code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _a ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): A = IFInpaintingPipeline A = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} A = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS A = PipelineTesterMixin.required_optional_params - {'''latents'''} def __snake_case (self ) -> int: return self._get_dummy_components() def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=0 ) -> str: if str(SCREAMING_SNAKE_CASE_ ).startswith("""mps""" ): UpperCAmelCase_: List[str] = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: UpperCAmelCase_: Union[str, Any] = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Union[str, Any] = floats_tensor((1, 3, 32, 32), rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[Any] = floats_tensor((1, 3, 32, 32), rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[int] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available(), reason="""XFormers attention is only available with CUDA and `xformers` installed""", ) def __snake_case (self ) -> Dict: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def __snake_case (self ) -> Tuple: self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""", reason="""float16 requires CUDA""" ) def __snake_case (self ) -> List[Any]: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def __snake_case (self ) -> List[Any]: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def __snake_case (self ) -> Any: self._test_save_load_local() def __snake_case (self ) -> Any: self._test_inference_batch_single_identical( expected_max_diff=1E-2, )
147
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py a : List[str] = 'src/diffusers' a : Optional[Any] = '.' # This is to make sure the diffusers module imported is the one in the repo. a : Dict = importlib.util.spec_from_file_location( 'diffusers', os.path.join(DIFFUSERS_PATH, '__init__.py'), submodule_search_locations=[DIFFUSERS_PATH], ) a : str = spec.loader.load_module() def lowerCAmelCase_ (lowerCAmelCase__: Optional[int] , lowerCAmelCase__: List[str] ): """simple docstring""" return line.startswith(lowerCAmelCase__ ) or len(lowerCAmelCase__ ) <= 1 or re.search(r"""^\s*\)(\s*->.*:|:)\s*$""" , lowerCAmelCase__ ) is not None def lowerCAmelCase_ (lowerCAmelCase__: str ): """simple docstring""" UpperCAmelCase_: Optional[Any] = object_name.split(""".""" ) UpperCAmelCase_: Tuple = 0 # First let's find the module where our object lives. UpperCAmelCase_: Union[str, Any] = parts[i] while i < len(lowerCAmelCase__ ) and not os.path.isfile(os.path.join(lowerCAmelCase__ , F'{module}.py' ) ): i += 1 if i < len(lowerCAmelCase__ ): UpperCAmelCase_: List[Any] = os.path.join(lowerCAmelCase__ , parts[i] ) if i >= len(lowerCAmelCase__ ): raise ValueError(F'`object_name` should begin with the name of a module of diffusers but got {object_name}.' ) with open(os.path.join(lowerCAmelCase__ , F'{module}.py' ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: UpperCAmelCase_: List[Any] = f.readlines() # Now let's find the class / func in the code! UpperCAmelCase_: Any = """""" UpperCAmelCase_: Tuple = 0 for name in parts[i + 1 :]: while ( line_index < len(lowerCAmelCase__ ) and re.search(rF'^{indent}(class|def)\s+{name}(\(|\:)' , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(lowerCAmelCase__ ): raise ValueError(F' {object_name} does not match any function or class in {module}.' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). UpperCAmelCase_: Dict = line_index while line_index < len(lowerCAmelCase__ ) and _should_continue(lines[line_index] , lowerCAmelCase__ ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 UpperCAmelCase_: Optional[int] = lines[start_index:line_index] return "".join(lowerCAmelCase__ ) a : List[str] = re.compile(r'^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)') a : Optional[int] = re.compile(r'^\s*(\S+)->(\S+)(\s+.*|$)') a : List[Any] = re.compile(r'<FILL\s+[^>]*>') def lowerCAmelCase_ (lowerCAmelCase__: Dict ): """simple docstring""" UpperCAmelCase_: Dict = code.split("""\n""" ) UpperCAmelCase_: Any = 0 while idx < len(lowerCAmelCase__ ) and len(lines[idx] ) == 0: idx += 1 if idx < len(lowerCAmelCase__ ): return re.search(r"""^(\s*)\S""" , lines[idx] ).groups()[0] return "" def lowerCAmelCase_ (lowerCAmelCase__: Union[str, Any] ): """simple docstring""" UpperCAmelCase_: str = len(get_indent(lowerCAmelCase__ ) ) > 0 if has_indent: UpperCAmelCase_: Union[str, Any] = F'class Bla:\n{code}' UpperCAmelCase_: int = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9 , preview=lowerCAmelCase__ ) UpperCAmelCase_: int = black.format_str(lowerCAmelCase__ , mode=lowerCAmelCase__ ) UpperCAmelCase_ , UpperCAmelCase_: List[Any] = style_docstrings_in_code(lowerCAmelCase__ ) return result[len("""class Bla:\n""" ) :] if has_indent else result def lowerCAmelCase_ (lowerCAmelCase__: Tuple , lowerCAmelCase__: int=False ): """simple docstring""" with open(lowerCAmelCase__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: UpperCAmelCase_: List[str] = f.readlines() UpperCAmelCase_: List[str] = [] UpperCAmelCase_: Tuple = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(lowerCAmelCase__ ): UpperCAmelCase_: Dict = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_: Any = search.groups() UpperCAmelCase_: str = find_code_in_diffusers(lowerCAmelCase__ ) UpperCAmelCase_: int = get_indent(lowerCAmelCase__ ) UpperCAmelCase_: Dict = line_index + 1 if indent == theoretical_indent else line_index + 2 UpperCAmelCase_: Tuple = theoretical_indent UpperCAmelCase_: Dict = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. UpperCAmelCase_: Tuple = True while line_index < len(lowerCAmelCase__ ) and should_continue: line_index += 1 if line_index >= len(lowerCAmelCase__ ): break UpperCAmelCase_: Any = lines[line_index] UpperCAmelCase_: Tuple = _should_continue(lowerCAmelCase__ , lowerCAmelCase__ ) and re.search(F'^{indent}# End copy' , lowerCAmelCase__ ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 UpperCAmelCase_: int = lines[start_index:line_index] UpperCAmelCase_: Union[str, Any] = """""".join(lowerCAmelCase__ ) # Remove any nested `Copied from` comments to avoid circular copies UpperCAmelCase_: int = [line for line in theoretical_code.split("""\n""" ) if _re_copy_warning.search(lowerCAmelCase__ ) is None] UpperCAmelCase_: Union[str, Any] = """\n""".join(lowerCAmelCase__ ) # Before comparing, use the `replace_pattern` on the original code. if len(lowerCAmelCase__ ) > 0: UpperCAmelCase_: Any = replace_pattern.replace("""with""" , """""" ).split(""",""" ) UpperCAmelCase_: int = [_re_replace_pattern.search(lowerCAmelCase__ ) for p in patterns] for pattern in patterns: if pattern is None: continue UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_: str = pattern.groups() UpperCAmelCase_: int = re.sub(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if option.strip() == "all-casing": UpperCAmelCase_: List[Any] = re.sub(obja.lower() , obja.lower() , lowerCAmelCase__ ) UpperCAmelCase_: Optional[int] = re.sub(obja.upper() , obja.upper() , lowerCAmelCase__ ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line UpperCAmelCase_: Union[str, Any] = blackify(lines[start_index - 1] + theoretical_code ) UpperCAmelCase_: Dict = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: UpperCAmelCase_: str = lines[:start_index] + [theoretical_code] + lines[line_index:] UpperCAmelCase_: Optional[int] = start_index + 1 if overwrite and len(lowerCAmelCase__ ) > 0: # Warn the user a file has been modified. print(F'Detected changes, rewriting {filename}.' ) with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lowerCAmelCase__ ) return diffs def lowerCAmelCase_ (lowerCAmelCase__: bool = False ): """simple docstring""" UpperCAmelCase_: Dict = glob.glob(os.path.join(lowerCAmelCase__ , """**/*.py""" ) , recursive=lowerCAmelCase__ ) UpperCAmelCase_: Optional[Any] = [] for filename in all_files: UpperCAmelCase_: str = is_copy_consistent(lowerCAmelCase__ , lowerCAmelCase__ ) diffs += [F'- {filename}: copy does not match {d[0]} at line {d[1]}' for d in new_diffs] if not overwrite and len(lowerCAmelCase__ ) > 0: UpperCAmelCase_: Dict = """\n""".join(lowerCAmelCase__ ) raise Exception( """Found the following copy inconsistencies:\n""" + diff + """\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.""" ) if __name__ == "__main__": a : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') a : List[Any] = parser.parse_args() check_copies(args.fix_and_overwrite)
147
1
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class __lowerCamelCase ( __lowercase ): __UpperCamelCase = ( 'This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.' 'It takes two arguments named `image` which should be the original image, and `label` which should be a text ' 'describing the elements what should be identified in the segmentation mask. The tool returns the mask.' ) __UpperCamelCase = 'CIDAS/clipseg-rd64-refined' __UpperCamelCase = 'image_segmenter' __UpperCamelCase = CLIPSegForImageSegmentation __UpperCamelCase = ['image', 'text'] __UpperCamelCase = ['image'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""vision"""] ) super().__init__(*lowerCamelCase , **lowerCamelCase ) def A__ (self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' return self.pre_processor(text=[label] , images=[image] , padding=lowerCamelCase , return_tensors="""pt""" ) def A__ (self , lowerCamelCase ): '''simple docstring''' with torch.no_grad(): _lowerCAmelCase = self.model(**lowerCamelCase ).logits return logits def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = outputs.cpu().detach().numpy() _lowerCAmelCase = 0 _lowerCAmelCase = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
317
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. SCREAMING_SNAKE_CASE : Dict = abspath(join(dirname(dirname(__file__)), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def __UpperCAmelCase ( snake_case_ : Optional[int] ) -> List[str]: """simple docstring""" from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case_ ) def __UpperCAmelCase ( snake_case_ : Union[str, Any] ) -> int: """simple docstring""" from diffusers.utils.testing_utils import pytest_terminal_summary_main _lowerCAmelCase = terminalreporter.config.getoption("""--make-reports""" ) if make_reports: pytest_terminal_summary_main(snake_case_ , id=snake_case_ )
317
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase__ = {"""configuration_vit_msn""": ["""VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMSNConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTMSNModel""", """ViTMSNForImageClassification""", """ViTMSNPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
96
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase__ = {"""configuration_vit_msn""": ["""VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMSNConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTMSNModel""", """ViTMSNForImageClassification""", """ViTMSNPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
96
1
'''simple docstring''' import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer lowerCAmelCase_ : Dict = logging.getLogger(__name__) def _lowerCamelCase ( ) -> int: _a = argparse.ArgumentParser( description="Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset." ) parser.add_argument( "--dataset_name" , type=lowercase , default="wikitext" , help="Name of the training. Explore datasets at: hf.co/datasets." , ) parser.add_argument( "--dataset_config" , type=lowercase , default="wikitext-103-raw-v1" , help="Configuration name of the dataset." ) parser.add_argument( "--tokenizer_name_or_path" , type=lowercase , default="sayakpaul/unigram-tokenizer-wikitext" , help="Tokenizer identifier. Can be a local filepath or a Hub identifier." , ) parser.add_argument( "--shard_size" , type=lowercase , default=1000 , help="Number of entries to go in a single shard." , ) parser.add_argument("--split" , type=lowercase , default="train" , choices=["train", "test", "validation"] ) parser.add_argument( "--limit" , default=lowercase , type=lowercase , help="Limit the number of shards (used for debugging)." , ) parser.add_argument( "--max_length" , type=lowercase , default=512 , help="Maximum sequence length. For training on TPUs, it helps to have a maximum" " sequence length that is a multiple of 8." , ) parser.add_argument( "--output_dir" , default="tf-tpu" , type=lowercase , help="Output directory where the TFRecord shards will be saved. If the" " path is appended with `gs://` ('gs://tf-tpu', for example) then the TFRecord" " shards will be directly saved to a Google Cloud Storage bucket." , ) _a = parser.parse_args() return args def _lowerCamelCase ( lowercase : str ) -> Dict: def fn(lowercase : Dict ): return tokenizer(examples["text"] ) return fn def _lowerCamelCase ( lowercase : Optional[Any] ) -> List[Any]: _a = [] for i in range(len(tokenized_data["input_ids"] ) ): _a = { "input_ids": tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data["input_ids"][i] ) ), "attention_mask": tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data["attention_mask"][i] ) ), } _a = tf.train.Features(feature=lowercase ) _a = tf.train.Example(features=lowercase ) _a = example.SerializeToString() records.append(lowercase ) return records def _lowerCamelCase ( lowercase : List[Any] ) -> Union[str, Any]: _a = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: _a = min(len(lowercase ) , args.limit ) _a = dataset.select(range(lowercase ) ) print(F'Limiting the dataset to {args.limit} entries.' ) _a = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) _a = os.path.join(args.output_dir , args.split ) if not os.path.exists(lowercase ): os.makedirs(lowercase ) else: _a = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. _a = tokenize_function(lowercase ) _a = dataset.map(lowercase , batched=lowercase , num_proc=4 , remove_columns=["text"] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(lowercase : Any ): # Concatenate all texts. _a = {k: sum(examples[k] , [] ) for k in examples.keys()} _a = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 _a = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. _a = { k: [t[i : i + args.max_length] for i in range(0 , lowercase , args.max_length )] for k, t in concatenated_examples.items() } return result _a = dataset_tokenized.map(lowercase , batched=lowercase , batch_size=1000 , num_proc=4 ) _a = 0 _a = 0 for shard in range(0 , len(lowercase ) , args.shard_size ): _a = grouped_dataset[shard : shard + args.shard_size] _a = len(dataset_snapshot["input_ids"] ) _a = os.path.join(lowercase , F'dataset-{shard_count}-{records_containing}.tfrecord' ) _a = get_serialized_examples(lowercase ) with tf.io.TFRecordWriter(lowercase ) as out_file: for i in range(len(lowercase ) ): _a = serialized_examples[i] out_file.write(lowercase ) print("Wrote file {} containing {} records".format(lowercase , lowercase ) ) shard_count += 1 total_records += records_containing with open(F'split-{args.split}-records-count.txt' , "w" ) as f: print(F'Total {args.split} records: {total_records}' , file=lowercase ) if __name__ == "__main__": lowerCAmelCase_ : Optional[int] = parse_args() main(args)
350
'''simple docstring''' import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="session" ) def _lowerCamelCase ( ) -> Optional[int]: _a = 10 _a = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string" ) ), "labels": datasets.Sequence(datasets.ClassLabel(names=["negative", "positive"] ) ), "answers": datasets.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), "id": datasets.Value("int64" ), } ) _a = datasets.Dataset.from_dict( { "tokens": [["foo"] * 5] * n, "labels": [[1] * 5] * n, "answers": [{"answer_start": [97], "text": ["1976"]}] * 10, "id": list(range(lowercase ) ), } , features=lowercase , ) return dataset @pytest.fixture(scope="session" ) def _lowerCamelCase ( lowercase : Tuple , lowercase : int ) -> Optional[Any]: _a = str(tmp_path_factory.mktemp("data" ) / "file.arrow" ) dataset.map(cache_file_name=lowercase ) return filename # FILE_CONTENT + files lowerCAmelCase_ : Union[str, Any] = '\\n Text data.\n Second line of data.' @pytest.fixture(scope="session" ) def _lowerCamelCase ( lowercase : List[str] ) -> List[Any]: _a = tmp_path_factory.mktemp("data" ) / "file.txt" _a = FILE_CONTENT with open(lowercase , "w" ) as f: f.write(lowercase ) return filename @pytest.fixture(scope="session" ) def _lowerCamelCase ( lowercase : str ) -> str: import bza _a = tmp_path_factory.mktemp("data" ) / "file.txt.bz2" _a = bytes(lowercase , "utf-8" ) with bza.open(lowercase , "wb" ) as f: f.write(lowercase ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase ( lowercase : List[str] ) -> Optional[Any]: import gzip _a = str(tmp_path_factory.mktemp("data" ) / "file.txt.gz" ) _a = bytes(lowercase , "utf-8" ) with gzip.open(lowercase , "wb" ) as f: f.write(lowercase ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase ( lowercase : Union[str, Any] ) -> Union[str, Any]: if datasets.config.LZ4_AVAILABLE: import lza.frame _a = tmp_path_factory.mktemp("data" ) / "file.txt.lz4" _a = bytes(lowercase , "utf-8" ) with lza.frame.open(lowercase , "wb" ) as f: f.write(lowercase ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase ( lowercase : Any , lowercase : Tuple ) -> Optional[Any]: if datasets.config.PY7ZR_AVAILABLE: import pyazr _a = tmp_path_factory.mktemp("data" ) / "file.txt.7z" with pyazr.SevenZipFile(lowercase , "w" ) as archive: archive.write(lowercase , arcname=os.path.basename(lowercase ) ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase ( lowercase : Dict , lowercase : Optional[Any] ) -> Dict: import tarfile _a = tmp_path_factory.mktemp("data" ) / "file.txt.tar" with tarfile.TarFile(lowercase , "w" ) as f: f.add(lowercase , arcname=os.path.basename(lowercase ) ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase ( lowercase : Any ) -> Union[str, Any]: import lzma _a = tmp_path_factory.mktemp("data" ) / "file.txt.xz" _a = bytes(lowercase , "utf-8" ) with lzma.open(lowercase , "wb" ) as f: f.write(lowercase ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase ( lowercase : int , lowercase : Any ) -> Union[str, Any]: import zipfile _a = tmp_path_factory.mktemp("data" ) / "file.txt.zip" with zipfile.ZipFile(lowercase , "w" ) as f: f.write(lowercase , arcname=os.path.basename(lowercase ) ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase ( lowercase : Dict ) -> List[str]: if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd _a = tmp_path_factory.mktemp("data" ) / "file.txt.zst" _a = bytes(lowercase , "utf-8" ) with zstd.open(lowercase , "wb" ) as f: f.write(lowercase ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase ( lowercase : List[str] ) -> Union[str, Any]: _a = tmp_path_factory.mktemp("data" ) / "file.xml" _a = textwrap.dedent( "\\n <?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n <tmx version=\"1.4\">\n <header segtype=\"sentence\" srclang=\"ca\" />\n <body>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>" ) with open(lowercase , "w" ) as f: f.write(lowercase ) return filename lowerCAmelCase_ : Optional[int] = [ {'col_1': '0', 'col_2': 0, 'col_3': 0.0}, {'col_1': '1', 'col_2': 1, 'col_3': 1.0}, {'col_1': '2', 'col_2': 2, 'col_3': 2.0}, {'col_1': '3', 'col_2': 3, 'col_3': 3.0}, ] lowerCAmelCase_ : List[Any] = [ {'col_1': '4', 'col_2': 4, 'col_3': 4.0}, {'col_1': '5', 'col_2': 5, 'col_3': 5.0}, ] lowerCAmelCase_ : Dict = { 'col_1': ['0', '1', '2', '3'], 'col_2': [0, 1, 2, 3], 'col_3': [0.0, 1.0, 2.0, 3.0], } lowerCAmelCase_ : Dict = [ {'col_3': 0.0, 'col_1': '0', 'col_2': 0}, {'col_3': 1.0, 'col_1': '1', 'col_2': 1}, ] lowerCAmelCase_ : List[Any] = [ {'col_1': 's0', 'col_2': 0, 'col_3': 0.0}, {'col_1': 's1', 'col_2': 1, 'col_3': 1.0}, {'col_1': 's2', 'col_2': 2, 'col_3': 2.0}, {'col_1': 's3', 'col_2': 3, 'col_3': 3.0}, ] @pytest.fixture(scope="session" ) def _lowerCamelCase ( ) -> List[str]: return DATA_DICT_OF_LISTS @pytest.fixture(scope="session" ) def _lowerCamelCase ( lowercase : Union[str, Any] ) -> str: _a = datasets.Dataset.from_dict(lowercase ) _a = str(tmp_path_factory.mktemp("data" ) / "dataset.arrow" ) dataset.map(cache_file_name=lowercase ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase ( lowercase : Dict ) -> Dict: _a = str(tmp_path_factory.mktemp("data" ) / "dataset.sqlite" ) with contextlib.closing(sqlitea.connect(lowercase ) ) as con: _a = con.cursor() cur.execute("CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)" ) for item in DATA: cur.execute("INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)" , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="session" ) def _lowerCamelCase ( lowercase : Optional[Any] ) -> str: _a = str(tmp_path_factory.mktemp("data" ) / "dataset.csv" ) with open(lowercase , "w" , newline="" ) as f: _a = csv.DictWriter(lowercase , fieldnames=["col_1", "col_2", "col_3"] ) writer.writeheader() for item in DATA: writer.writerow(lowercase ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase ( lowercase : int ) -> Optional[Any]: _a = str(tmp_path_factory.mktemp("data" ) / "dataset2.csv" ) with open(lowercase , "w" , newline="" ) as f: _a = csv.DictWriter(lowercase , fieldnames=["col_1", "col_2", "col_3"] ) writer.writeheader() for item in DATA: writer.writerow(lowercase ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase ( lowercase : Union[str, Any] , lowercase : Union[str, Any] ) -> int: import bza _a = tmp_path_factory.mktemp("data" ) / "dataset.csv.bz2" with open(lowercase , "rb" ) as f: _a = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(lowercase , "wb" ) as f: f.write(lowercase ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase ( lowercase : Optional[int] , lowercase : Any , lowercase : Any ) -> List[str]: _a = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip" with zipfile.ZipFile(lowercase , "w" ) as f: f.write(lowercase , arcname=os.path.basename(lowercase ) ) f.write(lowercase , arcname=os.path.basename(lowercase ) ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase ( lowercase : Dict , lowercase : Any , lowercase : List[Any] ) -> Dict: _a = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip" with zipfile.ZipFile(lowercase , "w" ) as f: f.write(lowercase , arcname=os.path.basename(csv_path.replace(".csv" , ".CSV" ) ) ) f.write(lowercase , arcname=os.path.basename(csva_path.replace(".csv" , ".CSV" ) ) ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase ( lowercase : Any , lowercase : Optional[Any] , lowercase : int ) -> int: _a = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.csv.zip" with zipfile.ZipFile(lowercase , "w" ) as f: f.write(lowercase , arcname=os.path.join("main_dir" , os.path.basename(lowercase ) ) ) f.write(lowercase , arcname=os.path.join("main_dir" , os.path.basename(lowercase ) ) ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase ( lowercase : List[Any] ) -> Union[str, Any]: _a = str(tmp_path_factory.mktemp("data" ) / "dataset.parquet" ) _a = pa.schema( { "col_1": pa.string(), "col_2": pa.intaa(), "col_3": pa.floataa(), } ) with open(lowercase , "wb" ) as f: _a = pq.ParquetWriter(lowercase , schema=lowercase ) _a = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(lowercase ) )] for k in DATA[0]} , schema=lowercase ) writer.write_table(lowercase ) writer.close() return path @pytest.fixture(scope="session" ) def _lowerCamelCase ( lowercase : str ) -> Union[str, Any]: _a = str(tmp_path_factory.mktemp("data" ) / "dataset.json" ) _a = {"data": DATA} with open(lowercase , "w" ) as f: json.dump(lowercase , lowercase ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase ( lowercase : int ) -> Union[str, Any]: _a = str(tmp_path_factory.mktemp("data" ) / "dataset.json" ) _a = {"data": DATA_DICT_OF_LISTS} with open(lowercase , "w" ) as f: json.dump(lowercase , lowercase ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase ( lowercase : Optional[int] ) -> str: _a = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl" ) with open(lowercase , "w" ) as f: for item in DATA: f.write(json.dumps(lowercase ) + "\n" ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase ( lowercase : int ) -> List[str]: _a = str(tmp_path_factory.mktemp("data" ) / "dataset2.jsonl" ) with open(lowercase , "w" ) as f: for item in DATA: f.write(json.dumps(lowercase ) + "\n" ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase ( lowercase : Optional[Any] ) -> Optional[Any]: _a = str(tmp_path_factory.mktemp("data" ) / "dataset_312.jsonl" ) with open(lowercase , "w" ) as f: for item in DATA_312: f.write(json.dumps(lowercase ) + "\n" ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase ( lowercase : str ) -> int: _a = str(tmp_path_factory.mktemp("data" ) / "dataset-str.jsonl" ) with open(lowercase , "w" ) as f: for item in DATA_STR: f.write(json.dumps(lowercase ) + "\n" ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase ( lowercase : List[str] , lowercase : Dict ) -> Tuple: import gzip _a = str(tmp_path_factory.mktemp("data" ) / "dataset.txt.gz" ) with open(lowercase , "rb" ) as orig_file: with gzip.open(lowercase , "wb" ) as zipped_file: zipped_file.writelines(lowercase ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase ( lowercase : Union[str, Any] , lowercase : List[Any] ) -> List[Any]: import gzip _a = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl.gz" ) with open(lowercase , "rb" ) as orig_file: with gzip.open(lowercase , "wb" ) as zipped_file: zipped_file.writelines(lowercase ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase ( lowercase : Optional[int] , lowercase : List[Any] , lowercase : int ) -> str: _a = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.zip" with zipfile.ZipFile(lowercase , "w" ) as f: f.write(lowercase , arcname=os.path.basename(lowercase ) ) f.write(lowercase , arcname=os.path.basename(lowercase ) ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase ( lowercase : Union[str, Any] , lowercase : Optional[int] , lowercase : int , lowercase : List[Any] ) -> Optional[int]: _a = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.zip" with zipfile.ZipFile(lowercase , "w" ) as f: f.write(lowercase , arcname=os.path.join("nested" , os.path.basename(lowercase ) ) ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase ( lowercase : Optional[int] , lowercase : List[str] , lowercase : str ) -> Optional[Any]: _a = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.jsonl.zip" with zipfile.ZipFile(lowercase , "w" ) as f: f.write(lowercase , arcname=os.path.join("main_dir" , os.path.basename(lowercase ) ) ) f.write(lowercase , arcname=os.path.join("main_dir" , os.path.basename(lowercase ) ) ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase ( lowercase : Tuple , lowercase : Any , lowercase : Optional[int] ) -> int: _a = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.tar" with tarfile.TarFile(lowercase , "w" ) as f: f.add(lowercase , arcname=os.path.basename(lowercase ) ) f.add(lowercase , arcname=os.path.basename(lowercase ) ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase ( lowercase : str , lowercase : List[str] , lowercase : Union[str, Any] , lowercase : Union[str, Any] ) -> Optional[Any]: _a = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.tar" with tarfile.TarFile(lowercase , "w" ) as f: f.add(lowercase , arcname=os.path.join("nested" , os.path.basename(lowercase ) ) ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase ( lowercase : int ) -> str: _a = ["0", "1", "2", "3"] _a = str(tmp_path_factory.mktemp("data" ) / "dataset.txt" ) with open(lowercase , "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase ( lowercase : str ) -> Dict: _a = ["0", "1", "2", "3"] _a = str(tmp_path_factory.mktemp("data" ) / "dataset2.txt" ) with open(lowercase , "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase ( lowercase : Union[str, Any] ) -> Dict: _a = ["0", "1", "2", "3"] _a = tmp_path_factory.mktemp("data" ) / "dataset.abc" with open(lowercase , "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase ( lowercase : Any , lowercase : Union[str, Any] , lowercase : Any ) -> Optional[Any]: _a = tmp_path_factory.mktemp("data" ) / "dataset.text.zip" with zipfile.ZipFile(lowercase , "w" ) as f: f.write(lowercase , arcname=os.path.basename(lowercase ) ) f.write(lowercase , arcname=os.path.basename(lowercase ) ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase ( lowercase : Dict , lowercase : List[str] , lowercase : List[str] ) -> Union[str, Any]: _a = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.text.zip" with zipfile.ZipFile(lowercase , "w" ) as f: f.write(lowercase , arcname=os.path.join("main_dir" , os.path.basename(lowercase ) ) ) f.write(lowercase , arcname=os.path.join("main_dir" , os.path.basename(lowercase ) ) ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase ( lowercase : Tuple , lowercase : int , lowercase : str ) -> int: _a = tmp_path_factory.mktemp("data" ) / "dataset.ext.zip" with zipfile.ZipFile(lowercase , "w" ) as f: f.write(lowercase , arcname=os.path.basename("unsupported.ext" ) ) f.write(lowercase , arcname=os.path.basename("unsupported_2.ext" ) ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase ( lowercase : List[Any] ) -> Any: _a = "\n".join(["First", "Second\u2029with Unicode new line", "Third"] ) _a = str(tmp_path_factory.mktemp("data" ) / "dataset_with_unicode_new_lines.txt" ) with open(lowercase , "w" , encoding="utf-8" ) as f: f.write(lowercase ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase ( ) -> Optional[Any]: return os.path.join("tests" , "features" , "data" , "test_image_rgb.jpg" ) @pytest.fixture(scope="session" ) def _lowerCamelCase ( ) -> Optional[int]: return os.path.join("tests" , "features" , "data" , "test_audio_44100.wav" ) @pytest.fixture(scope="session" ) def _lowerCamelCase ( lowercase : Any , lowercase : str ) -> Dict: _a = tmp_path_factory.mktemp("data" ) / "dataset.img.zip" with zipfile.ZipFile(lowercase , "w" ) as f: f.write(lowercase , arcname=os.path.basename(lowercase ) ) f.write(lowercase , arcname=os.path.basename(lowercase ).replace(".jpg" , "2.jpg" ) ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase ( lowercase : str ) -> str: _a = tmp_path_factory.mktemp("data_dir" ) (data_dir / "subdir").mkdir() with open(data_dir / "subdir" / "train.txt" , "w" ) as f: f.write("foo\n" * 10 ) with open(data_dir / "subdir" / "test.txt" , "w" ) as f: f.write("bar\n" * 10 ) # hidden file with open(data_dir / "subdir" / ".test.txt" , "w" ) as f: f.write("bar\n" * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / ".subdir" / "train.txt" , "w" ) as f: f.write("foo\n" * 10 ) with open(data_dir / ".subdir" / "test.txt" , "w" ) as f: f.write("bar\n" * 10 ) return data_dir
346
0
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=lowerCamelCase__ ) class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A : str = field(default='''question-answering-extractive''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) _A : ClassVar[Features] = Features({'''question''': Value('''string''' ), '''context''': Value('''string''' )} ) _A : ClassVar[Features] = Features( { '''answers''': Sequence( { '''text''': Value('''string''' ), '''answer_start''': Value('''int32''' ), } ) } ) _A : str = "question" _A : str = "context" _A : str = "answers" @property def UpperCamelCase__ ( self : Tuple ): """simple docstring""" return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
112
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__ : Any = { '''configuration_instructblip''': [ '''INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InstructBlipConfig''', '''InstructBlipQFormerConfig''', '''InstructBlipVisionConfig''', ], '''processing_instructblip''': ['''InstructBlipProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Optional[Any] = [ '''INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InstructBlipQFormerModel''', '''InstructBlipPreTrainedModel''', '''InstructBlipForConditionalGeneration''', '''InstructBlipVisionModel''', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys UpperCamelCase__ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
112
1
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _snake_case ( A__ , unittest.TestCase ): _lowercase : Any = CTRLTokenizer _lowercase : Optional[int] = False _lowercase : Dict = False def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE = ['adapt', 're@@', 'a@@', 'apt', 'c@@', 't', '<unk>'] SCREAMING_SNAKE_CASE = dict(zip(a , range(len(a)))) SCREAMING_SNAKE_CASE = ['#version: 0.2', 'a p', 'ap t</w>', 'r e', 'a d', 'ad apt</w>', ''] SCREAMING_SNAKE_CASE = {'unk_token': '<unk>'} SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(a) + '\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(a)) def SCREAMING_SNAKE_CASE__ ( self , **a) -> Dict: kwargs.update(self.special_tokens_map) return CTRLTokenizer.from_pretrained(self.tmpdirname , **a) def SCREAMING_SNAKE_CASE__ ( self , a) -> Tuple: SCREAMING_SNAKE_CASE = 'adapt react readapt apt' SCREAMING_SNAKE_CASE = 'adapt react readapt apt' return input_text, output_text def SCREAMING_SNAKE_CASE__ ( self) -> int: SCREAMING_SNAKE_CASE = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map) SCREAMING_SNAKE_CASE = 'adapt react readapt apt' SCREAMING_SNAKE_CASE = 'adapt re@@ a@@ c@@ t re@@ adapt apt'.split() SCREAMING_SNAKE_CASE = tokenizer.tokenize(a) self.assertListEqual(a , a) SCREAMING_SNAKE_CASE = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(a) , a)
327
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available a_ : Any = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Dict = ['MLukeTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys a_ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
327
1
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __magic_name__ ( _UpperCamelCase ): lowerCAmelCase : Optional[int] = ['image_processor', 'tokenizer'] lowerCAmelCase : List[str] = 'CLIPImageProcessor' lowerCAmelCase : Union[str, Any] = ('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__( self : Dict ,_UpperCAmelCase : Tuple=None ,_UpperCAmelCase : int=None ,**_UpperCAmelCase : str ): _a : List[str] = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' ,_UpperCAmelCase ,) _a : Dict = kwargs.pop('feature_extractor' ) _a : Optional[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(_UpperCAmelCase ,_UpperCAmelCase ) def __call__( self : Union[str, Any] ,_UpperCAmelCase : Dict=None ,_UpperCAmelCase : List[str]=None ,_UpperCAmelCase : Optional[Any]=None ,**_UpperCAmelCase : Optional[Any] ): if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: _a : int = self.tokenizer(_UpperCAmelCase ,return_tensors=_UpperCAmelCase ,**_UpperCAmelCase ) if images is not None: _a : Dict = self.image_processor(_UpperCAmelCase ,return_tensors=_UpperCAmelCase ,**_UpperCAmelCase ) if text is not None and images is not None: _a : Optional[int] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_UpperCAmelCase ) ,tensor_type=_UpperCAmelCase ) def __lowercase ( self : int ,*_UpperCAmelCase : List[Any] ,**_UpperCAmelCase : Dict ): return self.tokenizer.batch_decode(*_UpperCAmelCase ,**_UpperCAmelCase ) def __lowercase ( self : Optional[int] ,*_UpperCAmelCase : Any ,**_UpperCAmelCase : Dict ): return self.tokenizer.decode(*_UpperCAmelCase ,**_UpperCAmelCase ) @property def __lowercase ( self : Any ): _a : Tuple = self.tokenizer.model_input_names _a : Tuple = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
89
def lowerCAmelCase__ ( ) -> Any: '''simple docstring''' for n in range(1 , 1_0_0_0_0_0_0 ): yield n * (n + 1) // 2 def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Tuple ) -> Any: '''simple docstring''' A__ = 1 A__ = 2 while i * i <= n: A__ = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def lowerCAmelCase__ ( ) -> Dict: '''simple docstring''' return next(i for i in triangle_number_generator() if count_divisors(SCREAMING_SNAKE_CASE_ ) > 5_0_0 ) if __name__ == "__main__": print(solution())
68
0
from manim import * class _snake_case ( snake_case ): def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Any = Rectangle(height=0.5 , width=0.5 ) __magic_name__ : Dict = Rectangle(height=0.25 , width=0.25 ) __magic_name__ : Tuple = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) __magic_name__ : Optional[int] = [mem.copy() for i in range(6 )] __magic_name__ : List[str] = [mem.copy() for i in range(6 )] __magic_name__ : int = VGroup(*_a ).arrange(_a , buff=0 ) __magic_name__ : List[str] = VGroup(*_a ).arrange(_a , buff=0 ) __magic_name__ : Optional[Any] = VGroup(_a , _a ).arrange(_a , buff=0 ) __magic_name__ : Optional[int] = Text("CPU" , font_size=24 ) __magic_name__ : Optional[Any] = Group(_a , _a ).arrange(_a , buff=0.5 , aligned_edge=_a ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_a ) __magic_name__ : Optional[int] = [mem.copy() for i in range(4 )] __magic_name__ : Optional[Any] = VGroup(*_a ).arrange(_a , buff=0 ) __magic_name__ : Any = Text("GPU" , font_size=24 ) __magic_name__ : Optional[Any] = Group(_a , _a ).arrange(_a , buff=0.5 , aligned_edge=_a ) gpu.move_to([-1, -1, 0] ) self.add(_a ) __magic_name__ : Optional[int] = [mem.copy() for i in range(6 )] __magic_name__ : Dict = VGroup(*_a ).arrange(_a , buff=0 ) __magic_name__ : List[Any] = Text("Model" , font_size=24 ) __magic_name__ : List[str] = Group(_a , _a ).arrange(_a , buff=0.5 , aligned_edge=_a ) model.move_to([3, -1.0, 0] ) self.add(_a ) __magic_name__ : str = [] __magic_name__ : int = [] __magic_name__ : Optional[int] = [] for i, rect in enumerate(_a ): rect.set_stroke(_a ) __magic_name__ : Optional[Any] = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(_a , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=_a ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=_a , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=_a , buff=0.0 ) self.add(_a ) model_cpu_arr.append(_a ) self.add(*_a , *_a , *_a ) __magic_name__ : Optional[Any] = [mem.copy() for i in range(6 )] __magic_name__ : List[str] = VGroup(*_a ).arrange(_a , buff=0 ) __magic_name__ : Any = Text("Loaded Checkpoint" , font_size=24 ) __magic_name__ : Dict = Group(_a , _a ).arrange(_a , buff=0.5 , aligned_edge=_a ) checkpoint.move_to([3, 0.5, 0] ) self.add(_a ) __magic_name__ : Optional[int] = [] __magic_name__ : Tuple = [] for i, rect in enumerate(_a ): __magic_name__ : Union[str, Any] = fill.copy().set_fill(_a , opacity=0.7 ) target.move_to(_a ) ckpt_arr.append(_a ) __magic_name__ : Dict = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(_a ) self.add(*_a , *_a ) __magic_name__ : List[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __magic_name__ : Union[str, Any] = MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_a , _a ) __magic_name__ : Any = MarkupText( f'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(_a , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(_a ) __magic_name__ : str = MarkupText( f'''Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) __magic_name__ : Any = [meta_mem.copy() for i in range(6 )] __magic_name__ : List[Any] = [meta_mem.copy() for i in range(6 )] __magic_name__ : Union[str, Any] = VGroup(*_a ).arrange(_a , buff=0 ) __magic_name__ : Tuple = VGroup(*_a ).arrange(_a , buff=0 ) __magic_name__ : Dict = VGroup(_a , _a ).arrange(_a , buff=0 ) __magic_name__ : Tuple = Text("Disk" , font_size=24 ) __magic_name__ : str = Group(_a , _a ).arrange(_a , buff=0.5 , aligned_edge=_a ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(_a , run_time=3 ) , Write(_a , run_time=1 ) , Create(_a , run_time=1 ) ) __magic_name__ : List[str] = [] for i, rect in enumerate(_a ): __magic_name__ : List[Any] = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(_a , run_time=1.5 ) ) self.play(*_a ) self.play(FadeOut(_a ) ) __magic_name__ : Optional[int] = MarkupText(f'''Then, the checkpoint is removed from memory\nthrough garbage collection.''' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(_a , run_time=3 ) ) self.play( FadeOut(_a , _a , *_a , *_a ) , ) self.wait()
41
from scipy.stats import pearsonr import datasets snake_case : Tuple = "\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n" snake_case : Dict = "\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric(\"pearsonr\")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results['pearsonr'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric(\"pearsonr\")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n ['p-value', 'pearsonr']\n >>> print(round(results['pearsonr'], 2))\n -0.74\n >>> print(round(results['p-value'], 2))\n 0.15\n" snake_case : int = "\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def SCREAMING_SNAKE_CASE ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ) , reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"] , ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a=False ): if return_pvalue: __magic_name__ : Union[str, Any] = pearsonr(_a , _a ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(_a , _a )[0] )}
41
1
"""simple docstring""" from __future__ import annotations from math import pi, sqrt def a_ ( _lowerCAmelCase : float , _lowerCAmelCase : float ): '''simple docstring''' if inductance <= 0: raise ValueError('Inductance cannot be 0 or negative' ) elif capacitance <= 0: raise ValueError('Capacitance cannot be 0 or negative' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
77
"""simple docstring""" from __future__ import annotations import math from collections.abc import Callable def a_ ( _lowerCAmelCase : Callable[[int | float], int | float] , _lowerCAmelCase : int | float , _lowerCAmelCase : int | float , _lowerCAmelCase : int = 100 , ): '''simple docstring''' lowercase__ : Dict = x_start lowercase__ : Union[str, Any] = fnc(_lowerCAmelCase ) lowercase__ : Optional[Any] = 0.0 for _ in range(_lowerCAmelCase ): # Approximates curve as a sequence of linear lines and sums their length lowercase__ : Union[str, Any] = (x_end - x_start) / steps + xa lowercase__ : Union[str, Any] = fnc(_lowerCAmelCase ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step lowercase__ : Union[str, Any] = xa lowercase__ : int = fxa return length if __name__ == "__main__": def a_ ( _lowerCAmelCase : List[Any] ): '''simple docstring''' return math.sin(10 * x ) print("f(x) = sin(10 * x)") print("The length of the curve from x = -10 to x = 10 is:") _UpperCamelCase : str = 10 while i <= 10_00_00: print(f'''With {i} steps: {line_length(f, -10, 10, i)}''') i *= 10
77
1
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase : int = 16 lowercase : int = 32 def SCREAMING_SNAKE_CASE__ ( __A , __A = 16 ) -> str: _snake_case = AutoTokenizer.from_pretrained('bert-base-cased' ) _snake_case = load_dataset('glue' , 'mrpc' ) def tokenize_function(__A ): # max_length=None => use the model max length (it's actually the default) _snake_case = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=__A , max_length=__A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _snake_case = datasets.map( __A , batched=__A , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _snake_case = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(__A ): # On TPU it's best to pad everything to the same length or training will be very slow. _snake_case = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _snake_case = 16 elif accelerator.mixed_precision != "no": _snake_case = 8 else: _snake_case = None return tokenizer.pad( __A , padding='longest' , max_length=__A , pad_to_multiple_of=__A , return_tensors='pt' , ) # Instantiate dataloaders. _snake_case = DataLoader( tokenized_datasets['train'] , shuffle=__A , collate_fn=__A , batch_size=__A ) _snake_case = DataLoader( tokenized_datasets['validation'] , shuffle=__A , collate_fn=__A , batch_size=__A ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowercase : Dict = mocked_dataloaders # noqa: F811 def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> Dict: # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , __A ) == "1": _snake_case = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: _snake_case = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='all' , project_dir=args.project_dir ) else: _snake_case = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _snake_case = config['lr'] _snake_case = int(config['num_epochs'] ) _snake_case = int(config['seed'] ) _snake_case = int(config['batch_size'] ) set_seed(__A ) _snake_case , _snake_case = get_dataloaders(__A , __A ) _snake_case = evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation _snake_case = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _snake_case = batch_size // MAX_GPU_BATCH_SIZE _snake_case = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) _snake_case = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=__A ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _snake_case = model.to(accelerator.device ) # Instantiate optimizer _snake_case = AdamW(params=model.parameters() , lr=__A ) # Instantiate scheduler _snake_case = get_linear_schedule_with_warmup( optimizer=__A , num_warmup_steps=100 , num_training_steps=(len(__A ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = accelerator.prepare( __A , __A , __A , __A , __A ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: _snake_case = os.path.split(__A )[-1].split('.' )[0] accelerator.init_trackers(__A , __A ) # Now we train the model for epoch in range(__A ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: _snake_case = 0 for step, batch in enumerate(__A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _snake_case = model(**__A ) _snake_case = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() _snake_case = loss / gradient_accumulation_steps accelerator.backward(__A ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__A ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): _snake_case = model(**__A ) _snake_case = outputs.logits.argmax(dim=-1 ) _snake_case , _snake_case = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=__A , references=__A , ) _snake_case = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' , __A ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { 'accuracy': eval_metric['accuracy'], 'f1': eval_metric['f1'], 'train_loss': total_loss.item() / len(__A ), 'epoch': epoch, } , step=__A , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def SCREAMING_SNAKE_CASE__ ( ) -> Dict: _snake_case = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=__A , default=__A , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) parser.add_argument( '--with_tracking' , action='store_true' , help='Whether to load in all available experiment trackers from the environment and use them for logging.' , ) parser.add_argument( '--project_dir' , type=__A , default='logs' , help='Location on where to store experiment tracking logs` and relevent project information' , ) _snake_case = parser.parse_args() _snake_case = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(__A , __A ) if __name__ == "__main__": main()
160
'''simple docstring''' import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch lowercase : Any = logging.get_logger(__name__) class __UpperCAmelCase : def __init__( self , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_=None , lowerCAmelCase_=None ): """simple docstring""" if not conversation_id: _snake_case = uuid.uuida() if past_user_inputs is None: _snake_case = [] if generated_responses is None: _snake_case = [] _snake_case = conversation_id _snake_case = past_user_inputs _snake_case = generated_responses _snake_case = text def __eq__( self , lowerCAmelCase_ ): """simple docstring""" if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = False ): """simple docstring""" if self.new_user_input: if overwrite: logger.warning( F'User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ' F'with: "{text}".' ) _snake_case = text else: logger.warning( F'User input added while unprocessed input was existing: "{self.new_user_input}" new input ' F'ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input' ) else: _snake_case = text def lowerCamelCase ( self ): """simple docstring""" if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) _snake_case = None def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" self.generated_responses.append(lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self ): """simple docstring""" _snake_case = F'Conversation id: {self.uuid} \n' for is_user, text in self.iter_texts(): _snake_case = 'user' if is_user else 'bot' output += F'{name} >> {text} \n' return output @add_end_docstrings( _lowerCamelCase , r""" min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. """ , ) class __UpperCAmelCase ( _lowerCamelCase ): def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ ) if self.tokenizer.pad_token_id is None: _snake_case = self.tokenizer.eos_token def lowerCamelCase ( self , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ ): """simple docstring""" _snake_case = {} _snake_case = {} _snake_case = {} if min_length_for_response is not None: _snake_case = min_length_for_response if minimum_tokens is not None: _snake_case = minimum_tokens if "max_length" in generate_kwargs: _snake_case = generate_kwargs['max_length'] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: _snake_case = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(lowerCAmelCase_ ) return preprocess_params, forward_params, postprocess_params def __call__( self , lowerCAmelCase_ , lowerCAmelCase_=0 , **lowerCAmelCase_ ): """simple docstring""" _snake_case = super().__call__(lowerCAmelCase_ , num_workers=lowerCAmelCase_ , **lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and len(lowerCAmelCase_ ) == 1: return outputs[0] return outputs def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=32 ): """simple docstring""" if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise ValueError('ConversationalPipeline, expects Conversation as inputs' ) if conversation.new_user_input is None: raise ValueError( F'Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. ' 'Add user inputs with the conversation\'s `add_user_input` method' ) if hasattr(self.tokenizer , '_build_conversation_input_ids' ): _snake_case = self.tokenizer._build_conversation_input_ids(lowerCAmelCase_ ) else: # If the tokenizer cannot handle conversations, we default to only the old version _snake_case = self._legacy_parse_and_tokenize(lowerCAmelCase_ ) if self.framework == "pt": _snake_case = torch.LongTensor([input_ids] ) elif self.framework == "tf": _snake_case = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=10 , **lowerCAmelCase_ ): """simple docstring""" _snake_case = generate_kwargs.get('max_length' , self.model.config.max_length ) _snake_case = model_inputs['input_ids'].shape[1] if max_length - minimum_tokens < n: logger.warning(F'Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})' ) _snake_case = max_length - minimum_tokens _snake_case = model_inputs['input_ids'][:, -trim:] if "attention_mask" in model_inputs: _snake_case = model_inputs['attention_mask'][:, -trim:] _snake_case = model_inputs.pop('conversation' ) _snake_case = max_length _snake_case = self.model.generate(**lowerCAmelCase_ , **lowerCAmelCase_ ) if self.model.config.is_encoder_decoder: _snake_case = 1 else: _snake_case = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=True ): """simple docstring""" _snake_case = model_outputs['output_ids'] _snake_case = self.tokenizer.decode( output_ids[0] , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ , ) _snake_case = model_outputs['conversation'] conversation.mark_processed() conversation.append_response(lowerCAmelCase_ ) return conversation def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = self.tokenizer.eos_token_id _snake_case = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) ) if len(lowerCAmelCase_ ) > self.tokenizer.model_max_length: _snake_case = input_ids[-self.tokenizer.model_max_length :] return input_ids
160
1
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> float: '''simple docstring''' return round(float(moles / volume ) * nfactor ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> float: '''simple docstring''' return round(float((moles * 0.0_8_2_1 * temperature) / (volume) ) ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> float: '''simple docstring''' return round(float((moles * 0.0_8_2_1 * temperature) / (pressure) ) ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> float: '''simple docstring''' return round(float((pressure * volume) / (0.0_8_2_1 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
215
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A_ : Optional[Any] = { """configuration_llama""": ["""LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LlamaConfig"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[str] = ["""LlamaTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Dict = ["""LlamaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[int] = [ """LlamaForCausalLM""", """LlamaModel""", """LlamaPreTrainedModel""", """LlamaForSequenceClassification""", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys A_ : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
215
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCamelCase : Optional[int] = logging.get_logger(__name__) __lowerCamelCase : str = { """andreasmadsen/efficient_mlm_m0.40""": ( """https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json""" ), } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "roberta-prelayernorm" def __init__( self : Tuple , __A : Any=5_0_2_6_5 , __A : Optional[int]=7_6_8 , __A : Dict=1_2 , __A : Union[str, Any]=1_2 , __A : List[Any]=3_0_7_2 , __A : Optional[Any]="gelu" , __A : Optional[int]=0.1 , __A : Tuple=0.1 , __A : Optional[Any]=5_1_2 , __A : List[str]=2 , __A : Optional[int]=0.0_2 , __A : Tuple=1e-1_2 , __A : Any=1 , __A : str=0 , __A : int=2 , __A : List[str]="absolute" , __A : Optional[Any]=True , __A : List[Any]=None , **__A : Optional[Any] , ): super().__init__(pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , **__A ) snake_case__ : Tuple = vocab_size snake_case__ : Optional[Any] = hidden_size snake_case__ : List[Any] = num_hidden_layers snake_case__ : List[Any] = num_attention_heads snake_case__ : Dict = hidden_act snake_case__ : Union[str, Any] = intermediate_size snake_case__ : List[Any] = hidden_dropout_prob snake_case__ : Any = attention_probs_dropout_prob snake_case__ : int = max_position_embeddings snake_case__ : Tuple = type_vocab_size snake_case__ : Optional[int] = initializer_range snake_case__ : int = layer_norm_eps snake_case__ : Dict = position_embedding_type snake_case__ : int = use_cache snake_case__ : Dict = classifier_dropout class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" @property def _lowercase ( self : Optional[int] ): if self.task == "multiple-choice": snake_case__ : List[str] = {0: "batch", 1: "choice", 2: "sequence"} else: snake_case__ : Tuple = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
286
import sys __lowerCamelCase : List[str] = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def SCREAMING_SNAKE_CASE ( snake_case_ : str = N ): snake_case__ : Any = -sys.maxsize - 1 for i in range(len(snake_case_ ) - 12 ): snake_case__ : Tuple = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: snake_case__ : Dict = product return largest_product if __name__ == "__main__": print(f"{solution() = }")
286
1
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class A__(nn.Module ): """simple docstring""" _A : int _A : int _A : float = 0.0 _A : int = 1 _A : int = 1 _A : bool = True _A : bool = False _A : bool = False _A : bool = False _A : jnp.dtype = jnp.floataa def UpperCamelCase__ ( self ) -> Tuple: a_ : int = [] a_ : List[Any] = [] for i in range(self.num_layers ): a_ : Any = self.in_channels if i == 0 else self.out_channels a_ : List[str] = FlaxResnetBlockaD( in_channels=_lowercase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_lowercase ) a_ : Dict = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_lowercase ) a_ : List[str] = resnets a_ : str = attentions if self.add_downsample: a_ : Optional[Any] = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , _lowercase , _lowercase , _lowercase , _lowercase=True ) -> Optional[int]: a_ : Optional[Any] = () for resnet, attn in zip(self.resnets , self.attentions ): a_ : Any = resnet(_lowercase , _lowercase , deterministic=_lowercase ) a_ : Any = attn(_lowercase , _lowercase , deterministic=_lowercase ) output_states += (hidden_states,) if self.add_downsample: a_ : str = self.downsamplers_a(_lowercase ) output_states += (hidden_states,) return hidden_states, output_states class A__(nn.Module ): """simple docstring""" _A : int _A : int _A : float = 0.0 _A : int = 1 _A : bool = True _A : jnp.dtype = jnp.floataa def UpperCamelCase__ ( self ) -> Dict: a_ : int = [] for i in range(self.num_layers ): a_ : List[str] = self.in_channels if i == 0 else self.out_channels a_ : Optional[Any] = FlaxResnetBlockaD( in_channels=_lowercase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_lowercase ) a_ : Tuple = resnets if self.add_downsample: a_ : List[str] = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , _lowercase , _lowercase , _lowercase=True ) -> int: a_ : Tuple = () for resnet in self.resnets: a_ : Union[str, Any] = resnet(_lowercase , _lowercase , deterministic=_lowercase ) output_states += (hidden_states,) if self.add_downsample: a_ : List[Any] = self.downsamplers_a(_lowercase ) output_states += (hidden_states,) return hidden_states, output_states class A__(nn.Module ): """simple docstring""" _A : int _A : int _A : int _A : float = 0.0 _A : int = 1 _A : int = 1 _A : bool = True _A : bool = False _A : bool = False _A : bool = False _A : jnp.dtype = jnp.floataa def UpperCamelCase__ ( self ) -> Any: a_ : Dict = [] a_ : Union[str, Any] = [] for i in range(self.num_layers ): a_ : Any = self.in_channels if (i == self.num_layers - 1) else self.out_channels a_ : Optional[int] = self.prev_output_channel if i == 0 else self.out_channels a_ : Any = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_lowercase ) a_ : Optional[int] = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_lowercase ) a_ : Any = resnets a_ : Dict = attentions if self.add_upsample: a_ : Union[str, Any] = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=True ) -> int: for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states a_ : Optional[Any] = res_hidden_states_tuple[-1] a_ : Tuple = res_hidden_states_tuple[:-1] a_ : Tuple = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) a_ : Dict = resnet(_lowercase , _lowercase , deterministic=_lowercase ) a_ : List[str] = attn(_lowercase , _lowercase , deterministic=_lowercase ) if self.add_upsample: a_ : str = self.upsamplers_a(_lowercase ) return hidden_states class A__(nn.Module ): """simple docstring""" _A : int _A : int _A : int _A : float = 0.0 _A : int = 1 _A : bool = True _A : jnp.dtype = jnp.floataa def UpperCamelCase__ ( self ) -> Any: a_ : List[str] = [] for i in range(self.num_layers ): a_ : Dict = self.in_channels if (i == self.num_layers - 1) else self.out_channels a_ : Optional[int] = self.prev_output_channel if i == 0 else self.out_channels a_ : Optional[Any] = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_lowercase ) a_ : Optional[int] = resnets if self.add_upsample: a_ : Union[str, Any] = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , _lowercase , _lowercase , _lowercase , _lowercase=True ) -> int: for resnet in self.resnets: # pop res hidden states a_ : int = res_hidden_states_tuple[-1] a_ : List[Any] = res_hidden_states_tuple[:-1] a_ : Tuple = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) a_ : str = resnet(_lowercase , _lowercase , deterministic=_lowercase ) if self.add_upsample: a_ : Any = self.upsamplers_a(_lowercase ) return hidden_states class A__(nn.Module ): """simple docstring""" _A : int _A : float = 0.0 _A : int = 1 _A : int = 1 _A : bool = False _A : bool = False _A : jnp.dtype = jnp.floataa def UpperCamelCase__ ( self ) -> List[Any]: # there is always at least one resnet a_ : Optional[int] = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] a_ : Optional[Any] = [] for _ in range(self.num_layers ): a_ : List[Any] = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_lowercase ) a_ : Any = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_lowercase ) a_ : Any = resnets a_ : Tuple = attentions def __call__( self , _lowercase , _lowercase , _lowercase , _lowercase=True ) -> Dict: a_ : int = self.resnets[0](_lowercase , _lowercase ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): a_ : Dict = attn(_lowercase , _lowercase , deterministic=_lowercase ) a_ : str = resnet(_lowercase , _lowercase , deterministic=_lowercase ) return hidden_states
248
from __future__ import annotations def _UpperCAmelCase ( a__): '''simple docstring''' a_ : List[str] = str(a__) return len(a__) == 9 and set(a__) == set("""123456789""") def _UpperCAmelCase ( ): '''simple docstring''' for base_num in range(9_9_9_9 , 4_9_9_9 , -1): a_ : Dict = 1_0_0_0_0_2 * base_num if is_9_pandigital(a__): return candidate for base_num in range(3_3_3 , 9_9 , -1): a_ : Tuple = 1_0_0_2_0_0_3 * base_num if is_9_pandigital(a__): return candidate return None if __name__ == "__main__": print(F"""{solution() = }""")
248
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Optional[Any]= logging.get_logger(__name__) _a : str= { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/config.json", "funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json", "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/config.json", "funnel-transformer/medium-base": "https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json", "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/config.json", "funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json", "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json", "funnel-transformer/xlarge-base": "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json", } class UpperCamelCase ( UpperCamelCase_ ): UpperCAmelCase : str = """funnel""" UpperCAmelCase : str = { """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", } def __init__(self : List[str] , _A : Optional[Any]=3_05_22 , _A : Any=[4, 4, 4] , _A : Any=None , _A : Union[str, Any]=2 , _A : int=7_68 , _A : str=12 , _A : str=64 , _A : Any=30_72 , _A : List[str]="gelu_new" , _A : List[str]=0.1 , _A : Dict=0.1 , _A : Optional[Any]=0.0 , _A : List[Any]=0.1 , _A : Union[str, Any]=None , _A : str=1E-9 , _A : int="mean" , _A : Optional[int]="relative_shift" , _A : Tuple=True , _A : str=True , _A : Dict=True , **_A : Dict , ) -> Tuple: __snake_case : Union[str, Any] = vocab_size __snake_case : Tuple = block_sizes __snake_case : str = [1] * len(_a) if block_repeats is None else block_repeats assert len(_a) == len( self.block_repeats), "`block_sizes` and `block_repeats` should have the same length." __snake_case : List[str] = num_decoder_layers __snake_case : Any = d_model __snake_case : List[str] = n_head __snake_case : Union[str, Any] = d_head __snake_case : str = d_inner __snake_case : Union[str, Any] = hidden_act __snake_case : List[Any] = hidden_dropout __snake_case : Any = attention_dropout __snake_case : List[Any] = activation_dropout __snake_case : Optional[Any] = initializer_range __snake_case : Union[str, Any] = initializer_std __snake_case : Optional[int] = layer_norm_eps assert pooling_type in [ "mean", "max", ], f"Got {pooling_type} for `pooling_type` but only \'mean\' and \'max\' are supported." __snake_case : Union[str, Any] = pooling_type assert attention_type in [ "relative_shift", "factorized", ], f"Got {attention_type} for `attention_type` but only \'relative_shift\' and \'factorized\' are supported." __snake_case : Optional[Any] = attention_type __snake_case : Dict = separate_cls __snake_case : Optional[int] = truncate_seq __snake_case : List[Any] = pool_q_only super().__init__(**_a) @property def _lowercase (self : str) -> int: return sum(self.block_sizes) @num_hidden_layers.setter def _lowercase (self : str , _A : Union[str, Any]) -> Dict: raise NotImplementedError( 'This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.') @property def _lowercase (self : Optional[Any]) -> Tuple: return len(self.block_sizes) @num_blocks.setter def _lowercase (self : Tuple , _A : List[Any]) -> Any: raise NotImplementedError('This model does not support the setting of `num_blocks`. Please set `block_sizes`.')
