves to directory.") parser.add_argument("--verbose" , "-v" , action="store_true") if len(sys.argv) == 1: parser.print_help() sys.exit(1) return parser.parse_args() def _lowerCAmelCase (_lowerCAmelCase): UpperCamelCase_ = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: UpperCamelCase_ = bool(qa["answers"]["text"]) return qid_to_has_ans def _lowerCAmelCase (_lowerCAmelCase): def remove_articles(_lowerCAmelCase): return ARTICLES_REGEX.sub(" " , __UpperCAmelCase) def white_space_fix(_lowerCAmelCase): return " ".join(text.split()) def remove_punc(_lowerCAmelCase): UpperCamelCase_ = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(_lowerCAmelCase): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__UpperCAmelCase)))) def _lowerCAmelCase (_lowerCAmelCase): if not s: return [] return normalize_answer(__UpperCAmelCase).split() def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase): return int(normalize_answer(__UpperCAmelCase) == normalize_answer(__UpperCAmelCase)) def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase): UpperCamelCase_ = get_tokens(__UpperCAmelCase) UpperCamelCase_ = get_tokens(__UpperCAmelCase) UpperCamelCase_ = collections.Counter(__UpperCAmelCase) & collections.Counter(__UpperCAmelCase) UpperCamelCase_ = sum(common.values()) if len(__UpperCAmelCase) == 0 or len(__UpperCAmelCase) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks) if num_same == 0: return 0 UpperCamelCase_ = 1.0 * num_same / len(__UpperCAmelCase) UpperCamelCase_ = 1.0 * num_same / len(__UpperCAmelCase) UpperCamelCase_ = (2 * precision * recall) / (precision + recall) return fa def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase): UpperCamelCase_ = {} UpperCamelCase_ = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: UpperCamelCase_ = qa['''id'''] UpperCamelCase_ = [t for t in qa['''answers''']['''text'''] if normalize_answer(__UpperCAmelCase)] if not gold_answers: # For unanswerable questions, only correct answer is empty string UpperCamelCase_ = [''''''] if qid not in preds: print(f"""Missing prediction for {qid}""") continue UpperCamelCase_ = preds[qid] # Take max over all gold answers UpperCamelCase_ = max(compute_exact(__UpperCAmelCase , __UpperCAmelCase) for a in gold_answers) UpperCamelCase_ = max(compute_fa(__UpperCAmelCase , __UpperCAmelCase) for a in gold_answers) return exact_scores, fa_scores def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase): UpperCamelCase_ = {} for qid, s in scores.items(): UpperCamelCase_ = na_probs[qid] > na_prob_thresh if pred_na: UpperCamelCase_ = float(not qid_to_has_ans[qid]) else: UpperCamelCase_ = s return new_scores def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None): if not qid_list: UpperCamelCase_ = len(__UpperCAmelCase) return collections.OrderedDict( [ ("exact", 1_00.0 * sum(exact_scores.values()) / total), ("f1", 1_00.0 * sum(fa_scores.values()) / total), ("total", total), ]) else: UpperCamelCase_ = len(__UpperCAmelCase) return collections.OrderedDict( [ ("exact", 1_00.0 * sum(exact_scores[k] for k in qid_list) / total), ("f1", 1_00.0 * sum(fa_scores[k] for k in qid_list) / total), ("total", total), ]) def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase): for k in new_eval: UpperCamelCase_ = new_eval[k] def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase): plt.step(__UpperCAmelCase , __UpperCAmelCase , color="b" , alpha=0.2 , where="post") plt.fill_between(__UpperCAmelCase , __UpperCAmelCase , step="post" , alpha=0.2 , color="b") plt.xlabel("Recall") plt.ylabel("Precision") plt.xlim([0.0, 1.05]) plt.ylim([0.0, 1.05]) plt.title(__UpperCAmelCase) plt.savefig(__UpperCAmelCase) plt.clf() def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=None): UpperCamelCase_ = sorted(__UpperCAmelCase , key=lambda _lowerCAmelCase: na_probs[k]) UpperCamelCase_ = 0.0 UpperCamelCase_ = 1.0 UpperCamelCase_ = 0.0 UpperCamelCase_ = [1.0] UpperCamelCase_ = [0.0] UpperCamelCase_ = 0.0 for i, qid in enumerate(__UpperCAmelCase): if qid_to_has_ans[qid]: true_pos += scores[qid] UpperCamelCase_ = true_pos / float(i + 1) UpperCamelCase_ = true_pos / float(__UpperCAmelCase) if i == len(__UpperCAmelCase) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(__UpperCAmelCase) recalls.append(__UpperCAmelCase) if out_image: plot_pr_curve(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) return {"ap": 1_00.0 * avg_prec} def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase): if out_image_dir and not os.path.exists(__UpperCAmelCase): os.makedirs(__UpperCAmelCase) UpperCamelCase_ = sum(1 for v in qid_to_has_ans.values() if v) if num_true_pos == 0: return UpperCamelCase_ = make_precision_recall_eval( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , out_image=os.path.join(__UpperCAmelCase , "pr_exact.png") , title="Precision-Recall curve for Exact Match score" , ) UpperCamelCase_ = make_precision_recall_eval( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , out_image=os.path.join(__UpperCAmelCase , "pr_f1.png") , title="Precision-Recall curve for F1 score" , ) UpperCamelCase_ = {k: float(__UpperCAmelCase) for k, v in qid_to_has_ans.items()} UpperCamelCase_ = make_precision_recall_eval( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , out_image=os.path.join(__UpperCAmelCase , "pr_oracle.png") , title="Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)" , ) merge_eval(__UpperCAmelCase , __UpperCAmelCase , "pr_exact") merge_eval(__UpperCAmelCase , __UpperCAmelCase , "pr_f1") merge_eval(__UpperCAmelCase , __UpperCAmelCase , "pr_oracle") def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase): if not qid_list: return UpperCamelCase_ = [na_probs[k] for k in qid_list] UpperCamelCase_ = np.ones_like(__UpperCAmelCase) / float(len(__UpperCAmelCase)) plt.hist(__UpperCAmelCase , weights=__UpperCAmelCase , bins=20 , range=(0.0, 1.0)) plt.xlabel("Model probability of no-answer") plt.ylabel("Proportion of dataset") plt.title(f"""Histogram of no-answer probability: {name}""") plt.savefig(os.path.join(__UpperCAmelCase , f"""na_prob_hist_{name}.png""")) plt.clf() def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase): UpperCamelCase_ = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k]) UpperCamelCase_ = num_no_ans UpperCamelCase_ = cur_score UpperCamelCase_ = 0.0 UpperCamelCase_ = sorted(__UpperCAmelCase , key=lambda _lowerCAmelCase: na_probs[k]) for i, qid in enumerate(__UpperCAmelCase): if qid not in scores: continue if qid_to_has_ans[qid]: UpperCamelCase_ = scores[qid] else: if preds[qid]: UpperCamelCase_ = -1 else: UpperCamelCase_ = 0 cur_score += diff if cur_score > best_score: UpperCamelCase_ = cur_score UpperCamelCase_ = na_probs[qid] return 1_00.0 * best_score / len(__UpperCAmelCase), best_thresh def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase): UpperCamelCase_ = find_best_thresh(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) UpperCamelCase_ = find_best_thresh(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) UpperCamelCase_ = best_exact UpperCamelCase_ = exact_thresh UpperCamelCase_ = best_fa UpperCamelCase_ = fa_thresh def _lowerCAmelCase (): with open(OPTS.data_file) as f: UpperCamelCase_ = json.load(__UpperCAmelCase) UpperCamelCase_ = dataset_json['''data'''] with open(OPTS.pred_file) as f: UpperCamelCase_ = json.load(__UpperCAmelCase) if OPTS.na_prob_file: with open(OPTS.na_prob_file) as f: UpperCamelCase_ = json.load(__UpperCAmelCase) else: UpperCamelCase_ = {k: 0.0 for k in preds} UpperCamelCase_ = make_qid_to_has_ans(__UpperCAmelCase) # maps qid to True/False UpperCamelCase_ = [k for k, v in qid_to_has_ans.items() if v] UpperCamelCase_ = [k for k, v in qid_to_has_ans.items() if not v] UpperCamelCase_ = get_raw_scores(__UpperCAmelCase , __UpperCAmelCase) UpperCamelCase_ = apply_no_ans_threshold(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , OPTS.na_prob_thresh) UpperCamelCase_ = apply_no_ans_threshold(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , OPTS.na_prob_thresh) UpperCamelCase_ = make_eval_dict(__UpperCAmelCase , __UpperCAmelCase) if has_ans_qids: UpperCamelCase_ = make_eval_dict(__UpperCAmelCase , __UpperCAmelCase , qid_list=__UpperCAmelCase) merge_eval(__UpperCAmelCase , __UpperCAmelCase , "HasAns") if no_ans_qids: UpperCamelCase_ = make_eval_dict(__UpperCAmelCase , __UpperCAmelCase , qid_list=__UpperCAmelCase) merge_eval(__UpperCAmelCase , __UpperCAmelCase , "NoAns") if OPTS.na_prob_file: find_all_best_thresh(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , OPTS.out_image_dir) histogram_na_prob(__UpperCAmelCase , __UpperCAmelCase , OPTS.out_image_dir , "hasAns") histogram_na_prob(__UpperCAmelCase , __UpperCAmelCase , OPTS.out_image_dir , "noAns") if OPTS.out_file: with open(OPTS.out_file , "w") as f: json.dump(__UpperCAmelCase , __UpperCAmelCase) else: print(json.dumps(__UpperCAmelCase , indent=2)) if __name__ == "__main__": UpperCAmelCase : Optional[Any] =parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use("""Agg""") import matplotlib.pyplot as plt main()
128
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=3 , _UpperCAmelCase=32 , _UpperCAmelCase=3 , _UpperCAmelCase=10 , _UpperCAmelCase=[10, 20, 30, 40] , _UpperCAmelCase=[1, 1, 2, 1] , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase="relu" , _UpperCAmelCase=3 , _UpperCAmelCase=None , ): lowercase__: Optional[Any] = parent lowercase__: Union[str, Any] = batch_size lowercase__: int = image_size lowercase__: Optional[Any] = num_channels lowercase__: Optional[int] = embeddings_size lowercase__: Dict = hidden_sizes lowercase__: Union[str, Any] = depths lowercase__: str = is_training lowercase__: Optional[int] = use_labels lowercase__: List[str] = hidden_act lowercase__: Dict = num_labels lowercase__: Any = scope lowercase__: Optional[Any] = len(_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__: List[Any] = None if self.use_labels: lowercase__: Any = ids_tensor([self.batch_size] , self.num_labels ) lowercase__: Optional[int] = self.get_config() return config, pixel_values, labels def _snake_case ( self ): return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Optional[Any] = TFResNetModel(config=_UpperCAmelCase ) lowercase__: Dict = model(_UpperCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: str = self.num_labels lowercase__: int = TFResNetForImageClassification(_UpperCAmelCase ) lowercase__: Optional[Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self ): lowercase__: int = self.prepare_config_and_inputs() lowercase__, lowercase__, lowercase__: Optional[Any] = config_and_inputs lowercase__: Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Any = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () _UpperCAmelCase :List[str] = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) _UpperCAmelCase :Any = False _UpperCAmelCase :List[str] = False _UpperCAmelCase :Optional[Any] = False _UpperCAmelCase :Tuple = False _UpperCAmelCase :List[Any] = False def _snake_case ( self ): lowercase__: Union[str, Any] = TFResNetModelTester(self ) lowercase__: Optional[int] = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def _snake_case ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _snake_case ( self ): return @unittest.skip(reason='''ResNet does not use inputs_embeds''' ) def _snake_case ( self ): pass @unittest.skip(reason='''ResNet does not support input and output embeddings''' ) def _snake_case ( self ): pass def _snake_case ( self ): lowercase__, lowercase__: int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__: Optional[Any] = model_class(_UpperCAmelCase ) lowercase__: str = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__: int = [*signature.parameters.keys()] lowercase__: Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def _snake_case ( self ): def check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Union[str, Any] = model_class(_UpperCAmelCase ) lowercase__: List[Any] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) lowercase__: Union[str, Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase__: Tuple = self.model_tester.num_stages self.assertEqual(len(_UpperCAmelCase ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowercase__, lowercase__: Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__: Union[str, Any] = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: lowercase__: Tuple = layer_type lowercase__: Any = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__: List[str] = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) @slow def _snake_case ( self ): for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__: Dict = TFResNetModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( ) -> List[Any]: lowercase__: List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class UpperCAmelCase (unittest.TestCase ): """simple docstring""" @cached_property def _snake_case ( self ): return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _snake_case ( self ): lowercase__: Tuple = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowercase__: Any = self.default_image_processor lowercase__: List[Any] = prepare_img() lowercase__: List[Any] = image_processor(images=_UpperCAmelCase , return_tensors='''tf''' ) # forward pass lowercase__: Dict = model(**_UpperCAmelCase ) # verify the logits lowercase__: int = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) lowercase__: Dict = tf.constant([-11.1_069, -9.7_877, -8.3_777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _UpperCAmelCase , atol=1e-4 ) )
177
0
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys __a = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8") __a = subprocess.check_output(F"git diff --name-only {fork_point_sha}".split()).decode("utf-8").split() __a = "|".join(sys.argv[1:]) __a = re.compile(RF"^({joined_dirs}).*?\.py$") __a = [x for x in modified_files if regex.match(x)] print(" ".join(relevant_modified_files), end="")
362
'''simple docstring''' import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed __a = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(F"{bindir}/../../examples/pytorch/translation"): from run_translation import main # noqa set_seed(42) __a = "sshleifer/student_marian_en_ro_6_1" __a = "sshleifer/tiny-mbart" @require_torch class UpperCAmelCase_ ( _a ): """simple docstring""" def lowerCamelCase ( self : Any , snake_case_ : List[str]=False , snake_case_ : Tuple=None , snake_case_ : Dict=True , snake_case_ : Any=True , snake_case_ : Tuple=True , snake_case_ : List[str]=True , ): snake_case__ : List[Any] = self.run_trainer( eval_steps=1 , max_len=12 , model_name=snake_case_ , num_train_epochs=1 , distributed=snake_case_ , extra_args_str=snake_case_ , predict_with_generate=snake_case_ , do_train=snake_case_ , do_eval=snake_case_ , do_predict=snake_case_ , ) snake_case__ : int = TrainerState.load_from_json(os.path.join(snake_case_ , """trainer_state.json""" ) ).log_history if not do_eval: return snake_case__ : Tuple = [log for log in logs if """eval_loss""" in log.keys()] snake_case__ : List[Any] = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats snake_case__ : Dict = eval_metrics[-1] assert isinstance(last_step_stats["""eval_bleu"""] , snake_case_ ) assert not math.isnan(float(last_step_stats["""eval_loss"""] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def lowerCamelCase ( self : List[Any] ): self.run_seqaseq_quick() @require_torch_multi_gpu def lowerCamelCase ( self : int ): self.run_seqaseq_quick(distributed=snake_case_ ) @require_torch_multi_gpu def lowerCamelCase ( self : Tuple ): self.run_seqaseq_quick(distributed=snake_case_ ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def lowerCamelCase ( self : int ): self.run_seqaseq_quick(distributed=snake_case_ , extra_args_str="""--sharded_ddp simple""" ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def lowerCamelCase ( self : str ): self.run_seqaseq_quick(distributed=snake_case_ , extra_args_str="""--sharded_ddp simple --fp16""" ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def lowerCamelCase ( self : List[str] ): self.run_seqaseq_quick(distributed=snake_case_ , extra_args_str="""--sharded_ddp zero_dp_2""" , predict_with_generate=snake_case_ ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def lowerCamelCase ( self : str ): self.run_seqaseq_quick( distributed=snake_case_ , extra_args_str="""--sharded_ddp zero_dp_2 --fp16""" , predict_with_generate=snake_case_ ) @require_apex @require_torch_gpu def lowerCamelCase ( self : str ): # XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same # program and it breaks other tests that run from the same pytest worker, therefore until this is # sorted out it must be run only in an external program, that is distributed=True in this # test and only under one or more gpus - if we want cpu will need to make a special test # # specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via # 2nd main() call it botches the future eval. # self.run_seqaseq_quick(distributed=snake_case_ , extra_args_str="""--fp16 --fp16_backend=apex""" ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=snake_case_ , extra_args_str="""--fp16 --fp16_backend=apex""" ) @parameterized.expand(["""base""", """low""", """high""", """mixed"""] ) @require_torch_multi_gpu def lowerCamelCase ( self : Optional[int] , snake_case_ : Union[str, Any] ): # as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout snake_case__ : Any = { # test with the default log_level - should be info and thus log info once """base""": {"""extra_args_str""": """""", """n_matches""": 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes """low""": {"""extra_args_str""": """--log_level debug --log_level_replica debug""", """n_matches""": 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica """high""": {"""extra_args_str""": """--log_level error --log_level_replica debug""", """n_matches""": 1}, # test with high log_level and log_level_replica - should be quiet on all processes """mixed""": {"""extra_args_str""": """--log_level error --log_level_replica error""", """n_matches""": 0}, } snake_case__ : Optional[int] = experiments[experiment_id] snake_case__ : Optional[int] = {"""distributed""": True, """predict_with_generate""": False, """do_eval""": False, """do_predict""": False} snake_case__ : Union[str, Any] = """Running training""" with CaptureStderr() as cl: self.run_seqaseq_quick(**snake_case_ , extra_args_str=data["""extra_args_str"""] ) snake_case__ : str = len(re.findall(snake_case_ , cl.err ) ) self.assertEqual(snake_case_ , data["""n_matches"""] ) @slow def lowerCamelCase ( self : Optional[int] ): snake_case__ : Tuple = self.run_trainer( eval_steps=2 , max_len=128 , model_name=snake_case_ , learning_rate=3E-4 , num_train_epochs=10 , distributed=snake_case_ , ) # Check metrics snake_case__ : Dict = TrainerState.load_from_json(os.path.join(snake_case_ , """trainer_state.json""" ) ).log_history snake_case__ : List[str] = [log for log in logs if """eval_loss""" in log.keys()] snake_case__ : List[str] = eval_metrics[0] snake_case__ : Any = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats["""eval_bleu"""] , snake_case_ ) # test if do_predict saves generations and metrics snake_case__ : Optional[int] = os.listdir(snake_case_ ) snake_case__ : List[str] = {os.path.basename(snake_case_ ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def lowerCamelCase ( self : List[str] ): from transformers.training_args import OptimizerNames def train_and_return_metrics(snake_case_ : str ) -> Tuple[int, float]: snake_case__ : Dict = """--skip_memory_metrics 0""" snake_case__ : Optional[int] = self.run_trainer( max_len=128 , model_name=snake_case_ , learning_rate=3E-4 , num_train_epochs=1 , optim=snake_case_ , distributed=snake_case_ , extra_args_str=snake_case_ , do_eval=snake_case_ , do_predict=snake_case_ , n_gpus_to_use=1 , ) # Check metrics snake_case__ : Optional[Any] = TrainerState.load_from_json(Path(snake_case_ , """trainer_state.json""" ) ).log_history snake_case__ : Optional[int] = int(logs[0]["""train_mem_gpu_peaked_delta"""] / 2**20 ) snake_case__ : Tuple = int(logs[0]["""train_mem_gpu_alloc_delta"""] / 2**20 ) snake_case__ : Optional[int] = logs[0]["""train_loss"""] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss snake_case__ , snake_case__ , snake_case__ : List[Any] = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) snake_case__ , snake_case__ , snake_case__ : List[Any] = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) snake_case__ : Dict = gpu_alloc_mem_orig - gpu_alloc_mem_bnb snake_case__ : Optional[Any] = gpu_peak_mem_orig + gpu_alloc_mem_orig snake_case__ : Dict = gpu_peak_mem_bnb + gpu_alloc_mem_bnb snake_case__ : Tuple = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings snake_case__ : int = 120 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( snake_case_ , snake_case_ , """should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got""" f" a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and" f" gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB" , ) self.assertGreater( snake_case_ , snake_case_ , """should use ~150MB less total gpu memory with BNB, compared to without it for this model but got""" f" a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and" f" gpu_total_mem_bnb={gpu_total_mem_bnb}MB" , ) self.assertEqual( snake_case_ , snake_case_ , f"loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}" ) def lowerCamelCase ( self : Dict , snake_case_ : int , snake_case_ : str , snake_case_ : int , snake_case_ : float = 3E-3 , snake_case_ : str = "adafactor" , snake_case_ : bool = False , snake_case_ : str = None , snake_case_ : int = 0 , snake_case_ : bool = True , snake_case_ : bool = True , snake_case_ : bool = True , snake_case_ : bool = True , snake_case_ : int = None , ): snake_case__ : Optional[Any] = self.test_file_dir / """../fixtures/tests_samples/wmt_en_ro""" snake_case__ : Union[str, Any] = self.get_auto_remove_tmp_dir() snake_case__ : List[Any] = f"\n --model_name_or_path {model_name}\n --train_file {data_dir}/train.json\n --validation_file {data_dir}/val.json\n --test_file {data_dir}/test.json\n --output_dir {output_dir}\n --overwrite_output_dir\n --max_train_samples 8\n --max_source_length {max_len}\n --max_target_length {max_len}\n --do_train\n --num_train_epochs {str(snake_case_ )}\n --per_device_train_batch_size 4\n --learning_rate {learning_rate}\n --warmup_steps 8\n --logging_steps 0\n --logging_strategy no\n --save_steps {str(snake_case_ )}\n --group_by_length\n --label_smoothing_factor 0.1\n --target_lang ro_RO\n --source_lang en_XX\n ".split() snake_case__ : List[Any] = f"\n --do_eval\n --per_device_eval_batch_size 4\n --max_eval_samples 8\n --val_max_target_length {max_len}\n --evaluation_strategy steps\n --eval_steps {str(snake_case_ )}\n ".split() snake_case__ : Dict = """ --do_predict """.split() snake_case__ : List[Any] = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += f"--optim {optim}".split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: snake_case__ : Any = get_gpu_count() snake_case__ : Optional[int] = get_torch_dist_unique_port() snake_case__ : List[str] = f"\n -m torch.distributed.run\n --nproc_per_node={n_gpus_to_use}\n --master_port={master_port}\n {self.examples_dir_str}/pytorch/translation/run_translation.py\n ".split() snake_case__ : int = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(snake_case_ , env=self.get_env() ) else: snake_case__ : str = ["""run_translation.py"""] + args with patch.object(snake_case_ , """argv""" , snake_case_ ): main() return output_dir
43
0
from __future__ import annotations from typing import Any class lowerCAmelCase : def __init__( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : float = 0 ) -> None: lowerCamelCase__ , lowerCamelCase__ : str = row, column lowerCamelCase__ : str = [[default_value for c in range(UpperCAmelCase )] for r in range(UpperCAmelCase )] def __str__( self : str ) -> str: lowerCamelCase__ : str = F"""Matrix consist of {self.row} rows and {self.column} columns\n""" # Make string identifier lowerCamelCase__ : Optional[int] = 0 for row_vector in self.array: for obj in row_vector: lowerCamelCase__ : List[Any] = max(UpperCAmelCase , len(str(UpperCAmelCase ) ) ) lowerCamelCase__ : List[Any] = F"""%{max_element_length}s""" # Make string and return def single_line(UpperCAmelCase : list[float] ) -> str: nonlocal string_format_identifier lowerCamelCase__ : List[Any] = '[' line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(UpperCAmelCase ) for row_vector in self.array ) return s def __repr__( self : Optional[Any] ) -> str: return str(self ) def A_ ( self : Any , UpperCAmelCase : tuple[int, int] ) -> bool: if not (isinstance(UpperCAmelCase , (list, tuple) ) and len(UpperCAmelCase ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self : Any , UpperCAmelCase : tuple[int, int] ) -> Any: assert self.validate_indicies(UpperCAmelCase ) return self.array[loc[0]][loc[1]] def __setitem__( self : str , UpperCAmelCase : tuple[int, int] , UpperCAmelCase : float ) -> None: assert self.validate_indicies(UpperCAmelCase ) lowerCamelCase__ : Dict = value def __add__( self : Optional[Any] , UpperCAmelCase : Matrix ) -> Matrix: assert isinstance(UpperCAmelCase , UpperCAmelCase ) assert self.row == another.row and self.column == another.column # Add lowerCamelCase__ : List[Any] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowerCamelCase__ : Dict = self[r, c] + another[r, c] return result def __neg__( self : Dict ) -> Matrix: lowerCamelCase__ : int = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowerCamelCase__ : List[str] = -self[r, c] return result def __sub__( self : List[Any] , UpperCAmelCase : Matrix ) -> Matrix: return self + (-another) def __mul__( self : Tuple , UpperCAmelCase : int | float | Matrix ) -> Matrix: if isinstance(UpperCAmelCase , (int, float) ): # Scalar multiplication lowerCamelCase__ : Union[str, Any] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowerCamelCase__ : Dict = self[r, c] * another return result elif isinstance(UpperCAmelCase , UpperCAmelCase ): # Matrix multiplication assert self.column == another.row lowerCamelCase__ : Optional[int] = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: lowerCamelCase__ : Any = F"""Unsupported type given for another ({type(UpperCAmelCase )})""" raise TypeError(UpperCAmelCase ) def A_ ( self : Optional[Any] ) -> Matrix: lowerCamelCase__ : str = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): lowerCamelCase__ : Tuple = self[r, c] return result def A_ ( self : Tuple , UpperCAmelCase : Matrix , UpperCAmelCase : Matrix ) -> Any: assert isinstance(UpperCAmelCase , UpperCAmelCase ) and isinstance(UpperCAmelCase , UpperCAmelCase ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate lowerCamelCase__ : Any = v.transpose() lowerCamelCase__ : Dict = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def SCREAMING_SNAKE_CASE ( ) -> None: # a^(-1) lowerCamelCase__ : str = Matrix(3 , 3 , 0 ) for i in range(3 ): lowerCamelCase__ : str = 1 print(F"""a^(-1) is {ainv}""" ) # u, v lowerCamelCase__ : Any = Matrix(3 , 1 , 0 ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Tuple = 1, 2, -3 lowerCamelCase__ : Tuple = Matrix(3 , 1 , 0 ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = 4, -2, 5 print(F"""u is {u}""" ) print(F"""v is {v}""" ) print(F"""uv^T is {u * v.transpose()}""" ) # Sherman Morrison print(F"""(a + uv^T)^(-1) is {ainv.sherman_morrison(_UpperCAmelCase , _UpperCAmelCase )}""" ) def SCREAMING_SNAKE_CASE ( ) -> None: import doctest doctest.testmod() testa()
50
'''simple docstring''' def a__ ( a__ ): """simple docstring""" if isinstance(a__ , a__ ): raise TypeError("""'float' object cannot be interpreted as an integer""" ) if isinstance(a__ , a__ ): raise TypeError("""'str' object cannot be interpreted as an integer""" ) if num == 0: return "0b0" __SCREAMING_SNAKE_CASE = False if num < 0: __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = -num __SCREAMING_SNAKE_CASE = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(a__ ) for e in binary ) return "0b" + "".join(str(a__ ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
267
0
"""simple docstring""" from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS lowercase : Tuple = logging.get_logger(__name__) lowercase : Optional[int] = { 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, 'constant': get_constant_schedule, 'constant_w_warmup': get_constant_schedule_with_warmup, } class SCREAMING_SNAKE_CASE__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , __UpperCamelCase=None , __UpperCamelCase=None , *__UpperCamelCase , **__UpperCamelCase ) -> Optional[Any]: '''simple docstring''' super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if config is None: assert isinstance(self.model , _SCREAMING_SNAKE_CASE ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f''' {self.model.__class__}''' ) __UpperCamelCase : List[Any] = self.model.config else: __UpperCamelCase : Union[str, Any] = config __UpperCamelCase : Dict = data_args __UpperCamelCase : Optional[int] = self.config.tgt_vocab_size if isinstance(self.config , _SCREAMING_SNAKE_CASE ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f'''The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for''' " padding.." ) if self.args.label_smoothing == 0: __UpperCamelCase : List[str] = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss __UpperCamelCase : Tuple = label_smoothed_nll_loss def __lowerCamelCase ( self , __UpperCamelCase ) -> str: '''simple docstring''' if self.optimizer is None: __UpperCamelCase : Dict = ["bias", "LayerNorm.weight"] __UpperCamelCase : Optional[int] = [ { "params": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], "weight_decay": self.args.weight_decay, }, { "params": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], "weight_decay": 0.0, }, ] __UpperCamelCase : int = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: __UpperCamelCase : Any = Adafactor __UpperCamelCase : int = {"scale_parameter": False, "relative_step": False} else: __UpperCamelCase : Union[str, Any] = AdamW __UpperCamelCase : List[Any] = { "betas": (self.args.adam_betaa, self.args.adam_betaa), "eps": self.args.adam_epsilon, } __UpperCamelCase : Any = self.args.learning_rate if self.sharded_ddp: __UpperCamelCase : List[str] = OSS( params=_SCREAMING_SNAKE_CASE , optim=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) else: __UpperCamelCase : Any = optimizer_cls(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if self.lr_scheduler is None: __UpperCamelCase : Optional[int] = self._get_lr_scheduler(_SCREAMING_SNAKE_CASE ) else: # ignoring --lr_scheduler logger.warning("scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored." ) def __lowerCamelCase ( self , __UpperCamelCase ) -> str: '''simple docstring''' __UpperCamelCase : List[str] = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": __UpperCamelCase : Dict = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": __UpperCamelCase : Optional[Any] = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: __UpperCamelCase : str = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=_SCREAMING_SNAKE_CASE ) return scheduler def __lowerCamelCase ( self ) -> Optional[torch.utils.data.Sampler]: '''simple docstring''' if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Optional[int]: '''simple docstring''' if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token __UpperCamelCase : str = model(**_SCREAMING_SNAKE_CASE , use_cache=_SCREAMING_SNAKE_CASE )[0] __UpperCamelCase : Optional[Any] = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models __UpperCamelCase : Any = model(**_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , use_cache=_SCREAMING_SNAKE_CASE )[:2] else: # compute label smoothed loss __UpperCamelCase : List[Any] = model(**_SCREAMING_SNAKE_CASE , use_cache=_SCREAMING_SNAKE_CASE )[0] __UpperCamelCase : Tuple = torch.nn.functional.log_softmax(_SCREAMING_SNAKE_CASE , dim=-1 ) __UpperCamelCase : str = self.loss_fn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase : Union[str, Any] = inputs.pop("labels" ) __UpperCamelCase : List[Any] = self._compute_loss(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return loss def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: '''simple docstring''' __UpperCamelCase : List[str] = self._prepare_inputs(_SCREAMING_SNAKE_CASE ) __UpperCamelCase : Any = { "max_length": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, "num_beams": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: __UpperCamelCase : Tuple = self.model.generate( inputs["input_ids"] , attention_mask=inputs["attention_mask"] , **_SCREAMING_SNAKE_CASE , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: __UpperCamelCase : List[Any] = self._pad_tensors_to_max_len(_SCREAMING_SNAKE_CASE , gen_kwargs["max_length"] ) __UpperCamelCase : List[str] = inputs.pop("labels" ) with torch.no_grad(): # compute loss on predict data __UpperCamelCase : Dict = self._compute_loss(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __UpperCamelCase : str = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) __UpperCamelCase : Any = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: __UpperCamelCase : Optional[Any] = self._pad_tensors_to_max_len(_SCREAMING_SNAKE_CASE , gen_kwargs["max_length"] ) return (loss, logits, labels) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase ) -> List[str]: '''simple docstring''' __UpperCamelCase : List[str] = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( "Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be" f''' padded to `max_length`={max_length}''' ) __UpperCamelCase : List[str] = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) __UpperCamelCase : Union[str, Any] = tensor return padded_tensor
364
import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters lowercase : Dict = (720, 1280) # Height, Width lowercase : Any = (0.4, 0.6) # if height or width lower than this scale, drop it. lowercase : Tuple = 1 / 100 lowercase : Optional[int] = "" lowercase : Any = "" lowercase : Union[str, Any] = "" lowercase : str = 250 def UpperCAmelCase_ (): __UpperCamelCase , __UpperCamelCase : Dict = get_dataset(_lowerCAmelCase , _lowerCAmelCase ) for index in range(_lowerCAmelCase ): __UpperCamelCase : Optional[int] = random.sample(range(len(_lowerCAmelCase ) ) , 4 ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Union[str, Any] = update_image_and_anno( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , filter_scale=_lowerCAmelCase , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __UpperCamelCase : List[str] = random_chars(32 ) __UpperCamelCase : int = path.split(os.sep )[-1].rsplit("." , 1 )[0] __UpperCamelCase : Dict = F'''{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}''' cva.imwrite(F'''{file_root}.jpg''' , _lowerCAmelCase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F'''Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}''' ) __UpperCamelCase : str = [] for anno in new_annos: __UpperCamelCase : List[str] = anno[3] - anno[1] __UpperCamelCase : Union[str, Any] = anno[4] - anno[2] __UpperCamelCase : List[str] = anno[1] + width / 2 __UpperCamelCase : str = anno[2] + height / 2 __UpperCamelCase : List[str] = F'''{anno[0]} {x_center} {y_center} {width} {height}''' annos_list.append(_lowerCAmelCase ) with open(F'''{file_root}.txt''' , "w" ) as outfile: outfile.write("\n".join(line for line in annos_list ) ) def UpperCAmelCase_ (_lowerCAmelCase : str , _lowerCAmelCase : str ): __UpperCamelCase : int = [] __UpperCamelCase : Dict = [] for label_file in glob.glob(os.path.join(_lowerCAmelCase , "*.txt" ) ): __UpperCamelCase : Any = label_file.split(os.sep )[-1].rsplit("." , 1 )[0] with open(_lowerCAmelCase ) as in_file: __UpperCamelCase : Any = in_file.readlines() __UpperCamelCase : Union[str, Any] = os.path.join(_lowerCAmelCase , F'''{label_name}.jpg''' ) __UpperCamelCase : Dict = [] for obj_list in obj_lists: __UpperCamelCase : Optional[int] = obj_list.rstrip("\n" ).split(" " ) __UpperCamelCase : int = float(obj[1] ) - float(obj[3] ) / 2 __UpperCamelCase : Any = float(obj[2] ) - float(obj[4] ) / 2 __UpperCamelCase : Any = float(obj[1] ) + float(obj[3] ) / 2 __UpperCamelCase : Optional[int] = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(_lowerCAmelCase ) labels.append(_lowerCAmelCase ) return img_paths, labels def UpperCAmelCase_ (_lowerCAmelCase : list , _lowerCAmelCase : list , _lowerCAmelCase : list[int] , _lowerCAmelCase : tuple[int, int] , _lowerCAmelCase : tuple[float, float] , _lowerCAmelCase : float = 0.0 , ): __UpperCamelCase : Union[str, Any] = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) __UpperCamelCase : int = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) __UpperCamelCase : Optional[int] = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) __UpperCamelCase : Any = int(scale_x * output_size[1] ) __UpperCamelCase : str = int(scale_y * output_size[0] ) __UpperCamelCase : str = [] __UpperCamelCase : Optional[int] = [] for i, index in enumerate(_lowerCAmelCase ): __UpperCamelCase : Any = all_img_list[index] path_list.append(_lowerCAmelCase ) __UpperCamelCase : Dict = all_annos[index] __UpperCamelCase : Any = cva.imread(_lowerCAmelCase ) if i == 0: # top-left __UpperCamelCase : Dict = cva.resize(_lowerCAmelCase , (divid_point_x, divid_point_y) ) __UpperCamelCase : Optional[int] = img for bbox in img_annos: __UpperCamelCase : List[str] = bbox[1] * scale_x __UpperCamelCase : Dict = bbox[2] * scale_y __UpperCamelCase : Optional[Any] = bbox[3] * scale_x __UpperCamelCase : int = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right __UpperCamelCase : Optional[Any] = cva.resize(_lowerCAmelCase , (output_size[1] - divid_point_x, divid_point_y) ) __UpperCamelCase : Dict = img for bbox in img_annos: __UpperCamelCase : List[Any] = scale_x + bbox[1] * (1 - scale_x) __UpperCamelCase : str = bbox[2] * scale_y __UpperCamelCase : Optional[int] = scale_x + bbox[3] * (1 - scale_x) __UpperCamelCase : List[Any] = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left __UpperCamelCase : Dict = cva.resize(_lowerCAmelCase , (divid_point_x, output_size[0] - divid_point_y) ) __UpperCamelCase : Tuple = img for bbox in img_annos: __UpperCamelCase : List[Any] = bbox[1] * scale_x __UpperCamelCase : str = scale_y + bbox[2] * (1 - scale_y) __UpperCamelCase : Dict = bbox[3] * scale_x __UpperCamelCase : List[str] = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right __UpperCamelCase : List[Any] = cva.resize( _lowerCAmelCase , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) __UpperCamelCase : Tuple = img for bbox in img_annos: __UpperCamelCase : Union[str, Any] = scale_x + bbox[1] * (1 - scale_x) __UpperCamelCase : Optional[int] = scale_y + bbox[2] * (1 - scale_y) __UpperCamelCase : Optional[Any] = scale_x + bbox[3] * (1 - scale_x) __UpperCamelCase : Any = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: __UpperCamelCase : Optional[int] = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def UpperCAmelCase_ (_lowerCAmelCase : int ): assert number_char > 1, "The number of character should greater than 1" __UpperCamelCase : Optional[int] = ascii_lowercase + digits return "".join(random.choice(_lowerCAmelCase ) for _ in range(_lowerCAmelCase ) ) if __name__ == "__main__": main() print("DONE ✅")
171
0
from __future__ import annotations from collections import Counter from random import random class _UpperCamelCase : '''simple docstring''' def __init__( self : List[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = {} def __UpperCamelCase ( self : List[Any] , a : str ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = {} def __UpperCamelCase ( self : Any , a : str , a : str , a : float ) -> None: """simple docstring""" if nodea not in self.connections: self.add_node(a ) if nodea not in self.connections: self.add_node(a ) SCREAMING_SNAKE_CASE : Any = probability def __UpperCamelCase ( self : Any ) -> list[str]: """simple docstring""" return list(self.connections ) def __UpperCamelCase ( self : List[str] , a : str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : Optional[int] = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def lowerCamelCase__ ( _a , _a , _a): SCREAMING_SNAKE_CASE : str = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(_a , _a , _a) SCREAMING_SNAKE_CASE : str = Counter(graph.get_nodes()) SCREAMING_SNAKE_CASE : Optional[Any] = start for _ in range(_a): SCREAMING_SNAKE_CASE : Union[str, Any] = graph.transition(_a) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
76
"""simple docstring""" from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup a = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l=' def lowercase (snake_case__ : str = "mumbai" ) -> Generator[tuple[str, str], None, None]: '''simple docstring''' lowerCAmelCase = BeautifulSoup(requests.get(url + location ).content , """html.parser""" ) # This attribute finds out all the specifics listed in a job for job in soup.find_all("""div""" , attrs={"""data-tn-component""": """organicJob"""} ): lowerCAmelCase = job.find("""a""" , attrs={"""data-tn-element""": """jobTitle"""} ).text.strip() lowerCAmelCase = job.find("""span""" , {"""class""": """company"""} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('Bangalore'), 1): print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
155
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class _a ( unittest.TestCase ): def __init__(self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=7, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=30, SCREAMING_SNAKE_CASE_=400, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5], SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5], SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=1 / 255, SCREAMING_SNAKE_CASE_=True, ) -> str: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p UpperCAmelCase_: Optional[int] = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333} UpperCAmelCase_: Optional[Any] = parent UpperCAmelCase_: Union[str, Any] = batch_size UpperCAmelCase_: Union[str, Any] = num_channels UpperCAmelCase_: Optional[int] = min_resolution UpperCAmelCase_: Tuple = max_resolution UpperCAmelCase_: List[Any] = do_resize UpperCAmelCase_: Dict = size UpperCAmelCase_: List[str] = do_normalize UpperCAmelCase_: List[Any] = image_mean UpperCAmelCase_: int = image_std UpperCAmelCase_: int = do_rescale UpperCAmelCase_: str = rescale_factor UpperCAmelCase_: Dict = do_pad def __snake_case (self ) -> str: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=False ) -> List[Any]: if not batched: UpperCAmelCase_: Optional[int] = image_inputs[0] if isinstance(__lowercase, Image.Image ): UpperCAmelCase_: int = image.size else: UpperCAmelCase_: Union[str, Any] = image.shape[1], image.shape[2] if w < h: UpperCAmelCase_: Optional[Any] = int(self.size["""shortest_edge"""] * h / w ) UpperCAmelCase_: Optional[Any] = self.size['''shortest_edge'''] elif w > h: UpperCAmelCase_: str = self.size['''shortest_edge'''] UpperCAmelCase_: List[Any] = int(self.size["""shortest_edge"""] * w / h ) else: UpperCAmelCase_: Tuple = self.size['''shortest_edge'''] UpperCAmelCase_: Dict = self.size['''shortest_edge'''] else: UpperCAmelCase_: Optional[Any] = [] for image in image_inputs: UpperCAmelCase_: List[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCAmelCase_: Optional[Any] = max(__lowercase, key=lambda SCREAMING_SNAKE_CASE_ : item[0] )[0] UpperCAmelCase_: Tuple = max(__lowercase, key=lambda SCREAMING_SNAKE_CASE_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _a ( __lowerCamelCase , unittest.TestCase ): A = ConditionalDetrImageProcessor if is_vision_available() else None def __snake_case (self ) -> Any: UpperCAmelCase_: Optional[int] = ConditionalDetrImageProcessingTester(self ) @property def __snake_case (self ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def __snake_case (self ) -> Dict: UpperCAmelCase_: Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowercase, """image_mean""" ) ) self.assertTrue(hasattr(__lowercase, """image_std""" ) ) self.assertTrue(hasattr(__lowercase, """do_normalize""" ) ) self.assertTrue(hasattr(__lowercase, """do_resize""" ) ) self.assertTrue(hasattr(__lowercase, """size""" ) ) def __snake_case (self ) -> Optional[int]: UpperCAmelCase_: str = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad, __lowercase ) UpperCAmelCase_: Tuple = self.image_processing_class.from_dict( self.image_processor_dict, size=42, max_size=84, pad_and_return_pixel_mask=__lowercase ) self.assertEqual(image_processor.size, {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad, __lowercase ) def __snake_case (self ) -> Dict: pass def __snake_case (self ) -> int: # Initialize image_processing UpperCAmelCase_: Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_: Dict = prepare_image_inputs(self.image_processor_tester, equal_resolution=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase, Image.Image ) # Test not batched input UpperCAmelCase_: List[str] = image_processing(image_inputs[0], return_tensors="""pt""" ).pixel_values UpperCAmelCase_: Any = self.image_processor_tester.get_expected_values(__lowercase ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched UpperCAmelCase_: Optional[int] = self.image_processor_tester.get_expected_values(__lowercase, batched=__lowercase ) UpperCAmelCase_: Optional[int] = image_processing(__lowercase, return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def __snake_case (self ) -> Dict: # Initialize image_processing UpperCAmelCase_: Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_: Tuple = prepare_image_inputs(self.image_processor_tester, equal_resolution=__lowercase, numpify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase, np.ndarray ) # Test not batched input UpperCAmelCase_: Optional[int] = image_processing(image_inputs[0], return_tensors="""pt""" ).pixel_values UpperCAmelCase_: Tuple = self.image_processor_tester.get_expected_values(__lowercase ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched UpperCAmelCase_: Optional[Any] = image_processing(__lowercase, return_tensors="""pt""" ).pixel_values UpperCAmelCase_: Optional[Any] = self.image_processor_tester.get_expected_values(__lowercase, batched=__lowercase ) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def __snake_case (self ) -> Optional[Any]: # Initialize image_processing UpperCAmelCase_: List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_: List[Any] = prepare_image_inputs(self.image_processor_tester, equal_resolution=__lowercase, torchify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase, torch.Tensor ) # Test not batched input UpperCAmelCase_: Optional[int] = image_processing(image_inputs[0], return_tensors="""pt""" ).pixel_values UpperCAmelCase_: List[str] = self.image_processor_tester.get_expected_values(__lowercase ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched UpperCAmelCase_: Optional[Any] = image_processing(__lowercase, return_tensors="""pt""" ).pixel_values UpperCAmelCase_: List[Any] = self.image_processor_tester.get_expected_values(__lowercase, batched=__lowercase ) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) @slow def __snake_case (self ) -> Union[str, Any]: # prepare image and target UpperCAmelCase_: int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""", """r""" ) as f: UpperCAmelCase_: Any = json.loads(f.read() ) UpperCAmelCase_: Any = {'''image_id''': 39769, '''annotations''': target} # encode them UpperCAmelCase_: Optional[Any] = ConditionalDetrImageProcessor.from_pretrained("""microsoft/conditional-detr-resnet-50""" ) UpperCAmelCase_: Optional[Any] = image_processing(images=__lowercase, annotations=__lowercase, return_tensors="""pt""" ) # verify pixel values UpperCAmelCase_: str = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape, __lowercase ) UpperCAmelCase_: List[str] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3], __lowercase, atol=1E-4 ) ) # verify area UpperCAmelCase_: List[Any] = torch.tensor([5_8_8_7.9_6_0_0, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""], __lowercase ) ) # verify boxes UpperCAmelCase_: List[Any] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape, __lowercase ) UpperCAmelCase_: List[str] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0], __lowercase, atol=1E-3 ) ) # verify image_id UpperCAmelCase_: Optional[Any] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""], __lowercase ) ) # verify is_crowd UpperCAmelCase_: Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""], __lowercase ) ) # verify class_labels UpperCAmelCase_: str = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""], __lowercase ) ) # verify orig_size UpperCAmelCase_: Any = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""], __lowercase ) ) # verify size UpperCAmelCase_: Optional[int] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""], __lowercase ) ) @slow def __snake_case (self ) -> str: # prepare image, target and masks_path UpperCAmelCase_: int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""", """r""" ) as f: UpperCAmelCase_: Union[str, Any] = json.loads(f.read() ) UpperCAmelCase_: List[Any] = {'''file_name''': '''000000039769.png''', '''image_id''': 39769, '''segments_info''': target} UpperCAmelCase_: List[str] = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them UpperCAmelCase_: Union[str, Any] = ConditionalDetrImageProcessor(format="""coco_panoptic""" ) UpperCAmelCase_: Union[str, Any] = image_processing(images=__lowercase, annotations=__lowercase, masks_path=__lowercase, return_tensors="""pt""" ) # verify pixel values UpperCAmelCase_: int = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape, __lowercase ) UpperCAmelCase_: Any = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3], __lowercase, atol=1E-4 ) ) # verify area UpperCAmelCase_: Tuple = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""], __lowercase ) ) # verify boxes UpperCAmelCase_: Tuple = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape, __lowercase ) UpperCAmelCase_: int = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0], __lowercase, atol=1E-3 ) ) # verify image_id UpperCAmelCase_: Tuple = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""], __lowercase ) ) # verify is_crowd UpperCAmelCase_: List[str] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""], __lowercase ) ) # verify class_labels UpperCAmelCase_: List[Any] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""], __lowercase ) ) # verify masks UpperCAmelCase_: int = 822873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item(), __lowercase ) # verify orig_size UpperCAmelCase_: Any = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""], __lowercase ) ) # verify size UpperCAmelCase_: List[Any] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""], __lowercase ) )
350
a : Tuple = 'Tobias Carryer' from time import time class _a : def __init__(self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=int(time() ) ) -> List[Any]: # noqa: B008 UpperCAmelCase_: List[str] = multiplier UpperCAmelCase_: Tuple = increment UpperCAmelCase_: Tuple = modulo UpperCAmelCase_: List[str] = seed def __snake_case (self ) -> Any: UpperCAmelCase_: List[str] = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. a : Optional[int] = LinearCongruentialGenerator(1_664_525, 1_013_904_223, 2 << 31) while True: print(lcg.next_number())
82
0
from math import loga def lowerCamelCase_ ( _UpperCamelCase ) -> int: """simple docstring""" if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): raise TypeError('''Input value must be a \'int\' type''' ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
279
import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase_ = get_tests_dir('''fixtures/test_sentencepiece_bpe_char.model''') @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( _a, unittest.TestCase ): lowerCamelCase_ : Optional[int] = SpeechTaTokenizer lowerCamelCase_ : int = False lowerCamelCase_ : Dict = True def lowerCamelCase (self ) -> Optional[Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing snake_case_ : Tuple = SpeechTaTokenizer(__magic_name__ ) snake_case_ : Any = AddedToken('''<mask>''' , lstrip=__magic_name__ , rstrip=__magic_name__ ) snake_case_ : int = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase (self , __magic_name__ ) -> Dict: '''simple docstring''' snake_case_ : Dict = '''this is a test''' snake_case_ : int = '''this is a test''' return input_text, output_text def lowerCamelCase (self , __magic_name__ , __magic_name__=False , __magic_name__=20 , __magic_name__=5 ) -> List[Any]: '''simple docstring''' snake_case_ , snake_case_ : int = self.get_input_output_texts(__magic_name__ ) snake_case_ : Optional[Any] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) snake_case_ : Any = tokenizer.decode(__magic_name__ , clean_up_tokenization_spaces=__magic_name__ ) return text, ids def lowerCamelCase (self ) -> Optional[int]: '''simple docstring''' snake_case_ : List[str] = '''<pad>''' snake_case_ : Any = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__magic_name__ ) , __magic_name__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__magic_name__ ) , __magic_name__ ) def lowerCamelCase (self ) -> Any: '''simple docstring''' snake_case_ : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-4] , '''œ''' ) self.assertEqual(vocab_keys[-2] , '''<mask>''' ) self.assertEqual(vocab_keys[-1] , '''<ctc_blank>''' ) self.assertEqual(len(__magic_name__ ) , 81 ) def lowerCamelCase (self ) -> Dict: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 79 ) def lowerCamelCase (self ) -> Tuple: '''simple docstring''' snake_case_ : int = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): snake_case_ : int = tokenizer.vocab_size snake_case_ : Optional[Any] = len(__magic_name__ ) self.assertNotEqual(__magic_name__ , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) snake_case_ : List[Any] = ['''aaaaa bbbbbb''', '''cccccccccdddddddd'''] snake_case_ : List[Any] = tokenizer.add_tokens(__magic_name__ ) snake_case_ : Dict = tokenizer.vocab_size snake_case_ : Optional[Any] = len(__magic_name__ ) self.assertNotEqual(__magic_name__ , 0 ) self.assertEqual(__magic_name__ , __magic_name__ ) self.assertEqual(__magic_name__ , len(__magic_name__ ) ) self.assertEqual(__magic_name__ , all_size + len(__magic_name__ ) ) snake_case_ : Union[str, Any] = tokenizer.encode('''aaaaa bbbbbb low cccccccccdddddddd l''' , add_special_tokens=__magic_name__ ) self.assertGreaterEqual(len(__magic_name__ ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) snake_case_ : Union[str, Any] = {'''eos_token''': '''>>>>|||<||<<|<<''', '''pad_token''': '''<<<<<|||>|>>>>|>'''} snake_case_ : List[str] = tokenizer.add_special_tokens(__magic_name__ ) snake_case_ : Dict = tokenizer.vocab_size snake_case_ : Dict = len(__magic_name__ ) self.assertNotEqual(__magic_name__ , 0 ) self.assertEqual(__magic_name__ , __magic_name__ ) self.assertEqual(__magic_name__ , len(__magic_name__ ) ) self.assertEqual(__magic_name__ , all_size_a + len(__magic_name__ ) ) snake_case_ : Tuple = tokenizer.encode( '''>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l''' , add_special_tokens=__magic_name__ ) self.assertGreaterEqual(len(__magic_name__ ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) def lowerCamelCase (self ) -> Union[str, Any]: '''simple docstring''' pass def lowerCamelCase (self ) -> List[str]: '''simple docstring''' pass def lowerCamelCase (self ) -> int: '''simple docstring''' snake_case_ : Dict = self.get_tokenizer() snake_case_ : Optional[Any] = tokenizer.tokenize('''This is a test''' ) # fmt: off self.assertListEqual(__magic_name__ , [SPIECE_UNDERLINE, '''T''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''a''', SPIECE_UNDERLINE, '''t''', '''e''', '''s''', '''t'''] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(__magic_name__ ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , ) snake_case_ : List[Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __magic_name__ , [SPIECE_UNDERLINE, '''I''', SPIECE_UNDERLINE, '''w''', '''a''', '''s''', SPIECE_UNDERLINE, '''b''', '''o''', '''r''', '''n''', SPIECE_UNDERLINE, '''i''', '''n''', SPIECE_UNDERLINE, '''92000''', ''',''', SPIECE_UNDERLINE, '''a''', '''n''', '''d''', SPIECE_UNDERLINE, '''t''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''f''', '''a''', '''l''', '''s''', '''é''', '''.'''] ) snake_case_ : List[str] = tokenizer.convert_tokens_to_ids(__magic_name__ ) # fmt: off self.assertListEqual(__magic_name__ , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on snake_case_ : int = tokenizer.convert_ids_to_tokens(__magic_name__ ) self.assertListEqual( __magic_name__ , [SPIECE_UNDERLINE, '''I''', SPIECE_UNDERLINE, '''w''', '''a''', '''s''', SPIECE_UNDERLINE, '''b''', '''o''', '''r''', '''n''', SPIECE_UNDERLINE, '''i''', '''n''', SPIECE_UNDERLINE, '''<unk>''', ''',''', SPIECE_UNDERLINE, '''a''', '''n''', '''d''', SPIECE_UNDERLINE, '''t''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''f''', '''a''', '''l''', '''s''', '''é''', '''.'''] ) @slow def lowerCamelCase (self ) -> Tuple: '''simple docstring''' snake_case_ : Tuple = [ '''Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides ''' '''general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural ''' '''Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained ''' '''models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.''', '''BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly ''' '''conditioning on both left and right context in all layers.''', '''The quick brown fox jumps over the lazy dog.''', ] # fmt: off snake_case_ : List[Any] = { '''input_ids''': [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=__magic_name__ , model_name='''microsoft/speecht5_asr''' , revision='''c5ef64c71905caeccde0e4462ef3f9077224c524''' , sequences=__magic_name__ , )