362
"""simple docstring""" from __future__ import annotations import math def __UpperCAmelCase ( UpperCAmelCase_ : int ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(UpperCAmelCase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True _a : Any= [num for num in range(3, 100_001, 2) if not is_prime(num)] def __UpperCAmelCase ( UpperCAmelCase_ : int ) -> list[int]: '''simple docstring''' if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise ValueError('n must be an integer' ) if n <= 0: raise ValueError('n must be >= 0' ) __snake_case : int = [] for num in range(len(UpperCAmelCase_ ) ): __snake_case : List[str] = 0 while 2 * i * i <= odd_composites[num]: __snake_case : List[Any] = odd_composites[num] - 2 * i * i if is_prime(UpperCAmelCase_ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(UpperCAmelCase_ ) == n: return list_nums return [] def __UpperCAmelCase ( ) -> int: '''simple docstring''' return compute_nums(1 )[0] if __name__ == "__main__": print(f'''{solution() = }''')
95
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase = { '''configuration_data2vec_audio''': ['''DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Data2VecAudioConfig'''], '''configuration_data2vec_text''': [ '''DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Data2VecTextConfig''', '''Data2VecTextOnnxConfig''', ], '''configuration_data2vec_vision''': [ '''DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Data2VecVisionConfig''', '''Data2VecVisionOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Data2VecAudioForAudioFrameClassification''', '''Data2VecAudioForCTC''', '''Data2VecAudioForSequenceClassification''', '''Data2VecAudioForXVector''', '''Data2VecAudioModel''', '''Data2VecAudioPreTrainedModel''', ] UpperCamelCase = [ '''DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Data2VecTextForCausalLM''', '''Data2VecTextForMaskedLM''', '''Data2VecTextForMultipleChoice''', '''Data2VecTextForQuestionAnswering''', '''Data2VecTextForSequenceClassification''', '''Data2VecTextForTokenClassification''', '''Data2VecTextModel''', '''Data2VecTextPreTrainedModel''', ] UpperCamelCase = [ '''DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Data2VecVisionForImageClassification''', '''Data2VecVisionForMaskedImageModeling''', '''Data2VecVisionForSemanticSegmentation''', '''Data2VecVisionModel''', '''Data2VecVisionPreTrainedModel''', ] if is_tf_available(): UpperCamelCase = [ '''TFData2VecVisionForImageClassification''', '''TFData2VecVisionForSemanticSegmentation''', '''TFData2VecVisionModel''', '''TFData2VecVisionPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
319
'''simple docstring''' def SCREAMING_SNAKE_CASE( __lowercase = 1 , __lowercase = 1_0_0_0 ) -> int: A: Any = 1 A: Optional[Any] = 0 for divide_by_number in range(__lowercase , digit + 1 ): A: list[int] = [] A: List[Any] = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(__lowercase ): A: Any = len(__lowercase ) A: Dict = divide_by_number else: has_been_divided.append(__lowercase ) A: str = now_divide * 1_0 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
319
1
def lowerCamelCase__ ( ): """simple docstring""" return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] snake_case = generate_large_matrix() snake_case = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def lowerCamelCase__ ( lowercase ): """simple docstring""" assert all(row == sorted(lowercase , reverse=lowercase ) for row in grid ) assert all(list(lowercase ) == sorted(lowercase , reverse=lowercase ) for col in zip(*lowercase ) ) def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : Optional[Any] = len(lowercase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: SCREAMING_SNAKE_CASE : List[Any] = (left + right) // 2 SCREAMING_SNAKE_CASE : Optional[int] = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: SCREAMING_SNAKE_CASE : List[Any] = mid + 1 else: SCREAMING_SNAKE_CASE : Dict = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(lowercase ) def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = 0 SCREAMING_SNAKE_CASE : List[str] = len(grid[0] ) for i in range(len(lowercase ) ): SCREAMING_SNAKE_CASE : Any = find_negative_index(grid[i][:bound] ) total += bound return (len(lowercase ) * len(grid[0] )) - total def lowerCamelCase__ ( lowercase ): """simple docstring""" return len([number for row in grid for number in row if number < 0] ) def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = 0 for row in grid: for i, number in enumerate(lowercase ): if number < 0: total += len(lowercase ) - i break return total def lowerCamelCase__ ( ): """simple docstring""" from timeit import timeit print("Running benchmarks" ) SCREAMING_SNAKE_CASE : List[str] = ( "from __main__ import count_negatives_binary_search, " "count_negatives_brute_force, count_negatives_brute_force_with_break, grid" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): SCREAMING_SNAKE_CASE : Union[str, Any] = timeit(F'''{func}(grid=grid)''' , setup=lowercase , number=500 ) print(F'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
319
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) snake_case = { """configuration_encodec""": [ """ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP""", """EncodecConfig""", ], """feature_extraction_encodec""": ["""EncodecFeatureExtractor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST""", """EncodecModel""", """EncodecPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
319
1
from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING UpperCAmelCase = logging.get_logger(__name__) @add_end_docstrings(__a ) class A_ ( __a ): '''simple docstring''' def __init__( self , *snake_case , **snake_case ): super().__init__(*a_ , **a_ ) requires_backends(self , 'decord' ) self.check_model_type(a_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case=None , snake_case=None , snake_case=None ): lowercase = {} if frame_sampling_rate is not None: lowercase = frame_sampling_rate if num_frames is not None: lowercase = num_frames lowercase = {} if top_k is not None: lowercase = top_k return preprocess_params, {}, postprocess_params def __call__( self , snake_case , **snake_case ): return super().__call__(a_ , **a_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case=None , snake_case=1 ): if num_frames is None: lowercase = self.model.config.num_frames if video.startswith('http://' ) or video.startswith('https://' ): lowercase = BytesIO(requests.get(a_ ).content ) lowercase = VideoReader(a_ ) videoreader.seek(0 ) lowercase = 0 lowercase = num_frames * frame_sampling_rate - 1 lowercase = np.linspace(a_ , a_ , num=a_ , dtype=np.intaa ) lowercase = videoreader.get_batch(a_ ).asnumpy() lowercase = list(a_ ) lowercase = self.image_processor(a_ , return_tensors=self.framework ) return model_inputs def SCREAMING_SNAKE_CASE__ ( self , snake_case ): lowercase = self.model(**a_ ) return model_outputs def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case=5 ): if top_k > self.model.config.num_labels: lowercase = self.model.config.num_labels if self.framework == "pt": lowercase = model_outputs.logits.softmax(-1 )[0] lowercase = probs.topk(a_ ) else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) lowercase = scores.tolist() lowercase = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(a_ , a_ )]
195
"""simple docstring""" from __future__ import annotations def UpperCAmelCase__ (snake_case__ : list[int] , snake_case__ : int ): """simple docstring""" if len(snake_case__ ) < k or k < 0: raise ValueError("""Invalid Input""" ) _snake_case : Optional[int] = sum(array[:k] ) for i in range(len(snake_case__ ) - k ): _snake_case : Optional[Any] = current_sum - array[i] + array[i + k] _snake_case : List[str] = max(snake_case__ , snake_case__ ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() A_ = [randint(-10_00, 10_00) for i in range(1_00)] A_ = randint(0, 1_10) print(F'''The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}''')
64
0
'''simple docstring''' import math import tensorflow as tf from packaging import version def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : Optional[Any] = tf.convert_to_tensor(snake_case__ ) A : List[Any] = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : Any = tf.convert_to_tensor(snake_case__ ) A : Dict = tf.cast(math.pi , x.dtype ) A : Optional[Any] = tf.cast(0.04_47_15 , x.dtype ) A : List[str] = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(snake_case__ , 3 )) )) return x * cdf def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : Optional[int] = tf.convert_to_tensor(snake_case__ ) return x * tf.tanh(tf.math.softplus(snake_case__ ) ) def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : Union[str, Any] = tf.convert_to_tensor(snake_case__ ) A : List[Any] = tf.cast(0.04_47_15 , x.dtype ) A : int = tf.cast(0.79_78_84_56_08 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : Any = tf.convert_to_tensor(snake_case__ ) A : List[Any] = tf.cast(1.7_02 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' return tf.clip_by_value(_gelu(snake_case__ ) , -10 , 10 ) def lowerCAmelCase_ ( snake_case__ , snake_case__=-1 ): '''simple docstring''' A : Optional[Any] = tf.split(snake_case__ , 2 , axis=snake_case__ ) return a * tf.math.sigmoid(snake_case__ ) if version.parse(tf.version.VERSION) >= version.parse('2.4'): def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' return tf.keras.activations.gelu(snake_case__ , approximate=snake_case__ ) lowercase : Union[str, Any] = tf.keras.activations.gelu lowercase : str = approximate_gelu_wrap else: lowercase : Tuple = _gelu lowercase : Optional[int] = _gelu_new lowercase : str = { 'gelu': gelu, 'gelu_10': gelu_aa, 'gelu_fast': gelu_fast, 'gelu_new': gelu_new, 'glu': glu, 'mish': mish, 'quick_gelu': quick_gelu, 'relu': tf.keras.activations.relu, 'sigmoid': tf.keras.activations.sigmoid, 'silu': tf.keras.activations.swish, 'swish': tf.keras.activations.swish, 'tanh': tf.keras.activations.tanh, } def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F'function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}' )
370
'''simple docstring''' import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class A : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=sys.maxsize ) -> Union[str, Any]: """simple docstring""" A : Tuple = '''bilinear''' A : Optional[int] = max_size A : Dict = short_edge_length def __call__( self , SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" A : Tuple = [] for img in imgs: A, A : str = img.shape[:2] # later: provide list and randomly choose index for resize A : Union[str, Any] = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img A : int = size * 1.0 / min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if h < w: A, A : Tuple = size, scale * w else: A, A : str = scale * h, size if max(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) > self.max_size: A : List[str] = self.max_size * 1.0 / max(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A : Tuple = newh * scale A : int = neww * scale A : List[str] = int(neww + 0.5 ) A : int = int(newh + 0.5 ) if img.dtype == np.uinta: A : Dict = Image.fromarray(SCREAMING_SNAKE_CASE ) A : Optional[Any] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) A : str = np.asarray(SCREAMING_SNAKE_CASE ) else: A : Dict = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw A : List[Any] = nn.functional.interpolate( SCREAMING_SNAKE_CASE , (newh, neww) , mode=self.interp_method , align_corners=SCREAMING_SNAKE_CASE ).squeeze(0 ) img_augs.append(SCREAMING_SNAKE_CASE ) return img_augs class A : def __init__( self , SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" A : Any = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) A : str = cfg.INPUT.FORMAT A : int = cfg.SIZE_DIVISIBILITY A : Optional[int] = cfg.PAD_VALUE A : Dict = cfg.INPUT.MAX_SIZE_TEST A : Optional[Any] = cfg.MODEL.DEVICE A : Dict = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) A : Tuple = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) A : str = lambda SCREAMING_SNAKE_CASE : (x - self.pixel_mean) / self.pixel_std def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" A : Union[str, Any] = tuple(max(SCREAMING_SNAKE_CASE ) for s in zip(*[img.shape for img in images] ) ) A : List[str] = [im.shape[-2:] for im in images] A : Optional[Any] = [ nn.functional.pad( SCREAMING_SNAKE_CASE , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ] return torch.stack(SCREAMING_SNAKE_CASE ), torch.tensor(SCREAMING_SNAKE_CASE ) def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> Union[str, Any]: """simple docstring""" with torch.no_grad(): if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A : str = [images] if single_image: assert len(SCREAMING_SNAKE_CASE ) == 1 for i in range(len(SCREAMING_SNAKE_CASE ) ): if isinstance(images[i] , torch.Tensor ): images.insert(SCREAMING_SNAKE_CASE , images.pop(SCREAMING_SNAKE_CASE ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( SCREAMING_SNAKE_CASE , torch.as_tensor(img_tensorize(images.pop(SCREAMING_SNAKE_CASE ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge A : Tuple = torch.tensor([im.shape[:2] for im in images] ) A : Dict = self.aug(SCREAMING_SNAKE_CASE ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic A : Tuple = [self.normalizer(SCREAMING_SNAKE_CASE ) for x in images] # now pad them to do the following operations A, A : Optional[int] = self.pad(SCREAMING_SNAKE_CASE ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad A : Tuple = torch.true_divide(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' assert torch.isfinite(snake_case__ ).all(), "Box tensor contains infinite or NaN!" A, A : str = box_size tensor[:, 0].clamp_(min=0 , max=snake_case__ ) tensor[:, 1].clamp_(min=0 , max=snake_case__ ) tensor[:, 2].clamp_(min=0 , max=snake_case__ ) tensor[:, 3].clamp_(min=0 , max=snake_case__ )
311
0
import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( "split_dict" , [ SplitDict(), SplitDict({"train": SplitInfo(name="train" , num_bytes=1_3_3_7 , num_examples=4_2 , dataset_name="my_dataset" )} ), SplitDict({"train": SplitInfo(name="train" , num_bytes=1_3_3_7 , num_examples=4_2 )} ), SplitDict({"train": SplitInfo()} ), ] , ) def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = split_dict._to_yaml_list() assert len(lowerCamelCase__ ) == len(lowerCamelCase__ ) lowerCamelCase_ = SplitDict._from_yaml_list(lowerCamelCase__ ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump lowerCamelCase_ = None # the split name of split_dict takes over the name of the split info object lowerCamelCase_ = split_name assert split_dict == reloaded @pytest.mark.parametrize( "split_info" , [SplitInfo(), SplitInfo(dataset_name=lowerCamelCase__ ), SplitInfo(dataset_name="my_dataset" )] ) def lowerCamelCase_ ( lowerCamelCase__ ): # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files lowerCamelCase_ = asdict(SplitDict({"train": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
19
def A_ ( snake_case : int ) -> None: '''simple docstring''' __UpperCamelCase = generate_pascal_triangle(snake_case ) for row_idx in range(snake_case ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=''' ''' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=''' ''' ) else: print(triangle[row_idx][col_idx] , end='''''' ) print() def A_ ( snake_case : int ) -> list[list[int]]: '''simple docstring''' if not isinstance(snake_case , snake_case ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) __UpperCamelCase = [] for current_row_idx in range(snake_case ): __UpperCamelCase = populate_current_row(snake_case , snake_case ) triangle.append(snake_case ) return triangle def A_ ( snake_case : list[list[int]] , snake_case : int ) -> list[int]: '''simple docstring''' __UpperCamelCase = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 __UpperCamelCase , __UpperCamelCase = 1, 1 for current_col_idx in range(1 , snake_case ): calculate_current_element( snake_case , snake_case , snake_case , snake_case ) return current_row def A_ ( snake_case : list[list[int]] , snake_case : list[int] , snake_case : int , snake_case : int , ) -> None: '''simple docstring''' __UpperCamelCase = triangle[current_row_idx - 1][current_col_idx - 1] __UpperCamelCase = triangle[current_row_idx - 1][current_col_idx] __UpperCamelCase = above_to_left_elt + above_to_right_elt def A_ ( snake_case : int ) -> list[list[int]]: '''simple docstring''' if not isinstance(snake_case , snake_case ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) __UpperCamelCase = [[1]] for row_index in range(1 , snake_case ): __UpperCamelCase = [0] + result[-1] + [0] __UpperCamelCase = row_index + 1 # Calculate the number of distinct elements in a row __UpperCamelCase = sum(divmod(snake_case , 2 ) ) __UpperCamelCase = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] __UpperCamelCase = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() __UpperCamelCase = row_first_half + row_second_half result.append(snake_case ) return result def A_ ( ) -> None: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(snake_case : Callable , snake_case : int ) -> None: __UpperCamelCase = f"{func.__name__}({value})" __UpperCamelCase = timeit(f"__main__.{call}" , setup='''import __main__''' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f"{call:38} -- {timing:.4f} seconds" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(snake_case , snake_case ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
328
0
def __snake_case ( _lowerCAmelCase : int = 10 , _lowerCAmelCase : int = 22 ) -> int: A_ : Optional[Any] = range(1 , _lowerCAmelCase ) A_ : List[Any] = range(1 , _lowerCAmelCase ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(F'''{solution(10, 22) = }''')
70
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path _lowerCAmelCase : Optional[Any] = Path(__file__).resolve().parents[3] / '''src''' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) _lowerCAmelCase : Tuple = {'''base''': '''patrickvonplaten/wav2vec2_tiny_random''', '''robust''': '''patrickvonplaten/wav2vec2_tiny_random_robust'''} _lowerCAmelCase : List[str] = '''zero2''' _lowerCAmelCase : Dict = '''zero3''' _lowerCAmelCase : Tuple = [ZEROa, ZEROa] def __snake_case ( _lowerCAmelCase : str , _lowerCAmelCase : Dict , _lowerCAmelCase : List[Any] ) -> Any: # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param A_ : Dict = parameterized.to_safe_name("_".join(str(_lowerCAmelCase ) for x in param.args ) ) return f"{func.__name__}_{param_based_name}" # Cartesian-product of zero stages with models to test _lowerCAmelCase : List[Any] = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" @parameterized.expand(snake_case , name_func=snake_case ) def SCREAMING_SNAKE_CASE ( self :str , snake_case :Tuple , snake_case :Tuple ): '''simple docstring''' self.run_and_check( stage=snake_case , model=snake_case , distributed=snake_case , fpaa=snake_case , ) @require_torch_multi_gpu @parameterized.expand(snake_case , name_func=snake_case ) def SCREAMING_SNAKE_CASE ( self :int , snake_case :Tuple , snake_case :Optional[Any] ): '''simple docstring''' self.run_and_check( stage=snake_case , model=snake_case , distributed=snake_case , fpaa=snake_case , ) @parameterized.expand(snake_case , name_func=snake_case ) def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :Dict , snake_case :Any ): '''simple docstring''' self.run_and_check( stage=snake_case , model=snake_case , distributed=snake_case , fpaa=snake_case , ) @require_torch_multi_gpu @parameterized.expand(snake_case , name_func=snake_case ) def SCREAMING_SNAKE_CASE ( self :int , snake_case :str , snake_case :Tuple ): '''simple docstring''' self.run_and_check( stage=snake_case , model=snake_case , distributed=snake_case , fpaa=snake_case , ) def SCREAMING_SNAKE_CASE ( self :List[str] , snake_case :int ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self :Dict , snake_case :str , snake_case :str , snake_case :int = 10 , snake_case :bool = True , snake_case :bool = True , snake_case :bool = True , ): '''simple docstring''' A_ : Any = models[model] A_ : List[Any] = self.run_trainer( stage=snake_case , model_name=snake_case , eval_steps=snake_case , num_train_epochs=1 , distributed=snake_case , fpaa=snake_case , ) self.do_checks(snake_case ) return output_dir def SCREAMING_SNAKE_CASE ( self :str , snake_case :str , snake_case :str , snake_case :int = 10 , snake_case :int = 1 , snake_case :bool = True , snake_case :bool = True , ): '''simple docstring''' A_ : List[Any] = self.get_auto_remove_tmp_dir("./xxx" , after=snake_case ) A_ : Tuple = f"\n --model_name_or_path {model_name}\n --dataset_name hf-internal-testing/librispeech_asr_dummy\n --dataset_config_name clean\n --train_split_name validation\n --validation_split_name validation\n --output_dir {output_dir}\n --num_train_epochs {str(snake_case )}\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 2\n --evaluation_strategy steps\n --learning_rate 5e-4\n --warmup_steps 8\n --orthography timit\n --preprocessing_num_workers 1\n --group_by_length\n --freeze_feature_extractor\n --report_to none\n --save_steps 0\n --eval_steps {eval_steps}\n --report_to none\n ".split() if fpaa: args.extend(["--fp16"] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files A_ : List[str] = f"--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json".split() A_ : List[str] = [f"{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"] A_ : str = self.get_launcher(snake_case ) A_ : Dict = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(snake_case , env=self.get_env() ) return output_dir def SCREAMING_SNAKE_CASE ( self :Optional[int] , snake_case :Optional[Any]=False ): '''simple docstring''' A_ : int = min(2 , get_gpu_count() ) if distributed else 1 return f"deepspeed --num_nodes 1 --num_gpus {num_gpus}".split()
70
1
from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { """microsoft/xprophetnet-large-wiki100-cased""": ( """https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json""" ), } class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' __snake_case : Tuple = "xlm-prophetnet" __snake_case : Dict = ["past_key_values"] __snake_case : int = { "num_attention_heads": "num_encoder_attention_heads", } def __init__( self : List[str] ,lowerCamelCase__ : Optional[float] = 0.1 ,lowerCamelCase__ : Optional[Union[str, Callable]] = "gelu" ,lowerCamelCase__ : Optional[int] = 30522 ,lowerCamelCase__ : Optional[int] = 1024 ,lowerCamelCase__ : Optional[int] = 4096 ,lowerCamelCase__ : Optional[int] = 12 ,lowerCamelCase__ : Optional[int] = 16 ,lowerCamelCase__ : Optional[int] = 4096 ,lowerCamelCase__ : Optional[int] = 12 ,lowerCamelCase__ : Optional[int] = 16 ,lowerCamelCase__ : Optional[float] = 0.1 ,lowerCamelCase__ : Optional[float] = 0.1 ,lowerCamelCase__ : Optional[int] = 512 ,lowerCamelCase__ : Optional[float] = 0.02 ,lowerCamelCase__ : Optional[bool] = True ,lowerCamelCase__ : Optional[bool] = True ,lowerCamelCase__ : Optional[int] = 0 ,lowerCamelCase__ : Optional[int] = 2 ,lowerCamelCase__ : Optional[int] = 32 ,lowerCamelCase__ : Optional[int] = 128 ,lowerCamelCase__ : Optional[bool] = False ,lowerCamelCase__ : Optional[float] = 0.0 ,lowerCamelCase__ : Optional[bool] = True ,lowerCamelCase__ : Optional[int] = 0 ,lowerCamelCase__ : Optional[int] = 1 ,lowerCamelCase__ : Optional[int] = 2 ,**lowerCamelCase__ : Dict ,) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = encoder_ffn_dim SCREAMING_SNAKE_CASE = num_encoder_layers SCREAMING_SNAKE_CASE = num_encoder_attention_heads SCREAMING_SNAKE_CASE = decoder_ffn_dim SCREAMING_SNAKE_CASE = num_decoder_layers SCREAMING_SNAKE_CASE = num_decoder_attention_heads SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = init_std # Normal(0, this parameter) SCREAMING_SNAKE_CASE = activation_function # parameters for xlmprophetnet SCREAMING_SNAKE_CASE = ngram SCREAMING_SNAKE_CASE = num_buckets SCREAMING_SNAKE_CASE = relative_max_distance SCREAMING_SNAKE_CASE = disable_ngram_loss SCREAMING_SNAKE_CASE = eps # 3 Types of Dropout SCREAMING_SNAKE_CASE = attention_dropout SCREAMING_SNAKE_CASE = activation_dropout SCREAMING_SNAKE_CASE = dropout SCREAMING_SNAKE_CASE = use_cache super().__init__( pad_token_id=lowerCamelCase__ ,bos_token_id=lowerCamelCase__ ,eos_token_id=lowerCamelCase__ ,is_encoder_decoder=lowerCamelCase__ ,add_cross_attention=lowerCamelCase__ ,decoder_start_token_id=lowerCamelCase__ ,**lowerCamelCase__ ,) @property def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> int: '''simple docstring''' return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def SCREAMING_SNAKE_CASE__ ( self : Tuple ,lowerCamelCase__ : str ) -> Dict: '''simple docstring''' raise NotImplementedError( """This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and""" """ `num_decoder_layers`.""" )
296
import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 SCREAMING_SNAKE_CASE_ = get_tests_dir("""fixtures/dummy-config.json""") class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = 0 def SCREAMING_SNAKE_CASE__ ( self : Any ) -> str: '''simple docstring''' self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec("""transformers.models.auto""" ) ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained("""bert-base-uncased""" ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = AutoConfig.for_model("""roberta""" ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> int: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. SCREAMING_SNAKE_CASE = os.path.join(lowerCamelCase__ ,"""fake-roberta""" ) os.makedirs(lowerCamelCase__ ,exist_ok=lowerCamelCase__ ) with open(os.path.join(lowerCamelCase__ ,"""config.json""" ) ,"""w""" ) as f: f.write(json.dumps({} ) ) SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertEqual(type(lowerCamelCase__ ) ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> str: '''simple docstring''' try: AutoConfig.register("""custom""" ,lowerCamelCase__ ) # Wrong model type will raise an error with self.assertRaises(lowerCamelCase__ ): AutoConfig.register("""model""" ,lowerCamelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCamelCase__ ): AutoConfig.register("""bert""" ,lowerCamelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API SCREAMING_SNAKE_CASE = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def SCREAMING_SNAKE_CASE__ ( self : str ) -> Dict: '''simple docstring''' with self.assertRaisesRegex( lowerCamelCase__ ,"""bert-base is not a local folder and is not a valid model identifier""" ): SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained("""bert-base""" ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> str: '''simple docstring''' with self.assertRaisesRegex( lowerCamelCase__ ,R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(lowerCamelCase__ ,revision="""aaaaaa""" ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> List[Any]: '''simple docstring''' with self.assertRaisesRegex( lowerCamelCase__ ,"""hf-internal-testing/no-config-test-repo does not appear to have a file named config.json.""" ,): SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained("""hf-internal-testing/no-config-test-repo""" ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' with self.assertRaises(lowerCamelCase__ ): SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCamelCase__ ): SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ,trust_remote_code=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ,trust_remote_code=lowerCamelCase__ ) self.assertEqual(config.__class__.__name__ ,"""NewModelConfig""" ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(lowerCamelCase__ ,trust_remote_code=lowerCamelCase__ ) self.assertEqual(reloaded_config.__class__.__name__ ,"""NewModelConfig""" ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' __snake_case : Union[str, Any] = "new-model" try: AutoConfig.register("""new-model""" ,lowerCamelCase__ ) # If remote code is not set, the default is to use local SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ) self.assertEqual(config.__class__.__name__ ,"""NewModelConfigLocal""" ) # If remote code is disabled, we load the local one. SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ,trust_remote_code=lowerCamelCase__ ) self.assertEqual(config.__class__.__name__ ,"""NewModelConfigLocal""" ) # If remote is enabled, we load from the Hub SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ,trust_remote_code=lowerCamelCase__ ) self.assertEqual(config.__class__.__name__ ,"""NewModelConfig""" ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
296
1
import argparse import os import re lowercase : Dict = 'src/diffusers' # Pattern that looks at the indentation in a line. lowercase : Dict = re.compile(R'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. lowercase : int = re.compile(R'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowercase : Optional[int] = re.compile(R'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. lowercase : Optional[Any] = re.compile(R'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowercase : List[str] = re.compile(R'\[([^\]]+)\]') def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple) -> List[str]: '''simple docstring''' __UpperCamelCase : Dict = _re_indent.search(_lowerCamelCase) return "" if search is None else search.groups()[0] def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[str] , _lowerCamelCase : Optional[int]="" , _lowerCamelCase : List[str]=None , _lowerCamelCase : Dict=None) -> Optional[int]: '''simple docstring''' __UpperCamelCase : List[Any] = 0 __UpperCamelCase : Tuple = code.split("\n") if start_prompt is not None: while not lines[index].startswith(_lowerCamelCase): index += 1 __UpperCamelCase : Tuple = ["\n".join(lines[:index])] else: __UpperCamelCase : Optional[int] = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). __UpperCamelCase : Optional[Any] = [lines[index]] index += 1 while index < len(_lowerCamelCase) and (end_prompt is None or not lines[index].startswith(_lowerCamelCase)): if len(lines[index]) > 0 and get_indent(lines[index]) == indent_level: if len(_lowerCamelCase) > 0 and get_indent(current_block[-1]).startswith(indent_level + " "): current_block.append(lines[index]) blocks.append("\n".join(_lowerCamelCase)) if index < len(_lowerCamelCase) - 1: __UpperCamelCase : int = [lines[index + 1]] index += 1 else: __UpperCamelCase : Dict = [] else: blocks.append("\n".join(_lowerCamelCase)) __UpperCamelCase : str = [lines[index]] else: current_block.append(lines[index]) index += 1 # Adds current block if it's nonempty. if len(_lowerCamelCase) > 0: blocks.append("\n".join(_lowerCamelCase)) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_lowerCamelCase): blocks.append("\n".join(lines[index:])) return blocks def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple) -> int: '''simple docstring''' def _inner(_lowerCamelCase : Optional[Any]): return key(_lowerCamelCase).lower().replace("_" , "") return _inner def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Dict , _lowerCamelCase : Tuple=None) -> Dict: '''simple docstring''' def noop(_lowerCamelCase : Union[str, Any]): return x if key is None: __UpperCamelCase : Union[str, Any] = noop # Constants are all uppercase, they go first. __UpperCamelCase : List[str] = [obj for obj in objects if key(_lowerCamelCase).isupper()] # Classes are not all uppercase but start with a capital, they go second. __UpperCamelCase : Optional[int] = [obj for obj in objects if key(_lowerCamelCase)[0].isupper() and not key(_lowerCamelCase).isupper()] # Functions begin with a lowercase, they go last. __UpperCamelCase : Dict = [obj for obj in objects if not key(_lowerCamelCase)[0].isupper()] __UpperCamelCase : int = ignore_underscore(_lowerCamelCase) return sorted(_lowerCamelCase , key=_lowerCamelCase) + sorted(_lowerCamelCase , key=_lowerCamelCase) + sorted(_lowerCamelCase , key=_lowerCamelCase) def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : str) -> List[Any]: '''simple docstring''' def _replace(_lowerCamelCase : int): __UpperCamelCase : int = match.groups()[0] if "," not in imports: return F'[{imports}]' __UpperCamelCase : List[str] = [part.strip().replace("\"" , "") for part in imports.split(",")] # We will have a final empty element if the line finished with a comma. if len(keys[-1]) == 0: __UpperCamelCase : Optional[int] = keys[:-1] return "[" + ", ".join([F'"{k}"' for k in sort_objects(_lowerCamelCase)]) + "]" __UpperCamelCase : List[str] = import_statement.split("\n") if len(_lowerCamelCase) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. __UpperCamelCase : Any = 2 if lines[1].strip() == "[" else 1 __UpperCamelCase : Union[str, Any] = [(i, _re_strip_line.search(_lowerCamelCase).groups()[0]) for i, line in enumerate(lines[idx:-idx])] __UpperCamelCase : List[str] = sort_objects(_lowerCamelCase , key=lambda _lowerCamelCase: x[1]) __UpperCamelCase : Optional[int] = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:]) elif len(_lowerCamelCase) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1]) is not None: __UpperCamelCase : Dict = _re_bracket_content.sub(_replace , lines[1]) else: __UpperCamelCase : Optional[int] = [part.strip().replace("\"" , "") for part in lines[1].split(",")] # We will have a final empty element if the line finished with a comma. if len(keys[-1]) == 0: __UpperCamelCase : str = keys[:-1] __UpperCamelCase : Tuple = get_indent(lines[1]) + ", ".join([F'"{k}"' for k in sort_objects(_lowerCamelCase)]) return "\n".join(_lowerCamelCase) else: # Finally we have to deal with imports fitting on one line __UpperCamelCase : List[Any] = _re_bracket_content.sub(_replace , _lowerCamelCase) return import_statement def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int , _lowerCamelCase : Optional[Any]=True) -> Tuple: '''simple docstring''' with open(_lowerCamelCase , "r") as f: __UpperCamelCase : Union[str, Any] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 __UpperCamelCase : Optional[Any] = split_code_in_indented_blocks( _lowerCamelCase , start_prompt="_import_structure = {" , end_prompt="if TYPE_CHECKING:") # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_lowerCamelCase) - 1): # Check if the block contains some `_import_structure`s thingy to sort. __UpperCamelCase : Optional[Any] = main_blocks[block_idx] __UpperCamelCase : List[Any] = block.split("\n") # Get to the start of the imports. __UpperCamelCase : List[Any] = 0 while line_idx < len(_lowerCamelCase) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: __UpperCamelCase : str = len(_lowerCamelCase) else: line_idx += 1 if line_idx >= len(_lowerCamelCase): continue # Ignore beginning and last line: they don't contain anything. __UpperCamelCase : int = "\n".join(block_lines[line_idx:-1]) __UpperCamelCase : str = get_indent(block_lines[1]) # Slit the internal block into blocks of indent level 1. __UpperCamelCase : Union[str, Any] = split_code_in_indented_blocks(_lowerCamelCase , indent_level=_lowerCamelCase) # We have two categories of import key: list or _import_structure[key].append/extend __UpperCamelCase : Optional[int] = _re_direct_key if "_import_structure" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. __UpperCamelCase : Optional[Any] = [(pattern.search(_lowerCamelCase).groups()[0] if pattern.search(_lowerCamelCase) is not None else None) for b in internal_blocks] # We only sort the lines with a key. __UpperCamelCase : Optional[int] = [(i, key) for i, key in enumerate(_lowerCamelCase) if key is not None] __UpperCamelCase : int = [x[0] for x in sorted(_lowerCamelCase , key=lambda _lowerCamelCase: x[1])] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. __UpperCamelCase : Dict = 0 __UpperCamelCase : Dict = [] for i in range(len(_lowerCamelCase)): if keys[i] is None: reordered_blocks.append(internal_blocks[i]) else: __UpperCamelCase : Tuple = sort_objects_in_import(internal_blocks[sorted_indices[count]]) reordered_blocks.append(_lowerCamelCase) count += 1 # And we put our main block back together with its first and last line. __UpperCamelCase : List[str] = "\n".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]]) if code != "\n".join(_lowerCamelCase): if check_only: return True else: print(F'Overwriting {file}.') with open(_lowerCamelCase , "w") as f: f.write("\n".join(_lowerCamelCase)) def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any]=True) -> Tuple: '''simple docstring''' __UpperCamelCase : Dict = [] for root, _, files in os.walk(_lowerCamelCase): if "__init__.py" in files: __UpperCamelCase : int = sort_imports(os.path.join(_lowerCamelCase , "__init__.py") , check_only=_lowerCamelCase) if result: __UpperCamelCase : Optional[int] = [os.path.join(_lowerCamelCase , "__init__.py")] if len(_lowerCamelCase) > 0: raise ValueError(F'Would overwrite {len(_lowerCamelCase)} files, run `make style`.') if __name__ == "__main__": lowercase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') lowercase : Tuple = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
370
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase : Any = 16 lowercase : Optional[int] = 32 def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Accelerator , _lowerCamelCase : int = 16) -> int: '''simple docstring''' __UpperCamelCase : Any = AutoTokenizer.from_pretrained("bert-base-cased") __UpperCamelCase : Optional[Any] = load_dataset("glue" , "mrpc") def tokenize_function(_lowerCamelCase : Dict): # max_length=None => use the model max length (it's actually the default) __UpperCamelCase : List[str] = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_lowerCamelCase , max_length=_lowerCamelCase) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __UpperCamelCase : Optional[int] = datasets.map( _lowerCamelCase , batched=_lowerCamelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __UpperCamelCase : List[str] = tokenized_datasets.rename_column("label" , "labels") def collate_fn(_lowerCamelCase : Union[str, Any]): # On TPU it's best to pad everything to the same length or training will be very slow. __UpperCamelCase : str = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __UpperCamelCase : Optional[Any] = 16 elif accelerator.mixed_precision != "no": __UpperCamelCase : Dict = 8 else: __UpperCamelCase : Optional[Any] = None return tokenizer.pad( _lowerCamelCase , padding="longest" , max_length=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_tensors="pt" , ) # Instantiate dataloaders. __UpperCamelCase : Optional[Any] = DataLoader( tokenized_datasets["train"] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=_lowerCamelCase) __UpperCamelCase : int = DataLoader( tokenized_datasets["validation"] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=_lowerCamelCase) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowercase : Union[str, Any] = mocked_dataloaders # noqa: F811 def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Union[str, Any]) -> str: '''simple docstring''' if os.environ.get("TESTING_MOCKED_DATALOADERS" , _lowerCamelCase) == "1": __UpperCamelCase : List[str] = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: __UpperCamelCase : Union[str, Any] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="all" , project_dir=args.project_dir) else: __UpperCamelCase : Optional[Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __UpperCamelCase : List[str] = config["lr"] __UpperCamelCase : Optional[Any] = int(config["num_epochs"]) __UpperCamelCase : List[Any] = int(config["seed"]) __UpperCamelCase : Any = int(config["batch_size"]) set_seed(_lowerCamelCase) __UpperCamelCase , __UpperCamelCase : List[Any] = get_dataloaders(_lowerCamelCase , _lowerCamelCase) __UpperCamelCase : List[str] = evaluate.load("glue" , "mrpc") # If the batch size is too big we use gradient accumulation __UpperCamelCase : Union[str, Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __UpperCamelCase : List[Any] = batch_size // MAX_GPU_BATCH_SIZE __UpperCamelCase : Union[str, Any] = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) __UpperCamelCase : str = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=_lowerCamelCase) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __UpperCamelCase : Optional[int] = model.to(accelerator.device) # Instantiate optimizer __UpperCamelCase : List[str] = AdamW(params=model.parameters() , lr=_lowerCamelCase) # Instantiate scheduler __UpperCamelCase : Union[str, Any] = get_linear_schedule_with_warmup( optimizer=_lowerCamelCase , num_warmup_steps=100 , num_training_steps=(len(_lowerCamelCase) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Union[str, Any] = accelerator.prepare( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: __UpperCamelCase : Dict = os.path.split(_lowerCamelCase)[-1].split(".")[0] accelerator.init_trackers(_lowerCamelCase , _lowerCamelCase) # Now we train the model for epoch in range(_lowerCamelCase): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: __UpperCamelCase : Tuple = 0 for step, batch in enumerate(_lowerCamelCase): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) __UpperCamelCase : Dict = model(**_lowerCamelCase) __UpperCamelCase : Any = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() __UpperCamelCase : List[Any] = loss / gradient_accumulation_steps accelerator.backward(_lowerCamelCase) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_lowerCamelCase): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device) with torch.no_grad(): __UpperCamelCase : Union[str, Any] = model(**_lowerCamelCase) __UpperCamelCase : str = outputs.logits.argmax(dim=-1) __UpperCamelCase , __UpperCamelCase : Dict = accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=_lowerCamelCase , references=_lowerCamelCase , ) __UpperCamelCase : Optional[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' , _lowerCamelCase) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { "accuracy": eval_metric["accuracy"], "f1": eval_metric["f1"], "train_loss": total_loss.item() / len(_lowerCamelCase), "epoch": epoch, } , step=_lowerCamelCase , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def _SCREAMING_SNAKE_CASE ( ) -> Optional[int]: '''simple docstring''' __UpperCamelCase : str = argparse.ArgumentParser(description="Simple example of training script.") parser.add_argument( "--mixed_precision" , type=_lowerCamelCase , default=_lowerCamelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU.") parser.add_argument( "--with_tracking" , action="store_true" , help="Whether to load in all available experiment trackers from the environment and use them for logging." , ) parser.add_argument( "--project_dir" , type=_lowerCamelCase , default="logs" , help="Location on where to store experiment tracking logs` and relevent project information" , ) __UpperCamelCase : Union[str, Any] = parser.parse_args() __UpperCamelCase : str = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(_lowerCamelCase , _lowerCamelCase) if __name__ == "__main__": main()
151
0
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging _A : int =logging.get_logger(__name__) _A : int ={ '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/config.json''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/config.json''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/config.json''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/config.json''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/config.json''', } class _lowercase ( _lowercase ): a = """t5""" a = ["""past_key_values"""] a = {"""hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""} def __init__( self: List[str] , UpperCamelCase__: str=32_128 , UpperCamelCase__: Union[str, Any]=512 , UpperCamelCase__: str=64 , UpperCamelCase__: List[Any]=2_048 , UpperCamelCase__: Union[str, Any]=6 , UpperCamelCase__: List[str]=None , UpperCamelCase__: str=8 , UpperCamelCase__: Optional[int]=32 , UpperCamelCase__: Optional[int]=128 , UpperCamelCase__: Any=0.1 , UpperCamelCase__: List[str]=1e-6 , UpperCamelCase__: Dict=1.0 , UpperCamelCase__: Optional[int]="relu" , UpperCamelCase__: List[str]=True , UpperCamelCase__: List[str]=True , UpperCamelCase__: List[str]=0 , UpperCamelCase__: Union[str, Any]=1 , **UpperCamelCase__: Tuple , ): lowerCamelCase__ : Dict = vocab_size lowerCamelCase__ : List[str] = d_model lowerCamelCase__ : int = d_kv lowerCamelCase__ : Dict = d_ff lowerCamelCase__ : Any = num_layers lowerCamelCase__ : str = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry lowerCamelCase__ : Tuple = num_heads lowerCamelCase__ : Dict = relative_attention_num_buckets lowerCamelCase__ : Any = relative_attention_max_distance lowerCamelCase__ : Union[str, Any] = dropout_rate lowerCamelCase__ : Optional[int] = layer_norm_epsilon lowerCamelCase__ : str = initializer_factor lowerCamelCase__ : Dict = feed_forward_proj lowerCamelCase__ : Optional[Any] = use_cache lowerCamelCase__ : List[str] = self.feed_forward_proj.split("""-""" ) lowerCamelCase__ : Optional[int] = act_info[-1] lowerCamelCase__ : Any = act_info[0] == """gated""" if len(UpperCamelCase__ ) > 1 and act_info[0] != "gated" or len(UpperCamelCase__ ) > 2: raise ValueError( F'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """'gated-gelu' or 'relu'""" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": lowerCamelCase__ : str = """gelu_new""" super().__init__( pad_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , is_encoder_decoder=UpperCamelCase__ , **UpperCamelCase__ , ) class _lowercase ( _lowercase ): @property def lowerCamelCase_ ( self: Optional[int] ): lowerCamelCase__ : Any = { """input_ids""": {0: """batch""", 1: """encoder_sequence"""}, """attention_mask""": {0: """batch""", 1: """encoder_sequence"""}, } if self.use_past: lowerCamelCase__ : str = """past_encoder_sequence + sequence""" lowerCamelCase__ : Union[str, Any] = {0: """batch"""} lowerCamelCase__ : Tuple = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: lowerCamelCase__ : Union[str, Any] = {0: """batch""", 1: """decoder_sequence"""} lowerCamelCase__ : Tuple = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(UpperCamelCase__ , direction="""inputs""" ) return common_inputs @property def lowerCamelCase_ ( self: str ): return 13
41
'''simple docstring''' class _lowercase : def __init__( self: Optional[Any] ): lowerCamelCase__ : dict[str, TrieNode] = {} # Mapping from char to TrieNode lowerCamelCase__ : List[str] = False def lowerCamelCase_ ( self: str , UpperCamelCase__: list[str] ): for word in words: self.insert(UpperCamelCase__ ) def lowerCamelCase_ ( self: List[str] , UpperCamelCase__: str ): lowerCamelCase__ : List[Any] = self for char in word: if char not in curr.nodes: lowerCamelCase__ : Tuple = TrieNode() lowerCamelCase__ : List[Any] = curr.nodes[char] lowerCamelCase__ : Any = True def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase__: str ): lowerCamelCase__ : Union[str, Any] = self for char in word: if char not in curr.nodes: return False lowerCamelCase__ : Any = curr.nodes[char] return curr.is_leaf def lowerCamelCase_ ( self: str , UpperCamelCase__: str ): def _delete(UpperCamelCase__: TrieNode , UpperCamelCase__: str , UpperCamelCase__: int ) -> bool: if index == len(UpperCamelCase__ ): # If word does not exist if not curr.is_leaf: return False lowerCamelCase__ : str = False return len(curr.nodes ) == 0 lowerCamelCase__ : List[str] = word[index] lowerCamelCase__ : Dict = curr.nodes.get(UpperCamelCase__ ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted lowerCamelCase__ : List[Any] = _delete(UpperCamelCase__ , UpperCamelCase__ , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , UpperCamelCase__ , 0 ) def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> None: if node.is_leaf: print(UpperCamelCase , end=""" """ ) for key, value in node.nodes.items(): print_words(UpperCamelCase , word + key ) def SCREAMING_SNAKE_CASE_ () -> bool: lowerCamelCase__ : str = """banana bananas bandana band apple all beast""".split() lowerCamelCase__ : Union[str, Any] = TrieNode() root.insert_many(UpperCamelCase ) # print_words(root, "") assert all(root.find(UpperCamelCase ) for word in words ) assert root.find("""banana""" ) assert not root.find("""bandanas""" ) assert not root.find("""apps""" ) assert root.find("""apple""" ) assert root.find("""all""" ) root.delete("""all""" ) assert not root.find("""all""" ) root.delete("""banana""" ) assert not root.find("""banana""" ) assert root.find("""bananas""" ) return True def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> None: print(str(UpperCamelCase ) , """works!""" if passes else """doesn't work :(""" ) def SCREAMING_SNAKE_CASE_ () -> None: assert test_trie() def SCREAMING_SNAKE_CASE_ () -> None: print_results("""Testing trie functionality""" , test_trie() ) if __name__ == "__main__": main()
41
1
import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class A ( A_ ): def __init__(self , lowerCAmelCase , lowerCAmelCase=1_3 , lowerCAmelCase=7 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=9_9 , lowerCAmelCase=3_2 , lowerCAmelCase=5 , lowerCAmelCase=4 , lowerCAmelCase=3_7 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=5_1_2 , lowerCAmelCase=1_6 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=False , lowerCAmelCase=True , lowerCAmelCase="None" , lowerCAmelCase=3 , lowerCAmelCase=4 , lowerCAmelCase=None , ): __lowercase= parent __lowercase= batch_size __lowercase= seq_length __lowercase= is_training __lowercase= use_input_mask __lowercase= use_token_type_ids __lowercase= use_labels __lowercase= vocab_size __lowercase= hidden_size __lowercase= num_hidden_layers __lowercase= num_attention_heads __lowercase= intermediate_size __lowercase= hidden_act __lowercase= hidden_dropout_prob __lowercase= attention_probs_dropout_prob __lowercase= max_position_embeddings __lowercase= type_vocab_size __lowercase= type_sequence_label_size __lowercase= initializer_range __lowercase= num_labels __lowercase= num_choices __lowercase= relative_attention __lowercase= position_biased_input __lowercase= pos_att_type __lowercase= scope def _A (self ): __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase= None if self.use_input_mask: __lowercase= ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __lowercase= None if self.use_token_type_ids: __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase= None __lowercase= None __lowercase= None if self.use_labels: __lowercase= ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase= ids_tensor([self.batch_size] , self.num_choices ) __lowercase= self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _A (self ): return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def _A (self , lowerCAmelCase ): self.parent.assertListEqual(list(result.loss.size() ) , [] ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= DebertaVaModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase )[0] __lowercase= model(lowerCAmelCase , token_type_ids=lowerCAmelCase )[0] __lowercase= model(lowerCAmelCase )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= DebertaVaForMaskedLM(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= self.num_labels __lowercase= DebertaVaForSequenceClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= self.num_labels __lowercase= DebertaVaForTokenClassification(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= DebertaVaForQuestionAnswering(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model( lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= DebertaVaForMultipleChoice(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase= token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase= input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase= model( lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _A (self ): __lowercase= self.prepare_config_and_inputs() ( ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), )= config_and_inputs __lowercase= {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A ( A_ , A_ , unittest.TestCase ): UpperCamelCase_ : List[Any] =( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) UpperCamelCase_ : Union[str, Any] =( { '''feature-extraction''': DebertaVaModel, '''fill-mask''': DebertaVaForMaskedLM, '''question-answering''': DebertaVaForQuestionAnswering, '''text-classification''': DebertaVaForSequenceClassification, '''token-classification''': DebertaVaForTokenClassification, '''zero-shot''': DebertaVaForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase_ : Union[str, Any] =True UpperCamelCase_ : int =False UpperCamelCase_ : List[Any] =False UpperCamelCase_ : Dict =False UpperCamelCase_ : List[str] =False def _A (self ): __lowercase= DebertaVaModelTester(self ) __lowercase= ConfigTester(self , config_class=lowerCAmelCase , hidden_size=3_7 ) def _A (self ): self.config_tester.run_common_tests() def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*lowerCAmelCase ) @slow def _A (self ): for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase= DebertaVaModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) @require_torch @require_sentencepiece @require_tokenizers class A ( unittest.TestCase ): @unittest.skip(reason='Model not available yet' ) def _A (self ): pass @slow def _A (self ): __lowercase= DebertaVaModel.from_pretrained('microsoft/deberta-v2-xlarge' ) __lowercase= torch.tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) __lowercase= torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase= model(lowerCAmelCase , attention_mask=lowerCAmelCase )[0] # compare the actual values for a slice. __lowercase= torch.tensor( [[[0.23_56, 0.19_48, 0.03_69], [-0.10_63, 0.35_86, -0.51_52], [-0.63_99, -0.02_59, -0.25_25]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowerCAmelCase , atol=1E-4 ) , f'{output[:, 1:4, 1:4]}' )
304
import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A ( A_ ): def _A (self ): __lowercase= self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCAmelCase , 'embed_dim' ) ) self.parent.assertTrue(hasattr(lowerCAmelCase , 'num_heads' ) ) class A : def __init__(self , lowerCAmelCase , lowerCAmelCase=1_3 , lowerCAmelCase=6_4 , lowerCAmelCase=3 , lowerCAmelCase=[1_6, 4_8, 9_6] , lowerCAmelCase=[1, 3, 6] , lowerCAmelCase=[1, 2, 1_0] , lowerCAmelCase=[7, 3, 3] , lowerCAmelCase=[4, 2, 2] , lowerCAmelCase=[2, 1, 1] , lowerCAmelCase=[2, 2, 2] , lowerCAmelCase=[False, False, True] , lowerCAmelCase=[0.0, 0.0, 0.0] , lowerCAmelCase=0.02 , lowerCAmelCase=1E-12 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=2 , ): __lowercase= parent __lowercase= batch_size __lowercase= image_size __lowercase= patch_sizes __lowercase= patch_stride __lowercase= patch_padding __lowercase= is_training __lowercase= use_labels __lowercase= num_labels __lowercase= num_channels __lowercase= embed_dim __lowercase= num_heads __lowercase= stride_kv __lowercase= depth __lowercase= cls_token __lowercase= attention_drop_rate __lowercase= initializer_range __lowercase= layer_norm_eps def _A (self ): __lowercase= floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase= None if self.use_labels: __lowercase= ids_tensor([self.batch_size] , self.num_labels ) __lowercase= self.get_config() return config, pixel_values, labels def _A (self ): return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= CvtModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase ) __lowercase= (self.image_size, self.image_size) __lowercase, __lowercase= image_size[0], image_size[1] for i in range(len(self.depth ) ): __lowercase= floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) __lowercase= floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= self.num_labels __lowercase= CvtForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _A (self ): __lowercase= self.prepare_config_and_inputs() __lowercase, __lowercase, __lowercase= config_and_inputs __lowercase= {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A ( A_ , A_ , unittest.TestCase ): UpperCamelCase_ : Optional[int] =(CvtModel, CvtForImageClassification) if is_torch_available() else () UpperCamelCase_ : List[str] =( {'''feature-extraction''': CvtModel, '''image-classification''': CvtForImageClassification} if is_torch_available() else {} ) UpperCamelCase_ : str =False UpperCamelCase_ : List[Any] =False UpperCamelCase_ : Any =False UpperCamelCase_ : Union[str, Any] =False UpperCamelCase_ : Tuple =False def _A (self ): __lowercase= CvtModelTester(self ) __lowercase= ConfigTester(self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase , hidden_size=3_7 ) def _A (self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _A (self ): return @unittest.skip(reason='Cvt does not output attentions' ) def _A (self ): pass @unittest.skip(reason='Cvt does not use inputs_embeds' ) def _A (self ): pass @unittest.skip(reason='Cvt does not support input and output embeddings' ) def _A (self ): pass def _A (self ): __lowercase, __lowercase= self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase= model_class(lowerCAmelCase ) __lowercase= inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase= [*signature.parameters.keys()] __lowercase= ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def _A (self ): def check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() with torch.no_grad(): __lowercase= model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) __lowercase= outputs.hidden_states __lowercase= len(self.model_tester.depth ) self.assertEqual(len(lowerCAmelCase ) , lowerCAmelCase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) __lowercase, __lowercase= self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase= True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase= True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _A (self ): pass @slow def _A (self ): for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase= CvtModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) def _lowerCamelCase( ) -> Optional[int]: '''simple docstring''' __lowercase= Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class A ( unittest.TestCase ): @cached_property def _A (self ): return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def _A (self ): __lowercase= CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(lowerCAmelCase ) __lowercase= self.default_image_processor __lowercase= prepare_img() __lowercase= image_processor(images=lowerCAmelCase , return_tensors='pt' ).to(lowerCAmelCase ) # forward pass with torch.no_grad(): __lowercase= model(**lowerCAmelCase ) # verify the logits __lowercase= torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) __lowercase= torch.tensor([0.92_85, 0.90_15, -0.31_50] ).to(lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1E-4 ) )
304
1
"""simple docstring""" import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class __lowercase : '''simple docstring''' @staticmethod def _lowerCamelCase ( *_UpperCAmelCase , **_UpperCAmelCase ): pass def __A ( a_ :Image) -> str: __a : Any = hashlib.mda(image.tobytes()) return m.hexdigest()[:10] def __A ( a_ :Image) -> Dict: __a : List[str] = np.array(a_) __a : Any = npimg.shape return {"hash": hashimage(a_), "shape": shape} @is_pipeline_test @require_vision @require_torch class __lowercase ( unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) __lowerCAmelCase = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : Union[str, Any] = MaskGenerationPipeline(model=_UpperCAmelCase , image_processor=_UpperCAmelCase ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): pass @require_tf @unittest.skip('''Image segmentation not implemented in TF''' ) def _lowerCamelCase ( self ): pass @slow @require_torch def _lowerCamelCase ( self ): __a : List[str] = pipeline('''mask-generation''' , model='''facebook/sam-vit-huge''' ) __a : List[Any] = image_segmenter('''http://images.cocodataset.org/val2017/000000039769.jpg''' , points_per_batch=256 ) # Shortening by hashing __a : Dict = [] for i, o in enumerate(outputs['''masks'''] ): new_outupt += [{"mask": mask_to_test_readable(_UpperCAmelCase ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0_4_4_4}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.0_2_1}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0_1_6_7}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0_1_3_2}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0_0_5_3}, {'''mask''': {'''hash''': '''e2d0b7a0b7''', '''shape''': (480, 640)}, '''scores''': 0.9_9_6_7}, {'''mask''': {'''hash''': '''453c7844bd''', '''shape''': (480, 640)}, '''scores''': 0.9_9_3}, {'''mask''': {'''hash''': '''3d44f2926d''', '''shape''': (480, 640)}, '''scores''': 0.9_9_0_9}, {'''mask''': {'''hash''': '''64033ddc3f''', '''shape''': (480, 640)}, '''scores''': 0.9_8_7_9}, {'''mask''': {'''hash''': '''801064ff79''', '''shape''': (480, 640)}, '''scores''': 0.9_8_3_4}, {'''mask''': {'''hash''': '''6172f276ef''', '''shape''': (480, 640)}, '''scores''': 0.9_7_1_6}, {'''mask''': {'''hash''': '''b49e60e084''', '''shape''': (480, 640)}, '''scores''': 0.9_6_1_2}, {'''mask''': {'''hash''': '''a811e775fd''', '''shape''': (480, 640)}, '''scores''': 0.9_5_9_9}, {'''mask''': {'''hash''': '''a6a8ebcf4b''', '''shape''': (480, 640)}, '''scores''': 0.9_5_5_2}, {'''mask''': {'''hash''': '''9d8257e080''', '''shape''': (480, 640)}, '''scores''': 0.9_5_3_2}, {'''mask''': {'''hash''': '''32de6454a8''', '''shape''': (480, 640)}, '''scores''': 0.9_5_1_6}, {'''mask''': {'''hash''': '''af3d4af2c8''', '''shape''': (480, 640)}, '''scores''': 0.9_4_9_9}, {'''mask''': {'''hash''': '''3c6db475fb''', '''shape''': (480, 640)}, '''scores''': 0.9_4_8_3}, {'''mask''': {'''hash''': '''c290813fb9''', '''shape''': (480, 640)}, '''scores''': 0.9_4_6_4}, {'''mask''': {'''hash''': '''b6f0b8f606''', '''shape''': (480, 640)}, '''scores''': 0.9_4_3}, {'''mask''': {'''hash''': '''92ce16bfdf''', '''shape''': (480, 640)}, '''scores''': 0.9_4_3}, {'''mask''': {'''hash''': '''c749b25868''', '''shape''': (480, 640)}, '''scores''': 0.9_4_0_8}, {'''mask''': {'''hash''': '''efb6cab859''', '''shape''': (480, 640)}, '''scores''': 0.9_3_3_5}, {'''mask''': {'''hash''': '''1ff2eafb30''', '''shape''': (480, 640)}, '''scores''': 0.9_3_2_6}, {'''mask''': {'''hash''': '''788b798e24''', '''shape''': (480, 640)}, '''scores''': 0.9_2_6_2}, {'''mask''': {'''hash''': '''abea804f0e''', '''shape''': (480, 640)}, '''scores''': 0.8_9_9_9}, {'''mask''': {'''hash''': '''7b9e8ddb73''', '''shape''': (480, 640)}, '''scores''': 0.8_9_8_6}, {'''mask''': {'''hash''': '''cd24047c8a''', '''shape''': (480, 640)}, '''scores''': 0.8_9_8_4}, {'''mask''': {'''hash''': '''6943e6bcbd''', '''shape''': (480, 640)}, '''scores''': 0.8_8_7_3}, {'''mask''': {'''hash''': '''b5f47c9191''', '''shape''': (480, 640)}, '''scores''': 0.8_8_7_1} ] , ) # fmt: on @require_torch @slow def _lowerCamelCase ( self ): __a : List[Any] = '''facebook/sam-vit-huge''' __a : Optional[int] = pipeline('''mask-generation''' , model=_UpperCAmelCase ) __a : Optional[Any] = image_segmenter( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing __a : Any = [] for i, o in enumerate(outputs['''masks'''] ): new_outupt += [{"mask": mask_to_test_readable(_UpperCAmelCase ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0_4_4_4}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.0_2_1_0}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0_1_6_7}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0_1_3_2}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0_0_5_3}, ] , )
160
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available A = { '''configuration_ctrl''': ['''CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CTRLConfig'''], '''tokenization_ctrl''': ['''CTRLTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ '''CTRL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CTRLForSequenceClassification''', '''CTRLLMHeadModel''', '''CTRLModel''', '''CTRLPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ '''TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFCTRLForSequenceClassification''', '''TFCTRLLMHeadModel''', '''TFCTRLModel''', '''TFCTRLPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
160
1
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( lowercase_ = 10 ) -> Optional[Any]: if not isinstance(lowerCamelCase__ , lowerCamelCase__ ) or n < 0: raise ValueError("Invalid input" ) A__ = 10**n A__ = 2_84_33 * (pow(2 , 7_83_04_57 , lowerCamelCase__ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(f'{solution(10) = }')
353
"""simple docstring""" SCREAMING_SNAKE_CASE = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" SCREAMING_SNAKE_CASE = [{"type": "code", "content": INSTALL_CONTENT}] SCREAMING_SNAKE_CASE = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
230
0
import math import qiskit def lowerCamelCase__ ( _A = 1 , _A = 1 , _A = 1 ): '''simple docstring''' if ( isinstance(a__ , a__ ) or isinstance(a__ , a__ ) or isinstance(a__ , a__ ) ): raise TypeError("inputs must be integers." ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError("inputs must be positive." ) if ( (math.floor(a__ ) != input_a) or (math.floor(a__ ) != input_a) or (math.floor(a__ ) != carry_in) ): raise ValueError("inputs must be exact integers." ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError("inputs must be less or equal to 2." ) # build registers snake_case_ = qiskit.QuantumRegister(4 , "qr" ) snake_case_ = qiskit.ClassicalRegister(2 , "cr" ) # list the entries snake_case_ = [input_a, input_a, carry_in] snake_case_ = qiskit.QuantumCircuit(a__ , a__ ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(a__ ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(a__ ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(a__ ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , a__ ) # measure the last two qbits snake_case_ = qiskit.Aer.get_backend("aer_simulator" ) snake_case_ = qiskit.execute(a__ , a__ , shots=1000 ) return job.result().get_counts(a__ ) if __name__ == "__main__": print(f'''Total sum count for state is: {quantum_full_adder(1, 1, 1)}''')
187
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ :List[Any] = logging.get_logger(__name__) lowerCAmelCase__ :Tuple = {'''ctrl''': '''https://huggingface.co/ctrl/resolve/main/config.json'''} class __a ( UpperCAmelCase ): _a : str = 'ctrl' _a : Tuple = ['past_key_values'] _a : List[Any] = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _SCREAMING_SNAKE_CASE=246534 , _SCREAMING_SNAKE_CASE=256 , _SCREAMING_SNAKE_CASE=1280 , _SCREAMING_SNAKE_CASE=8192 , _SCREAMING_SNAKE_CASE=48 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=1e-6 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=True , **_SCREAMING_SNAKE_CASE , ) -> List[str]: """simple docstring""" _UpperCAmelCase = vocab_size _UpperCAmelCase = n_positions _UpperCAmelCase = n_embd _UpperCAmelCase = n_layer _UpperCAmelCase = n_head _UpperCAmelCase = dff _UpperCAmelCase = resid_pdrop _UpperCAmelCase = embd_pdrop _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = initializer_range _UpperCAmelCase = use_cache super().__init__(**_SCREAMING_SNAKE_CASE )
329
0
import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class UpperCamelCase__ ( lowerCAmelCase__ ): """simple docstring""" UpperCAmelCase_ =(KDPMaDiscreteScheduler,) UpperCAmelCase_ =10 def _UpperCamelCase ( self , **_A ) -> Dict: SCREAMING_SNAKE_CASE_ = { '''num_train_timesteps''': 1100, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**a__ ) return config def _UpperCamelCase ( self ) -> Tuple: for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=a__ ) def _UpperCamelCase ( self ) -> Any: for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=a__ , beta_end=a__ ) def _UpperCamelCase ( self ) -> Any: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=a__ ) def _UpperCamelCase ( self ) -> str: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=a__ ) def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ = self.get_scheduler_config(prediction_type='''v_prediction''' ) SCREAMING_SNAKE_CASE_ = scheduler_class(**a__ ) scheduler.set_timesteps(self.num_inference_steps ) SCREAMING_SNAKE_CASE_ = self.dummy_model() SCREAMING_SNAKE_CASE_ = self.dummy_sample_deter * scheduler.init_noise_sigma SCREAMING_SNAKE_CASE_ = sample.to(a__ ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE_ = scheduler.scale_model_input(a__ , a__ ) SCREAMING_SNAKE_CASE_ = model(a__ , a__ ) SCREAMING_SNAKE_CASE_ = scheduler.step(a__ , a__ , a__ ) SCREAMING_SNAKE_CASE_ = output.prev_sample SCREAMING_SNAKE_CASE_ = torch.sum(torch.abs(a__ ) ) SCREAMING_SNAKE_CASE_ = torch.mean(torch.abs(a__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6_934E-07 ) < 1E-2 assert abs(result_mean.item() - 6.1_112E-10 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.693_428_650_170_972E-07 ) < 1E-2 assert abs(result_mean.item() - 0.0002 ) < 1E-3 def _UpperCamelCase ( self ) -> Optional[Any]: if torch_device == "mps": return SCREAMING_SNAKE_CASE_ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ = scheduler_class(**a__ ) scheduler.set_timesteps(self.num_inference_steps ) SCREAMING_SNAKE_CASE_ = self.dummy_model() SCREAMING_SNAKE_CASE_ = self.dummy_sample_deter * scheduler.init_noise_sigma SCREAMING_SNAKE_CASE_ = sample.to(a__ ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE_ = scheduler.scale_model_input(a__ , a__ ) SCREAMING_SNAKE_CASE_ = model(a__ , a__ ) SCREAMING_SNAKE_CASE_ = scheduler.step(a__ , a__ , a__ ) SCREAMING_SNAKE_CASE_ = output.prev_sample SCREAMING_SNAKE_CASE_ = torch.sum(torch.abs(a__ ) ) SCREAMING_SNAKE_CASE_ = torch.mean(torch.abs(a__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 def _UpperCamelCase ( self ) -> Optional[Any]: if torch_device == "mps": return SCREAMING_SNAKE_CASE_ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ = scheduler_class(**a__ ) scheduler.set_timesteps(self.num_inference_steps , device=a__ ) SCREAMING_SNAKE_CASE_ = self.dummy_model() SCREAMING_SNAKE_CASE_ = self.dummy_sample_deter.to(a__ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: SCREAMING_SNAKE_CASE_ = scheduler.scale_model_input(a__ , a__ ) SCREAMING_SNAKE_CASE_ = model(a__ , a__ ) SCREAMING_SNAKE_CASE_ = scheduler.step(a__ , a__ , a__ ) SCREAMING_SNAKE_CASE_ = output.prev_sample SCREAMING_SNAKE_CASE_ = torch.sum(torch.abs(a__ ) ) SCREAMING_SNAKE_CASE_ = torch.mean(torch.abs(a__ ) ) if str(a__ ).startswith('''cpu''' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3
364