279
1
"""simple docstring""" from __future__ import annotations A : int = { "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } class _UpperCamelCase : '''simple docstring''' def __init__( self , __a , __a ): __lowerCAmelCase = graph # mapping node to its parent in resulting breadth first tree __lowerCAmelCase = {} __lowerCAmelCase = source_vertex def snake_case ( self ): __lowerCAmelCase = {self.source_vertex} __lowerCAmelCase = None __lowerCAmelCase = [self.source_vertex] # first in first out queue while queue: __lowerCAmelCase = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(__a ) __lowerCAmelCase = vertex queue.append(__a ) def snake_case ( self , __a ): if target_vertex == self.source_vertex: return self.source_vertex __lowerCAmelCase = self.parent.get(__a ) if target_vertex_parent is None: __lowerCAmelCase = ( f"No path from vertex: {self.source_vertex} to vertex: {target_vertex}" ) raise ValueError(__a ) return self.shortest_path(__a ) + f"->{target_vertex}" if __name__ == "__main__": A : Any = Graph(graph, "G") g.breath_first_search() print(g.shortest_path("D")) print(g.shortest_path("G")) print(g.shortest_path("Foo"))
355
"""simple docstring""" import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset A : Any = "bert-base-cased" A : Any = "google/pegasus-xsum" A : Union[str, Any] = [" Sam ate lunch today.", "Sams lunch ingredients."] A : Union[str, Any] = ["A very interesting story about what I ate for lunch.", "Avocado, celery, turkey, coffee"] A : Optional[int] = "patrickvonplaten/t5-tiny-random" A : int = "sshleifer/bart-tiny-random" A : Optional[int] = "sshleifer/tiny-mbart" A : Any = "sshleifer/tiny-marian-en-de" def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = "\n".join(_UpperCamelCase ) Path(_UpperCamelCase ).open("w" ).writelines(_UpperCamelCase ) def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' for split in ["train", "val", "test"]: _dump_articles(os.path.join(_UpperCamelCase , f"{split}.source" ) , _UpperCamelCase ) _dump_articles(os.path.join(_UpperCamelCase , f"{split}.target" ) , _UpperCamelCase ) return tmp_dir class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def snake_case ( self , __a ): __lowerCAmelCase = AutoTokenizer.from_pretrained(__a ) __lowerCAmelCase = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) __lowerCAmelCase = max(len(tokenizer.encode(__a ) ) for a in ARTICLES ) __lowerCAmelCase = max(len(tokenizer.encode(__a ) ) for a in SUMMARIES ) __lowerCAmelCase = 4 __lowerCAmelCase = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated __lowerCAmelCase , __lowerCAmelCase = "ro_RO", "de_DE" # ignored for all but mbart, but never causes error. __lowerCAmelCase = SeqaSeqDataset( __a , data_dir=__a , type_path="train" , max_source_length=__a , max_target_length=__a , src_lang=__a , tgt_lang=__a , ) __lowerCAmelCase = DataLoader(__a , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(__a , __a ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place __lowerCAmelCase = shift_tokens_right(batch["labels"] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def snake_case ( self , __a ): __lowerCAmelCase = AutoTokenizer.from_pretrained(__a ) __lowerCAmelCase = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) __lowerCAmelCase = max(len(tokenizer.encode(__a ) ) for a in ARTICLES ) __lowerCAmelCase = max(len(tokenizer.encode(__a ) ) for a in SUMMARIES ) __lowerCAmelCase = 4 __lowerCAmelCase = LegacySeqaSeqDataset( __a , data_dir=__a , type_path="train" , max_source_length=20 , max_target_length=__a , ) __lowerCAmelCase = DataLoader(__a , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def snake_case ( self ): __lowerCAmelCase = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25" ) __lowerCAmelCase = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) __lowerCAmelCase = tmp_dir.joinpath("train.source" ).open().readlines() __lowerCAmelCase = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(__a , __a , 1_28 , __a ) __lowerCAmelCase = {x.name for x in tmp_dir.iterdir()} __lowerCAmelCase = {x.name for x in save_dir.iterdir()} __lowerCAmelCase = save_dir.joinpath("train.source" ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(__a ) < len(__a ) assert len(__a ) == 1 assert len(packed_examples[0] ) == sum(len(__a ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason="This test requires fairseq" ) def snake_case ( self ): if not FAIRSEQ_AVAILABLE: return __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self._get_dataset(max_len=64 ) __lowerCAmelCase = 64 __lowerCAmelCase = ds.make_dynamic_sampler(__a , required_batch_size_multiple=__a ) __lowerCAmelCase = [len(__a ) for x in batch_sampler] assert len(set(__a ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(__a ) == len(__a ) # no dropped or added examples __lowerCAmelCase = DataLoader(__a , batch_sampler=__a , collate_fn=ds.collate_fn , num_workers=2 ) __lowerCAmelCase = [] __lowerCAmelCase = [] for batch in data_loader: __lowerCAmelCase = batch["input_ids"].shape __lowerCAmelCase = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple __lowerCAmelCase = np.product(batch["input_ids"].shape ) num_src_per_batch.append(__a ) if num_src_tokens > (max_tokens * 1.1): failures.append(__a ) assert num_src_per_batch[0] == max(__a ) if failures: raise AssertionError(f"too many tokens in {len(__a )} batches" ) def snake_case ( self ): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self._get_dataset(max_len=5_12 ) __lowerCAmelCase = 2 __lowerCAmelCase = ds.make_sortish_sampler(__a , shuffle=__a ) __lowerCAmelCase = DataLoader(__a , batch_size=__a , collate_fn=ds.collate_fn , num_workers=2 ) __lowerCAmelCase = DataLoader(__a , batch_size=__a , collate_fn=ds.collate_fn , num_workers=2 , sampler=__a ) __lowerCAmelCase = tokenizer.pad_token_id def count_pad_tokens(__a , __a="input_ids" ): return [batch[k].eq(__a ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(__a , k="labels" ) ) < sum(count_pad_tokens(__a , k="labels" ) ) assert sum(count_pad_tokens(__a ) ) < sum(count_pad_tokens(__a ) ) assert len(__a ) == len(__a ) def snake_case ( self , __a=10_00 , __a=1_28 ): if os.getenv("USE_REAL_DATA" , __a ): __lowerCAmelCase = "examples/seq2seq/wmt_en_ro" __lowerCAmelCase = max_len * 2 * 64 if not Path(__a ).joinpath("train.len" ).exists(): save_len_file(__a , __a ) else: __lowerCAmelCase = "examples/seq2seq/test_data/wmt_en_ro" __lowerCAmelCase = max_len * 4 save_len_file(__a , __a ) __lowerCAmelCase = AutoTokenizer.from_pretrained(__a ) __lowerCAmelCase = SeqaSeqDataset( __a , data_dir=__a , type_path="train" , max_source_length=__a , max_target_length=__a , n_obs=__a , ) return ds, max_tokens, tokenizer def snake_case ( self ): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self._get_dataset() __lowerCAmelCase = set(DistributedSortishSampler(__a , 2_56 , num_replicas=2 , rank=0 , add_extra_examples=__a ) ) __lowerCAmelCase = set(DistributedSortishSampler(__a , 2_56 , num_replicas=2 , rank=1 , add_extra_examples=__a ) ) assert idsa.intersection(__a ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def snake_case ( self , __a ): __lowerCAmelCase = AutoTokenizer.from_pretrained(__a , use_fast=__a ) if tok_name == MBART_TINY: __lowerCAmelCase = SeqaSeqDataset( __a , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , src_lang="EN" , tgt_lang="FR" , ) __lowerCAmelCase = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: __lowerCAmelCase = SeqaSeqDataset( __a , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , ) __lowerCAmelCase = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(__a ) == 1 if tok_name == BART_TINY else len(__a ) == 0
259
0
"""simple docstring""" from __future__ import annotations UpperCAmelCase = """#""" class UpperCAmelCase_ : def __init__( self : Union[str, Any] ) -> None: _UpperCamelCase = {} def _UpperCamelCase ( self : Any , __UpperCamelCase : str ) -> None: _UpperCamelCase = self._trie for char in text: if char not in trie: _UpperCamelCase = {} _UpperCamelCase = trie[char] _UpperCamelCase = True def _UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : str ) -> tuple | list: _UpperCamelCase = self._trie for char in prefix: if char in trie: _UpperCamelCase = trie[char] else: return [] return self._elements(__UpperCamelCase ) def _UpperCamelCase ( self : Any , __UpperCamelCase : dict ) -> tuple: _UpperCamelCase = [] for c, v in d.items(): _UpperCamelCase = [''' '''] if c == END else [(c + s) for s in self._elements(__UpperCamelCase )] result.extend(__UpperCamelCase ) return tuple(__UpperCamelCase ) UpperCAmelCase = Trie() UpperCAmelCase = ("""depart""", """detergent""", """daring""", """dog""", """deer""", """deal""") for word in words: trie.insert_word(word) def lowercase ( a__ : str ) -> tuple: _UpperCamelCase = trie.find_word(a__ ) return tuple(string + word for word in suffixes ) def lowercase ( ) -> None: print(autocomplete_using_trie('''de''' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
256
"""simple docstring""" from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class UpperCAmelCase_ : def _UpperCamelCase ( self : List[str] , __UpperCamelCase : Any ) -> Tuple: raise NotImplementedError() def _UpperCamelCase ( self : List[Any] ) -> Dict: raise NotImplementedError() class UpperCAmelCase_ ( _lowercase): def __init__( self : Dict , __UpperCamelCase : "AutoTokenizer" , __UpperCamelCase : bool = False , **__UpperCamelCase : Tuple ) -> str: _UpperCamelCase = tokenizer _UpperCamelCase = skip_prompt _UpperCamelCase = decode_kwargs # variables used in the streaming process _UpperCamelCase = [] _UpperCamelCase = 0 _UpperCamelCase = True def _UpperCamelCase ( self : List[str] , __UpperCamelCase : Dict ) -> Optional[Any]: if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError('''TextStreamer only supports batch size 1''' ) elif len(value.shape ) > 1: _UpperCamelCase = value[0] if self.skip_prompt and self.next_tokens_are_prompt: _UpperCamelCase = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) _UpperCamelCase = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith('''\n''' ): _UpperCamelCase = text[self.print_len :] _UpperCamelCase = [] _UpperCamelCase = 0 # If the last token is a CJK character, we print the characters. elif len(__UpperCamelCase ) > 0 and self._is_chinese_char(ord(text[-1] ) ): _UpperCamelCase = text[self.print_len :] self.print_len += len(__UpperCamelCase ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: _UpperCamelCase = text[self.print_len : text.rfind(''' ''' ) + 1] self.print_len += len(__UpperCamelCase ) self.on_finalized_text(__UpperCamelCase ) def _UpperCamelCase ( self : List[Any] ) -> Optional[Any]: # Flush the cache, if it exists if len(self.token_cache ) > 0: _UpperCamelCase = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) _UpperCamelCase = text[self.print_len :] _UpperCamelCase = [] _UpperCamelCase = 0 else: _UpperCamelCase = '''''' _UpperCamelCase = True self.on_finalized_text(__UpperCamelCase , stream_end=__UpperCamelCase ) def _UpperCamelCase ( self : int , __UpperCamelCase : str , __UpperCamelCase : bool = False ) -> Tuple: print(__UpperCamelCase , flush=__UpperCamelCase , end='''''' if not stream_end else None ) def _UpperCamelCase ( self : Tuple , __UpperCamelCase : Dict ) -> str: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4e00 and cp <= 0x9fff) or (cp >= 0x3400 and cp <= 0x4dbf) # or (cp >= 0x2_0000 and cp <= 0x2_a6df) # or (cp >= 0x2_a700 and cp <= 0x2_b73f) # or (cp >= 0x2_b740 and cp <= 0x2_b81f) # or (cp >= 0x2_b820 and cp <= 0x2_ceaf) # or (cp >= 0xf900 and cp <= 0xfaff) or (cp >= 0x2_f800 and cp <= 0x2_fa1f) # ): # return True return False class UpperCAmelCase_ ( _lowercase): def __init__( self : Union[str, Any] , __UpperCamelCase : "AutoTokenizer" , __UpperCamelCase : bool = False , __UpperCamelCase : Optional[float] = None , **__UpperCamelCase : Optional[int] ) -> Optional[Any]: super().__init__(__UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ) _UpperCamelCase = Queue() _UpperCamelCase = None _UpperCamelCase = timeout def _UpperCamelCase ( self : Dict , __UpperCamelCase : str , __UpperCamelCase : bool = False ) -> Any: self.text_queue.put(__UpperCamelCase , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self : Optional[Any] ) -> List[str]: return self def _UpperCamelCase ( self : int ) -> Dict: _UpperCamelCase = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
256
1
import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html SCREAMING_SNAKE_CASE : Tuple = "platform" import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class UpperCamelCase : '''simple docstring''' lowercase : List[str] =PegasusConfig lowercase : Dict ={} lowercase : str ='gelu' def __init__( self , UpperCamelCase_ , UpperCamelCase_=13 , UpperCamelCase_=7 , UpperCamelCase_=True , UpperCamelCase_=False , UpperCamelCase_=99 , UpperCamelCase_=32 , UpperCamelCase_=5 , UpperCamelCase_=4 , UpperCamelCase_=37 , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=20 , UpperCamelCase_=2 , UpperCamelCase_=1 , UpperCamelCase_=0 , ): lowercase_ :Dict = parent lowercase_ :Tuple = batch_size lowercase_ :Optional[Any] = seq_length lowercase_ :List[Any] = is_training lowercase_ :Optional[int] = use_labels lowercase_ :List[Any] = vocab_size lowercase_ :Any = hidden_size lowercase_ :str = num_hidden_layers lowercase_ :Union[str, Any] = num_attention_heads lowercase_ :Optional[int] = intermediate_size lowercase_ :List[str] = hidden_dropout_prob lowercase_ :List[Any] = attention_probs_dropout_prob lowercase_ :str = max_position_embeddings lowercase_ :str = eos_token_id lowercase_ :Dict = pad_token_id lowercase_ :int = bos_token_id def UpperCamelCase ( self ): lowercase_ :int = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) lowercase_ :Any = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) lowercase_ :Tuple = np.concatenate([input_ids, eos_tensor] , axis=1 ) lowercase_ :Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ :List[str] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowercase_ :str = prepare_pegasus_inputs_dict(_a , _a , _a ) return config, inputs_dict def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): lowercase_ :Optional[int] = 20 lowercase_ :List[str] = model_class_name(_a ) lowercase_ :int = model.encode(inputs_dict['''input_ids'''] ) lowercase_ , lowercase_ :Union[str, Any] = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) lowercase_ :List[str] = model.init_cache(decoder_input_ids.shape[0] , _a , _a ) lowercase_ :str = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) lowercase_ :Tuple = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowercase_ :Optional[Any] = model.decode( decoder_input_ids[:, :-1] , _a , decoder_attention_mask=_a , past_key_values=_a , decoder_position_ids=_a , ) lowercase_ :List[str] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) lowercase_ :List[str] = model.decode( decoder_input_ids[:, -1:] , _a , decoder_attention_mask=_a , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_a , ) lowercase_ :Dict = model.decode(_a , _a ) lowercase_ :List[str] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"Max diff is {diff}" ) def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): lowercase_ :int = 20 lowercase_ :List[Any] = model_class_name(_a ) lowercase_ :Tuple = model.encode(inputs_dict['''input_ids'''] ) lowercase_ , lowercase_ :Optional[Any] = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) lowercase_ :List[Any] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) lowercase_ :Dict = model.init_cache(decoder_input_ids.shape[0] , _a , _a ) lowercase_ :str = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowercase_ :Optional[int] = model.decode( decoder_input_ids[:, :-1] , _a , decoder_attention_mask=_a , past_key_values=_a , decoder_position_ids=_a , ) lowercase_ :str = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) lowercase_ :str = model.decode( decoder_input_ids[:, -1:] , _a , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_a , decoder_position_ids=_a , ) lowercase_ :Dict = model.decode(_a , _a , decoder_attention_mask=_a ) lowercase_ :int = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"Max diff is {diff}" ) def UpperCamelCase ( _a , _a , _a , _a=None , _a=None , ) -> str: '''simple docstring''' if attention_mask is None: lowercase_ :Optional[int] = np.not_equal(lowerCAmelCase__ , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: lowercase_ :Tuple = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class UpperCamelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase : Optional[Any] =( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) lowercase : Optional[Any] =(FlaxPegasusForConditionalGeneration,) if is_flax_available() else () lowercase : Optional[int] =True lowercase : Tuple =False lowercase : List[str] =False lowercase : List[str] =False def UpperCamelCase ( self ): lowercase_ :Optional[int] = FlaxPegasusModelTester(self ) lowercase_ :Dict = ConfigTester(self , config_class=_a ) def UpperCamelCase ( self ): self.config_tester.run_common_tests() def UpperCamelCase ( self ): lowercase_ , lowercase_ :Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_a , _a , _a ) def UpperCamelCase ( self ): lowercase_ , lowercase_ :str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_a , _a , _a ) def UpperCamelCase ( self ): lowercase_ , lowercase_ :List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowercase_ :Union[str, Any] = self._prepare_for_class(_a , _a ) lowercase_ :Any = model_class(_a ) @jax.jit def encode_jitted(UpperCamelCase_ , UpperCamelCase_=None , **UpperCamelCase_ ): return model.encode(input_ids=_a , attention_mask=_a ) with self.subTest('''JIT Enabled''' ): lowercase_ :Optional[Any] = encode_jitted(**_a ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowercase_ :List[Any] = encode_jitted(**_a ).to_tuple() self.assertEqual(len(_a ) , len(_a ) ) for jitted_output, output in zip(_a , _a ): self.assertEqual(jitted_output.shape , output.shape ) def UpperCamelCase ( self ): lowercase_ , lowercase_ :List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowercase_ :Any = model_class(_a ) lowercase_ :int = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] ) lowercase_ :Dict = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): return model.decode( decoder_input_ids=_a , decoder_attention_mask=_a , encoder_outputs=_a , ) with self.subTest('''JIT Enabled''' ): lowercase_ :Tuple = decode_jitted(**_a ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowercase_ :str = decode_jitted(**_a ).to_tuple() self.assertEqual(len(_a ) , len(_a ) ) for jitted_output, output in zip(_a , _a ): self.assertEqual(jitted_output.shape , output.shape ) @slow def UpperCamelCase ( self ): for model_class_name in self.all_model_classes: lowercase_ :List[str] = model_class_name.from_pretrained('''google/pegasus-large''' , from_pt=_a ) lowercase_ :Union[str, Any] = np.ones((1, 1) ) lowercase_ :List[str] = model(_a ) self.assertIsNotNone(_a ) @slow def UpperCamelCase ( self ): lowercase_ :Optional[Any] = FlaxPegasusForConditionalGeneration.from_pretrained('''google/pegasus-xsum''' ) lowercase_ :List[Any] = PegasusTokenizer.from_pretrained('''google/pegasus-xsum''' ) lowercase_ :List[Any] = [ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] lowercase_ :List[str] = [ '''California\'s largest electricity provider has turned off power to hundreds of thousands of customers.''', '''Pop group N-Dubz have revealed they were surprised to get four nominations for this year\'s Mobo Awards.''', ] lowercase_ :Optional[Any] = tokenizer(_a , return_tensors='''np''' , truncation=_a , max_length=512 , padding=_a ) lowercase_ :Tuple = model.generate(**_a , num_beams=2 ).sequences lowercase_ :Optional[Any] = tokenizer.batch_decode(_a , skip_special_tokens=_a ) assert tgt_text == decoded
361
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings("ignore", category=UserWarning, module="torch.optim.lr_scheduler") class UpperCamelCase : '''simple docstring''' def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = True , UpperCamelCase_ = False ): lowercase_ :List[str] = scheduler lowercase_ :Optional[Any] = optimizers if isinstance(UpperCamelCase_ , (list, tuple) ) else [optimizers] lowercase_ :Tuple = split_batches lowercase_ :str = step_with_optimizer lowercase_ :int = GradientState() def UpperCamelCase ( self , *UpperCamelCase_ , **UpperCamelCase_ ): if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*UpperCamelCase_ , **UpperCamelCase_ ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*UpperCamelCase_ , **UpperCamelCase_ ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step lowercase_ :Optional[Any] = AcceleratorState().num_processes for _ in range(UpperCamelCase_ ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , '''total_steps''' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*UpperCamelCase_ , **UpperCamelCase_ ) else: self.scheduler.step(*UpperCamelCase_ , **UpperCamelCase_ ) def UpperCamelCase ( self ): return self.scheduler.get_last_lr() def UpperCamelCase ( self ): return self.scheduler.state_dict() def UpperCamelCase ( self , UpperCamelCase_ ): self.scheduler.load_state_dict(UpperCamelCase_ ) def UpperCamelCase ( self ): return self.scheduler.get_lr() def UpperCamelCase ( self , *UpperCamelCase_ , **UpperCamelCase_ ): return self.scheduler.print_lr(*UpperCamelCase_ , **UpperCamelCase_ )
252
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available SCREAMING_SNAKE_CASE__ : List[Any] = { "configuration_bridgetower": [ "BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP", "BridgeTowerConfig", "BridgeTowerTextConfig", "BridgeTowerVisionConfig", ], "processing_bridgetower": ["BridgeTowerProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : str = ["BridgeTowerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Optional[Any] = [ "BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST", "BridgeTowerForContrastiveLearning", "BridgeTowerForImageAndTextRetrieval", "BridgeTowerForMaskedLM", "BridgeTowerModel", "BridgeTowerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_bridgetower import ( BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP, BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig, ) from .processing_bridgetower import BridgeTowerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_bridgetower import BridgeTowerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bridgetower import ( BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST, BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, BridgeTowerPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ : str = _LazyModule(__name__, globals()["__file__"], _import_structure)
270
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) SCREAMING_SNAKE_CASE__ : List[str] = { "configuration_blip": [ "BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlipConfig", "BlipTextConfig", "BlipVisionConfig", ], "processing_blip": ["BlipProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : str = ["BlipImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : int = [ "BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "BlipModel", "BlipPreTrainedModel", "BlipForConditionalGeneration", "BlipForQuestionAnswering", "BlipVisionModel", "BlipTextModel", "BlipForImageTextRetrieval", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Any = [ "TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFBlipModel", "TFBlipPreTrainedModel", "TFBlipForConditionalGeneration", "TFBlipForQuestionAnswering", "TFBlipVisionModel", "TFBlipTextModel", "TFBlipForImageTextRetrieval", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys SCREAMING_SNAKE_CASE__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
270
1
import argparse import hashlib # hashlib is only used inside the Test class import struct class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE ) -> Any: snake_case_ : Any = data snake_case_ : Tuple = [0X6745_2301, 0Xefcd_ab89, 0X98ba_dcfe, 0X1032_5476, 0Xc3d2_e1f0] @staticmethod def _lowerCAmelCase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: return ((n << b) | (n >> (32 - b))) & 0Xffff_ffff def _lowerCAmelCase ( self ) -> List[str]: snake_case_ : Tuple = B"\x80" + B"\x00" * (63 - (len(self.data ) + 8) % 64) snake_case_ : List[str] = self.data + padding + struct.pack(">Q" , 8 * len(self.data ) ) return padded_data def _lowerCAmelCase ( self ) -> Union[str, Any]: return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> str: snake_case_ : Dict = list(struct.unpack(">16L" , _SCREAMING_SNAKE_CASE ) ) + [0] * 64 for i in range(16 , 80 ): snake_case_ : Tuple = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def _lowerCAmelCase ( self ) -> int: snake_case_ : Optional[int] = self.padding() snake_case_ : int = self.split_blocks() for block in self.blocks: snake_case_ : Dict = self.expand_block(_SCREAMING_SNAKE_CASE ) snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : Optional[int] = self.h for i in range(0 , 80 ): if 0 <= i < 20: snake_case_ : Optional[Any] = (b & c) | ((~b) & d) snake_case_ : Tuple = 0X5a82_7999 elif 20 <= i < 40: snake_case_ : Tuple = b ^ c ^ d snake_case_ : List[str] = 0X6ed9_eba1 elif 40 <= i < 60: snake_case_ : Optional[Any] = (b & c) | (b & d) | (c & d) snake_case_ : List[str] = 0X8f1b_bcdc elif 60 <= i < 80: snake_case_ : Any = b ^ c ^ d snake_case_ : str = 0Xca62_c1d6 snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : str = ( self.rotate(_SCREAMING_SNAKE_CASE , 5 ) + f + e + k + expanded_block[i] & 0Xffff_ffff, a, self.rotate(_SCREAMING_SNAKE_CASE , 30 ), c, d, ) snake_case_ : Any = ( self.h[0] + a & 0Xffff_ffff, self.h[1] + b & 0Xffff_ffff, self.h[2] + c & 0Xffff_ffff, self.h[3] + d & 0Xffff_ffff, self.h[4] + e & 0Xffff_ffff, ) return ("{:08x}" * 5).format(*self.h ) def lowerCAmelCase__ ( ): snake_case_ : Optional[int] = b"Test String" assert SHAaHash(_a ).final_hash() == hashlib.shaa(_a ).hexdigest() # noqa: S324 def lowerCAmelCase__ ( ): snake_case_ : Optional[Any] = argparse.ArgumentParser(description="Process some strings or files" ) parser.add_argument( "--string" , dest="input_string" , default="Hello World!! Welcome to Cryptography" , help="Hash the string" , ) parser.add_argument("--file" , dest="input_file" , help="Hash contents of a file" ) snake_case_ : Optional[int] = parser.parse_args() snake_case_ : Optional[Any] = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , "rb" ) as f: snake_case_ : Tuple = f.read() else: snake_case_ : Union[str, Any] = bytes(_a , "utf-8" ) print(SHAaHash(_a ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
36
import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' A : Any = MobileBertTokenizer A : Optional[int] = MobileBertTokenizerFast A : Any = True A : Optional[int] = True A : List[str] = filter_non_english A : Any = 'google/mobilebert-uncased' def _lowerCAmelCase ( self ) -> List[str]: super().setUp() snake_case_ : List[Any] = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] snake_case_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) snake_case_ : Dict = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> Dict: snake_case_ : int = "UNwant\u00E9d,running" snake_case_ : Dict = "unwanted, running" return input_text, output_text def _lowerCAmelCase ( self ) -> Dict: snake_case_ : int = self.tokenizer_class(self.vocab_file ) snake_case_ : Tuple = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(_SCREAMING_SNAKE_CASE , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) , [9, 6, 7, 12, 10, 11] ) def _lowerCAmelCase ( self ) -> Optional[int]: if not self.test_rust_tokenizer: return snake_case_ : List[str] = self.get_tokenizer() snake_case_ : str = self.get_rust_tokenizer() snake_case_ : str = "UNwant\u00E9d,running" snake_case_ : int = tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) snake_case_ : Tuple = rust_tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ : int = tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) snake_case_ : Union[str, Any] = rust_tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ : Optional[Any] = self.get_rust_tokenizer() snake_case_ : Any = tokenizer.encode(_SCREAMING_SNAKE_CASE ) snake_case_ : Dict = rust_tokenizer.encode(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # With lower casing snake_case_ : Optional[Any] = self.get_tokenizer(do_lower_case=_SCREAMING_SNAKE_CASE ) snake_case_ : Dict = self.get_rust_tokenizer(do_lower_case=_SCREAMING_SNAKE_CASE ) snake_case_ : int = "UNwant\u00E9d,running" snake_case_ : Optional[Any] = tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) snake_case_ : int = rust_tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ : List[str] = tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) snake_case_ : int = rust_tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ : Any = self.get_rust_tokenizer() snake_case_ : str = tokenizer.encode(_SCREAMING_SNAKE_CASE ) snake_case_ : List[Any] = rust_tokenizer.encode(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self ) -> str: snake_case_ : Any = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def _lowerCAmelCase ( self ) -> Union[str, Any]: snake_case_ : Optional[int] = BasicTokenizer(do_lower_case=_SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def _lowerCAmelCase ( self ) -> Tuple: snake_case_ : Optional[Any] = BasicTokenizer(do_lower_case=_SCREAMING_SNAKE_CASE , strip_accents=_SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def _lowerCAmelCase ( self ) -> Optional[Any]: snake_case_ : Dict = BasicTokenizer(do_lower_case=_SCREAMING_SNAKE_CASE , strip_accents=_SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def _lowerCAmelCase ( self ) -> Union[str, Any]: snake_case_ : Union[str, Any] = BasicTokenizer(do_lower_case=_SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def _lowerCAmelCase ( self ) -> str: snake_case_ : Dict = BasicTokenizer(do_lower_case=_SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def _lowerCAmelCase ( self ) -> Union[str, Any]: snake_case_ : Any = BasicTokenizer(do_lower_case=_SCREAMING_SNAKE_CASE , strip_accents=_SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def _lowerCAmelCase ( self ) -> Any: snake_case_ : Dict = BasicTokenizer(do_lower_case=_SCREAMING_SNAKE_CASE , strip_accents=_SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def _lowerCAmelCase ( self ) -> List[Any]: snake_case_ : Any = BasicTokenizer(do_lower_case=_SCREAMING_SNAKE_CASE , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def _lowerCAmelCase ( self ) -> Dict: snake_case_ : Tuple = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] snake_case_ : Optional[int] = {} for i, token in enumerate(_SCREAMING_SNAKE_CASE ): snake_case_ : Optional[Any] = i snake_case_ : List[Any] = WordpieceTokenizer(vocab=_SCREAMING_SNAKE_CASE , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) def _lowerCAmelCase ( self ) -> Optional[Any]: self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def _lowerCAmelCase ( self ) -> List[Any]: self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def _lowerCAmelCase ( self ) -> int: self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def _lowerCAmelCase ( self ) -> Optional[Any]: snake_case_ : Optional[int] = self.get_tokenizer() snake_case_ : Any = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) self.assertListEqual( [rust_tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) @slow def _lowerCAmelCase ( self ) -> Optional[int]: snake_case_ : Union[str, Any] = self.tokenizer_class.from_pretrained("google/mobilebert-uncased" ) snake_case_ : int = tokenizer.encode("sequence builders" , add_special_tokens=_SCREAMING_SNAKE_CASE ) snake_case_ : Tuple = tokenizer.encode("multi-sequence build" , add_special_tokens=_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(_SCREAMING_SNAKE_CASE ) snake_case_ : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def _lowerCAmelCase ( self ) -> Optional[Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): snake_case_ : Dict = self.rust_tokenizer_class.from_pretrained(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) snake_case_ : Dict = f'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' snake_case_ : Any = tokenizer_r.encode_plus( _SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , return_token_type_ids=_SCREAMING_SNAKE_CASE , return_offsets_mapping=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , ) snake_case_ : List[Any] = tokenizer_r.do_lower_case if hasattr(_SCREAMING_SNAKE_CASE , "do_lower_case" ) else False snake_case_ : Optional[int] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] ) def _lowerCAmelCase ( self ) -> Tuple: snake_case_ : Union[str, Any] = ["的", "人", "有"] snake_case_ : int = "".join(_SCREAMING_SNAKE_CASE ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): snake_case_ : Tuple = True snake_case_ : Union[str, Any] = self.tokenizer_class.from_pretrained(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[int] = tokenizer_p.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) snake_case_ : Tuple = tokenizer_r.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[Any] = tokenizer_r.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[Any] = tokenizer_p.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ : Tuple = False snake_case_ : str = self.rust_tokenizer_class.from_pretrained(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) snake_case_ : List[str] = self.tokenizer_class.from_pretrained(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[int] = tokenizer_r.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) snake_case_ : Tuple = tokenizer_p.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) snake_case_ : List[str] = tokenizer_r.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ) snake_case_ : Any = tokenizer_p.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ) # it is expected that only the first Chinese character is not preceded by "##". snake_case_ : Union[str, Any] = [ f'''##{token}''' if idx != 0 else token for idx, token in enumerate(_SCREAMING_SNAKE_CASE ) ] self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
36
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class SCREAMING_SNAKE_CASE : """simple docstring""" lowercase__ = MBartConfig lowercase__ = {} lowercase__ = "gelu" def __init__( self : Union[str, Any] ,lowercase_ : int ,lowercase_ : Optional[Any]=1_3 ,lowercase_ : Dict=7 ,lowercase_ : Union[str, Any]=True ,lowercase_ : str=False ,lowercase_ : Optional[Any]=9_9 ,lowercase_ : Dict=3_2 ,lowercase_ : Tuple=2 ,lowercase_ : Union[str, Any]=4 ,lowercase_ : Optional[Any]=3_7 ,lowercase_ : Union[str, Any]=0.1 ,lowercase_ : List[str]=0.1 ,lowercase_ : Any=2_0 ,lowercase_ : Optional[Any]=2 ,lowercase_ : Any=1 ,lowercase_ : List[Any]=0 ,): lowerCAmelCase__ : Union[str, Any] = parent lowerCAmelCase__ : Dict = batch_size lowerCAmelCase__ : Optional[int] = seq_length lowerCAmelCase__ : int = is_training lowerCAmelCase__ : List[str] = use_labels lowerCAmelCase__ : Tuple = vocab_size lowerCAmelCase__ : Union[str, Any] = hidden_size lowerCAmelCase__ : Tuple = num_hidden_layers lowerCAmelCase__ : Union[str, Any] = num_attention_heads lowerCAmelCase__ : Optional[Any] = intermediate_size lowerCAmelCase__ : List[Any] = hidden_dropout_prob lowerCAmelCase__ : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase__ : str = max_position_embeddings lowerCAmelCase__ : Any = eos_token_id lowerCAmelCase__ : Optional[Any] = pad_token_id lowerCAmelCase__ : Optional[Any] = bos_token_id def __lowerCAmelCase ( self : Union[str, Any] ): lowerCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length - 1] ,self.vocab_size ) lowerCAmelCase__ : Any = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) ,1 ) lowerCAmelCase__ : Tuple = tf.concat([input_ids, eos_tensor] ,axis=1 ) lowerCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowerCAmelCase__ : List[Any] = self.config_cls( vocab_size=self.vocab_size ,d_model=self.hidden_size ,encoder_layers=self.num_hidden_layers ,decoder_layers=self.num_hidden_layers ,encoder_attention_heads=self.num_attention_heads ,decoder_attention_heads=self.num_attention_heads ,encoder_ffn_dim=self.intermediate_size ,decoder_ffn_dim=self.intermediate_size ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,eos_token_ids=[2] ,bos_token_id=self.bos_token_id ,pad_token_id=self.pad_token_id ,decoder_start_token_id=self.pad_token_id ,**self.config_updates ,) lowerCAmelCase__ : Dict = prepare_mbart_inputs_dict(lowercase_ ,lowercase_ ,lowercase_ ) return config, inputs_dict def __lowerCAmelCase ( self : List[Any] ,lowercase_ : Any ,lowercase_ : Dict ): lowerCAmelCase__ : List[Any] = TFMBartModel(config=lowercase_ ).get_decoder() lowerCAmelCase__ : Any = inputs_dict['''input_ids'''] lowerCAmelCase__ : int = input_ids[:1, :] lowerCAmelCase__ : Dict = inputs_dict['''attention_mask'''][:1, :] lowerCAmelCase__ : str = inputs_dict['''head_mask'''] lowerCAmelCase__ : Tuple = 1 # first forward pass lowerCAmelCase__ : str = model(lowercase_ ,attention_mask=lowercase_ ,head_mask=lowercase_ ,use_cache=lowercase_ ) lowerCAmelCase__ ,lowerCAmelCase__ : int = outputs.to_tuple() lowerCAmelCase__ : List[str] = past_key_values[1] def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , A_=None , A_=None , A_=None , A_=None , A_=None , ): if attention_mask is None: lowerCAmelCase__ : Optional[Any] = tf.cast(tf.math.not_equal(A_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: lowerCAmelCase__ : List[Any] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: lowerCAmelCase__ : int = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCAmelCase__ : int = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCAmelCase__ : Dict = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class SCREAMING_SNAKE_CASE ( a_ , a_ , unittest.TestCase ): """simple docstring""" lowercase__ = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () lowercase__ = (TFMBartForConditionalGeneration,) if is_tf_available() else () lowercase__ = ( { "conversational": TFMBartForConditionalGeneration, "feature-extraction": TFMBartModel, "summarization": TFMBartForConditionalGeneration, "text2text-generation": TFMBartForConditionalGeneration, "translation": TFMBartForConditionalGeneration, } if is_tf_available() else {} ) lowercase__ = True lowercase__ = False lowercase__ = False def __lowerCAmelCase ( self : Any ,lowercase_ : int ,lowercase_ : Optional[Any] ,lowercase_ : Any ,lowercase_ : str ,lowercase_ : str ): if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def __lowerCAmelCase ( self : List[Any] ): lowerCAmelCase__ : int = TFMBartModelTester(self ) lowerCAmelCase__ : str = ConfigTester(self ,config_class=lowercase_ ) def __lowerCAmelCase ( self : Optional[int] ): self.config_tester.run_common_tests() def __lowerCAmelCase ( self : Tuple ): lowerCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase_ ) @require_sentencepiece @require_tokenizers @require_tf class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" lowercase__ = [ " UN Chief Says There Is No Military Solution in Syria", ] lowercase__ = [ "Şeful ONU declară că nu există o soluţie militară în Siria", ] lowercase__ = "facebook/mbart-large-en-ro" @cached_property def __lowerCAmelCase ( self : Tuple ): return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def __lowerCAmelCase ( self : List[Any] ): lowerCAmelCase__ : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def __lowerCAmelCase ( self : List[Any] ,**lowercase_ : int ): lowerCAmelCase__ : int = self.translate_src_text(**lowercase_ ) self.assertListEqual(self.expected_text ,lowercase_ ) def __lowerCAmelCase ( self : Any ,**lowercase_ : Any ): lowerCAmelCase__ : List[str] = self.tokenizer(self.src_text ,**lowercase_ ,return_tensors='''tf''' ) lowerCAmelCase__ : Union[str, Any] = self.model.generate( model_inputs.input_ids ,attention_mask=model_inputs.attention_mask ,num_beams=2 ) lowerCAmelCase__ : Dict = self.tokenizer.batch_decode(lowercase_ ,skip_special_tokens=lowercase_ ) return generated_words @slow def __lowerCAmelCase ( self : Dict ): self._assert_generated_batch_equal_expected()
106
"""simple docstring""" __UpperCamelCase : Optional[Any] = [ 9_9_9, 8_0_0, 7_9_9, 6_0_0, 5_9_9, 5_0_0, 4_0_0, 3_9_9, 3_7_7, 3_5_5, 3_3_3, 3_1_1, 2_8_8, 2_6_6, 2_4_4, 2_2_2, 2_0_0, 1_9_9, 1_7_7, 1_5_5, 1_3_3, 1_1_1, 8_8, 6_6, 4_4, 2_2, 0, ] __UpperCamelCase : Tuple = [ 9_9_9, 9_7_6, 9_5_2, 9_2_8, 9_0_5, 8_8_2, 8_5_8, 8_5_7, 8_1_0, 7_6_2, 7_1_5, 7_1_4, 5_7_2, 4_2_9, 4_2_8, 2_8_6, 2_8_5, 2_3_8, 1_9_0, 1_4_3, 1_4_2, 1_1_8, 9_5, 7_1, 4_7, 2_4, 0, ] __UpperCamelCase : Optional[int] = [ 9_9_9, 9_8_8, 9_7_7, 9_6_6, 9_5_5, 9_4_4, 9_3_3, 9_2_2, 9_1_1, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_5_0, 3_0_0, 2_9_9, 2_6_6, 2_3_3, 2_0_0, 1_9_9, 1_7_9, 1_5_9, 1_4_0, 1_2_0, 1_0_0, 9_9, 8_8, 7_7, 6_6, 5_5, 4_4, 3_3, 2_2, 1_1, 0, ] __UpperCamelCase : Tuple = [ 9_9_9, 9_9_5, 9_9_2, 9_8_9, 9_8_5, 9_8_1, 9_7_8, 9_7_5, 9_7_1, 9_6_7, 9_6_4, 9_6_1, 9_5_7, 9_5_6, 9_5_1, 9_4_7, 9_4_2, 9_3_7, 9_3_3, 9_2_8, 9_2_3, 9_1_9, 9_1_4, 9_1_3, 9_0_8, 9_0_3, 8_9_7, 8_9_2, 8_8_7, 8_8_1, 8_7_6, 8_7_1, 8_7_0, 8_6_4, 8_5_8, 8_5_2, 8_4_6, 8_4_0, 8_3_4, 8_2_8, 8_2_7, 8_2_0, 8_1_3, 8_0_6, 7_9_9, 7_9_2, 7_8_5, 7_8_4, 7_7_7, 7_7_0, 7_6_3, 7_5_6, 7_4_9, 7_4_2, 7_4_1, 7_3_3, 7_2_4, 7_1_6, 7_0_7, 6_9_9, 6_9_8, 6_8_8, 6_7_7, 6_6_6, 6_5_6, 6_5_5, 6_4_5, 6_3_4, 6_2_3, 6_1_3, 6_1_2, 5_9_8, 5_8_4, 5_7_0, 5_6_9, 5_5_5, 5_4_1, 5_2_7, 5_2_6, 5_0_5, 4_8_4, 4_8_3, 4_6_2, 4_4_0, 4_3_9, 3_9_6, 3_9_5, 3_5_2, 3_5_1, 3_0_8, 3_0_7, 2_6_4, 2_6_3, 2_2_0, 2_1_9, 1_7_6, 1_3_2, 8_8, 4_4, 0, ] __UpperCamelCase : str = [ 9_9_9, 9_9_7, 9_9_5, 9_9_2, 9_9_0, 9_8_8, 9_8_6, 9_8_4, 9_8_1, 9_7_9, 9_7_7, 9_7_5, 9_7_2, 9_7_0, 9_6_8, 9_6_6, 9_6_4, 9_6_1, 9_5_9, 9_5_7, 9_5_6, 9_5_4, 9_5_1, 9_4_9, 9_4_6, 9_4_4, 9_4_1, 9_3_9, 9_3_6, 9_3_4, 9_3_1, 9_2_9, 9_2_6, 9_2_4, 9_2_1, 9_1_9, 9_1_6, 9_1_4, 9_1_3, 9_1_0, 9_0_7, 9_0_5, 9_0_2, 8_9_9, 8_9_6, 8_9_3, 8_9_1, 8_8_8, 8_8_5, 8_8_2, 8_7_9, 8_7_7, 8_7_4, 8_7_1, 8_7_0, 8_6_7, 8_6_4, 8_6_1, 8_5_8, 8_5_5, 8_5_2, 8_4_9, 8_4_6, 8_4_3, 8_4_0, 8_3_7, 8_3_4, 8_3_1, 8_2_8, 8_2_7, 8_2_4, 8_2_1, 8_1_7, 8_1_4, 8_1_1, 8_0_8, 8_0_4, 8_0_1, 7_9_8, 7_9_5, 7_9_1, 7_8_8, 7_8_5, 7_8_4, 7_8_0, 7_7_7, 7_7_4, 7_7_0, 7_6_6, 7_6_3, 7_6_0, 7_5_6, 7_5_2, 7_4_9, 7_4_6, 7_4_2, 7_4_1, 7_3_7, 7_3_3, 7_3_0, 7_2_6, 7_2_2, 7_1_8, 7_1_4, 7_1_0, 7_0_7, 7_0_3, 6_9_9, 6_9_8, 6_9_4, 6_9_0, 6_8_5, 6_8_1, 6_7_7, 6_7_3, 6_6_9, 6_6_4, 6_6_0, 6_5_6, 6_5_5, 6_5_0, 6_4_6, 6_4_1, 6_3_6, 6_3_2, 6_2_7, 6_2_2, 6_1_8, 6_1_3, 6_1_2, 6_0_7, 6_0_2, 5_9_6, 5_9_1, 5_8_6, 5_8_0, 5_7_5, 5_7_0, 5_6_9, 5_6_3, 5_5_7, 5_5_1, 5_4_5, 5_3_9, 5_3_3, 5_2_7, 5_2_6, 5_1_9, 5_1_2, 5_0_5, 4_9_8, 4_9_1, 4_8_4, 4_8_3, 4_7_4, 4_6_6, 4_5_7, 4_4_9, 4_4_0, 4_3_9, 4_2_8, 4_1_8, 4_0_7, 3_9_6, 3_9_5, 3_8_1, 3_6_6, 3_5_2, 3_5_1, 3_3_0, 3_0_8, 3_0_7, 2_8_6, 2_6_4, 2_6_3, 2_4_2, 2_2_0, 2_1_9, 1_7_6, 1_7_5, 1_3_2, 1_3_1, 8_8, 4_4, 0, ] __UpperCamelCase : Dict = [ 9_9_9, 9_9_1, 9_8_2, 9_7_4, 9_6_6, 9_5_8, 9_5_0, 9_4_1, 9_3_3, 9_2_5, 9_1_6, 9_0_8, 9_0_0, 8_9_9, 8_7_4, 8_5_0, 8_2_5, 8_0_0, 7_9_9, 7_0_0, 6_0_0, 5_0_0, 4_0_0, 3_0_0, 2_0_0, 1_0_0, 0, ] __UpperCamelCase : int = [ 9_9_9, 9_9_2, 9_8_5, 9_7_8, 9_7_1, 9_6_4, 9_5_7, 9_4_9, 9_4_2, 9_3_5, 9_2_8, 9_2_1, 9_1_4, 9_0_7, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_0_0, 2_9_9, 2_0_0, 1_9_9, 1_0_0, 9_9, 0, ] __UpperCamelCase : Optional[int] = [ 9_9_9, 9_9_6, 9_9_2, 9_8_9, 9_8_5, 9_8_2, 9_7_9, 9_7_5, 9_7_2, 9_6_8, 9_6_5, 9_6_1, 9_5_8, 9_5_5, 9_5_1, 9_4_8, 9_4_4, 9_4_1, 9_3_8, 9_3_4, 9_3_1, 9_2_7, 9_2_4, 9_2_0, 9_1_7, 9_1_4, 9_1_0, 9_0_7, 9_0_3, 9_0_0, 8_9_9, 8_9_1, 8_8_4, 8_7_6, 8_6_9, 8_6_1, 8_5_3, 8_4_6, 8_3_8, 8_3_0, 8_2_3, 8_1_5, 8_0_8, 8_0_0, 7_9_9, 7_8_8, 7_7_7, 7_6_6, 7_5_5, 7_4_4, 7_3_3, 7_2_2, 7_1_1, 7_0_0, 6_9_9, 6_8_8, 6_7_7, 6_6_6, 6_5_5, 6_4_4, 6_3_3, 6_2_2, 6_1_1, 6_0_0, 5_9_9, 5_8_5, 5_7_1, 5_5_7, 5_4_2, 5_2_8, 5_1_4, 5_0_0, 4_9_9, 4_8_5, 4_7_1, 4_5_7, 4_4_2, 4_2_8, 4_1_4, 4_0_0, 3_9_9, 3_7_9, 3_5_9, 3_4_0, 3_2_0, 3_0_0, 2_9_9, 2_7_9, 2_5_9, 2_4_0, 2_2_0, 2_0_0, 1_9_9, 1_6_6, 1_3_3, 1_0_0, 9_9, 6_6, 3_3, 0, ]
106
1
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :int ) -> float: return base * power(SCREAMING_SNAKE_CASE , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print('Raise base to the power of exponent using recursion...') _UpperCAmelCase = int(input('Enter the base: ').strip()) _UpperCAmelCase = int(input('Enter the exponent: ').strip()) _UpperCAmelCase = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents _UpperCAmelCase = 1 / result print(f'''{base} to the power of {exponent} is {result}''')
232
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _UpperCAmelCase = get_tests_dir('fixtures/test_sentencepiece_no_bos.model') @require_sentencepiece @require_tokenizers class snake_case_ ( __lowercase ,unittest.TestCase ): A_ = PegasusTokenizer A_ = PegasusTokenizerFast A_ = True A_ = True def UpperCAmelCase__ ( self : List[str] )->Dict: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __lowerCAmelCase : Optional[int] = PegasusTokenizer(_snake_case ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase__ ( self : str )->Dict: '''simple docstring''' return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def UpperCAmelCase__ ( self : Optional[Any] , **_snake_case : Tuple )->PegasusTokenizer: '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname , **_snake_case ) def UpperCAmelCase__ ( self : Dict , _snake_case : List[Any] )->Tuple: '''simple docstring''' return ("This is a test", "This is a test") def UpperCAmelCase__ ( self : Union[str, Any] )->Dict: '''simple docstring''' __lowerCAmelCase : Dict = """</s>""" __lowerCAmelCase : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_snake_case ) , _snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_snake_case ) , _snake_case ) def UpperCAmelCase__ ( self : int )->Tuple: '''simple docstring''' __lowerCAmelCase : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(_snake_case ) , 1103 ) def UpperCAmelCase__ ( self : Optional[int] )->Optional[int]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def UpperCAmelCase__ ( self : Dict )->str: '''simple docstring''' __lowerCAmelCase : Any = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) __lowerCAmelCase : Dict = self.tokenizer_class.from_pretrained(self.tmpdirname ) __lowerCAmelCase : str = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) __lowerCAmelCase : str = rust_tokenizer([raw_input_str] , return_tensors=_snake_case , add_special_tokens=_snake_case ).input_ids[0] __lowerCAmelCase : Tuple = py_tokenizer([raw_input_str] , return_tensors=_snake_case , add_special_tokens=_snake_case ).input_ids[0] self.assertListEqual(_snake_case , _snake_case ) def UpperCAmelCase__ ( self : Optional[int] )->Union[str, Any]: '''simple docstring''' __lowerCAmelCase : List[str] = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word __lowerCAmelCase : Tuple = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" __lowerCAmelCase : List[str] = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1] __lowerCAmelCase : str = tokenizer([raw_input_str] , return_tensors=_snake_case ).input_ids[0] self.assertListEqual(_snake_case , _snake_case ) def UpperCAmelCase__ ( self : List[str] )->List[str]: '''simple docstring''' __lowerCAmelCase : Optional[Any] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 __lowerCAmelCase : Tuple = """To ensure a smooth flow of bank resolutions.""" __lowerCAmelCase : Optional[Any] = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1] __lowerCAmelCase : int = tokenizer([raw_input_str] , return_tensors=_snake_case ).input_ids[0] self.assertListEqual(_snake_case , _snake_case ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def UpperCAmelCase__ ( self : Any )->Any: '''simple docstring''' __lowerCAmelCase : List[Any] = ["""This is going to be way too long.""" * 150, """short example"""] __lowerCAmelCase : Union[str, Any] = ["""not super long but more than 5 tokens""", """tiny"""] __lowerCAmelCase : Dict = self._large_tokenizer(_snake_case , padding=_snake_case , truncation=_snake_case , return_tensors="""pt""" ) __lowerCAmelCase : Tuple = self._large_tokenizer( text_target=_snake_case , max_length=5 , padding=_snake_case , truncation=_snake_case , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(_snake_case ) == 2 # input_ids, attention_mask. @slow def UpperCAmelCase__ ( self : Optional[Any] )->Any: '''simple docstring''' __lowerCAmelCase : Optional[Any] = {"""input_ids""": [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_snake_case , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class snake_case_ ( __lowercase ,unittest.TestCase ): A_ = PegasusTokenizer A_ = PegasusTokenizerFast A_ = True A_ = True def UpperCAmelCase__ ( self : Tuple )->Tuple: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __lowerCAmelCase : Any = PegasusTokenizer(_snake_case , offset=0 , mask_token_sent=_snake_case , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase__ ( self : Any )->str: '''simple docstring''' return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def UpperCAmelCase__ ( self : Union[str, Any] , **_snake_case : Optional[Any] )->PegasusTokenizer: '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname , **_snake_case ) def UpperCAmelCase__ ( self : List[str] , _snake_case : Optional[int] )->Union[str, Any]: '''simple docstring''' return ("This is a test", "This is a test") def UpperCAmelCase__ ( self : List[Any] )->str: '''simple docstring''' __lowerCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) __lowerCAmelCase : List[str] = self.tokenizer_class.from_pretrained(self.tmpdirname ) __lowerCAmelCase : int = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) __lowerCAmelCase : str = rust_tokenizer([raw_input_str] , return_tensors=_snake_case , add_special_tokens=_snake_case ).input_ids[0] __lowerCAmelCase : Tuple = py_tokenizer([raw_input_str] , return_tensors=_snake_case , add_special_tokens=_snake_case ).input_ids[0] self.assertListEqual(_snake_case , _snake_case ) @require_torch def UpperCAmelCase__ ( self : str )->Optional[Any]: '''simple docstring''' __lowerCAmelCase : int = ["""This is going to be way too long.""" * 1000, """short example"""] __lowerCAmelCase : Optional[int] = ["""not super long but more than 5 tokens""", """tiny"""] __lowerCAmelCase : str = self._large_tokenizer(_snake_case , padding=_snake_case , truncation=_snake_case , return_tensors="""pt""" ) __lowerCAmelCase : List[Any] = self._large_tokenizer( text_target=_snake_case , max_length=5 , padding=_snake_case , truncation=_snake_case , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(_snake_case ) == 2 # input_ids, attention_mask. def UpperCAmelCase__ ( self : Optional[Any] )->Any: '''simple docstring''' __lowerCAmelCase : Tuple = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) __lowerCAmelCase : Optional[Any] = self._large_tokenizer(_snake_case ).input_ids self.assertListEqual( _snake_case , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
232
1
'''simple docstring''' from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=0.0 , _lowerCamelCase = None , _lowerCamelCase = "geglu" , _lowerCamelCase = None , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = True , _lowerCamelCase = "layer_norm" , _lowerCamelCase = False , ) -> str: super().__init__() A_ : Tuple = only_cross_attention A_ : Dict = (num_embeds_ada_norm is not None) and norm_type == """ada_norm_zero""" A_ : Tuple = (num_embeds_ada_norm is not None) and norm_type == """ada_norm""" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( F"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" F" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}." ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: A_ : Union[str, Any] = AdaLayerNorm(_lowerCamelCase , _lowerCamelCase ) elif self.use_ada_layer_norm_zero: A_ : Optional[Any] = AdaLayerNormZero(_lowerCamelCase , _lowerCamelCase ) else: A_ : Dict = nn.LayerNorm(_lowerCamelCase , elementwise_affine=_lowerCamelCase ) A_ : List[str] = Attention( query_dim=_lowerCamelCase , heads=_lowerCamelCase , dim_head=_lowerCamelCase , dropout=_lowerCamelCase , bias=_lowerCamelCase , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=_lowerCamelCase , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. A_ : List[Any] = ( AdaLayerNorm(_lowerCamelCase , _lowerCamelCase ) if self.use_ada_layer_norm else nn.LayerNorm(_lowerCamelCase , elementwise_affine=_lowerCamelCase ) ) A_ : Optional[int] = Attention( query_dim=_lowerCamelCase , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=_lowerCamelCase , dim_head=_lowerCamelCase , dropout=_lowerCamelCase , bias=_lowerCamelCase , upcast_attention=_lowerCamelCase , ) # is self-attn if encoder_hidden_states is none else: A_ : Tuple = None A_ : Any = None # 3. Feed-forward A_ : str = nn.LayerNorm(_lowerCamelCase , elementwise_affine=_lowerCamelCase ) A_ : Any = FeedForward(_lowerCamelCase , dropout=_lowerCamelCase , activation_fn=_lowerCamelCase , final_dropout=_lowerCamelCase ) # let chunk size default to None A_ : Optional[Any] = None A_ : int = 0 def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ) -> Dict: # Sets chunk feed-forward A_ : Union[str, Any] = chunk_size A_ : List[str] = dim def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , ) -> Tuple: # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: A_ : List[Any] = self.norma(_lowerCamelCase , _lowerCamelCase ) elif self.use_ada_layer_norm_zero: A_ , A_ , A_ , A_ , A_ : Dict = self.norma( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hidden_dtype=hidden_states.dtype ) else: A_ : List[Any] = self.norma(_lowerCamelCase ) A_ : List[Any] = cross_attention_kwargs if cross_attention_kwargs is not None else {} A_ : int = self.attna( _lowerCamelCase , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=_lowerCamelCase , **_lowerCamelCase , ) if self.use_ada_layer_norm_zero: A_ : Optional[Any] = gate_msa.unsqueeze(1 ) * attn_output A_ : int = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: A_ : Optional[Any] = ( self.norma(_lowerCamelCase , _lowerCamelCase ) if self.use_ada_layer_norm else self.norma(_lowerCamelCase ) ) A_ : Optional[int] = self.attna( _lowerCamelCase , encoder_hidden_states=_lowerCamelCase , attention_mask=_lowerCamelCase , **_lowerCamelCase , ) A_ : Tuple = attn_output + hidden_states # 3. Feed-forward A_ : List[str] = self.norma(_lowerCamelCase ) if self.use_ada_layer_norm_zero: A_ : str = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( F"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`." ) A_ : List[Any] = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size A_ : List[str] = torch.cat( [self.ff(_lowerCamelCase ) for hid_slice in norm_hidden_states.chunk(_lowerCamelCase , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: A_ : Optional[int] = self.ff(_lowerCamelCase ) if self.use_ada_layer_norm_zero: A_ : List[Any] = gate_mlp.unsqueeze(1 ) * ff_output A_ : Tuple = ff_output + hidden_states return hidden_states class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = 4 , _lowerCamelCase = 0.0 , _lowerCamelCase = "geglu" , _lowerCamelCase = False , ) -> int: super().__init__() A_ : List[str] = int(dim * mult ) A_ : List[Any] = dim_out if dim_out is not None else dim if activation_fn == "gelu": A_ : Any = GELU(_lowerCamelCase , _lowerCamelCase ) if activation_fn == "gelu-approximate": A_ : Dict = GELU(_lowerCamelCase , _lowerCamelCase , approximate="""tanh""" ) elif activation_fn == "geglu": A_ : int = GEGLU(_lowerCamelCase , _lowerCamelCase ) elif activation_fn == "geglu-approximate": A_ : Tuple = ApproximateGELU(_lowerCamelCase , _lowerCamelCase ) A_ : Dict = nn.ModuleList([] ) # project in self.net.append(_lowerCamelCase ) # project dropout self.net.append(nn.Dropout(_lowerCamelCase ) ) # project out self.net.append(nn.Linear(_lowerCamelCase , _lowerCamelCase ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(_lowerCamelCase ) ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> Any: for module in self.net: A_ : Dict = module(_lowerCamelCase ) return hidden_states class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = "none" ) -> Optional[Any]: super().__init__() A_ : int = nn.Linear(_lowerCamelCase , _lowerCamelCase ) A_ : Union[str, Any] = approximate def UpperCAmelCase_ ( self , _lowerCamelCase ) -> List[str]: if gate.device.type != "mps": return F.gelu(_lowerCamelCase , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> Union[str, Any]: A_ : Tuple = self.proj(_lowerCamelCase ) A_ : Any = self.gelu(_lowerCamelCase ) return hidden_states class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase ) -> str: super().__init__() A_ : Any = nn.Linear(_lowerCamelCase , dim_out * 2 ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> int: if gate.device.type != "mps": return F.gelu(_lowerCamelCase ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> List[str]: A_ , A_ : List[str] = self.proj(_lowerCamelCase ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(_lowerCamelCase ) class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase ) -> int: super().__init__() A_ : List[Any] = nn.Linear(_lowerCamelCase , _lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> int: A_ : str = self.proj(_lowerCamelCase ) return x * torch.sigmoid(1.702 * x ) class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase ) -> int: super().__init__() A_ : Dict = nn.Embedding(_lowerCamelCase , _lowerCamelCase ) A_ : int = nn.SiLU() A_ : int = nn.Linear(_lowerCamelCase , embedding_dim * 2 ) A_ : str = nn.LayerNorm(_lowerCamelCase , elementwise_affine=_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ) -> Any: A_ : Dict = self.linear(self.silu(self.emb(_lowerCamelCase ) ) ) A_ , A_ : Any = torch.chunk(_lowerCamelCase , 2 ) A_ : Union[str, Any] = self.norm(_lowerCamelCase ) * (1 + scale) + shift return x class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: super().__init__() A_ : Tuple = CombinedTimestepLabelEmbeddings(_lowerCamelCase , _lowerCamelCase ) A_ : Optional[Any] = nn.SiLU() A_ : Union[str, Any] = nn.Linear(_lowerCamelCase , 6 * embedding_dim , bias=_lowerCamelCase ) A_ : Any = nn.LayerNorm(_lowerCamelCase , elementwise_affine=_lowerCamelCase , eps=1e-6 ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ) -> List[str]: A_ : Optional[Any] = self.linear(self.silu(self.emb(_lowerCamelCase , _lowerCamelCase , hidden_dtype=_lowerCamelCase ) ) ) A_ , A_ , A_ , A_ , A_ , A_ : int = emb.chunk(6 , dim=1 ) A_ : List[Any] = self.norm(_lowerCamelCase ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = 1e-5 ) -> int: super().__init__() A_ : Tuple = num_groups A_ : Union[str, Any] = eps if act_fn is None: A_ : List[str] = None else: A_ : Dict = get_activation(_lowerCamelCase ) A_ : Optional[Any] = nn.Linear(_lowerCamelCase , out_dim * 2 ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ) -> Dict: if self.act: A_ : Dict = self.act(_lowerCamelCase ) A_ : Union[str, Any] = self.linear(_lowerCamelCase ) A_ : Tuple = emb[:, :, None, None] A_ , A_ : int = emb.chunk(2 , dim=1 ) A_ : Union[str, Any] = F.group_norm(_lowerCamelCase , self.num_groups , eps=self.eps ) A_ : Any = x * (1 + scale) + shift return x