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =42 UpperCAmelCase_ =42 class UpperCamelCase__ ( nn.Module ): """simple docstring""" UpperCAmelCase_ =42 UpperCAmelCase_ =(16, 32, 96, 256) UpperCAmelCase_ =jnp.floataa def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) SCREAMING_SNAKE_CASE_ = [] for i in range(len(self.block_out_channels ) - 1 ): SCREAMING_SNAKE_CASE_ = self.block_out_channels[i] SCREAMING_SNAKE_CASE_ = self.block_out_channels[i + 1] SCREAMING_SNAKE_CASE_ = nn.Conv( _A , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(_A ) SCREAMING_SNAKE_CASE_ = nn.Conv( _A , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(_A ) SCREAMING_SNAKE_CASE_ = blocks SCREAMING_SNAKE_CASE_ = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , _A ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = self.conv_in(_A ) SCREAMING_SNAKE_CASE_ = nn.silu(_A ) for block in self.blocks: SCREAMING_SNAKE_CASE_ = block(_A ) SCREAMING_SNAKE_CASE_ = nn.silu(_A ) SCREAMING_SNAKE_CASE_ = self.conv_out(_A ) return embedding @flax_register_to_config class UpperCamelCase__ ( nn.Module , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =32 UpperCAmelCase_ =4 UpperCAmelCase_ =( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) UpperCAmelCase_ =False UpperCAmelCase_ =(320, 640, 1_280, 1_280) UpperCAmelCase_ =2 UpperCAmelCase_ =8 UpperCAmelCase_ =None UpperCAmelCase_ =1_280 UpperCAmelCase_ =0.0 UpperCAmelCase_ =False UpperCAmelCase_ =jnp.floataa UpperCAmelCase_ =True UpperCAmelCase_ =0 UpperCAmelCase_ ="rgb" UpperCAmelCase_ =(16, 32, 96, 256) def _UpperCamelCase ( self , _A ) -> FrozenDict: # init input tensors SCREAMING_SNAKE_CASE_ = (1, self.in_channels, self.sample_size, self.sample_size) SCREAMING_SNAKE_CASE_ = jnp.zeros(_A , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE_ = jnp.ones((1,) , dtype=jnp.intaa ) SCREAMING_SNAKE_CASE_ = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE_ = (1, 3, self.sample_size * 8, self.sample_size * 8) SCREAMING_SNAKE_CASE_ = jnp.zeros(_A , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = jax.random.split(_A ) SCREAMING_SNAKE_CASE_ = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(_A , _A , _A , _A , _A )["params"] def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.block_out_channels SCREAMING_SNAKE_CASE_ = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. SCREAMING_SNAKE_CASE_ = self.num_attention_heads or self.attention_head_dim # input SCREAMING_SNAKE_CASE_ = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time SCREAMING_SNAKE_CASE_ = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) SCREAMING_SNAKE_CASE_ = FlaxTimestepEmbedding(_A , dtype=self.dtype ) SCREAMING_SNAKE_CASE_ = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) SCREAMING_SNAKE_CASE_ = self.only_cross_attention if isinstance(_A , _A ): SCREAMING_SNAKE_CASE_ = (only_cross_attention,) * len(self.down_block_types ) if isinstance(_A , _A ): SCREAMING_SNAKE_CASE_ = (num_attention_heads,) * len(self.down_block_types ) # down SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = block_out_channels[0] SCREAMING_SNAKE_CASE_ = nn.Conv( _A , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_A ) for i, down_block_type in enumerate(self.down_block_types ): SCREAMING_SNAKE_CASE_ = output_channel SCREAMING_SNAKE_CASE_ = block_out_channels[i] SCREAMING_SNAKE_CASE_ = i == len(_A ) - 1 if down_block_type == "CrossAttnDownBlock2D": SCREAMING_SNAKE_CASE_ = FlaxCrossAttnDownBlockaD( in_channels=_A , out_channels=_A , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: SCREAMING_SNAKE_CASE_ = FlaxDownBlockaD( in_channels=_A , out_channels=_A , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(_A ) for _ in range(self.layers_per_block ): SCREAMING_SNAKE_CASE_ = nn.Conv( _A , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_A ) if not is_final_block: SCREAMING_SNAKE_CASE_ = nn.Conv( _A , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_A ) SCREAMING_SNAKE_CASE_ = down_blocks SCREAMING_SNAKE_CASE_ = controlnet_down_blocks # mid SCREAMING_SNAKE_CASE_ = block_out_channels[-1] SCREAMING_SNAKE_CASE_ = FlaxUNetMidBlockaDCrossAttn( in_channels=_A , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) SCREAMING_SNAKE_CASE_ = nn.Conv( _A , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , _A , _A , _A , _A , _A = 1.0 , _A = True , _A = False , ) -> Union[FlaxControlNetOutput, Tuple]: SCREAMING_SNAKE_CASE_ = self.controlnet_conditioning_channel_order if channel_order == "bgr": SCREAMING_SNAKE_CASE_ = jnp.flip(_A , axis=1 ) # 1. time if not isinstance(_A , jnp.ndarray ): SCREAMING_SNAKE_CASE_ = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(_A , jnp.ndarray ) and len(timesteps.shape ) == 0: SCREAMING_SNAKE_CASE_ = timesteps.astype(dtype=jnp.floataa ) SCREAMING_SNAKE_CASE_ = jnp.expand_dims(_A , 0 ) SCREAMING_SNAKE_CASE_ = self.time_proj(_A ) SCREAMING_SNAKE_CASE_ = self.time_embedding(_A ) # 2. pre-process SCREAMING_SNAKE_CASE_ = jnp.transpose(_A , (0, 2, 3, 1) ) SCREAMING_SNAKE_CASE_ = self.conv_in(_A ) SCREAMING_SNAKE_CASE_ = jnp.transpose(_A , (0, 2, 3, 1) ) SCREAMING_SNAKE_CASE_ = self.controlnet_cond_embedding(_A ) sample += controlnet_cond # 3. down SCREAMING_SNAKE_CASE_ = (sample,) for down_block in self.down_blocks: if isinstance(_A , _A ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = down_block(_A , _A , _A , deterministic=not train ) else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = down_block(_A , _A , deterministic=not train ) down_block_res_samples += res_samples # 4. mid SCREAMING_SNAKE_CASE_ = self.mid_block(_A , _A , _A , deterministic=not train ) # 5. contronet blocks SCREAMING_SNAKE_CASE_ = () for down_block_res_sample, controlnet_block in zip(_A , self.controlnet_down_blocks ): SCREAMING_SNAKE_CASE_ = controlnet_block(_A ) controlnet_down_block_res_samples += (down_block_res_sample,) SCREAMING_SNAKE_CASE_ = controlnet_down_block_res_samples SCREAMING_SNAKE_CASE_ = self.controlnet_mid_block(_A ) # 6. scaling SCREAMING_SNAKE_CASE_ = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=_A , mid_block_res_sample=_A )
257
0
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline UpperCAmelCase : Union[str, Any] = datasets.utils.logging.get_logger(__name__) @dataclass class __lowercase ( datasets.BuilderConfig ): """simple docstring""" UpperCamelCase : Optional[datasets.Features] = None UpperCamelCase : str = "utf-8" UpperCamelCase : Optional[str] = None UpperCamelCase : Optional[str] = None UpperCamelCase : bool = True # deprecated UpperCamelCase : Optional[int] = None # deprecated UpperCamelCase : int = 1_0 << 2_0 # 10MB UpperCamelCase : Optional[bool] = None class __lowercase ( datasets.ArrowBasedBuilder ): """simple docstring""" UpperCamelCase : Tuple = JsonConfig def __A ( self ) -> Optional[Any]: '''simple docstring''' if self.config.block_size is not None: logger.warning("""The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead""" ) lowerCamelCase = self.config.block_size if self.config.use_threads is not True: logger.warning( """The JSON loader parameter `use_threads` is deprecated and doesn't have any effect anymore.""" ) if self.config.newlines_in_values is not None: raise ValueError("""The JSON loader parameter `newlines_in_values` is no longer supported""" ) return datasets.DatasetInfo(features=self.config.features ) def __A ( self , A ) -> str: '''simple docstring''' if not self.config.data_files: raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}' ) lowerCamelCase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(A , (str, list, tuple) ): lowerCamelCase = data_files if isinstance(A , A ): lowerCamelCase = [files] lowerCamelCase = [dl_manager.iter_files(A ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] lowerCamelCase = [] for split_name, files in data_files.items(): if isinstance(A , A ): lowerCamelCase = [files] lowerCamelCase = [dl_manager.iter_files(A ) for file in files] splits.append(datasets.SplitGenerator(name=A , gen_kwargs={"""files""": files} ) ) return splits def __A ( self , A ) -> pa.Table: '''simple docstring''' if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): lowerCamelCase = self.config.features.arrow_schema.field(A ).type lowerCamelCase = pa_table.append_column(A , pa.array([None] * len(A ) , type=A ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example lowerCamelCase = table_cast(A , self.config.features.arrow_schema ) return pa_table def __A ( self , A ) -> Union[str, Any]: '''simple docstring''' for file_idx, file in enumerate(itertools.chain.from_iterable(A ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(A , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: lowerCamelCase = json.load(A ) # We keep only the field we are interested in lowerCamelCase = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(A , (list, tuple) ): lowerCamelCase = set().union(*[row.keys() for row in dataset] ) lowerCamelCase = {col: [row.get(A ) for row in dataset] for col in keys} else: lowerCamelCase = dataset lowerCamelCase = pa.Table.from_pydict(A ) yield file_idx, self._cast_table(A ) # If the file has one json object per line else: with open(A , """rb""" ) as f: lowerCamelCase = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small lowerCamelCase = max(self.config.chunksize // 32 , 16 << 10 ) lowerCamelCase = ( self.config.encoding_errors if self.config.encoding_errors is not None else """strict""" ) while True: lowerCamelCase = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(A ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": lowerCamelCase = batch.decode(self.config.encoding , errors=A ).encode("""utf-8""" ) try: while True: try: lowerCamelCase = paj.read_json( io.BytesIO(A ) , read_options=paj.ReadOptions(block_size=A ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(A , pa.ArrowInvalid ) and "straddling" not in str(A ) or block_size > len(A ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F'Batch of {len(A )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.' ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( A , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: lowerCamelCase = json.load(A ) except json.JSONDecodeError: logger.error(F'Failed to read file \'{file}\' with error {type(A )}: {e}' ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(A , A ): # list is the only sequence type supported in JSON try: lowerCamelCase = set().union(*[row.keys() for row in dataset] ) lowerCamelCase = {col: [row.get(A ) for row in dataset] for col in keys} lowerCamelCase = pa.Table.from_pydict(A ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F'Failed to read file \'{file}\' with error {type(A )}: {e}' ) raise ValueError(F'Not able to read records in the JSON file at {file}.' ) from None yield file_idx, self._cast_table(A ) break else: logger.error(F'Failed to read file \'{file}\' with error {type(A )}: {e}' ) raise ValueError( F'Not able to read records in the JSON file at {file}. ' F'You should probably indicate the field of the JSON file containing your records. ' F'This JSON file contain the following fields: {str(list(dataset.keys() ) )}. ' F'Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ' ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(A ) batch_idx += 1
252
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase : List[str] = logging.get_logger(__name__) UpperCAmelCase : Tuple = { "vocab_file": "vocab.json", "merges_file": "merges.txt", } UpperCAmelCase : Optional[Any] = { "vocab_file": {"ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json"}, "merges_file": {"ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt"}, } UpperCAmelCase : Union[str, Any] = { "ctrl": 2_56, } UpperCAmelCase : List[str] = { "Pregnancy": 16_86_29, "Christianity": 76_75, "Explain": 10_64_23, "Fitness": 6_34_40, "Saving": 6_31_63, "Ask": 2_71_71, "Ass": 9_59_85, "Joke": 16_35_09, "Questions": 4_56_22, "Thoughts": 4_96_05, "Retail": 5_23_42, "Feminism": 16_43_38, "Writing": 1_19_92, "Atheism": 19_22_63, "Netflix": 4_86_16, "Computing": 3_96_39, "Opinion": 4_32_13, "Alone": 4_49_67, "Funny": 5_89_17, "Gaming": 4_03_58, "Human": 40_88, "India": 13_31, "Joker": 7_71_38, "Diet": 3_62_06, "Legal": 1_18_59, "Norman": 49_39, "Tip": 7_26_89, "Weight": 5_23_43, "Movies": 4_62_73, "Running": 2_34_25, "Science": 20_90, "Horror": 3_77_93, "Confession": 6_05_72, "Finance": 1_22_50, "Politics": 1_63_60, "Scary": 19_19_85, "Support": 1_26_54, "Technologies": 3_25_16, "Teenage": 6_61_60, "Event": 3_27_69, "Learned": 6_74_60, "Notion": 18_27_70, "Wikipedia": 3_75_83, "Books": 66_65, "Extract": 7_60_50, "Confessions": 10_27_01, "Conspiracy": 7_59_32, "Links": 6_36_74, "Narcissus": 15_04_25, "Relationship": 5_47_66, "Relationships": 13_47_96, "Reviews": 4_16_71, "News": 42_56, "Translation": 2_68_20, "multilingual": 12_84_06, } def __lowerCamelCase ( lowerCamelCase__ : Any ): '''simple docstring''' lowerCamelCase = set() lowerCamelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCamelCase = char lowerCamelCase = set(lowerCamelCase__ ) return pairs class __lowercase ( a_ ): """simple docstring""" UpperCamelCase : Any = VOCAB_FILES_NAMES UpperCamelCase : str = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase : Optional[int] = CONTROL_CODES def __init__( self , A , A , A="<unk>" , **A ) -> int: '''simple docstring''' super().__init__(unk_token=A , **A ) with open(A , encoding="""utf-8""" ) as vocab_handle: lowerCamelCase = json.load(A ) lowerCamelCase = {v: k for k, v in self.encoder.items()} with open(A , encoding="""utf-8""" ) as merges_handle: lowerCamelCase = merges_handle.read().split("""\n""" )[1:-1] lowerCamelCase = [tuple(merge.split() ) for merge in merges] lowerCamelCase = dict(zip(A , range(len(A ) ) ) ) lowerCamelCase = {} @property def __A ( self ) -> Union[str, Any]: '''simple docstring''' return len(self.encoder ) def __A ( self ) -> List[str]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def __A ( self , A ) -> str: '''simple docstring''' if token in self.cache: return self.cache[token] lowerCamelCase = tuple(A ) lowerCamelCase = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) lowerCamelCase = get_pairs(A ) if not pairs: return token while True: lowerCamelCase = min(A , key=lambda A : self.bpe_ranks.get(A , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break lowerCamelCase , lowerCamelCase = bigram lowerCamelCase = [] lowerCamelCase = 0 while i < len(A ): try: lowerCamelCase = word.index(A , A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCamelCase = j if word[i] == first and i < len(A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCamelCase = tuple(A ) lowerCamelCase = new_word if len(A ) == 1: break else: lowerCamelCase = get_pairs(A ) lowerCamelCase = """@@ """.join(A ) lowerCamelCase = word[:-4] lowerCamelCase = word return word def __A ( self , A ) -> Optional[int]: '''simple docstring''' lowerCamelCase = [] lowerCamelCase = re.findall(r"""\S+\n?""" , A ) for token in words: split_tokens.extend(list(self.bpe(A ).split(""" """ ) ) ) return split_tokens def __A ( self , A ) -> int: '''simple docstring''' return self.encoder.get(A , self.encoder.get(self.unk_token ) ) def __A ( self , A ) -> Any: '''simple docstring''' return self.decoder.get(A , self.unk_token ) def __A ( self , A ) -> str: '''simple docstring''' lowerCamelCase = """ """.join(A ).replace("""@@ """ , """""" ).strip() return out_string def __A ( self , A , A = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(A ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowerCamelCase = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) lowerCamelCase = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=A , ensure_ascii=A ) + """\n""" ) lowerCamelCase = 0 with open(A , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' """ Please check that the tokenizer is not corrupted!""" ) lowerCamelCase = token_index writer.write(""" """.join(A ) + """\n""" ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
252
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ : Dict = logging.get_logger(__name__) lowerCamelCase_ : List[str] = { """google/switch-base-8""": """https://huggingface.co/google/switch-base-8/blob/main/config.json""", } class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : Optional[Any] = """switch_transformers""" __UpperCamelCase : List[Any] = ["""past_key_values"""] __UpperCamelCase : List[Any] = {"""hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""} def __init__( self : Union[str, Any] , snake_case_ : List[str]=3_2128 , snake_case_ : int=768 , snake_case_ : Dict=64 , snake_case_ : Optional[Any]=2048 , snake_case_ : Union[str, Any]=64 , snake_case_ : List[Any]=12 , snake_case_ : Optional[int]=3 , snake_case_ : Tuple=12 , snake_case_ : List[Any]=3 , snake_case_ : List[str]=12 , snake_case_ : Dict=8 , snake_case_ : Union[str, Any]=False , snake_case_ : str=0.01 , snake_case_ : str="float32" , snake_case_ : List[str]=False , snake_case_ : Optional[Any]=32 , snake_case_ : Any=128 , snake_case_ : Optional[int]=0.1 , snake_case_ : Any=1e-6 , snake_case_ : str=0.001 , snake_case_ : Any=0.001 , snake_case_ : Tuple=1.0 , snake_case_ : Optional[Any]="relu" , snake_case_ : Tuple=True , snake_case_ : int=False , snake_case_ : Union[str, Any]=True , snake_case_ : Dict=0 , snake_case_ : int=1 , **snake_case_ : Tuple , ): UpperCamelCase_: Tuple = vocab_size UpperCamelCase_: List[Any] = d_model UpperCamelCase_: List[Any] = d_kv UpperCamelCase_: str = d_ff UpperCamelCase_: Dict = num_sparse_encoder_layers UpperCamelCase_: Optional[Any] = num_layers UpperCamelCase_: str = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry UpperCamelCase_: Tuple = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: UpperCamelCase_: Tuple = self.num_layers // self.num_sparse_encoder_layers else: UpperCamelCase_: str = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: UpperCamelCase_: Optional[int] = self.num_decoder_layers // self.num_sparse_decoder_layers else: UpperCamelCase_: Optional[Any] = self.num_decoder_layers # HACK: this will create 0 sparse layers UpperCamelCase_: List[Any] = num_heads UpperCamelCase_: List[Any] = num_experts UpperCamelCase_: int = expert_capacity UpperCamelCase_: List[str] = router_bias UpperCamelCase_: Optional[int] = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''' ) UpperCamelCase_: int = router_dtype UpperCamelCase_: List[Any] = router_ignore_padding_tokens UpperCamelCase_: List[Any] = relative_attention_num_buckets UpperCamelCase_: Tuple = relative_attention_max_distance UpperCamelCase_: int = dropout_rate UpperCamelCase_: str = layer_norm_epsilon UpperCamelCase_: Union[str, Any] = initializer_factor UpperCamelCase_: Tuple = feed_forward_proj UpperCamelCase_: Tuple = use_cache UpperCamelCase_: Union[str, Any] = add_router_probs UpperCamelCase_: Any = router_z_loss_coef UpperCamelCase_: Dict = router_aux_loss_coef UpperCamelCase_: Dict = self.feed_forward_proj.split("""-""" ) UpperCamelCase_: List[str] = act_info[-1] UpperCamelCase_: Union[str, Any] = act_info[0] == """gated""" if len(snake_case_ ) > 1 and act_info[0] != "gated" or len(snake_case_ ) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """'gated-gelu' or 'relu'""" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": UpperCamelCase_: Dict = """gelu_new""" super().__init__( pad_token_id=snake_case_ , eos_token_id=snake_case_ , is_encoder_decoder=snake_case_ , **snake_case_ , )
223
import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[int] , snake_case_ : Dict , snake_case_ : Tuple=7 , snake_case_ : Optional[Any]=3 , snake_case_ : Dict=18 , snake_case_ : Dict=30 , snake_case_ : Union[str, Any]=400 , snake_case_ : List[Any]=True , snake_case_ : Any=None , snake_case_ : List[str]=True , ): UpperCamelCase_: Dict = size if size is not None else {"""height""": 18, """width""": 18} UpperCamelCase_: Union[str, Any] = parent UpperCamelCase_: Tuple = batch_size UpperCamelCase_: List[str] = num_channels UpperCamelCase_: Optional[int] = image_size UpperCamelCase_: Dict = min_resolution UpperCamelCase_: Optional[int] = max_resolution UpperCamelCase_: str = do_resize UpperCamelCase_: Tuple = size UpperCamelCase_: Dict = do_normalize def lowerCAmelCase__ ( self : str ): return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8866_4436_3403_3203, 0.6618_8293_6954_4983, 0.3891_7464_0178_6804], [-0.6042_5591_4688_1104, -0.0_2295_0088_6052_8469, 0.5423_7973_6900_3296], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class _UpperCamelCase ( _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Optional[int] = ImageGPTImageProcessor if is_vision_available() else None def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Any = ImageGPTImageProcessingTester(self ) @property def lowerCAmelCase__ ( self : Optional[int] ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case_ , """clusters""" ) ) self.assertTrue(hasattr(snake_case_ , """do_resize""" ) ) self.assertTrue(hasattr(snake_case_ , """size""" ) ) self.assertTrue(hasattr(snake_case_ , """do_normalize""" ) ) def lowerCAmelCase__ ( self : int ): UpperCamelCase_: List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) UpperCamelCase_: Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: int = self.image_processing_class(**self.image_processor_dict ) UpperCamelCase_: Optional[int] = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(snake_case_ , obj[key] ) ) else: self.assertEqual(obj[key] , snake_case_ ) def lowerCAmelCase__ ( self : List[Any] ): UpperCamelCase_: Dict = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase_: int = os.path.join(snake_case_ , """image_processor.json""" ) image_processor_first.to_json_file(snake_case_ ) UpperCamelCase_: Any = self.image_processing_class.from_json_file(snake_case_ ).to_dict() UpperCamelCase_: str = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(snake_case_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , snake_case_ ) def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: Optional[Any] = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(snake_case_ ) UpperCamelCase_: Optional[int] = self.image_processing_class.from_pretrained(snake_case_ ).to_dict() UpperCamelCase_: Union[str, Any] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(snake_case_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , snake_case_ ) @unittest.skip("""ImageGPT requires clusters at initialization""" ) def lowerCAmelCase__ ( self : List[Any] ): pass def A__ ( ) -> Optional[int]: UpperCamelCase_: Optional[int] = load_dataset("""hf-internal-testing/fixtures_image_utils""" , split="""test""" ) UpperCamelCase_: Tuple = Image.open(dataset[4]["""file"""] ) UpperCamelCase_: Union[str, Any] = Image.open(dataset[5]["""file"""] ) UpperCamelCase_: List[str] = [imagea, imagea] return images @require_vision @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: List[Any] = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" ) UpperCamelCase_: List[str] = prepare_images() # test non-batched UpperCamelCase_: List[str] = image_processing(images[0] , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1024) ) UpperCamelCase_: Union[str, Any] = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() , snake_case_ ) # test batched UpperCamelCase_: Optional[int] = image_processing(snake_case_ , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1024) ) UpperCamelCase_: str = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , snake_case_ )
223
1
'''simple docstring''' def SCREAMING_SNAKE_CASE( ) -> list[list[int]]: return [list(range(1_0_0_0 - i , -1_0_0_0 - i , -1 ) ) for i in range(1_0_0_0 )] UpperCamelCase = generate_large_matrix() UpperCamelCase = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def SCREAMING_SNAKE_CASE( __lowercase ) -> None: assert all(row == sorted(__lowercase , reverse=__lowercase ) for row in grid ) assert all(list(__lowercase ) == sorted(__lowercase , reverse=__lowercase ) for col in zip(*__lowercase ) ) def SCREAMING_SNAKE_CASE( __lowercase ) -> int: A: Tuple = 0 A: Any = len(__lowercase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: A: Optional[int] = (left + right) // 2 A: Tuple = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: A: int = mid + 1 else: A: Union[str, Any] = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__lowercase ) def SCREAMING_SNAKE_CASE( __lowercase ) -> int: A: Optional[int] = 0 A: str = len(grid[0] ) for i in range(len(__lowercase ) ): A: Any = find_negative_index(grid[i][:bound] ) total += bound return (len(__lowercase ) * len(grid[0] )) - total def SCREAMING_SNAKE_CASE( __lowercase ) -> int: return len([number for row in grid for number in row if number < 0] ) def SCREAMING_SNAKE_CASE( __lowercase ) -> int: A: Optional[int] = 0 for row in grid: for i, number in enumerate(__lowercase ): if number < 0: total += len(__lowercase ) - i break return total def SCREAMING_SNAKE_CASE( ) -> None: from timeit import timeit print('''Running benchmarks''' ) A: List[Any] = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): A: Optional[int] = timeit(F"""{func}(grid=grid)""" , setup=__lowercase , number=5_0_0 ) print(F"""{func}() took {time:0.4f} seconds""" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
319
'''simple docstring''' import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor UpperCamelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : Union[str, Any] , *SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> None: '''simple docstring''' warnings.warn( '''The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use BeitImageProcessor instead.''' , SCREAMING_SNAKE_CASE_ , ) super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
319
1
"""simple docstring""" import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger('''transformers.models.speecht5''') lowerCAmelCase__ = { '''speech_encoder_prenet.layer_norm''': '''speecht5.encoder.prenet.feature_projection.layer_norm''', '''speech_encoder_prenet.post_extract_proj''': '''speecht5.encoder.prenet.feature_projection.projection''', '''speech_encoder_prenet.pos_conv.0''': '''speecht5.encoder.prenet.pos_conv_embed.conv''', '''speech_encoder_prenet.mask_emb''': '''speecht5.encoder.prenet.masked_spec_embed''', } lowerCAmelCase__ = { '''text_encoder_prenet.encoder_prenet.0''': '''speecht5.encoder.prenet.embed_tokens''', '''text_encoder_prenet.encoder_prenet.1.alpha''': '''speecht5.encoder.prenet.encode_positions.alpha''', } lowerCAmelCase__ = { '''speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0''': '''speecht5.decoder.prenet.layers.0''', '''speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0''': '''speecht5.decoder.prenet.layers.1''', '''speech_decoder_prenet.decoder_prenet.0.1''': '''speecht5.decoder.prenet.final_layer''', '''speech_decoder_prenet.decoder_prenet.1.alpha''': '''speecht5.decoder.prenet.encode_positions.alpha''', '''speech_decoder_prenet.spkembs_layer.0''': '''speecht5.decoder.prenet.speaker_embeds_layer''', } lowerCAmelCase__ = { '''speech_decoder_postnet.feat_out''': '''speech_decoder_postnet.feat_out''', '''speech_decoder_postnet.prob_out''': '''speech_decoder_postnet.prob_out''', '''speech_decoder_postnet.postnet.postnet.0.0''': '''speech_decoder_postnet.layers.0.conv''', '''speech_decoder_postnet.postnet.postnet.0.1''': '''speech_decoder_postnet.layers.0.batch_norm''', '''speech_decoder_postnet.postnet.postnet.1.0''': '''speech_decoder_postnet.layers.1.conv''', '''speech_decoder_postnet.postnet.postnet.1.1''': '''speech_decoder_postnet.layers.1.batch_norm''', '''speech_decoder_postnet.postnet.postnet.2.0''': '''speech_decoder_postnet.layers.2.conv''', '''speech_decoder_postnet.postnet.postnet.2.1''': '''speech_decoder_postnet.layers.2.batch_norm''', '''speech_decoder_postnet.postnet.postnet.3.0''': '''speech_decoder_postnet.layers.3.conv''', '''speech_decoder_postnet.postnet.postnet.3.1''': '''speech_decoder_postnet.layers.3.batch_norm''', '''speech_decoder_postnet.postnet.postnet.4.0''': '''speech_decoder_postnet.layers.4.conv''', '''speech_decoder_postnet.postnet.postnet.4.1''': '''speech_decoder_postnet.layers.4.batch_norm''', } lowerCAmelCase__ = { '''text_decoder_prenet.embed_tokens''': '''speecht5.decoder.prenet.embed_tokens''', } lowerCAmelCase__ = { '''text_decoder_postnet.output_projection''': '''text_decoder_postnet.lm_head''', } lowerCAmelCase__ = { '''encoder.layers.*.self_attn.k_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj''', '''encoder.layers.*.self_attn.v_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj''', '''encoder.layers.*.self_attn.q_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj''', '''encoder.layers.*.self_attn.out_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj''', '''encoder.layers.*.self_attn_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.layer_norm''', '''encoder.layers.*.fc1''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense''', '''encoder.layers.*.fc2''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense''', '''encoder.layers.*.final_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''speecht5.encoder.wrapped_encoder.layer_norm''', '''encoder.pos_emb.pe_k''': '''speecht5.encoder.wrapped_encoder.embed_positions.pe_k''', } lowerCAmelCase__ = { '''decoder.layers.*.self_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj''', '''decoder.layers.*.self_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj''', '''decoder.layers.*.self_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj''', '''decoder.layers.*.self_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj''', '''decoder.layers.*.self_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm''', '''decoder.layers.*.encoder_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj''', '''decoder.layers.*.encoder_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj''', '''decoder.layers.*.encoder_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj''', '''decoder.layers.*.encoder_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj''', '''decoder.layers.*.encoder_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm''', '''decoder.layers.*.fc1''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense''', '''decoder.layers.*.fc2''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense''', '''decoder.layers.*.final_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm''', } lowerCAmelCase__ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } lowerCAmelCase__ = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } lowerCAmelCase__ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } lowerCAmelCase__ = [] lowerCAmelCase__ = [ '''encoder.version''', '''encoder.layers.*.norm_k.weight''', '''encoder.layers.*.norm_k.bias''', '''decoder.version''', '''decoder.layers.*.norm_k.weight''', '''decoder.layers.*.norm_k.bias''', '''decoder.pos_emb.pe_k''', '''speech_encoder_prenet.embed_positions._float_tensor''', '''text_decoder_prenet.embed_positions._float_tensor''', ] lowerCAmelCase__ = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''speech_decoder_prenet.*''', '''speech_decoder_postnet.*''', ] lowerCAmelCase__ = IGNORE_KEYS + [ '''encoder.proj''', '''speech_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] lowerCAmelCase__ = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] def snake_case_ ( A_ : Optional[Any], A_ : Tuple, A_ : List[Any], A_ : Union[str, Any], A_ : Optional[int] ): '''simple docstring''' for attribute in key.split('''.''' ): _lowerCamelCase : int = getattr(A_, A_ ) if weight_type is not None: _lowerCamelCase : Optional[int] = getattr(A_, A_ ).shape else: _lowerCamelCase : Tuple = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _lowerCamelCase : List[Any] = value elif weight_type == "weight_g": _lowerCamelCase : List[str] = value elif weight_type == "weight_v": _lowerCamelCase : Tuple = value elif weight_type == "bias": _lowerCamelCase : Dict = value elif weight_type == "running_mean": _lowerCamelCase : List[Any] = value elif weight_type == "running_var": _lowerCamelCase : Dict = value elif weight_type == "num_batches_tracked": _lowerCamelCase : Optional[int] = value else: _lowerCamelCase : List[str] = value logger.info(F'''{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.''' ) def snake_case_ ( A_ : Dict, A_ : Union[str, Any] ): '''simple docstring''' for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: _lowerCamelCase : str = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def snake_case_ ( A_ : int, A_ : List[str], A_ : Dict ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = [] if task == "s2t": _lowerCamelCase : int = hf_model.speechta.encoder.prenet.feature_encoder _lowerCamelCase : str = MAPPING_S2T _lowerCamelCase : Optional[int] = IGNORE_KEYS_S2T elif task == "t2s": _lowerCamelCase : Any = None _lowerCamelCase : Any = MAPPING_T2S _lowerCamelCase : Dict = IGNORE_KEYS_T2S elif task == "s2s": _lowerCamelCase : List[Any] = hf_model.speechta.encoder.prenet.feature_encoder _lowerCamelCase : Any = MAPPING_S2S _lowerCamelCase : str = IGNORE_KEYS_S2S else: raise ValueError(F'''Unsupported task: {task}''' ) for name, value in fairseq_dict.items(): if should_ignore(A_, A_ ): logger.info(F'''{name} was ignored''' ) continue _lowerCamelCase : List[Any] = False if "conv_layers" in name: load_conv_layer( A_, A_, A_, A_, hf_model.config.feat_extract_norm == '''group''', ) _lowerCamelCase : Any = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: _lowerCamelCase : Tuple = key.split('''.*.''' ) if prefix in name and suffix in name: _lowerCamelCase : Optional[int] = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: _lowerCamelCase : str = True if "*" in mapped_key: _lowerCamelCase : Tuple = name.split(A_ )[0].split('''.''' )[-2] _lowerCamelCase : List[Any] = mapped_key.replace('''*''', A_ ) if "weight_g" in name: _lowerCamelCase : int = '''weight_g''' elif "weight_v" in name: _lowerCamelCase : Any = '''weight_v''' elif "bias" in name: _lowerCamelCase : Dict = '''bias''' elif "weight" in name: _lowerCamelCase : Optional[Any] = '''weight''' elif "running_mean" in name: _lowerCamelCase : Any = '''running_mean''' elif "running_var" in name: _lowerCamelCase : List[str] = '''running_var''' elif "num_batches_tracked" in name: _lowerCamelCase : str = '''num_batches_tracked''' else: _lowerCamelCase : str = None set_recursively(A_, A_, A_, A_, A_ ) continue if not is_used: unused_weights.append(A_ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def snake_case_ ( A_ : Union[str, Any], A_ : Union[str, Any], A_ : List[Any], A_ : Tuple, A_ : List[str] ): '''simple docstring''' _lowerCamelCase : str = full_name.split('''conv_layers.''' )[-1] _lowerCamelCase : str = name.split('''.''' ) _lowerCamelCase : List[Any] = int(items[0] ) _lowerCamelCase : Tuple = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _lowerCamelCase : Dict = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _lowerCamelCase : List[Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) _lowerCamelCase : Any = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) _lowerCamelCase : Union[str, Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(A_ ) @torch.no_grad() def snake_case_ ( A_ : Optional[Any], A_ : List[str], A_ : str, A_ : Union[str, Any]=None, A_ : Dict=None, A_ : Optional[Any]=None, ): '''simple docstring''' if config_path is not None: _lowerCamelCase : Optional[int] = SpeechTaConfig.from_pretrained(A_ ) else: _lowerCamelCase : int = SpeechTaConfig() if task == "s2t": _lowerCamelCase : Tuple = config.max_text_positions _lowerCamelCase : str = SpeechTaForSpeechToText(A_ ) elif task == "t2s": _lowerCamelCase : Tuple = 18_76 _lowerCamelCase : Any = 6_00 _lowerCamelCase : Any = config.max_speech_positions _lowerCamelCase : List[Any] = SpeechTaForTextToSpeech(A_ ) elif task == "s2s": _lowerCamelCase : Optional[int] = 18_76 _lowerCamelCase : Optional[int] = config.max_speech_positions _lowerCamelCase : Any = SpeechTaForSpeechToSpeech(A_ ) else: raise ValueError(F'''Unknown task name: {task}''' ) if vocab_path: _lowerCamelCase : Optional[Any] = SpeechTaTokenizer(A_, model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it _lowerCamelCase : Any = AddedToken('''<mask>''', lstrip=A_, rstrip=A_ ) _lowerCamelCase : List[str] = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) _lowerCamelCase : Union[str, Any] = SpeechTaFeatureExtractor() _lowerCamelCase : Union[str, Any] = SpeechTaProcessor(tokenizer=A_, feature_extractor=A_ ) processor.save_pretrained(A_ ) _lowerCamelCase : List[str] = torch.load(A_ ) recursively_load_weights(fairseq_checkpoint['''model'''], A_, A_ ) model.save_pretrained(A_ ) if repo_id: print('''Pushing to the hub...''' ) processor.push_to_hub(A_ ) model.push_to_hub(A_ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '''--task''', default='''s2t''', type=str, help='''Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--vocab_path''', default=None, type=str, help='''Path to SentencePiece model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) lowerCAmelCase__ = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
353
"""simple docstring""" import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class __snake_case ( _lowercase): def __init__( self : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any]=1_3 , __lowerCAmelCase : Any=7 , __lowerCAmelCase : Any=True , __lowerCAmelCase : Any=True , __lowerCAmelCase : Union[str, Any]=True , __lowerCAmelCase : List[Any]=True , __lowerCAmelCase : Any=True , __lowerCAmelCase : Union[str, Any]=False , __lowerCAmelCase : List[Any]=False , __lowerCAmelCase : int=False , __lowerCAmelCase : Tuple=2 , __lowerCAmelCase : Dict=9_9 , __lowerCAmelCase : str=0 , __lowerCAmelCase : Optional[Any]=3_2 , __lowerCAmelCase : Tuple=5 , __lowerCAmelCase : Tuple=4 , __lowerCAmelCase : List[str]=0.1 , __lowerCAmelCase : Union[str, Any]=0.1 , __lowerCAmelCase : Optional[int]=5_1_2 , __lowerCAmelCase : Any=1_2 , __lowerCAmelCase : Optional[int]=2 , __lowerCAmelCase : Any=0.02 , __lowerCAmelCase : str=3 , __lowerCAmelCase : Optional[int]=4 , __lowerCAmelCase : Optional[int]="last" , __lowerCAmelCase : str=None , __lowerCAmelCase : int=None , ): """simple docstring""" _lowerCamelCase : Dict = parent _lowerCamelCase : List[str] = batch_size _lowerCamelCase : Dict = seq_length _lowerCamelCase : List[Any] = is_training _lowerCamelCase : Dict = use_input_lengths _lowerCamelCase : Tuple = use_token_type_ids _lowerCamelCase : Any = use_labels _lowerCamelCase : Optional[Any] = gelu_activation _lowerCamelCase : Optional[Any] = sinusoidal_embeddings _lowerCamelCase : Dict = causal _lowerCamelCase : Dict = asm _lowerCamelCase : str = n_langs _lowerCamelCase : str = vocab_size _lowerCamelCase : Optional[int] = n_special _lowerCamelCase : Dict = hidden_size _lowerCamelCase : int = num_hidden_layers _lowerCamelCase : str = num_attention_heads _lowerCamelCase : Dict = hidden_dropout_prob _lowerCamelCase : int = attention_probs_dropout_prob _lowerCamelCase : Any = max_position_embeddings _lowerCamelCase : Any = type_vocab_size _lowerCamelCase : Optional[int] = type_sequence_label_size _lowerCamelCase : List[str] = initializer_range _lowerCamelCase : List[Any] = num_labels _lowerCamelCase : Dict = num_choices _lowerCamelCase : str = summary_type _lowerCamelCase : List[str] = use_proj _lowerCamelCase : int = scope def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCamelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : Optional[int] = None if self.use_input_lengths: _lowerCamelCase : int = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length _lowerCamelCase : Union[str, Any] = None if self.use_token_type_ids: _lowerCamelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) _lowerCamelCase : Union[str, Any] = None _lowerCamelCase : List[str] = None _lowerCamelCase : Optional[Any] = None if self.use_labels: _lowerCamelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCamelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCamelCase : str = ids_tensor([self.batch_size] , 2 ).float() _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) _lowerCamelCase : Tuple = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def SCREAMING_SNAKE_CASE ( self : str , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple , ): """simple docstring""" _lowerCamelCase : Optional[Any] = FlaubertModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Union[str, Any] = model(__lowerCAmelCase , lengths=__lowerCAmelCase , langs=__lowerCAmelCase ) _lowerCamelCase : str = model(__lowerCAmelCase , langs=__lowerCAmelCase ) _lowerCamelCase : List[str] = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Dict , __lowerCAmelCase : str , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : str , ): """simple docstring""" _lowerCamelCase : Tuple = FlaubertWithLMHeadModel(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : str = model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : int , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any] , ): """simple docstring""" _lowerCamelCase : Union[str, Any] = FlaubertForQuestionAnsweringSimple(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : List[str] = model(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = model(__lowerCAmelCase , start_positions=__lowerCAmelCase , end_positions=__lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : int , ): """simple docstring""" _lowerCamelCase : str = FlaubertForQuestionAnswering(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Optional[Any] = model(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = model( __lowerCAmelCase , start_positions=__lowerCAmelCase , end_positions=__lowerCAmelCase , cls_index=__lowerCAmelCase , is_impossible=__lowerCAmelCase , p_mask=__lowerCAmelCase , ) _lowerCamelCase : List[str] = model( __lowerCAmelCase , start_positions=__lowerCAmelCase , end_positions=__lowerCAmelCase , cls_index=__lowerCAmelCase , is_impossible=__lowerCAmelCase , ) ((_lowerCamelCase) , ) : str = result_with_labels.to_tuple() _lowerCamelCase : Optional[Any] = model(__lowerCAmelCase , start_positions=__lowerCAmelCase , end_positions=__lowerCAmelCase ) ((_lowerCamelCase) , ) : Union[str, Any] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def SCREAMING_SNAKE_CASE ( self : int , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : int , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Dict , __lowerCAmelCase : str , ): """simple docstring""" _lowerCamelCase : Dict = FlaubertForSequenceClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : str = model(__lowerCAmelCase ) _lowerCamelCase : Tuple = model(__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Union[str, Any] , ): """simple docstring""" _lowerCamelCase : Any = self.num_labels _lowerCamelCase : List[str] = FlaubertForTokenClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Union[str, Any] = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __lowerCAmelCase : Any , __lowerCAmelCase : List[str] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[Any] , ): """simple docstring""" _lowerCamelCase : List[str] = self.num_choices _lowerCamelCase : Any = FlaubertForMultipleChoice(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : List[str] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCamelCase : List[str] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCamelCase : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCamelCase : int = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Any = self.prepare_config_and_inputs() ( ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ) : Optional[Any] = config_and_inputs _lowerCamelCase : int = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class __snake_case ( _lowercase , _lowercase , unittest.TestCase): snake_case__ : List[str] = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) snake_case__ : List[Any] = ( { "feature-extraction": FlaubertModel, "fill-mask": FlaubertWithLMHeadModel, "question-answering": FlaubertForQuestionAnsweringSimple, "text-classification": FlaubertForSequenceClassification, "token-classification": FlaubertForTokenClassification, "zero-shot": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE ( self : str , __lowerCAmelCase : List[str] , __lowerCAmelCase : int , __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple ): """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def SCREAMING_SNAKE_CASE ( self : Dict , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : Optional[int]=False ): """simple docstring""" _lowerCamelCase : Dict = super()._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": _lowerCamelCase : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCAmelCase ) _lowerCamelCase : Any = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCAmelCase ) return inputs_dict def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" _lowerCamelCase : int = FlaubertModelTester(self ) _lowerCamelCase : str = ConfigTester(self , config_class=__lowerCAmelCase , emb_dim=3_7 ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*__lowerCAmelCase ) @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Dict = FlaubertModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) @slow @require_torch_gpu def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return _lowerCamelCase : Any = True _lowerCamelCase : int = model_class(config=__lowerCAmelCase ) _lowerCamelCase : List[str] = self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : int = torch.jit.trace( __lowerCAmelCase , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(__lowerCAmelCase , os.path.join(__lowerCAmelCase , '''traced_model.pt''' ) ) _lowerCamelCase : Union[str, Any] = torch.jit.load(os.path.join(__lowerCAmelCase , '''traced_model.pt''' ) , map_location=__lowerCAmelCase ) loaded(inputs_dict['''input_ids'''].to(__lowerCAmelCase ) , inputs_dict['''attention_mask'''].to(__lowerCAmelCase ) ) @require_torch class __snake_case ( unittest.TestCase): @slow def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase : Union[str, Any] = FlaubertModel.from_pretrained('''flaubert/flaubert_base_cased''' ) _lowerCamelCase : Any = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) with torch.no_grad(): _lowerCamelCase : Any = model(__lowerCAmelCase )[0] _lowerCamelCase : Optional[Any] = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , __lowerCAmelCase ) _lowerCamelCase : Optional[int] = torch.tensor( [[[-2.62_51, -1.42_98, -0.02_27], [-2.85_10, -1.63_87, 0.22_58], [-2.81_14, -1.18_32, -0.30_66]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __lowerCAmelCase , atol=1E-4 ) )
175
0
"""simple docstring""" import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def __lowerCAmelCase ( lowercase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" snake_case : str = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(lowercase , lowercase ) def __lowerCAmelCase ( lowercase : List[str] ) -> Tuple: """simple docstring""" snake_case : List[Any] = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: snake_case : Dict = s_dict.pop(lowercase ) elif "subsample" in key: snake_case : Dict = s_dict.pop(lowercase ) def __lowerCAmelCase ( lowercase : Optional[int] ) -> Union[str, Any]: """simple docstring""" snake_case ,snake_case : Optional[Any] = emb.weight.shape snake_case : List[str] = nn.Linear(lowercase , lowercase , bias=lowercase ) snake_case : List[Any] = emb.weight.data return lin_layer def __lowerCAmelCase ( lowercase : Optional[int] , lowercase : List[Any] ) -> List[str]: """simple docstring""" snake_case : Optional[Any] = torch.load(lowercase , map_location="cpu" ) snake_case : Optional[Any] = mam_aaa["args"] snake_case : int = mam_aaa["model"] snake_case : Union[str, Any] = state_dict["decoder.output_projection.weight"] remove_ignore_keys_(lowercase ) rename_keys(lowercase ) snake_case : Union[str, Any] = state_dict["decoder.embed_tokens.weight"].shape[0] snake_case : Optional[Any] = args.share_decoder_input_output_embed snake_case : str = [int(lowercase ) for i in args.conv_kernel_sizes.split("," )] snake_case : Tuple = SpeechaTextConfig( vocab_size=lowercase , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="relu" , num_conv_layers=len(lowercase ) , conv_channels=args.conv_channels , conv_kernel_sizes=lowercase , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=lowercase , num_beams=5 , max_length=200 , use_cache=lowercase , decoder_start_token_id=2 , early_stopping=lowercase , ) snake_case : Any = SpeechaTextForConditionalGeneration(lowercase ) snake_case ,snake_case : int = model.model.load_state_dict(lowercase , strict=lowercase ) if len(lowercase ) > 0 and not set(lowercase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( "Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing," F' but all the following weights are missing {missing}' ) if tie_embeds: snake_case : Tuple = make_linear_from_emb(model.model.decoder.embed_tokens ) else: snake_case : Any = lm_head_weights model.save_pretrained(lowercase ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument("""--fairseq_path""", type=str, help="""Path to the fairseq model (.pt) file.""") parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") __snake_case = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
203
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class _lowerCAmelCase : def __init__( self , UpperCamelCase__ , UpperCamelCase__=12 , UpperCamelCase__=7 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=99 , UpperCamelCase__=32 , UpperCamelCase__=32 , UpperCamelCase__=2 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=0.02 , UpperCamelCase__=0 , UpperCamelCase__=None , ) -> Dict: '''simple docstring''' snake_case : Optional[Any] = parent snake_case : Dict = batch_size snake_case : List[str] = seq_length snake_case : Dict = is_training snake_case : Optional[Any] = use_input_mask snake_case : Optional[int] = use_labels snake_case : Tuple = vocab_size snake_case : Optional[Any] = hidden_size snake_case : Optional[Any] = projection_dim snake_case : List[Any] = num_hidden_layers snake_case : List[Any] = num_attention_heads snake_case : int = intermediate_size snake_case : str = dropout snake_case : List[Any] = attention_dropout snake_case : Any = max_position_embeddings snake_case : List[Any] = initializer_range snake_case : Any = scope snake_case : Union[str, Any] = bos_token_id def lowerCamelCase ( self ) -> str: '''simple docstring''' snake_case : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case : int = None if self.use_input_mask: snake_case : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: snake_case : Tuple = input_mask.numpy() snake_case ,snake_case : str = input_mask.shape snake_case : Tuple = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(UpperCamelCase__ ): snake_case : int = 1 snake_case : Tuple = 0 snake_case : Union[str, Any] = self.get_config() return config, input_ids, tf.convert_to_tensor(UpperCamelCase__ ) def lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: '''simple docstring''' snake_case : str = TFBlipTextModel(config=UpperCamelCase__ ) snake_case : Any = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , training=UpperCamelCase__ ) snake_case : Optional[int] = model(UpperCamelCase__ , training=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCamelCase ( self ) -> List[str]: '''simple docstring''' snake_case : Tuple = self.prepare_config_and_inputs() snake_case ,snake_case ,snake_case : Tuple = config_and_inputs snake_case : str = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class _lowerCAmelCase ( snake_case_ , unittest.TestCase ): __UpperCAmelCase : Any = (TFBlipTextModel,) if is_tf_available() else () __UpperCAmelCase : Any = False __UpperCAmelCase : Dict = False __UpperCAmelCase : List[Any] = False def lowerCamelCase ( self ) -> List[str]: '''simple docstring''' snake_case : List[Any] = BlipTextModelTester(self ) snake_case : Optional[int] = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def lowerCamelCase ( self ) -> int: '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase ( self ) -> str: '''simple docstring''' snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' pass def lowerCamelCase ( self ) -> List[str]: '''simple docstring''' pass @unittest.skip(reason="Blip does not use inputs_embeds" ) def lowerCamelCase ( self ) -> Tuple: '''simple docstring''' pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" ) def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" ) def lowerCamelCase ( self ) -> Any: '''simple docstring''' pass @slow def lowerCamelCase ( self ) -> int: '''simple docstring''' for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case : List[str] = TFBlipTextModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def lowerCamelCase ( self , UpperCamelCase__=True ) -> Optional[int]: '''simple docstring''' super().test_pt_tf_model_equivalence(allow_missing_keys=UpperCamelCase__ )
203
1
"""simple docstring""" import collections import importlib.util import os import re from pathlib import Path lowerCAmelCase__ = '''src/transformers''' # Matches is_xxx_available() lowerCAmelCase__ = re.compile(r'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} lowerCAmelCase__ = re.compile(r'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] lowerCAmelCase__ = re.compile(r'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available lowerCAmelCase__ = re.compile(r'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") lowerCAmelCase__ = re.compile(r'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] lowerCAmelCase__ = re.compile(r'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", lowerCAmelCase__ = re.compile('''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], lowerCAmelCase__ = re.compile('''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo lowerCAmelCase__ = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: lowerCAmelCase__ = re.compile(r'''^\s*try:''') # Catches a line with else: lowerCAmelCase__ = re.compile(r'''^\s*else:''') def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" if _re_test_backend.search(_SCREAMING_SNAKE_CASE ) is None: return None UpperCamelCase = [b[0] for b in _re_backend.findall(_SCREAMING_SNAKE_CASE )] backends.sort() return "_and_".join(_SCREAMING_SNAKE_CASE ) def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" with open(_SCREAMING_SNAKE_CASE , "r" , encoding="utf-8" , newline="\n" ) as f: UpperCamelCase = f.readlines() UpperCamelCase = 0 while line_index < len(_SCREAMING_SNAKE_CASE ) and not lines[line_index].startswith("_import_structure = {" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(_SCREAMING_SNAKE_CASE ): return None # First grab the objects without a specific backend in _import_structure UpperCamelCase = [] while not lines[line_index].startswith("if TYPE_CHECKING" ) and find_backend(lines[line_index] ) is None: UpperCamelCase = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(_SCREAMING_SNAKE_CASE ): UpperCamelCase = _re_one_line_import_struct.search(_SCREAMING_SNAKE_CASE ).groups()[0] UpperCamelCase = re.findall("\[([^\]]+)\]" , _SCREAMING_SNAKE_CASE ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(", " )] ) line_index += 1 continue UpperCamelCase = _re_import_struct_key_value.search(_SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: UpperCamelCase = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(", " ) if len(_SCREAMING_SNAKE_CASE ) > 0] objects.extend(_SCREAMING_SNAKE_CASE ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) line_index += 1 UpperCamelCase = {"none": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("if TYPE_CHECKING" ): # If the line is an if not is_backend_available, we grab all objects associated. UpperCamelCase = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: UpperCamelCase = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 UpperCamelCase = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 4 ): UpperCamelCase = lines[line_index] if _re_import_struct_add_one.search(_SCREAMING_SNAKE_CASE ) is not None: objects.append(_re_import_struct_add_one.search(_SCREAMING_SNAKE_CASE ).groups()[0] ) elif _re_import_struct_add_many.search(_SCREAMING_SNAKE_CASE ) is not None: UpperCamelCase = _re_import_struct_add_many.search(_SCREAMING_SNAKE_CASE ).groups()[0].split(", " ) UpperCamelCase = [obj[1:-1] for obj in imports if len(_SCREAMING_SNAKE_CASE ) > 0] objects.extend(_SCREAMING_SNAKE_CASE ) elif _re_between_brackets.search(_SCREAMING_SNAKE_CASE ) is not None: UpperCamelCase = _re_between_brackets.search(_SCREAMING_SNAKE_CASE ).groups()[0].split(", " ) UpperCamelCase = [obj[1:-1] for obj in imports if len(_SCREAMING_SNAKE_CASE ) > 0] objects.extend(_SCREAMING_SNAKE_CASE ) elif _re_quote_object.search(_SCREAMING_SNAKE_CASE ) is not None: objects.append(_re_quote_object.search(_SCREAMING_SNAKE_CASE ).groups()[0] ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) elif line.startswith(" " * 12 + "\"" ): objects.append(line[13:-3] ) line_index += 1 UpperCamelCase = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend UpperCamelCase = [] while ( line_index < len(_SCREAMING_SNAKE_CASE ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("else" ) ): UpperCamelCase = lines[line_index] UpperCamelCase = _re_import.search(_SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 UpperCamelCase = {"none": objects} # Let's continue with backend-specific objects while line_index < len(_SCREAMING_SNAKE_CASE ): # If the line is an if is_backend_available, we grab all objects associated. UpperCamelCase = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: UpperCamelCase = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 UpperCamelCase = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 8 ): UpperCamelCase = lines[line_index] UpperCamelCase = _re_import.search(_SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 12 ): objects.append(line[12:-2] ) line_index += 1 UpperCamelCase = objects else: line_index += 1 return import_dict_objects, type_hint_objects def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" def find_duplicates(_SCREAMING_SNAKE_CASE ): return [k for k, v in collections.Counter(_SCREAMING_SNAKE_CASE ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] UpperCamelCase = [] for key in import_dict_objects.keys(): UpperCamelCase = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F"Duplicate _import_structure definitions for: {duplicate_imports}" ) UpperCamelCase = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F"Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): UpperCamelCase = "base imports" if key == "none" else F"{key} backend" errors.append(F"Differences for {name}:" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F" {a} in TYPE_HINT but not in _import_structure." ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F" {a} in _import_structure but not in TYPE_HINT." ) return errors def a__ ( ): """simple docstring""" UpperCamelCase = [] for root, _, files in os.walk(_SCREAMING_SNAKE_CASE ): if "__init__.py" in files: UpperCamelCase = os.path.join(_SCREAMING_SNAKE_CASE , "__init__.py" ) UpperCamelCase = parse_init(_SCREAMING_SNAKE_CASE ) if objects is not None: UpperCamelCase = analyze_results(*_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: UpperCamelCase = F"Problem in {fname}, both halves do not define the same objects.\n{errors[0]}" failures.append("\n".join(_SCREAMING_SNAKE_CASE ) ) if len(_SCREAMING_SNAKE_CASE ) > 0: raise ValueError("\n\n".join(_SCREAMING_SNAKE_CASE ) ) def a__ ( ): """simple docstring""" UpperCamelCase = [] for path, directories, files in os.walk(_SCREAMING_SNAKE_CASE ): for folder in directories: # Ignore private modules if folder.startswith("_" ): directories.remove(_SCREAMING_SNAKE_CASE ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(_SCREAMING_SNAKE_CASE ) / folder).glob("*.py" ) ) ) == 0: continue UpperCamelCase = str((Path(_SCREAMING_SNAKE_CASE ) / folder).relative_to(_SCREAMING_SNAKE_CASE ) ) UpperCamelCase = short_path.replace(os.path.sep , "." ) submodules.append(_SCREAMING_SNAKE_CASE ) for fname in files: if fname == "__init__.py": continue UpperCamelCase = str((Path(_SCREAMING_SNAKE_CASE ) / fname).relative_to(_SCREAMING_SNAKE_CASE ) ) UpperCamelCase = short_path.replace(".py" , "" ).replace(os.path.sep , "." ) if len(submodule.split("." ) ) == 1: submodules.append(_SCREAMING_SNAKE_CASE ) return submodules lowerCAmelCase__ = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', ] def a__ ( ): """simple docstring""" UpperCamelCase = importlib.util.spec_from_file_location( "transformers" , os.path.join(_SCREAMING_SNAKE_CASE , "__init__.py" ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) UpperCamelCase = spec.loader.load_module() UpperCamelCase = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(_SCREAMING_SNAKE_CASE ) > 0: UpperCamelCase = "\n".join(F"- {module}" for module in module_not_registered ) raise ValueError( "The following submodules are not properly registered in the main init of Transformers:\n" F"{list_of_modules}\n" "Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value." ) if __name__ == "__main__": check_all_inits() check_submodules()
244
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ = { '''configuration_timesformer''': ['''TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimesformerConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimesformerModel''', '''TimesformerForVideoClassification''', '''TimesformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
244
1
from __future__ import annotations from collections.abc import Iterator from typing import Any class UpperCAmelCase_ : '''simple docstring''' def __init__( self , __A ): """simple docstring""" lowerCamelCase : Any = data lowerCamelCase : Node | None = None class UpperCAmelCase_ : '''simple docstring''' def __init__( self ): """simple docstring""" lowerCamelCase : Dict = None lowerCamelCase : Any = None def __iter__( self ): """simple docstring""" lowerCamelCase : int = self.head while self.head: yield node.data lowerCamelCase : Any = node.next if node == self.head: break def __len__( self ): """simple docstring""" return sum(1 for _ in self ) def __repr__( self ): """simple docstring""" return "->".join(str(__A ) for item in iter(self ) ) def _snake_case ( self , __A ): """simple docstring""" self.insert_nth(len(self ) , __A ) def _snake_case ( self , __A ): """simple docstring""" self.insert_nth(0 , __A ) def _snake_case ( self , __A , __A ): """simple docstring""" if index < 0 or index > len(self ): raise IndexError("list index out of range." ) lowerCamelCase : Tuple = Node(__A ) if self.head is None: lowerCamelCase : List[Any] = new_node # first node points itself lowerCamelCase : Optional[Any] = new_node elif index == 0: # insert at head lowerCamelCase : List[str] = self.head lowerCamelCase : Any = new_node else: lowerCamelCase : Optional[int] = self.head for _ in range(index - 1 ): lowerCamelCase : Optional[int] = temp.next lowerCamelCase : Union[str, Any] = temp.next lowerCamelCase : Union[str, Any] = new_node if index == len(self ) - 1: # insert at tail lowerCamelCase : str = new_node def _snake_case ( self ): """simple docstring""" return self.delete_nth(0 ) def _snake_case ( self ): """simple docstring""" return self.delete_nth(len(self ) - 1 ) def _snake_case ( self , __A = 0 ): """simple docstring""" if not 0 <= index < len(self ): raise IndexError("list index out of range." ) lowerCamelCase : Optional[int] = self.head if self.head == self.tail: # just one node lowerCamelCase : int = None elif index == 0: # delete head node lowerCamelCase : int = self.tail.next.next lowerCamelCase : List[Any] = self.head.next else: lowerCamelCase : List[str] = self.head for _ in range(index - 1 ): lowerCamelCase : Optional[Any] = temp.next lowerCamelCase : List[Any] = temp.next lowerCamelCase : int = temp.next.next if index == len(self ) - 1: # delete at tail lowerCamelCase : Union[str, Any] = temp return delete_node.data def _snake_case ( self ): """simple docstring""" return len(self ) == 0 def lowercase_( ): '''simple docstring''' lowerCamelCase : Dict = CircularLinkedList() assert len(SCREAMING_SNAKE_CASE_ ) == 0 assert circular_linked_list.is_empty() is True assert str(SCREAMING_SNAKE_CASE_ ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(SCREAMING_SNAKE_CASE_ ) == i circular_linked_list.insert_nth(SCREAMING_SNAKE_CASE_ , i + 1 ) assert str(SCREAMING_SNAKE_CASE_ ) == "->".join(str(SCREAMING_SNAKE_CASE_ ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(SCREAMING_SNAKE_CASE_ ) == "->".join(str(SCREAMING_SNAKE_CASE_ ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(SCREAMING_SNAKE_CASE_ ) == "->".join(str(SCREAMING_SNAKE_CASE_ ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(SCREAMING_SNAKE_CASE_ ) == "->".join(str(SCREAMING_SNAKE_CASE_ ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(SCREAMING_SNAKE_CASE_ ) == "->".join(str(SCREAMING_SNAKE_CASE_ ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
283
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class UpperCAmelCase_ : '''simple docstring''' def __init__( self , __A , ): """simple docstring""" lowerCamelCase : str = parent lowerCamelCase : Union[str, Any] = 13 lowerCamelCase : Optional[Any] = 7 lowerCamelCase : List[str] = True lowerCamelCase : Optional[int] = True lowerCamelCase : Union[str, Any] = True lowerCamelCase : List[Any] = True lowerCamelCase : Tuple = True lowerCamelCase : Any = False lowerCamelCase : int = False lowerCamelCase : Tuple = False lowerCamelCase : Union[str, Any] = 2 lowerCamelCase : Dict = 99 lowerCamelCase : Tuple = 0 lowerCamelCase : Any = 32 lowerCamelCase : List[Any] = 2 lowerCamelCase : Tuple = 4 lowerCamelCase : List[str] = 0.1 lowerCamelCase : int = 0.1 lowerCamelCase : int = 512 lowerCamelCase : List[Any] = 16 lowerCamelCase : Any = 2 lowerCamelCase : Any = 0.02 lowerCamelCase : List[str] = 3 lowerCamelCase : Tuple = 4 lowerCamelCase : int = "last" lowerCamelCase : int = True lowerCamelCase : Dict = None lowerCamelCase : Tuple = 0 def _snake_case ( self ): """simple docstring""" lowerCamelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) lowerCamelCase : Tuple = None if self.use_input_lengths: lowerCamelCase : Optional[Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowerCamelCase : str = None if self.use_token_type_ids: lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowerCamelCase : Dict = None lowerCamelCase : Dict = None lowerCamelCase : Tuple = None if self.use_labels: lowerCamelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase : int = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) lowerCamelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase : List[Any] = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _snake_case ( self , __A , __A , __A , __A , __A , __A , __A , __A , __A , ): """simple docstring""" lowerCamelCase : Optional[Any] = TFFlaubertModel(config=__A ) lowerCamelCase : Any = {"input_ids": input_ids, "lengths": input_lengths, "langs": token_type_ids} lowerCamelCase : Dict = model(__A ) lowerCamelCase : Any = [input_ids, input_mask] lowerCamelCase : Tuple = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self , __A , __A , __A , __A , __A , __A , __A , __A , __A , ): """simple docstring""" lowerCamelCase : int = TFFlaubertWithLMHeadModel(__A ) lowerCamelCase : List[str] = {"input_ids": input_ids, "lengths": input_lengths, "langs": token_type_ids} lowerCamelCase : int = model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , __A , __A , __A , __A , __A , __A , __A , __A , __A , ): """simple docstring""" lowerCamelCase : Union[str, Any] = TFFlaubertForQuestionAnsweringSimple(__A ) lowerCamelCase : Optional[int] = {"input_ids": input_ids, "lengths": input_lengths} lowerCamelCase : Union[str, Any] = model(__A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self , __A , __A , __A , __A , __A , __A , __A , __A , __A , ): """simple docstring""" lowerCamelCase : Optional[int] = TFFlaubertForSequenceClassification(__A ) lowerCamelCase : str = {"input_ids": input_ids, "lengths": input_lengths} lowerCamelCase : Union[str, Any] = model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _snake_case ( self , __A , __A , __A , __A , __A , __A , __A , __A , __A , ): """simple docstring""" lowerCamelCase : Tuple = self.num_labels lowerCamelCase : Optional[Any] = TFFlaubertForTokenClassification(config=__A ) lowerCamelCase : int = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCamelCase : Union[str, Any] = model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self , __A , __A , __A , __A , __A , __A , __A , __A , __A , ): """simple docstring""" lowerCamelCase : Any = self.num_choices lowerCamelCase : Optional[Any] = TFFlaubertForMultipleChoice(config=__A ) lowerCamelCase : Tuple = tf.tile(tf.expand_dims(__A , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase : int = tf.tile(tf.expand_dims(__A , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase : List[str] = tf.tile(tf.expand_dims(__A , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase : Optional[int] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } lowerCamelCase : Union[str, Any] = model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : Dict = self.prepare_config_and_inputs() ( ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ) : Optional[Any] = config_and_inputs lowerCamelCase : List[Any] = { "input_ids": input_ids, "token_type_ids": token_type_ids, "langs": token_type_ids, "lengths": input_lengths, } return config, inputs_dict @require_tf class UpperCAmelCase_ ( UpperCamelCase , UpperCamelCase , unittest.TestCase ): '''simple docstring''' __A : str = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) __A : Dict = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable __A : Any = ( { "feature-extraction": TFFlaubertModel, "fill-mask": TFFlaubertWithLMHeadModel, "question-answering": TFFlaubertForQuestionAnsweringSimple, "text-classification": TFFlaubertForSequenceClassification, "token-classification": TFFlaubertForTokenClassification, "zero-shot": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) __A : List[str] = False __A : List[str] = False def _snake_case ( self , __A , __A , __A , __A , __A ): """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _snake_case ( self ): """simple docstring""" lowerCamelCase : Tuple = TFFlaubertModelTester(self ) lowerCamelCase : Optional[int] = ConfigTester(self , config_class=__A , emb_dim=37 ) def _snake_case ( self ): """simple docstring""" self.config_tester.run_common_tests() def _snake_case ( self ): """simple docstring""" lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__A ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__A ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__A ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__A ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*__A ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*__A ) @slow def _snake_case ( self ): """simple docstring""" for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase : int = TFFlaubertModel.from_pretrained(__A ) self.assertIsNotNone(__A ) @require_tf @require_sentencepiece @require_tokenizers class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _snake_case ( self ): """simple docstring""" lowerCamelCase : Optional[int] = TFFlaubertModel.from_pretrained("jplu/tf-flaubert-small-cased" ) lowerCamelCase : str = tf.convert_to_tensor( [[0, 158, 735, 2592, 1424, 6727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" lowerCamelCase : Dict = model(__A )[0] lowerCamelCase : List[str] = tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape , __A ) # compare the actual values for a slice. lowerCamelCase : Tuple = tf.convert_to_tensor( [ [ [-1.8768773, -1.566555, 0.27072418], [-1.6920038, -0.5873505, 1.9329599], [-2.9563985, -1.6993835, 1.7972052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
283