344
'''simple docstring''' from __future__ import annotations from math import pi, sqrt def UpperCAmelCase ( a_ , a_ ) -> tuple: """simple docstring""" if inductance <= 0: raise ValueError("""Inductance cannot be 0 or negative""" ) elif capacitance <= 0: raise ValueError("""Capacitance cannot be 0 or negative""" ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
344
1
"""simple docstring""" from math import factorial def __lowerCamelCase ( a_ : int = 1_00 ) -> int: return sum(int(a_ ) for x in str(factorial(a_ ) ) ) if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
239
"""simple docstring""" import colorsys from PIL import Image # type: ignore def __lowerCamelCase ( a_ : float , a_ : float , a_ : int ) -> float: __SCREAMING_SNAKE_CASE :List[Any] = x __SCREAMING_SNAKE_CASE :List[Any] = y for step in range(a_ ): # noqa: B007 __SCREAMING_SNAKE_CASE :Dict = a * a - b * b + x __SCREAMING_SNAKE_CASE :Tuple = 2 * a * b + y __SCREAMING_SNAKE_CASE :Dict = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def __lowerCamelCase ( a_ : float ) -> tuple: if distance == 1: return (0, 0, 0) else: return (2_55, 2_55, 2_55) def __lowerCamelCase ( a_ : float ) -> tuple: if distance == 1: return (0, 0, 0) else: return tuple(round(i * 2_55 ) for i in colorsys.hsv_to_rgb(a_ , 1 , 1 ) ) def __lowerCamelCase ( a_ : int = 8_00 , a_ : int = 6_00 , a_ : float = -0.6 , a_ : float = 0 , a_ : float = 3.2 , a_ : int = 50 , a_ : bool = True , ) -> Image.Image: __SCREAMING_SNAKE_CASE :Optional[int] = Image.new('''RGB''' , (image_width, image_height) ) __SCREAMING_SNAKE_CASE :Tuple = img.load() # loop through the image-coordinates for image_x in range(a_ ): for image_y in range(a_ ): # determine the figure-coordinates based on the image-coordinates __SCREAMING_SNAKE_CASE :Dict = figure_width / image_width * image_height __SCREAMING_SNAKE_CASE :str = figure_center_x + (image_x / image_width - 0.5) * figure_width __SCREAMING_SNAKE_CASE :Tuple = figure_center_y + (image_y / image_height - 0.5) * figure_height __SCREAMING_SNAKE_CASE :List[Any] = get_distance(a_ , a_ , a_ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: __SCREAMING_SNAKE_CASE :Optional[int] = get_color_coded_rgb(a_ ) else: __SCREAMING_SNAKE_CASE :Optional[Any] = get_black_and_white_rgb(a_ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure lowerCamelCase_ = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
239
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) __A : Tuple = { '''configuration_trocr''': ['''TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TrOCRConfig'''], '''processing_trocr''': ['''TrOCRProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = [ '''TROCR_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TrOCRForCausalLM''', '''TrOCRPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys __A : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
33
import random def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Optional[Any] = a[left_index] __UpperCamelCase :Any = left_index + 1 for j in range(left_index + 1 , SCREAMING_SNAKE_CASE ): if a[j] < pivot: __UpperCamelCase , __UpperCamelCase :str = a[i], a[j] i += 1 __UpperCamelCase , __UpperCamelCase :Optional[int] = a[i - 1], a[left_index] return i - 1 def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' if left < right: __UpperCamelCase :int = random.randint(SCREAMING_SNAKE_CASE , right - 1 ) __UpperCamelCase , __UpperCamelCase :List[str] = ( a[left], a[pivot], ) # switches the pivot with the left most bound __UpperCamelCase :Dict = partition(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) quick_sort_random( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # recursive quicksort to the left of the pivot point quick_sort_random( SCREAMING_SNAKE_CASE , pivot_index + 1 , SCREAMING_SNAKE_CASE ) # recursive quicksort to the right of the pivot point def lowerCamelCase ( ): '''simple docstring''' __UpperCamelCase :Tuple = input('''Enter numbers separated by a comma:\n''' ).strip() __UpperCamelCase :Union[str, Any] = [int(SCREAMING_SNAKE_CASE ) for item in user_input.split(''',''' )] quick_sort_random(SCREAMING_SNAKE_CASE , 0 , len(SCREAMING_SNAKE_CASE ) ) print(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
43
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _UpperCAmelCase : List[Any] = logging.get_logger(__name__) _UpperCAmelCase : Any = { """microsoft/table-transformer-detection""": ( """https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json""" ), } class lowercase ( lowerCAmelCase__ ): __lowercase : Union[str, Any] = "table-transformer" __lowercase : Optional[Any] = ["past_key_values"] __lowercase : str = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , A_=True , A_=None , A_=3 , A_=100 , A_=6 , A_=2_048 , A_=8 , A_=6 , A_=2_048 , A_=8 , A_=0.0 , A_=0.0 , A_=True , A_="relu" , A_=256 , A_=0.1 , A_=0.0 , A_=0.0 , A_=0.02 , A_=1.0 , A_=False , A_="sine" , A_="resnet50" , A_=True , A_=False , A_=1 , A_=5 , A_=2 , A_=1 , A_=1 , A_=5 , A_=2 , A_=0.1 , **A_ , ) -> Tuple: """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) UpperCamelCase = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(a__ , a__ ): UpperCamelCase = backbone_config.get('model_type' ) UpperCamelCase = CONFIG_MAPPING[backbone_model_type] UpperCamelCase = config_class.from_dict(a__ ) # set timm attributes to None UpperCamelCase , UpperCamelCase , UpperCamelCase = None, None, None UpperCamelCase = use_timm_backbone UpperCamelCase = backbone_config UpperCamelCase = num_channels UpperCamelCase = num_queries UpperCamelCase = d_model UpperCamelCase = encoder_ffn_dim UpperCamelCase = encoder_layers UpperCamelCase = encoder_attention_heads UpperCamelCase = decoder_ffn_dim UpperCamelCase = decoder_layers UpperCamelCase = decoder_attention_heads UpperCamelCase = dropout UpperCamelCase = attention_dropout UpperCamelCase = activation_dropout UpperCamelCase = activation_function UpperCamelCase = init_std UpperCamelCase = init_xavier_std UpperCamelCase = encoder_layerdrop UpperCamelCase = decoder_layerdrop UpperCamelCase = encoder_layers UpperCamelCase = auxiliary_loss UpperCamelCase = position_embedding_type UpperCamelCase = backbone UpperCamelCase = use_pretrained_backbone UpperCamelCase = dilation # Hungarian matcher UpperCamelCase = class_cost UpperCamelCase = bbox_cost UpperCamelCase = giou_cost # Loss coefficients UpperCamelCase = mask_loss_coefficient UpperCamelCase = dice_loss_coefficient UpperCamelCase = bbox_loss_coefficient UpperCamelCase = giou_loss_coefficient UpperCamelCase = eos_coefficient super().__init__(is_encoder_decoder=a__ , **a__ ) @property def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" return self.encoder_attention_heads @property def __UpperCamelCase ( self ) -> Any: """simple docstring""" return self.d_model class lowercase ( lowerCAmelCase__ ): __lowercase : Tuple = version.parse("1.11" ) @property def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('pixel_mask', {0: 'batch'}), ] ) @property def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" return 1e-5 @property def __UpperCamelCase ( self ) -> Dict: """simple docstring""" return 12
364
import unittest import torch from torch import nn from diffusers.models.activations import get_activation class lowercase ( unittest.TestCase ): def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = get_activation('swish' ) self.assertIsInstance(A_ , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = get_activation('silu' ) self.assertIsInstance(A_ , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = get_activation('mish' ) self.assertIsInstance(A_ , nn.Mish ) self.assertEqual(act(torch.tensor(-200 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = get_activation('gelu' ) self.assertIsInstance(A_ , nn.GELU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
110
0
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> int: lowerCamelCase__ : Any = hex_num.strip() if not hex_num: raise ValueError('No value was passed to the function' ) lowerCamelCase__ : Tuple = hex_num[0] == '-' if is_negative: lowerCamelCase__ : List[str] = hex_num[1:] try: lowerCamelCase__ : Union[str, Any] = int(__A , 16 ) except ValueError: raise ValueError('Invalid value was passed to the function' ) lowerCamelCase__ : Optional[Any] = '' while int_num > 0: lowerCamelCase__ : int = str(int_num % 2 ) + bin_str int_num >>= 1 return int(('-' + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
50
import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __snake_case ( a ): UpperCAmelCase__ : Dict = ['''image_processor''', '''tokenizer'''] UpperCAmelCase__ : Dict = '''FlavaImageProcessor''' UpperCAmelCase__ : Dict = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self : Union[str, Any] , _snake_case : List[str]=None , _snake_case : str=None , **_snake_case : int): """simple docstring""" UpperCAmelCase_ = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _snake_case , ) UpperCAmelCase_ = kwargs.pop('''feature_extractor''') UpperCAmelCase_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''') if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''') super().__init__(_snake_case , _snake_case) UpperCAmelCase_ = self.image_processor def __call__( self : List[Any] , _snake_case : Optional[ImageInput] = None , _snake_case : Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None , _snake_case : bool = True , _snake_case : Union[bool, str, PaddingStrategy] = False , _snake_case : Union[bool, str, TruncationStrategy] = False , _snake_case : Optional[int] = None , _snake_case : int = 0 , _snake_case : Optional[int] = None , _snake_case : Optional[bool] = None , _snake_case : Optional[bool] = None , _snake_case : Optional[bool] = None , _snake_case : Optional[bool] = None , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = True , _snake_case : Optional[Union[str, TensorType]] = None , **_snake_case : Any , ): """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''') if text is not None: UpperCAmelCase_ = self.tokenizer( text=_snake_case , add_special_tokens=_snake_case , padding=_snake_case , truncation=_snake_case , max_length=_snake_case , stride=_snake_case , pad_to_multiple_of=_snake_case , return_token_type_ids=_snake_case , return_attention_mask=_snake_case , return_overflowing_tokens=_snake_case , return_special_tokens_mask=_snake_case , return_offsets_mapping=_snake_case , return_length=_snake_case , verbose=_snake_case , return_tensors=_snake_case , **_snake_case , ) if images is not None: UpperCAmelCase_ = self.image_processor( _snake_case , return_image_mask=_snake_case , return_codebook_pixels=_snake_case , return_tensors=_snake_case , **_snake_case , ) if text is not None and images is not None: encoding.update(_snake_case) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_snake_case) , tensor_type=_snake_case) def lowerCamelCase ( self : Any , *_snake_case : Optional[Any] , **_snake_case : int): """simple docstring""" return self.tokenizer.batch_decode(*_snake_case , **_snake_case) def lowerCamelCase ( self : Optional[int] , *_snake_case : int , **_snake_case : Dict): """simple docstring""" return self.tokenizer.decode(*_snake_case , **_snake_case) @property def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = self.tokenizer.model_input_names UpperCAmelCase_ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) @property def lowerCamelCase ( self : str): """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _snake_case , ) return self.image_processor_class @property def lowerCamelCase ( self : Any): """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _snake_case , ) return self.image_processor
51
0
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> int: def update_area_of_max_square(lowercase ,lowercase ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 snake_case : Optional[Any] = update_area_of_max_square(lowercase ,col + 1 ) snake_case : str = update_area_of_max_square(row + 1 ,col + 1 ) snake_case : List[Any] = update_area_of_max_square(row + 1 ,lowercase ) if mat[row][col]: snake_case : Optional[Any] = 1 + min([right, diagonal, down] ) snake_case : int = max(largest_square_area[0] ,lowercase ) return sub_problem_sol else: return 0 snake_case : List[Any] = [0] update_area_of_max_square(0 ,0 ) return largest_square_area[0] def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> int: def update_area_of_max_square_using_dp_array( lowercase ,lowercase ,lowercase ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] snake_case : int = update_area_of_max_square_using_dp_array(lowercase ,col + 1 ,lowercase ) snake_case : Optional[int] = update_area_of_max_square_using_dp_array(row + 1 ,col + 1 ,lowercase ) snake_case : Dict = update_area_of_max_square_using_dp_array(row + 1 ,lowercase ,lowercase ) if mat[row][col]: snake_case : Optional[int] = 1 + min([right, diagonal, down] ) snake_case : List[str] = max(largest_square_area[0] ,lowercase ) snake_case : Tuple = sub_problem_sol return sub_problem_sol else: return 0 snake_case : str = [0] snake_case : List[str] = [[-1] * cols for _ in range(lowercase )] update_area_of_max_square_using_dp_array(0 ,0 ,lowercase ) return largest_square_area[0] def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> int: snake_case : List[Any] = [[0] * (cols + 1) for _ in range(rows + 1 )] snake_case : Optional[Any] = 0 for row in range(rows - 1 ,-1 ,-1 ): for col in range(cols - 1 ,-1 ,-1 ): snake_case : Dict = dp_array[row][col + 1] snake_case : Optional[int] = dp_array[row + 1][col + 1] snake_case : List[Any] = dp_array[row + 1][col] if mat[row][col] == 1: snake_case : Optional[Any] = 1 + min(lowercase ,lowercase ,lowercase ) snake_case : str = max(dp_array[row][col] ,lowercase ) else: snake_case : Optional[Any] = 0 return largest_square_area def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> int: snake_case : Any = [0] * (cols + 1) snake_case : Union[str, Any] = [0] * (cols + 1) snake_case : List[Any] = 0 for row in range(rows - 1 ,-1 ,-1 ): for col in range(cols - 1 ,-1 ,-1 ): snake_case : Tuple = current_row[col + 1] snake_case : str = next_row[col + 1] snake_case : Optional[Any] = next_row[col] if mat[row][col] == 1: snake_case : Optional[int] = 1 + min(lowercase ,lowercase ,lowercase ) snake_case : Any = max(current_row[col] ,lowercase ) else: snake_case : Optional[Any] = 0 snake_case : int = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
176
import functools def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> int: # Validation if not isinstance(lowercase ,lowercase ) or not all(isinstance(lowercase ,lowercase ) for day in days ): raise ValueError("""The parameter days should be a list of integers""" ) if len(lowercase ) != 3 or not all(isinstance(lowercase ,lowercase ) for cost in costs ): raise ValueError("""The parameter costs should be a list of three integers""" ) if len(lowercase ) == 0: return 0 if min(lowercase ) <= 0: raise ValueError("""All days elements should be greater than 0""" ) if max(lowercase ) >= 366: raise ValueError("""All days elements should be less than 366""" ) snake_case : List[str] = set(lowercase ) @functools.cache def dynamic_programming(lowercase ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) ,costs[1] + dynamic_programming(index + 7 ) ,costs[2] + dynamic_programming(index + 30 ) ,) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
176
1
'''simple docstring''' import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : Union[str, Any] ) -> Any: UpperCAmelCase : int = checkpoint UpperCAmelCase : Any = {} UpperCAmelCase : Optional[Any] = vae_state_dict['''encoder.conv_in.weight'''] UpperCAmelCase : Dict = vae_state_dict['''encoder.conv_in.bias'''] UpperCAmelCase : Tuple = vae_state_dict['''encoder.conv_out.weight'''] UpperCAmelCase : Optional[int] = vae_state_dict['''encoder.conv_out.bias'''] UpperCAmelCase : int = vae_state_dict['''encoder.norm_out.weight'''] UpperCAmelCase : Union[str, Any] = vae_state_dict['''encoder.norm_out.bias'''] UpperCAmelCase : List[Any] = vae_state_dict['''decoder.conv_in.weight'''] UpperCAmelCase : List[Any] = vae_state_dict['''decoder.conv_in.bias'''] UpperCAmelCase : str = vae_state_dict['''decoder.conv_out.weight'''] UpperCAmelCase : Any = vae_state_dict['''decoder.conv_out.bias'''] UpperCAmelCase : List[Any] = vae_state_dict['''decoder.norm_out.weight'''] UpperCAmelCase : Any = vae_state_dict['''decoder.norm_out.bias'''] UpperCAmelCase : int = vae_state_dict['''quant_conv.weight'''] UpperCAmelCase : Union[str, Any] = vae_state_dict['''quant_conv.bias'''] UpperCAmelCase : Any = vae_state_dict['''post_quant_conv.weight'''] UpperCAmelCase : List[Any] = vae_state_dict['''post_quant_conv.bias'''] # Retrieves the keys for the encoder down blocks only UpperCAmelCase : Optional[Any] = len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''encoder.down''' in layer} ) UpperCAmelCase : Optional[Any] = { layer_id: [key for key in vae_state_dict if f"""down.{layer_id}""" in key] for layer_id in range(_lowerCAmelCase ) } # Retrieves the keys for the decoder up blocks only UpperCAmelCase : Any = len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''decoder.up''' in layer} ) UpperCAmelCase : List[str] = { layer_id: [key for key in vae_state_dict if f"""up.{layer_id}""" in key] for layer_id in range(_lowerCAmelCase ) } for i in range(_lowerCAmelCase ): UpperCAmelCase : Dict = [key for key in down_blocks[i] if f"""down.{i}""" in key and f"""down.{i}.downsample""" not in key] if f"""encoder.down.{i}.downsample.conv.weight""" in vae_state_dict: UpperCAmelCase : Optional[int] = vae_state_dict.pop( f"""encoder.down.{i}.downsample.conv.weight""" ) UpperCAmelCase : List[Any] = vae_state_dict.pop( f"""encoder.down.{i}.downsample.conv.bias""" ) UpperCAmelCase : Tuple = renew_vae_resnet_paths(_lowerCAmelCase ) UpperCAmelCase : str = {'''old''': f"""down.{i}.block""", '''new''': f"""down_blocks.{i}.resnets"""} assign_to_checkpoint(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , additional_replacements=[meta_path] , config=_lowerCAmelCase ) UpperCAmelCase : List[Any] = [key for key in vae_state_dict if '''encoder.mid.block''' in key] UpperCAmelCase : Union[str, Any] = 2 for i in range(1 , num_mid_res_blocks + 1 ): UpperCAmelCase : Dict = [key for key in mid_resnets if f"""encoder.mid.block_{i}""" in key] UpperCAmelCase : Tuple = renew_vae_resnet_paths(_lowerCAmelCase ) UpperCAmelCase : Dict = {'''old''': f"""mid.block_{i}""", '''new''': f"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , additional_replacements=[meta_path] , config=_lowerCAmelCase ) UpperCAmelCase : Any = [key for key in vae_state_dict if '''encoder.mid.attn''' in key] UpperCAmelCase : List[Any] = renew_vae_attention_paths(_lowerCAmelCase ) UpperCAmelCase : Dict = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , additional_replacements=[meta_path] , config=_lowerCAmelCase ) conv_attn_to_linear(_lowerCAmelCase ) for i in range(_lowerCAmelCase ): UpperCAmelCase : List[Any] = num_up_blocks - 1 - i UpperCAmelCase : Dict = [ key for key in up_blocks[block_id] if f"""up.{block_id}""" in key and f"""up.{block_id}.upsample""" not in key ] if f"""decoder.up.{block_id}.upsample.conv.weight""" in vae_state_dict: UpperCAmelCase : List[Any] = vae_state_dict[ f"""decoder.up.{block_id}.upsample.conv.weight""" ] UpperCAmelCase : List[Any] = vae_state_dict[ f"""decoder.up.{block_id}.upsample.conv.bias""" ] UpperCAmelCase : List[Any] = renew_vae_resnet_paths(_lowerCAmelCase ) UpperCAmelCase : int = {'''old''': f"""up.{block_id}.block""", '''new''': f"""up_blocks.{i}.resnets"""} assign_to_checkpoint(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , additional_replacements=[meta_path] , config=_lowerCAmelCase ) UpperCAmelCase : Dict = [key for key in vae_state_dict if '''decoder.mid.block''' in key] UpperCAmelCase : Tuple = 2 for i in range(1 , num_mid_res_blocks + 1 ): UpperCAmelCase : List[str] = [key for key in mid_resnets if f"""decoder.mid.block_{i}""" in key] UpperCAmelCase : List[str] = renew_vae_resnet_paths(_lowerCAmelCase ) UpperCAmelCase : Optional[int] = {'''old''': f"""mid.block_{i}""", '''new''': f"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , additional_replacements=[meta_path] , config=_lowerCAmelCase ) UpperCAmelCase : int = [key for key in vae_state_dict if '''decoder.mid.attn''' in key] UpperCAmelCase : Dict = renew_vae_attention_paths(_lowerCAmelCase ) UpperCAmelCase : Tuple = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , additional_replacements=[meta_path] , config=_lowerCAmelCase ) conv_attn_to_linear(_lowerCAmelCase ) return new_checkpoint def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : str , ) -> Tuple: # Only support V1 UpperCAmelCase : str = requests.get( ''' https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml''' ) UpperCAmelCase : Optional[Any] = io.BytesIO(r.content ) UpperCAmelCase : int = OmegaConf.load(_lowerCAmelCase ) UpperCAmelCase : Optional[int] = 512 UpperCAmelCase : List[str] = '''cuda''' if torch.cuda.is_available() else '''cpu''' if checkpoint_path.endswith('''safetensors''' ): from safetensors import safe_open UpperCAmelCase : int = {} with safe_open(_lowerCAmelCase , framework='''pt''' , device='''cpu''' ) as f: for key in f.keys(): UpperCAmelCase : str = f.get_tensor(_lowerCAmelCase ) else: UpperCAmelCase : Dict = torch.load(_lowerCAmelCase , map_location=_lowerCAmelCase )['''state_dict'''] # Convert the VAE model. UpperCAmelCase : List[Any] = create_vae_diffusers_config(_lowerCAmelCase , image_size=_lowerCAmelCase ) UpperCAmelCase : Tuple = custom_convert_ldm_vae_checkpoint(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : Tuple = AutoencoderKL(**_lowerCAmelCase ) vae.load_state_dict(_lowerCAmelCase ) vae.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCamelCase__: Dict = argparse.ArgumentParser() parser.add_argument("--vae_pt_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.") parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.") UpperCamelCase__: str = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
23
import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger lowerCAmelCase = '<<<<<<< This should probably be modified because it mentions: ' lowerCAmelCase = '=======\n>>>>>>>\n' lowerCAmelCase = [ 'TextEncoderConfig', 'ByteTextEncoder', 'SubwordTextEncoder', 'encoder_config', 'maybe_build_from_corpus', 'manual_dir', ] lowerCAmelCase = [ # (pattern, replacement) # Order is important here for some replacements (R'tfds\.core', R'datasets'), (R'tf\.io\.gfile\.GFile', R'open'), (R'tf\.([\w\d]+)', R'datasets.Value(\'\1\')'), (R'tfds\.features\.Text\(\)', R'datasets.Value(\'string\')'), (R'tfds\.features\.Text\(', R'datasets.Value(\'string\'),'), (R'features\s*=\s*tfds.features.FeaturesDict\(', R'features=datasets.Features('), (R'tfds\.features\.FeaturesDict\(', R'dict('), (R'The TensorFlow Datasets Authors', R'The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'), (R'tfds\.', R'datasets.'), (R'dl_manager\.manual_dir', R'self.config.data_dir'), (R'self\.builder_config', R'self.config'), ] def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return ConvertCommand(args.tfds_path , args.datasets_directory ) class _a ( UpperCamelCase__ ): @staticmethod def lowerCamelCase_ ( UpperCamelCase_: ArgumentParser ) -> int: """simple docstring""" lowercase__ = parser.add_parser( '''convert''' , help='''Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.''' , ) train_parser.add_argument( '''--tfds_path''' , type=UpperCamelCase_ , required=UpperCamelCase_ , help='''Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.''' , ) train_parser.add_argument( '''--datasets_directory''' , type=UpperCamelCase_ , required=UpperCamelCase_ , help='''Path to the HuggingFace Datasets folder.''' ) train_parser.set_defaults(func=UpperCamelCase_ ) def __init__( self: int , UpperCamelCase_: str , UpperCamelCase_: str , *UpperCamelCase_: Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ = get_logger('''datasets-cli/converting''' ) lowercase__ = tfds_path lowercase__ = datasets_directory def lowerCamelCase_ ( self: int ) -> Optional[int]: """simple docstring""" if os.path.isdir(self._tfds_path ): lowercase__ = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): lowercase__ = os.path.dirname(self._tfds_path ) else: raise ValueError('''--tfds_path is neither a directory nor a file. Please check path.''' ) lowercase__ = os.path.abspath(self._datasets_directory ) self._logger.info(f'Converting datasets from {abs_tfds_path} to {abs_datasets_path}' ) lowercase__ = [] lowercase__ = [] lowercase__ = {} if os.path.isdir(self._tfds_path ): lowercase__ = os.listdir(UpperCamelCase_ ) else: lowercase__ = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f'Looking at file {f_name}' ) lowercase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) if not os.path.isfile(UpperCamelCase_ ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('''Skipping file''' ) continue with open(UpperCamelCase_ , encoding='''utf-8''' ) as f: lowercase__ = f.readlines() lowercase__ = [] lowercase__ = False lowercase__ = False lowercase__ = [] for line in lines: lowercase__ = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: lowercase__ = '''import datasets\n''' elif "import tensorflow" in out_line: # order is important here lowercase__ = '''''' continue elif "from absl import logging" in out_line: lowercase__ = '''from datasets import logging\n''' elif "getLogger" in out_line: lowercase__ = out_line.replace('''getLogger''' , '''get_logger''' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): lowercase__ = True lowercase__ = list(filter(lambda UpperCamelCase_ : e in out_line , UpperCamelCase_ ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(UpperCamelCase_ ) + '''\n''' ) out_lines.append(UpperCamelCase_ ) out_lines.append(UpperCamelCase_ ) continue else: for pattern, replacement in TO_CONVERT: lowercase__ = re.sub(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: lowercase__ = re.match(r'''from\stensorflow_datasets.*import\s([^\.\r\n]+)''' , UpperCamelCase_ ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(''',''' ) ) lowercase__ = '''from . import ''' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f'Error converting {out_line.strip()}' ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: lowercase__ = True out_lines.append(UpperCamelCase_ ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset lowercase__ = f_name.replace('''.py''' , '''''' ) lowercase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ ) self._logger.info(f'Adding directory {output_dir}' ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(UpperCamelCase_ ) if needs_manual_update: with_manual_update.append(UpperCamelCase_ ) with open(UpperCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.writelines(UpperCamelCase_ ) self._logger.info(f'Converted in {output_file}' ) for utils_file in utils_files: try: lowercase__ = os.path.basename(UpperCamelCase_ ) lowercase__ = imports_to_builder_map[f_name.replace('''.py''' , '''''' )] self._logger.info(f'Moving {dest_folder} to {utils_file}' ) shutil.copy(UpperCamelCase_ , UpperCamelCase_ ) except KeyError: self._logger.error(f'Cannot find destination folder for {utils_file}. Please copy manually.' ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f'You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.' )
110
0
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' return EnvironmentCommand() class lowercase ( lowercase_ ): @staticmethod def a ( snake_case ): snake_case_ = parser.add_parser('env' ) download_parser.set_defaults(func=snake_case ) def a ( self ): snake_case_ = huggingface_hub.__version__ snake_case_ = 'not installed' snake_case_ = 'NA' if is_torch_available(): import torch snake_case_ = torch.__version__ snake_case_ = torch.cuda.is_available() snake_case_ = 'not installed' if is_transformers_available(): import transformers snake_case_ = transformers.__version__ snake_case_ = 'not installed' if is_accelerate_available(): import accelerate snake_case_ = accelerate.__version__ snake_case_ = 'not installed' if is_xformers_available(): import xformers snake_case_ = xformers.__version__ snake_case_ = { '`diffusers` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'PyTorch version (GPU?)': F'''{pt_version} ({pt_cuda_available})''', 'Huggingface_hub version': hub_version, 'Transformers version': transformers_version, 'Accelerate version': accelerate_version, 'xFormers version': xformers_version, 'Using GPU in script?': '<fill in>', 'Using distributed or parallel set-up in script?': '<fill in>', } print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' ) print(self.format_dict(snake_case ) ) return info @staticmethod def a ( snake_case ): return "\n".join([F'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
200
def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: snake_case_ = mf_knapsack(i - 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: snake_case_ = max( mf_knapsack(i - 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) , mf_knapsack(i - 1 , UpperCamelCase__ , UpperCamelCase__ , j - wt[i - 1] ) + val[i - 1] , ) snake_case_ = val return f[i][j] def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' snake_case_ = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: snake_case_ = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: snake_case_ = dp[i - 1][w_] return dp[n][w_], dp def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if not (isinstance(UpperCamelCase__ , (list, tuple) ) and isinstance(UpperCamelCase__ , (list, tuple) )): raise ValueError( 'Both the weights and values vectors must be either lists or tuples' ) snake_case_ = len(UpperCamelCase__ ) if num_items != len(UpperCamelCase__ ): snake_case_ = ( 'The number of weights must be the same as the number of values.\n' F'''But got {num_items} weights and {len(UpperCamelCase__ )} values''' ) raise ValueError(UpperCamelCase__ ) for i in range(UpperCamelCase__ ): if not isinstance(wt[i] , UpperCamelCase__ ): snake_case_ = ( 'All weights must be integers but got weight of ' F'''type {type(wt[i] )} at index {i}''' ) raise TypeError(UpperCamelCase__ ) snake_case_ , snake_case_ = knapsack(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) snake_case_ = set() _construct_solution(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return optimal_val, example_optional_set def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(UpperCamelCase__ , UpperCamelCase__ , i - 1 , UpperCamelCase__ , UpperCamelCase__ ) else: optimal_set.add(UpperCamelCase__ ) _construct_solution(UpperCamelCase__ , UpperCamelCase__ , i - 1 , j - wt[i - 1] , UpperCamelCase__ ) if __name__ == "__main__": _UpperCAmelCase : int = [3, 2, 4, 4] _UpperCAmelCase : Tuple = [4, 3, 2, 3] _UpperCAmelCase : Dict = 4 _UpperCAmelCase : int = 6 _UpperCAmelCase : Union[str, Any] = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] _UpperCAmelCase , _UpperCAmelCase : Optional[int] = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 _UpperCAmelCase , _UpperCAmelCase : Optional[int] = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("""optimal_value = """, optimal_solution) print("""An optimal subset corresponding to the optimal value""", optimal_subset)
200
1
import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : List[Any] = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "_float_tensor", "decoder.output_projection.weight", ] for k in ignore_keys: state_dict.pop(lowerCamelCase__ , lowerCamelCase__ ) def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ , lowercase__ : Union[str, Any] = emb.weight.shape lowercase__ : Union[str, Any] = nn.Linear(lowerCamelCase__ , lowerCamelCase__ , bias=lowerCamelCase__ ) lowercase__ : Dict = emb.weight.data return lin_layer def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__="facebook/mbart-large-en-ro" , lowerCamelCase__=False , lowerCamelCase__=False ): """simple docstring""" lowercase__ : List[Any] = torch.load(lowerCamelCase__ , map_location="cpu" )["model"] remove_ignore_keys_(lowerCamelCase__ ) lowercase__ : List[Any] = state_dict["encoder.embed_tokens.weight"].shape[0] lowercase__ : Optional[Any] = MBartConfig.from_pretrained(lowerCamelCase__ , vocab_size=lowerCamelCase__ ) if mbart_aa and finetuned: lowercase__ : List[str] = "relu" lowercase__ : Union[str, Any] = state_dict["decoder.embed_tokens.weight"] lowercase__ : Tuple = MBartForConditionalGeneration(lowerCamelCase__ ) model.model.load_state_dict(lowerCamelCase__ ) if finetuned: lowercase__ : Optional[Any] = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default='''facebook/mbart-large-cc25''', type=str, help='''Which huggingface architecture to use: mbart-large''', ) parser.add_argument('''--mbart_50''', action='''store_true''', help='''whether the model is mMART-50 checkpoint''') parser.add_argument('''--finetuned''', action='''store_true''', help='''whether the model is a fine-tuned checkpoint''') lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
130
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowercase__ : Optional[int] = [] for part_id in partition_order: lowercase__ : str = df.where(F"""SPARK_PARTITION_ID() = {part_id}""" ).collect() for row_idx, row in enumerate(lowerCamelCase__ ): expected_row_ids_and_row_dicts.append((F"""{part_id}_{row_idx}""", row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ): """simple docstring""" lowercase__ : int = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() lowercase__ : Tuple = spark.range(100 ).repartition(1 ) lowercase__ : Tuple = Spark(lowerCamelCase__ ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ): """simple docstring""" lowercase__ : Optional[Any] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() lowercase__ : Tuple = spark.range(10 ).repartition(2 ) lowercase__ : Any = [1, 0] lowercase__ : Optional[int] = _generate_iterable_examples(lowerCamelCase__ , lowerCamelCase__ ) # Reverse the partitions. lowercase__ : str = _get_expected_row_ids_and_row_dicts_for_partition_order(lowerCamelCase__ , lowerCamelCase__ ) for i, (row_id, row_dict) in enumerate(generate_fn() ): lowercase__ , lowercase__ : List[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ): """simple docstring""" lowercase__ : Union[str, Any] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() lowercase__ : int = spark.range(10 ).repartition(1 ) lowercase__ : Optional[int] = SparkExamplesIterable(lowerCamelCase__ ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(lowerCamelCase__ ): assert row_id == F"""0_{i}""" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ): """simple docstring""" lowercase__ : Any = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() lowercase__ : Optional[Any] = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("numpy.random.Generator" ) as generator_mock: lowercase__ : int = lambda lowerCamelCase__ : x.reverse() lowercase__ : str = _get_expected_row_ids_and_row_dicts_for_partition_order(lowerCamelCase__ , [2, 1, 0] ) lowercase__ : int = SparkExamplesIterable(lowerCamelCase__ ).shuffle_data_sources(lowerCamelCase__ ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(lowerCamelCase__ ): lowercase__ , lowercase__ : Tuple = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ): """simple docstring""" lowercase__ : Union[str, Any] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() lowercase__ : Optional[Any] = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 lowercase__ : Optional[Any] = SparkExamplesIterable(lowerCamelCase__ ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 lowercase__ : List[str] = _get_expected_row_ids_and_row_dicts_for_partition_order(lowerCamelCase__ , [0, 2] ) for i, (row_id, row_dict) in enumerate(lowerCamelCase__ ): lowercase__ , lowercase__ : Optional[int] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 lowercase__ : int = SparkExamplesIterable(lowerCamelCase__ ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 lowercase__ : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(lowerCamelCase__ , [1, 3] ) for i, (row_id, row_dict) in enumerate(lowerCamelCase__ ): lowercase__ , lowercase__ : Optional[int] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ): """simple docstring""" lowercase__ : int = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() lowercase__ : int = spark.range(100 ).repartition(1 ) lowercase__ : Tuple = Spark(lowerCamelCase__ ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
130
1
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed SCREAMING_SNAKE_CASE :Any = logging.getLogger(__name__) def UpperCAmelCase ( a_=2 , a_=3 , a_=1_6 , a_ = 1_0 , a_ = 2 ) -> Tuple: """simple docstring""" def get_dataset(a_ ): __A = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(a_ , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) __A = get_dataset(a_ ) __A = get_dataset(a_ ) __A = DataLoader(a_ , shuffle=a_ , batch_size=a_ , num_workers=4 ) __A = DataLoader(a_ , shuffle=a_ , batch_size=a_ , num_workers=4 ) return (train_dataloader, valid_dataloader) def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ , a_=None ) -> Optional[int]: """simple docstring""" __A = [] for epoch in range(a_ ): # Train quickly model.train() for batch in dataloader: __A , __A = batch __A = model(a_ ) __A = torch.nn.functional.mse_loss(a_ , a_ ) accelerator.backward(a_ ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : List[str] ): super().__init__() __A = nn.Parameter(torch.randn(1 ) ) __A = nn.Parameter(torch.randn(1 ) ) def UpperCamelCase_ ( self : str ,A : Union[str, Any] ): return x * self.a + self.b class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Any ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __A = DummyModel() __A = torch.optim.Adam(params=model.parameters() ,lr=1E-3 ) __A , __A = dummy_dataloaders() __A = ProjectConfiguration(total_limit=1 ,project_dir=A ,automatic_checkpoint_naming=A ) # Train baseline __A = Accelerator(project_config=A ) __A , __A , __A , __A = accelerator.prepare( A ,A ,A ,A ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) ,1 ) def UpperCamelCase_ ( self : Optional[int] ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __A = DummyModel() __A = torch.optim.Adam(params=model.parameters() ,lr=1E-3 ) __A , __A = dummy_dataloaders() # Train baseline __A = Accelerator() __A , __A , __A , __A = accelerator.prepare( A ,A ,A ,A ) # Save initial __A = os.path.join(A ,"initial" ) accelerator.save_state(A ) ((__A) , (__A)) = model.a.item(), model.b.item() __A = optimizer.state_dict() __A = train(3 ,A ,A ,A ,A ) ((__A) , (__A)) = model.a.item(), model.b.item() __A = optimizer.state_dict() # Train partially set_seed(42 ) __A = DummyModel() __A = torch.optim.Adam(params=model.parameters() ,lr=1E-3 ) __A , __A = dummy_dataloaders() __A = Accelerator() __A , __A , __A , __A = accelerator.prepare( A ,A ,A ,A ) accelerator.load_state(A ) ((__A) , (__A)) = model.a.item(), model.b.item() __A = optimizer.state_dict() self.assertEqual(A ,A ) self.assertEqual(A ,A ) self.assertEqual(A ,A ) __A = train(2 ,A ,A ,A ,A ) # Save everything __A = os.path.join(A ,"checkpoint" ) accelerator.save_state(A ) # Load everything back in and make sure all states work accelerator.load_state(A ) test_rands += train(1 ,A ,A ,A ,A ) ((__A) , (__A)) = model.a.item(), model.b.item() __A = optimizer.state_dict() self.assertEqual(A ,A ) self.assertEqual(A ,A ) self.assertEqual(A ,A ) self.assertEqual(A ,A ) def UpperCamelCase_ ( self : List[str] ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __A = DummyModel() __A = torch.optim.Adam(params=model.parameters() ,lr=1E-3 ) __A , __A = dummy_dataloaders() __A = ProjectConfiguration(automatic_checkpoint_naming=A ) # Train baseline __A = Accelerator(project_dir=A ,project_config=A ) __A , __A , __A , __A = accelerator.prepare( A ,A ,A ,A ) # Save initial accelerator.save_state() ((__A) , (__A)) = model.a.item(), model.b.item() __A = optimizer.state_dict() __A = train(3 ,A ,A ,A ,A ) ((__A) , (__A)) = model.a.item(), model.b.item() __A = optimizer.state_dict() # Train partially set_seed(42 ) __A = DummyModel() __A = torch.optim.Adam(params=model.parameters() ,lr=1E-3 ) __A , __A = dummy_dataloaders() __A = ProjectConfiguration(iteration=1 ,automatic_checkpoint_naming=A ) __A = Accelerator(project_dir=A ,project_config=A ) __A , __A , __A , __A = accelerator.prepare( A ,A ,A ,A ) accelerator.load_state(os.path.join(A ,"checkpoints" ,"checkpoint_0" ) ) ((__A) , (__A)) = model.a.item(), model.b.item() __A = optimizer.state_dict() self.assertEqual(A ,A ) self.assertEqual(A ,A ) self.assertEqual(A ,A ) __A = train(2 ,A ,A ,A ,A ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(A ,"checkpoints" ,"checkpoint_1" ) ) test_rands += train(1 ,A ,A ,A ,A ) ((__A) , (__A)) = model.a.item(), model.b.item() __A = optimizer.state_dict() self.assertEqual(A ,A ) self.assertEqual(A ,A ) self.assertEqual(A ,A ) self.assertEqual(A ,A ) def UpperCamelCase_ ( self : Dict ): __A = torch.tensor([1, 2, 3] ) __A = torch.tensor([2, 3, 4] ) __A = DummyModel() __A = torch.optim.Adam(net.parameters() ) __A = Accelerator() with self.assertRaises(A ) as ve: accelerator.register_for_checkpointing(A ,A ,A ,A ) __A = str(ve.exception ) self.assertTrue("Item at index 0" in message ) self.assertTrue("Item at index 1" in message ) self.assertFalse("Item at index 2" in message ) self.assertFalse("Item at index 3" in message ) def UpperCamelCase_ ( self : Tuple ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __A = DummyModel() __A = torch.optim.Adam(params=model.parameters() ,lr=1E-3 ) __A = torch.optim.lr_scheduler.StepLR(A ,step_size=1 ,gamma=0.99 ) __A , __A = dummy_dataloaders() __A = ProjectConfiguration(automatic_checkpoint_naming=A ) # Train baseline __A = Accelerator(project_dir=A ,project_config=A ) __A , __A , __A , __A , __A = accelerator.prepare( A ,A ,A ,A ,A ) # Save initial accelerator.save_state() __A = scheduler.state_dict() train(3 ,A ,A ,A ,A ,A ) self.assertNotEqual(A ,scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(A ,"checkpoints" ,"checkpoint_0" ) ) self.assertEqual(A ,scheduler.state_dict() ) def UpperCamelCase_ ( self : Optional[int] ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __A = DummyModel() __A = ProjectConfiguration(automatic_checkpoint_naming=A ,total_limit=2 ) # Train baseline __A = Accelerator(project_dir=A ,project_config=A ) __A = accelerator.prepare(A ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(A ,"checkpoints" ,"checkpoint_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(A ,"checkpoints" ,"checkpoint_9" ) ) ) self.assertTrue(os.path.exists(os.path.join(A ,"checkpoints" ,"checkpoint_10" ) ) ) @require_cuda def UpperCamelCase_ ( self : str ): __A = ["torchrun", f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(A ,env=os.environ.copy() ) if __name__ == "__main__": SCREAMING_SNAKE_CASE :Optional[Any] = '/tmp/accelerate/state_checkpointing' SCREAMING_SNAKE_CASE :Optional[int] = DummyModel() SCREAMING_SNAKE_CASE :Optional[Any] = torch.optim.Adam(params=model.parameters(), lr=1E-3) SCREAMING_SNAKE_CASE :int = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) SCREAMING_SNAKE_CASE :Dict = dummy_dataloaders() SCREAMING_SNAKE_CASE :Optional[int] = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline SCREAMING_SNAKE_CASE :Any = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision='no') if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) SCREAMING_SNAKE_CASE :List[Any] = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) SCREAMING_SNAKE_CASE :List[str] = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: SCREAMING_SNAKE_CASE :List[Any] = group['params'][0].device break assert param_device.type == accelerator.device.type SCREAMING_SNAKE_CASE :Dict = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='cpu') for group in optimizer.param_groups: SCREAMING_SNAKE_CASE :Union[str, Any] = group['params'][0].device break assert ( param_device.type == torch.device('cpu').type ), f"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='on_device') for group in optimizer.param_groups: SCREAMING_SNAKE_CASE :Any = group['params'][0].device break assert ( param_device.type == accelerator.device.type ), f"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match='Unsupported optimizer map location passed'): accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='invalid') accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
355
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = field(default="text-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) snake_case_ = Features({"text": Value("string" )} ) snake_case_ = Features({"labels": ClassLabel} ) snake_case_ = "text" snake_case_ = "labels" def UpperCamelCase_ ( self : Optional[Any] ,A : Dict ): if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] ,A ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) __A = copy.deepcopy(self ) __A = self.label_schema.copy() __A = features[self.label_column] __A = label_schema return task_template @property def UpperCamelCase_ ( self : Dict ): return { self.text_column: "text", self.label_column: "labels", }
124
0
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a ={"""configuration_van""": ["""VAN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """VanConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a =[ """VAN_PRETRAINED_MODEL_ARCHIVE_LIST""", """VanForImageClassification""", """VanModel""", """VanPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys a =_LazyModule(__name__, globals()["""__file__"""], _import_structure)
73
"""simple docstring""" from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable UpperCAmelCase_ : str = {"""configuration_gpt_neox""": ["""GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoXConfig"""]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Dict = ["""GPTNeoXTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[str] = [ """GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoXForCausalLM""", """GPTNeoXForQuestionAnswering""", """GPTNeoXForSequenceClassification""", """GPTNeoXForTokenClassification""", """GPTNeoXLayer""", """GPTNeoXModel""", """GPTNeoXPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys UpperCAmelCase_ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
91
0
# This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests a =open # noqa: we just need to have a builtin inside this module to test it properly
113
from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class A_ ( unittest.TestCase ): @slow def lowerCAmelCase ( self : List[str]): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __lowerCamelCase : Optional[int] = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Tuple = TFAutoModel.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_pt=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : str = AutoModel.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_tf=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) @slow def lowerCAmelCase ( self : Optional[int]): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __lowerCamelCase : str = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Tuple = TFAutoModelForPreTraining.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_pt=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : str = AutoModelForPreTraining.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_tf=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) @slow def lowerCAmelCase ( self : Optional[int]): for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase : Union[str, Any] = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Union[str, Any] = TFAutoModelForCausalLM.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_pt=SCREAMING_SNAKE_CASE__) __lowerCamelCase , __lowerCamelCase : Union[str, Any] = TFAutoModelForCausalLM.from_pretrained( SCREAMING_SNAKE_CASE__ ,output_loading_info=SCREAMING_SNAKE_CASE__ ,from_pt=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = AutoModelForCausalLM.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_tf=SCREAMING_SNAKE_CASE__) __lowerCamelCase , __lowerCamelCase : Any = AutoModelForCausalLM.from_pretrained( SCREAMING_SNAKE_CASE__ ,output_loading_info=SCREAMING_SNAKE_CASE__ ,from_tf=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) @slow def lowerCAmelCase ( self : List[Any]): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase : List[str] = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[str] = TFAutoModelWithLMHead.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_pt=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = AutoModelWithLMHead.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_tf=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) @slow def lowerCAmelCase ( self : Tuple): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase : Optional[Any] = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[int] = TFAutoModelForMaskedLM.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_pt=SCREAMING_SNAKE_CASE__) __lowerCamelCase , __lowerCamelCase : Dict = TFAutoModelForMaskedLM.from_pretrained( SCREAMING_SNAKE_CASE__ ,output_loading_info=SCREAMING_SNAKE_CASE__ ,from_pt=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = AutoModelForMaskedLM.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_tf=SCREAMING_SNAKE_CASE__) __lowerCamelCase , __lowerCamelCase : Optional[Any] = AutoModelForMaskedLM.from_pretrained( SCREAMING_SNAKE_CASE__ ,output_loading_info=SCREAMING_SNAKE_CASE__ ,from_tf=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) @slow def lowerCAmelCase ( self : str): for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase : Dict = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_pt=SCREAMING_SNAKE_CASE__) __lowerCamelCase , __lowerCamelCase : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained( SCREAMING_SNAKE_CASE__ ,output_loading_info=SCREAMING_SNAKE_CASE__ ,from_pt=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Any = AutoModelForSeqaSeqLM.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_tf=SCREAMING_SNAKE_CASE__) __lowerCamelCase , __lowerCamelCase : List[str] = AutoModelForSeqaSeqLM.from_pretrained( SCREAMING_SNAKE_CASE__ ,output_loading_info=SCREAMING_SNAKE_CASE__ ,from_tf=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) @slow def lowerCAmelCase ( self : Optional[Any]): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __lowerCamelCase : List[Any] = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[int] = TFAutoModelForSequenceClassification.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_pt=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : int = AutoModelForSequenceClassification.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_tf=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) @slow def lowerCAmelCase ( self : Any): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __lowerCamelCase : List[Any] = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : str = TFAutoModelForQuestionAnswering.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_pt=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[int] = AutoModelForQuestionAnswering.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_tf=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : int): __lowerCamelCase : List[Any] = TFAutoModelWithLMHead.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_pt=SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) self.assertEqual(model.num_parameters() ,1_4_4_1_0) self.assertEqual(model.num_parameters(only_trainable=SCREAMING_SNAKE_CASE__) ,1_4_4_1_0) __lowerCamelCase : Union[str, Any] = AutoModelWithLMHead.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_tf=SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) self.assertEqual(model.num_parameters() ,1_4_4_1_0) self.assertEqual(model.num_parameters(only_trainable=SCREAMING_SNAKE_CASE__) ,1_4_4_1_0) def lowerCAmelCase ( self : Tuple): __lowerCamelCase : str = TFAutoModelWithLMHead.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_pt=SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) self.assertEqual(model.num_parameters() ,1_4_4_1_0) self.assertEqual(model.num_parameters(only_trainable=SCREAMING_SNAKE_CASE__) ,1_4_4_1_0) __lowerCamelCase : Optional[int] = AutoModelWithLMHead.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_tf=SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) self.assertEqual(model.num_parameters() ,1_4_4_1_0) self.assertEqual(model.num_parameters(only_trainable=SCREAMING_SNAKE_CASE__) ,1_4_4_1_0)
113
1