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer __UpperCAmelCase =logging.get_logger(__name__) __UpperCAmelCase ={"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all MVP models at https://huggingface.co/models?filter=mvp __UpperCAmelCase ={ "vocab_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json", }, "added_tokens.json": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json", }, "merges_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt", }, "tokenizer_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json", }, } __UpperCAmelCase ={ "RUCAIBox/mvp": 1_0_2_4, } class a__ ( UpperCAmelCase__ ): lowerCamelCase : int =VOCAB_FILES_NAMES lowerCamelCase : List[str] =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Any =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Union[str, Any] =["input_ids", "attention_mask"] lowerCamelCase : List[Any] =MvpTokenizer def __init__( self : List[Any] , a : List[str]=None , a : List[Any]=None , a : Union[str, Any]=None , a : int="replace" , a : Dict="<s>" , a : str="</s>" , a : Optional[int]="</s>" , a : Dict="<s>" , a : Tuple="<unk>" , a : Tuple="<pad>" , a : Tuple="<mask>" , a : Union[str, Any]=False , a : str=True , **a : Any , ): """simple docstring""" super().__init__( a , a , tokenizer_file=a , errors=a , bos_token=a , eos_token=a , sep_token=a , cls_token=a , unk_token=a , pad_token=a , mask_token=a , add_prefix_space=a , trim_offsets=a , **a , ) __lowerCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , a ) != add_prefix_space: __lowerCamelCase = getattr(a , pre_tok_state.pop('''type''' ) ) __lowerCamelCase = add_prefix_space __lowerCamelCase = pre_tok_class(**a ) __lowerCamelCase = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` __lowerCamelCase = '''post_processor''' __lowerCamelCase = getattr(self.backend_tokenizer , a , a ) if tokenizer_component_instance: __lowerCamelCase = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __lowerCamelCase = tuple(state['''sep'''] ) if "cls" in state: __lowerCamelCase = tuple(state['''cls'''] ) __lowerCamelCase = False if state.get('''add_prefix_space''' , a ) != add_prefix_space: __lowerCamelCase = add_prefix_space __lowerCamelCase = True if state.get('''trim_offsets''' , a ) != trim_offsets: __lowerCamelCase = trim_offsets __lowerCamelCase = True if changes_to_apply: __lowerCamelCase = getattr(a , state.pop('''type''' ) ) __lowerCamelCase = component_class(**a ) setattr(self.backend_tokenizer , a , a ) @property def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def SCREAMING_SNAKE_CASE__ ( self : Dict , a : Dict ): """simple docstring""" __lowerCamelCase = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else value __lowerCamelCase = value def SCREAMING_SNAKE_CASE__ ( self : List[Any] , *a : List[str] , **a : List[Any] ): """simple docstring""" __lowerCamelCase = kwargs.get('''is_split_into_words''' , a ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''' ) return super()._batch_encode_plus(*a , **a ) def SCREAMING_SNAKE_CASE__ ( self : int , *a : Any , **a : Optional[Any] ): """simple docstring""" __lowerCamelCase = kwargs.get('''is_split_into_words''' , a ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''' ) return super()._encode_plus(*a , **a ) def SCREAMING_SNAKE_CASE__ ( self : Any , a : str , a : Optional[str] = None ): """simple docstring""" __lowerCamelCase = self._tokenizer.model.save(a , name=a ) return tuple(a ) def SCREAMING_SNAKE_CASE__ ( self : str , a : Union[str, Any] , a : Optional[Any]=None ): """simple docstring""" __lowerCamelCase = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE__ ( self : Tuple , a : List[int] , a : Optional[List[int]] = None ): """simple docstring""" __lowerCamelCase = [self.sep_token_id] __lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
237
'''simple docstring''' import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class a__ : def __init__( self : List[Any] , a : Tuple , a : int , a : int ): """simple docstring""" if dst_width < 0 or dst_height < 0: raise ValueError('''Destination width/height should be > 0''' ) __lowerCamelCase = img __lowerCamelCase = img.shape[1] __lowerCamelCase = img.shape[0] __lowerCamelCase = dst_width __lowerCamelCase = dst_height __lowerCamelCase = self.src_w / self.dst_w __lowerCamelCase = self.src_h / self.dst_h __lowerCamelCase = __lowerCamelCase = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 2_55 ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" for i in range(self.dst_h ): for j in range(self.dst_w ): __lowerCamelCase = self.img[self.get_y(a )][self.get_x(a )] def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , a : int ): """simple docstring""" return int(self.ratio_x * x ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , a : int ): """simple docstring""" return int(self.ratio_y * y ) if __name__ == "__main__": __UpperCAmelCase , __UpperCAmelCase =8_0_0, 6_0_0 __UpperCAmelCase =imread("image_data/lena.jpg", 1) __UpperCAmelCase =NearestNeighbour(im, dst_w, dst_h) n.process() imshow( f'Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}', n.output ) waitKey(0) destroyAllWindows()
237
1
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = DebertaTokenizer SCREAMING_SNAKE_CASE__ : Union[str, Any] = True SCREAMING_SNAKE_CASE__ : Optional[int] = DebertaTokenizerFast def __magic_name__( self :List[str] ) -> str: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __SCREAMING_SNAKE_CASE : Union[str, Any] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] __SCREAMING_SNAKE_CASE : Optional[int] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) __SCREAMING_SNAKE_CASE : int = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __SCREAMING_SNAKE_CASE : Union[str, Any] = {'''unk_token''': '''[UNK]'''} __SCREAMING_SNAKE_CASE : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowerCAmelCase__ ) ) def __magic_name__( self :Any , **lowerCAmelCase__ :str ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def __magic_name__( self :int , lowerCAmelCase__ :int ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : Optional[int] = '''lower newer''' __SCREAMING_SNAKE_CASE : int = '''lower newer''' return input_text, output_text def __magic_name__( self :str ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Optional[Any] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Tuple = '''lower newer''' __SCREAMING_SNAKE_CASE : str = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = tokens + [tokenizer.unk_token] __SCREAMING_SNAKE_CASE : Optional[Any] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , lowerCAmelCase__ ) def __magic_name__( self :List[Any] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : List[str] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : List[str] = tokenizer('''Hello''' , '''World''' ) __SCREAMING_SNAKE_CASE : Dict = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , lowerCAmelCase__ ) @slow def __magic_name__( self :Optional[int] ) -> List[Any]: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) __SCREAMING_SNAKE_CASE : int = tokenizer.encode('''sequence builders''' , add_special_tokens=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = tokenizer.encode('''multi-sequence build''' , add_special_tokens=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.encode( '''sequence builders''' , add_special_tokens=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ , lowerCAmelCase__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def __magic_name__( self :Any ) -> Dict: __SCREAMING_SNAKE_CASE : Tuple = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: __SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) __SCREAMING_SNAKE_CASE : Dict = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] __SCREAMING_SNAKE_CASE : Optional[int] = tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = [tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) for seq in encoding['''input_ids''']] # fmt: off __SCREAMING_SNAKE_CASE : List[Any] = { '''input_ids''': [ [1, 2_118, 11_126, 565, 35, 83, 25_191, 163, 18_854, 13, 12_156, 12, 16_101, 25_376, 13_807, 9, 22_205, 27_893, 1_635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2_118, 11_126, 565, 24_536, 80, 43_797, 4_878, 7_373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3_724, 1_538, 33_183, 11_303, 43_797, 1_938, 4, 870, 24_165, 29_105, 5, 739, 32_644, 33_183, 11_303, 36_173, 88, 80, 650, 7_821, 45_940, 6, 52, 2_559, 5, 1_836, 9, 5, 7_397, 13_171, 31, 5, 1_836, 9, 32_644, 33_183, 11_303, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on __SCREAMING_SNAKE_CASE : List[str] = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , lowerCAmelCase__ ) for expected, decoded in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
9
import sys snake_case : int = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def __lowerCamelCase ( UpperCAmelCase_ : str = N ): """simple docstring""" a :Optional[Any] = -sys.maxsize - 1 for i in range(len(UpperCAmelCase_ ) - 12 ): a :Dict = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: a :str = product return largest_product if __name__ == "__main__": print(F"""{solution() = }""")
94
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) _lowerCamelCase : List[str] = { '''microsoft/swinv2-tiny-patch4-window8-256''': ( '''https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json''' ), } class lowerCamelCase (__lowerCamelCase ): """simple docstring""" UpperCAmelCase_ = "swinv2" UpperCAmelCase_ = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Any, _UpperCAmelCase : int=2_2_4, _UpperCAmelCase : Optional[int]=4, _UpperCAmelCase : Any=3, _UpperCAmelCase : str=9_6, _UpperCAmelCase : Optional[Any]=[2, 2, 6, 2], _UpperCAmelCase : Tuple=[3, 6, 1_2, 2_4], _UpperCAmelCase : Any=7, _UpperCAmelCase : Dict=4.0, _UpperCAmelCase : Any=True, _UpperCAmelCase : int=0.0, _UpperCAmelCase : Optional[int]=0.0, _UpperCAmelCase : Any=0.1, _UpperCAmelCase : Union[str, Any]="gelu", _UpperCAmelCase : Dict=False, _UpperCAmelCase : str=0.02, _UpperCAmelCase : List[Any]=1E-5, _UpperCAmelCase : List[Any]=3_2, **_UpperCAmelCase : Dict, ) -> Optional[int]: """simple docstring""" super().__init__(**_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = image_size SCREAMING_SNAKE_CASE__ : Dict = patch_size SCREAMING_SNAKE_CASE__ : Dict = num_channels SCREAMING_SNAKE_CASE__ : Optional[Any] = embed_dim SCREAMING_SNAKE_CASE__ : Union[str, Any] = depths SCREAMING_SNAKE_CASE__ : Union[str, Any] = len(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = num_heads SCREAMING_SNAKE_CASE__ : Any = window_size SCREAMING_SNAKE_CASE__ : str = mlp_ratio SCREAMING_SNAKE_CASE__ : Union[str, Any] = qkv_bias SCREAMING_SNAKE_CASE__ : List[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Any = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : int = drop_path_rate SCREAMING_SNAKE_CASE__ : List[Any] = hidden_act SCREAMING_SNAKE_CASE__ : Any = use_absolute_embeddings SCREAMING_SNAKE_CASE__ : Dict = layer_norm_eps SCREAMING_SNAKE_CASE__ : Tuple = initializer_range SCREAMING_SNAKE_CASE__ : List[str] = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model SCREAMING_SNAKE_CASE__ : Any = int(embed_dim * 2 ** (len(_UpperCAmelCase ) - 1) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = (0, 0, 0, 0)
191
def _a ( SCREAMING_SNAKE_CASE__ : int = 50_00_00_00 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = set() SCREAMING_SNAKE_CASE__ : Dict = int((limit - 24) ** (1 / 2) ) SCREAMING_SNAKE_CASE__ : Any = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , SCREAMING_SNAKE_CASE__ ) ) ) for primea in primes: SCREAMING_SNAKE_CASE__ : Optional[int] = primea * primea for primea in primes: SCREAMING_SNAKE_CASE__ : Union[str, Any] = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: SCREAMING_SNAKE_CASE__ : List[str] = primea * primea * primea * primea SCREAMING_SNAKE_CASE__ : Optional[int] = square + cube + tetr if total >= limit: break ret.add(SCREAMING_SNAKE_CASE__ ) return len(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": print(f"{solution() = }")
191
1
"""simple docstring""" import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def lowercase_ ( ): raise RuntimeError("""CUDA out of memory.""" ) class lowerCAmelCase_ (nn.Module ): """simple docstring""" def __init__(self ) -> List[Any]: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ : Optional[Any] = nn.Linear(3 , 4 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = nn.BatchNormad(4 ) SCREAMING_SNAKE_CASE__ : Dict = nn.Linear(4 , 5 ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> Any: """simple docstring""" return self.lineara(self.batchnorm(self.lineara(SCREAMING_SNAKE_CASE__ ) ) ) class lowerCAmelCase_ (unittest.TestCase ): """simple docstring""" def __magic_name__ (self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = [] @find_executable_batch_size(starting_batch_size=1_28 ) def mock_training_loop_function(SCREAMING_SNAKE_CASE__ ): nonlocal batch_sizes batch_sizes.append(SCREAMING_SNAKE_CASE__ ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(SCREAMING_SNAKE_CASE__ , [1_28, 64, 32, 16, 8] ) def __magic_name__ (self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = [] @find_executable_batch_size(starting_batch_size=1_28 ) def mock_training_loop_function(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): nonlocal batch_sizes batch_sizes.append(SCREAMING_SNAKE_CASE__ ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = mock_training_loop_function("""hello""" ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , [1_28, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, """hello"""] ) def __magic_name__ (self ) -> Dict: """simple docstring""" @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(SCREAMING_SNAKE_CASE__ ): pass with self.assertRaises(SCREAMING_SNAKE_CASE__ ) as cm: mock_training_loop_function() self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0] ) def __magic_name__ (self ) -> Dict: """simple docstring""" @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(SCREAMING_SNAKE_CASE__ ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(SCREAMING_SNAKE_CASE__ ) as cm: mock_training_loop_function() self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0] ) def __magic_name__ (self ) -> Optional[int]: """simple docstring""" @find_executable_batch_size(starting_batch_size=1_28 ) def mock_training_loop_function(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(SCREAMING_SNAKE_CASE__ ) as cm: mock_training_loop_function(1_28 , """hello""" , """world""" ) self.assertIn("""Batch size was passed into `f`""" , cm.exception.args[0] ) self.assertIn("""`f(arg1='hello', arg2='world')""" , cm.exception.args[0] ) def __magic_name__ (self ) -> Tuple: """simple docstring""" @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(SCREAMING_SNAKE_CASE__ ): raise ValueError("""Oops, we had an error!""" ) with self.assertRaises(SCREAMING_SNAKE_CASE__ ) as cm: mock_training_loop_function() self.assertIn("""Oops, we had an error!""" , cm.exception.args[0] ) @require_cuda def __magic_name__ (self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = torch.cuda.memory_allocated() SCREAMING_SNAKE_CASE__ : Dict = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Tuple = release_memory(SCREAMING_SNAKE_CASE__ ) self.assertEqual(torch.cuda.memory_allocated() , SCREAMING_SNAKE_CASE__ )
25
import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __a : str = 1_6 __a : str = 3_2 def UpperCAmelCase ( lowercase ): """simple docstring""" return int(x / 2**20 ) class _UpperCamelCase : """simple docstring""" def __enter__( self ) -> str: '''simple docstring''' gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero __lowercase = torch.cuda.memory_allocated() return self def __exit__( self , *lowerCAmelCase__ ) -> int: '''simple docstring''' gc.collect() torch.cuda.empty_cache() __lowercase = torch.cuda.memory_allocated() __lowercase = torch.cuda.max_memory_allocated() __lowercase = bamb(self.end - self.begin ) __lowercase = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def UpperCAmelCase ( lowercase , lowercase = 16 , lowercase = "bert-base-cased" , lowercase = 320 , lowercase = 160 , ): """simple docstring""" __lowercase = AutoTokenizer.from_pretrained(lowercase ) __lowercase = load_dataset( '''glue''' , '''mrpc''' , split={'''train''': F"train[:{n_train}]", '''validation''': F"validation[:{n_val}]"} ) def tokenize_function(lowercase ): # max_length=None => use the model max length (it's actually the default) __lowercase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowercase , max_length=lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __lowercase = datasets.map( lowercase , batched=lowercase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=lowercase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowercase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowercase , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(lowercase , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. __lowercase = DataLoader( tokenized_datasets['''train'''] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase ) __lowercase = DataLoader( tokenized_datasets['''validation'''] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase ) return train_dataloader, eval_dataloader def UpperCAmelCase ( lowercase , lowercase ): """simple docstring""" __lowercase = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowercase = config['''lr'''] __lowercase = int(config['''num_epochs'''] ) __lowercase = int(config['''seed'''] ) __lowercase = int(config['''batch_size'''] ) __lowercase = args.model_name_or_path set_seed(lowercase ) __lowercase , __lowercase = get_dataloaders(lowercase , lowercase , lowercase , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowercase = AutoModelForSequenceClassification.from_pretrained(lowercase , return_dict=lowercase ) # Instantiate optimizer __lowercase = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __lowercase = optimizer_cls(params=model.parameters() , lr=lowercase ) if accelerator.state.deepspeed_plugin is not None: __lowercase = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: __lowercase = 1 __lowercase = (len(lowercase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __lowercase = get_linear_schedule_with_warmup( optimizer=lowercase , num_warmup_steps=0 , num_training_steps=lowercase , ) else: __lowercase = DummyScheduler(lowercase , total_num_steps=lowercase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = accelerator.prepare( lowercase , lowercase , lowercase , lowercase , lowercase ) # We need to keep track of how many total steps we have iterated over __lowercase = 0 # We also need to keep track of the stating epoch so files are named properly __lowercase = 0 # Now we train the model __lowercase = {} for epoch in range(lowercase , lowercase ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(lowercase ): __lowercase = model(**lowercase ) __lowercase = outputs.loss __lowercase = loss / gradient_accumulation_steps accelerator.backward(lowercase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print('''Memory before entering the train : {}'''.format(bamb(tracemalloc.begin ) ) ) accelerator.print('''Memory consumed at the end of the train (end-begin): {}'''.format(tracemalloc.used ) ) accelerator.print('''Peak Memory consumed during the train (max-begin): {}'''.format(tracemalloc.peaked ) ) accelerator.print( '''Total Peak Memory consumed during the train (max): {}'''.format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) __lowercase = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[F"epoch-{epoch}"] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , '''peak_memory_utilization.json''' ) , '''w''' ) as f: json.dump(lowercase , lowercase ) def UpperCAmelCase ( ): """simple docstring""" __lowercase = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=lowercase , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=lowercase , ) parser.add_argument( '''--output_dir''' , type=lowercase , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--peak_memory_upper_bound''' , type=lowercase , default=lowercase , help='''The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.''' , ) parser.add_argument( '''--n_train''' , type=lowercase , default=320 , help='''Number of training examples to use.''' , ) parser.add_argument( '''--n_val''' , type=lowercase , default=160 , help='''Number of validation examples to use.''' , ) parser.add_argument( '''--num_epochs''' , type=lowercase , default=1 , help='''Number of train epochs.''' , ) __lowercase = parser.parse_args() __lowercase = {'''lr''': 2E-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(lowercase , lowercase ) if __name__ == "__main__": main()
210
0
"""simple docstring""" import random def __UpperCamelCase ( _A : str , _A : List[Any] , _A : List[Any] ) ->Dict: """simple docstring""" lowerCamelCase_ =a[left_index] lowerCamelCase_ =left_index + 1 for j in range(left_index + 1 , lowerCAmelCase__ ): if a[j] < pivot: lowerCamelCase_ , lowerCamelCase_ =a[i], a[j] i += 1 lowerCamelCase_ , lowerCamelCase_ =a[i - 1], a[left_index] return i - 1 def __UpperCamelCase ( _A : Optional[Any] , _A : Optional[Any] , _A : Dict ) ->List[str]: """simple docstring""" if left < right: lowerCamelCase_ =random.randint(lowerCAmelCase__ , right - 1 ) lowerCamelCase_ , lowerCamelCase_ =( a[left], a[pivot], ) # switches the pivot with the left most bound lowerCamelCase_ =partition(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) quick_sort_random( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # recursive quicksort to the left of the pivot point quick_sort_random( lowerCAmelCase__ , pivot_index + 1 , lowerCAmelCase__ ) # recursive quicksort to the right of the pivot point def __UpperCamelCase ( ) ->Union[str, Any]: """simple docstring""" lowerCamelCase_ =input("""Enter numbers separated by a comma:\n""" ).strip() lowerCamelCase_ =[int(lowerCAmelCase__ ) for item in user_input.split(""",""" )] quick_sort_random(lowerCAmelCase__ , 0 , len(lowerCAmelCase__ ) ) print(lowerCAmelCase__ ) if __name__ == "__main__": main()
365
import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def __UpperCamelCase ( _A : List[Any] , _A : Tuple , _A : Union[str, Any] , _A : Optional[Any] ) ->Any: """simple docstring""" # Initialise PyTorch model lowerCamelCase_ =BigBirdConfig.from_json_file(_A ) print(f'Building PyTorch model from configuration: {config}' ) if is_trivia_qa: lowerCamelCase_ =BigBirdForQuestionAnswering(_A ) else: lowerCamelCase_ =BigBirdForPreTraining(_A ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(_A , _A , is_trivia_qa=_A ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(_A ) if __name__ == "__main__": __A : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--big_bird_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--is_trivia_qa', action='store_true', help='Whether to convert a model with a trivia_qa head.' ) __A : Optional[int] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
49
0
def __lowerCamelCase ( UpperCAmelCase_ : list ): """simple docstring""" a :List[str] = False while is_sorted is False: # Until all the indices are traversed keep looping a :List[Any] = True for i in range(0 , len(UpperCAmelCase_ ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: a , a :List[str] = input_list[i + 1], input_list[i] # swapping if elements not in order a :Union[str, Any] = False for i in range(1 , len(UpperCAmelCase_ ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: a , a :Dict = input_list[i + 1], input_list[i] # swapping if elements not in order a :Dict = False return input_list if __name__ == "__main__": print('''Enter list to be sorted''') snake_case : Any = [int(x) for x in input().split()] # inputing elements of the list in one line snake_case : Tuple = odd_even_sort(input_list) print('''The sorted list is''') print(sorted_list)
94
def __lowerCamelCase ( UpperCAmelCase_ : list , UpperCAmelCase_ : list , UpperCAmelCase_ : int ): """simple docstring""" if len(UpperCAmelCase_ ) != len(UpperCAmelCase_ ): raise ValueError('''The length of profit and weight must be same.''' ) if max_weight <= 0: raise ValueError('''max_weight must greater than zero.''' ) if any(p < 0 for p in profit ): raise ValueError('''Profit can not be negative.''' ) if any(w < 0 for w in weight ): raise ValueError('''Weight can not be negative.''' ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. a :Optional[int] = [p / w for p, w in zip(UpperCAmelCase_ , UpperCAmelCase_ )] # Creating a copy of the list and sorting profit/weight in ascending order a :List[Any] = sorted(UpperCAmelCase_ ) # declaring useful variables a :Dict = len(UpperCAmelCase_ ) a :Tuple = 0 a :List[Any] = 0 a :str = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight a :List[Any] = sorted_profit_by_weight[length - i - 1] a :Optional[Any] = profit_by_weight.index(UpperCAmelCase_ ) a :Optional[int] = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( '''Input profits, weights, and then max_weight (all positive ints) separated by ''' '''spaces.''' ) snake_case : Union[str, Any] = [int(x) for x in input('''Input profits separated by spaces: ''').split()] snake_case : Tuple = [int(x) for x in input('''Input weights separated by spaces: ''').split()] snake_case : str = int(input('''Max weight allowed: ''')) # Function Call calc_profit(profit, weight, max_weight)
94
1
'''simple docstring''' import warnings from functools import wraps from typing import Callable def _lowerCAmelCase ( __snake_case : Callable ) -> Callable: @wraps(__snake_case ) def _inner_fn(*__snake_case : str , **__snake_case : Optional[Any] ): warnings.warn( (f'\'{fn.__name__}\' is experimental and might be subject to breaking changes in the future.') , __snake_case , ) return fn(*__snake_case , **__snake_case ) return _inner_fn
190
'''simple docstring''' from __future__ import annotations from math import gcd def _lowerCAmelCase ( __snake_case : int , __snake_case : int = 2 , __snake_case : int = 1 , __snake_case : int = 3 , ) -> int | None: # A value less than 2 can cause an infinite loop in the algorithm. if num < 2: raise ValueError('The input value cannot be less than 2' ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(__snake_case : int , __snake_case : int , __snake_case : int ) -> int: return (pow(__snake_case , 2 ) + step) % modulus for _ in range(__snake_case ): # These track the position within the cycle detection logic. __A : int = seed __A : Union[str, Any] = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. __A : List[Any] = rand_fn(__snake_case , __snake_case , __snake_case ) __A : Optional[Any] = rand_fn(__snake_case , __snake_case , __snake_case ) __A : Any = rand_fn(__snake_case , __snake_case , __snake_case ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. __A : Optional[int] = gcd(hare - tortoise , __snake_case ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. __A : Union[str, Any] = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse lowercase__ : str = argparse.ArgumentParser() parser.add_argument( '''num''', type=int, help='''The value to find a divisor of''', ) parser.add_argument( '''--attempts''', type=int, default=3, help='''The number of attempts before giving up''', ) lowercase__ : Optional[int] = parser.parse_args() lowercase__ : int = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(f"""{args.num} is probably prime""") else: lowercase__ : List[str] = args.num // divisor print(f"""{args.num} = {divisor} * {quotient}""")
190
1
from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __lowerCamelCase : List[str] = logging.get_logger(__name__) class A__ ( __snake_case ): _UpperCAmelCase :Union[str, Any] = ['input_features', 'attention_mask'] def __init__( self , A_=80 , A_=1_6000 , A_=80 , A_=0.0 , A_=True , A_=True , A_=True , **A_ , ): '''simple docstring''' super().__init__(feature_size=A_ , sampling_rate=A_ , padding_value=A_ , **A_ ) UpperCamelCase : List[Any] = num_mel_bins UpperCamelCase : Optional[int] = do_ceptral_normalize UpperCamelCase : Optional[Any] = normalize_means UpperCamelCase : Optional[int] = normalize_vars UpperCamelCase : str = True def __UpperCamelCase( self , A_ , ): '''simple docstring''' UpperCamelCase : List[str] = waveform * (2**15) # Kaldi compliance: 16-bit signed integers UpperCamelCase : Dict = torch.from_numpy(A_ ).unsqueeze(0 ) UpperCamelCase : str = ta_kaldi.fbank(A_ , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def __UpperCamelCase( A_ , A_ , A_ = True , A_ = True , A_ = 0.0 , ): '''simple docstring''' if normalize_means: UpperCamelCase : Tuple = x[:input_length].mean(axis=0 ) UpperCamelCase : str = np.subtract(A_ , A_ ) if normalize_vars: UpperCamelCase : List[str] = x[:input_length].std(axis=0 ) UpperCamelCase : Any = np.divide(A_ , A_ ) if input_length < x.shape[0]: UpperCamelCase : Dict = padding_value # make sure array is in float32 UpperCamelCase : Optional[int] = x.astype(np.floataa ) return x def __UpperCamelCase( self , A_ , A_ = None ): '''simple docstring''' UpperCamelCase : Union[str, Any] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(A_ , A_ , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(A_ , A_ ) ] def __call__( self , A_ , A_ = False , A_ = None , A_ = False , A_ = None , A_ = None , A_ = None , A_ = None , **A_ , ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" F""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with""" F""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) UpperCamelCase : List[Any] = isinstance(A_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) UpperCamelCase : Any = is_batched_numpy or ( isinstance(A_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCamelCase : List[Any] = [np.asarray(A_ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(A_ , np.ndarray ): UpperCamelCase : Tuple = np.asarray(A_ , dtype=np.floataa ) elif isinstance(A_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): UpperCamelCase : Union[str, Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: UpperCamelCase : str = [raw_speech] # extract fbank features UpperCamelCase : Optional[int] = [self._extract_fbank_features(A_ ) for waveform in raw_speech] # convert into correct format for padding UpperCamelCase : Optional[int] = BatchFeature({"input_features": features} ) UpperCamelCase : int = self.pad( A_ , padding=A_ , max_length=A_ , truncation=A_ , pad_to_multiple_of=A_ , return_attention_mask=A_ , **A_ , ) # make sure list is in array format UpperCamelCase : str = padded_inputs.get("input_features" ) if isinstance(input_features[0] , A_ ): UpperCamelCase : int = [np.asarray(A_ , dtype=np.floataa ) for feature in input_features] UpperCamelCase : List[str] = padded_inputs.get("attention_mask" ) if attention_mask is not None: UpperCamelCase : Any = [np.asarray(A_ , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: UpperCamelCase : str = ( np.array(A_ , dtype=np.intaa ) if self._get_padding_strategies(A_ , max_length=A_ ) is not PaddingStrategy.DO_NOT_PAD else None ) UpperCamelCase : Any = self.normalize( padded_inputs["input_features"] , attention_mask=A_ ) if return_tensors is not None: UpperCamelCase : Dict = padded_inputs.convert_to_tensors(A_ ) return padded_inputs
52
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class A__ : def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=True , A_=True , A_=99 , A_=24 , A_=2 , A_=6 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.02 , A_=3 , A_=None , A_=1000 , ): '''simple docstring''' UpperCamelCase : Union[str, Any] = parent UpperCamelCase : List[Any] = batch_size UpperCamelCase : Dict = seq_length UpperCamelCase : Tuple = is_training UpperCamelCase : Union[str, Any] = use_input_mask UpperCamelCase : Tuple = use_token_type_ids UpperCamelCase : Optional[Any] = use_labels UpperCamelCase : str = vocab_size UpperCamelCase : Optional[int] = hidden_size UpperCamelCase : Any = num_hidden_layers UpperCamelCase : Optional[Any] = num_attention_heads UpperCamelCase : Optional[Any] = intermediate_size UpperCamelCase : Optional[Any] = hidden_act UpperCamelCase : Union[str, Any] = hidden_dropout_prob UpperCamelCase : Union[str, Any] = attention_probs_dropout_prob UpperCamelCase : List[Any] = max_position_embeddings UpperCamelCase : str = type_vocab_size UpperCamelCase : Optional[int] = type_sequence_label_size UpperCamelCase : Dict = initializer_range UpperCamelCase : int = num_labels UpperCamelCase : Optional[int] = scope UpperCamelCase : int = range_bbox def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase : Any = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCamelCase : Union[str, Any] = bbox[i, j, 3] UpperCamelCase : int = bbox[i, j, 1] UpperCamelCase : int = t if bbox[i, j, 2] < bbox[i, j, 0]: UpperCamelCase : List[str] = bbox[i, j, 2] UpperCamelCase : Optional[int] = bbox[i, j, 0] UpperCamelCase : Optional[Any] = t UpperCamelCase : Dict = None if self.use_input_mask: UpperCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) UpperCamelCase : str = None if self.use_token_type_ids: UpperCamelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase : Dict = None UpperCamelCase : int = None if self.use_labels: UpperCamelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase : List[Any] = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def __UpperCamelCase( self ): '''simple docstring''' return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ): '''simple docstring''' UpperCamelCase : Any = LiltModel(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase : str = model(A_ , bbox=A_ , attention_mask=A_ , token_type_ids=A_ ) UpperCamelCase : Optional[int] = model(A_ , bbox=A_ , token_type_ids=A_ ) UpperCamelCase : Any = model(A_ , bbox=A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ): '''simple docstring''' UpperCamelCase : Any = self.num_labels UpperCamelCase : Dict = LiltForTokenClassification(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase : Dict = model( A_ , bbox=A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ): '''simple docstring''' UpperCamelCase : Dict = LiltForQuestionAnswering(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase : List[str] = model( A_ , bbox=A_ , attention_mask=A_ , token_type_ids=A_ , start_positions=A_ , end_positions=A_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Any = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) : Tuple = config_and_inputs UpperCamelCase : Tuple = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class A__ ( __snake_case , __snake_case , __snake_case , unittest.TestCase ): _UpperCAmelCase :Union[str, Any] = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) _UpperCAmelCase :Optional[Any] = ( { 'feature-extraction': LiltModel, 'question-answering': LiltForQuestionAnswering, 'text-classification': LiltForSequenceClassification, 'token-classification': LiltForTokenClassification, 'zero-shot': LiltForSequenceClassification, } if is_torch_available() else {} ) _UpperCAmelCase :Dict = False _UpperCAmelCase :Union[str, Any] = False def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' return True def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[int] = LiltModelTester(self ) UpperCamelCase : Optional[int] = ConfigTester(self , config_class=A_ , hidden_size=37 ) def __UpperCamelCase( self ): '''simple docstring''' self.config_tester.run_common_tests() def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase : Union[str, Any] = type self.model_tester.create_and_check_model(*A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A_ ) @slow def __UpperCamelCase( self ): '''simple docstring''' for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : Dict = LiltModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @require_torch @slow class A__ ( unittest.TestCase ): def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : int = LiltModel.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base" ).to(A_ ) UpperCamelCase : Tuple = torch.tensor([[1, 2]] , device=A_ ) UpperCamelCase : List[str] = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=A_ ) # forward pass with torch.no_grad(): UpperCamelCase : Optional[int] = model(input_ids=A_ , bbox=A_ ) UpperCamelCase : List[str] = torch.Size([1, 2, 768] ) UpperCamelCase : Any = torch.tensor( [[-0.06_53, 0.09_50, -0.00_61], [-0.05_45, 0.09_26, -0.03_24]] , device=A_ , ) self.assertTrue(outputs.last_hidden_state.shape , A_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , A_ , atol=1e-3 ) )
52
1
'''simple docstring''' class UpperCamelCase : """simple docstring""" def __init__( self : List[Any]): """simple docstring""" a : Optional[int] = 0 a : str = 0 a : Optional[int] = {} def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]): """simple docstring""" if vertex not in self.adjacency: a : List[str] = {} self.num_vertices += 1 def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any): """simple docstring""" self.add_vertex(lowerCamelCase_) self.add_vertex(lowerCamelCase_) if head == tail: return a : int = weight a : Optional[Any] = weight def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" a : List[str] = self.get_edges() for edge in edges: a , a , a : Union[str, Any] = edge edges.remove((tail, head, weight)) for i in range(len(lowerCamelCase_)): a : Union[str, Any] = list(edges[i]) edges.sort(key=lambda UpperCAmelCase_: e[2]) for i in range(len(lowerCamelCase_) - 1): if edges[i][2] >= edges[i + 1][2]: a : Dict = edges[i][2] + 1 for edge in edges: a , a , a : List[str] = edge a : Union[str, Any] = weight a : Any = weight def __str__( self : str): """simple docstring""" a : List[str] = '' for tail in self.adjacency: for head in self.adjacency[tail]: a : List[str] = self.adjacency[head][tail] string += f"""{head} -> {tail} == {weight}\n""" return string.rstrip('\n') def SCREAMING_SNAKE_CASE_ ( self : List[Any]): """simple docstring""" a : Union[str, Any] = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail])) return output def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" return self.adjacency.keys() @staticmethod def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : str=None , UpperCAmelCase_ : Any=None): """simple docstring""" a : int = Graph() if vertices is None: a : str = [] if edges is None: a : int = [] for vertex in vertices: g.add_vertex(lowerCamelCase_) for edge in edges: g.add_edge(*lowerCamelCase_) return g class UpperCamelCase : """simple docstring""" def __init__( self : Optional[int]): """simple docstring""" a : List[str] = {} a : Tuple = {} def __len__( self : Union[str, Any]): """simple docstring""" return len(self.parent) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : int): """simple docstring""" if item in self.parent: return self.find(lowerCamelCase_) a : Any = item a : int = 0 return item def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : List[str]): """simple docstring""" if item not in self.parent: return self.make_set(lowerCamelCase_) if item != self.parent[item]: a : Tuple = self.find(self.parent[item]) return self.parent[item] def SCREAMING_SNAKE_CASE_ ( self : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict): """simple docstring""" a : Optional[int] = self.find(lowerCamelCase_) a : List[Any] = self.find(lowerCamelCase_) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: a : List[str] = roota return roota if self.rank[roota] < self.rank[roota]: a : List[str] = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 a : str = roota return roota return None @staticmethod def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : Dict): """simple docstring""" a : int = graph.num_vertices a : Tuple = Graph.UnionFind() a : int = [] while num_components > 1: a : Union[str, Any] = {} for vertex in graph.get_vertices(): a : int = -1 a : Union[str, Any] = graph.get_edges() for edge in edges: a , a , a : List[Any] = edge edges.remove((tail, head, weight)) for edge in edges: a , a , a : Optional[int] = edge a : Union[str, Any] = union_find.find(lowerCamelCase_) a : int = union_find.find(lowerCamelCase_) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: a : int = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: a : str = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: a , a , a : List[Any] = cheap_edge[vertex] if union_find.find(lowerCamelCase_) != union_find.find(lowerCamelCase_): union_find.union(lowerCamelCase_ , lowerCamelCase_) mst_edges.append(cheap_edge[vertex]) a : Any = num_components - 1 a : str = Graph.build(edges=lowerCamelCase_) return mst
361
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCamelCase : List[str] = {"""processing_layoutxlm""": ["""LayoutXLMProcessor"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Any = ["""LayoutXLMTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Optional[int] = ["""LayoutXLMTokenizerFast"""] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys UpperCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
345
0
import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def lowerCamelCase__ ( __lowerCamelCase : Any , __lowerCamelCase : int ): if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer __UpperCAmelCase : str = flax_key_tuple[:-1] + ("""weight""",) __UpperCAmelCase : Optional[int] = torch.permute(__lowerCamelCase , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(__lowerCamelCase ): # linear layer __UpperCAmelCase : List[Any] = flax_key_tuple[:-1] + ("""weight""",) __UpperCAmelCase : List[str] = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: __UpperCAmelCase : Tuple = flax_key_tuple[:-1] + ("""weight""",) return flax_key_tuple, flax_tensor def lowerCamelCase__ ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Union[str, Any] ): if "metadata" in layer: __UpperCAmelCase : List[str] = layer.split("""metadata""" ) __UpperCAmelCase : Tuple = """""".join(split_layer[0] )[:-1] __UpperCAmelCase : Optional[int] = [tuple(("""metadata""" + split_layer[1]).split("""/""" ) )] elif "kvstore" in layer: __UpperCAmelCase : Optional[int] = layer.split("""kvstore""" ) __UpperCAmelCase : Any = """""".join(split_layer[0] )[:-1] __UpperCAmelCase : Optional[Any] = [tuple(("""kvstore""" + split_layer[1]).split("""/""" ) )] else: __UpperCAmelCase : Any = layer.split("""/""" ) __UpperCAmelCase : Dict = """/""".join(split_layer[:-1] ) __UpperCAmelCase : List[str] = (split_layer[-1],) if "kvstore/path" in layer: __UpperCAmelCase : List[str] = f"""{switch_checkpoint_path}/{checkpoint_info[layer]}""" elif "kvstore/driver" in layer: __UpperCAmelCase : List[str] = """file""" else: __UpperCAmelCase : int = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def lowerCamelCase__ ( __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] ): __UpperCAmelCase : List[Any] = rename_keys(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = {} for k, v in current_block.items(): __UpperCAmelCase : Union[str, Any] = v __UpperCAmelCase : str = new_current_block torch.save(__lowerCamelCase , __lowerCamelCase ) def lowerCamelCase__ ( __lowerCamelCase : Tuple , __lowerCamelCase : str , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : str = WEIGHTS_NAME ): __UpperCAmelCase : int = convert_file_size_to_int(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = [] __UpperCAmelCase : Dict = {} __UpperCAmelCase : List[Any] = 0 __UpperCAmelCase : List[str] = 0 os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) with gfile.GFile(switch_checkpoint_path + """/checkpoint""" , """rb""" ) as fp: __UpperCAmelCase : List[Any] = serialization.msgpack_restore(fp.read() )["""optimizer"""]["""target"""] __UpperCAmelCase : Union[str, Any] = flatten_dict(__lowerCamelCase , sep="""/""" ) __UpperCAmelCase : Any = {} for layer in checkpoint_info.keys(): __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = get_key_and_tensorstore_dict( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if curr_real_layer_name in all_layers: __UpperCAmelCase : Optional[int] = content else: __UpperCAmelCase : List[Any] = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file __UpperCAmelCase : int = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() __UpperCAmelCase : List[Any] = torch.tensor(__lowerCamelCase ) __UpperCAmelCase : List[Any] = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts __UpperCAmelCase , __UpperCAmelCase : Any = rename_base_flax_keys(tuple(key.split("""/""" ) ) , __lowerCamelCase ) __UpperCAmelCase : str = """/""".join(__lowerCamelCase ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: __UpperCAmelCase : Optional[Any] = os.path.join( __lowerCamelCase , weights_name.replace(""".bin""" , f"""-{len(__lowerCamelCase )+1:05d}-of-???.bin""" ) ) rename_and_save_block(__lowerCamelCase , __lowerCamelCase ) sharded_state_dicts.append(current_block.keys() ) del current_block __UpperCAmelCase : List[Any] = {} __UpperCAmelCase : Optional[Any] = 0 __UpperCAmelCase : Union[str, Any] = raw_weights.to(getattr(__lowerCamelCase , __lowerCamelCase ) ) current_block_size += weight_size total_size += weight_size # Add the last block __UpperCAmelCase : Any = os.path.join(__lowerCamelCase , weights_name.replace(""".bin""" , f"""-{len(__lowerCamelCase )+1:05d}-of-???.bin""" ) ) rename_and_save_block(__lowerCamelCase , __lowerCamelCase ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(__lowerCamelCase ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index __UpperCAmelCase : str = {} __UpperCAmelCase : Dict = {} for idx, shard in enumerate(__lowerCamelCase ): __UpperCAmelCase : Optional[Any] = weights_name.replace( """.bin""" , f"""-{idx+1:05d}-of-{len(__lowerCamelCase ):05d}.bin""" ) # len(sharded_state_dicts):05d} __UpperCAmelCase : int = os.path.join(__lowerCamelCase , weights_name.replace(""".bin""" , f"""-{idx+1:05d}-of-???.bin""" ) ) os.rename(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) ) __UpperCAmelCase : Union[str, Any] = shard for key in shard: __UpperCAmelCase : Tuple = shard_file # Add the metadata __UpperCAmelCase : Tuple = {"""total_size""": total_size} __UpperCAmelCase : int = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(__lowerCamelCase , __lowerCamelCase ) , """w""" , encoding="""utf-8""" ) as f: __UpperCAmelCase : Optional[Any] = json.dumps(__lowerCamelCase , indent=2 , sort_keys=__lowerCamelCase ) + """\n""" f.write(__lowerCamelCase ) return metadata, index if __name__ == "__main__": a : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--max_shard_size", default="10GB", required=False, help="Max shard size") parser.add_argument("--dtype", default="bfloat16", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted", type=str, required=False, help="Path to the output pytorch model.", ) a : int = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def lowerCamelCase__ ( ): from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer __UpperCAmelCase : Union[str, Any] = SwitchTransformersConfig.from_pretrained("""google/switch-base-8""" ) config.save_pretrained("""/home/arthur_huggingface_co/transformers/switch_converted""" ) __UpperCAmelCase : List[Any] = SwitchTransformersForConditionalGeneration.from_pretrained( """/home/arthur_huggingface_co/transformers/switch_converted""" , device_map="""auto""" ) __UpperCAmelCase : Tuple = TaTokenizer.from_pretrained("""t5-small""" ) __UpperCAmelCase : Optional[Any] = """A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.""" __UpperCAmelCase : Tuple = tokenizer(__lowerCamelCase , return_tensors="""pt""" ).input_ids __UpperCAmelCase : List[str] = model.generate(__lowerCamelCase , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
114
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a : Union[str, Any] = {"configuration_timm_backbone": ["TimmBackboneConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Tuple = ["TimmBackbone"] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys a : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
114
1
"""simple docstring""" import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" if is_torch_version('<' , '2.0.0' ) or not hasattr(_UpperCAmelCase , '_dynamo' ): return False return isinstance(_UpperCAmelCase , torch._dynamo.eval_frame.OptimizedModule ) def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ = True ): """simple docstring""" A__ = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) A__ = is_compiled_module(_UpperCAmelCase ) if is_compiled: A__ = model A__ = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(_UpperCAmelCase , _UpperCAmelCase ): A__ = model.module if not keep_fpaa_wrapper: A__ = getattr(_UpperCAmelCase , 'forward' ) A__ = model.__dict__.pop('_original_forward' , _UpperCAmelCase ) if original_forward is not None: while hasattr(_UpperCAmelCase , '__wrapped__' ): A__ = forward.__wrapped__ if forward == original_forward: break A__ = forward if getattr(_UpperCAmelCase , '_converted_to_transformer_engine' , _UpperCAmelCase ): convert_model(_UpperCAmelCase , to_transformer_engine=_UpperCAmelCase ) if is_compiled: A__ = model A__ = compiled_model return model def UpperCAmelCase ( ): """simple docstring""" PartialState().wait_for_everyone() def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" if PartialState().distributed_type == DistributedType.TPU: xm.save(_UpperCAmelCase , _UpperCAmelCase ) elif PartialState().local_process_index == 0: torch.save(_UpperCAmelCase , _UpperCAmelCase ) @contextmanager def UpperCAmelCase ( **UpperCamelCase__ ): """simple docstring""" for key, value in kwargs.items(): A__ = str(_UpperCAmelCase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" if not hasattr(_UpperCAmelCase , '__qualname__' ) and not hasattr(_UpperCAmelCase , '__name__' ): A__ = getattr(_UpperCAmelCase , '__class__' , _UpperCAmelCase ) if hasattr(_UpperCAmelCase , '__qualname__' ): return obj.__qualname__ if hasattr(_UpperCAmelCase , '__name__' ): return obj.__name__ return str(_UpperCAmelCase ) def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" for key, value in source.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): A__ = destination.setdefault(_UpperCAmelCase , {} ) merge_dicts(_UpperCAmelCase , _UpperCAmelCase ) else: A__ = value return destination def UpperCAmelCase ( UpperCamelCase__ = None ): """simple docstring""" if port is None: A__ = 29_500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('localhost', port) ) == 0
351
"""simple docstring""" import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = {"vocab_file": "vocab.json"} __lowerCamelCase = { "vocab_file": { "mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json", } } __lowerCamelCase = {"mgp-str": 27} class UpperCamelCase__( __A ): lowerCAmelCase__ : Optional[int] = VOCAB_FILES_NAMES lowerCAmelCase__ : Dict = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase="[GO]" ,__UpperCAmelCase="[GO]" ,__UpperCAmelCase="[s]" ,__UpperCAmelCase="[GO]" ,**__UpperCAmelCase ) -> List[str]: super().__init__( unk_token=__UpperCAmelCase ,bos_token=__UpperCAmelCase ,eos_token=__UpperCAmelCase ,pad_token=__UpperCAmelCase ,**__UpperCAmelCase ,) with open(__UpperCAmelCase ,encoding='utf-8' ) as vocab_handle: A__ = json.load(__UpperCAmelCase ) A__ = {v: k for k, v in self.vocab.items()} @property def snake_case__ ( self ) -> Any: return len(self.vocab ) def snake_case__ ( self ) -> List[str]: return dict(self.vocab ,**self.added_tokens_encoder ) def snake_case__ ( self ,__UpperCAmelCase ) -> Optional[Any]: A__ = [] for s in text: char_tokens.extend(__UpperCAmelCase ) return char_tokens def snake_case__ ( self ,__UpperCAmelCase ) -> Union[str, Any]: return self.vocab.get(__UpperCAmelCase ,self.vocab.get(self.unk_token ) ) def snake_case__ ( self ,__UpperCAmelCase ) -> Dict: return self.decoder.get(__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(__UpperCAmelCase ): logger.error('Vocabulary path ({}) should be a directory'.format(__UpperCAmelCase ) ) return A__ = os.path.join( __UpperCAmelCase ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) with open(__UpperCAmelCase ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(self.vocab ,indent=2 ,sort_keys=__UpperCAmelCase ,ensure_ascii=__UpperCAmelCase ) + '\n' ) return (vocab_file,)
154
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor _A : Union[str, Any] = logging.get_logger(__name__) class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : List[str] , *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : int ) -> None: warnings.warn( """The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use MobileViTImageProcessor instead.""" , SCREAMING_SNAKE_CASE__ , ) super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
229
'''simple docstring''' import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _lowercase ( unittest.TestCase ): '''simple docstring''' @property def a ( self : Any ) -> int: torch.manual_seed(0 ) __lowerCAmelCase = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def a ( self : Dict ) -> int: __lowerCAmelCase = self.dummy_uncond_unet __lowerCAmelCase = PNDMScheduler() __lowerCAmelCase = PNDMPipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) pndm.to(SCREAMING_SNAKE_CASE__ ) pndm.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = pndm(generator=SCREAMING_SNAKE_CASE__ , num_inference_steps=20 , output_type="""numpy""" ).images __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = pndm(generator=SCREAMING_SNAKE_CASE__ , num_inference_steps=20 , output_type="""numpy""" , return_dict=SCREAMING_SNAKE_CASE__ )[0] __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class _lowercase ( unittest.TestCase ): '''simple docstring''' def a ( self : Any ) -> Any: __lowerCAmelCase = """google/ddpm-cifar10-32""" __lowerCAmelCase = UNetaDModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = PNDMScheduler() __lowerCAmelCase = PNDMPipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) pndm.to(SCREAMING_SNAKE_CASE__ ) pndm.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = pndm(generator=SCREAMING_SNAKE_CASE__ , output_type="""numpy""" ).images __lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = np.array([0.1_5_6_4, 0.1_4_6_4_5, 0.1_4_0_6, 0.1_4_7_1_5, 0.1_2_4_2_5, 0.1_4_0_4_5, 0.1_3_1_1_5, 0.1_2_1_7_5, 0.1_2_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
229
1
"""simple docstring""" import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available A_ : List[Any] = logging.getLogger(__name__) @dataclass class a_ : '''simple docstring''' lowerCamelCase__ : str lowerCamelCase__ : List[str] lowerCamelCase__ : Optional[List[str]] @dataclass class a_ : '''simple docstring''' lowerCamelCase__ : List[int] lowerCamelCase__ : List[int] lowerCamelCase__ : Optional[List[int]] = None lowerCamelCase__ : Optional[List[int]] = None class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = "train" lowerCamelCase__ : Any = "dev" lowerCamelCase__ : Any = "test" class a_ : '''simple docstring''' @staticmethod def a__ (lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' raise NotImplementedError @staticmethod def a__ (lowerCamelCase_ ): '''simple docstring''' raise NotImplementedError @staticmethod def a__ (lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=False, lowerCamelCase_="[CLS]", lowerCamelCase_=1, lowerCamelCase_="[SEP]", lowerCamelCase_=False, lowerCamelCase_=False, lowerCamelCase_=0, lowerCamelCase_=0, lowerCamelCase_=-1_0_0, lowerCamelCase_=0, lowerCamelCase_=True, ): '''simple docstring''' lowerCamelCase__ : Tuple = {label: i for i, label in enumerate(lowerCamelCase_ )} lowerCamelCase__ : int = [] for ex_index, example in enumerate(lowerCamelCase_ ): if ex_index % 1_0_0_0_0 == 0: logger.info('Writing example %d of %d', lowerCamelCase_, len(lowerCamelCase_ ) ) lowerCamelCase__ : Dict = [] lowerCamelCase__ : List[Any] = [] for word, label in zip(example.words, example.labels ): lowerCamelCase__ : int = tokenizer.tokenize(lowerCamelCase_ ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(lowerCamelCase_ ) > 0: tokens.extend(lowerCamelCase_ ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(lowerCamelCase_ ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. lowerCamelCase__ : Optional[Any] = tokenizer.num_special_tokens_to_add() if len(lowerCamelCase_ ) > max_seq_length - special_tokens_count: lowerCamelCase__ : Union[str, Any] = tokens[: (max_seq_length - special_tokens_count)] lowerCamelCase__ : Optional[Any] = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] lowerCamelCase__ : Union[str, Any] = [sequence_a_segment_id] * len(lowerCamelCase_ ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: lowerCamelCase__ : Any = [cls_token] + tokens lowerCamelCase__ : Dict = [pad_token_label_id] + label_ids lowerCamelCase__ : int = [cls_token_segment_id] + segment_ids lowerCamelCase__ : str = tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. lowerCamelCase__ : Tuple = [1 if mask_padding_with_zero else 0] * len(lowerCamelCase_ ) # Zero-pad up to the sequence length. lowerCamelCase__ : List[str] = max_seq_length - len(lowerCamelCase_ ) if pad_on_left: lowerCamelCase__ : Union[str, Any] = ([pad_token] * padding_length) + input_ids lowerCamelCase__ : Union[str, Any] = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask lowerCamelCase__ : List[str] = ([pad_token_segment_id] * padding_length) + segment_ids lowerCamelCase__ : Union[str, Any] = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(lowerCamelCase_ ) == max_seq_length assert len(lowerCamelCase_ ) == max_seq_length assert len(lowerCamelCase_ ) == max_seq_length assert len(lowerCamelCase_ ) == max_seq_length if ex_index < 5: logger.info('*** Example ***' ) logger.info('guid: %s', example.guid ) logger.info('tokens: %s', ' '.join([str(lowerCamelCase_ ) for x in tokens] ) ) logger.info('input_ids: %s', ' '.join([str(lowerCamelCase_ ) for x in input_ids] ) ) logger.info('input_mask: %s', ' '.join([str(lowerCamelCase_ ) for x in input_mask] ) ) logger.info('segment_ids: %s', ' '.join([str(lowerCamelCase_ ) for x in segment_ids] ) ) logger.info('label_ids: %s', ' '.join([str(lowerCamelCase_ ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: lowerCamelCase__ : str = None features.append( InputFeatures( input_ids=lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, label_ids=lowerCamelCase_ ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : List[InputFeatures] lowerCamelCase__ : int = nn.CrossEntropyLoss().ignore_index def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ = None, lowerCamelCase_=False, lowerCamelCase_ = Split.train, ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = os.path.join( lowerCamelCase_, 'cached_{}_{}_{}'.format(mode.value, tokenizer.__class__.__name__, str(lowerCamelCase_ ) ), ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCamelCase__ : Union[str, Any] = cached_features_file + '.lock' with FileLock(lowerCamelCase_ ): if os.path.exists(lowerCamelCase_ ) and not overwrite_cache: logger.info(f'''Loading features from cached file {cached_features_file}''' ) lowerCamelCase__ : str = torch.load(lowerCamelCase_ ) else: logger.info(f'''Creating features from dataset file at {data_dir}''' ) lowerCamelCase__ : List[str] = token_classification_task.read_examples_from_file(lowerCamelCase_, lowerCamelCase_ ) # TODO clean up all this to leverage built-in features of tokenizers lowerCamelCase__ : Union[str, Any] = token_classification_task.convert_examples_to_features( lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, cls_token_at_end=bool(model_type in ['xlnet'] ), cls_token=tokenizer.cls_token, cls_token_segment_id=2 if model_type in ['xlnet'] else 0, sep_token=tokenizer.sep_token, sep_token_extra=lowerCamelCase_, pad_on_left=bool(tokenizer.padding_side == 'left' ), pad_token=tokenizer.pad_token_id, pad_token_segment_id=tokenizer.pad_token_type_id, pad_token_label_id=self.pad_token_label_id, ) logger.info(f'''Saving features into cached file {cached_features_file}''' ) torch.save(self.features, lowerCamelCase_ ) def __len__(self ): '''simple docstring''' return len(self.features ) def __getitem__(self, lowerCamelCase_ ): '''simple docstring''' return self.features[i] if is_tf_available(): import tensorflow as tf class a_ : '''simple docstring''' lowerCamelCase__ : List[InputFeatures] lowerCamelCase__ : int = -100 def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ = None, lowerCamelCase_=False, lowerCamelCase_ = Split.train, ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = token_classification_task.read_examples_from_file(lowerCamelCase_, lowerCamelCase_ ) # TODO clean up all this to leverage built-in features of tokenizers lowerCamelCase__ : Union[str, Any] = token_classification_task.convert_examples_to_features( lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, cls_token_at_end=bool(model_type in ['xlnet'] ), cls_token=tokenizer.cls_token, cls_token_segment_id=2 if model_type in ['xlnet'] else 0, sep_token=tokenizer.sep_token, sep_token_extra=lowerCamelCase_, pad_on_left=bool(tokenizer.padding_side == 'left' ), pad_token=tokenizer.pad_token_id, pad_token_segment_id=tokenizer.pad_token_type_id, pad_token_label_id=self.pad_token_label_id, ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: lowerCamelCase__ : Dict = tf.data.Dataset.from_generator( lowerCamelCase_, ({'input_ids': tf.intaa, 'attention_mask': tf.intaa}, tf.intaa), ( {'input_ids': tf.TensorShape([None] ), 'attention_mask': tf.TensorShape([None] )}, tf.TensorShape([None] ), ), ) else: lowerCamelCase__ : int = tf.data.Dataset.from_generator( lowerCamelCase_, ({'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa}, tf.intaa), ( { 'input_ids': tf.TensorShape([None] ), 'attention_mask': tf.TensorShape([None] ), 'token_type_ids': tf.TensorShape([None] ), }, tf.TensorShape([None] ), ), ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__(self ): '''simple docstring''' return len(self.features ) def __getitem__(self, lowerCamelCase_ ): '''simple docstring''' return self.features[i]
353
"""simple docstring""" class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = len(lowerCamelCase_ ) lowerCamelCase__ : Any = [0] * len_array if len_array > 0: lowerCamelCase__ : Union[str, Any] = array[0] for i in range(1, lowerCamelCase_ ): lowerCamelCase__ : Optional[int] = self.prefix_sum[i - 1] + array[i] def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(lowerCamelCase_ ) return False if __name__ == "__main__": import doctest doctest.testmod()
316
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging A__: List[Any] = logging.get_logger(__name__) A__: List[Any] = { '''bigscience/bloom''': '''https://huggingface.co/bigscience/bloom/resolve/main/config.json''', '''bigscience/bloom-560m''': '''https://huggingface.co/bigscience/bloom-560m/blob/main/config.json''', '''bigscience/bloom-1b1''': '''https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json''', '''bigscience/bloom-1b7''': '''https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json''', '''bigscience/bloom-3b''': '''https://huggingface.co/bigscience/bloom-3b/blob/main/config.json''', '''bigscience/bloom-7b1''': '''https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json''', } class _a ( UpperCamelCase__): """simple docstring""" UpperCamelCase__ = """bloom""" UpperCamelCase__ = ["""past_key_values"""] UpperCamelCase__ = { """num_hidden_layers""": """n_layer""", """num_attention_heads""": """n_head""", } def __init__( self: str , __lowerCamelCase: List[str]=25_0880 , __lowerCamelCase: Tuple=64 , __lowerCamelCase: Any=2 , __lowerCamelCase: Tuple=8 , __lowerCamelCase: Optional[int]=1e-5 , __lowerCamelCase: Optional[int]=0.02 , __lowerCamelCase: int=True , __lowerCamelCase: Optional[int]=1 , __lowerCamelCase: Tuple=2 , __lowerCamelCase: Union[str, Any]=False , __lowerCamelCase: Dict=0.0 , __lowerCamelCase: str=0.0 , __lowerCamelCase: str=1 , __lowerCamelCase: int=False , **__lowerCamelCase: Union[str, Any] , ): '''simple docstring''' UpperCamelCase__: List[Any] = vocab_size # Backward compatibility with n_embed kwarg UpperCamelCase__: Union[str, Any] = kwargs.pop("n_embed" , __lowerCamelCase ) UpperCamelCase__: Union[str, Any] = hidden_size if n_embed is None else n_embed UpperCamelCase__: int = n_layer UpperCamelCase__: int = n_head UpperCamelCase__: Union[str, Any] = layer_norm_epsilon UpperCamelCase__: List[str] = initializer_range UpperCamelCase__: str = use_cache UpperCamelCase__: Any = pretraining_tp UpperCamelCase__: List[Any] = apply_residual_connection_post_layernorm UpperCamelCase__: Optional[Any] = hidden_dropout UpperCamelCase__: Any = attention_dropout UpperCamelCase__: List[Any] = bos_token_id UpperCamelCase__: Any = eos_token_id UpperCamelCase__: Tuple = slow_but_exact super().__init__(bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) class _a ( UpperCamelCase__): """simple docstring""" UpperCamelCase__ = version.parse("""1.12""") def __init__( self: Any , __lowerCamelCase: PretrainedConfig , __lowerCamelCase: str = "default" , __lowerCamelCase: List[PatchingSpec] = None , __lowerCamelCase: bool = False , ): '''simple docstring''' super().__init__(__lowerCamelCase , task=__lowerCamelCase , patching_specs=__lowerCamelCase , use_past=__lowerCamelCase ) if not getattr(self._config , "pad_token_id" , __lowerCamelCase ): # TODO: how to do that better? UpperCamelCase__: Dict = 0 @property def UpperCAmelCase_ ( self: Any ): '''simple docstring''' UpperCamelCase__: Optional[Any] = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(__lowerCamelCase , direction="inputs" , inverted_values_shape=__lowerCamelCase ) UpperCamelCase__: Tuple = {0: "batch", 1: "past_sequence + sequence"} else: UpperCamelCase__: Any = {0: "batch", 1: "sequence"} return common_inputs @property def UpperCAmelCase_ ( self: Dict ): '''simple docstring''' return self._config.n_layer @property def UpperCAmelCase_ ( self: Tuple ): '''simple docstring''' return self._config.n_head @property def UpperCAmelCase_ ( self: Union[str, Any] ): '''simple docstring''' return 1e-3 def UpperCAmelCase_ ( self: Any , __lowerCamelCase: "PreTrainedTokenizer" , __lowerCamelCase: int = -1 , __lowerCamelCase: int = -1 , __lowerCamelCase: bool = False , __lowerCamelCase: Optional["TensorType"] = None , ): '''simple docstring''' UpperCamelCase__: Any = super(__lowerCamelCase , self ).generate_dummy_inputs( __lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase ) # We need to order the input in the way they appears in the forward() UpperCamelCase__: Optional[Any] = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch UpperCamelCase__ , UpperCamelCase__: Optional[Any] = common_inputs["input_ids"].shape # Not using the same length for past_key_values UpperCamelCase__: Optional[int] = seqlen + 2 UpperCamelCase__: Dict = self._config.hidden_size // self.num_attention_heads UpperCamelCase__: List[str] = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) UpperCamelCase__: Dict = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) UpperCamelCase__: Union[str, Any] = [ (torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase )) for _ in range(self.num_layers ) ] UpperCamelCase__: Optional[int] = common_inputs["attention_mask"] if self.use_past: UpperCamelCase__: Optional[int] = ordered_inputs["attention_mask"].dtype UpperCamelCase__: str = torch.cat( [ordered_inputs["attention_mask"], torch.ones(__lowerCamelCase , __lowerCamelCase , dtype=__lowerCamelCase )] , dim=1 ) return ordered_inputs @property def UpperCAmelCase_ ( self: Optional[Any] ): '''simple docstring''' return 13
149
import os from datetime import datetime as dt from github import Github A__: int = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''enhancement''', '''new pipeline/model''', '''new scheduler''', '''wip''', ] def lowerCAmelCase_ ( ): UpperCamelCase__: Dict = Github(os.environ["GITHUB_TOKEN"]) UpperCamelCase__: Union[str, Any] = g.get_repo("huggingface/diffusers") UpperCamelCase__: str = repo.get_issues(state="open") for issue in open_issues: UpperCamelCase__: Union[str, Any] = sorted(issue.get_comments() ,key=lambda A_: i.created_at ,reverse=A_) UpperCamelCase__: Tuple = comments[0] if len(A_) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels()) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state="closed") elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state="open") issue.remove_from_labels("stale") elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels()) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) " "are likely to be ignored.") issue.add_to_labels("stale") if __name__ == "__main__": main()
149
1
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable _UpperCamelCase = {'''configuration_gpt_neox''': ['''GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXConfig''']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['''GPTNeoXTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoXForCausalLM''', '''GPTNeoXForQuestionAnswering''', '''GPTNeoXForSequenceClassification''', '''GPTNeoXForTokenClassification''', '''GPTNeoXLayer''', '''GPTNeoXModel''', '''GPTNeoXPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
16
'''simple docstring''' class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : int = data __UpperCAmelCase : int = previous __UpperCAmelCase : Union[str, Any] = next_node def __str__( self ) -> str: '''simple docstring''' return f'{self.data}' def __A ( self ) -> int: '''simple docstring''' return self.data def __A ( self ) -> List[str]: '''simple docstring''' return self.next def __A ( self ) -> str: '''simple docstring''' return self.previous class _A : def __init__( self , __UpperCAmelCase ) -> str: '''simple docstring''' __UpperCAmelCase : int = head def __iter__( self ) -> str: '''simple docstring''' return self def __A ( self ) -> str: '''simple docstring''' if not self.current: raise StopIteration else: __UpperCAmelCase : List[str] = self.current.get_data() __UpperCAmelCase : int = self.current.get_next() return value class _A : def __init__( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = None # First node in list __UpperCAmelCase : List[str] = None # Last node in list def __str__( self ) -> int: '''simple docstring''' __UpperCAmelCase : Tuple = self.head __UpperCAmelCase : Optional[int] = [] while current is not None: nodes.append(current.get_data() ) __UpperCAmelCase : Any = current.get_next() return " ".join(str(__UpperCAmelCase ) for node in nodes ) def __contains__( self , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : List[Any] = self.head while current: if current.get_data() == value: return True __UpperCAmelCase : Optional[Any] = current.get_next() return False def __iter__( self ) -> str: '''simple docstring''' return LinkedListIterator(self.head ) def __A ( self ) -> List[Any]: '''simple docstring''' if self.head: return self.head.get_data() return None def __A ( self ) -> Optional[Any]: '''simple docstring''' if self.tail: return self.tail.get_data() return None def __A ( self , __UpperCAmelCase ) -> None: '''simple docstring''' if self.head is None: __UpperCAmelCase : str = node __UpperCAmelCase : List[str] = node else: self.insert_before_node(self.head , __UpperCAmelCase ) def __A ( self , __UpperCAmelCase ) -> None: '''simple docstring''' if self.head is None: self.set_head(__UpperCAmelCase ) else: self.insert_after_node(self.tail , __UpperCAmelCase ) def __A ( self , __UpperCAmelCase ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[int] = Node(__UpperCAmelCase ) if self.head is None: self.set_head(__UpperCAmelCase ) else: self.set_tail(__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: '''simple docstring''' __UpperCAmelCase : Tuple = node __UpperCAmelCase : List[Any] = node.previous if node.get_previous() is None: __UpperCAmelCase : str = node_to_insert else: __UpperCAmelCase : Optional[Any] = node_to_insert __UpperCAmelCase : List[Any] = node_to_insert def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: '''simple docstring''' __UpperCAmelCase : List[str] = node __UpperCAmelCase : Union[str, Any] = node.next if node.get_next() is None: __UpperCAmelCase : Dict = node_to_insert else: __UpperCAmelCase : Any = node_to_insert __UpperCAmelCase : List[str] = node_to_insert def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[Any] = 1 __UpperCAmelCase : Optional[Any] = Node(__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = self.head while node: if current_position == position: self.insert_before_node(__UpperCAmelCase , __UpperCAmelCase ) return current_position += 1 __UpperCAmelCase : int = node.next self.insert_after_node(self.tail , __UpperCAmelCase ) def __A ( self , __UpperCAmelCase ) -> Node: '''simple docstring''' __UpperCAmelCase : Dict = self.head while node: if node.get_data() == item: return node __UpperCAmelCase : List[str] = node.get_next() raise Exception("""Node not found""" ) def __A ( self , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' if (node := self.get_node(__UpperCAmelCase )) is not None: if node == self.head: __UpperCAmelCase : Optional[int] = self.head.get_next() if node == self.tail: __UpperCAmelCase : Union[str, Any] = self.tail.get_previous() self.remove_node_pointers(__UpperCAmelCase ) @staticmethod def __A ( __UpperCAmelCase ) -> None: '''simple docstring''' if node.get_next(): __UpperCAmelCase : Optional[Any] = node.previous if node.get_previous(): __UpperCAmelCase : int = node.next __UpperCAmelCase : Tuple = None __UpperCAmelCase : Union[str, Any] = None def __A ( self ) -> List[Any]: '''simple docstring''' return self.head is None def lowercase_ ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