import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase_ ( a): lowerCamelCase__ = (CMStochasticIterativeScheduler,) lowerCamelCase__ = 10 def snake_case__ ( self, **__a): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = { "num_train_timesteps": 201, "sigma_min": 0.002, "sigma_max": 80.0, } config.update(**__a) return config def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = 10 _lowerCAmelCase : int = self.get_scheduler_config() _lowerCAmelCase : Optional[int] = self.scheduler_classes[0](**__a) scheduler.set_timesteps(__a) _lowerCAmelCase : str = scheduler.timesteps[0] _lowerCAmelCase : Optional[Any] = scheduler.timesteps[1] _lowerCAmelCase : Optional[Any] = self.dummy_sample _lowerCAmelCase : Optional[int] = 0.1 * sample _lowerCAmelCase : Union[str, Any] = scheduler.step(__a, __a, __a).prev_sample _lowerCAmelCase : Any = scheduler.step(__a, __a, __a).prev_sample self.assertEqual(output_a.shape, sample.shape) self.assertEqual(output_a.shape, output_a.shape) def snake_case__ ( self): '''simple docstring''' for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=__a) def snake_case__ ( self): '''simple docstring''' for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = self.scheduler_classes[0] _lowerCAmelCase : Optional[Any] = self.get_scheduler_config() _lowerCAmelCase : List[Any] = scheduler_class(**__a) _lowerCAmelCase : Union[str, Any] = 1 scheduler.set_timesteps(__a) _lowerCAmelCase : Any = scheduler.timesteps _lowerCAmelCase : List[str] = torch.manual_seed(0) _lowerCAmelCase : str = self.dummy_model() _lowerCAmelCase : str = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(__a): # 1. scale model input _lowerCAmelCase : Dict = scheduler.scale_model_input(__a, __a) # 2. predict noise residual _lowerCAmelCase : Union[str, Any] = model(__a, __a) # 3. predict previous sample x_t-1 _lowerCAmelCase : Tuple = scheduler.step(__a, __a, __a, generator=__a).prev_sample _lowerCAmelCase : List[Any] = pred_prev_sample _lowerCAmelCase : Optional[Any] = torch.sum(torch.abs(__a)) _lowerCAmelCase : List[str] = torch.mean(torch.abs(__a)) assert abs(result_sum.item() - 192.7_614) < 1E-2 assert abs(result_mean.item() - 0.2_510) < 1E-3 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = self.scheduler_classes[0] _lowerCAmelCase : Dict = self.get_scheduler_config() _lowerCAmelCase : Tuple = scheduler_class(**__a) _lowerCAmelCase : Dict = [106, 0] scheduler.set_timesteps(timesteps=__a) _lowerCAmelCase : Dict = scheduler.timesteps _lowerCAmelCase : str = torch.manual_seed(0) _lowerCAmelCase : Tuple = self.dummy_model() _lowerCAmelCase : str = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input _lowerCAmelCase : Tuple = scheduler.scale_model_input(__a, __a) # 2. predict noise residual _lowerCAmelCase : List[str] = model(__a, __a) # 3. predict previous sample x_t-1 _lowerCAmelCase : str = scheduler.step(__a, __a, __a, generator=__a).prev_sample _lowerCAmelCase : Tuple = pred_prev_sample _lowerCAmelCase : List[Any] = torch.sum(torch.abs(__a)) _lowerCAmelCase : Tuple = torch.mean(torch.abs(__a)) assert abs(result_sum.item() - 347.6_357) < 1E-2 assert abs(result_mean.item() - 0.4_527) < 1E-3 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.scheduler_classes[0] _lowerCAmelCase : List[str] = self.get_scheduler_config() _lowerCAmelCase : Union[str, Any] = scheduler_class(**__a) _lowerCAmelCase : Tuple = [39, 30, 12, 15, 0] with self.assertRaises(__a, msg="`timesteps` must be in descending order."): scheduler.set_timesteps(timesteps=__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = self.scheduler_classes[0] _lowerCAmelCase : Optional[int] = self.get_scheduler_config() _lowerCAmelCase : List[str] = scheduler_class(**__a) _lowerCAmelCase : Optional[int] = [39, 30, 12, 1, 0] _lowerCAmelCase : Dict = len(__a) with self.assertRaises(__a, msg="Can only pass one of `num_inference_steps` or `timesteps`."): scheduler.set_timesteps(num_inference_steps=__a, timesteps=__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.scheduler_classes[0] _lowerCAmelCase : Optional[Any] = self.get_scheduler_config() _lowerCAmelCase : Dict = scheduler_class(**__a) _lowerCAmelCase : Any = [scheduler.config.num_train_timesteps] with self.assertRaises( __a, msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}", ): scheduler.set_timesteps(timesteps=__a)
36
from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging _snake_case = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class UpperCAmelCase_ ( a): def __init__( self, __a = 101): '''simple docstring''' _lowerCAmelCase : str = length def __len__( self): '''simple docstring''' return self.length def __getitem__( self, __a): '''simple docstring''' return i class UpperCAmelCase_ : def __call__( self, __a): '''simple docstring''' return {"input_ids": torch.tensor(__a), "labels": torch.tensor(__a)} class UpperCAmelCase_ ( nn.Module): def __init__( self): '''simple docstring''' super().__init__() # Add some (unused) params otherwise DDP will complain. _lowerCAmelCase : str = nn.Linear(120, 80) def snake_case__ ( self, __a, __a=None): '''simple docstring''' if labels is not None: return torch.tensor(0.0, device=input_ids.device), input_ids else: return input_ids class UpperCAmelCase_ ( a): @require_torch_neuroncore def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = f"--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n ".split() _lowerCAmelCase : Tuple = self.get_auto_remove_tmp_dir() _lowerCAmelCase : Optional[int] = f"--output_dir {output_dir}".split() _lowerCAmelCase : List[Any] = ["torchrun"] + distributed_args + args execute_subprocess_async(__a, env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call class UpperCAmelCase_ ( a): @require_torch_multi_gpu def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = f"--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n ".split() _lowerCAmelCase : Any = self.get_auto_remove_tmp_dir() _lowerCAmelCase : Optional[int] = f"--output_dir {output_dir}".split() _lowerCAmelCase : Any = ["torchrun"] + distributed_args + args execute_subprocess_async(__a, env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py _snake_case = HfArgumentParser((TrainingArguments,)) _snake_case = parser.parse_args_into_dataclasses()[0] logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, ''' f'''distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}''' ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: _snake_case = DummyDataset(dataset_length) def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = list(range(len(_lowerCamelCase ) ) ) _lowerCAmelCase : Union[str, Any] = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( "Predictions and/or labels do not match expected results:\n - predictions: " F"{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}" ) return {"success": success} _snake_case = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) _snake_case = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) _snake_case = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) _snake_case = 2 _snake_case = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) _snake_case = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) _snake_case = None
36
1
import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(".") def a ( SCREAMING_SNAKE_CASE_ : Any ): """simple docstring""" UpperCamelCase : Optional[int] = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '''`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ''' F"""{test_file} instead.""" ) UpperCamelCase : List[str] = components[-1] if not test_fn.endswith('''py''' ): raise ValueError(F"""`test_file` should be a python file. Got {test_fn} instead.""" ) if not test_fn.startswith('''test_modeling_''' ): raise ValueError( F"""`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.""" ) UpperCamelCase : Dict = components[:-1] + [test_fn.replace('''.py''' , '''''' )] UpperCamelCase : List[str] = '''.'''.join(__snake_case ) return test_module_path def a ( SCREAMING_SNAKE_CASE_ : Union[str, Any] ): """simple docstring""" UpperCamelCase : List[Any] = get_module_path(__snake_case ) UpperCamelCase : Optional[int] = importlib.import_module(__snake_case ) return test_module def a ( SCREAMING_SNAKE_CASE_ : Dict ): """simple docstring""" UpperCamelCase : Tuple = [] UpperCamelCase : Any = get_test_module(__snake_case ) for attr in dir(__snake_case ): if attr.endswith('''ModelTester''' ): tester_classes.append(getattr(__snake_case , __snake_case ) ) # sort with class names return sorted(__snake_case , key=lambda SCREAMING_SNAKE_CASE_ : x.__name__ ) def a ( SCREAMING_SNAKE_CASE_ : List[Any] ): """simple docstring""" UpperCamelCase : Optional[int] = [] UpperCamelCase : int = get_test_module(__snake_case ) for attr in dir(__snake_case ): UpperCamelCase : Optional[int] = getattr(__snake_case , __snake_case ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). UpperCamelCase : Optional[Any] = getattr(__snake_case , '''all_model_classes''' , [] ) if len(__snake_case ) > 0: test_classes.append(__snake_case ) # sort with class names return sorted(__snake_case , key=lambda SCREAMING_SNAKE_CASE_ : x.__name__ ) def a ( SCREAMING_SNAKE_CASE_ : List[Any] ): """simple docstring""" UpperCamelCase : Optional[Any] = get_test_classes(__snake_case ) UpperCamelCase : List[str] = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(__snake_case , key=lambda SCREAMING_SNAKE_CASE_ : x.__name__ ) def a ( SCREAMING_SNAKE_CASE_ : str ): """simple docstring""" UpperCamelCase : List[str] = test_class() if hasattr(__snake_case , '''setUp''' ): test.setUp() UpperCamelCase : List[str] = None if hasattr(__snake_case , '''model_tester''' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: UpperCamelCase : int = test.model_tester.__class__ return model_tester def a ( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : List[str] ): """simple docstring""" UpperCamelCase : List[Any] = get_test_classes(__snake_case ) UpperCamelCase : Dict = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(__snake_case ) # sort with class names return sorted(__snake_case , key=lambda SCREAMING_SNAKE_CASE_ : x.__name__ ) def a ( SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] ): """simple docstring""" UpperCamelCase : List[Any] = get_test_classes_for_model(__snake_case , __snake_case ) UpperCamelCase : Optional[int] = [] for test_class in test_classes: UpperCamelCase : List[str] = get_model_tester_from_test_class(__snake_case ) if tester_class is not None: tester_classes.append(__snake_case ) # sort with class names return sorted(__snake_case , key=lambda SCREAMING_SNAKE_CASE_ : x.__name__ ) def a ( SCREAMING_SNAKE_CASE_ : Tuple ): """simple docstring""" UpperCamelCase : List[str] = get_test_classes(__snake_case ) UpperCamelCase : Optional[int] = {test_class: get_model_tester_from_test_class(__snake_case ) for test_class in test_classes} return test_tester_mapping def a ( SCREAMING_SNAKE_CASE_ : Dict ): """simple docstring""" UpperCamelCase : List[Any] = get_model_classes(__snake_case ) UpperCamelCase : Dict = { model_class: get_test_classes_for_model(__snake_case , __snake_case ) for model_class in model_classes } return model_test_mapping def a ( SCREAMING_SNAKE_CASE_ : Optional[Any] ): """simple docstring""" UpperCamelCase : Any = get_model_classes(__snake_case ) UpperCamelCase : Any = { model_class: get_tester_classes_for_model(__snake_case , __snake_case ) for model_class in model_classes } return model_to_tester_mapping def a ( SCREAMING_SNAKE_CASE_ : List[str] ): """simple docstring""" if isinstance(__snake_case , __snake_case ): return o elif isinstance(__snake_case , __snake_case ): return o.__name__ elif isinstance(__snake_case , (list, tuple) ): return [to_json(__snake_case ) for x in o] elif isinstance(__snake_case , __snake_case ): return {to_json(__snake_case ): to_json(__snake_case ) for k, v in o.items()} else: return o
356
from argparse import ArgumentParser from .env import EnvironmentCommand def a ( ): """simple docstring""" UpperCamelCase : Any = ArgumentParser('''Diffusers CLI tool''' , usage='''diffusers-cli <command> [<args>]''' ) UpperCamelCase : Tuple = parser.add_subparsers(help='''diffusers-cli command helpers''' ) # Register commands EnvironmentCommand.register_subcommand(SCREAMING_SNAKE_CASE_ ) # Let's go UpperCamelCase : List[Any] = parser.parse_args() if not hasattr(SCREAMING_SNAKE_CASE_ , '''func''' ): parser.print_help() exit(1 ) # Run UpperCamelCase : str = args.func(SCREAMING_SNAKE_CASE_ ) service.run() if __name__ == "__main__": main()
315
0
"""simple docstring""" from __future__ import annotations def lowercase ( a__ : int , a__ : int ) -> list[list[int]]: _UpperCamelCase = [] create_all_state(1 , a__ , a__ , [] , a__ ) return result def lowercase ( a__ : int , a__ : int , a__ : int , a__ : list[int] , a__ : list[list[int]] , ) -> None: if level == 0: total_list.append(current_list[:] ) return for i in range(a__ , total_number - level + 2 ): current_list.append(a__ ) create_all_state(i + 1 , a__ , level - 1 , a__ , a__ ) current_list.pop() def lowercase ( a__ : list[list[int]] ) -> None: for i in total_list: print(*a__ ) if __name__ == "__main__": UpperCAmelCase = 4 UpperCAmelCase = 2 UpperCAmelCase = generate_all_combinations(n, k) print_all_state(total_list)
256
"""simple docstring""" import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments UpperCAmelCase = logging.getLogger(__name__) @dataclass class UpperCAmelCase_ ( _lowercase): snake_case__ = field( default=0.0 , metadata={'''help''': '''The label smoothing epsilon to apply (if not zero).'''}) snake_case__ = field(default=_lowercase , metadata={'''help''': '''Whether to SortishSamler or not.'''}) snake_case__ = field( default=_lowercase , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''}) snake_case__ = field(default=_lowercase , metadata={'''help''': '''whether to use adafactor'''}) snake_case__ = field( default=_lowercase , metadata={'''help''': '''Encoder layer dropout probability. Goes into model.config.'''}) snake_case__ = field( default=_lowercase , metadata={'''help''': '''Decoder layer dropout probability. Goes into model.config.'''}) snake_case__ = field(default=_lowercase , metadata={'''help''': '''Dropout probability. Goes into model.config.'''}) snake_case__ = field( default=_lowercase , metadata={'''help''': '''Attention dropout probability. Goes into model.config.'''}) snake_case__ = field( default='''linear''' , metadata={'''help''': F'''Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys())}'''} , )
256
1
"""simple docstring""" def __A ( a_ :Dict , a_ :List[str]) -> str: __a : List[str] = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def __A ( a_ :str , a_ :Any , a_ :Tuple) -> Dict: __a : Dict = 0 while b > 0: if b & 1: __a : Optional[int] = ((res % c) + (a % c)) % c a += a b >>= 1 return res
188
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = ['''image_processor''', '''tokenizer'''] __lowerCAmelCase = '''CLIPImageProcessor''' __lowerCAmelCase = ('''XLMRobertaTokenizer''', '''XLMRobertaTokenizerFast''') def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase ): __a : Optional[Any] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _UpperCAmelCase , ) __a : Any = kwargs.pop('''feature_extractor''' ) __a : Optional[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __call__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase ): if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __a : Any = self.tokenizer(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) if images is not None: __a : List[str] = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) if text is not None and images is not None: __a : Optional[int] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_UpperCAmelCase ) , tensor_type=_UpperCAmelCase ) def _lowerCamelCase ( self , *_UpperCAmelCase , **_UpperCAmelCase ): return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def _lowerCamelCase ( self , *_UpperCAmelCase , **_UpperCAmelCase ): return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property def _lowerCamelCase ( self ): __a : Union[str, Any] = self.tokenizer.model_input_names __a : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
188
1
def __magic_name__ ( __a : Dict ): '''simple docstring''' if collection == []: return [] # get some information about the collection UpperCamelCase__ = len(UpperCamelCase__ ) UpperCamelCase__ = max(UpperCamelCase__ ) UpperCamelCase__ = min(UpperCamelCase__ ) # create the counting array UpperCamelCase__ = coll_max + 1 - coll_min UpperCamelCase__ = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , UpperCamelCase__ ): UpperCamelCase__ = counting_arr[i] + counting_arr[i - 1] # create the output collection UpperCamelCase__ = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , UpperCamelCase__ ) ): UpperCamelCase__ = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def __magic_name__ ( __a : Optional[int] ): '''simple docstring''' return "".join([chr(UpperCamelCase__ ) for i in counting_sort([ord(UpperCamelCase__ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string('''thisisthestring''') == "eghhiiinrsssttt" lowerCamelCase_ = input('''Enter numbers separated by a comma:\n''').strip() lowerCamelCase_ = [int(item) for item in user_input.split(''',''')] print(counting_sort(unsorted))
244
import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class A_ : def __init__( self , _A , _A=1_4 , _A=7 , _A=True , _A=True , _A=True , _A=True , _A=True , _A=9_9 , _A=3_2 , _A=5 , _A=4 , _A=3_7 , _A="gelu" , _A=0.1 , _A=0.1 , _A=5_1_2 , _A=1_6 , _A=2 , _A=0.02 , _A=3 , _A=4 , _A=None , ): '''simple docstring''' UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_token_type_ids UpperCAmelCase = use_input_mask UpperCAmelCase = use_labels UpperCAmelCase = use_mc_token_ids UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = num_labels UpperCAmelCase = num_choices UpperCAmelCase = scope UpperCAmelCase = self.vocab_size - 1 def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = None if self.use_input_mask: UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase = None if self.use_token_type_ids: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase = None if self.use_mc_token_ids: UpperCAmelCase = ids_tensor([self.batch_size, self.num_choices] , self.seq_length ) UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase = self.get_config() UpperCAmelCase = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def _lowercase ( self ): '''simple docstring''' return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def _lowercase ( self , _A , _A , _A , _A , _A , *_A ): '''simple docstring''' UpperCAmelCase = CTRLModel(config=_A ) model.to(_A ) model.eval() model(_A , token_type_ids=_A , head_mask=_A ) model(_A , token_type_ids=_A ) UpperCAmelCase = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) , config.n_layer ) def _lowercase ( self , _A , _A , _A , _A , _A , *_A ): '''simple docstring''' UpperCAmelCase = CTRLLMHeadModel(_A ) model.to(_A ) model.eval() UpperCAmelCase = model(_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) = config_and_inputs UpperCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask} return config, inputs_dict def _lowercase ( self , _A , _A , _A , _A , *_A ): '''simple docstring''' UpperCAmelCase = self.num_labels UpperCAmelCase = CTRLForSequenceClassification(_A ) model.to(_A ) model.eval() UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = model(_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) @require_torch class A_ (a_ , a_ , a_ , unittest.TestCase ): UpperCAmelCase__ = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () UpperCAmelCase__ = (CTRLLMHeadModel,) if is_torch_available() else () UpperCAmelCase__ = ( { '''feature-extraction''': CTRLModel, '''text-classification''': CTRLForSequenceClassification, '''text-generation''': CTRLLMHeadModel, '''zero-shot''': CTRLForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = False def _lowercase ( self , _A , _A , _A , _A , _A ): '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = CTRLModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=_A , n_embd=3_7 ) def _lowercase ( self ): '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def _lowercase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*_A ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_A ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def _lowercase ( self ): '''simple docstring''' pass @slow def _lowercase ( self ): '''simple docstring''' for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = CTRLModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def _lowercase ( self ): '''simple docstring''' pass @require_torch class A_ (unittest.TestCase ): def _lowercase ( self ): '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = CTRLLMHeadModel.from_pretrained('''ctrl''' ) model.to(_A ) UpperCAmelCase = torch.tensor( [[1_1_8_5_9, 0, 1_6_1_1, 8]] , dtype=torch.long , device=_A ) # Legal the president is UpperCAmelCase = [ 1_1_8_5_9, 0, 1_6_1_1, 8, 5, 1_5_0, 2_6_4_4_9, 2, 1_9, 3_4_8, 4_6_9, 3, 2_5_9_5, 4_8, 2_0_7_4_0, 2_4_6_5_3_3, 2_4_6_5_3_3, 1_9, 3_0, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a UpperCAmelCase = model.generate(_A , do_sample=_A ) self.assertListEqual(output_ids[0].tolist() , _A )
273
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging _UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class a__ ( __A ): """simple docstring""" __UpperCamelCase : int = ['pixel_values'] def __init__(self , __lowercase = True , __lowercase = None , __lowercase = PILImageResampling.BICUBIC , __lowercase = True , __lowercase = None , __lowercase = True , __lowercase = 1 / 2_55 , __lowercase = True , __lowercase = None , __lowercase = None , __lowercase = True , **__lowercase , ): super().__init__(**__A ) __lowerCAmelCase = size if size is not None else {'''shortest_edge''': 2_24} __lowerCAmelCase = get_size_dict(__A , default_to_square=__A ) __lowerCAmelCase = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} __lowerCAmelCase = get_size_dict(__A , default_to_square=__A , param_name='''crop_size''' ) __lowerCAmelCase = do_resize __lowerCAmelCase = size __lowerCAmelCase = resample __lowerCAmelCase = do_center_crop __lowerCAmelCase = crop_size __lowerCAmelCase = do_rescale __lowerCAmelCase = rescale_factor __lowerCAmelCase = do_normalize __lowerCAmelCase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __lowerCAmelCase = image_std if image_std is not None else OPENAI_CLIP_STD __lowerCAmelCase = do_convert_rgb def _snake_case (self , __lowercase , __lowercase , __lowercase = PILImageResampling.BICUBIC , __lowercase = None , **__lowercase , ): __lowerCAmelCase = get_size_dict(__A , default_to_square=__A ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) __lowerCAmelCase = get_resize_output_image_size(__A , size=size['''shortest_edge'''] , default_to_square=__A ) return resize(__A , size=__A , resample=__A , data_format=__A , **__A ) def _snake_case (self , __lowercase , __lowercase , __lowercase = None , **__lowercase , ): __lowerCAmelCase = get_size_dict(__A ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(__A , size=(size['''height'''], size['''width''']) , data_format=__A , **__A ) def _snake_case (self , __lowercase , __lowercase , __lowercase = None , **__lowercase , ): return rescale(__A , scale=__A , data_format=__A , **__A ) def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase = None , **__lowercase , ): return normalize(__A , mean=__A , std=__A , data_format=__A , **__A ) def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = ChannelDimension.FIRST , **__lowercase , ): __lowerCAmelCase = do_resize if do_resize is not None else self.do_resize __lowerCAmelCase = size if size is not None else self.size __lowerCAmelCase = get_size_dict(__A , param_name='''size''' , default_to_square=__A ) __lowerCAmelCase = resample if resample is not None else self.resample __lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCAmelCase = crop_size if crop_size is not None else self.crop_size __lowerCAmelCase = get_size_dict(__A , param_name='''crop_size''' , default_to_square=__A ) __lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize __lowerCAmelCase = image_mean if image_mean is not None else self.image_mean __lowerCAmelCase = image_std if image_std is not None else self.image_std __lowerCAmelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowerCAmelCase = make_list_of_images(__A ) if not valid_images(__A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowerCAmelCase = [convert_to_rgb(__A ) for image in images] # All transformations expect numpy arrays. __lowerCAmelCase = [to_numpy_array(__A ) for image in images] if do_resize: __lowerCAmelCase = [self.resize(image=__A , size=__A , resample=__A ) for image in images] if do_center_crop: __lowerCAmelCase = [self.center_crop(image=__A , size=__A ) for image in images] if do_rescale: __lowerCAmelCase = [self.rescale(image=__A , scale=__A ) for image in images] if do_normalize: __lowerCAmelCase = [self.normalize(image=__A , mean=__A , std=__A ) for image in images] __lowerCAmelCase = [to_channel_dimension_format(__A , __A ) for image in images] __lowerCAmelCase = {'''pixel_values''': images} return BatchFeature(data=__A , tensor_type=__A )
358
'''simple docstring''' import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : str = DebertaTokenizer __UpperCamelCase : str = True __UpperCamelCase : Any = DebertaTokenizerFast def _snake_case (self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowerCAmelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] __lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowerCAmelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __lowerCAmelCase = {'''unk_token''': '''[UNK]'''} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowercase ) ) def _snake_case (self , **__lowercase ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , __lowercase ): __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = '''lower newer''' return input_text, output_text def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __lowerCAmelCase = tokenizer.tokenize(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) __lowerCAmelCase = tokens + [tokenizer.unk_token] __lowerCAmelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = tokenizer('''Hello''' , '''World''' ) __lowerCAmelCase = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , __lowercase ) @slow def _snake_case (self ): __lowerCAmelCase = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) __lowerCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=__lowercase ) __lowerCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__lowercase ) __lowerCAmelCase = tokenizer.encode( '''sequence builders''' , add_special_tokens=__lowercase , add_prefix_space=__lowercase ) __lowerCAmelCase = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__lowercase , add_prefix_space=__lowercase ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowercase ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowercase , __lowercase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def _snake_case (self ): __lowerCAmelCase = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: __lowerCAmelCase = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) __lowerCAmelCase = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] __lowerCAmelCase = tokenizer(__lowercase , padding=__lowercase ) __lowerCAmelCase = [tokenizer.decode(__lowercase , skip_special_tokens=__lowercase ) for seq in encoding['''input_ids''']] # fmt: off __lowerCAmelCase = { '''input_ids''': [ [1, 21_18, 1_11_26, 5_65, 35, 83, 2_51_91, 1_63, 1_88_54, 13, 1_21_56, 12, 1_61_01, 2_53_76, 1_38_07, 9, 2_22_05, 2_78_93, 16_35, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 21_18, 1_11_26, 5_65, 2_45_36, 80, 4_37_97, 48_78, 73_73, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1_33, 78, 65, 16, 10, 37_24, 15_38, 3_31_83, 1_13_03, 4_37_97, 19_38, 4, 8_70, 2_41_65, 2_91_05, 5, 7_39, 3_26_44, 3_31_83, 1_13_03, 3_61_73, 88, 80, 6_50, 78_21, 4_59_40, 6, 52, 25_59, 5, 18_36, 9, 5, 73_97, 1_31_71, 31, 5, 18_36, 9, 3_26_44, 3_31_83, 1_13_03, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on __lowerCAmelCase = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , __lowercase ) for expected, decoded in zip(__lowercase , __lowercase ): self.assertEqual(__lowercase , __lowercase )
9
0
'''simple docstring''' from __future__ import annotations def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = sorted(numsa + numsa ) _snake_case, _snake_case = divmod(len(_SCREAMING_SNAKE_CASE ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase = [float(x) for x in input('Enter the elements of first array: ').split()] __lowerCAmelCase = [float(x) for x in input('Enter the elements of second array: ').split()] print(f'''The median of two arrays is: {median_of_two_arrays(array_a, array_a)}''')
341