16
1
"""simple docstring""" from queue import PriorityQueue from typing import Any import numpy as np def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, ) -> float | int: """simple docstring""" for nxt, d in graph[v]: if nxt in visited_forward: continue _UpperCamelCase = cst_fwd.get(__snake_case, np.inf ) _UpperCamelCase = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) _UpperCamelCase = new_cost_f _UpperCamelCase = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: _UpperCamelCase = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case ) -> int: """simple docstring""" _UpperCamelCase = -1 _UpperCamelCase = set() _UpperCamelCase = set() _UpperCamelCase = {source: 0} _UpperCamelCase = {destination: 0} _UpperCamelCase = {source: None} _UpperCamelCase = {destination: None} _UpperCamelCase = PriorityQueue() _UpperCamelCase = PriorityQueue() _UpperCamelCase = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): _UpperCamelCase , _UpperCamelCase = queue_forward.get() visited_forward.add(__snake_case ) _UpperCamelCase , _UpperCamelCase = queue_backward.get() visited_backward.add(__snake_case ) _UpperCamelCase = pass_and_relaxation( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, ) _UpperCamelCase = pass_and_relaxation( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: _UpperCamelCase = shortest_distance return shortest_path_distance _a = { """B""": [["""C""", 1]], """C""": [["""D""", 1]], """D""": [["""F""", 1]], """E""": [["""B""", 1], ["""G""", 2]], """F""": [], """G""": [["""F""", 1]], } _a = { """B""": [["""E""", 1]], """C""": [["""B""", 1]], """D""": [["""C""", 1]], """F""": [["""D""", 1], ["""G""", 1]], """E""": [[None, np.inf]], """G""": [["""E""", 2]], } if __name__ == "__main__": import doctest doctest.testmod()
194
"""simple docstring""" import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class _UpperCAmelCase( lowerCamelCase ): def __init__( self , __a , __a , __a , __a , ) -> Optional[int]: '''simple docstring''' super().__init__() _UpperCamelCase = value_function _UpperCamelCase = unet _UpperCamelCase = scheduler _UpperCamelCase = env _UpperCamelCase = env.get_dataset() _UpperCamelCase = {} for key in self.data.keys(): try: _UpperCamelCase = self.data[key].mean() except: # noqa: E722 pass _UpperCamelCase = {} for key in self.data.keys(): try: _UpperCamelCase = self.data[key].std() except: # noqa: E722 pass _UpperCamelCase = env.observation_space.shape[0] _UpperCamelCase = env.action_space.shape[0] def UpperCAmelCase ( self , __a , __a) -> int: '''simple docstring''' return (x_in - self.means[key]) / self.stds[key] def UpperCAmelCase ( self , __a , __a) -> List[str]: '''simple docstring''' return x_in * self.stds[key] + self.means[key] def UpperCAmelCase ( self , __a) -> Union[str, Any]: '''simple docstring''' if type(__a) is dict: return {k: self.to_torch(__a) for k, v in x_in.items()} elif torch.is_tensor(__a): return x_in.to(self.unet.device) return torch.tensor(__a , device=self.unet.device) def UpperCAmelCase ( self , __a , __a , __a) -> str: '''simple docstring''' for key, val in cond.items(): _UpperCamelCase = val.clone() return x_in def UpperCAmelCase ( self , __a , __a , __a , __a) -> int: '''simple docstring''' _UpperCamelCase = x.shape[0] _UpperCamelCase = None for i in tqdm.tqdm(self.scheduler.timesteps): # create batch of timesteps to pass into model _UpperCamelCase = torch.full((batch_size,) , __a , device=self.unet.device , dtype=torch.long) for _ in range(__a): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models _UpperCamelCase = self.value_function(x.permute(0 , 2 , 1) , __a).sample _UpperCamelCase = torch.autograd.grad([y.sum()] , [x])[0] _UpperCamelCase = self.scheduler._get_variance(__a) _UpperCamelCase = torch.exp(0.5 * posterior_variance) _UpperCamelCase = model_std * grad _UpperCamelCase = 0 _UpperCamelCase = x.detach() _UpperCamelCase = x + scale * grad _UpperCamelCase = self.reset_xa(__a , __a , self.action_dim) _UpperCamelCase = self.unet(x.permute(0 , 2 , 1) , __a).sample.permute(0 , 2 , 1) # TODO: verify deprecation of this kwarg _UpperCamelCase = self.scheduler.step(__a , __a , __a , predict_epsilon=__a)['''prev_sample'''] # apply conditions to the trajectory (set the initial state) _UpperCamelCase = self.reset_xa(__a , __a , self.action_dim) _UpperCamelCase = self.to_torch(__a) return x, y def __call__( self , __a , __a=64 , __a=32 , __a=2 , __a=0.1) -> Optional[Any]: '''simple docstring''' # normalize the observations and create batch dimension _UpperCamelCase = self.normalize(__a , '''observations''') _UpperCamelCase = obs[None].repeat(__a , axis=0) _UpperCamelCase = {0: self.to_torch(__a)} _UpperCamelCase = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) _UpperCamelCase = randn_tensor(__a , device=self.unet.device) _UpperCamelCase = self.reset_xa(__a , __a , self.action_dim) _UpperCamelCase = self.to_torch(__a) # run the diffusion process _UpperCamelCase , _UpperCamelCase = self.run_diffusion(__a , __a , __a , __a) # sort output trajectories by value _UpperCamelCase = y.argsort(0 , descending=__a).squeeze() _UpperCamelCase = x[sorted_idx] _UpperCamelCase = sorted_values[:, :, : self.action_dim] _UpperCamelCase = actions.detach().cpu().numpy() _UpperCamelCase = self.de_normalize(__a , key='''actions''') # select the action with the highest value if y is not None: _UpperCamelCase = 0 else: # if we didn't run value guiding, select a random action _UpperCamelCase = np.random.randint(0 , __a) _UpperCamelCase = denorm_actions[selected_index, 0] return denorm_actions
194
1
'''simple docstring''' import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging __snake_case = '''\ ''' __snake_case = ''' Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity ''' __snake_case = ''' Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to \'cuda\' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric("perplexity") >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"] >>> results = perplexity.compute(model_id=\'gpt2\', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) [\'perplexities\', \'mean_perplexity\'] >>> print(round(results["mean_perplexity"], 2)) 78.22 >>> print(round(results["perplexities"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric("perplexity") >>> input_texts = datasets.load_dataset("wikitext", ... "wikitext-2-raw-v1", ... split="test")["text"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=\'\'] >>> results = perplexity.compute(model_id=\'gpt2\', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) [\'perplexities\', \'mean_perplexity\'] >>> print(round(results["mean_perplexity"], 2)) 60.35 >>> print(round(results["perplexities"][0], 2)) 81.12 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): """simple docstring""" def lowerCAmelCase__ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''input_texts''': datasets.Value('''string''' ), } ) , reference_urls=['''https://huggingface.co/docs/transformers/perplexity'''] , ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = 16 , UpperCamelCase_ = True , UpperCamelCase_=None ): '''simple docstring''' if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": UpperCamelCase__ :List[Any] = '''cuda''' else: UpperCamelCase__ :List[str] = '''cuda''' if torch.cuda.is_available() else '''cpu''' UpperCamelCase__ :str = AutoModelForCausalLM.from_pretrained(UpperCamelCase_ ) UpperCamelCase__ :Optional[int] = model.to(UpperCamelCase_ ) UpperCamelCase__ :Optional[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: UpperCamelCase__ :List[str] = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(UpperCamelCase_ ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'''pad_token''': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" UpperCamelCase__ :Dict = model.config.max_length - 1 else: UpperCamelCase__ :Union[str, Any] = model.config.max_length UpperCamelCase__ :List[Any] = tokenizer( UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=UpperCamelCase_ , return_tensors='''pt''' , return_attention_mask=UpperCamelCase_ , ).to(UpperCamelCase_ ) UpperCamelCase__ :List[str] = encodings['''input_ids'''] UpperCamelCase__ :str = encodings['''attention_mask'''] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." UpperCamelCase__ :Optional[int] = [] UpperCamelCase__ :Optional[Any] = CrossEntropyLoss(reduction='''none''' ) for start_index in logging.tqdm(range(0 , len(UpperCamelCase_ ) , UpperCamelCase_ ) ): UpperCamelCase__ :Optional[int] = min(start_index + batch_size , len(UpperCamelCase_ ) ) UpperCamelCase__ :str = encoded_texts[start_index:end_index] UpperCamelCase__ :str = attn_masks[start_index:end_index] if add_start_token: UpperCamelCase__ :Optional[Any] = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(UpperCamelCase_ ) UpperCamelCase__ :List[Any] = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) UpperCamelCase__ :Dict = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(UpperCamelCase_ ), attn_mask] , dim=1 ) UpperCamelCase__ :Optional[Any] = encoded_batch with torch.no_grad(): UpperCamelCase__ :str = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ ).logits UpperCamelCase__ :Any = out_logits[..., :-1, :].contiguous() UpperCamelCase__ :List[Any] = labels[..., 1:].contiguous() UpperCamelCase__ :List[str] = attn_mask[..., 1:].contiguous() UpperCamelCase__ :Any = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , UpperCamelCase_ ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(UpperCamelCase_ )}
219
'''simple docstring''' import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __snake_case = 16 __snake_case = 32 def a ( __a , __a = 16 , __a = "bert-base-cased" ) -> Any: '''simple docstring''' UpperCamelCase__ :List[str] = AutoTokenizer.from_pretrained(__a ) UpperCamelCase__ :List[Any] = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__a ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase__ :Tuple = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__a , max_length=__a ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset UpperCamelCase__ :Optional[int] = datasets.map( __a , batched=__a , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=__a ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase__ :Optional[int] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__a ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__a , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(__a , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. UpperCamelCase__ :Dict = DataLoader( tokenized_datasets['''train'''] , shuffle=__a , collate_fn=__a , batch_size=__a ) UpperCamelCase__ :str = DataLoader( tokenized_datasets['''validation'''] , shuffle=__a , collate_fn=__a , batch_size=__a ) return train_dataloader, eval_dataloader def a ( __a , __a , __a , __a ) -> str: '''simple docstring''' model.eval() UpperCamelCase__ :List[str] = 0 for step, batch in enumerate(__a ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCamelCase__ :int = model(**__a ) UpperCamelCase__ :Tuple = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times UpperCamelCase__ , UpperCamelCase__ :int = accelerator.gather( (predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(__a ) - 1: UpperCamelCase__ :Union[str, Any] = predictions[: len(eval_dataloader.dataset ) - samples_seen] UpperCamelCase__ :List[str] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=__a , references=__a , ) UpperCamelCase__ :Union[str, Any] = metric.compute() return eval_metric["accuracy"] def a ( __a , __a ) -> List[Any]: '''simple docstring''' UpperCamelCase__ :Any = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase__ :Any = config['''lr'''] UpperCamelCase__ :Optional[int] = int(config['''num_epochs'''] ) UpperCamelCase__ :List[Any] = int(config['''seed'''] ) UpperCamelCase__ :List[Any] = int(config['''batch_size'''] ) UpperCamelCase__ :List[Any] = args.model_name_or_path set_seed(__a ) UpperCamelCase__ , UpperCamelCase__ :Any = get_dataloaders(__a , __a , __a ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase__ :Union[str, Any] = AutoModelForSequenceClassification.from_pretrained(__a , return_dict=__a ) # Instantiate optimizer UpperCamelCase__ :Any = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) UpperCamelCase__ :Optional[Any] = optimizer_cls(params=model.parameters() , lr=__a ) if accelerator.state.deepspeed_plugin is not None: UpperCamelCase__ :Tuple = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: UpperCamelCase__ :Dict = 1 UpperCamelCase__ :Tuple = (len(__a ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): UpperCamelCase__ :Any = get_linear_schedule_with_warmup( optimizer=__a , num_warmup_steps=0 , num_training_steps=__a , ) else: UpperCamelCase__ :Any = DummyScheduler(__a , total_num_steps=__a , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Dict = accelerator.prepare( __a , __a , __a , __a , __a ) # We need to keep track of how many total steps we have iterated over UpperCamelCase__ :Tuple = 0 # We also need to keep track of the stating epoch so files are named properly UpperCamelCase__ :Optional[Any] = 0 UpperCamelCase__ :Optional[int] = evaluate.load('''glue''' , '''mrpc''' ) UpperCamelCase__ :List[Any] = num_epochs if args.partial_train_epoch is not None: UpperCamelCase__ :Optional[Any] = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) UpperCamelCase__ :Dict = args.resume_from_checkpoint.split('''epoch_''' )[1] UpperCamelCase__ :Tuple = '''''' for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break UpperCamelCase__ :Any = int(__a ) + 1 UpperCamelCase__ :Dict = evaluation_loop(__a , __a , __a , __a ) accelerator.print('''resumed checkpoint performance:''' , __a ) accelerator.print('''resumed checkpoint\'s scheduler\'s lr:''' , lr_scheduler.get_lr()[0] ) accelerator.print('''resumed optimizers\'s lr:''' , optimizer.param_groups[0]['''lr'''] ) with open(os.path.join(args.output_dir , f'''state_{starting_epoch-1}.json''' ) , '''r''' ) as f: UpperCamelCase__ :Optional[int] = json.load(__a ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model UpperCamelCase__ :Optional[Any] = {} for epoch in range(__a , __a ): model.train() for step, batch in enumerate(__a ): UpperCamelCase__ :Optional[int] = model(**__a ) UpperCamelCase__ :Optional[int] = outputs.loss UpperCamelCase__ :str = loss / gradient_accumulation_steps accelerator.backward(__a ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 UpperCamelCase__ :Union[str, Any] = f'''epoch_{epoch}''' UpperCamelCase__ :List[Any] = os.path.join(args.output_dir , __a ) accelerator.save_state(__a ) UpperCamelCase__ :List[Any] = evaluation_loop(__a , __a , __a , __a ) UpperCamelCase__ :int = accuracy UpperCamelCase__ :List[Any] = lr_scheduler.get_lr()[0] UpperCamelCase__ :Any = optimizer.param_groups[0]['''lr'''] UpperCamelCase__ :int = epoch UpperCamelCase__ :Tuple = overall_step accelerator.print(f'''epoch {epoch}:''' , __a ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , f'''state_{epoch}.json''' ) , '''w''' ) as f: json.dump(__a , __a ) def a ( ) -> Tuple: '''simple docstring''' UpperCamelCase__ :List[Any] = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=__a , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=__a , ) parser.add_argument( '''--output_dir''' , type=__a , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--resume_from_checkpoint''' , type=__a , default=__a , help='''If the training should continue from a checkpoint folder.''' , ) parser.add_argument( '''--partial_train_epoch''' , type=__a , default=__a , help='''If passed, the training will stop after this number of epochs.''' , ) parser.add_argument( '''--num_epochs''' , type=__a , default=2 , help='''Number of train epochs.''' , ) UpperCamelCase__ :Optional[int] = parser.parse_args() UpperCamelCase__ :List[str] = {'''lr''': 2e-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(__a , __a ) if __name__ == "__main__": main()
219
1
"""simple docstring""" import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py lowerCamelCase_ = "src/diffusers" # Matches is_xxx_available() lowerCamelCase_ = re.compile(r"is\_([a-z_]*)_available\(\)") # Matches from xxx import bla lowerCamelCase_ = re.compile(r"\s+from\s+\S*\s+import\s+([^\(\s].*)\n") lowerCamelCase_ = "\n{0} = None\n" lowerCamelCase_ = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n" lowerCamelCase_ = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n" def __lowerCamelCase ( a_ : str ) -> Optional[int]: __SCREAMING_SNAKE_CASE :List[str] = _re_backend.findall(a_ ) if len(a_ ) == 0: return None return "_and_".join(a_ ) def __lowerCamelCase ( ) -> Dict: with open(os.path.join(a_ , '''__init__.py''' ) , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __SCREAMING_SNAKE_CASE :Dict = f.readlines() # Get to the point we do the actual imports for type checking __SCREAMING_SNAKE_CASE :Optional[int] = 0 __SCREAMING_SNAKE_CASE :Optional[Any] = {} # Go through the end of the file while line_index < len(a_ ): # If the line contains is_backend_available, we grab all objects associated with the `else` block __SCREAMING_SNAKE_CASE :Union[str, Any] = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('''else:''' ): line_index += 1 line_index += 1 __SCREAMING_SNAKE_CASE :Union[str, Any] = [] # Until we unindent, add backend objects to the list while line_index < len(a_ ) and len(lines[line_index] ) > 1: __SCREAMING_SNAKE_CASE :Optional[Any] = lines[line_index] __SCREAMING_SNAKE_CASE :Optional[Any] = _re_single_line_import.search(a_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(a_ ) > 0: __SCREAMING_SNAKE_CASE :str = objects else: line_index += 1 return backend_specific_objects def __lowerCamelCase ( a_ : Optional[int] , a_ : int ) -> Dict: if name.isupper(): return DUMMY_CONSTANT.format(a_ ) elif name.islower(): return DUMMY_FUNCTION.format(a_ , a_ ) else: return DUMMY_CLASS.format(a_ , a_ ) def __lowerCamelCase ( a_ : Optional[int]=None ) -> List[str]: if backend_specific_objects is None: __SCREAMING_SNAKE_CASE :Dict = read_init() # For special correspondence backend to module name as used in the function requires_modulename __SCREAMING_SNAKE_CASE :List[str] = {} for backend, objects in backend_specific_objects.items(): __SCREAMING_SNAKE_CASE :List[Any] = '''[''' + ''', '''.join(f'''"{b}"''' for b in backend.split('''_and_''' ) ) + ''']''' __SCREAMING_SNAKE_CASE :Tuple = '''# This file is autogenerated by the command `make fix-copies`, do not edit.\n''' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(a_ , a_ ) for o in objects] ) __SCREAMING_SNAKE_CASE :Optional[int] = dummy_file return dummy_files def __lowerCamelCase ( a_ : Dict=False ) -> List[str]: __SCREAMING_SNAKE_CASE :List[Any] = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py __SCREAMING_SNAKE_CASE :Optional[Any] = {'''torch''': '''pt'''} # Locate actual dummy modules and read their content. __SCREAMING_SNAKE_CASE :Tuple = os.path.join(a_ , '''utils''' ) __SCREAMING_SNAKE_CASE :Dict = { backend: os.path.join(a_ , f'''dummy_{short_names.get(a_ , a_ )}_objects.py''' ) for backend in dummy_files.keys() } __SCREAMING_SNAKE_CASE :Union[str, Any] = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(a_ ): with open(a_ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __SCREAMING_SNAKE_CASE :str = f.read() else: __SCREAMING_SNAKE_CASE :str = '''''' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( f'''Updating diffusers.utils.dummy_{short_names.get(a_ , a_ )}_objects.py as the main ''' '''__init__ has new objects.''' ) with open(dummy_file_paths[backend] , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( '''The main __init__ has objects that are not present in ''' f'''diffusers.utils.dummy_{short_names.get(a_ , a_ )}_objects.py. Run `make fix-copies` ''' '''to fix this.''' ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") lowerCamelCase_ = parser.parse_args() check_dummies(args.fix_and_overwrite)
191
"""simple docstring""" import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def __lowerCamelCase ( a_ : str , a_ : Dict , a_ : Any , a_ : str ) -> str: __SCREAMING_SNAKE_CASE :int = s.rsplit(a_ , a_ ) return new.join(a_ ) def __lowerCamelCase ( a_ : List[str] ) -> Dict: # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if '''encoder.embeddings''' not in key else 0 for key, param in state_dict.items() ) def __lowerCamelCase ( a_ : Optional[int] ) -> Any: __SCREAMING_SNAKE_CASE :Optional[int] = {} __SCREAMING_SNAKE_CASE :Union[str, Any] = ['''group_1''', '''group_2''', '''group_3''', '''group_4'''] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: __SCREAMING_SNAKE_CASE :Optional[Any] = key.replace(f'''{group_key}.''' , f'''{group_key}.group.''' ) if "res_path" in key: __SCREAMING_SNAKE_CASE :str = key.replace('''res_path.''' , '''res_path.path.''' ) if key.endswith('''.w''' ): __SCREAMING_SNAKE_CASE :List[Any] = rreplace(a_ , '''.w''' , '''.weight''' , 1 ) if key.endswith('''.b''' ): __SCREAMING_SNAKE_CASE :List[Any] = rreplace(a_ , '''.b''' , '''.bias''' , 1 ) __SCREAMING_SNAKE_CASE :Optional[Any] = value.float() return upgrade @torch.no_grad() def __lowerCamelCase ( a_ : List[Any] , a_ : Optional[int] , a_ : Optional[int]=None , a_ : Dict=True ) -> Union[str, Any]: from dall_e import Encoder __SCREAMING_SNAKE_CASE :int = Encoder() if os.path.exists(a_ ): __SCREAMING_SNAKE_CASE :Dict = torch.load(a_ ) else: __SCREAMING_SNAKE_CASE :List[str] = torch.hub.load_state_dict_from_url(a_ ) if isinstance(a_ , a_ ): __SCREAMING_SNAKE_CASE :List[str] = ckpt.state_dict() encoder.load_state_dict(a_ ) if config_path is not None: __SCREAMING_SNAKE_CASE :Any = FlavaImageCodebookConfig.from_pretrained(a_ ) else: __SCREAMING_SNAKE_CASE :Optional[int] = FlavaImageCodebookConfig() __SCREAMING_SNAKE_CASE :Tuple = FlavaImageCodebook(a_ ).eval() __SCREAMING_SNAKE_CASE :List[str] = encoder.state_dict() __SCREAMING_SNAKE_CASE :Union[str, Any] = upgrade_state_dict(a_ ) hf_model.load_state_dict(a_ ) __SCREAMING_SNAKE_CASE :Union[str, Any] = hf_model.state_dict() __SCREAMING_SNAKE_CASE :Union[str, Any] = count_parameters(a_ ) __SCREAMING_SNAKE_CASE :Any = count_parameters(a_ ) assert torch.allclose(a_ , a_ , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(a_ ) else: return hf_state_dict if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") lowerCamelCase_ = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
191
1
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class lowercase__ : _UpperCAmelCase :CommonSchedulerState # setable values _UpperCAmelCase :jnp.ndarray _UpperCAmelCase :jnp.ndarray _UpperCAmelCase :Optional[int] = None @classmethod def UpperCAmelCase__ ( cls : int , snake_case__ : CommonSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray ): return cls(common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ ) @dataclass class lowercase__ ( snake_case__ ): _UpperCAmelCase :DDPMSchedulerState class lowercase__ ( snake_case__, snake_case__ ): _UpperCAmelCase :Any = [e.name for e in FlaxKarrasDiffusionSchedulers] _UpperCAmelCase :jnp.dtype @property def UpperCAmelCase__ ( self : Optional[Any] ): return True @register_to_config def __init__( self : Optional[int] , snake_case__ : int = 1000 , snake_case__ : float = 0.0_001 , snake_case__ : float = 0.02 , snake_case__ : str = "linear" , snake_case__ : Optional[jnp.ndarray] = None , snake_case__ : str = "fixed_small" , snake_case__ : bool = True , snake_case__ : str = "epsilon" , snake_case__ : jnp.dtype = jnp.floataa , ): lowerCamelCase_ : str =dtype def UpperCAmelCase__ ( self : List[str] , snake_case__ : Optional[CommonSchedulerState] = None ): if common is None: lowerCamelCase_ : int =CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution lowerCamelCase_ : Optional[Any] =jnp.array(1.0 , dtype=self.dtype ) lowerCamelCase_ : str =jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ , ) def UpperCAmelCase__ ( self : Optional[int] , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : Optional[int] = None ): return sample def UpperCAmelCase__ ( self : Optional[Any] , snake_case__ : DDPMSchedulerState , snake_case__ : int , snake_case__ : Tuple = () ): lowerCamelCase_ : Any =self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 lowerCamelCase_ : List[str] =(jnp.arange(0 , snake_case__ ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=snake_case__ , timesteps=snake_case__ , ) def UpperCAmelCase__ ( self : Union[str, Any] , snake_case__ : DDPMSchedulerState , snake_case__ : Union[str, Any] , snake_case__ : List[Any]=None , snake_case__ : Any=None ): lowerCamelCase_ : List[str] =state.common.alphas_cumprod[t] lowerCamelCase_ : Union[str, Any] =jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample lowerCamelCase_ : Tuple =(1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: lowerCamelCase_ : List[Any] =self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": lowerCamelCase_ : List[str] =jnp.clip(snake_case__ , a_min=1E-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": lowerCamelCase_ : Dict =jnp.log(jnp.clip(snake_case__ , a_min=1E-20 ) ) elif variance_type == "fixed_large": lowerCamelCase_ : Optional[Any] =state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log lowerCamelCase_ : Any =jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": lowerCamelCase_ : List[str] =variance lowerCamelCase_ : Optional[int] =state.common.betas[t] lowerCamelCase_ : Dict =(predicted_variance + 1) / 2 lowerCamelCase_ : Dict =frac * max_log + (1 - frac) * min_log return variance def UpperCAmelCase__ ( self : int , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : int , snake_case__ : jnp.ndarray , snake_case__ : Optional[jax.random.KeyArray] = None , snake_case__ : bool = True , ): lowerCamelCase_ : Union[str, Any] =timestep if key is None: lowerCamelCase_ : Dict =jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: lowerCamelCase_ , lowerCamelCase_ : Optional[Any] =jnp.split(snake_case__ , sample.shape[1] , axis=1 ) else: lowerCamelCase_ : List[str] =None # 1. compute alphas, betas lowerCamelCase_ : Union[str, Any] =state.common.alphas_cumprod[t] lowerCamelCase_ : Dict =jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) lowerCamelCase_ : Any =1 - alpha_prod_t lowerCamelCase_ : List[str] =1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": lowerCamelCase_ : int =(sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": lowerCamelCase_ : List[Any] =model_output elif self.config.prediction_type == "v_prediction": lowerCamelCase_ : Tuple =(alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` """ " for the FlaxDDPMScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: lowerCamelCase_ : List[Any] =jnp.clip(snake_case__ , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCamelCase_ : int =(alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t lowerCamelCase_ : Optional[Any] =state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCamelCase_ : Any =pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): lowerCamelCase_ : Union[str, Any] =jax.random.split(snake_case__ , num=1 ) lowerCamelCase_ : List[Any] =jax.random.normal(snake_case__ , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(snake_case__ , snake_case__ , predicted_variance=snake_case__ ) ** 0.5) * noise lowerCamelCase_ : Tuple =jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) lowerCamelCase_ : str =pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=snake_case__ , state=snake_case__ ) def UpperCAmelCase__ ( self : Dict , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , ): return add_noise_common(state.common , snake_case__ , snake_case__ , snake_case__ ) def UpperCAmelCase__ ( self : int , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , ): return get_velocity_common(state.common , snake_case__ , snake_case__ , snake_case__ ) def __len__( self : Tuple ): return self.config.num_train_timesteps
209
"""simple docstring""" def _snake_case ( lowerCamelCase__ : list[list[int]] , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : list[int] ) -> bool: # 1. Validate that path exists between current and next vertices if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def _snake_case ( lowerCamelCase__ : list[list[int]] , lowerCamelCase__ : list[int] , lowerCamelCase__ : int ) -> bool: # Base Case if curr_ind == len(lowerCamelCase__ ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(lowerCamelCase__ ) ): if valid_connection(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): # Insert current vertex into path as next transition lowerCamelCase_ : Tuple =next_ver # Validate created path if util_hamilton_cycle(lowerCamelCase__ , lowerCamelCase__ , curr_ind + 1 ): return True # Backtrack lowerCamelCase_ : int =-1 return False def _snake_case ( lowerCamelCase__ : list[list[int]] , lowerCamelCase__ : int = 0 ) -> list[int]: lowerCamelCase_ : Optional[Any] =[-1] * (len(lowerCamelCase__ ) + 1) # initialize start and end of path with starting index lowerCamelCase_ : Optional[int] =start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(lowerCamelCase__ , lowerCamelCase__ , 1 ) else []
209
1
"""simple docstring""" from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig SCREAMING_SNAKE_CASE : Optional[Any] = { """susnato/ernie-m-base_pytorch""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json""", """susnato/ernie-m-large_pytorch""": """https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json""", } class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='ernie_m' lowerCamelCase__ ={"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__(self , a_ = 25_00_02 , a_ = 7_68 , a_ = 12 , a_ = 12 , a_ = 30_72 , a_ = "gelu" , a_ = 0.1 , a_ = 0.1 , a_ = 5_14 , a_ = 0.02 , a_ = 1 , a_ = 1E-05 , a_=None , a_=False , a_=0.0 , **a_ , ): '''simple docstring''' super().__init__(pad_token_id=a_ , **a_ ) __snake_case : Union[str, Any] = vocab_size __snake_case : Optional[Any] = hidden_size __snake_case : Optional[Any] = num_hidden_layers __snake_case : List[Any] = num_attention_heads __snake_case : Optional[int] = intermediate_size __snake_case : Union[str, Any] = hidden_act __snake_case : Optional[Any] = hidden_dropout_prob __snake_case : int = attention_probs_dropout_prob __snake_case : Union[str, Any] = max_position_embeddings __snake_case : Optional[Any] = initializer_range __snake_case : Any = layer_norm_eps __snake_case : str = classifier_dropout __snake_case : Optional[int] = is_decoder __snake_case : Optional[int] = act_dropout
102
import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class _A ( __UpperCAmelCase ): UpperCamelCase__ : Tuple = (DDPMParallelScheduler,) def _lowerCamelCase ( self : int , **__SCREAMING_SNAKE_CASE : List[Any]): '''simple docstring''' __a = { '''num_train_timesteps''': 1_000, '''beta_start''': 0.00_01, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**__SCREAMING_SNAKE_CASE) return config def _lowerCamelCase ( self : List[str]): '''simple docstring''' for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Tuple): '''simple docstring''' for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2]): self.check_over_configs(beta_start=__SCREAMING_SNAKE_CASE , beta_end=__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : List[str]): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Any): '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : List[str]): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : str): '''simple docstring''' self.check_over_configs(thresholding=__SCREAMING_SNAKE_CASE) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=__SCREAMING_SNAKE_CASE , prediction_type=__SCREAMING_SNAKE_CASE , sample_max_value=__SCREAMING_SNAKE_CASE , ) def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : List[str]): '''simple docstring''' for t in [0, 500, 999]: self.check_over_forward(time_step=__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : str): '''simple docstring''' __a = self.scheduler_classes[0] __a = self.get_scheduler_config() __a = scheduler_class(**__SCREAMING_SNAKE_CASE) assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487) - 0.0_09_79)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999) - 0.02)) < 1E-5 def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __a = self.scheduler_classes[0] __a = self.get_scheduler_config() __a = scheduler_class(**__SCREAMING_SNAKE_CASE) __a = len(__SCREAMING_SNAKE_CASE) __a = self.dummy_model() __a = self.dummy_sample_deter __a = self.dummy_sample_deter + 0.1 __a = self.dummy_sample_deter - 0.1 __a = samplea.shape[0] __a = torch.stack([samplea, samplea, samplea] , dim=0) __a = torch.arange(__SCREAMING_SNAKE_CASE)[0:3, None].repeat(1 , __SCREAMING_SNAKE_CASE) __a = model(samples.flatten(0 , 1) , timesteps.flatten(0 , 1)) __a = scheduler.batch_step_no_noise(__SCREAMING_SNAKE_CASE , timesteps.flatten(0 , 1) , samples.flatten(0 , 1)) __a = torch.sum(torch.abs(__SCREAMING_SNAKE_CASE)) __a = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE)) assert abs(result_sum.item() - 11_53.18_33) < 1E-2 assert abs(result_mean.item() - 0.50_05) < 1E-3 def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = self.scheduler_classes[0] __a = self.get_scheduler_config() __a = scheduler_class(**__SCREAMING_SNAKE_CASE) __a = len(__SCREAMING_SNAKE_CASE) __a = self.dummy_model() __a = self.dummy_sample_deter __a = torch.manual_seed(0) for t in reversed(range(__SCREAMING_SNAKE_CASE)): # 1. predict noise residual __a = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) # 2. predict previous mean of sample x_t-1 __a = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE).prev_sample __a = pred_prev_sample __a = torch.sum(torch.abs(__SCREAMING_SNAKE_CASE)) __a = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE)) assert abs(result_sum.item() - 2_58.96_06) < 1E-2 assert abs(result_mean.item() - 0.33_72) < 1E-3 def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' __a = self.scheduler_classes[0] __a = self.get_scheduler_config(prediction_type='''v_prediction''') __a = scheduler_class(**__SCREAMING_SNAKE_CASE) __a = len(__SCREAMING_SNAKE_CASE) __a = self.dummy_model() __a = self.dummy_sample_deter __a = torch.manual_seed(0) for t in reversed(range(__SCREAMING_SNAKE_CASE)): # 1. predict noise residual __a = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) # 2. predict previous mean of sample x_t-1 __a = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE).prev_sample __a = pred_prev_sample __a = torch.sum(torch.abs(__SCREAMING_SNAKE_CASE)) __a = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE)) assert abs(result_sum.item() - 2_02.02_96) < 1E-2 assert abs(result_mean.item() - 0.26_31) < 1E-3 def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' __a = self.scheduler_classes[0] __a = self.get_scheduler_config() __a = scheduler_class(**__SCREAMING_SNAKE_CASE) __a = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=__SCREAMING_SNAKE_CASE) __a = scheduler.timesteps for i, timestep in enumerate(__SCREAMING_SNAKE_CASE): if i == len(__SCREAMING_SNAKE_CASE) - 1: __a = -1 else: __a = timesteps[i + 1] __a = scheduler.previous_timestep(__SCREAMING_SNAKE_CASE) __a = prev_t.item() self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = self.scheduler_classes[0] __a = self.get_scheduler_config() __a = scheduler_class(**__SCREAMING_SNAKE_CASE) __a = [100, 87, 50, 51, 0] with self.assertRaises(__SCREAMING_SNAKE_CASE , msg='''`custom_timesteps` must be in descending order.'''): scheduler.set_timesteps(timesteps=__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' __a = self.scheduler_classes[0] __a = self.get_scheduler_config() __a = scheduler_class(**__SCREAMING_SNAKE_CASE) __a = [100, 87, 50, 1, 0] __a = len(__SCREAMING_SNAKE_CASE) with self.assertRaises(__SCREAMING_SNAKE_CASE , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.'''): scheduler.set_timesteps(num_inference_steps=__SCREAMING_SNAKE_CASE , timesteps=__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = self.scheduler_classes[0] __a = self.get_scheduler_config() __a = scheduler_class(**__SCREAMING_SNAKE_CASE) __a = [scheduler.config.num_train_timesteps] with self.assertRaises( __SCREAMING_SNAKE_CASE , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=__SCREAMING_SNAKE_CASE)
49
0
"""simple docstring""" import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def _A ( _a : List[Any] , _a : List[str]=1 ): """simple docstring""" if n_shave_prefix_segments >= 0: return ".".join(path.split(""".""" )[n_shave_prefix_segments:] ) else: return ".".join(path.split(""".""" )[:n_shave_prefix_segments] ) def _A ( _a : Dict , _a : Tuple=0 ): """simple docstring""" A = [] for old_item in old_list: A = old_item.replace("""in_layers.0""" , """norm1""" ) A = new_item.replace("""in_layers.2""" , """conv1""" ) A = new_item.replace("""out_layers.0""" , """norm2""" ) A = new_item.replace("""out_layers.3""" , """conv2""" ) A = new_item.replace("""emb_layers.1""" , """time_emb_proj""" ) A = new_item.replace("""skip_connection""" , """conv_shortcut""" ) A = shave_segments(_lowerCAmelCase , n_shave_prefix_segments=_lowerCAmelCase ) mapping.append({"""old""": old_item, """new""": new_item} ) return mapping def _A ( _a : Tuple , _a : Optional[int]=0 ): """simple docstring""" A = [] for old_item in old_list: A = old_item A = new_item.replace("""norm.weight""" , """group_norm.weight""" ) A = new_item.replace("""norm.bias""" , """group_norm.bias""" ) A = new_item.replace("""proj_out.weight""" , """proj_attn.weight""" ) A = new_item.replace("""proj_out.bias""" , """proj_attn.bias""" ) A = shave_segments(_lowerCAmelCase , n_shave_prefix_segments=_lowerCAmelCase ) mapping.append({"""old""": old_item, """new""": new_item} ) return mapping def _A ( _a : Any , _a : Tuple , _a : List[str] , _a : Optional[Any]=None , _a : List[str]=None , _a : List[str]=None ): """simple docstring""" assert isinstance(_lowerCAmelCase , _lowerCAmelCase ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): A = old_checkpoint[path] A = old_tensor.shape[0] // 3 A = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) A = old_tensor.shape[0] // config["""num_head_channels"""] // 3 A = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) A , A , A = old_tensor.split(channels // num_heads , dim=1 ) A = query.reshape(_lowerCAmelCase ) A = key.reshape(_lowerCAmelCase ) A = value.reshape(_lowerCAmelCase ) for path in paths: A = path["""new"""] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here A = new_path.replace("""middle_block.0""" , """mid_block.resnets.0""" ) A = new_path.replace("""middle_block.1""" , """mid_block.attentions.0""" ) A = new_path.replace("""middle_block.2""" , """mid_block.resnets.1""" ) if additional_replacements is not None: for replacement in additional_replacements: A = new_path.replace(replacement["""old"""] , replacement["""new"""] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: A = old_checkpoint[path["""old"""]][:, :, 0] else: A = old_checkpoint[path["""old"""]] def _A ( _a : Union[str, Any] , _a : int ): """simple docstring""" A = {} A = checkpoint["""time_embed.0.weight"""] A = checkpoint["""time_embed.0.bias"""] A = checkpoint["""time_embed.2.weight"""] A = checkpoint["""time_embed.2.bias"""] A = checkpoint["""input_blocks.0.0.weight"""] A = checkpoint["""input_blocks.0.0.bias"""] A = checkpoint["""out.0.weight"""] A = checkpoint["""out.0.bias"""] A = checkpoint["""out.2.weight"""] A = checkpoint["""out.2.bias"""] # Retrieves the keys for the input blocks only A = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """input_blocks""" in layer} ) A = { layer_id: [key for key in checkpoint if f'input_blocks.{layer_id}' in key] for layer_id in range(_lowerCAmelCase ) } # Retrieves the keys for the middle blocks only A = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """middle_block""" in layer} ) A = { layer_id: [key for key in checkpoint if f'middle_block.{layer_id}' in key] for layer_id in range(_lowerCAmelCase ) } # Retrieves the keys for the output blocks only A = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """output_blocks""" in layer} ) A = { layer_id: [key for key in checkpoint if f'output_blocks.{layer_id}' in key] for layer_id in range(_lowerCAmelCase ) } for i in range(1 , _lowerCAmelCase ): A = (i - 1) // (config["""num_res_blocks"""] + 1) A = (i - 1) % (config["""num_res_blocks"""] + 1) A = [key for key in input_blocks[i] if f'input_blocks.{i}.0' in key] A = [key for key in input_blocks[i] if f'input_blocks.{i}.1' in key] if f'input_blocks.{i}.0.op.weight' in checkpoint: A = checkpoint[ f'input_blocks.{i}.0.op.weight' ] A = checkpoint[ f'input_blocks.{i}.0.op.bias' ] continue A = renew_resnet_paths(_lowerCAmelCase ) A = {"""old""": f'input_blocks.{i}.0', """new""": f'down_blocks.{block_id}.resnets.{layer_in_block_id}'} A = {"""old""": """resnets.2.op""", """new""": """downsamplers.0.op"""} assign_to_checkpoint( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , additional_replacements=[meta_path, resnet_op] , config=_lowerCAmelCase ) if len(_lowerCAmelCase ): A = renew_attention_paths(_lowerCAmelCase ) A = { """old""": f'input_blocks.{i}.1', """new""": f'down_blocks.{block_id}.attentions.{layer_in_block_id}', } A = { f'input_blocks.{i}.1.qkv.bias': { """key""": f'down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias', """query""": f'down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias', """value""": f'down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias', }, f'input_blocks.{i}.1.qkv.weight': { """key""": f'down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight', """query""": f'down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight', """value""": f'down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight', }, } assign_to_checkpoint( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , additional_replacements=[meta_path] , attention_paths_to_split=_lowerCAmelCase , config=_lowerCAmelCase , ) A = middle_blocks[0] A = middle_blocks[1] A = middle_blocks[2] A = renew_resnet_paths(_lowerCAmelCase ) assign_to_checkpoint(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , config=_lowerCAmelCase ) A = renew_resnet_paths(_lowerCAmelCase ) assign_to_checkpoint(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , config=_lowerCAmelCase ) A = renew_attention_paths(_lowerCAmelCase ) A = { """middle_block.1.qkv.bias""": { """key""": """mid_block.attentions.0.key.bias""", """query""": """mid_block.attentions.0.query.bias""", """value""": """mid_block.attentions.0.value.bias""", }, """middle_block.1.qkv.weight""": { """key""": """mid_block.attentions.0.key.weight""", """query""": """mid_block.attentions.0.query.weight""", """value""": """mid_block.attentions.0.value.weight""", }, } assign_to_checkpoint( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , attention_paths_to_split=_lowerCAmelCase , config=_lowerCAmelCase ) for i in range(_lowerCAmelCase ): A = i // (config["""num_res_blocks"""] + 1) A = i % (config["""num_res_blocks"""] + 1) A = [shave_segments(_lowerCAmelCase , 2 ) for name in output_blocks[i]] A = {} for layer in output_block_layers: A , A = layer.split(""".""" )[0], shave_segments(_lowerCAmelCase , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(_lowerCAmelCase ) else: A = [layer_name] if len(_lowerCAmelCase ) > 1: A = [key for key in output_blocks[i] if f'output_blocks.{i}.0' in key] A = [key for key in output_blocks[i] if f'output_blocks.{i}.1' in key] A = renew_resnet_paths(_lowerCAmelCase ) A = renew_resnet_paths(_lowerCAmelCase ) A = {"""old""": f'output_blocks.{i}.0', """new""": f'up_blocks.{block_id}.resnets.{layer_in_block_id}'} assign_to_checkpoint(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , additional_replacements=[meta_path] , config=_lowerCAmelCase ) if ["conv.weight", "conv.bias"] in output_block_list.values(): A = list(output_block_list.values() ).index(["""conv.weight""", """conv.bias"""] ) A = checkpoint[ f'output_blocks.{i}.{index}.conv.weight' ] A = checkpoint[ f'output_blocks.{i}.{index}.conv.bias' ] # Clear attentions as they have been attributed above. if len(_lowerCAmelCase ) == 2: A = [] if len(_lowerCAmelCase ): A = renew_attention_paths(_lowerCAmelCase ) A = { """old""": f'output_blocks.{i}.1', """new""": f'up_blocks.{block_id}.attentions.{layer_in_block_id}', } A = { f'output_blocks.{i}.1.qkv.bias': { """key""": f'up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias', """query""": f'up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias', """value""": f'up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias', }, f'output_blocks.{i}.1.qkv.weight': { """key""": f'up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight', """query""": f'up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight', """value""": f'up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight', }, } assign_to_checkpoint( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any("""qkv""" in key for key in attentions ) else None , config=_lowerCAmelCase , ) else: A = renew_resnet_paths(_lowerCAmelCase , n_shave_prefix_segments=1 ) for path in resnet_0_paths: A = """.""".join(["""output_blocks""", str(_lowerCAmelCase ), path["""old"""]] ) A = """.""".join(["""up_blocks""", str(_lowerCAmelCase ), """resnets""", str(_lowerCAmelCase ), path["""new"""]] ) A = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": UpperCAmelCase =argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the architecture.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") UpperCAmelCase =parser.parse_args() UpperCAmelCase =torch.load(args.checkpoint_path) with open(args.config_file) as f: UpperCAmelCase =json.loads(f.read()) UpperCAmelCase =convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] UpperCAmelCase =UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: UpperCAmelCase =DDPMScheduler.from_config("/".join(args.checkpoint_path.split("/")[:-1])) UpperCAmelCase =VQModel.from_pretrained("/".join(args.checkpoint_path.split("/")[:-1])) UpperCAmelCase =LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
354
"""simple docstring""" from math import factorial def _A ( _a : int = 1_0_0 ): """simple docstring""" return sum(map(_a , str(factorial(_a ) ) ) ) if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
77
0
"""simple docstring""" from numpy import exp, pi, sqrt def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase = 0.0 , _UpperCamelCase = 1.0 ): return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
86
"""simple docstring""" import os import pytest from attr import dataclass lowerCamelCase__ = """us-east-1""" # defaults region @dataclass class A__ : A_ : str A_ : Union[str, Any] = 'arn:aws:iam::558105141721:role/sagemaker_execution_role' A_ : Optional[int] = { 'task_name': 'mnli', 'per_device_train_batch_size': 1_6, 'per_device_eval_batch_size': 1_6, 'do_train': True, 'do_eval': True, 'do_predict': True, 'output_dir': '/opt/ml/model', 'overwrite_output_dir': True, 'max_steps': 5_0_0, 'save_steps': 5_5_0_0, } A_ : List[Any] = {**hyperparameters, 'max_steps': 1_0_0_0} @property def __lowerCamelCase ( self ): if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def __lowerCamelCase ( self ): return f"{self.framework}-transfromers-test" @property def __lowerCamelCase ( self ): return f"./tests/sagemaker/scripts/{self.framework}" @property def __lowerCamelCase ( self ): if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope='class' ) def __lowerCAmelCase (_UpperCamelCase ): __lowerCAmelCase : str = SageMakerTestEnvironment(framework=request.cls.framework )
86
1
import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets lowercase_ = "\\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks\n and Collin Burns\n and Saurav Kadavath\n and Akul Arora\n and Steven Basart\n and Eric Tang\n and Dawn Song\n and Jacob Steinhardt},\n journal={arXiv preprint arXiv:2103.03874},\n year={2021}\n}\n" lowercase_ = "\\nThis metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.\nIt first canonicalizes the inputs (e.g., converting \"1/2\" to \"\\frac{1}{2}\") and then computes accuracy.\n" lowercase_ = r"\nCalculates accuracy after canonicalizing inputs.\n\nArgs:\n predictions: list of predictions to score. Each prediction\n is a string that contains natural language and LaTex.\n references: list of reference for each prediction. Each\n reference is a string that contains natural language\n and LaTex.\nReturns:\n accuracy: accuracy after canonicalizing inputs\n (e.g., converting \"1/2\" to \"\\frac{1}{2}\")\n\nExamples:\n >>> metric = datasets.load_metric(\"competition_math\")\n >>> results = metric.compute(references=[\"\\frac{1}{2}\"], predictions=[\"1/2\"])\n >>> print(results)\n {'accuracy': 1.0}\n" @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): def snake_case__ ( self : List[Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" ), """references""": datasets.Value("""string""" ), } ) , homepage="""https://github.com/hendrycks/math""" , codebase_urls=["""https://github.com/hendrycks/math"""] , ) def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Tuple ): __snake_case : Optional[int] = 0.0 for i, j in zip(_lowerCAmelCase , _lowerCAmelCase ): n_correct += 1.0 if math_equivalence.is_equiv(_lowerCAmelCase , _lowerCAmelCase ) else 0.0 __snake_case : Optional[int] = n_correct / len(_lowerCAmelCase ) return { "accuracy": accuracy, }
20
import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap lowercase_ = "Usage of script: script_name <size_of_canvas:int>" lowercase_ = [0] * 1_00 + [1] * 10 random.shuffle(choice) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' __snake_case : List[str] = [[False for i in range(__SCREAMING_SNAKE_CASE )] for j in range(__SCREAMING_SNAKE_CASE )] return canvas def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[list[bool]] ): '''simple docstring''' for i, row in enumerate(__SCREAMING_SNAKE_CASE ): for j, _ in enumerate(__SCREAMING_SNAKE_CASE ): __snake_case : int = bool(random.getrandbits(1 ) ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[list[bool]] ): '''simple docstring''' __snake_case : Union[str, Any] = np.array(__SCREAMING_SNAKE_CASE ) __snake_case : List[Any] = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(__SCREAMING_SNAKE_CASE ): for c, pt in enumerate(__SCREAMING_SNAKE_CASE ): __snake_case : Optional[Any] = __judge_point( __SCREAMING_SNAKE_CASE , current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) __snake_case : List[str] = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. __snake_case : list[list[bool]] = current_canvas.tolist() return return_canvas def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : bool , __SCREAMING_SNAKE_CASE : list[list[bool]] ): '''simple docstring''' __snake_case : Any = 0 __snake_case : Dict = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. __snake_case : str = pt if pt: if alive < 2: __snake_case : Optional[Any] = False elif alive == 2 or alive == 3: __snake_case : Union[str, Any] = True elif alive > 3: __snake_case : Optional[int] = False else: if alive == 3: __snake_case : List[Any] = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) lowercase_ = int(sys.argv[1]) # main working structure of this module. lowercase_ = create_canvas(canvas_size) seed(c) lowercase_ , lowercase_ = plt.subplots() fig.show() lowercase_ = ListedColormap(["w", "k"]) try: while True: lowercase_ = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
20
1
'''simple docstring''' import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase : List[Any] = logging.get_logger(__name__) lowercase : Any = {'vocab_file': 'spiece.model'} lowercase : int = { 'vocab_file': { 'AI-Sweden/gpt-sw3-126m': 'https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-350m': 'https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-1.6b': 'https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-6.7b': 'https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-20b': 'https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model', } } lowercase : List[str] = { 'AI-Sweden/gpt-sw3-126m': 20_48, 'AI-Sweden/gpt-sw3-350m': 20_48, 'AI-Sweden/gpt-sw3-1.6b': 20_48, 'AI-Sweden/gpt-sw3-6.7b': 20_48, 'AI-Sweden/gpt-sw3-20b': 20_48, } class A ( __snake_case ): __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = ['''input_ids''', '''attention_mask'''] def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> None: """simple docstring""" A : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs A : Optional[int] = kwargs.get('''name_or_path''' ) if name_or_path is None: logger.warning( '''name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,''' ''' you are testing the model, this can safely be ignored''' ) A : List[Any] = '''None''' # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing A : int = '''<|endoftext|>''' if eos_token is None else eos_token A : Dict = '''<unk>''' if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: A : List[Any] = unk_token if pad_token is None else pad_token A : List[str] = eos_token if bos_token is None else bos_token else: A : Optional[Any] = '''<pad>''' if pad_token is None else pad_token A : Optional[int] = '''<s>''' if bos_token is None else bos_token super().__init__( do_lower_case=SCREAMING_SNAKE_CASE , remove_space=SCREAMING_SNAKE_CASE , keep_accents=SCREAMING_SNAKE_CASE , bos_token=SCREAMING_SNAKE_CASE , eos_token=SCREAMING_SNAKE_CASE , unk_token=SCREAMING_SNAKE_CASE , pad_token=SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE , ) A : List[str] = do_lower_case A : List[str] = remove_space A : Union[str, Any] = keep_accents A : Union[str, Any] = vocab_file A : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(SCREAMING_SNAKE_CASE ) # Used for whitespace normalization in input texts # fmt : off A : Any = {''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', '''''', '''„'''} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing A : List[str] = re.compile( F'[{"".join(map(SCREAMING_SNAKE_CASE , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(127 , 160 ) ) + [160, 173, 8203] ) )}]' ) def __getstate__( self ) -> Dict: """simple docstring""" A : Tuple = self.__dict__.copy() A : List[Any] = None return state def __setstate__( self , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" A : Tuple = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): A : Any = {} A : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def __lowerCAmelCase ( self ) -> int: """simple docstring""" return len(self.sp_model ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" A : List[str] = self.non_printing_characters_re.sub('''''' , SCREAMING_SNAKE_CASE ) # Normalize whitespaces A : Union[str, Any] = ''''''.join([char if char not in self.whitespaces else ''' ''' for char in text] ) # NFC Unicode normalization A : Optional[int] = unicodedata.normalize('''NFC''' , SCREAMING_SNAKE_CASE ) return text def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" A : Optional[int] = self.preprocess_text(SCREAMING_SNAKE_CASE ) return self.sp_model.encode(SCREAMING_SNAKE_CASE , out_type=SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" return self.sp_model.PieceToId(SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" return self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE ) @staticmethod def __lowerCAmelCase ( SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" return out_string def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" A : Optional[int] = [] A : Optional[Any] = '''''' A : List[str] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE ) + token A : Dict = True A : int = [] else: current_sub_tokens.append(SCREAMING_SNAKE_CASE ) A : List[Any] = False out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE ) return out_string def __lowerCAmelCase ( self ) -> Dict[str, int]: """simple docstring""" A : Tuple = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(SCREAMING_SNAKE_CASE ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return A : Tuple = os.path.join( SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE , '''wb''' ) as fi: A : List[str] = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE ) return (out_vocab_file,) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = False ) -> Union[List[int], List[List[int]], "torch.Tensor"]: """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A : List[str] = self.preprocess_text(SCREAMING_SNAKE_CASE ) A : Any = self.sp_model.encode(SCREAMING_SNAKE_CASE ) else: A : Any = [self.preprocess_text(SCREAMING_SNAKE_CASE ) for t in text] A : Optional[int] = self.sp_model.encode(SCREAMING_SNAKE_CASE ) if return_tensors is True or return_tensors == "pt": A : Union[str, Any] = torch.tensor(SCREAMING_SNAKE_CASE ) return token_ids def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" return self.sp_model.decode(SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> List[int]: """simple docstring""" A : int = [F'User: {text}' if is_user else F'Bot: {text}' for is_user, text in conversation.iter_texts()] A : Tuple = ( F'{self.eos_token}{self.bos_token}' + F'{self.bos_token}'.join(SCREAMING_SNAKE_CASE ) + F'{self.bos_token}Bot:' ) return self.encode(text=SCREAMING_SNAKE_CASE )
3
"""simple docstring""" from argparse import ArgumentParser from .env import EnvironmentCommand def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowercase = ArgumentParser('Diffusers CLI tool' , usage='diffusers-cli <command> [<args>]' ) lowercase = parser.add_subparsers(help='diffusers-cli command helpers' ) # Register commands EnvironmentCommand.register_subcommand(__snake_case ) # Let's go lowercase = parser.parse_args() if not hasattr(__snake_case , 'func' ): parser.print_help() exit(1 ) # Run lowercase = args.func(__snake_case ) service.run() if __name__ == "__main__": main()
220
0
from __future__ import annotations def lowerCAmelCase_ (lowerCAmelCase__: list[int | float] , lowerCAmelCase__: int , lowerCAmelCase__: int ): """simple docstring""" if len(lowerCAmelCase__ ) == 0: raise ValueError("""find_max() arg is an empty sequence""" ) if ( left >= len(lowerCAmelCase__ ) or left < -len(lowerCAmelCase__ ) or right >= len(lowerCAmelCase__ ) or right < -len(lowerCAmelCase__ ) ): raise IndexError("""list index out of range""" ) if left == right: return nums[left] UpperCAmelCase_: int = (left + right) >> 1 # the middle UpperCAmelCase_: List[Any] = find_max(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # find max in range[left, mid] UpperCAmelCase_: Any = find_max(lowerCAmelCase__ , mid + 1 , lowerCAmelCase__ ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
371
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class _a ( unittest.TestCase , _lowerCAmelCase ): def __snake_case (self ) -> Optional[int]: UpperCAmelCase_: Optional[int] = load_tool("""text-classification""" ) self.tool.setup() UpperCAmelCase_: str = load_tool("""text-classification""", remote=SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> Optional[Any]: UpperCAmelCase_: Any = self.tool("""That's quite cool""", ["""positive""", """negative"""] ) self.assertEqual(SCREAMING_SNAKE_CASE_, """positive""" ) def __snake_case (self ) -> Optional[int]: UpperCAmelCase_: List[str] = self.remote_tool("""That's quite cool""", ["""positive""", """negative"""] ) self.assertEqual(SCREAMING_SNAKE_CASE_, """positive""" ) def __snake_case (self ) -> Any: UpperCAmelCase_: Tuple = self.tool(text="""That's quite cool""", labels=["""positive""", """negative"""] ) self.assertEqual(SCREAMING_SNAKE_CASE_, """positive""" ) def __snake_case (self ) -> int: UpperCAmelCase_: Dict = self.remote_tool(text="""That's quite cool""", labels=["""positive""", """negative"""] ) self.assertEqual(SCREAMING_SNAKE_CASE_, """positive""" )
82
0
'''simple docstring''' import unittest import torch from torch import nn from diffusers.models.activations import get_activation class snake_case ( unittest.TestCase ): """simple docstring""" def snake_case ( self ): """simple docstring""" lowerCamelCase_ = get_activation("swish" ) self.assertIsInstance(UpperCamelCase , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = get_activation("silu" ) self.assertIsInstance(UpperCamelCase , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = get_activation("mish" ) self.assertIsInstance(UpperCamelCase , nn.Mish ) self.assertEqual(act(torch.tensor(-200 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = get_activation("gelu" ) self.assertIsInstance(UpperCamelCase , nn.GELU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
55
def __UpperCamelCase ( _A : float , _A : int ) ->float: """simple docstring""" if digit_amount > 0: return round(number - int(_A ) , _A ) return number - int(_A ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.3_45, 1)) print(decimal_isolate(35.3_45, 2)) print(decimal_isolate(35.3_45, 3)) print(decimal_isolate(-14.7_89, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.1_23, 1)) print(decimal_isolate(-14.1_23, 2)) print(decimal_isolate(-14.1_23, 3))
154
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available lowerCAmelCase__ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''MLukeTokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
354
from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar lowerCAmelCase__ = TypeVar('''KEY''') lowerCAmelCase__ = TypeVar('''VAL''') @dataclass(frozen=_UpperCamelCase , slots=_UpperCamelCase ) class snake_case__(Generic[KEY, VAL] ): """simple docstring""" lowercase_ = 42 lowercase_ = 42 class snake_case__(_Item ): """simple docstring""" def __init__( self : List[str] ): super().__init__(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __bool__( self : Tuple ): return False lowerCAmelCase__ = _DeletedItem() class snake_case__(MutableMapping[KEY, VAL] ): """simple docstring""" def __init__( self : Any , SCREAMING_SNAKE_CASE : int = 8 , SCREAMING_SNAKE_CASE : float = 0.75 ): lowercase__ : Any = initial_block_size lowercase__ : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 lowercase__ : Dict = capacity_factor lowercase__ : Optional[int] = 0 def snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE : KEY ): return hash(SCREAMING_SNAKE_CASE ) % len(self._buckets ) def snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE : int ): return (ind + 1) % len(self._buckets ) def snake_case ( self : Tuple , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : KEY , SCREAMING_SNAKE_CASE : VAL ): lowercase__ : Tuple = self._buckets[ind] if not stored: lowercase__ : int = _Item(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self._len += 1 return True elif stored.key == key: lowercase__ : str = _Item(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return True else: return False def snake_case ( self : str ): lowercase__ : str = len(self._buckets ) * self._capacity_factor return len(self ) >= int(SCREAMING_SNAKE_CASE ) def snake_case ( self : List[str] ): if len(self._buckets ) <= self._initial_block_size: return False lowercase__ : Optional[Any] = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE : int ): lowercase__ : Tuple = self._buckets lowercase__ : Optional[int] = [None] * new_size lowercase__ : int = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def snake_case ( self : int ): self._resize(len(self._buckets ) * 2 ) def snake_case ( self : Optional[Any] ): self._resize(len(self._buckets ) // 2 ) def snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE : KEY ): lowercase__ : Tuple = self._get_bucket_index(SCREAMING_SNAKE_CASE ) for _ in range(len(self._buckets ) ): yield ind lowercase__ : Union[str, Any] = self._get_next_ind(SCREAMING_SNAKE_CASE ) def snake_case ( self : str , SCREAMING_SNAKE_CASE : KEY , SCREAMING_SNAKE_CASE : VAL ): for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE ): if self._try_set(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): break def __setitem__( self : List[str] , SCREAMING_SNAKE_CASE : KEY , SCREAMING_SNAKE_CASE : VAL ): if self._is_full(): self._size_up() self._add_item(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __delitem__( self : int , SCREAMING_SNAKE_CASE : KEY ): for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE ): lowercase__ : Union[str, Any] = self._buckets[ind] if item is None: raise KeyError(SCREAMING_SNAKE_CASE ) if item is _deleted: continue if item.key == key: lowercase__ : Optional[int] = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : Tuple , SCREAMING_SNAKE_CASE : KEY ): for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE ): lowercase__ : Any = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(SCREAMING_SNAKE_CASE ) def __len__( self : Optional[Any] ): return self._len def __iter__( self : List[str] ): yield from (item.key for item in self._buckets if item) def __repr__( self : str ): lowercase__ : int = " ,".join( f"""{item.key}: {item.val}""" for item in self._buckets if item ) return f"""HashMap({val_string})"""
121
0
"""simple docstring""" def __A ( a_ :int | float | str) -> tuple[int, int]: try: __a : List[Any] = float(lowerCamelCase__) except ValueError: raise ValueError('''Please enter a valid number''') __a : Optional[int] = decimal - int(lowerCamelCase__) if fractional_part == 0: return int(lowerCamelCase__), 1 else: __a : str = len(str(lowerCamelCase__).split('''.''')[1]) __a : Union[str, Any] = int(decimal * (10**number_of_frac_digits)) __a : int = 10**number_of_frac_digits __a : int = denominator, numerator while True: __a : List[Any] = dividend % divisor if remainder == 0: break __a : Tuple = divisor, remainder __a : List[str] = numerator / divisor, denominator / divisor return int(lowerCamelCase__), int(lowerCamelCase__) if __name__ == "__main__": print(F'{decimal_to_fraction(2) = }') print(F'{decimal_to_fraction(89.0) = }') print(F'{decimal_to_fraction("67") = }') print(F'{decimal_to_fraction("45.0") = }') print(F'{decimal_to_fraction(1.5) = }') print(F'{decimal_to_fraction("6.25") = }') print(F'{decimal_to_fraction("78td") = }')
160
"""simple docstring""" import math def _snake_case ( lowerCamelCase__ : list , lowerCamelCase__ : int ) -> int: lowerCamelCase_ : int =len(lowerCamelCase__ ) lowerCamelCase_ : List[Any] =int(math.floor(math.sqrt(lowerCamelCase__ ) ) ) lowerCamelCase_ : List[Any] =0 while arr[min(lowerCamelCase__ , lowerCamelCase__ ) - 1] < x: lowerCamelCase_ : str =step step += int(math.floor(math.sqrt(lowerCamelCase__ ) ) ) if prev >= n: return -1 while arr[prev] < x: lowerCamelCase_ : Dict =prev + 1 if prev == min(lowerCamelCase__ , lowerCamelCase__ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": A__ : List[Any] = input('Enter numbers separated by a comma:\n').strip() A__ : Optional[Any] = [int(item) for item in user_input.split(',')] A__ : List[str] = int(input('Enter the number to be searched:\n')) A__ : Any = jump_search(arr, x) if res == -1: print('Number not found!') else: print(f'Number {x} is at index {res}')
144
0