'''simple docstring''' import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __lowerCAmelCase = 'platform' import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , ): if attention_mask is None: _snake_case = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: _snake_case = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: _snake_case = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _snake_case = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _snake_case = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=7 , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=99 , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=4 , UpperCAmelCase=4 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=1 , UpperCAmelCase=0 , UpperCAmelCase=0.02 , ) -> Union[str, Any]: _snake_case = parent _snake_case = batch_size _snake_case = seq_length _snake_case = is_training _snake_case = use_labels _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = eos_token_id _snake_case = pad_token_id _snake_case = bos_token_id _snake_case = initializer_range def lowercase (self ) -> str: _snake_case = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) _snake_case = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) _snake_case = shift_tokens_right(UpperCAmelCase , 1 , 2 ) _snake_case = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=UpperCAmelCase , ) _snake_case = prepare_blenderbot_inputs_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) return config, inputs_dict def lowercase (self ) -> Dict: _snake_case, _snake_case = self.prepare_config_and_inputs() return config, inputs_dict def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: _snake_case = 20 _snake_case = model_class_name(UpperCAmelCase ) _snake_case = model.encode(inputs_dict["""input_ids"""] ) _snake_case, _snake_case = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) _snake_case = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase , UpperCAmelCase ) _snake_case = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) _snake_case = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _snake_case = model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , decoder_position_ids=UpperCAmelCase , ) _snake_case = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) _snake_case = model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCAmelCase , ) _snake_case = model.decode(UpperCAmelCase , UpperCAmelCase ) _snake_case = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[Any]: _snake_case = 20 _snake_case = model_class_name(UpperCAmelCase ) _snake_case = model.encode(inputs_dict["""input_ids"""] ) _snake_case, _snake_case = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) _snake_case = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) _snake_case = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase , UpperCAmelCase ) _snake_case = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _snake_case = model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , decoder_position_ids=UpperCAmelCase , ) _snake_case = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) _snake_case = model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCAmelCase , decoder_position_ids=UpperCAmelCase , ) _snake_case = model.decode(UpperCAmelCase , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase ) _snake_case = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) @require_flax class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = 99 def lowercase (self ) -> Any: _snake_case = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) _snake_case = input_ids.shape[0] _snake_case = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def lowercase (self ) -> Optional[Any]: _snake_case, _snake_case, _snake_case = self._get_config_and_data() _snake_case = FlaxBlenderbotForConditionalGeneration(UpperCAmelCase ) _snake_case = lm_model(input_ids=UpperCAmelCase ) _snake_case = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["""logits"""].shape , UpperCAmelCase ) def lowercase (self ) -> int: _snake_case = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) _snake_case = FlaxBlenderbotForConditionalGeneration(UpperCAmelCase ) _snake_case = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) _snake_case = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) _snake_case = lm_model(input_ids=UpperCAmelCase , decoder_input_ids=UpperCAmelCase ) _snake_case = (*summary.shape, config.vocab_size) self.assertEqual(outputs["""logits"""].shape , UpperCAmelCase ) def lowercase (self ) -> Tuple: _snake_case = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) _snake_case = shift_tokens_right(UpperCAmelCase , 1 , 2 ) _snake_case = np.equal(UpperCAmelCase , 1 ).astype(np.floataa ).sum() _snake_case = np.equal(UpperCAmelCase , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(UpperCAmelCase , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class _lowerCAmelCase ( __snake_case , unittest.TestCase , __snake_case ): '''simple docstring''' lowerCAmelCase_ = True lowerCAmelCase_ = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) lowerCAmelCase_ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def lowercase (self ) -> Any: _snake_case = FlaxBlenderbotModelTester(self ) def lowercase (self ) -> str: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def lowercase (self ) -> List[str]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def lowercase (self ) -> Dict: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _snake_case = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) _snake_case = model_class(UpperCAmelCase ) @jax.jit def encode_jitted(UpperCAmelCase , UpperCAmelCase=None , **UpperCAmelCase ): return model.encode(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase ) with self.subTest("""JIT Enabled""" ): _snake_case = encode_jitted(**UpperCAmelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): _snake_case = encode_jitted(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def lowercase (self ) -> str: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _snake_case = model_class(UpperCAmelCase ) _snake_case = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] ) _snake_case = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): return model.decode( decoder_input_ids=UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , encoder_outputs=UpperCAmelCase , ) with self.subTest("""JIT Enabled""" ): _snake_case = decode_jitted(**UpperCAmelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): _snake_case = decode_jitted(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowercase (self ) -> Any: for model_class_name in self.all_model_classes: _snake_case = model_class_name.from_pretrained("""facebook/blenderbot-400M-distill""" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids _snake_case = np.ones((1, 1) ) * model.config.eos_token_id _snake_case = model(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @unittest.skipUnless(jax_device != """cpu""" , """3B test too slow on CPU.""" ) @slow def lowercase (self ) -> Dict: _snake_case = {"""num_beams""": 1, """early_stopping""": True, """min_length""": 15, """max_length""": 25} _snake_case = {"""skip_special_tokens""": True, """clean_up_tokenization_spaces""": True} _snake_case = FlaxBlenderbotForConditionalGeneration.from_pretrained("""facebook/blenderbot-3B""" , from_pt=UpperCAmelCase ) _snake_case = BlenderbotTokenizer.from_pretrained("""facebook/blenderbot-3B""" ) _snake_case = ["""Sam"""] _snake_case = tokenizer(UpperCAmelCase , return_tensors="""jax""" ) _snake_case = model.generate(**UpperCAmelCase , **UpperCAmelCase ) _snake_case = """Sam is a great name. It means \"sun\" in Gaelic.""" _snake_case = tokenizer.batch_decode(UpperCAmelCase , **UpperCAmelCase ) assert generated_txt[0].strip() == tgt_text
341
1
"""simple docstring""" import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class UpperCamelCase ( lowercase , unittest.TestCase ): UpperCAmelCase : int = VideoToVideoSDPipeline UpperCAmelCase : Tuple = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"""video"""} ) - {"""image""", """width""", """height"""} UpperCAmelCase : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""video"""} ) - {"""image"""} UpperCAmelCase : Union[str, Any] = PipelineTesterMixin.required_optional_params - {"""latents"""} UpperCAmelCase : int = False # No `output_type`. UpperCAmelCase : List[str] = frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ] ) def _lowercase (self : int) -> Tuple: torch.manual_seed(0) __snake_case : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D') , up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D') , cross_attention_dim=32 , attention_head_dim=4 , ) __snake_case : Optional[Any] = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=_A , set_alpha_to_one=_A , ) torch.manual_seed(0) __snake_case : Dict = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0) __snake_case : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='gelu' , projection_dim=5_12 , ) __snake_case : Any = CLIPTextModel(_A) __snake_case : List[str] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') __snake_case : str = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def _lowercase (self : Optional[int] , _A : Union[str, Any] , _A : Tuple=0) -> str: # 3 frames __snake_case : int = floats_tensor((1, 3, 3, 32, 32) , rng=random.Random(_A)).to(_A) if str(_A).startswith('mps'): __snake_case : Union[str, Any] = torch.manual_seed(_A) else: __snake_case : str = torch.Generator(device=_A).manual_seed(_A) __snake_case : Union[str, Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'video': video, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'pt', } return inputs def _lowercase (self : str) -> Tuple: __snake_case : str = 'cpu' # ensure determinism for the device-dependent torch.Generator __snake_case : Any = self.get_dummy_components() __snake_case : List[str] = VideoToVideoSDPipeline(**_A) __snake_case : List[str] = sd_pipe.to(_A) sd_pipe.set_progress_bar_config(disable=_A) __snake_case : Optional[Any] = self.get_dummy_inputs(_A) __snake_case : Optional[Any] = 'np' __snake_case : int = sd_pipe(**_A).frames __snake_case : List[Any] = frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) __snake_case : str = np.array([1_06, 1_17, 1_13, 1_74, 1_37, 1_12, 1_48, 1_51, 1_31]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _lowercase (self : List[str]) -> List[Any]: self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=_A , expected_max_diff=5E-3) @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.') def _lowercase (self : Dict) -> int: pass @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.') def _lowercase (self : List[str]) -> Union[str, Any]: pass @unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.') def _lowercase (self : int) -> Any: pass def _lowercase (self : Optional[Any]) -> int: return super().test_progress_bar() @slow @skip_mps class UpperCamelCase ( unittest.TestCase ): def _lowercase (self : List[Any]) -> int: __snake_case : Optional[Any] = VideoToVideoSDPipeline.from_pretrained('cerspense/zeroscope_v2_XL' , torch_dtype=torch.floataa) pipe.enable_model_cpu_offload() # 10 frames __snake_case : Optional[int] = torch.Generator(device='cpu').manual_seed(0) __snake_case : int = torch.randn((1, 10, 3, 10_24, 5_76) , generator=_A) __snake_case : List[str] = video.to('cuda') __snake_case : Any = 'Spiderman is surfing' __snake_case : int = pipe(_A , video=_A , generator=_A , num_inference_steps=3 , output_type='pt').frames __snake_case : Optional[Any] = np.array([-1.0_458_984, -1.1_279_297, -0.9_663_086, -0.91_503_906, -0.75_097_656]) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array).sum() < 1E-2
95
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu _a : List[str]= False class UpperCamelCase ( unittest.TestCase ): def _lowercase (self : List[str]) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowercase (self : Optional[Any]) -> Union[str, Any]: return 12 @property def _lowercase (self : Dict) -> Union[str, Any]: return 12 @property def _lowercase (self : int) -> Tuple: return 32 @property def _lowercase (self : Optional[int]) -> Dict: torch.manual_seed(0) __snake_case : Any = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def _lowercase (self : List[Any]) -> Optional[int]: __snake_case : Dict = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') return tokenizer @property def _lowercase (self : Union[str, Any]) -> Optional[int]: torch.manual_seed(0) __snake_case : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(_A) @property def _lowercase (self : Union[str, Any]) -> Dict: torch.manual_seed(0) __snake_case : Any = 12 __snake_case : int = 12 __snake_case : List[Any] = { 'attention_bias': True, 'cross_attention_dim': 32, 'attention_head_dim': height * width, 'num_attention_heads': 1, 'num_vector_embeds': self.num_embed, 'num_embeds_ada_norm': self.num_embeds_ada_norm, 'norm_num_groups': 32, 'sample_size': width, 'activation_fn': 'geglu-approximate', } __snake_case : Union[str, Any] = TransformeraDModel(**_A) return model def _lowercase (self : Union[str, Any]) -> Dict: __snake_case : Tuple = 'cpu' __snake_case : List[str] = self.dummy_vqvae __snake_case : str = self.dummy_text_encoder __snake_case : Optional[Any] = self.dummy_tokenizer __snake_case : Dict = self.dummy_transformer __snake_case : Optional[int] = VQDiffusionScheduler(self.num_embed) __snake_case : List[Any] = LearnedClassifierFreeSamplingEmbeddings(learnable=_A) __snake_case : List[Any] = VQDiffusionPipeline( vqvae=_A , text_encoder=_A , tokenizer=_A , transformer=_A , scheduler=_A , learned_classifier_free_sampling_embeddings=_A , ) __snake_case : List[Any] = pipe.to(_A) pipe.set_progress_bar_config(disable=_A) __snake_case : Optional[Any] = 'teddy bear playing in the pool' __snake_case : str = torch.Generator(device=_A).manual_seed(0) __snake_case : Union[str, Any] = pipe([prompt] , generator=_A , num_inference_steps=2 , output_type='np') __snake_case : Optional[int] = output.images __snake_case : int = torch.Generator(device=_A).manual_seed(0) __snake_case : Tuple = pipe( [prompt] , generator=_A , output_type='np' , return_dict=_A , num_inference_steps=2)[0] __snake_case : str = image[0, -3:, -3:, -1] __snake_case : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __snake_case : str = np.array([0.6_551, 0.6_168, 0.5_008, 0.5_676, 0.5_659, 0.4_295, 0.6_073, 0.5_599, 0.4_992]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 def _lowercase (self : Tuple) -> Optional[int]: __snake_case : Optional[Any] = 'cpu' __snake_case : Optional[int] = self.dummy_vqvae __snake_case : List[str] = self.dummy_text_encoder __snake_case : Optional[int] = self.dummy_tokenizer __snake_case : Optional[Any] = self.dummy_transformer __snake_case : Union[str, Any] = VQDiffusionScheduler(self.num_embed) __snake_case : Optional[int] = LearnedClassifierFreeSamplingEmbeddings( learnable=_A , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length) __snake_case : Union[str, Any] = VQDiffusionPipeline( vqvae=_A , text_encoder=_A , tokenizer=_A , transformer=_A , scheduler=_A , learned_classifier_free_sampling_embeddings=_A , ) __snake_case : Union[str, Any] = pipe.to(_A) pipe.set_progress_bar_config(disable=_A) __snake_case : Union[str, Any] = 'teddy bear playing in the pool' __snake_case : Optional[int] = torch.Generator(device=_A).manual_seed(0) __snake_case : Tuple = pipe([prompt] , generator=_A , num_inference_steps=2 , output_type='np') __snake_case : Optional[Any] = output.images __snake_case : str = torch.Generator(device=_A).manual_seed(0) __snake_case : Dict = pipe( [prompt] , generator=_A , output_type='np' , return_dict=_A , num_inference_steps=2)[0] __snake_case : int = image[0, -3:, -3:, -1] __snake_case : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __snake_case : Optional[Any] = np.array([0.6_693, 0.6_075, 0.4_959, 0.5_701, 0.5_583, 0.4_333, 0.6_171, 0.5_684, 0.4_988]) assert np.abs(image_slice.flatten() - expected_slice).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def _lowercase (self : Any) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase (self : Tuple) -> Optional[int]: __snake_case : List[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy') __snake_case : Union[str, Any] = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq') __snake_case : Tuple = pipeline.to(_A) pipeline.set_progress_bar_config(disable=_A) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though __snake_case : Optional[int] = torch.Generator(device=_A).manual_seed(0) __snake_case : int = pipeline( 'teddy bear playing in the pool' , num_images_per_prompt=1 , generator=_A , output_type='np' , ) __snake_case : int = output.images[0] assert image.shape == (2_56, 2_56, 3) assert np.abs(expected_image - image).max() < 2.0
95
1
def lowerCamelCase__ ( _a , _a): return abs(_a) if a == 0 else greatest_common_divisor(b % a , _a) def lowerCamelCase__ ( _a , _a): while y: # --> when y=0 then loop will terminate and return x as final GCD. SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Tuple = y, x % y return abs(_a) def lowerCamelCase__ ( ): try: SCREAMING_SNAKE_CASE : int = input("Enter two integers separated by comma (,): ").split(",") SCREAMING_SNAKE_CASE : Optional[int] = int(nums[0]) SCREAMING_SNAKE_CASE : Union[str, Any] = int(nums[1]) print( f"greatest_common_divisor({num_a}, {num_a}) = " f"{greatest_common_divisor(_a , _a)}") print(f"By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(_a , _a)}") except (IndexError, UnboundLocalError, ValueError): print("Wrong input") if __name__ == "__main__": main()
76
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = F"""{sampling_rate}""" SCREAMING_SNAKE_CASE : Tuple = '''1''' SCREAMING_SNAKE_CASE : Union[str, Any] = '''f32le''' SCREAMING_SNAKE_CASE : List[Any] = [ '''ffmpeg''', '''-i''', '''pipe:0''', '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] try: with subprocess.Popen(a__ , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: SCREAMING_SNAKE_CASE : Tuple = ffmpeg_process.communicate(a__ ) except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to load audio files from filename''' ) from error SCREAMING_SNAKE_CASE : Optional[Any] = output_stream[0] SCREAMING_SNAKE_CASE : Any = np.frombuffer(a__ , np.floataa ) if audio.shape[0] == 0: raise ValueError('''Malformed soundfile''' ) return audio def UpperCAmelCase_( a__ , a__ , a__ = "f32le" , ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = F"""{sampling_rate}""" SCREAMING_SNAKE_CASE : Dict = '''1''' if format_for_conversion == "s16le": SCREAMING_SNAKE_CASE : List[Any] = 2 elif format_for_conversion == "f32le": SCREAMING_SNAKE_CASE : Dict = 4 else: raise ValueError(F"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) SCREAMING_SNAKE_CASE : Union[str, Any] = platform.system() if system == "Linux": SCREAMING_SNAKE_CASE : Dict = '''alsa''' SCREAMING_SNAKE_CASE : Any = '''default''' elif system == "Darwin": SCREAMING_SNAKE_CASE : Union[str, Any] = '''avfoundation''' SCREAMING_SNAKE_CASE : Optional[int] = ''':0''' elif system == "Windows": SCREAMING_SNAKE_CASE : int = '''dshow''' SCREAMING_SNAKE_CASE : Any = '''default''' SCREAMING_SNAKE_CASE : Union[str, Any] = [ '''ffmpeg''', '''-f''', format_, '''-i''', input_, '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-fflags''', '''nobuffer''', '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] SCREAMING_SNAKE_CASE : List[str] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample SCREAMING_SNAKE_CASE : List[Any] = _ffmpeg_stream(a__ , a__ ) for item in iterator: yield item def UpperCAmelCase_( a__ , a__ , a__ = None , a__ = None , a__ = "f32le" , ): """simple docstring""" if stream_chunk_s is not None: SCREAMING_SNAKE_CASE : Tuple = stream_chunk_s else: SCREAMING_SNAKE_CASE : List[str] = chunk_length_s SCREAMING_SNAKE_CASE : Union[str, Any] = ffmpeg_microphone(a__ , a__ , format_for_conversion=a__ ) if format_for_conversion == "s16le": SCREAMING_SNAKE_CASE : Optional[int] = np.intaa SCREAMING_SNAKE_CASE : List[Any] = 2 elif format_for_conversion == "f32le": SCREAMING_SNAKE_CASE : Any = np.floataa SCREAMING_SNAKE_CASE : Union[str, Any] = 4 else: raise ValueError(F"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) if stride_length_s is None: SCREAMING_SNAKE_CASE : Optional[Any] = chunk_length_s / 6 SCREAMING_SNAKE_CASE : Dict = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(a__ , (int, float) ): SCREAMING_SNAKE_CASE : List[Any] = [stride_length_s, stride_length_s] SCREAMING_SNAKE_CASE : Any = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample SCREAMING_SNAKE_CASE : int = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample SCREAMING_SNAKE_CASE : Union[str, Any] = datetime.datetime.now() SCREAMING_SNAKE_CASE : Dict = datetime.timedelta(seconds=a__ ) for item in chunk_bytes_iter(a__ , a__ , stride=(stride_left, stride_right) , stream=a__ ): # Put everything back in numpy scale SCREAMING_SNAKE_CASE : Dict = np.frombuffer(item['''raw'''] , dtype=a__ ) SCREAMING_SNAKE_CASE : Optional[Any] = ( item['''stride'''][0] // size_of_sample, item['''stride'''][1] // size_of_sample, ) SCREAMING_SNAKE_CASE : Any = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def UpperCAmelCase_( a__ , a__ , a__ , a__ = False ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = b'''''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = stride if stride_left + stride_right >= chunk_len: raise ValueError( F"""Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}""" ) SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for raw in iterator: acc += raw if stream and len(a__ ) < chunk_len: SCREAMING_SNAKE_CASE : List[str] = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(a__ ) >= chunk_len: # We are flushing the accumulator SCREAMING_SNAKE_CASE : str = (_stride_left, stride_right) SCREAMING_SNAKE_CASE : List[str] = {'''raw''': acc[:chunk_len], '''stride''': stride} if stream: SCREAMING_SNAKE_CASE : List[str] = False yield item SCREAMING_SNAKE_CASE : Dict = stride_left SCREAMING_SNAKE_CASE : int = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(a__ ) > stride_left: SCREAMING_SNAKE_CASE : Optional[Any] = {'''raw''': acc, '''stride''': (_stride_left, 0)} if stream: SCREAMING_SNAKE_CASE : Union[str, Any] = False yield item def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : str = 2**24 # 16Mo try: with subprocess.Popen(a__ , stdout=subprocess.PIPE , bufsize=a__ ) as ffmpeg_process: while True: SCREAMING_SNAKE_CASE : str = ffmpeg_process.stdout.read(a__ ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to stream audio files from filename''' ) from error
313
0
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __init__( self: List[Any] , __A: str , __A: List[Any] = True , __A: int = None , __A: Optional[int] = 32 , __A: Optional[Any] = True , __A: Dict = 1 / 2_55 , __A: Tuple = True , __A: List[str] = True , __A: Any = [0.48_145_466, 0.4_578_275, 0.40_821_073] , __A: Any = [0.26_862_954, 0.26_130_258, 0.27_577_711] , __A: str = True , __A: List[str]=7 , __A: Dict=30 , __A: List[Any]=4_00 , __A: Dict=3 , ) -> Tuple: _A = parent _A = do_resize _A = size if size is not None else {'shortest_edge': 2_88} _A = size_divisor _A = do_rescale _A = rescale_factor _A = do_normalize _A = do_center_crop _A = image_mean _A = image_std _A = do_pad _A = batch_size _A = num_channels _A = min_resolution _A = max_resolution def __A ( self: Dict ) -> Union[str, Any]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def __A ( self: Optional[Any] , __A: Optional[Any] , __A: Any=False ) -> Optional[Any]: if not batched: _A = self.size['shortest_edge'] _A = image_inputs[0] if isinstance(SCREAMING_SNAKE_CASE_ , Image.Image ): _A = image.size else: _A = image.shape[1], image.shape[2] _A = size / min(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if h < w: _A = size, scale * w else: _A = scale * h, size _A = int((13_33 / 8_00) * size ) if max(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) > max_size: _A = max_size / max(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _A = newh * scale _A = neww * scale _A = int(newh + 0.5 ), int(neww + 0.5 ) _A = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: _A = [] for image in image_inputs: _A = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _A = max(SCREAMING_SNAKE_CASE_ , key=lambda __A : item[0] )[0] _A = max(SCREAMING_SNAKE_CASE_ , key=lambda __A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE ( a__ , unittest.TestCase ): """simple docstring""" A_ = BridgeTowerImageProcessor if is_vision_available() else None def __A ( self: int ) -> Dict: _A = BridgeTowerImageProcessingTester(self ) @property def __A ( self: List[str] ) -> Optional[Any]: return self.image_processor_tester.prepare_image_processor_dict() def __A ( self: Optional[Any] ) -> str: _A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''image_mean''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''image_std''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''do_normalize''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''do_resize''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''size''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''size_divisor''' ) ) def __A ( self: List[str] ) -> int: pass def __A ( self: Tuple ) -> Dict: # Initialize image processor _A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , Image.Image ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _A = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _A = image_processing(SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).pixel_values _A = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __A ( self: Tuple ) -> List[Any]: # Initialize image processor _A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , numpify=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , np.ndarray ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _A = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _A = image_processing(SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).pixel_values _A = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __A ( self: Dict ) -> Tuple: # Initialize image processor _A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , torchify=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _A = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _A = image_processing(SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).pixel_values _A = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
364
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" @require_torch def __A ( self: Dict ) -> Optional[int]: # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched _A = ''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' _A = ''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' _A = ''' import socket def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache _A = '''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(__A ) BertModel.from_pretrained(__A ) BertTokenizer.from_pretrained(__A ) pipeline(task='''fill-mask''' , model=__A ) # baseline - just load from_pretrained with normal network _A = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed _A = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _A = '''1''' _A = subprocess.run(__A , env=__A , check=__A , capture_output=__A ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def __A ( self: Dict ) -> Tuple: # python one-liner segments # this must be loaded before socket.socket is monkey-patched _A = ''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' _A = ''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' _A = ''' import socket def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache _A = '''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(__A ) BertModel.from_pretrained(__A ) BertTokenizer.from_pretrained(__A ) pipeline(task='''fill-mask''' , model=__A ) # baseline - just load from_pretrained with normal network _A = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed _A = self.get_env() _A = subprocess.run(__A , env=__A , check=__A , capture_output=__A ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def __A ( self: Any ) -> Optional[Any]: # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched _A = ''' from transformers import BertConfig, BertModel, BertTokenizer ''' _A = ''' mname = "hf-internal-testing/tiny-random-bert-sharded" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print("success") ''' _A = ''' import socket def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled") socket.socket = offline_socket ''' # baseline - just load from_pretrained with normal network _A = [sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed _A = self.get_env() _A = subprocess.run(__A , env=__A , check=__A , capture_output=__A ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # next emulate no network _A = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _A = '''1''' _A = subprocess.run(__A , env=__A , check=__A , capture_output=__A ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def __A ( self: Optional[int] ) -> Dict: _A = ''' from transformers import pipeline ''' _A = ''' mname = "hf-internal-testing/tiny-random-bert" pipe = pipeline(model=mname) ''' _A = ''' import socket def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled") socket.socket = offline_socket ''' _A = self.get_env() _A = '''1''' _A = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] _A = subprocess.run(__A , env=__A , check=__A , capture_output=__A ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( '''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , ) @require_torch def __A ( self: Optional[int] ) -> int: _A = ''' from transformers import AutoModel ''' _A = ''' mname = "hf-internal-testing/test_dynamic_model" AutoModel.from_pretrained(mname, trust_remote_code=True) print("success") ''' # baseline - just load from_pretrained with normal network _A = [sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed _A = self.get_env() _A = subprocess.run(__A , env=__A , check=__A , capture_output=__A ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _A = '''1''' _A = subprocess.run(__A , env=__A , check=__A , capture_output=__A ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() )
75
0