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. a : Dict = {'LayoutLMv2Config', 'LayoutLMv3Config'} @is_pipeline_test class _a ( unittest.TestCase ): A = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING A = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: A = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: A = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def __snake_case (self ) -> Dict: UpperCAmelCase_: Union[str, Any] = pipeline( task="""text-classification""", model="""hf-internal-testing/tiny-random-distilbert""", framework="""pt""" ) UpperCAmelCase_: Dict = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE_ ), [{"""label""": """LABEL_0""", """score""": 0.5_0_4}] ) UpperCAmelCase_: List[Any] = text_classifier("""This is great !""", top_k=2 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ), [{"""label""": """LABEL_0""", """score""": 0.5_0_4}, {"""label""": """LABEL_1""", """score""": 0.4_9_6}] ) UpperCAmelCase_: int = text_classifier(["""This is great !""", """This is bad"""], top_k=2 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ), [ [{"""label""": """LABEL_0""", """score""": 0.5_0_4}, {"""label""": """LABEL_1""", """score""": 0.4_9_6}], [{"""label""": """LABEL_0""", """score""": 0.5_0_4}, {"""label""": """LABEL_1""", """score""": 0.4_9_6}], ], ) UpperCAmelCase_: Tuple = text_classifier("""This is great !""", top_k=1 ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE_ ), [{"""label""": """LABEL_0""", """score""": 0.5_0_4}] ) # Legacy behavior UpperCAmelCase_: List[str] = text_classifier("""This is great !""", return_all_scores=SCREAMING_SNAKE_CASE_ ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE_ ), [{"""label""": """LABEL_0""", """score""": 0.5_0_4}] ) UpperCAmelCase_: Optional[Any] = text_classifier("""This is great !""", return_all_scores=SCREAMING_SNAKE_CASE_ ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ), [[{"""label""": """LABEL_0""", """score""": 0.5_0_4}, {"""label""": """LABEL_1""", """score""": 0.4_9_6}]] ) UpperCAmelCase_: int = text_classifier(["""This is great !""", """Something else"""], return_all_scores=SCREAMING_SNAKE_CASE_ ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ), [ [{"""label""": """LABEL_0""", """score""": 0.5_0_4}, {"""label""": """LABEL_1""", """score""": 0.4_9_6}], [{"""label""": """LABEL_0""", """score""": 0.5_0_4}, {"""label""": """LABEL_1""", """score""": 0.4_9_6}], ], ) UpperCAmelCase_: List[Any] = text_classifier(["""This is great !""", """Something else"""], return_all_scores=SCREAMING_SNAKE_CASE_ ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ), [ {"""label""": """LABEL_0""", """score""": 0.5_0_4}, {"""label""": """LABEL_0""", """score""": 0.5_0_4}, ], ) @require_torch def __snake_case (self ) -> Dict: import torch UpperCAmelCase_: Any = pipeline( task="""text-classification""", model="""hf-internal-testing/tiny-random-distilbert""", framework="""pt""", device=torch.device("""cpu""" ), ) UpperCAmelCase_: Union[str, Any] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE_ ), [{"""label""": """LABEL_0""", """score""": 0.5_0_4}] ) @require_tf def __snake_case (self ) -> str: UpperCAmelCase_: List[Any] = pipeline( task="""text-classification""", model="""hf-internal-testing/tiny-random-distilbert""", framework="""tf""" ) UpperCAmelCase_: Optional[Any] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE_ ), [{"""label""": """LABEL_0""", """score""": 0.5_0_4}] ) @slow @require_torch def __snake_case (self ) -> List[Any]: UpperCAmelCase_: int = pipeline("""text-classification""" ) UpperCAmelCase_: Optional[Any] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE_ ), [{"""label""": """POSITIVE""", """score""": 1.0}] ) UpperCAmelCase_: Union[str, Any] = text_classifier("""This is bad !""" ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE_ ), [{"""label""": """NEGATIVE""", """score""": 1.0}] ) UpperCAmelCase_: List[str] = text_classifier("""Birds are a type of animal""" ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE_ ), [{"""label""": """POSITIVE""", """score""": 0.9_8_8}] ) @slow @require_tf def __snake_case (self ) -> List[str]: UpperCAmelCase_: Tuple = pipeline("""text-classification""", framework="""tf""" ) UpperCAmelCase_: Union[str, Any] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE_ ), [{"""label""": """POSITIVE""", """score""": 1.0}] ) UpperCAmelCase_: int = text_classifier("""This is bad !""" ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE_ ), [{"""label""": """NEGATIVE""", """score""": 1.0}] ) UpperCAmelCase_: List[Any] = text_classifier("""Birds are a type of animal""" ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE_ ), [{"""label""": """POSITIVE""", """score""": 0.9_8_8}] ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> int: UpperCAmelCase_: Optional[int] = TextClassificationPipeline(model=SCREAMING_SNAKE_CASE_, tokenizer=SCREAMING_SNAKE_CASE_ ) return text_classifier, ["HuggingFace is in", "This is another test"] def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> int: UpperCAmelCase_: Union[str, Any] = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 UpperCAmelCase_: List[str] = """HuggingFace is in""" UpperCAmelCase_: Union[str, Any] = text_classifier(SCREAMING_SNAKE_CASE_ ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE_ ), [{"""label""": ANY(SCREAMING_SNAKE_CASE_ ), """score""": ANY(SCREAMING_SNAKE_CASE_ )}] ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() ) UpperCAmelCase_: Union[str, Any] = ["""HuggingFace is in """, """Paris is in France"""] UpperCAmelCase_: Dict = text_classifier(SCREAMING_SNAKE_CASE_ ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ), [{"""label""": ANY(SCREAMING_SNAKE_CASE_ ), """score""": ANY(SCREAMING_SNAKE_CASE_ )}, {"""label""": ANY(SCREAMING_SNAKE_CASE_ ), """score""": ANY(SCREAMING_SNAKE_CASE_ )}], ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() ) self.assertTrue(outputs[1]["""label"""] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format UpperCAmelCase_: List[str] = text_classifier(SCREAMING_SNAKE_CASE_, top_k=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[str] = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ), [[{"""label""": ANY(SCREAMING_SNAKE_CASE_ ), """score""": ANY(SCREAMING_SNAKE_CASE_ )}] * N, [{"""label""": ANY(SCREAMING_SNAKE_CASE_ ), """score""": ANY(SCREAMING_SNAKE_CASE_ )}] * N], ) UpperCAmelCase_: Any = {"""text""": """HuggingFace is in """, """text_pair""": """Paris is in France"""} UpperCAmelCase_: Optional[int] = text_classifier(SCREAMING_SNAKE_CASE_ ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ), {"""label""": ANY(SCREAMING_SNAKE_CASE_ ), """score""": ANY(SCREAMING_SNAKE_CASE_ )}, ) self.assertTrue(outputs["""label"""] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. UpperCAmelCase_: List[Any] = [["""HuggingFace is in """, """Paris is in France"""]] with self.assertRaises(SCREAMING_SNAKE_CASE_ ): text_classifier(SCREAMING_SNAKE_CASE_ ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility UpperCAmelCase_: str = text_classifier([[["""HuggingFace is in """, """Paris is in France"""]]] ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ), [{"""label""": ANY(SCREAMING_SNAKE_CASE_ ), """score""": ANY(SCREAMING_SNAKE_CASE_ )}], ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
367
from __future__ import annotations def lowerCAmelCase_ (lowerCAmelCase__: list[int | float] , lowerCAmelCase__: int , lowerCAmelCase__: int ): """simple docstring""" if len(lowerCAmelCase__ ) == 0: raise ValueError("""find_max() arg is an empty sequence""" ) if ( left >= len(lowerCAmelCase__ ) or left < -len(lowerCAmelCase__ ) or right >= len(lowerCAmelCase__ ) or right < -len(lowerCAmelCase__ ) ): raise IndexError("""list index out of range""" ) if left == right: return nums[left] UpperCAmelCase_: int = (left + right) >> 1 # the middle UpperCAmelCase_: List[Any] = find_max(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # find max in range[left, mid] UpperCAmelCase_: Any = find_max(lowerCAmelCase__ , mid + 1 , lowerCAmelCase__ ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
82
0
"""simple docstring""" from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable lowerCAmelCase_ = {'configuration_gpt_neox': ['GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTNeoXConfig']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['GPTNeoXTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST', 'GPTNeoXForCausalLM', 'GPTNeoXForQuestionAnswering', 'GPTNeoXForSequenceClassification', 'GPTNeoXForTokenClassification', 'GPTNeoXLayer', 'GPTNeoXModel', 'GPTNeoXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
16
"""simple docstring""" from ...configuration_utils import PretrainedConfig lowerCAmelCase_ = { 'google/tapas-base-finetuned-sqa': ( 'https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json' ), 'google/tapas-base-finetuned-wtq': ( 'https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json' ), 'google/tapas-base-finetuned-wikisql-supervised': ( 'https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json' ), 'google/tapas-base-finetuned-tabfact': ( 'https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json' ), } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : str = "tapas" def __init__( self : List[Any] ,_snake_case : Dict=30_522 ,_snake_case : Union[str, Any]=768 ,_snake_case : int=12 ,_snake_case : Union[str, Any]=12 ,_snake_case : Union[str, Any]=3_072 ,_snake_case : List[Any]="gelu" ,_snake_case : Optional[int]=0.1 ,_snake_case : Tuple=0.1 ,_snake_case : List[Any]=1_024 ,_snake_case : Any=[3, 256, 256, 2, 256, 256, 10] ,_snake_case : List[Any]=0.02 ,_snake_case : Union[str, Any]=1e-12 ,_snake_case : str=0 ,_snake_case : Any=10.0 ,_snake_case : int=0 ,_snake_case : Optional[Any]=1.0 ,_snake_case : List[str]=None ,_snake_case : Tuple=1.0 ,_snake_case : Tuple=False ,_snake_case : List[Any]=None ,_snake_case : int=1.0 ,_snake_case : List[Any]=1.0 ,_snake_case : Optional[int]=False ,_snake_case : Optional[int]=False ,_snake_case : Optional[int]="ratio" ,_snake_case : Any=None ,_snake_case : Union[str, Any]=None ,_snake_case : List[str]=64 ,_snake_case : Optional[Any]=32 ,_snake_case : Optional[Any]=False ,_snake_case : Optional[int]=True ,_snake_case : Dict=False ,_snake_case : Tuple=False ,_snake_case : int=True ,_snake_case : List[str]=False ,_snake_case : Dict=None ,_snake_case : Optional[int]=None ,**_snake_case : int ,) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=_snake_case ,**_snake_case ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) lowercase__ : Optional[int] = vocab_size lowercase__ : List[str] = hidden_size lowercase__ : Any = num_hidden_layers lowercase__ : Optional[Any] = num_attention_heads lowercase__ : Optional[int] = hidden_act lowercase__ : List[Any] = intermediate_size lowercase__ : List[Any] = hidden_dropout_prob lowercase__ : Dict = attention_probs_dropout_prob lowercase__ : str = max_position_embeddings lowercase__ : Dict = type_vocab_sizes lowercase__ : Optional[Any] = initializer_range lowercase__ : Dict = layer_norm_eps # Fine-tuning task hyperparameters lowercase__ : Any = positive_label_weight lowercase__ : int = num_aggregation_labels lowercase__ : List[str] = aggregation_loss_weight lowercase__ : Optional[int] = use_answer_as_supervision lowercase__ : Optional[Any] = answer_loss_importance lowercase__ : Union[str, Any] = use_normalized_answer_loss lowercase__ : str = huber_loss_delta lowercase__ : str = temperature lowercase__ : int = aggregation_temperature lowercase__ : List[Any] = use_gumbel_for_cells lowercase__ : Tuple = use_gumbel_for_aggregation lowercase__ : Union[str, Any] = average_approximation_function lowercase__ : Union[str, Any] = cell_selection_preference lowercase__ : Any = answer_loss_cutoff lowercase__ : List[Any] = max_num_rows lowercase__ : str = max_num_columns lowercase__ : int = average_logits_per_cell lowercase__ : str = select_one_column lowercase__ : str = allow_empty_column_selection lowercase__ : Any = init_cell_selection_weights_to_zero lowercase__ : Optional[int] = reset_position_index_per_cell lowercase__ : Union[str, Any] = disable_per_token_loss # Aggregation hyperparameters lowercase__ : Optional[Any] = aggregation_labels lowercase__ : List[Any] = no_aggregation_label_index if isinstance(self.aggregation_labels ,_snake_case ): lowercase__ : Union[str, Any] = {int(_snake_case ): v for k, v in aggregation_labels.items()}
16
1
"""simple docstring""" __UpperCamelCase : int = '''2.13.1''' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('''3.7'''): raise ImportWarning( '''To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.''' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( '''To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n''' '''If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.''' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip __UpperCamelCase : Dict = concatenate_datasets __UpperCamelCase : Optional[int] = DownloadConfig __UpperCamelCase : List[Any] = DownloadManager __UpperCamelCase : List[str] = DownloadMode __UpperCamelCase : Optional[Any] = DownloadConfig __UpperCamelCase : Any = DownloadMode __UpperCamelCase : Optional[Any] = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
369
"""simple docstring""" from __future__ import annotations from decimal import Decimal from numpy import array def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[list[float]] ): lowerCAmelCase = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(_UpperCAmelCase ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix lowerCAmelCase = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError('This matrix has no inverse.' ) # Creates a copy of the matrix with swapped positions of the elements lowerCAmelCase = [[0.0, 0.0], [0.0, 0.0]] lowerCAmelCase ,lowerCAmelCase = matrix[1][1], matrix[0][0] lowerCAmelCase ,lowerCAmelCase = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(_UpperCAmelCase ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(_UpperCAmelCase ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule lowerCAmelCase = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError('This matrix has no inverse.' ) # Creating cofactor matrix lowerCAmelCase = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] lowerCAmelCase = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) lowerCAmelCase = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) lowerCAmelCase = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) lowerCAmelCase = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) lowerCAmelCase = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) lowerCAmelCase = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) lowerCAmelCase = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) lowerCAmelCase = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) lowerCAmelCase = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) lowerCAmelCase = array(_UpperCAmelCase ) for i in range(3 ): for j in range(3 ): lowerCAmelCase = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix lowerCAmelCase = array(_UpperCAmelCase ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(_UpperCAmelCase ) # Calculate the inverse of the matrix return [[float(d(_UpperCAmelCase ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError('Please provide a matrix of size 2x2 or 3x3.' )
309
0
"""simple docstring""" import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# lowerCamelCase_ : Union[str, Any] = [ # (stable-diffusion, HF Diffusers) ("""time_embed.0.weight""", """time_embedding.linear_1.weight"""), ("""time_embed.0.bias""", """time_embedding.linear_1.bias"""), ("""time_embed.2.weight""", """time_embedding.linear_2.weight"""), ("""time_embed.2.bias""", """time_embedding.linear_2.bias"""), ("""input_blocks.0.0.weight""", """conv_in.weight"""), ("""input_blocks.0.0.bias""", """conv_in.bias"""), ("""out.0.weight""", """conv_norm_out.weight"""), ("""out.0.bias""", """conv_norm_out.bias"""), ("""out.2.weight""", """conv_out.weight"""), ("""out.2.bias""", """conv_out.bias"""), ] lowerCamelCase_ : Dict = [ # (stable-diffusion, HF Diffusers) ("""in_layers.0""", """norm1"""), ("""in_layers.2""", """conv1"""), ("""out_layers.0""", """norm2"""), ("""out_layers.3""", """conv2"""), ("""emb_layers.1""", """time_emb_proj"""), ("""skip_connection""", """conv_shortcut"""), ] lowerCamelCase_ : Optional[int] = [] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks lowerCamelCase_ : Optional[int] = F'down_blocks.{i}.resnets.{j}.' lowerCamelCase_ : Dict = F'input_blocks.{3*i + j + 1}.0.' unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 lowerCamelCase_ : Optional[Any] = F'down_blocks.{i}.attentions.{j}.' lowerCamelCase_ : List[str] = F'input_blocks.{3*i + j + 1}.1.' unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks lowerCamelCase_ : Dict = F'up_blocks.{i}.resnets.{j}.' lowerCamelCase_ : Any = F'output_blocks.{3*i + j}.0.' unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 lowerCamelCase_ : List[Any] = F'up_blocks.{i}.attentions.{j}.' lowerCamelCase_ : str = F'output_blocks.{3*i + j}.1.' unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 lowerCamelCase_ : str = F'down_blocks.{i}.downsamplers.0.conv.' lowerCamelCase_ : Optional[int] = F'input_blocks.{3*(i+1)}.0.op.' unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 lowerCamelCase_ : Optional[int] = F'up_blocks.{i}.upsamplers.0.' lowerCamelCase_ : str = F'output_blocks.{3*i + 2}.{1 if i == 0 else 2}.' unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) lowerCamelCase_ : Tuple = """mid_block.attentions.0.""" lowerCamelCase_ : Tuple = """middle_block.1.""" unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): lowerCamelCase_ : Optional[int] = F'mid_block.resnets.{j}.' lowerCamelCase_ : int = F'middle_block.{2*j}.' unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def _A ( lowercase ): """simple docstring""" a ={k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: a =sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: a =v.replace(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a =v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: a =v.replace(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a =v a ={v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# lowerCamelCase_ : Any = [ # (stable-diffusion, HF Diffusers) ("""nin_shortcut""", """conv_shortcut"""), ("""norm_out""", """conv_norm_out"""), ("""mid.attn_1.""", """mid_block.attentions.0."""), ] for i in range(4): # down_blocks have two resnets for j in range(2): lowerCamelCase_ : Union[str, Any] = F'encoder.down_blocks.{i}.resnets.{j}.' lowerCamelCase_ : Union[str, Any] = F'encoder.down.{i}.block.{j}.' vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: lowerCamelCase_ : Dict = F'down_blocks.{i}.downsamplers.0.' lowerCamelCase_ : List[str] = F'down.{i}.downsample.' vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) lowerCamelCase_ : Dict = F'up_blocks.{i}.upsamplers.0.' lowerCamelCase_ : str = F'up.{3-i}.upsample.' vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): lowerCamelCase_ : Optional[int] = F'decoder.up_blocks.{i}.resnets.{j}.' lowerCamelCase_ : Dict = F'decoder.up.{3-i}.block.{j}.' vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): lowerCamelCase_ : Optional[Any] = F'mid_block.resnets.{i}.' lowerCamelCase_ : Any = F'mid.block_{i+1}.' vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) lowerCamelCase_ : List[Any] = [ # (stable-diffusion, HF Diffusers) ("""norm.""", """group_norm."""), ("""q.""", """query."""), ("""k.""", """key."""), ("""v.""", """value."""), ("""proj_out.""", """proj_attn."""), ] def _A ( lowercase ): """simple docstring""" return w.reshape(*w.shape , 1 , 1 ) def _A ( lowercase ): """simple docstring""" a ={k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: a =v.replace(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a =v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: a =v.replace(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a =v a ={v: vae_state_dict[k] for k, v in mapping.items()} a =['''q''', '''k''', '''v''', '''proj_out'''] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if f'''mid.attn_1.{weight_name}.weight''' in k: print(f'''Reshaping {k} for SD format''' ) a =reshape_weight_for_sd(_SCREAMING_SNAKE_CASE ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# lowerCamelCase_ : Union[str, Any] = [ # (stable-diffusion, HF Diffusers) ("""resblocks.""", """text_model.encoder.layers."""), ("""ln_1""", """layer_norm1"""), ("""ln_2""", """layer_norm2"""), (""".c_fc.""", """.fc1."""), (""".c_proj.""", """.fc2."""), (""".attn""", """.self_attn"""), ("""ln_final.""", """transformer.text_model.final_layer_norm."""), ("""token_embedding.weight""", """transformer.text_model.embeddings.token_embedding.weight"""), ("""positional_embedding""", """transformer.text_model.embeddings.position_embedding.weight"""), ] lowerCamelCase_ : List[Any] = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} lowerCamelCase_ : int = re.compile("""|""".join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp lowerCamelCase_ : Union[str, Any] = {"""q""": 0, """k""": 1, """v""": 2} def _A ( lowercase ): """simple docstring""" a ={} a ={} a ={} for k, v in text_enc_dict.items(): if ( k.endswith('''.self_attn.q_proj.weight''' ) or k.endswith('''.self_attn.k_proj.weight''' ) or k.endswith('''.self_attn.v_proj.weight''' ) ): a =k[: -len('''.q_proj.weight''' )] a =k[-len('''q_proj.weight''' )] if k_pre not in capture_qkv_weight: a =[None, None, None] a =v continue if ( k.endswith('''.self_attn.q_proj.bias''' ) or k.endswith('''.self_attn.k_proj.bias''' ) or k.endswith('''.self_attn.v_proj.bias''' ) ): a =k[: -len('''.q_proj.bias''' )] a =k[-len('''q_proj.bias''' )] if k_pre not in capture_qkv_bias: a =[None, None, None] a =v continue a =textenc_pattern.sub(lambda lowercase : protected[re.escape(m.group(0 ) )] , _SCREAMING_SNAKE_CASE ) a =v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception('''CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing''' ) a =textenc_pattern.sub(lambda lowercase : protected[re.escape(m.group(0 ) )] , _SCREAMING_SNAKE_CASE ) a =torch.cat(_SCREAMING_SNAKE_CASE ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception('''CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing''' ) a =textenc_pattern.sub(lambda lowercase : protected[re.escape(m.group(0 ) )] , _SCREAMING_SNAKE_CASE ) a =torch.cat(_SCREAMING_SNAKE_CASE ) return new_state_dict def _A ( lowercase ): """simple docstring""" return text_enc_dict if __name__ == "__main__": lowerCamelCase_ : Any = argparse.ArgumentParser() parser.add_argument("""--model_path""", default=None, type=str, required=True, help="""Path to the model to convert.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""") parser.add_argument( """--use_safetensors""", action="""store_true""", help="""Save weights use safetensors, default is ckpt.""" ) lowerCamelCase_ : Tuple = parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors lowerCamelCase_ : Optional[int] = osp.join(args.model_path, """unet""", """diffusion_pytorch_model.safetensors""") lowerCamelCase_ : Tuple = osp.join(args.model_path, """vae""", """diffusion_pytorch_model.safetensors""") lowerCamelCase_ : Optional[Any] = osp.join(args.model_path, """text_encoder""", """model.safetensors""") # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): lowerCamelCase_ : Union[str, Any] = load_file(unet_path, device="""cpu""") else: lowerCamelCase_ : Dict = osp.join(args.model_path, """unet""", """diffusion_pytorch_model.bin""") lowerCamelCase_ : Dict = torch.load(unet_path, map_location="""cpu""") if osp.exists(vae_path): lowerCamelCase_ : List[Any] = load_file(vae_path, device="""cpu""") else: lowerCamelCase_ : Optional[Any] = osp.join(args.model_path, """vae""", """diffusion_pytorch_model.bin""") lowerCamelCase_ : int = torch.load(vae_path, map_location="""cpu""") if osp.exists(text_enc_path): lowerCamelCase_ : List[Any] = load_file(text_enc_path, device="""cpu""") else: lowerCamelCase_ : Union[str, Any] = osp.join(args.model_path, """text_encoder""", """pytorch_model.bin""") lowerCamelCase_ : Dict = torch.load(text_enc_path, map_location="""cpu""") # Convert the UNet model lowerCamelCase_ : Optional[int] = convert_unet_state_dict(unet_state_dict) lowerCamelCase_ : int = {"""model.diffusion_model.""" + k: v for k, v in unet_state_dict.items()} # Convert the VAE model lowerCamelCase_ : Tuple = convert_vae_state_dict(vae_state_dict) lowerCamelCase_ : Optional[Any] = {"""first_stage_model.""" + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper lowerCamelCase_ : Union[str, Any] = """text_model.encoder.layers.22.layer_norm2.bias""" in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm lowerCamelCase_ : Tuple = {"""transformer.""" + k: v for k, v in text_enc_dict.items()} lowerCamelCase_ : Optional[Any] = convert_text_enc_state_dict_vaa(text_enc_dict) lowerCamelCase_ : Tuple = {"""cond_stage_model.model.""" + k: v for k, v in text_enc_dict.items()} else: lowerCamelCase_ : Tuple = convert_text_enc_state_dict(text_enc_dict) lowerCamelCase_ : List[Any] = {"""cond_stage_model.transformer.""" + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint lowerCamelCase_ : Optional[int] = {**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: lowerCamelCase_ : Optional[int] = {k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: lowerCamelCase_ : Union[str, Any] = {"""state_dict""": state_dict} torch.save(state_dict, args.checkpoint_path)
81
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
302
0
'''simple docstring''' import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets UpperCamelCase : Optional[int] = """\ @inproceedings{pillutla-etal:mauve:neurips2021, title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers}, author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid}, booktitle = {NeurIPS}, year = {2021} } """ UpperCamelCase : Optional[Any] = """\ MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure. MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences. For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021). This metrics is a wrapper around the official implementation of MAUVE: https://github.com/krishnap25/mauve """ UpperCamelCase : str = """ Calculates MAUVE scores between two lists of generated text and reference text. Args: predictions: list of generated text to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Optional Args: num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1 kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9 kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5 kmeans_max_iter: maximum number of k-means iterations. Default 500 featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl']. device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU max_text_length: maximum number of tokens to consider. Default 1024 divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25 mauve_scaling_factor: \"c\" from the paper. Default 5. verbose: If True (default), print running time updates seed: random seed to initialize k-means cluster assignments. Returns: mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer, frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer, divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve, p_hist: a discrete distribution, which is a quantized version of the text distribution p_text, q_hist: same as above, but with q_text. Examples: >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest >>> import datasets >>> mauve = datasets.load_metric('mauve') >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP >>> print(out.mauve) # doctest: +SKIP 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase ( datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/krishnap25/mauve' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence'), 'references': datasets.Value('string' , id='sequence'), }) , codebase_urls=['https://github.com/krishnap25/mauve'] , reference_urls=[ 'https://arxiv.org/abs/2102.01454', 'https://github.com/krishnap25/mauve', ] , ) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Tuple="auto" , UpperCAmelCase_ : Any=-1 , UpperCAmelCase_ : Optional[int]=0.9 , UpperCAmelCase_ : Union[str, Any]=5 , UpperCAmelCase_ : int=5_0_0 , UpperCAmelCase_ : int="gpt2-large" , UpperCAmelCase_ : Tuple=-1 , UpperCAmelCase_ : Dict=1_0_2_4 , UpperCAmelCase_ : List[str]=2_5 , UpperCAmelCase_ : int=5 , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : str=2_5 , ): """simple docstring""" a : List[str] = compute_mauve( p_text=UpperCAmelCase_ , q_text=UpperCAmelCase_ , p_features=UpperCAmelCase_ , q_features=UpperCAmelCase_ , p_tokens=UpperCAmelCase_ , q_tokens=UpperCAmelCase_ , num_buckets=UpperCAmelCase_ , pca_max_data=UpperCAmelCase_ , kmeans_explained_var=UpperCAmelCase_ , kmeans_num_redo=UpperCAmelCase_ , kmeans_max_iter=UpperCAmelCase_ , featurize_model_name=UpperCAmelCase_ , device_id=UpperCAmelCase_ , max_text_length=UpperCAmelCase_ , divergence_curve_discretization_size=UpperCAmelCase_ , mauve_scaling_factor=UpperCAmelCase_ , verbose=UpperCAmelCase_ , seed=UpperCAmelCase_ , ) return out
361
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCamelCase : List[str] = {"""processing_layoutxlm""": ["""LayoutXLMProcessor"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Any = ["""LayoutXLMTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Optional[int] = ["""LayoutXLMTokenizerFast"""] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys UpperCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
345
0
from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class __A ( lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = """EncodecFeatureExtractor""" lowerCAmelCase_ = ("""T5Tokenizer""", """T5TokenizerFast""") def __init__( self , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' super().__init__(__lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ = self.feature_extractor lowerCamelCase__ = False def __lowerCamelCase ( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=True ): '''simple docstring''' return self.tokenizer.get_decoder_prompt_ids(task=__lowerCAmelCase , language=__lowerCAmelCase , no_timestamps=__lowerCAmelCase ) def __call__( self , *__lowerCAmelCase , **__lowerCAmelCase ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*__lowerCAmelCase , **__lowerCAmelCase ) lowerCamelCase__ = kwargs.pop('''audio''' , __lowerCAmelCase ) lowerCamelCase__ = kwargs.pop('''sampling_rate''' , __lowerCAmelCase ) lowerCamelCase__ = kwargs.pop('''text''' , __lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: lowerCamelCase__ = args[0] lowerCamelCase__ = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if text is not None: lowerCamelCase__ = self.tokenizer(__lowerCAmelCase , **__lowerCAmelCase ) if audio is not None: lowerCamelCase__ = self.feature_extractor(__lowerCAmelCase , *__lowerCAmelCase , sampling_rate=__lowerCAmelCase , **__lowerCAmelCase ) if audio is None: return inputs elif text is None: return audio_inputs else: lowerCamelCase__ = audio_inputs['''input_values'''] if "padding_mask" in audio_inputs: lowerCamelCase__ = audio_inputs['''padding_mask'''] return inputs def __lowerCamelCase ( self , *__lowerCAmelCase , **__lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = kwargs.pop('''audio''' , __lowerCAmelCase ) lowerCamelCase__ = kwargs.pop('''padding_mask''' , __lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: lowerCamelCase__ = args[0] lowerCamelCase__ = args[1:] if audio_values is not None: return self._decode_audio(__lowerCAmelCase , padding_mask=__lowerCAmelCase ) else: return self.tokenizer.batch_decode(*__lowerCAmelCase , **__lowerCAmelCase ) def __lowerCamelCase ( self , *__lowerCAmelCase , **__lowerCAmelCase ): '''simple docstring''' return self.tokenizer.decode(*__lowerCAmelCase , **__lowerCAmelCase ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None ): '''simple docstring''' lowerCamelCase__ = to_numpy(__lowerCAmelCase ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = audio_values.shape if padding_mask is None: return list(__lowerCAmelCase ) lowerCamelCase__ = to_numpy(__lowerCAmelCase ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) lowerCamelCase__ = seq_len - padding_mask.shape[-1] lowerCamelCase__ = 1 - self.feature_extractor.padding_value lowerCamelCase__ = np.pad(__lowerCAmelCase , ((0, 0), (0, difference)) , '''constant''' , constant_values=__lowerCAmelCase ) lowerCamelCase__ = audio_values.tolist() for i in range(__lowerCAmelCase ): lowerCamelCase__ = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] lowerCamelCase__ = sliced_audio.reshape(__lowerCAmelCase , -1 ) return audio_values
209
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class __A : '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase=1_3 , __lowerCAmelCase=7 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=9_9 , __lowerCAmelCase=6_4 , __lowerCAmelCase=3_2 , __lowerCAmelCase=5 , __lowerCAmelCase=4 , __lowerCAmelCase=3_7 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=5_1_2 , __lowerCAmelCase=1_6 , __lowerCAmelCase=2 , __lowerCAmelCase=0.02 , __lowerCAmelCase=3 , __lowerCAmelCase=4 , __lowerCAmelCase=None , ): '''simple docstring''' lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = seq_length lowerCamelCase__ = is_training lowerCamelCase__ = use_input_mask lowerCamelCase__ = use_token_type_ids lowerCamelCase__ = use_labels lowerCamelCase__ = vocab_size lowerCamelCase__ = hidden_size lowerCamelCase__ = embedding_size lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = intermediate_size lowerCamelCase__ = hidden_act lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = max_position_embeddings lowerCamelCase__ = type_vocab_size lowerCamelCase__ = type_sequence_label_size lowerCamelCase__ = initializer_range lowerCamelCase__ = num_labels lowerCamelCase__ = num_choices lowerCamelCase__ = scope def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ = None if self.use_input_mask: lowerCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ = None if self.use_token_type_ids: lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None if self.use_labels: lowerCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase__ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCamelCase ( self ): '''simple docstring''' return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowerCAmelCase , initializer_range=self.initializer_range , ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = MegatronBertModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowerCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase ) lowerCamelCase__ = model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase ) lowerCamelCase__ = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = MegatronBertForMaskedLM(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowerCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = MegatronBertForCausalLM(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowerCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = MegatronBertForNextSentencePrediction(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowerCamelCase__ = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = MegatronBertForPreTraining(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowerCamelCase__ = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase , next_sentence_label=__lowerCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = MegatronBertForQuestionAnswering(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowerCamelCase__ = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , start_positions=__lowerCAmelCase , end_positions=__lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = self.num_labels lowerCamelCase__ = MegatronBertForSequenceClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowerCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = self.num_labels lowerCamelCase__ = MegatronBertForTokenClassification(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowerCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = self.num_choices lowerCamelCase__ = MegatronBertForMultipleChoice(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowerCamelCase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase__ = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) = config_and_inputs lowerCamelCase__ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __A ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) lowerCAmelCase_ = ( { """feature-extraction""": MegatronBertModel, """fill-mask""": MegatronBertForMaskedLM, """question-answering""": MegatronBertForQuestionAnswering, """text-classification""": MegatronBertForSequenceClassification, """text-generation""": MegatronBertForCausalLM, """token-classification""": MegatronBertForTokenClassification, """zero-shot""": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase_ = True # test_resize_embeddings = False lowerCAmelCase_ = False def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ): '''simple docstring''' lowerCamelCase__ = super()._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) if return_labels: if model_class in get_values(__lowerCAmelCase ): lowerCamelCase__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__lowerCAmelCase ) lowerCamelCase__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCAmelCase ) return inputs_dict def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = MegatronBertModelTester(self ) lowerCamelCase__ = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=3_7 ) def __lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*__lowerCAmelCase ) def lowerCAmelCase__(__snake_case ) -> List[str]: '''simple docstring''' return torch.tensor( __snake_case ,dtype=torch.long ,device=__snake_case ,) _a = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class __A ( unittest.TestCase ): '''simple docstring''' @slow @unittest.skip('''Model is not available.''' ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = '''nvidia/megatron-bert-uncased-345m''' if "MYDIR" in os.environ: lowerCamelCase__ = os.path.join(os.environ['''MYDIR'''] , __lowerCAmelCase ) lowerCamelCase__ = MegatronBertModel.from_pretrained(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.half() lowerCamelCase__ = _long_tensor([[1_0_1, 7_1_1_0, 1_0_0_5, 1_0_5_6, 2_0_2_3, 1_1_3_3_3, 1_7_4_1_3, 1_0_2_9, 1_0_2]] ) with torch.no_grad(): lowerCamelCase__ = model(__lowerCAmelCase )[0] lowerCamelCase__ = torch.Size((1, 9, 1_0_2_4) ) self.assertEqual(output.shape , __lowerCAmelCase ) lowerCamelCase__ = [-0.6040, -0.2517, -0.1025, 0.3420, -0.6758, -0.0017, -0.1089, -0.1990, 0.5728] for ii in range(3 ): for jj in range(3 ): lowerCamelCase__ = output[0, ii, jj] lowerCamelCase__ = expected[3 * ii + jj] lowerCamelCase__ = '''ii={} jj={} a={} b={}'''.format(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) self.assertTrue(math.isclose(__lowerCAmelCase , __lowerCAmelCase , rel_tol=__lowerCAmelCase , abs_tol=__lowerCAmelCase ) , msg=__lowerCAmelCase )
209
1
import copy import random from transformers import CLIPTokenizer class __lowerCAmelCase ( lowerCAmelCase): def __init__( self: str , *_lowerCAmelCase: int , **_lowerCAmelCase: Any ): super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) lowercase :Dict = {} def SCREAMING_SNAKE_CASE ( self: List[Any] , _lowerCAmelCase: int , *_lowerCAmelCase: str , **_lowerCAmelCase: Union[str, Any] ): lowercase :Union[str, Any] = super().add_tokens(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ) if num_added_tokens == 0: raise ValueError( F"The tokenizer already contains the token {placeholder_token}. Please pass a different" " `placeholder_token` that is not already in the tokenizer." ) def SCREAMING_SNAKE_CASE ( self: int , _lowerCAmelCase: Union[str, Any] , *_lowerCAmelCase: List[str] , _lowerCAmelCase: List[Any]=1 , **_lowerCAmelCase: Dict ): lowercase :Optional[int] = [] if num_vec_per_token == 1: self.try_adding_tokens(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ) output.append(_lowerCAmelCase ) else: lowercase :Dict = [] for i in range(_lowerCAmelCase ): lowercase :Tuple = placeholder_token + F"_{i}" self.try_adding_tokens(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ) output.append(_lowerCAmelCase ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( F"The tokenizer already has placeholder token {token} that can get confused with" F" {placeholder_token}keep placeholder tokens independent" ) lowercase :str = output def SCREAMING_SNAKE_CASE ( self: Optional[Any] , _lowerCAmelCase: str , _lowerCAmelCase: List[Any]=False , _lowerCAmelCase: List[Any]=1.0 ): if isinstance(_lowerCAmelCase , _lowerCAmelCase ): lowercase :str = [] for i in range(len(_lowerCAmelCase ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=_lowerCAmelCase ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: lowercase :Dict = self.token_map[placeholder_token] lowercase :Union[str, Any] = tokens[: 1 + int(len(_lowerCAmelCase ) * prop_tokens_to_load )] if vector_shuffle: lowercase :Optional[Any] = copy.copy(_lowerCAmelCase ) random.shuffle(_lowerCAmelCase ) lowercase :Dict = text.replace(_lowerCAmelCase , " ".join(_lowerCAmelCase ) ) return text def __call__( self: int , _lowerCAmelCase: int , *_lowerCAmelCase: Tuple , _lowerCAmelCase: int=False , _lowerCAmelCase: List[str]=1.0 , **_lowerCAmelCase: List[Any] ): return super().__call__( self.replace_placeholder_tokens_in_text( _lowerCAmelCase , vector_shuffle=_lowerCAmelCase , prop_tokens_to_load=_lowerCAmelCase ) , *_lowerCAmelCase , **_lowerCAmelCase , ) def SCREAMING_SNAKE_CASE ( self: int , _lowerCAmelCase: Optional[Any] , *_lowerCAmelCase: Optional[Any] , _lowerCAmelCase: Optional[Any]=False , _lowerCAmelCase: List[Any]=1.0 , **_lowerCAmelCase: Optional[int] ): return super().encode( self.replace_placeholder_tokens_in_text( _lowerCAmelCase , vector_shuffle=_lowerCAmelCase , prop_tokens_to_load=_lowerCAmelCase ) , *_lowerCAmelCase , **_lowerCAmelCase , )
158
from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
158
1
"""simple docstring""" import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class snake_case : """simple docstring""" def __init__( self : Union[str, Any] ,lowerCamelCase__ : str ,lowerCamelCase__ : Union[str, Any]=13 ,lowerCamelCase__ : int=10 ,lowerCamelCase__ : Optional[Any]=3 ,lowerCamelCase__ : Optional[int]=2 ,lowerCamelCase__ : Any=2 ,lowerCamelCase__ : List[Any]=2 ,lowerCamelCase__ : List[Any]=True ,lowerCamelCase__ : str=True ,lowerCamelCase__ : Optional[int]=32 ,lowerCamelCase__ : List[str]=5 ,lowerCamelCase__ : Dict=4 ,lowerCamelCase__ : Union[str, Any]=37 ,lowerCamelCase__ : List[Any]="gelu" ,lowerCamelCase__ : int=0.1 ,lowerCamelCase__ : Optional[int]=0.1 ,lowerCamelCase__ : Tuple=10 ,lowerCamelCase__ : Dict=0.0_2 ,lowerCamelCase__ : List[str]=0.9 ,lowerCamelCase__ : Dict=None ,): UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = image_size UpperCAmelCase__ = num_channels UpperCAmelCase__ = patch_size UpperCAmelCase__ = tubelet_size UpperCAmelCase__ = num_frames UpperCAmelCase__ = is_training UpperCAmelCase__ = use_labels UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = type_sequence_label_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = mask_ratio UpperCAmelCase__ = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame UpperCAmelCase__ = (image_size // patch_size) ** 2 UpperCAmelCase__ = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos UpperCAmelCase__ = int(mask_ratio * self.seq_length ) def __lowerCAmelCase ( self : List[str] ): UpperCAmelCase__ = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase__ = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self : Optional[int] ): return VideoMAEConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,num_frames=self.num_frames ,tubelet_size=self.tubelet_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=lowerCamelCase__ ,initializer_range=self.initializer_range ,) def __lowerCAmelCase ( self : Optional[Any] ,lowerCamelCase__ : int ,lowerCamelCase__ : Any ,lowerCamelCase__ : List[Any] ): UpperCAmelCase__ = VideoMAEModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCAmelCase__ = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self : int ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : List[Any] ): UpperCAmelCase__ = VideoMAEForPreTraining(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch UpperCAmelCase__ = torch.ones((self.num_masks,) ) UpperCAmelCase__ = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) UpperCAmelCase__ = mask.expand(self.batch_size ,-1 ).bool() UpperCAmelCase__ = model(lowerCamelCase__ ,lowerCamelCase__ ) # model only returns predictions for masked patches UpperCAmelCase__ = mask.sum().item() UpperCAmelCase__ = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_masked_patches, decoder_num_labels) ) def __lowerCAmelCase ( self : int ): UpperCAmelCase__ = self.prepare_config_and_inputs() UpperCAmelCase__ = config_and_inputs UpperCAmelCase__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class snake_case ( _lowercase , _lowercase , unittest.TestCase ): """simple docstring""" snake_case__ = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) snake_case__ = ( {"feature-extraction": VideoMAEModel, "video-classification": VideoMAEForVideoClassification} if is_torch_available() else {} ) snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = False def __lowerCAmelCase ( self : Dict ): UpperCAmelCase__ = VideoMAEModelTester(self ) UpperCAmelCase__ = ConfigTester(self ,config_class=lowerCamelCase__ ,has_text_modality=lowerCamelCase__ ,hidden_size=37 ) def __lowerCAmelCase ( self : List[str] ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : int=False ): UpperCAmelCase__ = copy.deepcopy(lowerCamelCase__ ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch UpperCAmelCase__ = torch.ones((self.model_tester.num_masks,) ) UpperCAmelCase__ = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) UpperCAmelCase__ = mask.expand(self.model_tester.batch_size ,-1 ).bool() UpperCAmelCase__ = bool_masked_pos.to(lowerCamelCase__ ) if return_labels: if model_class in [ *get_values(lowerCamelCase__ ), ]: UpperCAmelCase__ = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=lowerCamelCase__ ) return inputs_dict def __lowerCAmelCase ( self : Dict ): self.config_tester.run_common_tests() @unittest.skip(reason='VideoMAE does not use inputs_embeds' ) def __lowerCAmelCase ( self : str ): pass def __lowerCAmelCase ( self : int ): UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(lowerCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) UpperCAmelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase__ ,nn.Linear ) ) def __lowerCAmelCase ( self : List[str] ): UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(lowerCamelCase__ ) UpperCAmelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ = [*signature.parameters.keys()] UpperCAmelCase__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,lowerCamelCase__ ) def __lowerCAmelCase ( self : Dict ): UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def __lowerCAmelCase ( self : Union[str, Any] ): UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCamelCase__ ) @slow def __lowerCAmelCase ( self : List[str] ): for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ = VideoMAEModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def __lowerCAmelCase ( self : Optional[int] ): if not self.has_attentions: pass else: UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = True for model_class in self.all_model_classes: UpperCAmelCase__ = self.model_tester.seq_length - self.model_tester.num_masks UpperCAmelCase__ = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = True UpperCAmelCase__ = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(lowerCamelCase__ ,lowerCamelCase__ ) ) UpperCAmelCase__ = outputs.attentions self.assertEqual(len(lowerCamelCase__ ) ,self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCAmelCase__ = True UpperCAmelCase__ = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(lowerCamelCase__ ,lowerCamelCase__ ) ) UpperCAmelCase__ = outputs.attentions self.assertEqual(len(lowerCamelCase__ ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, seq_len, seq_len] ,) UpperCAmelCase__ = len(lowerCamelCase__ ) # Check attention is always last and order is fine UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(lowerCamelCase__ ,lowerCamelCase__ ) ) self.assertEqual(out_len + 1 ,len(lowerCamelCase__ ) ) UpperCAmelCase__ = outputs.attentions self.assertEqual(len(lowerCamelCase__ ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, seq_len, seq_len] ,) def __lowerCAmelCase ( self : Tuple ): def check_hidden_states_output(lowerCamelCase__ : Dict ,lowerCamelCase__ : Dict ,lowerCamelCase__ : List[Any] ): UpperCAmelCase__ = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(lowerCamelCase__ ,lowerCamelCase__ ) ) UpperCAmelCase__ = outputs.hidden_states UpperCAmelCase__ = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowerCamelCase__ ) ,lowerCamelCase__ ) UpperCAmelCase__ = self.model_tester.seq_length - self.model_tester.num_masks UpperCAmelCase__ = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[seq_length, self.model_tester.hidden_size] ,) UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = True check_hidden_states_output(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ = True check_hidden_states_output(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __lowerCAmelCase ( self : Optional[int] ): pass def a_ ( ): UpperCAmelCase__ = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' ) UpperCAmelCase__ = np.load(_lowercase ) return list(_lowercase ) @require_torch @require_vision class snake_case ( unittest.TestCase ): """simple docstring""" @cached_property def __lowerCAmelCase ( self : int ): # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] ,image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def __lowerCAmelCase ( self : int ): UpperCAmelCase__ = VideoMAEForVideoClassification.from_pretrained('MCG-NJU/videomae-base-finetuned-kinetics' ).to( lowerCamelCase__ ) UpperCAmelCase__ = self.default_image_processor UpperCAmelCase__ = prepare_video() UpperCAmelCase__ = image_processor(lowerCamelCase__ ,return_tensors='pt' ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): UpperCAmelCase__ = model(**lowerCamelCase__ ) # verify the logits UpperCAmelCase__ = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape ,lowerCamelCase__ ) UpperCAmelCase__ = torch.tensor([0.3_6_6_9, -0.0_6_8_8, -0.2_4_2_1] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,lowerCamelCase__ ,atol=1e-4 ) ) @slow def __lowerCAmelCase ( self : int ): UpperCAmelCase__ = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' ).to(lowerCamelCase__ ) UpperCAmelCase__ = self.default_image_processor UpperCAmelCase__ = prepare_video() UpperCAmelCase__ = image_processor(lowerCamelCase__ ,return_tensors='pt' ).to(lowerCamelCase__ ) # add boolean mask, indicating which patches to mask UpperCAmelCase__ = hf_hub_download(repo_id='hf-internal-testing/bool-masked-pos' ,filename='bool_masked_pos.pt' ) UpperCAmelCase__ = torch.load(lowerCamelCase__ ) # forward pass with torch.no_grad(): UpperCAmelCase__ = model(**lowerCamelCase__ ) # verify the logits UpperCAmelCase__ = torch.Size([1, 1_408, 1_536] ) UpperCAmelCase__ = torch.tensor( [[0.7_9_9_4, 0.9_6_1_2, 0.8_5_0_8], [0.7_4_0_1, 0.8_9_5_8, 0.8_3_0_2], [0.5_8_6_2, 0.7_4_6_8, 0.7_3_2_5]] ,device=lowerCamelCase__ ) self.assertEqual(outputs.logits.shape ,lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] ,lowerCamelCase__ ,atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) UpperCAmelCase__ = torch.tensor([0.5_1_4_2] ,device=lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.loss ,lowerCamelCase__ ,atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) UpperCAmelCase__ = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' ,norm_pix_loss=lowerCamelCase__ ).to( lowerCamelCase__ ) with torch.no_grad(): UpperCAmelCase__ = model(**lowerCamelCase__ ) UpperCAmelCase__ = torch.tensor(torch.tensor([0.6_4_6_9] ) ,device=lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.loss ,lowerCamelCase__ ,atol=1e-4 ) )
98
'''simple docstring''' import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor __lowercase : Dict = logging.get_logger(__name__) class __lowercase ( _lowercase ): def __init__(self , *A , **A ): warnings.warn( '''The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use OwlViTImageProcessor instead.''' , A , ) super().__init__(*A , **A )
318
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _snake_case = logging.get_logger(__name__) _snake_case = { """microsoft/swin-tiny-patch4-window7-224""": ( """https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json""" ), # See all Swin models at https://huggingface.co/models?filter=swin } class lowerCAmelCase ( __a , __a ): __lowerCamelCase = 'swin' __lowerCamelCase = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self :List[str] , _lowercase :Any=2_24 , _lowercase :str=4 , _lowercase :Tuple=3 , _lowercase :List[str]=96 , _lowercase :List[str]=[2, 2, 6, 2] , _lowercase :Optional[int]=[3, 6, 12, 24] , _lowercase :Dict=7 , _lowercase :Optional[int]=4.0 , _lowercase :Any=True , _lowercase :Union[str, Any]=0.0 , _lowercase :str=0.0 , _lowercase :List[str]=0.1 , _lowercase :List[Any]="gelu" , _lowercase :str=False , _lowercase :List[Any]=0.02 , _lowercase :Dict=1e-5 , _lowercase :Tuple=32 , _lowercase :str=None , _lowercase :List[str]=None , **_lowercase :Any , ): '''simple docstring''' super().__init__(**UpperCamelCase__ ) lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = embed_dim lowercase__ = depths lowercase__ = len(UpperCamelCase__ ) lowercase__ = num_heads lowercase__ = window_size lowercase__ = mlp_ratio lowercase__ = qkv_bias lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = drop_path_rate lowercase__ = hidden_act lowercase__ = use_absolute_embeddings lowercase__ = layer_norm_eps lowercase__ = initializer_range lowercase__ = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowercase__ = int(embed_dim * 2 ** (len(UpperCamelCase__ ) - 1) ) lowercase__ = ["stem"] + [f'''stage{idx}''' for idx in range(1 , len(UpperCamelCase__ ) + 1 )] lowercase__ , lowercase__ = get_aligned_output_features_output_indices( out_features=UpperCamelCase__ , out_indices=UpperCamelCase__ , stage_names=self.stage_names ) class lowerCAmelCase ( __a ): __lowerCamelCase = version.parse('1.11' ) @property def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def UpperCAmelCase ( self :List[str] ): '''simple docstring''' return 1e-4
369
from __future__ import annotations from collections import deque class lowerCAmelCase : def __init__( self :List[Any] , _lowercase :list[str] ): '''simple docstring''' lowercase__ = [] self.adlist.append( {"value": "", "next_states": [], "fail_state": 0, "output": []} ) for keyword in keywords: self.add_keyword(_lowercase ) self.set_fail_transitions() def UpperCAmelCase ( self :str , _lowercase :int , _lowercase :str ): '''simple docstring''' for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def UpperCAmelCase ( self :List[str] , _lowercase :str ): '''simple docstring''' lowercase__ = 0 for character in keyword: lowercase__ = self.find_next_state(_lowercase , _lowercase ) if next_state is None: self.adlist.append( { "value": character, "next_states": [], "fail_state": 0, "output": [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) lowercase__ = len(self.adlist ) - 1 else: lowercase__ = next_state self.adlist[current_state]["output"].append(_lowercase ) def UpperCAmelCase ( self :int ): '''simple docstring''' lowercase__ = deque() for node in self.adlist[0]["next_states"]: q.append(_lowercase ) lowercase__ = 0 while q: lowercase__ = q.popleft() for child in self.adlist[r]["next_states"]: q.append(_lowercase ) lowercase__ = self.adlist[r]["fail_state"] while ( self.find_next_state(_lowercase , self.adlist[child]["value"] ) is None and state != 0 ): lowercase__ = self.adlist[state]["fail_state"] lowercase__ = self.find_next_state( _lowercase , self.adlist[child]["value"] ) if self.adlist[child]["fail_state"] is None: lowercase__ = 0 lowercase__ = ( self.adlist[child]["output"] + self.adlist[self.adlist[child]["fail_state"]]["output"] ) def UpperCAmelCase ( self :Optional[Any] , _lowercase :str ): '''simple docstring''' lowercase__ = {} # returns a dict with keywords and list of its occurrences lowercase__ = 0 for i in range(len(_lowercase ) ): while ( self.find_next_state(_lowercase , string[i] ) is None and current_state != 0 ): lowercase__ = self.adlist[current_state]["fail_state"] lowercase__ = self.find_next_state(_lowercase , string[i] ) if next_state is None: lowercase__ = 0 else: lowercase__ = next_state for key in self.adlist[current_state]["output"]: if key not in result: lowercase__ = [] result[key].append(i - len(_lowercase ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
201
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer lowercase : List[str] = logging.get_logger(__name__) lowercase : Optional[int] = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowercase : Dict = { """vocab_file""": {"""mobilebert-uncased""": """https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt"""}, """tokenizer_file""": { """mobilebert-uncased""": """https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json""" }, } lowercase : Dict = {"""mobilebert-uncased""": 512} lowercase : int = {} class __snake_case ( lowerCAmelCase ): _a : Optional[Any]= VOCAB_FILES_NAMES _a : Tuple= PRETRAINED_VOCAB_FILES_MAP _a : List[Any]= PRETRAINED_INIT_CONFIGURATION _a : Dict= PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a : int= MobileBertTokenizer def __init__( self ,snake_case=None ,snake_case=None ,snake_case=True ,snake_case="[UNK]" ,snake_case="[SEP]" ,snake_case="[PAD]" ,snake_case="[CLS]" ,snake_case="[MASK]" ,snake_case=True ,snake_case=None ,**snake_case ,): '''simple docstring''' super().__init__( snake_case ,tokenizer_file=snake_case ,do_lower_case=snake_case ,unk_token=snake_case ,sep_token=snake_case ,pad_token=snake_case ,cls_token=snake_case ,mask_token=snake_case ,tokenize_chinese_chars=snake_case ,strip_accents=snake_case ,**snake_case ,) lowercase : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" ,snake_case ) != do_lower_case or normalizer_state.get("""strip_accents""" ,snake_case ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" ,snake_case ) != tokenize_chinese_chars ): lowercase : List[Any] = getattr(snake_case ,normalizer_state.pop("""type""" ) ) lowercase : int = do_lower_case lowercase : int = strip_accents lowercase : int = tokenize_chinese_chars lowercase : int = normalizer_class(**snake_case ) lowercase : Any = do_lower_case def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=None ): '''simple docstring''' lowercase : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = None ): '''simple docstring''' lowercase : List[Any] = [self.sep_token_id] lowercase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = None ): '''simple docstring''' lowercase : Dict = self._tokenizer.model.save(snake_case ,name=snake_case ) return tuple(snake_case )
20
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=0.999 , SCREAMING_SNAKE_CASE__="cosine" , ) -> List[Any]: if alpha_transform_type == "cosine": def alpha_bar_fn(SCREAMING_SNAKE_CASE__ ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(SCREAMING_SNAKE_CASE__ ): return math.exp(t * -12.0 ) else: raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}" ) lowercase : int = [] for i in range(SCREAMING_SNAKE_CASE__ ): lowercase : Dict = i / num_diffusion_timesteps lowercase : Optional[int] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(SCREAMING_SNAKE_CASE__ ) / alpha_bar_fn(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) ) return torch.tensor(SCREAMING_SNAKE_CASE__ , dtype=torch.floataa ) class __snake_case ( lowerCAmelCase , lowerCAmelCase ): _a : Tuple= [e.name for e in KarrasDiffusionSchedulers] _a : int= 2 @register_to_config def __init__( self ,snake_case = 1000 ,snake_case = 0.00_085 ,snake_case = 0.012 ,snake_case = "linear" ,snake_case = None ,snake_case = "epsilon" ,snake_case = False ,snake_case = False ,snake_case = 1.0 ,snake_case = "linspace" ,snake_case = 0 ,): '''simple docstring''' if trained_betas is not None: lowercase : List[str] = torch.tensor(snake_case ,dtype=torch.floataa ) elif beta_schedule == "linear": lowercase : Optional[Any] = torch.linspace(snake_case ,snake_case ,snake_case ,dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowercase : int = ( torch.linspace(beta_start**0.5 ,beta_end**0.5 ,snake_case ,dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowercase : Union[str, Any] = betas_for_alpha_bar(snake_case ,alpha_transform_type="""cosine""" ) elif beta_schedule == "exp": lowercase : int = betas_for_alpha_bar(snake_case ,alpha_transform_type="""exp""" ) else: raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}" ) lowercase : Any = 1.0 - self.betas lowercase : Dict = torch.cumprod(self.alphas ,dim=0 ) # set all values self.set_timesteps(snake_case ,snake_case ,snake_case ) lowercase : Tuple = use_karras_sigmas def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=None ): '''simple docstring''' if schedule_timesteps is None: lowercase : Union[str, Any] = self.timesteps lowercase : Dict = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: lowercase : Dict = 1 if len(snake_case ) > 1 else 0 else: lowercase : Union[str, Any] = timestep.cpu().item() if torch.is_tensor(snake_case ) else timestep lowercase : str = self._index_counter[timestep_int] return indices[pos].item() @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Optional[Any] = self.index_for_timestep(snake_case ) lowercase : Dict = self.sigmas[step_index] lowercase : List[str] = sample / ((sigma**2 + 1) ** 0.5) return sample def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = None ,snake_case = None ,): '''simple docstring''' lowercase : Any = num_inference_steps lowercase : List[Any] = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": lowercase : Optional[int] = np.linspace(0 ,num_train_timesteps - 1 ,snake_case ,dtype=snake_case )[::-1].copy() elif self.config.timestep_spacing == "leading": lowercase : int = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowercase : List[str] = (np.arange(0 ,snake_case ) * step_ratio).round()[::-1].copy().astype(snake_case ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": lowercase : List[str] = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowercase : Optional[int] = (np.arange(snake_case ,0 ,-step_ratio )).round().copy().astype(snake_case ) timesteps -= 1 else: raise ValueError( f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'." ) lowercase : Optional[int] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) lowercase : Dict = np.log(snake_case ) lowercase : Union[str, Any] = np.interp(snake_case ,np.arange(0 ,len(snake_case ) ) ,snake_case ) if self.config.use_karras_sigmas: lowercase : List[Any] = self._convert_to_karras(in_sigmas=snake_case ,num_inference_steps=self.num_inference_steps ) lowercase : Tuple = np.array([self._sigma_to_t(snake_case ,snake_case ) for sigma in sigmas] ) lowercase : Any = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) lowercase : List[Any] = torch.from_numpy(snake_case ).to(device=snake_case ) lowercase : List[Any] = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) lowercase : Dict = torch.from_numpy(snake_case ) lowercase : List[Any] = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(snake_case ).startswith("""mps""" ): # mps does not support float64 lowercase : Any = timesteps.to(snake_case ,dtype=torch.floataa ) else: lowercase : str = timesteps.to(device=snake_case ) # empty dt and derivative lowercase : Union[str, Any] = None lowercase : Any = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter lowercase : str = defaultdict(snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : Optional[int] = np.log(snake_case ) # get distribution lowercase : Union[str, Any] = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range lowercase : Optional[int] = np.cumsum((dists >= 0) ,axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) lowercase : Any = low_idx + 1 lowercase : str = log_sigmas[low_idx] lowercase : Dict = log_sigmas[high_idx] # interpolate sigmas lowercase : int = (low - log_sigma) / (low - high) lowercase : Dict = np.clip(snake_case ,0 ,1 ) # transform interpolation to time range lowercase : Optional[Any] = (1 - w) * low_idx + w * high_idx lowercase : Tuple = t.reshape(sigma.shape ) return t def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : float = in_sigmas[-1].item() lowercase : float = in_sigmas[0].item() lowercase : Dict = 7.0 # 7.0 is the value used in the paper lowercase : Optional[int] = np.linspace(0 ,1 ,snake_case ) lowercase : int = sigma_min ** (1 / rho) lowercase : Any = sigma_max ** (1 / rho) lowercase : Tuple = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self.dt is None def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case = True ,): '''simple docstring''' lowercase : Union[str, Any] = self.index_for_timestep(snake_case ) # advance index counter by 1 lowercase : Optional[int] = timestep.cpu().item() if torch.is_tensor(snake_case ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: lowercase : str = self.sigmas[step_index] lowercase : Optional[int] = self.sigmas[step_index + 1] else: # 2nd order / Heun's method lowercase : Dict = self.sigmas[step_index - 1] lowercase : Optional[Any] = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API lowercase : Union[str, Any] = 0 lowercase : Any = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": lowercase : Any = sigma_hat if self.state_in_first_order else sigma_next lowercase : int = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": lowercase : Union[str, Any] = sigma_hat if self.state_in_first_order else sigma_next lowercase : Optional[Any] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": lowercase : Optional[Any] = model_output else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" ) if self.config.clip_sample: lowercase : str = pred_original_sample.clamp( -self.config.clip_sample_range ,self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order lowercase : Optional[int] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep lowercase : Union[str, Any] = sigma_next - sigma_hat # store for 2nd order step lowercase : Optional[int] = derivative lowercase : Union[str, Any] = dt lowercase : Union[str, Any] = sample else: # 2. 2nd order / Heun's method lowercase : Tuple = (sample - pred_original_sample) / sigma_next lowercase : Dict = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample lowercase : Tuple = self.dt lowercase : Optional[Any] = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" lowercase : List[str] = None lowercase : Tuple = None lowercase : Dict = None lowercase : List[Any] = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Optional[int] = self.sigmas.to(device=original_samples.device ,dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(snake_case ): # mps does not support float64 lowercase : List[Any] = self.timesteps.to(original_samples.device ,dtype=torch.floataa ) lowercase : List[str] = timesteps.to(original_samples.device ,dtype=torch.floataa ) else: lowercase : List[str] = self.timesteps.to(original_samples.device ) lowercase : Tuple = timesteps.to(original_samples.device ) lowercase : Any = [self.index_for_timestep(snake_case ,snake_case ) for t in timesteps] lowercase : int = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): lowercase : Any = sigma.unsqueeze(-1 ) lowercase : Optional[int] = original_samples + noise * sigma return noisy_samples def __len__( self ): '''simple docstring''' return self.config.num_train_timesteps
20
1
# Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union UpperCamelCase = re.compile(R'^(?P<major>\d+)' R'\.(?P<minor>\d+)' R'\.(?P<patch>\d+)$') @total_ordering @dataclass class __lowerCamelCase : """simple docstring""" snake_case__ = 42 snake_case__ = None snake_case__ = None snake_case__ = None snake_case__ = None def a ( self : Dict ) -> str: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = _str_to_version_tuple(self.version_str ) def __repr__( self : List[str] ) -> Tuple: return f'{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}' @property def a ( self : int ) -> Dict: return self.major, self.minor, self.patch def a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Any ) -> str: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return Version(SCREAMING_SNAKE_CASE__ ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return other raise TypeError(f'{other} (type {type(SCREAMING_SNAKE_CASE__ )}) cannot be compared to version.' ) def __eq__( self : List[str] , SCREAMING_SNAKE_CASE__ : Dict ) -> Any: try: lowerCAmelCase__ = self._validate_operand(SCREAMING_SNAKE_CASE__ ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self : Any , SCREAMING_SNAKE_CASE__ : str ) -> Any: lowerCAmelCase__ = self._validate_operand(SCREAMING_SNAKE_CASE__ ) return self.tuple < other.tuple def __hash__( self : List[str] ) -> Dict: return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def a ( cls : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any ) -> List[Any]: lowerCAmelCase__ = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def a ( self : Union[str, Any] ) -> str: return self.version_str def _A ( lowerCAmelCase_ : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = _VERSION_REG.match(lowerCAmelCase_ ) if not res: raise ValueError(F'Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.' ) return tuple(int(lowerCAmelCase_ ) for v in [res.group("major" ), res.group("minor" ), res.group("patch" )] ) def _A ( lowerCAmelCase_ : int ): """simple docstring""" return ".".join(str(lowerCAmelCase_ ) for v in version_tuple )
221
from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" snake_case__ = 42 class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Any=3 , SCREAMING_SNAKE_CASE__ : int=3 , SCREAMING_SNAKE_CASE__ : List[str]=("DownEncoderBlock2D",) , SCREAMING_SNAKE_CASE__ : Tuple=(64,) , SCREAMING_SNAKE_CASE__ : str=2 , SCREAMING_SNAKE_CASE__ : List[Any]=32 , SCREAMING_SNAKE_CASE__ : List[str]="silu" , SCREAMING_SNAKE_CASE__ : Optional[int]=True , ) -> str: super().__init__() lowerCAmelCase__ = layers_per_block lowerCAmelCase__ = torch.nn.Convad( SCREAMING_SNAKE_CASE__ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) lowerCAmelCase__ = None lowerCAmelCase__ = nn.ModuleList([] ) # down lowerCAmelCase__ = block_out_channels[0] for i, down_block_type in enumerate(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase__ = output_channel lowerCAmelCase__ = block_out_channels[i] lowerCAmelCase__ = i == len(SCREAMING_SNAKE_CASE__ ) - 1 lowerCAmelCase__ = get_down_block( SCREAMING_SNAKE_CASE__ , num_layers=self.layers_per_block , in_channels=SCREAMING_SNAKE_CASE__ , out_channels=SCREAMING_SNAKE_CASE__ , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=SCREAMING_SNAKE_CASE__ , resnet_groups=SCREAMING_SNAKE_CASE__ , attention_head_dim=SCREAMING_SNAKE_CASE__ , temb_channels=SCREAMING_SNAKE_CASE__ , ) self.down_blocks.append(SCREAMING_SNAKE_CASE__ ) # mid lowerCAmelCase__ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=SCREAMING_SNAKE_CASE__ , output_scale_factor=1 , resnet_time_scale_shift="default" , attention_head_dim=block_out_channels[-1] , resnet_groups=SCREAMING_SNAKE_CASE__ , temb_channels=SCREAMING_SNAKE_CASE__ , ) # out lowerCAmelCase__ = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=SCREAMING_SNAKE_CASE__ , eps=1e-6 ) lowerCAmelCase__ = nn.SiLU() lowerCAmelCase__ = 2 * out_channels if double_z else out_channels lowerCAmelCase__ = nn.Convad(block_out_channels[-1] , SCREAMING_SNAKE_CASE__ , 3 , padding=1 ) lowerCAmelCase__ = False def a ( self : Tuple , SCREAMING_SNAKE_CASE__ : Dict ) -> int: lowerCAmelCase__ = x lowerCAmelCase__ = self.conv_in(SCREAMING_SNAKE_CASE__ ) if self.training and self.gradient_checkpointing: def create_custom_forward(SCREAMING_SNAKE_CASE__ : Optional[int] ): def custom_forward(*SCREAMING_SNAKE_CASE__ : Dict ): return module(*SCREAMING_SNAKE_CASE__ ) return custom_forward # down if is_torch_version(">=" , "1.11.0" ): for down_block in self.down_blocks: lowerCAmelCase__ = torch.utils.checkpoint.checkpoint( create_custom_forward(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ , use_reentrant=SCREAMING_SNAKE_CASE__ ) # middle lowerCAmelCase__ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , SCREAMING_SNAKE_CASE__ , use_reentrant=SCREAMING_SNAKE_CASE__ ) else: for down_block in self.down_blocks: lowerCAmelCase__ = torch.utils.checkpoint.checkpoint(create_custom_forward(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) # middle lowerCAmelCase__ = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , SCREAMING_SNAKE_CASE__ ) else: # down for down_block in self.down_blocks: lowerCAmelCase__ = down_block(SCREAMING_SNAKE_CASE__ ) # middle lowerCAmelCase__ = self.mid_block(SCREAMING_SNAKE_CASE__ ) # post-process lowerCAmelCase__ = self.conv_norm_out(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.conv_act(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.conv_out(SCREAMING_SNAKE_CASE__ ) return sample class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self : Any , SCREAMING_SNAKE_CASE__ : str=3 , SCREAMING_SNAKE_CASE__ : Dict=3 , SCREAMING_SNAKE_CASE__ : int=("UpDecoderBlock2D",) , SCREAMING_SNAKE_CASE__ : Tuple=(64,) , SCREAMING_SNAKE_CASE__ : Tuple=2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=32 , SCREAMING_SNAKE_CASE__ : List[str]="silu" , SCREAMING_SNAKE_CASE__ : List[str]="group" , ) -> Union[str, Any]: super().__init__() lowerCAmelCase__ = layers_per_block lowerCAmelCase__ = nn.Convad( SCREAMING_SNAKE_CASE__ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) lowerCAmelCase__ = None lowerCAmelCase__ = nn.ModuleList([] ) lowerCAmelCase__ = in_channels if norm_type == "spatial" else None # mid lowerCAmelCase__ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=SCREAMING_SNAKE_CASE__ , output_scale_factor=1 , resnet_time_scale_shift="default" if norm_type == "group" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=SCREAMING_SNAKE_CASE__ , temb_channels=SCREAMING_SNAKE_CASE__ , ) # up lowerCAmelCase__ = list(reversed(SCREAMING_SNAKE_CASE__ ) ) lowerCAmelCase__ = reversed_block_out_channels[0] for i, up_block_type in enumerate(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase__ = output_channel lowerCAmelCase__ = reversed_block_out_channels[i] lowerCAmelCase__ = i == len(SCREAMING_SNAKE_CASE__ ) - 1 lowerCAmelCase__ = get_up_block( SCREAMING_SNAKE_CASE__ , num_layers=self.layers_per_block + 1 , in_channels=SCREAMING_SNAKE_CASE__ , out_channels=SCREAMING_SNAKE_CASE__ , prev_output_channel=SCREAMING_SNAKE_CASE__ , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=SCREAMING_SNAKE_CASE__ , resnet_groups=SCREAMING_SNAKE_CASE__ , attention_head_dim=SCREAMING_SNAKE_CASE__ , temb_channels=SCREAMING_SNAKE_CASE__ , resnet_time_scale_shift=SCREAMING_SNAKE_CASE__ , ) self.up_blocks.append(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = output_channel # out if norm_type == "spatial": lowerCAmelCase__ = SpatialNorm(block_out_channels[0] , SCREAMING_SNAKE_CASE__ ) else: lowerCAmelCase__ = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=SCREAMING_SNAKE_CASE__ , eps=1e-6 ) lowerCAmelCase__ = nn.SiLU() lowerCAmelCase__ = nn.Convad(block_out_channels[0] , SCREAMING_SNAKE_CASE__ , 3 , padding=1 ) lowerCAmelCase__ = False def a ( self : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict=None ) -> Dict: lowerCAmelCase__ = z lowerCAmelCase__ = self.conv_in(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(SCREAMING_SNAKE_CASE__ : Union[str, Any] ): def custom_forward(*SCREAMING_SNAKE_CASE__ : List[str] ): return module(*SCREAMING_SNAKE_CASE__ ) return custom_forward if is_torch_version(">=" , "1.11.0" ): # middle lowerCAmelCase__ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , use_reentrant=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = sample.to(SCREAMING_SNAKE_CASE__ ) # up for up_block in self.up_blocks: lowerCAmelCase__ = torch.utils.checkpoint.checkpoint( create_custom_forward(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , use_reentrant=SCREAMING_SNAKE_CASE__ ) else: # middle lowerCAmelCase__ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = sample.to(SCREAMING_SNAKE_CASE__ ) # up for up_block in self.up_blocks: lowerCAmelCase__ = torch.utils.checkpoint.checkpoint(create_custom_forward(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: # middle lowerCAmelCase__ = self.mid_block(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = sample.to(SCREAMING_SNAKE_CASE__ ) # up for up_block in self.up_blocks: lowerCAmelCase__ = up_block(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # post-process if latent_embeds is None: lowerCAmelCase__ = self.conv_norm_out(SCREAMING_SNAKE_CASE__ ) else: lowerCAmelCase__ = self.conv_norm_out(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.conv_act(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.conv_out(SCREAMING_SNAKE_CASE__ ) return sample class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : Optional[int]="random" , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Any=True ) -> List[Any]: super().__init__() lowerCAmelCase__ = n_e lowerCAmelCase__ = vq_embed_dim lowerCAmelCase__ = beta lowerCAmelCase__ = legacy lowerCAmelCase__ = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) lowerCAmelCase__ = remap if self.remap is not None: self.register_buffer("used" , torch.tensor(np.load(self.remap ) ) ) lowerCAmelCase__ = self.used.shape[0] lowerCAmelCase__ = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": lowerCAmelCase__ = self.re_embed lowerCAmelCase__ = self.re_embed + 1 print( f'Remapping {self.n_e} indices to {self.re_embed} indices. ' f'Using {self.unknown_index} for unknown indices.' ) else: lowerCAmelCase__ = n_e lowerCAmelCase__ = sane_index_shape def a ( self : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[int]: lowerCAmelCase__ = inds.shape assert len(SCREAMING_SNAKE_CASE__ ) > 1 lowerCAmelCase__ = inds.reshape(ishape[0] , -1 ) lowerCAmelCase__ = self.used.to(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = (inds[:, :, None] == used[None, None, ...]).long() lowerCAmelCase__ = match.argmax(-1 ) lowerCAmelCase__ = match.sum(2 ) < 1 if self.unknown_index == "random": lowerCAmelCase__ = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: lowerCAmelCase__ = self.unknown_index return new.reshape(SCREAMING_SNAKE_CASE__ ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Dict ) -> Optional[int]: lowerCAmelCase__ = inds.shape assert len(SCREAMING_SNAKE_CASE__ ) > 1 lowerCAmelCase__ = inds.reshape(ishape[0] , -1 ) lowerCAmelCase__ = self.used.to(SCREAMING_SNAKE_CASE__ ) if self.re_embed > self.used.shape[0]: # extra token lowerCAmelCase__ = 0 # simply set to zero lowerCAmelCase__ = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , SCREAMING_SNAKE_CASE__ ) return back.reshape(SCREAMING_SNAKE_CASE__ ) def a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Tuple: # reshape z -> (batch, height, width, channel) and flatten lowerCAmelCase__ = z.permute(0 , 2 , 3 , 1 ).contiguous() lowerCAmelCase__ = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z lowerCAmelCase__ = torch.argmin(torch.cdist(SCREAMING_SNAKE_CASE__ , self.embedding.weight ) , dim=1 ) lowerCAmelCase__ = self.embedding(SCREAMING_SNAKE_CASE__ ).view(z.shape ) lowerCAmelCase__ = None lowerCAmelCase__ = None # compute loss for embedding if not self.legacy: lowerCAmelCase__ = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: lowerCAmelCase__ = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients lowerCAmelCase__ = z + (z_q - z).detach() # reshape back to match original input shape lowerCAmelCase__ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: lowerCAmelCase__ = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis lowerCAmelCase__ = self.remap_to_used(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: lowerCAmelCase__ = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def a ( self : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str ) -> Any: # shape specifying (batch, height, width, channel) if self.remap is not None: lowerCAmelCase__ = indices.reshape(shape[0] , -1 ) # add batch axis lowerCAmelCase__ = self.unmap_to_all(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = indices.reshape(-1 ) # flatten again # get quantized latent vectors lowerCAmelCase__ = self.embedding(SCREAMING_SNAKE_CASE__ ) if shape is not None: lowerCAmelCase__ = z_q.view(SCREAMING_SNAKE_CASE__ ) # reshape back to match original input shape lowerCAmelCase__ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any=False ) -> Optional[int]: lowerCAmelCase__ = parameters lowerCAmelCase__ , lowerCAmelCase__ = torch.chunk(SCREAMING_SNAKE_CASE__ , 2 , dim=1 ) lowerCAmelCase__ = torch.clamp(self.logvar , -30.0 , 20.0 ) lowerCAmelCase__ = deterministic lowerCAmelCase__ = torch.exp(0.5 * self.logvar ) lowerCAmelCase__ = torch.exp(self.logvar ) if self.deterministic: lowerCAmelCase__ = lowerCAmelCase__ = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def a ( self : str , SCREAMING_SNAKE_CASE__ : Optional[torch.Generator] = None ) -> torch.FloatTensor: # make sure sample is on the same device as the parameters and has same dtype lowerCAmelCase__ = randn_tensor( self.mean.shape , generator=SCREAMING_SNAKE_CASE__ , device=self.parameters.device , dtype=self.parameters.dtype ) lowerCAmelCase__ = self.mean + self.std * sample return x def a ( self : List[str] , SCREAMING_SNAKE_CASE__ : List[Any]=None ) -> Union[str, Any]: if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def a ( self : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str]=[1, 2, 3] ) -> Tuple: if self.deterministic: return torch.Tensor([0.0] ) lowerCAmelCase__ = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=SCREAMING_SNAKE_CASE__ ) def a ( self : Union[str, Any] ) -> Dict: return self.mean
221
1
'''simple docstring''' import random def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : Optional[int] = a[left_index] _UpperCamelCase : Optional[Any] = left_index + 1 for j in range(left_index + 1 , UpperCAmelCase_ ): if a[j] < pivot: _UpperCamelCase , _UpperCamelCase : List[Any] = a[i], a[j] i += 1 _UpperCamelCase , _UpperCamelCase : str = a[i - 1], a[left_index] return i - 1 def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): if left < right: _UpperCamelCase : Optional[Any] = random.randint(UpperCAmelCase_ , right - 1 ) _UpperCamelCase , _UpperCamelCase : List[Any] = ( a[left], a[pivot], ) # switches the pivot with the left most bound _UpperCamelCase : Any = partition(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) quick_sort_random( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # recursive quicksort to the left of the pivot point quick_sort_random( UpperCAmelCase_ , pivot_index + 1 , UpperCAmelCase_ ) # recursive quicksort to the right of the pivot point def A__ ( ): _UpperCamelCase : Any = input('Enter numbers separated by a comma:\n' ).strip() _UpperCamelCase : Tuple = [int(UpperCAmelCase_ ) for item in user_input.split(',' )] quick_sort_random(UpperCAmelCase_ , 0 , len(UpperCAmelCase_ ) ) print(UpperCAmelCase_ ) if __name__ == "__main__": main()
83
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: snake_case_ : List[Any] = None snake_case_ : str = logging.get_logger(__name__) snake_case_ : Dict = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} snake_case_ : List[Any] = { 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', }, 'tokenizer_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json', }, } snake_case_ : List[str] = { 'albert-base-v1': 512, 'albert-large-v1': 512, 'albert-xlarge-v1': 512, 'albert-xxlarge-v1': 512, 'albert-base-v2': 512, 'albert-large-v2': 512, 'albert-xlarge-v2': 512, 'albert-xxlarge-v2': 512, } snake_case_ : List[str] = '▁' class lowercase__ ( lowercase ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = AlbertTokenizer def __init__( self : Tuple ,lowerCamelCase__ : Optional[int]=None ,lowerCamelCase__ : Union[str, Any]=None ,lowerCamelCase__ : Union[str, Any]=True ,lowerCamelCase__ : int=True ,lowerCamelCase__ : Any=False ,lowerCamelCase__ : Optional[int]="[CLS]" ,lowerCamelCase__ : Union[str, Any]="[SEP]" ,lowerCamelCase__ : Optional[int]="<unk>" ,lowerCamelCase__ : str="[SEP]" ,lowerCamelCase__ : List[Any]="<pad>" ,lowerCamelCase__ : Dict="[CLS]" ,lowerCamelCase__ : int="[MASK]" ,**lowerCamelCase__ : Any ,): '''simple docstring''' # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _UpperCamelCase : Dict = ( AddedToken(lowerCamelCase__ ,lstrip=lowerCamelCase__ ,rstrip=lowerCamelCase__ ,normalized=lowerCamelCase__ ) if isinstance(lowerCamelCase__ ,lowerCamelCase__ ) else mask_token ) super().__init__( lowerCamelCase__ ,tokenizer_file=lowerCamelCase__ ,do_lower_case=lowerCamelCase__ ,remove_space=lowerCamelCase__ ,keep_accents=lowerCamelCase__ ,bos_token=lowerCamelCase__ ,eos_token=lowerCamelCase__ ,unk_token=lowerCamelCase__ ,sep_token=lowerCamelCase__ ,pad_token=lowerCamelCase__ ,cls_token=lowerCamelCase__ ,mask_token=lowerCamelCase__ ,**lowerCamelCase__ ,) _UpperCamelCase : Tuple = do_lower_case _UpperCamelCase : str = remove_space _UpperCamelCase : Optional[Any] = keep_accents _UpperCamelCase : Dict = vocab_file _UpperCamelCase : Dict = False if not self.vocab_file else True def UpperCamelCase_ ( self : Optional[Any] ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' _UpperCamelCase : List[Any] = [self.sep_token_id] _UpperCamelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase_ ( self : List[Any] ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' _UpperCamelCase : int = [self.sep_token_id] _UpperCamelCase : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : List[str] ,lowerCamelCase__ : str ,lowerCamelCase__ : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(lowerCamelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return _UpperCamelCase : Dict = os.path.join( lowerCamelCase__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ): copyfile(self.vocab_file ,lowerCamelCase__ ) return (out_vocab_file,)
83
1
import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline _lowercase : List[Any] = argparse.ArgumentParser("Stable Diffusion script with intel optimization", add_help=False) parser.add_argument("--dpm", action="store_true", help="Enable DPMSolver or not") parser.add_argument("--steps", default=None, type=int, help="Num inference steps") _lowercase : Any = parser.parse_args() _lowercase : int = "cpu" _lowercase : Optional[int] = "a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings" _lowercase : Any = "path-to-your-trained-model" _lowercase : Optional[int] = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: _lowercase : Tuple = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) _lowercase : int = pipe.to(device) # to channels last _lowercase : Tuple = pipe.unet.to(memory_format=torch.channels_last) _lowercase : Tuple = pipe.vae.to(memory_format=torch.channels_last) _lowercase : Optional[Any] = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: _lowercase : str = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex _lowercase : int = torch.randn(2, 4, 6_4, 6_4) _lowercase : Dict = torch.rand(1) * 9_9_9 _lowercase : List[str] = torch.randn(2, 7_7, 7_6_8) _lowercase : List[Any] = (sample, timestep, encoder_hidden_status) try: _lowercase : List[str] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: _lowercase : Optional[int] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) _lowercase : List[str] = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) _lowercase : str = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: _lowercase : str = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute _lowercase : List[Any] = 6_6_6 _lowercase : List[str] = torch.Generator(device).manual_seed(seed) _lowercase : Optional[Any] = {"generator": generator} if args.steps is not None: _lowercase : Tuple = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): _lowercase : Dict = pipe(prompt, **generate_kwargs).images[0] # save image image.save("generated.png")
371
"""simple docstring""" import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def snake_case__ ( __lowerCamelCase : str ): """simple docstring""" if "model" in orig_key: lowerCamelCase__ : Optional[int] =orig_key.replace('''model.''' , '''''' ) if "norm1" in orig_key: lowerCamelCase__ : Union[str, Any] =orig_key.replace('''norm1''' , '''attention.output.LayerNorm''' ) if "norm2" in orig_key: lowerCamelCase__ : List[Any] =orig_key.replace('''norm2''' , '''output.LayerNorm''' ) if "norm" in orig_key: lowerCamelCase__ : List[str] =orig_key.replace('''norm''' , '''LayerNorm''' ) if "transformer" in orig_key: lowerCamelCase__ : str =orig_key.split('''.''' )[0].split('''_''' )[-1] lowerCamelCase__ : Dict =orig_key.replace(f'''transformer_{layer_num}''' , f'''encoder.layer.{layer_num}''' ) if "mha.attn" in orig_key: lowerCamelCase__ : Union[str, Any] =orig_key.replace('''mha.attn''' , '''attention.self''' ) if "mha" in orig_key: lowerCamelCase__ : str =orig_key.replace('''mha''' , '''attention''' ) if "W_q" in orig_key: lowerCamelCase__ : Union[str, Any] =orig_key.replace('''W_q''' , '''self.query''' ) if "W_k" in orig_key: lowerCamelCase__ : Optional[int] =orig_key.replace('''W_k''' , '''self.key''' ) if "W_v" in orig_key: lowerCamelCase__ : List[str] =orig_key.replace('''W_v''' , '''self.value''' ) if "ff1" in orig_key: lowerCamelCase__ : Dict =orig_key.replace('''ff1''' , '''intermediate.dense''' ) if "ff2" in orig_key: lowerCamelCase__ : Union[str, Any] =orig_key.replace('''ff2''' , '''output.dense''' ) if "ff" in orig_key: lowerCamelCase__ : str =orig_key.replace('''ff''' , '''output.dense''' ) if "mlm_class" in orig_key: lowerCamelCase__ : Tuple =orig_key.replace('''mlm.mlm_class''' , '''cls.predictions.decoder''' ) if "mlm" in orig_key: lowerCamelCase__ : Optional[int] =orig_key.replace('''mlm''' , '''cls.predictions.transform''' ) if "cls" not in orig_key: lowerCamelCase__ : Optional[int] ='''yoso.''' + orig_key return orig_key def snake_case__ ( __lowerCamelCase : List[str] , __lowerCamelCase : Any ): """simple docstring""" for key in orig_state_dict.copy().keys(): lowerCamelCase__ : Optional[Any] =orig_state_dict.pop(__lowerCamelCase ) if ("pooler" in key) or ("sen_class" in key): continue else: lowerCamelCase__ : List[str] =val lowerCamelCase__ : Optional[int] =orig_state_dict['''cls.predictions.decoder.bias'''] lowerCamelCase__ : str =torch.arange(__lowerCamelCase ).expand((1, -1) ) + 2 return orig_state_dict def snake_case__ ( __lowerCamelCase : str , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple ): """simple docstring""" lowerCamelCase__ : Union[str, Any] =torch.load(__lowerCamelCase , map_location='''cpu''' )['''model_state_dict'''] lowerCamelCase__ : List[Any] =YosoConfig.from_json_file(__lowerCamelCase ) lowerCamelCase__ : List[str] =YosoForMaskedLM(__lowerCamelCase ) lowerCamelCase__ : Tuple =convert_checkpoint_helper(config.max_position_embeddings , __lowerCamelCase ) print(model.load_state_dict(__lowerCamelCase ) ) model.eval() model.save_pretrained(__lowerCamelCase ) print(f'''Checkpoint successfuly converted. Model saved at {pytorch_dump_path}''' ) if __name__ == "__main__": _lowercase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pytorch_model_path", default=None, type=str, required=True, help="Path to YOSO pytorch checkpoint." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The json file for YOSO model config.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _lowercase : Optional[Any] = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
272
0
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ = { """configuration_trajectory_transformer""": [ """TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrajectoryTransformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ """TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrajectoryTransformerModel""", """TrajectoryTransformerPreTrainedModel""", """load_tf_weights_in_trajectory_transformer""", ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
64
import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class _lowercase (unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = 0 @slow def _lowerCamelCase ( self ): '''simple docstring''' for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): UpperCamelCase_ = AutoTokenizer.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(snake_case__ ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): UpperCamelCase_ = AutoTokenizer.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(snake_case__ ) , 0 ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = AutoTokenizer.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = AutoTokenizer.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 20 ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = AutoConfig.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) # Check that tokenizer_type ≠ model_type UpperCamelCase_ = AutoTokenizer.from_pretrained(snake_case__ , config=snake_case__ ) self.assertIsInstance(snake_case__ , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def _lowerCamelCase ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.txt" , os.path.join(snake_case__ , "vocab.txt" ) ) UpperCamelCase_ = AutoTokenizer.from_pretrained(snake_case__ , tokenizer_type="bert" , use_fast=snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.json" , os.path.join(snake_case__ , "vocab.json" ) ) shutil.copy("./tests/fixtures/merges.txt" , os.path.join(snake_case__ , "merges.txt" ) ) UpperCamelCase_ = AutoTokenizer.from_pretrained(snake_case__ , tokenizer_type="gpt2" , use_fast=snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) @require_tokenizers def _lowerCamelCase ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.txt" , os.path.join(snake_case__ , "vocab.txt" ) ) UpperCamelCase_ = AutoTokenizer.from_pretrained(snake_case__ , tokenizer_type="bert" ) self.assertIsInstance(snake_case__ , snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.json" , os.path.join(snake_case__ , "vocab.json" ) ) shutil.copy("./tests/fixtures/merges.txt" , os.path.join(snake_case__ , "merges.txt" ) ) UpperCamelCase_ = AutoTokenizer.from_pretrained(snake_case__ , tokenizer_type="gpt2" ) self.assertIsInstance(snake_case__ , snake_case__ ) def _lowerCamelCase ( self ): '''simple docstring''' with pytest.raises(snake_case__ ): AutoTokenizer.from_pretrained("./" , tokenizer_type="xxx" ) @require_tokenizers def _lowerCamelCase ( self ): '''simple docstring''' for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: UpperCamelCase_ = tokenizer_class.from_pretrained("wietsedv/bert-base-dutch-cased" ) self.assertIsInstance(snake_case__ , (BertTokenizer, BertTokenizerFast) ) if isinstance(snake_case__ , snake_case__ ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , snake_case__ ) else: self.assertEqual(tokenizer.do_lower_case , snake_case__ ) self.assertEqual(tokenizer.model_max_length , 512 ) @require_tokenizers def _lowerCamelCase ( self ): '''simple docstring''' for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( snake_case__ , "julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier" , ): UpperCamelCase_ = tokenizer_class.from_pretrained("julien-c/herlolip-not-exists" ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = TOKENIZER_MAPPING.values() UpperCamelCase_ = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(snake_case__ ) @require_tokenizers def _lowerCamelCase ( self ): '''simple docstring''' self.assertIsInstance(AutoTokenizer.from_pretrained("bert-base-cased" , use_fast=snake_case__ ) , snake_case__ ) self.assertIsInstance(AutoTokenizer.from_pretrained("bert-base-cased" ) , snake_case__ ) @require_tokenizers def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = AutoTokenizer.from_pretrained("distilbert-base-uncased" , do_lower_case=snake_case__ ) UpperCamelCase_ = "Hello, world. How are you?" UpperCamelCase_ = tokenizer.tokenize(snake_case__ ) self.assertEqual("[UNK]" , tokens[0] ) UpperCamelCase_ = AutoTokenizer.from_pretrained("microsoft/mpnet-base" , do_lower_case=snake_case__ ) UpperCamelCase_ = tokenizer.tokenize(snake_case__ ) self.assertEqual("[UNK]" , tokens[0] ) @require_tokenizers def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = AutoTokenizer.from_pretrained("robot-test/dummy-tokenizer-fast-with-model-config" ) self.assertEqual(type(snake_case__ ) , snake_case__ ) self.assertEqual(tokenizer.model_max_length , 512 ) self.assertEqual(tokenizer.vocab_size , 3_0000 ) self.assertEqual(tokenizer.unk_token , "[UNK]" ) self.assertEqual(tokenizer.padding_side , "right" ) self.assertEqual(tokenizer.truncation_side , "right" ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = AutoTokenizer.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(snake_case__ ) UpperCamelCase_ = AutoTokenizer.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 12 ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = AutoTokenizer.from_pretrained("ctrl" ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(snake_case__ , snake_case__ ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = get_tokenizer_config("bert-base-cased" ) UpperCamelCase_ = config.pop("_commit_hash" , snake_case__ ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(snake_case__ , {"do_lower_case": False} ) # This model does not have a tokenizer_config so we get back an empty dict. UpperCamelCase_ = get_tokenizer_config(snake_case__ ) self.assertDictEqual(snake_case__ , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. UpperCamelCase_ = AutoTokenizer.from_pretrained(snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(snake_case__ ) UpperCamelCase_ = get_tokenizer_config(snake_case__ ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config["tokenizer_class"] , "BertTokenizer" ) def _lowerCamelCase ( self ): '''simple docstring''' try: AutoConfig.register("custom" , snake_case__ ) AutoTokenizer.register(snake_case__ , slow_tokenizer_class=snake_case__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(snake_case__ ): AutoTokenizer.register(snake_case__ , slow_tokenizer_class=snake_case__ ) UpperCamelCase_ = CustomTokenizer.from_pretrained(snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(snake_case__ ) UpperCamelCase_ = AutoTokenizer.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def _lowerCamelCase ( self ): '''simple docstring''' try: AutoConfig.register("custom" , snake_case__ ) # Can register in two steps AutoTokenizer.register(snake_case__ , slow_tokenizer_class=snake_case__ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(snake_case__ , fast_tokenizer_class=snake_case__ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( snake_case__ , slow_tokenizer_class=snake_case__ , fast_tokenizer_class=snake_case__ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(snake_case__ ): AutoTokenizer.register(snake_case__ , fast_tokenizer_class=snake_case__ ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase_ = BertTokenizerFast.from_pretrained(snake_case__ ) bert_tokenizer.save_pretrained(snake_case__ ) UpperCamelCase_ = CustomTokenizerFast.from_pretrained(snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(snake_case__ ) UpperCamelCase_ = AutoTokenizer.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) UpperCamelCase_ = AutoTokenizer.from_pretrained(snake_case__ , use_fast=snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def _lowerCamelCase ( self ): '''simple docstring''' with self.assertRaises(snake_case__ ): UpperCamelCase_ = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" ) # If remote code is disabled, we can't load this config. with self.assertRaises(snake_case__ ): UpperCamelCase_ = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=snake_case__ ) UpperCamelCase_ = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=snake_case__ ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(snake_case__ ) UpperCamelCase_ = AutoTokenizer.from_pretrained(snake_case__ , trust_remote_code=snake_case__ ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , "NewTokenizerFast" ) # Test we can also load the slow version UpperCamelCase_ = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=snake_case__ , use_fast=snake_case__ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(snake_case__ ) UpperCamelCase_ = AutoTokenizer.from_pretrained(snake_case__ , trust_remote_code=snake_case__ , use_fast=snake_case__ ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , "NewTokenizer" ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , "NewTokenizer" ) @require_tokenizers def _lowerCamelCase ( self ): '''simple docstring''' class _lowercase (a_ ): '''simple docstring''' lowercase__ = False class _lowercase (a_ ): '''simple docstring''' lowercase__ = NewTokenizer lowercase__ = False try: AutoConfig.register("custom" , snake_case__ ) AutoTokenizer.register(snake_case__ , slow_tokenizer_class=snake_case__ ) AutoTokenizer.register(snake_case__ , fast_tokenizer_class=snake_case__ ) # If remote code is not set, the default is to use local UpperCamelCase_ = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" ) self.assertFalse(tokenizer.special_attribute_present ) UpperCamelCase_ = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" , use_fast=snake_case__ ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. UpperCamelCase_ = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=snake_case__ ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" ) self.assertFalse(tokenizer.special_attribute_present ) UpperCamelCase_ = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=snake_case__ , use_fast=snake_case__ ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub UpperCamelCase_ = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=snake_case__ ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" ) self.assertTrue(tokenizer.special_attribute_present ) UpperCamelCase_ = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=snake_case__ , use_fast=snake_case__ ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer_legacy" , trust_remote_code=snake_case__ ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" ) # Test we can also load the slow version UpperCamelCase_ = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer_legacy" , trust_remote_code=snake_case__ , use_fast=snake_case__ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) else: self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) def _lowerCamelCase ( self ): '''simple docstring''' with self.assertRaisesRegex( snake_case__ , "bert-base is not a local folder and is not a valid model identifier" ): UpperCamelCase_ = AutoTokenizer.from_pretrained("bert-base" ) def _lowerCamelCase ( self ): '''simple docstring''' with self.assertRaisesRegex( snake_case__ , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): UpperCamelCase_ = AutoTokenizer.from_pretrained(snake_case__ , revision="aaaaaa" ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) with RequestCounter() as counter: UpperCamelCase_ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
128
0
import string from math import logaa def A ( __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' UpperCAmelCase_ = document.translate( str.maketrans('''''' , '''''' , string.punctuation ) ).replace('''\n''' , '''''' ) UpperCAmelCase_ = document_without_punctuation.split(''' ''' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def A ( __UpperCAmelCase , __UpperCAmelCase ) -> tuple[int, int]: '''simple docstring''' UpperCAmelCase_ = corpus.lower().translate( str.maketrans('''''' , '''''' , string.punctuation ) ) # strip all punctuation and replace it with '' UpperCAmelCase_ = corpus_without_punctuation.split('''\n''' ) UpperCAmelCase_ = term.lower() return (len([doc for doc in docs if term in doc] ), len(__UpperCAmelCase )) def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ) -> float: '''simple docstring''' if smoothing: if n == 0: raise ValueError('''log10(0) is undefined.''' ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError('''df must be > 0''' ) elif n == 0: raise ValueError('''log10(0) is undefined.''' ) return round(logaa(n / df ) , 3 ) def A ( __UpperCAmelCase , __UpperCAmelCase ) -> float: '''simple docstring''' return round(tf * idf , 3 )
369
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCamelCase_ = logging.get_logger(__name__) class a_ ( _snake_case , _snake_case ): UpperCamelCase__ : Union[str, Any] ="maskformer-swin" UpperCamelCase__ : List[str] ={ "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self :Union[str, Any] , _lowercase :Optional[int]=224 , _lowercase :List[str]=4 , _lowercase :Tuple=3 , _lowercase :List[Any]=96 , _lowercase :Any=[2, 2, 6, 2] , _lowercase :int=[3, 6, 12, 24] , _lowercase :List[Any]=7 , _lowercase :Dict=4.0 , _lowercase :Any=True , _lowercase :int=0.0 , _lowercase :List[Any]=0.0 , _lowercase :Tuple=0.1 , _lowercase :str="gelu" , _lowercase :Union[str, Any]=False , _lowercase :Tuple=0.02 , _lowercase :List[str]=1E-5 , _lowercase :List[str]=None , _lowercase :Any=None , **_lowercase :Any , ) -> Union[str, Any]: super().__init__(**_lowercase) UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = embed_dim UpperCAmelCase_ = depths UpperCAmelCase_ = len(_lowercase) UpperCAmelCase_ = num_heads UpperCAmelCase_ = window_size UpperCAmelCase_ = mlp_ratio UpperCAmelCase_ = qkv_bias UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = drop_path_rate UpperCAmelCase_ = hidden_act UpperCAmelCase_ = use_absolute_embeddings UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCAmelCase_ = int(embed_dim * 2 ** (len(_lowercase) - 1)) UpperCAmelCase_ = ['''stem'''] + [f"stage{idx}" for idx in range(1 , len(_lowercase) + 1)] UpperCAmelCase_ , UpperCAmelCase_ = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names)
344
0
'''simple docstring''' from math import sqrt def _lowerCamelCase ( lowercase : int = 100_0000 ) -> int: _a = 0 _a = 0 _a = 42 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(_A , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f"""{solution() = }""")
63
'''simple docstring''' import math import flax.linen as nn import jax.numpy as jnp def snake_case__ ( _A: jnp.ndarray , _A: int , _A: float = 1 , _A: float = 1 , _A: float = 1.0e4 , _A: bool = False , _A: float = 1.0 , ) -> jnp.ndarray: '''simple docstring''' assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, f"Embedding dimension {embedding_dim} should be even" lowerCAmelCase = float(embedding_dim // 2 ) lowerCAmelCase = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) lowerCAmelCase = min_timescale * jnp.exp(jnp.arange(_A , dtype=jnp.floataa ) * -log_timescale_increment ) lowerCAmelCase = jnp.expand_dims(_A , 1 ) * jnp.expand_dims(_A , 0 ) # scale embeddings lowerCAmelCase = scale * emb if flip_sin_to_cos: lowerCAmelCase = jnp.concatenate([jnp.cos(_A ), jnp.sin(_A )] , axis=1 ) else: lowerCAmelCase = jnp.concatenate([jnp.sin(_A ), jnp.cos(_A )] , axis=1 ) lowerCAmelCase = jnp.reshape(_A , [jnp.shape(_A )[0], embedding_dim] ) return signal class a__( nn.Module ): '''simple docstring''' UpperCAmelCase_ : int = 3_2 UpperCAmelCase_ : jnp.dtype = jnp.floataa @nn.compact def __call__( self , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = nn.Dense(self.time_embed_dim , dtype=self.dtype , name="""linear_1""")(__lowerCAmelCase) lowerCAmelCase = nn.silu(__lowerCAmelCase) lowerCAmelCase = nn.Dense(self.time_embed_dim , dtype=self.dtype , name="""linear_2""")(__lowerCAmelCase) return temb class a__( nn.Module ): '''simple docstring''' UpperCAmelCase_ : int = 3_2 UpperCAmelCase_ : bool = False UpperCAmelCase_ : float = 1 @nn.compact def __call__( self , __lowerCAmelCase): """simple docstring""" return get_sinusoidal_embeddings( __lowerCAmelCase , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift)
272
0
import colorsys from PIL import Image # type: ignore def _UpperCamelCase ( UpperCamelCase_ : float , UpperCamelCase_ : float , UpperCamelCase_ : int ) -> float: """simple docstring""" lowerCAmelCase__ = x lowerCAmelCase__ = y for step in range(UpperCamelCase_ ): # noqa: B007 lowerCAmelCase__ = a * a - b * b + x lowerCAmelCase__ = 2 * a * b + y lowerCAmelCase__ = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def _UpperCamelCase ( UpperCamelCase_ : float ) -> tuple: """simple docstring""" if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def _UpperCamelCase ( UpperCamelCase_ : float ) -> tuple: """simple docstring""" if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(UpperCamelCase_ , 1 , 1 ) ) def _UpperCamelCase ( UpperCamelCase_ : int = 800 , UpperCamelCase_ : int = 600 , UpperCamelCase_ : float = -0.6 , UpperCamelCase_ : float = 0 , UpperCamelCase_ : float = 3.2 , UpperCamelCase_ : int = 50 , UpperCamelCase_ : bool = True , ) -> Image.Image: """simple docstring""" lowerCAmelCase__ = Image.new('RGB' , (image_width, image_height) ) lowerCAmelCase__ = img.load() # loop through the image-coordinates for image_x in range(UpperCamelCase_ ): for image_y in range(UpperCamelCase_ ): # determine the figure-coordinates based on the image-coordinates lowerCAmelCase__ = figure_width / image_width * image_height lowerCAmelCase__ = figure_center_x + (image_x / image_width - 0.5) * figure_width lowerCAmelCase__ = figure_center_y + (image_y / image_height - 0.5) * figure_height lowerCAmelCase__ = get_distance(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: lowerCAmelCase__ = get_color_coded_rgb(UpperCamelCase_ ) else: lowerCAmelCase__ = get_black_and_white_rgb(UpperCamelCase_ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure __snake_case : str = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
122
import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json __snake_case : Tuple = """sshleifer/mar_enro_6_3_student""" class __SCREAMING_SNAKE_CASE ( __lowercase): def UpperCamelCase__ ( self ): """simple docstring""" super().setUp() lowerCAmelCase__ = cached_path( 'https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz' , extract_compressed_file=_UpperCamelCase , ) lowerCAmelCase__ = F"{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k" @slow @require_torch_gpu def UpperCamelCase__ ( self ): """simple docstring""" MarianMTModel.from_pretrained(_UpperCamelCase ) @slow @require_torch_gpu def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = { '$MAX_LEN': 64, '$BS': 64, '$GAS': 1, '$ENRO_DIR': self.data_dir, 'facebook/mbart-large-cc25': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '--learning_rate=3e-5': '--learning_rate 3e-4', '--num_train_epochs 6': '--num_train_epochs 1', } # Clean up bash script lowerCAmelCase__ = (self.test_file_dir / 'train_mbart_cc25_enro.sh').open().read().split('finetune.py' )[1].strip() lowerCAmelCase__ = bash_script.replace('\\\n' , '' ).strip().replace('"$@"' , '' ) for k, v in env_vars_to_replace.items(): lowerCAmelCase__ = bash_script.replace(_UpperCamelCase , str(_UpperCamelCase ) ) lowerCAmelCase__ = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") lowerCAmelCase__ = F"\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n ".split() # XXX: args.gpus > 1 : handle multi_gpu in the future lowerCAmelCase__ = ['finetune.py'] + bash_script.split() + args with patch.object(_UpperCamelCase , 'argv' , _UpperCamelCase ): lowerCAmelCase__ = argparse.ArgumentParser() lowerCAmelCase__ = pl.Trainer.add_argparse_args(_UpperCamelCase ) lowerCAmelCase__ = SummarizationModule.add_model_specific_args(_UpperCamelCase , os.getcwd() ) lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = main(_UpperCamelCase ) # Check metrics lowerCAmelCase__ = load_json(model.metrics_save_path ) lowerCAmelCase__ = metrics['val'][0] lowerCAmelCase__ = metrics['val'][-1] self.assertEqual(len(metrics['val'] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[F"val_avg_{model.val_metric}"] , _UpperCamelCase ) self.assertGreater(last_step_stats['val_avg_gen_time'] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['val_avg_gen_time'] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['val_avg_bleu'] - first_step_stats['val_avg_bleu'] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['val_avg_bleu'] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['val'][-1]['val_avg_bleu'] - metrics['test'][-1]['test_avg_bleu'] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict lowerCAmelCase__ = os.listdir(_UpperCamelCase ) lowerCAmelCase__ = [x for x in contents if x.endswith('.ckpt' )][0] lowerCAmelCase__ = os.path.join(args.output_dir , _UpperCamelCase ) lowerCAmelCase__ = torch.load(_UpperCamelCase , map_location='cpu' ) lowerCAmelCase__ = 'model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: lowerCAmelCase__ = {os.path.basename(_UpperCamelCase ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1 class __SCREAMING_SNAKE_CASE ( __lowercase): @timeout_decorator.timeout(6_00 ) @slow @require_torch_gpu def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = F"{self.test_file_dir_str}/test_data/wmt_en_ro" lowerCAmelCase__ = { '--fp16_opt_level=O1': '', '$MAX_LEN': 1_28, '$BS': 16, '$GAS': 1, '$ENRO_DIR': data_dir, '$m': 'sshleifer/student_marian_en_ro_6_1', 'val_check_interval=0.25': 'val_check_interval=1.0', } # Clean up bash script lowerCAmelCase__ = ( (self.test_file_dir / 'distil_marian_no_teacher.sh').open().read().split('distillation.py' )[1].strip() ) lowerCAmelCase__ = bash_script.replace('\\\n' , '' ).strip().replace('"$@"' , '' ) lowerCAmelCase__ = bash_script.replace('--fp16 ' , ' ' ) for k, v in env_vars_to_replace.items(): lowerCAmelCase__ = bash_script.replace(_UpperCamelCase , str(_UpperCamelCase ) ) lowerCAmelCase__ = self.get_auto_remove_tmp_dir() lowerCAmelCase__ = bash_script.replace('--fp16' , '' ) lowerCAmelCase__ = 6 lowerCAmelCase__ = ( ['distillation.py'] + bash_script.split() + [ F"--output_dir={output_dir}", '--gpus=1', '--learning_rate=1e-3', F"--num_train_epochs={epochs}", '--warmup_steps=10', '--val_check_interval=1.0', '--do_predict', ] ) with patch.object(_UpperCamelCase , 'argv' , _UpperCamelCase ): lowerCAmelCase__ = argparse.ArgumentParser() lowerCAmelCase__ = pl.Trainer.add_argparse_args(_UpperCamelCase ) lowerCAmelCase__ = SummarizationDistiller.add_model_specific_args(_UpperCamelCase , os.getcwd() ) lowerCAmelCase__ = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu lowerCAmelCase__ = distill_main(_UpperCamelCase ) # Check metrics lowerCAmelCase__ = load_json(model.metrics_save_path ) lowerCAmelCase__ = metrics['val'][0] lowerCAmelCase__ = metrics['val'][-1] assert len(metrics['val'] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[F"val_avg_{model.val_metric}"] , _UpperCamelCase ) # check lightning ckpt can be loaded and has a reasonable statedict lowerCAmelCase__ = os.listdir(_UpperCamelCase ) lowerCAmelCase__ = [x for x in contents if x.endswith('.ckpt' )][0] lowerCAmelCase__ = os.path.join(args.output_dir , _UpperCamelCase ) lowerCAmelCase__ = torch.load(_UpperCamelCase , map_location='cpu' ) lowerCAmelCase__ = 'model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: lowerCAmelCase__ = {os.path.basename(_UpperCamelCase ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1
122
1
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCamelCase : Any = logging.get_logger(__name__) __UpperCamelCase : List[str] = { "vocab_file": "vocab.json", "tokenizer_config_file": "tokenizer_config.json", "merges_file": "merges.txt", } __UpperCamelCase : List[str] = { "vocab_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json" ), }, "tokenizer_config_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json" ), }, "merges_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt" ), }, } __UpperCamelCase : Optional[int] = "</w>" __UpperCamelCase : Tuple = "@@ " def __A ( __lowerCamelCase ) -> Tuple: a = set() a = word[0] for char in word[1:]: pairs.add((prev_char, char) ) a = char return pairs # Speech2Text2 has no max input length __UpperCamelCase : Any = {"facebook/s2t-wav2vec2-large-en-de": 1_024} class __lowerCAmelCase ( __magic_name__ ): UpperCamelCase__ = VOCAB_FILES_NAMES UpperCamelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ = ['''input_ids''', '''attention_mask'''] def __init__( self :int , __magic_name__ :Union[str, Any] , __magic_name__ :List[Any]="<s>" , __magic_name__ :int="<pad>" , __magic_name__ :Optional[int]="</s>" , __magic_name__ :Dict="<unk>" , __magic_name__ :Tuple=False , __magic_name__ :int=None , **__magic_name__ :Any , ): '''simple docstring''' super().__init__( unk_token=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , pad_token=__magic_name__ , do_lower_case=__magic_name__ , **__magic_name__ , ) a = do_lower_case with open(__magic_name__ , encoding="""utf-8""" ) as vocab_handle: a = json.load(__magic_name__ ) a = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(F'No merges files provided. {self.__class__.__name__} can only be used for decoding.' ) a = None a = None else: with open(__magic_name__ , encoding="""utf-8""" ) as merges_handle: a = merges_handle.read().split("""\n""" )[:-1] a = [tuple(merge.split()[:2] ) for merge in merges] a = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) ) a = {} @property def lowerCamelCase__ ( self :int ): '''simple docstring''' return len(self.decoder ) def lowerCamelCase__ ( self :Optional[int] ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def lowerCamelCase__ ( self :Optional[Any] , __magic_name__ :Optional[int] ): '''simple docstring''' a = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] a = get_pairs(__magic_name__ ) if not pairs: return token while True: a = min(__magic_name__ , key=lambda __magic_name__ : self.bpe_ranks.get(__magic_name__ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break a , a = bigram a = [] a = 0 while i < len(__magic_name__ ): try: a = word.index(__magic_name__ , __magic_name__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) a = j if word[i] == first and i < len(__magic_name__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 a = tuple(__magic_name__ ) a = new_word if len(__magic_name__ ) == 1: break else: a = get_pairs(__magic_name__ ) a = """ """.join(__magic_name__ ) if word == "\n " + BPE_TOKEN_MERGES: a = """\n""" + BPE_TOKEN_MERGES if word.endswith(__magic_name__ ): a = word.replace(__magic_name__ , """""" ) a = word.replace(""" """ , __magic_name__ ) a = word return word def lowerCamelCase__ ( self :List[str] , __magic_name__ :int ): '''simple docstring''' if self.bpe_ranks is None: raise ValueError( """This tokenizer was instantiated without a `merges.txt` file, so""" """ that it can only be used for decoding, not for encoding.""" """Make sure to provide `merges.txt` file at instantiation to enable """ """encoding.""" ) if self.do_lower_case: a = text.lower() a = text.split() a = [] for token in text: if token: split_tokens.extend(list(self.bpe(__magic_name__ ).split(""" """ ) ) ) return split_tokens def lowerCamelCase__ ( self :str , __magic_name__ :str ): '''simple docstring''' return self.encoder.get(__magic_name__ , self.encoder.get(self.unk_token ) ) def lowerCamelCase__ ( self :List[str] , __magic_name__ :int ): '''simple docstring''' a = self.decoder.get(__magic_name__ , self.unk_token ) return result def lowerCamelCase__ ( self :Dict , __magic_name__ :List[str] ): '''simple docstring''' a = """ """.join(__magic_name__ ) # make sure @@ tokens are concatenated a = """""".join(string.split(__magic_name__ ) ) return string def lowerCamelCase__ ( self :Optional[Any] , __magic_name__ :str , __magic_name__ :Optional[str] = None ): '''simple docstring''' if not os.path.isdir(__magic_name__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return a = os.path.join( __magic_name__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) a = os.path.join( __magic_name__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(__magic_name__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__magic_name__ , ensure_ascii=__magic_name__ ) + """\n""" ) a = 0 if self.bpe_ranks is None: return (vocab_file,) with open(__magic_name__ , """w""" , encoding="""utf-8""" ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __magic_name__ : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.' """ Please check that the tokenizer is not corrupted!""" ) a = token_index writer.write(""" """.join(__magic_name__ ) + """\n""" ) index += 1 return (vocab_file, merges_file)
228
def __A ( __lowerCamelCase , __lowerCamelCase ) -> str: if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise ValueError("""iterations must be defined as integers""" ) if not isinstance(__lowerCamelCase , __lowerCamelCase ) or not number >= 1: raise ValueError( """starting number must be and integer and be more than 0""" ) if not iterations >= 1: raise ValueError("""Iterations must be done more than 0 times to play FizzBuzz""" ) a = """""" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(__lowerCamelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
228
1
import math def __UpperCamelCase ( lowerCAmelCase__ : int ): __a : str = 0 __a : Union[str, Any] = 0 while num > 0: __a : Dict = num % 8 __a : Optional[Any] = octal + (remainder * math.floor(math.pow(1_0 , lowerCAmelCase__ ) )) counter += 1 __a : Any = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return f"0o{int(lowerCAmelCase__ )}" def __UpperCamelCase ( ): print('''\n2 in octal is:''' ) print(decimal_to_octal(2 ) ) # = 2 print('''\n8 in octal is:''' ) print(decimal_to_octal(8 ) ) # = 10 print('''\n65 in octal is:''' ) print(decimal_to_octal(6_5 ) ) # = 101 print('''\n216 in octal is:''' ) print(decimal_to_octal(2_1_6 ) ) # = 330 print('''\n512 in octal is:''' ) print(decimal_to_octal(5_1_2 ) ) # = 1000 print('''\n''' ) if __name__ == "__main__": main()
90
def __UpperCamelCase ( lowerCAmelCase__ : str , lowerCAmelCase__ : str ): __a : Any = len(lowerCAmelCase__ ) __a : Union[str, Any] = [] for i in range(len(lowerCAmelCase__ ) - pat_len + 1 ): __a : List[Any] = True for j in range(lowerCAmelCase__ ): if s[i + j] != pattern[j]: __a : Union[str, Any] = False break if match_found: position.append(lowerCAmelCase__ ) return position if __name__ == "__main__": assert naive_pattern_search('ABCDEFG', 'DE') == [3] print(naive_pattern_search('ABAAABCDBBABCDDEBCABC', 'ABC'))
90
1
"""simple docstring""" import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) lowerCAmelCase__ : List[Any] = logging.getLogger(__name__) class snake_case ( __lowerCamelCase ): """simple docstring""" def __lowerCAmelCase ( self : Union[str, Any] ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : Tuple=None ,lowerCamelCase__ : Any=None ): UpperCAmelCase__ = self.layer[current_layer](lowerCamelCase__ ,lowerCamelCase__ ,head_mask[current_layer] ) UpperCAmelCase__ = layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , __lowerCamelCase , ) class snake_case ( __lowerCamelCase ): """simple docstring""" def __init__( self : Optional[int] ,lowerCamelCase__ : Any ): super().__init__(lowerCamelCase__ ) UpperCAmelCase__ = BertEncoderWithPabee(lowerCamelCase__ ) self.init_weights() UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 def __lowerCAmelCase ( self : Optional[Any] ,lowerCamelCase__ : Optional[Any] ): UpperCAmelCase__ = threshold def __lowerCAmelCase ( self : Optional[Any] ,lowerCamelCase__ : Any ): UpperCAmelCase__ = patience def __lowerCAmelCase ( self : Union[str, Any] ): UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 def __lowerCAmelCase ( self : Any ): UpperCAmelCase__ = self.inference_layers_num / self.inference_instances_num UpperCAmelCase__ = ( f'''*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =''' f''' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***''' ) print(lowerCamelCase__ ) @add_start_docstrings_to_model_forward(lowerCamelCase__ ) def __lowerCAmelCase ( self : Tuple ,lowerCamelCase__ : Union[str, Any]=None ,lowerCamelCase__ : int=None ,lowerCamelCase__ : Optional[Any]=None ,lowerCamelCase__ : Any=None ,lowerCamelCase__ : Union[str, Any]=None ,lowerCamelCase__ : Any=None ,lowerCamelCase__ : int=None ,lowerCamelCase__ : Dict=None ,lowerCamelCase__ : int=None ,lowerCamelCase__ : str=None ,lowerCamelCase__ : Optional[int]=False ,): if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: UpperCAmelCase__ = input_ids.size() elif inputs_embeds is not None: UpperCAmelCase__ = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) UpperCAmelCase__ = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: UpperCAmelCase__ = torch.ones(lowerCamelCase__ ,device=lowerCamelCase__ ) if token_type_ids is None: UpperCAmelCase__ = torch.zeros(lowerCamelCase__ ,dtype=torch.long ,device=lowerCamelCase__ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. UpperCAmelCase__ = self.get_extended_attention_mask(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: UpperCAmelCase__ = encoder_hidden_states.size() UpperCAmelCase__ = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: UpperCAmelCase__ = torch.ones(lowerCamelCase__ ,device=lowerCamelCase__ ) UpperCAmelCase__ = self.invert_attention_mask(lowerCamelCase__ ) else: UpperCAmelCase__ = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] UpperCAmelCase__ = self.get_head_mask(lowerCamelCase__ ,self.config.num_hidden_layers ) UpperCAmelCase__ = self.embeddings( input_ids=lowerCamelCase__ ,position_ids=lowerCamelCase__ ,token_type_ids=lowerCamelCase__ ,inputs_embeds=lowerCamelCase__ ) UpperCAmelCase__ = embedding_output if self.training: UpperCAmelCase__ = [] for i in range(self.config.num_hidden_layers ): UpperCAmelCase__ = self.encoder.adaptive_forward( lowerCamelCase__ ,current_layer=lowerCamelCase__ ,attention_mask=lowerCamelCase__ ,head_mask=lowerCamelCase__ ) UpperCAmelCase__ = self.pooler(lowerCamelCase__ ) UpperCAmelCase__ = output_layers[i](output_dropout(lowerCamelCase__ ) ) res.append(lowerCamelCase__ ) elif self.patience == 0: # Use all layers for inference UpperCAmelCase__ = self.encoder( lowerCamelCase__ ,attention_mask=lowerCamelCase__ ,head_mask=lowerCamelCase__ ,encoder_hidden_states=lowerCamelCase__ ,encoder_attention_mask=lowerCamelCase__ ,) UpperCAmelCase__ = self.pooler(encoder_outputs[0] ) UpperCAmelCase__ = [output_layers[self.config.num_hidden_layers - 1](lowerCamelCase__ )] else: UpperCAmelCase__ = 0 UpperCAmelCase__ = None UpperCAmelCase__ = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 UpperCAmelCase__ = self.encoder.adaptive_forward( lowerCamelCase__ ,current_layer=lowerCamelCase__ ,attention_mask=lowerCamelCase__ ,head_mask=lowerCamelCase__ ) UpperCAmelCase__ = self.pooler(lowerCamelCase__ ) UpperCAmelCase__ = output_layers[i](lowerCamelCase__ ) if regression: UpperCAmelCase__ = logits.detach() if patient_result is not None: UpperCAmelCase__ = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: UpperCAmelCase__ = 0 else: UpperCAmelCase__ = logits.detach().argmax(dim=1 ) if patient_result is not None: UpperCAmelCase__ = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(lowerCamelCase__ ) ): patient_counter += 1 else: UpperCAmelCase__ = 0 UpperCAmelCase__ = logits if patient_counter == self.patience: break UpperCAmelCase__ = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , __lowerCamelCase , ) class snake_case ( __lowerCamelCase ): """simple docstring""" def __init__( self : Union[str, Any] ,lowerCamelCase__ : Optional[Any] ): super().__init__(lowerCamelCase__ ) UpperCAmelCase__ = config.num_labels UpperCAmelCase__ = BertModelWithPabee(lowerCamelCase__ ) UpperCAmelCase__ = nn.Dropout(config.hidden_dropout_prob ) UpperCAmelCase__ = nn.ModuleList( [nn.Linear(config.hidden_size ,self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(lowerCamelCase__ ) def __lowerCAmelCase ( self : Optional[int] ,lowerCamelCase__ : str=None ,lowerCamelCase__ : Tuple=None ,lowerCamelCase__ : Optional[Any]=None ,lowerCamelCase__ : List[str]=None ,lowerCamelCase__ : Any=None ,lowerCamelCase__ : int=None ,lowerCamelCase__ : Union[str, Any]=None ,): UpperCAmelCase__ = self.bert( input_ids=lowerCamelCase__ ,attention_mask=lowerCamelCase__ ,token_type_ids=lowerCamelCase__ ,position_ids=lowerCamelCase__ ,head_mask=lowerCamelCase__ ,inputs_embeds=lowerCamelCase__ ,output_dropout=self.dropout ,output_layers=self.classifiers ,regression=self.num_labels == 1 ,) UpperCAmelCase__ = (logits[-1],) if labels is not None: UpperCAmelCase__ = None UpperCAmelCase__ = 0 for ix, logits_item in enumerate(lowerCamelCase__ ): if self.num_labels == 1: # We are doing regression UpperCAmelCase__ = MSELoss() UpperCAmelCase__ = loss_fct(logits_item.view(-1 ) ,labels.view(-1 ) ) else: UpperCAmelCase__ = CrossEntropyLoss() UpperCAmelCase__ = loss_fct(logits_item.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) if total_loss is None: UpperCAmelCase__ = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 UpperCAmelCase__ = (total_loss / total_weights,) + outputs return outputs
98
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def lowerCAmelCase_ ( __UpperCAmelCase: str , __UpperCAmelCase: str , __UpperCAmelCase: str , __UpperCAmelCase: PreTrainedTokenizer , __UpperCAmelCase: int , __UpperCAmelCase: Optional[int] = None , ) -> List[Any]: UpperCamelCase__ : Dict = {} if train_file is not None: UpperCamelCase__ : str = [train_file] if eval_file is not None: UpperCamelCase__ : Union[str, Any] = [eval_file] if test_file is not None: UpperCamelCase__ : Tuple = [test_file] UpperCamelCase__ : Optional[Any] = datasets.load_dataset('''csv''' , data_files=__UpperCAmelCase ) UpperCamelCase__ : List[Any] = list(ds[list(files.keys() )[0]].features.keys() ) UpperCamelCase__ : str = features_name.pop(__UpperCAmelCase ) UpperCamelCase__ : List[str] = list(set(ds[list(files.keys() )[0]][label_name] ) ) UpperCamelCase__ : Optional[Any] = {label: i for i, label in enumerate(__UpperCAmelCase )} UpperCamelCase__ : Union[str, Any] = tokenizer.model_input_names UpperCamelCase__ : str = {} if len(__UpperCAmelCase ) == 1: for k in files.keys(): UpperCamelCase__ : Optional[int] = ds[k].map( lambda __UpperCAmelCase : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , padding='''max_length''' ) , batched=__UpperCAmelCase , ) elif len(__UpperCAmelCase ) == 2: for k in files.keys(): UpperCamelCase__ : Dict = ds[k].map( lambda __UpperCAmelCase : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , padding='''max_length''' , ) , batched=__UpperCAmelCase , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: UpperCamelCase__ : Any = {k: v for k, v in ex.items() if k in input_names} UpperCamelCase__ : str = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: UpperCamelCase__ : Union[str, Any] = {k: v for k, v in ex.items() if k in input_names} UpperCamelCase__ : str = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: UpperCamelCase__ : Optional[Any] = {k: v for k, v in ex.items() if k in input_names} UpperCamelCase__ : int = labelaid[ex[label_name]] yield (d, label) UpperCamelCase__ : Tuple = ( tf.data.Dataset.from_generator( __UpperCAmelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: UpperCamelCase__ : Optional[Any] = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) UpperCamelCase__ : int = ( tf.data.Dataset.from_generator( __UpperCAmelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: UpperCamelCase__ : Dict = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) UpperCamelCase__ : Optional[Any] = ( tf.data.Dataset.from_generator( __UpperCAmelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: UpperCamelCase__ : Union[str, Any] = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid UpperCAmelCase_ = logging.getLogger(__name__) @dataclass class lowercase__ : '''simple docstring''' a : int = field(metadata={"help": "Which column contains the label"} ) a : str = field(default=__lowerCamelCase , metadata={"help": "The path of the training file"} ) a : Optional[str] = field(default=__lowerCamelCase , metadata={"help": "The path of the development file"} ) a : Optional[str] = field(default=__lowerCamelCase , metadata={"help": "The path of the test file"} ) a : int = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) a : bool = field( default=__lowerCamelCase , metadata={"help": "Overwrite the cached training and evaluation sets"} ) @dataclass class lowercase__ : '''simple docstring''' a : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) a : Optional[str] = field( default=__lowerCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) a : Optional[str] = field( default=__lowerCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) a : bool = field(default=__lowerCamelCase , metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. a : Optional[str] = field( default=__lowerCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) def lowerCAmelCase_ ( ) -> int: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase__ : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Any = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info( f"n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, " f"16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase__ : List[str] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Optional[int] = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=__UpperCAmelCase , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) UpperCamelCase__ : int = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(__UpperCAmelCase ) , labelaid=__UpperCAmelCase , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='''text-classification''' , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): UpperCamelCase__ : str = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool('''.bin''' in model_args.model_name_or_path ) , config=__UpperCAmelCase , cache_dir=model_args.cache_dir , ) def compute_metrics(__UpperCAmelCase: EvalPrediction ) -> Dict: UpperCamelCase__ : Optional[Any] = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer UpperCamelCase__ : Union[str, Any] = TFTrainer( model=__UpperCAmelCase , args=__UpperCAmelCase , train_dataset=__UpperCAmelCase , eval_dataset=__UpperCAmelCase , compute_metrics=__UpperCAmelCase , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCamelCase__ : List[str] = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) UpperCamelCase__ : Tuple = trainer.evaluate() UpperCamelCase__ : Optional[int] = os.path.join(training_args.output_dir , '''eval_results.txt''' ) with open(__UpperCAmelCase , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(f" {key} = {value}" ) writer.write(f"{key} = {value}\n" ) results.update(__UpperCAmelCase ) return results if __name__ == "__main__": main()
201
0
"""simple docstring""" import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": A : Union[str, Any] = argparse.ArgumentParser( description=( "Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned" " Distillation" ) ) parser.add_argument("--model_type", default="roberta", choices=["roberta", "gpt2"]) parser.add_argument("--model_name", default="roberta-large", type=str) parser.add_argument("--dump_checkpoint", default="serialization_dir/tf_roberta_048131723.pth", type=str) parser.add_argument("--vocab_transform", action="store_true") A : Tuple = parser.parse_args() if args.model_type == "roberta": A : Tuple = RobertaForMaskedLM.from_pretrained(args.model_name) A : Any = "roberta" elif args.model_type == "gpt2": A : int = GPTaLMHeadModel.from_pretrained(args.model_name) A : List[Any] = "transformer" A : Optional[int] = model.state_dict() A : Union[str, Any] = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: A : List[str] = state_dict[f'''{prefix}.{param_name}'''] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: A : List[Any] = f'''{prefix}.embeddings.{w}.weight''' A : int = state_dict[param_name] for w in ["weight", "bias"]: A : Optional[Any] = f'''{prefix}.embeddings.LayerNorm.{w}''' A : List[Any] = state_dict[param_name] # Transformer Blocks # A : Optional[Any] = 0 for teacher_idx in [0, 2, 4, 7, 9, 1_1]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: A : Optional[int] = state_dict[ f'''{prefix}.h.{teacher_idx}.{layer}.{w}''' ] A : List[str] = state_dict[f'''{prefix}.h.{teacher_idx}.attn.bias'''] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: A : Tuple = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}''' ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: A : List[str] = state_dict[f'''{layer}'''] if args.vocab_transform: for w in ["weight", "bias"]: A : List[Any] = state_dict[f'''lm_head.dense.{w}'''] A : Dict = state_dict[f'''lm_head.layer_norm.{w}'''] elif args.model_type == "gpt2": for w in ["weight", "bias"]: A : int = state_dict[f'''{prefix}.ln_f.{w}'''] A : Dict = state_dict["lm_head.weight"] print(f'''N layers selected for distillation: {std_idx}''') print(f'''Number of params transferred for distillation: {len(compressed_sd.keys())}''') print(f'''Save transferred checkpoint to {args.dump_checkpoint}.''') torch.save(compressed_sd, args.dump_checkpoint)
259
"""simple docstring""" from ..utils import DummyObject, requires_backends class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Optional[Any] =["""transformers""", """torch""", """note_seq"""] def __init__( self , *__a , **__a ): requires_backends(self , ["transformers", "torch", "note_seq"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["transformers", "torch", "note_seq"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["transformers", "torch", "note_seq"] )
259
1
'''simple docstring''' import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( 'kwargs, expected' , [ ({'num_shards': 0, 'max_num_jobs': 1}, []), ({'num_shards': 10, 'max_num_jobs': 1}, [range(10 )]), ({'num_shards': 10, 'max_num_jobs': 10}, [range(UpperCAmelCase_ , i + 1 ) for i in range(10 )]), ({'num_shards': 1, 'max_num_jobs': 10}, [range(1 )]), ({'num_shards': 10, 'max_num_jobs': 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({'num_shards': 3, 'max_num_jobs': 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] ) -> Optional[int]: __lowerCamelCase : Optional[Any] = _distribute_shards(**UpperCAmelCase_ ) assert out == expected @pytest.mark.parametrize( 'gen_kwargs, max_num_jobs, expected' , [ ({'foo': 0}, 10, [{'foo': 0}]), ({'shards': [0, 1, 2, 3]}, 1, [{'shards': [0, 1, 2, 3]}]), ({'shards': [0, 1, 2, 3]}, 4, [{'shards': [0]}, {'shards': [1]}, {'shards': [2]}, {'shards': [3]}]), ({'shards': [0, 1]}, 4, [{'shards': [0]}, {'shards': [1]}]), ({'shards': [0, 1, 2, 3]}, 2, [{'shards': [0, 1]}, {'shards': [2, 3]}]), ] , ) def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict ) -> Optional[int]: __lowerCamelCase : Dict = _split_gen_kwargs(UpperCAmelCase_ , UpperCAmelCase_ ) assert out == expected @pytest.mark.parametrize( 'gen_kwargs, expected' , [ ({'foo': 0}, 1), ({'shards': [0]}, 1), ({'shards': [0, 1, 2, 3]}, 4), ({'shards': [0, 1, 2, 3], 'foo': 0}, 4), ({'shards': [0, 1, 2, 3], 'other': (0, 1)}, 4), ({'shards': [0, 1, 2, 3], 'shards2': [0, 1]}, RuntimeError), ] , ) def UpperCAmelCase__ ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any] ) -> Dict: if expected is RuntimeError: with pytest.raises(UpperCAmelCase_ ): _number_of_shards_in_gen_kwargs(UpperCAmelCase_ ) else: __lowerCamelCase : Optional[int] = _number_of_shards_in_gen_kwargs(UpperCAmelCase_ ) assert out == expected
185
'''simple docstring''' import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration A__ : str = [ # tf -> hf ("""/""", """."""), ("""layer_""", """layers."""), ("""kernel""", """weight"""), ("""beta""", """bias"""), ("""gamma""", """weight"""), ("""pegasus""", """model"""), ] A__ : Dict = [ (""".output.dense""", """.fc2"""), ("""intermediate.LayerNorm""", """final_layer_norm"""), ("""intermediate.dense""", """fc1"""), ] A__ : int = ( INIT_COMMON + [ ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.out_proj"""), ("""attention.self""", """self_attn"""), ("""attention.encdec.LayerNorm""", """encoder_attn_layer_norm"""), ("""attention.encdec_output.dense""", """encoder_attn.out_proj"""), ("""attention.encdec""", """encoder_attn"""), ("""key""", """k_proj"""), ("""value""", """v_proj"""), ("""query""", """q_proj"""), ("""decoder.LayerNorm""", """decoder.layernorm_embedding"""), ] + END_COMMON ) A__ : Tuple = ( INIT_COMMON + [ ("""embeddings.word_embeddings""", """shared.weight"""), ("""embeddings.position_embeddings""", """embed_positions.weight"""), ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.output"""), ("""attention.self""", """self_attn.self"""), ("""encoder.LayerNorm""", """encoder.layernorm_embedding"""), ] + END_COMMON ) A__ : Tuple = [ """encdec/key/bias""", """encdec/query/bias""", """encdec/value/bias""", """self/key/bias""", """self/query/bias""", """self/value/bias""", """encdec_output/dense/bias""", """attention/output/dense/bias""", ] def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any ) -> List[str]: for tf_name, hf_name in patterns: __lowerCamelCase : Optional[int] = k.replace(UpperCAmelCase_ , UpperCAmelCase_ ) return k def UpperCAmelCase__ ( UpperCAmelCase_ : dict , UpperCAmelCase_ : dict ) -> BigBirdPegasusForConditionalGeneration: __lowerCamelCase : int = BigBirdPegasusConfig(**UpperCAmelCase_ ) __lowerCamelCase : Any = BigBirdPegasusForConditionalGeneration(UpperCAmelCase_ ) __lowerCamelCase : Union[str, Any] = torch_model.state_dict() __lowerCamelCase : Tuple = {} # separating decoder weights __lowerCamelCase : Dict = {k: tf_weights[k] for k in tf_weights if k.startswith('pegasus/decoder' )} __lowerCamelCase : str = {k: tf_weights[k] for k in tf_weights if not k.startswith('pegasus/decoder' )} for k, v in tqdm(decoder_weights.items() , 'tf -> hf conversion' ): __lowerCamelCase : Tuple = [k.endswith(UpperCAmelCase_ ) for ending in KEYS_TO_IGNORE] if any(UpperCAmelCase_ ): continue __lowerCamelCase : Tuple = DECODER_PATTERNS __lowerCamelCase : Optional[int] = rename_state_dict_key(UpperCAmelCase_ , UpperCAmelCase_ ) if new_k not in state_dict: raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): __lowerCamelCase : Union[str, Any] = v.T __lowerCamelCase : str = torch.from_numpy(UpperCAmelCase_ ) assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() , 'tf -> hf conversion' ): __lowerCamelCase : Optional[Any] = [k.endswith(UpperCAmelCase_ ) for ending in KEYS_TO_IGNORE] if any(UpperCAmelCase_ ): continue __lowerCamelCase : Dict = REMAINING_PATTERNS __lowerCamelCase : List[str] = rename_state_dict_key(UpperCAmelCase_ , UpperCAmelCase_ ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): __lowerCamelCase : List[str] = v.T __lowerCamelCase : List[str] = torch.from_numpy(UpperCAmelCase_ ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' __lowerCamelCase : Any = mapping['model.embed_positions.weight'] __lowerCamelCase : Union[str, Any] = mapping.pop('model.embed_positions.weight' ) __lowerCamelCase , __lowerCamelCase : List[str] = torch_model.load_state_dict(UpperCAmelCase_ , strict=UpperCAmelCase_ ) __lowerCamelCase : Any = [ k for k in missing if k not in [ 'final_logits_bias', 'model.encoder.embed_tokens.weight', 'model.decoder.embed_tokens.weight', 'lm_head.weight', ] ] assert unexpected_missing == [], F'no matches found for the following torch keys {unexpected_missing}' assert extra == [], F'no matches found for the following tf keys {extra}' return torch_model def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] ) -> Dict: __lowerCamelCase : int = tf.train.list_variables(UpperCAmelCase_ ) __lowerCamelCase : List[str] = {} __lowerCamelCase : List[Any] = ['global_step'] for name, shape in tqdm(UpperCAmelCase_ , desc='converting tf checkpoint to dict' ): __lowerCamelCase : Any = any(pat in name for pat in ignore_name ) if skip_key: continue __lowerCamelCase : Dict = tf.train.load_variable(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : List[Any] = array return tf_weights def UpperCAmelCase__ ( UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : dict ) -> Union[str, Any]: __lowerCamelCase : Optional[int] = get_tf_weights_as_numpy(UpperCAmelCase_ ) __lowerCamelCase : List[str] = convert_bigbird_pegasus(UpperCAmelCase_ , UpperCAmelCase_ ) torch_model.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": A__ : Any = argparse.ArgumentParser() parser.add_argument("""--tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""--save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") A__ : List[str] = parser.parse_args() A__ : Optional[int] = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
185
1
def __a ( lowerCAmelCase_ : int ) -> bool: '''simple docstring''' return sum(i for i in range(1 ,number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('''Program to check whether a number is a Perfect number or not...''') __A = int(input('''Enter number: ''').strip()) print(f'{number} is {"" if perfect(number) else "not "}a Perfect Number.')
277
import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def __a ( ) -> str: '''simple docstring''' UpperCAmelCase_= torch.nn.Linear(2 ,4 ) UpperCAmelCase_= torch.optim.AdamW(model.parameters() ,lr=1.0 ) UpperCAmelCase_= torch.optim.lr_scheduler.OneCycleLR(lowerCAmelCase_ ,max_lr=0.01 ,steps_per_epoch=2 ,epochs=1 ) UpperCAmelCase_= DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) UpperCAmelCase_= DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def __a ( lowerCAmelCase_ : Any ) -> Union[str, Any]: '''simple docstring''' return (model.weight.abs().sum() + model.bias.abs().sum()).item() def __a ( lowerCAmelCase_ : Tuple ) -> Tuple: '''simple docstring''' UpperCAmelCase_= torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(lowerCAmelCase_ ) class lowercase ( snake_case__): """simple docstring""" @require_cuda def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: UpperCAmelCase_= Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(__UpperCAmelCase ): UpperCAmelCase_= Accelerator(cpu=__UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: UpperCAmelCase_= Accelerator() UpperCAmelCase_= GradientState() assert state.num_steps == 1 UpperCAmelCase_= 4 assert state.num_steps == 4 assert state.sync_gradients is True UpperCAmelCase_= False assert state.sync_gradients is False GradientState._reset_state() def _SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: UpperCAmelCase_= Accelerator() UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_= create_components() ( ( UpperCAmelCase_ ), ( UpperCAmelCase_ ), ( UpperCAmelCase_ ), ( UpperCAmelCase_ ), ( UpperCAmelCase_ ), )= accelerator.prepare(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Dict: UpperCAmelCase_= Accelerator() UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_= create_components() accelerator.prepare(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*__UpperCAmelCase : Dict , **__UpperCAmelCase : Tuple ): pass with patch("""torch.cuda.set_device""" , __UpperCAmelCase ), patch_environment(ACCELERATE_TORCH_DEVICE="""cuda:64""" ): UpperCAmelCase_= Accelerator() self.assertEqual(str(accelerator.state.device ) , """cuda:64""" ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: UpperCAmelCase_= Accelerator() UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_= create_components() accelerator.prepare(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase_= get_signature(__UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(__UpperCAmelCase ) # make sure random weights don't match load_random_weights(__UpperCAmelCase ) self.assertTrue(abs(model_signature - get_signature(__UpperCAmelCase ) ) > 1E-3 ) # make sure loaded weights match accelerator.load_state(__UpperCAmelCase ) self.assertTrue(abs(model_signature - get_signature(__UpperCAmelCase ) ) < 1E-3 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: UpperCAmelCase_= Accelerator() UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_= create_components() accelerator.prepare(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase_= get_signature(__UpperCAmelCase ) # saving hook def save_config(__UpperCAmelCase : Tuple , __UpperCAmelCase : List[str] , __UpperCAmelCase : Tuple ): UpperCAmelCase_= {"""class_name""": models[0].__class__.__name__} with open(os.path.join(__UpperCAmelCase , """data.json""" ) , """w""" ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase ) # loading hook def load_config(__UpperCAmelCase : Tuple , __UpperCAmelCase : Union[str, Any] ): with open(os.path.join(__UpperCAmelCase , """data.json""" ) , """r""" ) as f: UpperCAmelCase_= json.load(__UpperCAmelCase ) UpperCAmelCase_= config["""class_name"""] UpperCAmelCase_= accelerator.register_save_state_pre_hook(__UpperCAmelCase ) UpperCAmelCase_= accelerator.register_load_state_pre_hook(__UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(__UpperCAmelCase ) # make sure random weights don't match with hooks load_random_weights(__UpperCAmelCase ) self.assertTrue(abs(model_signature - get_signature(__UpperCAmelCase ) ) > 1E-3 ) # random class name to verify correct one is loaded UpperCAmelCase_= """random""" # make sure loaded weights match with hooks accelerator.load_state(__UpperCAmelCase ) self.assertTrue(abs(model_signature - get_signature(__UpperCAmelCase ) ) < 1E-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(__UpperCAmelCase ) # make sure random weights don't match with hooks removed load_random_weights(__UpperCAmelCase ) self.assertTrue(abs(model_signature - get_signature(__UpperCAmelCase ) ) > 1E-3 ) # random class name to verify correct one is loaded UpperCAmelCase_= """random""" # make sure loaded weights match with hooks removed accelerator.load_state(__UpperCAmelCase ) self.assertTrue(abs(model_signature - get_signature(__UpperCAmelCase ) ) < 1E-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: UpperCAmelCase_= Accelerator() UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_= create_components() UpperCAmelCase_= None # This should work UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_= accelerator.prepare( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) self.assertTrue(dummy_obj is None ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: UpperCAmelCase_= Accelerator() UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_= create_components() UpperCAmelCase_= [1, 2, 3] # This should work UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_= accelerator.prepare( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) self.assertEqual( getattr(__UpperCAmelCase , """_is_accelerate_prepared""" , __UpperCAmelCase ) , __UpperCAmelCase , """Dummy object should have `_is_accelerate_prepared` set to `True`""" , ) self.assertEqual( getattr(__UpperCAmelCase , """_is_accelerate_prepared""" , __UpperCAmelCase ) , __UpperCAmelCase , """Model is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(__UpperCAmelCase , """_is_accelerate_prepared""" , __UpperCAmelCase ) , __UpperCAmelCase , """Optimizer is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(__UpperCAmelCase , """_is_accelerate_prepared""" , __UpperCAmelCase ) , __UpperCAmelCase , """Scheduler is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(__UpperCAmelCase , """_is_accelerate_prepared""" , __UpperCAmelCase ) , __UpperCAmelCase , """Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(__UpperCAmelCase , """_is_accelerate_prepared""" , __UpperCAmelCase ) , __UpperCAmelCase , """Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`""" , ) @slow @require_bnb def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: from transformers import AutoModelForCausalLM UpperCAmelCase_= AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , load_in_abit=__UpperCAmelCase , device_map={"""""": 0} , ) UpperCAmelCase_= Accelerator() # This should work UpperCAmelCase_= accelerator.prepare(__UpperCAmelCase ) @slow @require_bnb def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: from transformers import AutoModelForCausalLM UpperCAmelCase_= Accelerator() with init_empty_weights(): UpperCAmelCase_= AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , ) model.tie_weights() UpperCAmelCase_= infer_auto_device_map(__UpperCAmelCase ) UpperCAmelCase_= """cpu""" UpperCAmelCase_= AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , device_map=__UpperCAmelCase , load_in_abit=__UpperCAmelCase , llm_inta_enable_fpaa_cpu_offload=__UpperCAmelCase ) # This should not work and get value error with self.assertRaises(__UpperCAmelCase ): UpperCAmelCase_= accelerator.prepare(__UpperCAmelCase ) @slow @require_bnb @require_multi_gpu def _SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: from transformers import AutoModelForCausalLM UpperCAmelCase_= {"""distributed_type""": DistributedType.MULTI_GPU} with init_empty_weights(): UpperCAmelCase_= AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , ) model.tie_weights() UpperCAmelCase_= infer_auto_device_map(__UpperCAmelCase ) UpperCAmelCase_= 1 UpperCAmelCase_= AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , load_in_abit=__UpperCAmelCase , device_map=__UpperCAmelCase , ) UpperCAmelCase_= Accelerator() # This should not work and get value error with self.assertRaises(__UpperCAmelCase ): UpperCAmelCase_= accelerator.prepare(__UpperCAmelCase ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def _SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: from transformers import AutoModelForCausalLM with init_empty_weights(): UpperCAmelCase_= AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , ) UpperCAmelCase_= infer_auto_device_map(__UpperCAmelCase ) UpperCAmelCase_= 1 UpperCAmelCase_= AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , load_in_abit=__UpperCAmelCase , device_map=__UpperCAmelCase , ) UpperCAmelCase_= Accelerator() # This should work UpperCAmelCase_= accelerator.prepare(__UpperCAmelCase ) @require_cuda def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: UpperCAmelCase_= torch.nn.Linear(10 , 10 ) UpperCAmelCase_= torch.optim.SGD(model.parameters() , lr=0.01 ) UpperCAmelCase_= Accelerator(cpu=__UpperCAmelCase ) UpperCAmelCase_= accelerator.prepare(__UpperCAmelCase )
277
1
"""simple docstring""" def _snake_case ( lowercase__ : int ) -> bool: '''simple docstring''' lowerCAmelCase_ :List[Any] = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
84
"""simple docstring""" def _snake_case ( lowercase__ : list[int] ) -> list[list[int]]: '''simple docstring''' lowerCAmelCase_ :Optional[Any] = [] if len(lowercase__ ) == 1: return [nums.copy()] for _ in range(len(lowercase__ ) ): lowerCAmelCase_ :Optional[Any] = nums.pop(0 ) lowerCAmelCase_ :str = permute(lowercase__ ) for perm in permutations: perm.append(lowercase__ ) result.extend(lowercase__ ) nums.append(lowercase__ ) return result def _snake_case ( lowercase__ : Tuple ) -> List[str]: '''simple docstring''' def backtrack(lowercase__ : str ): if start == len(lowercase__ ) - 1: output.append(nums[:] ) else: for i in range(lowercase__ , len(lowercase__ ) ): lowerCAmelCase_ , lowerCAmelCase_ :str = nums[i], nums[start] backtrack(start + 1 ) lowerCAmelCase_ , lowerCAmelCase_ :str = nums[i], nums[start] # backtrack lowerCAmelCase_ :int = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function __UpperCAmelCase = permutea([1, 2, 3]) print(res) doctest.testmod()
84
1
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def UpperCamelCase_( _snake_case : Optional[int] , _snake_case : List[Any]=0.999 , _snake_case : Tuple="cosine" , ): """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(_snake_case : Optional[int] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_snake_case : Dict ): return math.exp(t * -12.0 ) else: raise ValueError(F'Unsupported alpha_tranform_type: {alpha_transform_type}' ) __a =[] for i in range(_snake_case ): __a =i / num_diffusion_timesteps __a =(i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_snake_case ) / alpha_bar_fn(_snake_case ) , _snake_case ) ) return torch.tensor(_snake_case , dtype=torch.floataa ) class __magic_name__ ( UpperCAmelCase_ , UpperCAmelCase_ ): SCREAMING_SNAKE_CASE = [e.name for e in KarrasDiffusionSchedulers] SCREAMING_SNAKE_CASE = 2 @register_to_config def __init__( self , __snake_case = 1000 , __snake_case = 0.0_0085 , __snake_case = 0.012 , __snake_case = "linear" , __snake_case = None , __snake_case = "epsilon" , __snake_case = "linspace" , __snake_case = 0 , ) -> Optional[int]: '''simple docstring''' if trained_betas is not None: __a =torch.tensor(__lowercase , dtype=torch.floataa ) elif beta_schedule == "linear": __a =torch.linspace(__lowercase , __lowercase , __lowercase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __a =( torch.linspace(beta_start**0.5 , beta_end**0.5 , __lowercase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __a =betas_for_alpha_bar(__lowercase ) else: raise NotImplementedError(f'{beta_schedule} does is not implemented for {self.__class__}' ) __a =1.0 - self.betas __a =torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(__lowercase , __lowercase , __lowercase ) def __magic_name__ ( self , __snake_case , __snake_case=None ) -> Any: '''simple docstring''' if schedule_timesteps is None: __a =self.timesteps __a =(schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __a =1 if len(__lowercase ) > 1 else 0 else: __a =timestep.cpu().item() if torch.is_tensor(__lowercase ) else timestep __a =self._index_counter[timestep_int] return indices[pos].item() @property def __magic_name__ ( self ) -> Tuple: '''simple docstring''' # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __magic_name__ ( self , __snake_case , __snake_case , ) -> torch.FloatTensor: '''simple docstring''' __a =self.index_for_timestep(__lowercase ) if self.state_in_first_order: __a =self.sigmas[step_index] else: __a =self.sigmas_interpol[step_index] __a =sample / ((sigma**2 + 1) ** 0.5) return sample def __magic_name__ ( self , __snake_case , __snake_case = None , __snake_case = None , ) -> Tuple: '''simple docstring''' __a =num_inference_steps __a =num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __a =np.linspace(0 , num_train_timesteps - 1 , __lowercase , dtype=__lowercase )[::-1].copy() elif self.config.timestep_spacing == "leading": __a =num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __a =(np.arange(0 , __lowercase ) * step_ratio).round()[::-1].copy().astype(__lowercase ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __a =num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __a =(np.arange(__lowercase , 0 , -step_ratio )).round().copy().astype(__lowercase ) timesteps -= 1 else: raise ValueError( f'{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.' ) __a =np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __a =torch.from_numpy(np.log(__lowercase ) ).to(__lowercase ) __a =np.interp(__lowercase , np.arange(0 , len(__lowercase ) ) , __lowercase ) __a =np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __a =torch.from_numpy(__lowercase ).to(device=__lowercase ) # interpolate sigmas __a =sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() __a =torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) __a =torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(__lowercase ).startswith('mps' ): # mps does not support float64 __a =torch.from_numpy(__lowercase ).to(__lowercase , dtype=torch.floataa ) else: __a =torch.from_numpy(__lowercase ).to(__lowercase ) # interpolate timesteps __a =self.sigma_to_t(__lowercase ).to(__lowercase , dtype=timesteps.dtype ) __a =torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() __a =torch.cat([timesteps[:1], interleaved_timesteps] ) __a =None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __a =defaultdict(__lowercase ) def __magic_name__ ( self , __snake_case ) -> List[str]: '''simple docstring''' # get log sigma __a =sigma.log() # get distribution __a =log_sigma - self.log_sigmas[:, None] # get sigmas range __a =dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) __a =low_idx + 1 __a =self.log_sigmas[low_idx] __a =self.log_sigmas[high_idx] # interpolate sigmas __a =(low - log_sigma) / (low - high) __a =w.clamp(0 , 1 ) # transform interpolation to time range __a =(1 - w) * low_idx + w * high_idx __a =t.view(sigma.shape ) return t @property def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' return self.sample is None def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case = True , ) -> Union[SchedulerOutput, Tuple]: '''simple docstring''' __a =self.index_for_timestep(__lowercase ) # advance index counter by 1 __a =timestep.cpu().item() if torch.is_tensor(__lowercase ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __a =self.sigmas[step_index] __a =self.sigmas_interpol[step_index + 1] __a =self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method __a =self.sigmas[step_index - 1] __a =self.sigmas_interpol[step_index] __a =self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __a =0 __a =sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __a =sigma_hat if self.state_in_first_order else sigma_interpol __a =sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __a =sigma_hat if self.state_in_first_order else sigma_interpol __a =model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('prediction_type not implemented yet: sample' ) else: raise ValueError( f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`' ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __a =(sample - pred_original_sample) / sigma_hat # 3. delta timestep __a =sigma_interpol - sigma_hat # store for 2nd order step __a =sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order __a =(sample - pred_original_sample) / sigma_interpol # 3. delta timestep __a =sigma_next - sigma_hat __a =self.sample __a =None __a =sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__lowercase ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , ) -> torch.FloatTensor: '''simple docstring''' # Make sure sigmas and timesteps have the same device and dtype as original_samples __a =self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(__lowercase ): # mps does not support float64 __a =self.timesteps.to(original_samples.device , dtype=torch.floataa ) __a =timesteps.to(original_samples.device , dtype=torch.floataa ) else: __a =self.timesteps.to(original_samples.device ) __a =timesteps.to(original_samples.device ) __a =[self.index_for_timestep(__lowercase , __lowercase ) for t in timesteps] __a =sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __a =sigma.unsqueeze(-1 ) __a =original_samples + noise * sigma return noisy_samples def __len__( self ) -> List[Any]: '''simple docstring''' return self.config.num_train_timesteps
367
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> int: '''simple docstring''' __a =[] __a =[] for i in range(self.num_layers ): __a =self.in_channels if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=__snake_case , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __a =resnets __a =attentions if self.add_downsample: __a =FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> Optional[Any]: '''simple docstring''' __a =() for resnet, attn in zip(self.resnets , self.attentions ): __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) __a =attn(__snake_case , __snake_case , deterministic=__snake_case ) output_states += (hidden_states,) if self.add_downsample: __a =self.downsamplers_a(__snake_case ) output_states += (hidden_states,) return hidden_states, output_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> int: '''simple docstring''' __a =[] for i in range(self.num_layers ): __a =self.in_channels if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=__snake_case , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =resnets if self.add_downsample: __a =FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case=True ) -> Optional[int]: '''simple docstring''' __a =() for resnet in self.resnets: __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) output_states += (hidden_states,) if self.add_downsample: __a =self.downsamplers_a(__snake_case ) output_states += (hidden_states,) return hidden_states, output_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =[] __a =[] for i in range(self.num_layers ): __a =self.in_channels if (i == self.num_layers - 1) else self.out_channels __a =self.prev_output_channel if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __a =resnets __a =attentions if self.add_upsample: __a =FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> List[Any]: '''simple docstring''' for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states __a =res_hidden_states_tuple[-1] __a =res_hidden_states_tuple[:-1] __a =jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) __a =attn(__snake_case , __snake_case , deterministic=__snake_case ) if self.add_upsample: __a =self.upsamplers_a(__snake_case ) return hidden_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =[] for i in range(self.num_layers ): __a =self.in_channels if (i == self.num_layers - 1) else self.out_channels __a =self.prev_output_channel if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =resnets if self.add_upsample: __a =FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> List[Any]: '''simple docstring''' for resnet in self.resnets: # pop res hidden states __a =res_hidden_states_tuple[-1] __a =res_hidden_states_tuple[:-1] __a =jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) if self.add_upsample: __a =self.upsamplers_a(__snake_case ) return hidden_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' # there is always at least one resnet __a =[ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] __a =[] for _ in range(self.num_layers ): __a =FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __a =FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =resnets __a =attentions def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> List[str]: '''simple docstring''' __a =self.resnets[0](__snake_case , __snake_case ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): __a =attn(__snake_case , __snake_case , deterministic=__snake_case ) __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) return hidden_states
308
0
'''simple docstring''' import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class __UpperCAmelCase : def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=13 , lowerCAmelCase_=7 , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=99 , lowerCAmelCase_=16 , lowerCAmelCase_=36 , lowerCAmelCase_=6 , lowerCAmelCase_=6 , lowerCAmelCase_=6 , lowerCAmelCase_=37 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=5_12 , lowerCAmelCase_=16 , lowerCAmelCase_=2 , lowerCAmelCase_=0.02 , lowerCAmelCase_=3 , lowerCAmelCase_=4 , lowerCAmelCase_=None , ): """simple docstring""" _snake_case = parent _snake_case = batch_size _snake_case = seq_length _snake_case = is_training _snake_case = use_input_mask _snake_case = use_token_type_ids _snake_case = use_labels _snake_case = vocab_size _snake_case = embedding_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_hidden_groups _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = type_sequence_label_size _snake_case = initializer_range _snake_case = num_labels _snake_case = num_choices _snake_case = scope def lowerCamelCase ( self ): """simple docstring""" _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case = None if self.use_input_mask: _snake_case = random_attention_mask([self.batch_size, self.seq_length] ) _snake_case = None if self.use_token_type_ids: _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _snake_case = None _snake_case = None _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _snake_case = ids_tensor([self.batch_size] , self.num_choices ) _snake_case = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase ( self ): """simple docstring""" return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = AlbertModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) _snake_case = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) _snake_case = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = AlbertForPreTraining(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , sentence_order_label=lowerCAmelCase_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = AlbertForMaskedLM(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = AlbertForQuestionAnswering(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = self.num_labels _snake_case = AlbertForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = self.num_labels _snake_case = AlbertForTokenClassification(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = self.num_choices _snake_case = AlbertForMultipleChoice(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _snake_case = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _snake_case = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _snake_case = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.prepare_config_and_inputs() ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) = config_and_inputs _snake_case = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): __lowercase = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) __lowercase = ( { """feature-extraction""": AlbertModel, """fill-mask""": AlbertForMaskedLM, """question-answering""": AlbertForQuestionAnswering, """text-classification""": AlbertForSequenceClassification, """token-classification""": AlbertForTokenClassification, """zero-shot""": AlbertForSequenceClassification, } if is_torch_available() else {} ) __lowercase = True def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False ): """simple docstring""" _snake_case = super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) if return_labels: if model_class in get_values(lowerCAmelCase_ ): _snake_case = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowerCAmelCase_ ) _snake_case = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ ) return inputs_dict def lowerCamelCase ( self ): """simple docstring""" _snake_case = AlbertModelTester(self ) _snake_case = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=37 ) def lowerCamelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _snake_case = type self.model_tester.create_and_check_model(*lowerCAmelCase_ ) @slow def lowerCamelCase ( self ): """simple docstring""" for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = AlbertModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @require_torch class __UpperCAmelCase ( unittest.TestCase ): @slow def lowerCamelCase ( self ): """simple docstring""" _snake_case = AlbertModel.from_pretrained('albert-base-v2' ) _snake_case = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) _snake_case = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _snake_case = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ )[0] _snake_case = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , lowerCAmelCase_ ) _snake_case = torch.tensor( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowerCAmelCase_ , atol=1E-4 ) )
42
from __future__ import annotations def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =sorted(numsa + numsa ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =divmod(len(lowerCAmelCase_ ), 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() _lowerCamelCase =[float(x) for x in input("Enter the elements of first array: ").split()] _lowerCamelCase =[float(x) for x in input("Enter the elements of second array: ").split()] print(f'The median of two arrays is: {median_of_two_arrays(array_a, array_a)}')
334
0
"""simple docstring""" import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class UpperCamelCase__( unittest.TestCase ): def snake_case__ ( self ) -> str: A__ = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) A__ = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(__UpperCAmelCase ) A__ = -1 A__ = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(__UpperCAmelCase ) A__ = model.generate(__UpperCAmelCase ,max_new_tokens=10 ,do_sample=__UpperCAmelCase ) A__ = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: A__ = TextStreamer(__UpperCAmelCase ) model.generate(__UpperCAmelCase ,max_new_tokens=10 ,do_sample=__UpperCAmelCase ,streamer=__UpperCAmelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer A__ = cs.out[:-1] self.assertEqual(__UpperCAmelCase ,__UpperCAmelCase ) def snake_case__ ( self ) -> Union[str, Any]: A__ = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) A__ = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(__UpperCAmelCase ) A__ = -1 A__ = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(__UpperCAmelCase ) A__ = model.generate(__UpperCAmelCase ,max_new_tokens=10 ,do_sample=__UpperCAmelCase ) A__ = tokenizer.decode(greedy_ids[0] ) A__ = TextIteratorStreamer(__UpperCAmelCase ) A__ = {'input_ids': input_ids, 'max_new_tokens': 10, 'do_sample': False, 'streamer': streamer} A__ = Thread(target=model.generate ,kwargs=__UpperCAmelCase ) thread.start() A__ = '' for new_text in streamer: streamer_text += new_text self.assertEqual(__UpperCAmelCase ,__UpperCAmelCase ) def snake_case__ ( self ) -> Dict: A__ = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) A__ = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(__UpperCAmelCase ) A__ = -1 A__ = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(__UpperCAmelCase ) A__ = model.generate(__UpperCAmelCase ,max_new_tokens=10 ,do_sample=__UpperCAmelCase ) A__ = greedy_ids[:, input_ids.shape[1] :] A__ = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: A__ = TextStreamer(__UpperCAmelCase ,skip_prompt=__UpperCAmelCase ) model.generate(__UpperCAmelCase ,max_new_tokens=10 ,do_sample=__UpperCAmelCase ,streamer=__UpperCAmelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer A__ = cs.out[:-1] self.assertEqual(__UpperCAmelCase ,__UpperCAmelCase ) def snake_case__ ( self ) -> Dict: # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them A__ = AutoTokenizer.from_pretrained('distilgpt2' ) A__ = AutoModelForCausalLM.from_pretrained('distilgpt2' ).to(__UpperCAmelCase ) A__ = -1 A__ = torch.ones((1, 5) ,device=__UpperCAmelCase ).long() * model.config.bos_token_id with CaptureStdout() as cs: A__ = TextStreamer(__UpperCAmelCase ,skip_special_tokens=__UpperCAmelCase ) model.generate(__UpperCAmelCase ,max_new_tokens=1 ,do_sample=__UpperCAmelCase ,streamer=__UpperCAmelCase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token A__ = cs.out[:-1] # Remove the final "\n" A__ = tokenizer(__UpperCAmelCase ,return_tensors='pt' ) self.assertEqual(streamer_text_tokenized.input_ids.shape ,(1, 1) ) def snake_case__ ( self ) -> int: A__ = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) A__ = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(__UpperCAmelCase ) A__ = -1 A__ = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(__UpperCAmelCase ) A__ = TextIteratorStreamer(__UpperCAmelCase ,timeout=0.0_0_1 ) A__ = {'input_ids': input_ids, 'max_new_tokens': 10, 'do_sample': False, 'streamer': streamer} A__ = Thread(target=model.generate ,kwargs=__UpperCAmelCase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(__UpperCAmelCase ): A__ = '' for new_text in streamer: streamer_text += new_text
363
"""simple docstring""" import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class UpperCamelCase__( __A , __A , __A , unittest.TestCase ): lowerCAmelCase__ : str = StableUnCLIPPipeline lowerCAmelCase__ : Union[str, Any] = TEXT_TO_IMAGE_PARAMS lowerCAmelCase__ : Optional[Any] = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase__ : int = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCAmelCase__ : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false lowerCAmelCase__ : Optional[Any] = False def snake_case__ ( self ) -> List[Any]: A__ = 32 A__ = embedder_hidden_size # prior components torch.manual_seed(0 ) A__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) A__ = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=__UpperCAmelCase ,projection_dim=__UpperCAmelCase ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=10_00 ,) ) torch.manual_seed(0 ) A__ = PriorTransformer( num_attention_heads=2 ,attention_head_dim=12 ,embedding_dim=__UpperCAmelCase ,num_layers=1 ,) torch.manual_seed(0 ) A__ = DDPMScheduler( variance_type='fixed_small_log' ,prediction_type='sample' ,num_train_timesteps=10_00 ,clip_sample=__UpperCAmelCase ,clip_sample_range=5.0 ,beta_schedule='squaredcos_cap_v2' ,) # regular denoising components torch.manual_seed(0 ) A__ = StableUnCLIPImageNormalizer(embedding_dim=__UpperCAmelCase ) A__ = DDPMScheduler(beta_schedule='squaredcos_cap_v2' ) torch.manual_seed(0 ) A__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) A__ = CLIPTextModel( CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=__UpperCAmelCase ,projection_dim=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=10_00 ,) ) torch.manual_seed(0 ) A__ = UNetaDConditionModel( sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') ,up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') ,block_out_channels=(32, 64) ,attention_head_dim=(2, 4) ,class_embed_type='projection' ,projection_class_embeddings_input_dim=embedder_projection_dim * 2 ,cross_attention_dim=__UpperCAmelCase ,layers_per_block=1 ,upcast_attention=__UpperCAmelCase ,use_linear_projection=__UpperCAmelCase ,) torch.manual_seed(0 ) A__ = DDIMScheduler( beta_schedule='scaled_linear' ,beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,prediction_type='v_prediction' ,set_alpha_to_one=__UpperCAmelCase ,steps_offset=1 ,) torch.manual_seed(0 ) A__ = AutoencoderKL() A__ = { # prior components 'prior_tokenizer': prior_tokenizer, 'prior_text_encoder': prior_text_encoder, 'prior': prior, 'prior_scheduler': prior_scheduler, # image noising components 'image_normalizer': image_normalizer, 'image_noising_scheduler': image_noising_scheduler, # regular denoising components 'tokenizer': tokenizer, 'text_encoder': text_encoder, 'unet': unet, 'scheduler': scheduler, 'vae': vae, } return components def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase=0 ) -> str: if str(__UpperCAmelCase ).startswith('mps' ): A__ = torch.manual_seed(__UpperCAmelCase ) else: A__ = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) A__ = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'prior_num_inference_steps': 2, 'output_type': 'numpy', } return inputs def snake_case__ ( self ) -> List[Any]: A__ = torch_device == 'cpu' self._test_attention_slicing_forward_pass(test_max_difference=__UpperCAmelCase ) def snake_case__ ( self ) -> int: A__ = torch_device in ['cpu', 'mps'] self._test_inference_batch_single_identical(test_max_difference=__UpperCAmelCase ) @slow @require_torch_gpu class UpperCamelCase__( unittest.TestCase ): def snake_case__ ( self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self ) -> List[Any]: A__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy' ) A__ = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' ,torch_dtype=torch.floataa ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() A__ = torch.Generator(device='cpu' ).manual_seed(0 ) A__ = pipe('anime turle' ,generator=__UpperCAmelCase ,output_type='np' ) A__ = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__UpperCAmelCase ,__UpperCAmelCase ) def snake_case__ ( self ) -> List[str]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() A__ = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' ,torch_dtype=torch.floataa ) A__ = pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() A__ = pipe( 'anime turtle' ,prior_num_inference_steps=2 ,num_inference_steps=2 ,output_type='np' ,) A__ = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
154
0
"""simple docstring""" import unittest from transformers import DonutProcessor __lowerCamelCase = "naver-clova-ix/donut-base" class UpperCamelCase__( unittest.TestCase ): def snake_case__ ( self ) -> Any: A__ = DonutProcessor.from_pretrained(A_ ) def snake_case__ ( self ) -> Optional[int]: A__ = { 'name': 'John Doe', 'age': '99', 'city': 'Atlanta', 'state': 'GA', 'zip': '30301', 'phone': '123-4567', 'nicknames': [{'nickname': 'Johnny'}, {'nickname': 'JD'}], } A__ = ( '<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>' '<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>' '<s_nicknames><s_nickname>Johnny</s_nickname>' '<sep/><s_nickname>JD</s_nickname></s_nicknames>' ) A__ = self.processor.tokenajson(A_ ) self.assertDictEqual(A_ ,A_ )
221
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig _lowercase = logging.get_logger(__name__) _lowercase = { '''Intel/dpt-large''': '''https://huggingface.co/Intel/dpt-large/resolve/main/config.json''', # See all DPT models at https://huggingface.co/models?filter=dpt } class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Tuple = '''dpt''' def __init__( self : str ,A_ : Tuple=768 ,A_ : int=12 ,A_ : Optional[int]=12 ,A_ : Optional[int]=3072 ,A_ : List[str]="gelu" ,A_ : str=0.0 ,A_ : int=0.0 ,A_ : str=0.02 ,A_ : str=1e-12 ,A_ : str=384 ,A_ : Dict=16 ,A_ : Union[str, Any]=3 ,A_ : Dict=False ,A_ : Any=True ,A_ : Optional[int]=[2, 5, 8, 11] ,A_ : Optional[Any]="project" ,A_ : Tuple=[4, 2, 1, 0.5] ,A_ : int=[96, 192, 384, 768] ,A_ : int=256 ,A_ : str=-1 ,A_ : Optional[int]=False ,A_ : Optional[int]=True ,A_ : Union[str, Any]=0.4 ,A_ : Union[str, Any]=255 ,A_ : Union[str, Any]=0.1 ,A_ : List[str]=[1, 1024, 24, 24] ,A_ : List[str]=[0, 1] ,A_ : List[Any]=None ,**A_ : Tuple ,) -> Union[str, Any]: super().__init__(**A_ ) A = hidden_size A = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('Initializing the config with a `BiT` backbone.' ) A = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, } A = BitConfig(**A_ ) elif isinstance(A_ ,A_ ): logger.info('Initializing the config with a `BiT` backbone.' ) A = BitConfig(**A_ ) elif isinstance(A_ ,A_ ): A = backbone_config else: raise ValueError( F'backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.' ) A = backbone_featmap_shape A = neck_ignore_stages if readout_type != "project": raise ValueError('Readout type must be \'project\' when using `DPT-hybrid` mode.' ) else: A = None A = None A = [] A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = initializer_range A = layer_norm_eps A = image_size A = patch_size A = num_channels A = qkv_bias A = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('Readout_type must be one of [\'ignore\', \'add\', \'project\']' ) A = readout_type A = reassemble_factors A = neck_hidden_sizes A = fusion_hidden_size A = head_in_index A = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) A = use_auxiliary_head A = auxiliary_loss_weight A = semantic_loss_ignore_index A = semantic_classifier_dropout def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: A = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: A = self.backbone_config.to_dict() A = self.__class__.model_type return output
74
0
import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( '''files''' , [ ['''full:README.md''', '''dataset_infos.json'''], ['''empty:README.md''', '''dataset_infos.json'''], ['''dataset_infos.json'''], ['''full:README.md'''], ] , ) def _lowerCAmelCase ( A__: Optional[int] , A__: Union[str, Any] ): '''simple docstring''' UpperCAmelCase = tmp_path_factory.mktemp('''dset_infos_dir''' ) if "full:README.md" in files: with open(dataset_infos_dir / '''README.md''' , '''w''' ) as f: f.write('''---\ndataset_info:\n dataset_size: 42\n---''' ) if "empty:README.md" in files: with open(dataset_infos_dir / '''README.md''' , '''w''' ) as f: f.write('''''' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / '''dataset_infos.json''' , '''w''' ) as f: f.write('''{"default": {"dataset_size": 42}}''' ) UpperCAmelCase = DatasetInfosDict.from_directory(A__ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( '''dataset_info''' , [ DatasetInfo(), DatasetInfo( description='''foo''' , features=Features({'''a''': Value('''int32''' )} ) , builder_name='''builder''' , config_name='''config''' , version='''1.0.0''' , splits=[{'''name''': '''train'''}] , download_size=42 , ), ] , ) def _lowerCAmelCase ( A__: Union[str, Any] , A__: DatasetInfo ): '''simple docstring''' UpperCAmelCase = str(A__ ) dataset_info.write_to_directory(A__ ) UpperCAmelCase = DatasetInfo.from_directory(A__ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(A__ , '''dataset_info.json''' ) ) def _lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase = DatasetInfo( description='''foo''' , citation='''bar''' , homepage='''https://foo.bar''' , license='''CC0''' , features=Features({'''a''': Value('''int32''' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='''builder''' , config_name='''config''' , version='''1.0.0''' , splits=[{'''name''': '''train''', '''num_examples''': 42}] , download_checksums={} , download_size=1337 , post_processing_size=442 , dataset_size=1234 , size_in_bytes=1337 + 442 + 1234 , ) UpperCAmelCase = dataset_info._to_yaml_dict() assert sorted(A__ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) UpperCAmelCase = yaml.safe_dump(A__ ) UpperCAmelCase = yaml.safe_load(A__ ) assert dataset_info_yaml_dict == reloaded def _lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase = DatasetInfo() UpperCAmelCase = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( '''dataset_infos_dict''' , [ DatasetInfosDict(), DatasetInfosDict({'''default''': DatasetInfo()} ), DatasetInfosDict({'''my_config_name''': DatasetInfo()} ), DatasetInfosDict( { '''default''': DatasetInfo( description='''foo''' , features=Features({'''a''': Value('''int32''' )} ) , builder_name='''builder''' , config_name='''config''' , version='''1.0.0''' , splits=[{'''name''': '''train'''}] , download_size=42 , ) } ), DatasetInfosDict( { '''v1''': DatasetInfo(dataset_size=42 ), '''v2''': DatasetInfo(dataset_size=1337 ), } ), ] , ) def _lowerCAmelCase ( A__: Optional[Any] , A__: DatasetInfosDict ): '''simple docstring''' UpperCAmelCase = str(A__ ) dataset_infos_dict.write_to_directory(A__ ) UpperCAmelCase = DatasetInfosDict.from_directory(A__ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): UpperCAmelCase = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml UpperCAmelCase = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(A__ , '''README.md''' ) )
152
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) __magic_name__ = {"configuration_beit": ["BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BeitConfig", "BeitOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ["BeitFeatureExtractor"] __magic_name__ = ["BeitImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ "BEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "BeitForImageClassification", "BeitForMaskedImageModeling", "BeitForSemanticSegmentation", "BeitModel", "BeitPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ "FlaxBeitForImageClassification", "FlaxBeitForMaskedImageModeling", "FlaxBeitModel", "FlaxBeitPreTrainedModel", ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
152
1
'''simple docstring''' from typing import Any class snake_case : """simple docstring""" def __init__( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = data lowerCamelCase_ = None class snake_case : """simple docstring""" def __init__( self ): """simple docstring""" lowerCamelCase_ = None def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.head while temp is not None: print(temp.data , end=" " ) lowerCamelCase_ = temp.next print() def snake_case ( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = Node(UpperCamelCase ) lowerCamelCase_ = self.head lowerCamelCase_ = new_node def snake_case ( self , UpperCamelCase , UpperCamelCase ): """simple docstring""" if node_data_a == node_data_a: return else: lowerCamelCase_ = self.head while node_a is not None and node_a.data != node_data_a: lowerCamelCase_ = node_a.next lowerCamelCase_ = self.head while node_a is not None and node_a.data != node_data_a: lowerCamelCase_ = node_a.next if node_a is None or node_a is None: return lowerCamelCase_ ,lowerCamelCase_ = node_a.data, node_a.data if __name__ == "__main__": a_ : Tuple = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print("""After swapping""") ll.print_list()
55
'''simple docstring''' import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class snake_case ( lowercase , unittest.TestCase ): """simple docstring""" _lowerCamelCase = BlenderbotSmallTokenizer _lowerCamelCase = False def snake_case ( self ): """simple docstring""" super().setUp() lowerCamelCase_ = ["__start__", "adapt", "act", "ap@@", "te", "__end__", "__unk__"] lowerCamelCase_ = dict(zip(UpperCamelCase , range(len(UpperCamelCase ) ) ) ) lowerCamelCase_ = ["#version: 0.2", "a p", "t e</w>", "ap t</w>", "a d", "ad apt</w>", "a c", "ac t</w>", ""] lowerCamelCase_ = {"unk_token": "__unk__", "bos_token": "__start__", "eos_token": "__end__"} lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(UpperCamelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(UpperCamelCase ) ) def snake_case ( self , **UpperCamelCase ): """simple docstring""" kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase ) def snake_case ( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = "adapt act apte" lowerCamelCase_ = "adapt act apte" return input_text, output_text def snake_case ( self ): """simple docstring""" lowerCamelCase_ = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowerCamelCase_ = "adapt act apte" lowerCamelCase_ = ["adapt", "act", "ap@@", "te"] lowerCamelCase_ = tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowerCamelCase_ = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] lowerCamelCase_ = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase ) , UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) assert tok("sam" ).input_ids == [1384] lowerCamelCase_ = "I am a small frog." lowerCamelCase_ = tok([src_text] , padding=UpperCamelCase , truncation=UpperCamelCase )["input_ids"] lowerCamelCase_ = tok.batch_decode(UpperCamelCase , skip_special_tokens=UpperCamelCase , clean_up_tokenization_spaces=UpperCamelCase )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def snake_case ( self ): """simple docstring""" lowerCamelCase_ = BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) lowerCamelCase_ = "I am a small frog ." lowerCamelCase_ = "." lowerCamelCase_ = tok(UpperCamelCase )["input_ids"] lowerCamelCase_ = tok(UpperCamelCase )["input_ids"] assert encoded[-1] == encoded_dot[0]
55
1
"""simple docstring""" _UpperCamelCase : Optional[int] = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' _UpperCamelCase : Optional[int] = [{'type': 'code', 'content': INSTALL_CONTENT}] _UpperCamelCase : Dict = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
186
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings _UpperCamelCase : Dict = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class snake_case ( UpperCAmelCase ): __magic_name__ = field(default=UpperCAmelCase , metadata={'''help''': '''Whether to use SortishSampler or not.'''} ) __magic_name__ = field( default=UpperCAmelCase , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) __magic_name__ = field( default=UpperCAmelCase , metadata={ '''help''': ( '''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `max_length` value of the model configuration.''' ) } , ) __magic_name__ = field( default=UpperCAmelCase , metadata={ '''help''': ( '''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `num_beams` value of the model configuration.''' ) } , ) __magic_name__ = field( default=UpperCAmelCase , metadata={ '''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.''' } , ) def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' a : List[Any] = super().to_dict() for k, v in d.items(): if isinstance(A , A ): a : str = v.to_dict() return d
186
1
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging UpperCAmelCase__ : Dict = logging.get_logger(__name__) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : List[str] = ['''input_features''', '''is_longer'''] def __init__( self : Dict , lowerCAmelCase_ : str=6_4 , lowerCAmelCase_ : Any=4_8_0_0_0 , lowerCAmelCase_ : Tuple=4_8_0 , lowerCAmelCase_ : str=1_0 , lowerCAmelCase_ : Union[str, Any]=1_0_2_4 , lowerCAmelCase_ : List[Any]=0.0 , lowerCAmelCase_ : str=False , lowerCAmelCase_ : float = 0 , lowerCAmelCase_ : float = 1_4_0_0_0 , lowerCAmelCase_ : int = None , lowerCAmelCase_ : str = "fusion" , lowerCAmelCase_ : str = "repeatpad" , **lowerCAmelCase_ : Any , ): """simple docstring""" super().__init__( feature_size=lowerCAmelCase_ , sampling_rate=lowerCAmelCase_ , padding_value=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , **lowerCAmelCase_ , ) _A: List[Any] = top_db _A: List[str] = truncation _A: Any = padding _A: List[str] = fft_window_size _A: List[Any] = (fft_window_size >> 1) + 1 _A: Optional[Any] = hop_length _A: Any = max_length_s _A: Dict = max_length_s * sampling_rate _A: Any = sampling_rate _A: List[Any] = frequency_min _A: int = frequency_max _A: str = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=lowerCAmelCase_ , min_frequency=lowerCAmelCase_ , max_frequency=lowerCAmelCase_ , sampling_rate=lowerCAmelCase_ , norm=lowerCAmelCase_ , mel_scale='''htk''' , ) _A: Optional[int] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=lowerCAmelCase_ , min_frequency=lowerCAmelCase_ , max_frequency=lowerCAmelCase_ , sampling_rate=lowerCAmelCase_ , norm='''slaney''' , mel_scale='''slaney''' , ) def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" _A: Tuple = copy.deepcopy(self.__dict__ ) _A: List[Any] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def __magic_name__ ( self : Dict , lowerCAmelCase_ : np.array , lowerCAmelCase_ : Optional[np.array] = None ): """simple docstring""" _A: Tuple = spectrogram( lowerCAmelCase_ , window_function(self.fft_window_size , '''hann''' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=lowerCAmelCase_ , log_mel='''dB''' , ) return log_mel_spectrogram.T def __magic_name__ ( self : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any] ): """simple docstring""" _A: Tuple = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk _A: List[str] = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk _A: Tuple = [0] # randomly choose index for each part _A: Union[str, Any] = np.random.choice(ranges[0] ) _A: Optional[Any] = np.random.choice(ranges[1] ) _A: List[Any] = np.random.choice(ranges[2] ) _A: List[str] = mel[idx_front : idx_front + chunk_frames, :] _A: List[Any] = mel[idx_middle : idx_middle + chunk_frames, :] _A: Dict = mel[idx_back : idx_back + chunk_frames, :] _A: Union[str, Any] = torch.tensor(mel[None, None, :] ) _A: int = torch.nn.functional.interpolate( lowerCAmelCase_ , size=[chunk_frames, 6_4] , mode='''bilinear''' , align_corners=lowerCAmelCase_ ) _A: int = mel_shrink[0][0].numpy() _A: Union[str, Any] = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def __magic_name__ ( self : Optional[Any] , lowerCAmelCase_ : np.array , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any ): """simple docstring""" if waveform.shape[0] > max_length: if truncation == "rand_trunc": _A: Union[str, Any] = True # random crop to max_length (for compatibility) -> this should be handled by self.pad _A: List[str] = len(lowerCAmelCase_ ) - max_length _A: List[Any] = np.random.randint(0 , overflow + 1 ) _A: str = waveform[idx : idx + max_length] _A: Tuple = self._np_extract_fbank_features(lowerCAmelCase_ , self.mel_filters_slaney )[None, :] elif truncation == "fusion": _A: Dict = self._np_extract_fbank_features(lowerCAmelCase_ , self.mel_filters ) _A: Optional[int] = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed _A: Optional[int] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. _A: Any = np.stack([mel, mel, mel, mel] , axis=0 ) _A: Dict = False else: _A: Any = self._random_mel_fusion(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _A: Optional[Any] = True else: raise NotImplementedError(F"""data_truncating {truncation} not implemented""" ) else: _A: Tuple = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": _A: List[str] = int(max_length / len(lowerCAmelCase_ ) ) _A: List[Any] = np.stack(np.tile(lowerCAmelCase_ , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": _A: Tuple = int(max_length / len(lowerCAmelCase_ ) ) _A: Any = np.stack(np.tile(lowerCAmelCase_ , lowerCAmelCase_ ) ) _A: str = np.pad(lowerCAmelCase_ , (0, max_length - waveform.shape[0]) , mode='''constant''' , constant_values=0 ) if truncation == "fusion": _A: int = self._np_extract_fbank_features(lowerCAmelCase_ , self.mel_filters ) _A: List[Any] = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: _A: Tuple = self._np_extract_fbank_features(lowerCAmelCase_ , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : Union[str, Any] , lowerCAmelCase_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowerCAmelCase_ : str = None , lowerCAmelCase_ : Optional[str] = None , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , **lowerCAmelCase_ : Optional[int] , ): """simple docstring""" _A: List[str] = truncation if truncation is not None else self.truncation _A: Optional[Any] = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" F""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" F""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) _A: str = isinstance(lowerCAmelCase_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) _A: Union[str, Any] = is_batched_numpy or ( isinstance(lowerCAmelCase_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _A: int = [np.asarray(lowerCAmelCase_ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase_ , np.ndarray ): _A: str = np.asarray(lowerCAmelCase_ , dtype=np.floataa ) elif isinstance(lowerCAmelCase_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _A: List[str] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _A: List[str] = [np.asarray(lowerCAmelCase_ )] # convert to mel spectrogram, truncate and pad if needed. _A: str = [ self._get_input_mel(lowerCAmelCase_ , max_length if max_length else self.nb_max_samples , lowerCAmelCase_ , lowerCAmelCase_ ) for waveform in raw_speech ] _A: Any = [] _A: Optional[int] = [] for mel, longer in padded_inputs: input_mel.append(lowerCAmelCase_ ) is_longer.append(lowerCAmelCase_ ) if truncation == "fusion" and sum(lowerCAmelCase_ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer _A: Optional[int] = np.random.randint(0 , len(lowerCAmelCase_ ) ) _A: Optional[int] = True if isinstance(input_mel[0] , lowerCAmelCase_ ): _A: int = [np.asarray(lowerCAmelCase_ , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool _A: Dict = [[longer] for longer in is_longer] _A: Optional[int] = {'''input_features''': input_mel, '''is_longer''': is_longer} _A: str = BatchFeature(lowerCAmelCase_ ) if return_tensors is not None: _A: Union[str, Any] = input_features.convert_to_tensors(lowerCAmelCase_ ) return input_features
121
from __future__ import annotations class UpperCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase_ : int ): """simple docstring""" _A: List[str] = data _A: Node | None = None _A: Node | None = None def lowerCamelCase__ ( a ) -> None: # In Order traversal of the tree if tree: display(tree.left ) print(tree.data ) display(tree.right ) def lowerCamelCase__ ( a ) -> int: return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def lowerCamelCase__ ( a ) -> bool: if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def lowerCamelCase__ ( ) -> None: # Main function for testing. _A: Optional[int] = Node(1 ) _A: int = Node(2 ) _A: str = Node(3 ) _A: Union[str, Any] = Node(4 ) _A: Dict = Node(5 ) _A: int = Node(6 ) _A: Optional[Any] = Node(7 ) _A: List[str] = Node(8 ) _A: int = Node(9 ) print(is_full_binary_tree(a ) ) print(depth_of_tree(a ) ) print('''Tree is: ''' ) display(a ) if __name__ == "__main__": main()
121
1
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging a = logging.get_logger(__name__) a = { "deepmind/language-perceiver": "https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json", # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class __a (UpperCamelCase_): '''simple docstring''' _SCREAMING_SNAKE_CASE :Tuple = """perceiver""" def __init__( self , _a=256 , _a=1_280 , _a=768 , _a=1 , _a=26 , _a=8 , _a=8 , _a=None , _a=None , _a="kv" , _a=1 , _a=1 , _a="gelu" , _a=0.1 , _a=0.02 , _a=1E-1_2 , _a=True , _a=262 , _a=2_048 , _a=56 , _a=[368, 496] , _a=16 , _a=1_920 , _a=16 , _a=[1, 16, 224, 224] , **_a , ) -> Union[str, Any]: """simple docstring""" super().__init__(**_a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = num_latents SCREAMING_SNAKE_CASE__ : Tuple = d_latents SCREAMING_SNAKE_CASE__ : Optional[int] = d_model SCREAMING_SNAKE_CASE__ : List[Any] = num_blocks SCREAMING_SNAKE_CASE__ : str = num_self_attends_per_block SCREAMING_SNAKE_CASE__ : str = num_self_attention_heads SCREAMING_SNAKE_CASE__ : Dict = num_cross_attention_heads SCREAMING_SNAKE_CASE__ : Dict = qk_channels SCREAMING_SNAKE_CASE__ : List[Any] = v_channels SCREAMING_SNAKE_CASE__ : Any = cross_attention_shape_for_attention SCREAMING_SNAKE_CASE__ : List[Any] = self_attention_widening_factor SCREAMING_SNAKE_CASE__ : Tuple = cross_attention_widening_factor SCREAMING_SNAKE_CASE__ : Tuple = hidden_act SCREAMING_SNAKE_CASE__ : Dict = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : List[str] = initializer_range SCREAMING_SNAKE_CASE__ : str = layer_norm_eps SCREAMING_SNAKE_CASE__ : int = use_query_residual # masked language modeling attributes SCREAMING_SNAKE_CASE__ : int = vocab_size SCREAMING_SNAKE_CASE__ : Optional[int] = max_position_embeddings # image classification attributes SCREAMING_SNAKE_CASE__ : str = image_size # flow attributes SCREAMING_SNAKE_CASE__ : int = train_size # multimodal autoencoding attributes SCREAMING_SNAKE_CASE__ : Optional[Any] = num_frames SCREAMING_SNAKE_CASE__ : Optional[int] = audio_samples_per_frame SCREAMING_SNAKE_CASE__ : Union[str, Any] = samples_per_patch SCREAMING_SNAKE_CASE__ : Optional[int] = output_shape class __a (UpperCamelCase_): '''simple docstring''' @property def _a ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": SCREAMING_SNAKE_CASE__ : str = {0: """batch""", 1: """choice""", 2: """sequence"""} else: SCREAMING_SNAKE_CASE__ : List[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""inputs""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] ) @property def _a ( self ) -> float: """simple docstring""" return 1E-4 def _a ( self , _a , _a = -1 , _a = -1 , _a = -1 , _a = False , _a = None , _a = 3 , _a = 40 , _a = 40 , ) -> Mapping[str, Any]: """simple docstring""" if isinstance(_a , _a ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE__ : Optional[int] = compute_effective_axis_dimension( _a , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE__ : List[str] = preprocessor.num_special_tokens_to_add(_a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = compute_effective_axis_dimension( _a , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_a ) # Generate dummy inputs according to compute batch and sequence SCREAMING_SNAKE_CASE__ : str = [""" """.join(["""a"""] ) * seq_length] * batch_size SCREAMING_SNAKE_CASE__ : Optional[int] = dict(preprocessor(_a , return_tensors=_a ) ) SCREAMING_SNAKE_CASE__ : List[str] = inputs.pop("""input_ids""" ) return inputs elif isinstance(_a , _a ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE__ : Dict = compute_effective_axis_dimension(_a , fixed_dimension=OnnxConfig.default_fixed_batch ) SCREAMING_SNAKE_CASE__ : Any = self._generate_dummy_images(_a , _a , _a , _a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = dict(preprocessor(images=_a , return_tensors=_a ) ) SCREAMING_SNAKE_CASE__ : Dict = inputs.pop("""pixel_values""" ) return inputs else: raise ValueError( """Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.""" )
359
"""simple docstring""" import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters a :Optional[Any] = logging.get_logger(__name__) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None ) -> List[str]: # Recurse if needed if "." in tensor_name: SCREAMING_SNAKE_CASE__ : List[Any] = tensor_name.split(""".""" ) for split in splits[:-1]: SCREAMING_SNAKE_CASE__ : Dict = getattr(__lowerCAmelCase , __lowerCAmelCase ) if new_module is None: raise ValueError(F'''{module} has no attribute {split}.''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] = new_module SCREAMING_SNAKE_CASE__ : Any = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(F'''{module} does not have a parameter or a buffer named {tensor_name}.''' ) SCREAMING_SNAKE_CASE__ : List[str] = tensor_name in module._buffers SCREAMING_SNAKE_CASE__ : Dict = getattr(__lowerCAmelCase , __lowerCAmelCase ) if old_value.device == torch.device("""meta""" ) and device not in ["meta", torch.device("""meta""" )] and value is None: raise ValueError(F'''{tensor_name} is on the meta device, we need a `value` to put in on {device}.''' ) SCREAMING_SNAKE_CASE__ : List[str] = False SCREAMING_SNAKE_CASE__ : str = False if is_buffer or not is_bitsandbytes_available(): SCREAMING_SNAKE_CASE__ : Optional[int] = False SCREAMING_SNAKE_CASE__ : List[Any] = False else: SCREAMING_SNAKE_CASE__ : str = hasattr(bnb.nn , """Params4bit""" ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) SCREAMING_SNAKE_CASE__ : str = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: SCREAMING_SNAKE_CASE__ : Dict = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: SCREAMING_SNAKE_CASE__ : Tuple = old_value.to(__lowerCAmelCase ) elif isinstance(__lowerCAmelCase , torch.Tensor ): SCREAMING_SNAKE_CASE__ : int = value.to("""cpu""" ) if value.dtype == torch.inta: SCREAMING_SNAKE_CASE__ : str = version.parse(importlib.metadata.version("""bitsandbytes""" ) ) > version.parse( """0.37.2""" ) if not is_abit_serializable: raise ValueError( """Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. """ """Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.""" ) else: SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.tensor(__lowerCAmelCase , device="""cpu""" ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , __lowerCAmelCase ) and fpaa_statistics is None: SCREAMING_SNAKE_CASE__ : Optional[int] = new_value.T SCREAMING_SNAKE_CASE__ : Union[str, Any] = old_value.__dict__ if is_abit: SCREAMING_SNAKE_CASE__ : str = bnb.nn.IntaParams(__lowerCAmelCase , requires_grad=__lowerCAmelCase , **__lowerCAmelCase ).to(__lowerCAmelCase ) elif is_abit: SCREAMING_SNAKE_CASE__ : Union[str, Any] = bnb.nn.Paramsabit(__lowerCAmelCase , requires_grad=__lowerCAmelCase , **__lowerCAmelCase ).to(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = new_value if fpaa_statistics is not None: setattr(module.weight , """SCB""" , fpaa_statistics.to(__lowerCAmelCase ) ) else: if value is None: SCREAMING_SNAKE_CASE__ : str = old_value.to(__lowerCAmelCase ) elif isinstance(__lowerCAmelCase , torch.Tensor ): SCREAMING_SNAKE_CASE__ : List[str] = value.to(__lowerCAmelCase ) else: SCREAMING_SNAKE_CASE__ : Optional[int] = torch.tensor(__lowerCAmelCase , device=__lowerCAmelCase ) if is_buffer: SCREAMING_SNAKE_CASE__ : List[str] = new_value else: SCREAMING_SNAKE_CASE__ : List[Any] = nn.Parameter(__lowerCAmelCase , requires_grad=old_value.requires_grad ) SCREAMING_SNAKE_CASE__ : Dict = new_value def _lowercase ( __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=False ) -> List[Any]: for name, module in model.named_children(): if current_key_name is None: SCREAMING_SNAKE_CASE__ : Union[str, Any] = [] current_key_name.append(__lowerCAmelCase ) if (isinstance(__lowerCAmelCase , nn.Linear ) or isinstance(__lowerCAmelCase , __lowerCAmelCase )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in """.""".join(__lowerCAmelCase ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = module.weight.shape else: SCREAMING_SNAKE_CASE__ : str = module.in_features SCREAMING_SNAKE_CASE__ : Dict = module.out_features if quantization_config.quantization_method() == "llm_int8": SCREAMING_SNAKE_CASE__ : Dict = bnb.nn.LinearabitLt( __lowerCAmelCase , __lowerCAmelCase , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) SCREAMING_SNAKE_CASE__ : Tuple = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: SCREAMING_SNAKE_CASE__ : Optional[int] = bnb.nn.Linearabit( __lowerCAmelCase , __lowerCAmelCase , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) SCREAMING_SNAKE_CASE__ : int = True # Store the module class in case we need to transpose the weight later SCREAMING_SNAKE_CASE__ : Dict = type(__lowerCAmelCase ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(__lowerCAmelCase ) if len(list(module.children() ) ) > 0: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = _replace_with_bnb_linear( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , has_been_replaced=__lowerCAmelCase , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def _lowercase ( __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None ) -> str: SCREAMING_SNAKE_CASE__ : int = ["""lm_head"""] if modules_to_not_convert is None else modules_to_not_convert SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = _replace_with_bnb_linear( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if not has_been_replaced: logger.warning( """You are loading your model in 8bit or 4bit but no linear modules were found in your model.""" """ Please double check your model architecture, or submit an issue on github if you think this is""" """ a bug.""" ) return model def _lowercase ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Any: warnings.warn( """`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead""" , __lowerCAmelCase , ) return replace_with_bnb_linear(*__lowerCAmelCase , **__lowerCAmelCase ) def _lowercase ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Union[str, Any]: warnings.warn( """`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead""" , __lowerCAmelCase , ) return set_module_quantized_tensor_to_device(*__lowerCAmelCase , **__lowerCAmelCase ) def _lowercase ( __lowerCAmelCase ) -> Tuple: SCREAMING_SNAKE_CASE__ : List[Any] = deepcopy(__lowerCAmelCase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() SCREAMING_SNAKE_CASE__ : List[str] = find_tied_parameters(__lowerCAmelCase ) # For compatibility with Accelerate < 0.18 if isinstance(__lowerCAmelCase , __lowerCAmelCase ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: SCREAMING_SNAKE_CASE__ : List[Any] = sum(__lowerCAmelCase , [] ) SCREAMING_SNAKE_CASE__ : str = len(__lowerCAmelCase ) > 0 # Check if it is a base model SCREAMING_SNAKE_CASE__ : Optional[int] = not hasattr(__lowerCAmelCase , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head SCREAMING_SNAKE_CASE__ : int = list(model.named_children() ) SCREAMING_SNAKE_CASE__ : str = [list_modules[-1][0]] # add last module together with tied weights SCREAMING_SNAKE_CASE__ : Any = set(__lowerCAmelCase ) - set(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Any = list(set(__lowerCAmelCase ) ) + list(__lowerCAmelCase ) # remove ".weight" from the keys SCREAMING_SNAKE_CASE__ : Any = [""".weight""", """.bias"""] SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: SCREAMING_SNAKE_CASE__ : Optional[int] = name.replace(__lowerCAmelCase , """""" ) filtered_module_names.append(__lowerCAmelCase ) return filtered_module_names
56
0
from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __A = logging.get_logger(__name__) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = ['''input_values''', '''padding_mask'''] def __init__( self , lowerCamelCase__ = 1 , lowerCamelCase__ = 24_000 , lowerCamelCase__ = 0.0 , lowerCamelCase__ = None , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> Union[str, Any]: '''simple docstring''' super().__init__(feature_size=lowerCamelCase__ , sampling_rate=lowerCamelCase__ , padding_value=lowerCamelCase__ , **lowerCamelCase__ ) __lowerCamelCase = chunk_length_s __lowerCamelCase = overlap @property def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = False , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , ) -> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" f""" {self.sampling_rate}. Please make sure that the provided audio input was sampled with""" f""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) if padding and truncation: raise ValueError('Both padding and truncation were set. Make sure you only set one.' ) elif padding is None: # by default let's pad the inputs __lowerCamelCase = True __lowerCamelCase = bool( isinstance(lowerCamelCase__ , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: __lowerCamelCase = [np.asarray(lowerCamelCase__ , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(lowerCamelCase__ , np.ndarray ): __lowerCamelCase = np.asarray(lowerCamelCase__ , dtype=np.floataa ) elif isinstance(lowerCamelCase__ , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): __lowerCamelCase = raw_audio.astype(np.floataa ) # always return batch if not is_batched: __lowerCamelCase = [np.asarray(lowerCamelCase__ ).T] # verify inputs are valid for idx, example in enumerate(lowerCamelCase__ ): if example.ndim > 2: raise ValueError(f"""Expected input shape (channels, length) but got shape {example.shape}""" ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(f"""Expected mono audio but example has {example.shape[-1]} channels""" ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(f"""Expected stereo audio but example has {example.shape[-1]} channels""" ) __lowerCamelCase = None __lowerCamelCase = BatchFeature({'input_values': raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: __lowerCamelCase = min(array.shape[0] for array in raw_audio ) __lowerCamelCase = int(np.floor(max_length / self.chunk_stride ) ) __lowerCamelCase = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: __lowerCamelCase = max(array.shape[0] for array in raw_audio ) __lowerCamelCase = int(np.ceil(max_length / self.chunk_stride ) ) __lowerCamelCase = (nb_step - 1) * self.chunk_stride + self.chunk_length __lowerCamelCase = 'max_length' else: __lowerCamelCase = input_values # normal padding on batch if padded_inputs is None: __lowerCamelCase = self.pad( lowerCamelCase__ , max_length=lowerCamelCase__ , truncation=lowerCamelCase__ , padding=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , ) if padding: __lowerCamelCase = padded_inputs.pop('attention_mask' ) __lowerCamelCase = [] for example in padded_inputs.pop('input_values' ): if self.feature_size == 1: __lowerCamelCase = example[..., None] input_values.append(example.T ) __lowerCamelCase = input_values if return_tensors is not None: __lowerCamelCase = padded_inputs.convert_to_tensors(lowerCamelCase__ ) return padded_inputs
90
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class __lowerCAmelCase : """simple docstring""" snake_case_ = 42 # [batch_size x 3] snake_case_ = 42 # [batch_size x 3] snake_case_ = 42 # [batch_size x 3] snake_case_ = 42 # [batch_size x 3] snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def lowercase_ ( self ) -> torch.Tensor: '''simple docstring''' __lowerCamelCase = torch.arange(self.height * self.width ) __lowerCamelCase = torch.stack( [ pixel_indices % self.width, torch.div(lowerCamelCase__ , self.width , rounding_mode='trunc' ), ] , axis=1 , ) return coords @property def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase , *__lowerCamelCase = self.shape __lowerCamelCase = int(np.prod(lowerCamelCase__ ) ) __lowerCamelCase = self.get_image_coords() __lowerCamelCase = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) __lowerCamelCase = self.get_camera_rays(lowerCamelCase__ ) __lowerCamelCase = rays.view(lowerCamelCase__ , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def lowercase_ ( self , lowerCamelCase__ ) -> torch.Tensor: '''simple docstring''' __lowerCamelCase , *__lowerCamelCase , __lowerCamelCase = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] __lowerCamelCase = coords.view(lowerCamelCase__ , -1 , 2 ) __lowerCamelCase = self.resolution() __lowerCamelCase = self.fov() __lowerCamelCase = (flat.float() / (res - 1)) * 2 - 1 __lowerCamelCase = fracs * torch.tan(fov / 2 ) __lowerCamelCase = fracs.view(lowerCamelCase__ , -1 , 2 ) __lowerCamelCase = ( self.z.view(lowerCamelCase__ , 1 , 3 ) + self.x.view(lowerCamelCase__ , 1 , 3 ) * fracs[:, :, :1] + self.y.view(lowerCamelCase__ , 1 , 3 ) * fracs[:, :, 1:] ) __lowerCamelCase = directions / directions.norm(dim=-1 , keepdim=lowerCamelCase__ ) __lowerCamelCase = torch.stack( [ torch.broadcast_to(self.origin.view(lowerCamelCase__ , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(lowerCamelCase__ , *lowerCamelCase__ , 2 , 3 ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> "DifferentiableProjectiveCamera": '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=lowerCamelCase__ , height=lowerCamelCase__ , x_fov=self.x_fov , y_fov=self.y_fov , ) def lowerCamelCase_ ( UpperCamelCase__ : int ) -> DifferentiableProjectiveCamera: """simple docstring""" __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = [] for theta in np.linspace(0 , 2 * np.pi , num=20 ): __lowerCamelCase = np.array([np.sin(UpperCamelCase__ ), np.cos(UpperCamelCase__ ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) __lowerCamelCase = -z * 4 __lowerCamelCase = np.array([np.cos(UpperCamelCase__ ), -np.sin(UpperCamelCase__ ), 0.0] ) __lowerCamelCase = np.cross(UpperCamelCase__ , UpperCamelCase__ ) origins.append(UpperCamelCase__ ) xs.append(UpperCamelCase__ ) ys.append(UpperCamelCase__ ) zs.append(UpperCamelCase__ ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(UpperCamelCase__ , axis=0 ) ).float() , x=torch.from_numpy(np.stack(UpperCamelCase__ , axis=0 ) ).float() , y=torch.from_numpy(np.stack(UpperCamelCase__ , axis=0 ) ).float() , z=torch.from_numpy(np.stack(UpperCamelCase__ , axis=0 ) ).float() , width=UpperCamelCase__ , height=UpperCamelCase__ , x_fov=0.7 , y_fov=0.7 , shape=(1, len(UpperCamelCase__ )) , )
90
1
"""simple docstring""" import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) SCREAMING_SNAKE_CASE__:Optional[int] = """\ Text data. Second line of data.""" SCREAMING_SNAKE_CASE__:int = """file""" @pytest.fixture(scope="session" ) def _lowerCamelCase( a ): __a = tmp_path_factory.mktemp("data" ) / (FILE_PATH + ".zstd") __a = bytes(a , "utf-8" ) with zstd.open(a , "wb" ) as f: f.write(a ) return path @pytest.fixture def _lowerCamelCase( a ): with open(os.path.join(tmpfs.local_root_dir , a ) , "w" ) as f: f.write(a ) return FILE_PATH @pytest.mark.parametrize("compression_format" , ["gzip", "xz", "zstd"] ) def _lowerCamelCase( a , a , a , a , a , a ): __a = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_path} __a = input_paths[compression_format] __a = tmp_path / "cache" __a = DownloadConfig(cache_dir=a , extract_compressed_file=a ) __a = cached_path(a , download_config=a ) with open(a ) as f: __a = f.read() with open(a ) as f: __a = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("default_extracted" , [True, False] ) @pytest.mark.parametrize("default_cache_dir" , [True, False] ) def _lowerCamelCase( a , a , a , a , a ): __a = "custom_cache" __a = "custom_extracted_dir" __a = tmp_path / "custom_extracted_path" if default_extracted: __a = ("downloads" if default_cache_dir else custom_cache_dir, "extracted") else: monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_DIR" , a ) monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH" , str(a ) ) __a = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) __a = xz_file __a = ( DownloadConfig(extract_compressed_file=a ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=a ) ) __a = cached_path(a , download_config=a ) assert Path(a ).parent.parts[-2:] == expected def _lowerCamelCase( a ): # absolute path __a = str(Path(a ).resolve() ) assert cached_path(a ) == text_file # relative path __a = str(Path(a ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(a ) == text_file def _lowerCamelCase( a ): # absolute path __a = str(tmp_path.resolve() / "__missing_file__.txt" ) with pytest.raises(a ): cached_path(a ) # relative path __a = "./__missing_file__.txt" with pytest.raises(a ): cached_path(a ) def _lowerCamelCase( a ): __a = get_from_cache(F"tmp://{tmpfs_file}" ) with open(a ) as f: __a = f.read() assert output_file_content == FILE_CONTENT @patch("datasets.config.HF_DATASETS_OFFLINE" , a ) def _lowerCamelCase( ): with pytest.raises(a ): cached_path("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , a ) def _lowerCamelCase( a ): __a = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(a ): http_get("https://huggingface.co" , temp_file=a ) with pytest.raises(a ): http_head("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , a ) def _lowerCamelCase( a ): __a = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(a ): ftp_get("ftp://huggingface.co" , temp_file=a ) with pytest.raises(a ): ftp_head("ftp://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , a ) def _lowerCamelCase( a ): __a = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(a ): fsspec_get("s3://huggingface.co" , temp_file=a ) with pytest.raises(a ): fsspec_head("s3://huggingface.co" )
268
"""simple docstring""" import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__:int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__:List[Any] = {"""vocab_file""": """vocab.json"""} SCREAMING_SNAKE_CASE__:Optional[int] = { """vocab_file""": { """mgp-str""": """https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json""", } } SCREAMING_SNAKE_CASE__:Optional[Any] = {"""mgp-str""": 27} class snake_case__ ( snake_case_ ): _snake_case : Tuple = VOCAB_FILES_NAMES _snake_case : Tuple = PRETRAINED_VOCAB_FILES_MAP _snake_case : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , lowerCamelCase , lowerCamelCase="[GO]" , lowerCamelCase="[GO]" , lowerCamelCase="[s]" , lowerCamelCase="[GO]" , **lowerCamelCase ): super().__init__( unk_token=lowerCamelCase , bos_token=lowerCamelCase , eos_token=lowerCamelCase , pad_token=lowerCamelCase , **lowerCamelCase , ) with open(lowerCamelCase , encoding="utf-8" ) as vocab_handle: __a = json.load(lowerCamelCase ) __a = {v: k for k, v in self.vocab.items()} @property def a__ ( self ): return len(self.vocab ) def a__ ( self ): return dict(self.vocab , **self.added_tokens_encoder ) def a__ ( self , lowerCamelCase ): __a = [] for s in text: char_tokens.extend(lowerCamelCase ) return char_tokens def a__ ( self , lowerCamelCase ): return self.vocab.get(lowerCamelCase , self.vocab.get(self.unk_token ) ) def a__ ( self , lowerCamelCase ): return self.decoder.get(lowerCamelCase ) def a__ ( self , lowerCamelCase , lowerCamelCase = None ): if not os.path.isdir(lowerCamelCase ): logger.error("Vocabulary path ({}) should be a directory".format(lowerCamelCase ) ) return __a = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) with open(lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=lowerCamelCase , ensure_ascii=lowerCamelCase ) + "\n" ) return (vocab_file,)
268
1
"""simple docstring""" import cva import numpy as np class __A : """simple docstring""" def __init__( self , __A , __A ) -> int: if k in (0.04, 0.06): a =k a =window_size else: raise ValueError('''invalid k value''' ) def __str__( self ) -> str: return str(self.k ) def SCREAMING_SNAKE_CASE ( self , __A ) -> tuple[cva.Mat, list[list[int]]]: a =cva.imread(__A , 0 ) a , a =img.shape a =[] a =img.copy() a =cva.cvtColor(__A , cva.COLOR_GRAY2RGB ) a , a =np.gradient(__A ) a =dx**2 a =dy**2 a =dx * dy a =0.04 a =self.window_size // 2 for y in range(__A , h - offset ): for x in range(__A , w - offset ): a =ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() a =iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() a =ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() a =(wxx * wyy) - (wxy**2) a =wxx + wyy a =det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": lowerCamelCase_ : List[Any] = HarrisCorner(0.04, 3) lowerCamelCase_ , lowerCamelCase_ : int = edge_detect.detect("""path_to_image""") cva.imwrite("""detect.png""", color_img)
81
import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = 1.5 lowercase = int(factor * num_class_images ) lowercase = ClipClient( url='https://knn.laion.ai/knn-service' , indice_name='laion_400m' , num_images=__SCREAMING_SNAKE_CASE , aesthetic_weight=0.1 ) os.makedirs(F'''{class_data_dir}/images''' , exist_ok=__SCREAMING_SNAKE_CASE ) if len(list(Path(F'''{class_data_dir}/images''' ).iterdir() ) ) >= num_class_images: return while True: lowercase = client.query(text=__SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ) >= factor * num_class_images or num_images > 1e4: break else: lowercase = int(factor * num_images ) lowercase = ClipClient( url='https://knn.laion.ai/knn-service' , indice_name='laion_400m' , num_images=__SCREAMING_SNAKE_CASE , aesthetic_weight=0.1 , ) lowercase = 0 lowercase = 0 lowercase = tqdm(desc='downloading real regularization images' , total=__SCREAMING_SNAKE_CASE ) with open(F'''{class_data_dir}/caption.txt''' , 'w' ) as fa, open(F'''{class_data_dir}/urls.txt''' , 'w' ) as fa, open( F'''{class_data_dir}/images.txt''' , 'w' ) as fa: while total < num_class_images: lowercase = class_images[count] count += 1 try: lowercase = requests.get(images['url'] ) if img.status_code == 200: lowercase = Image.open(BytesIO(img.content ) ) with open(F'''{class_data_dir}/images/{total}.jpg''' , 'wb' ) as f: f.write(img.content ) fa.write(images['caption'] + '\n' ) fa.write(images['url'] + '\n' ) fa.write(F'''{class_data_dir}/images/{total}.jpg''' + '\n' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def UpperCAmelCase_ ( ): lowercase = argparse.ArgumentParser('' , add_help=__SCREAMING_SNAKE_CASE ) parser.add_argument('--class_prompt' , help='text prompt to retrieve images' , required=__SCREAMING_SNAKE_CASE , type=__SCREAMING_SNAKE_CASE ) parser.add_argument('--class_data_dir' , help='path to save images' , required=__SCREAMING_SNAKE_CASE , type=__SCREAMING_SNAKE_CASE ) parser.add_argument('--num_class_images' , help='number of images to download' , default=200 , type=__SCREAMING_SNAKE_CASE ) return parser.parse_args() if __name__ == "__main__": UpperCAmelCase = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
195
0
"""simple docstring""" import copy import re class __UpperCamelCase : SCREAMING_SNAKE_CASE = "hp" SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = None @classmethod def SCREAMING_SNAKE_CASE__ (cls : List[str] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : str): A = prefix A = defaults cls.build_naming_info() @staticmethod def SCREAMING_SNAKE_CASE__ (__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Any]): if len(__SCREAMING_SNAKE_CASE) == 0: return "" A = None if any(char.isdigit() for char in word): raise Exception(F"""Parameters should not contain numbers: '{word}' contains a number""") if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 , len(__SCREAMING_SNAKE_CASE) + 1): A = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: A = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(__SCREAMING_SNAKE_CASE : Optional[int]): A = "" while integer != 0: A = chr(ord("A") + integer % 1_0) + s integer //= 1_0 return s A = 0 while True: A = word + "#" + int_to_alphabetic(__SCREAMING_SNAKE_CASE) if sword in info["reverse_short_word"]: continue else: A = sword break A = short_word A = word return short_word @staticmethod def SCREAMING_SNAKE_CASE__ (__SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any]): A = param_name.split("_") A = [TrialShortNamer.shortname_for_word(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name A = ["", "_"] for separator in separators: A = separator.join(__SCREAMING_SNAKE_CASE) if shortname not in info["reverse_short_param"]: A = shortname A = param_name return shortname return param_name @staticmethod def SCREAMING_SNAKE_CASE__ (__SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Any): A = TrialShortNamer.shortname_for_key(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) A = short_name A = param_name @classmethod def SCREAMING_SNAKE_CASE__ (cls : Optional[Any]): if cls.NAMING_INFO is not None: return A = { "short_word": {}, "reverse_short_word": {}, "short_param": {}, "reverse_short_param": {}, } A = list(cls.DEFAULTS.keys()) for k in field_keys: cls.add_new_param_name(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) A = info @classmethod def SCREAMING_SNAKE_CASE__ (cls : Optional[int] , __SCREAMING_SNAKE_CASE : List[str]): cls.build_naming_info() assert cls.PREFIX is not None A = [copy.copy(cls.PREFIX)] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(F"""You should provide a default value for the param name {k} with value {v}""") if v == cls.DEFAULTS[k]: # The default value is not added to the name continue A = cls.NAMING_INFO["short_param"][k] if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): A = 1 if v else 0 A = "" if isinstance(__SCREAMING_SNAKE_CASE , (int, float)) else "-" A = F"""{key}{sep}{v}""" name.append(__SCREAMING_SNAKE_CASE) return "_".join(__SCREAMING_SNAKE_CASE) @classmethod def SCREAMING_SNAKE_CASE__ (cls : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple): A = repr[len(cls.PREFIX) + 1 :] if repr == "": A = [] else: A = repr.split("_") A = {} for value in values: if "-" in value: A , A = value.split("-") else: A = re.sub("[0-9.]" , "" , __SCREAMING_SNAKE_CASE) A = float(re.sub("[^0-9.]" , "" , __SCREAMING_SNAKE_CASE)) A = cls.NAMING_INFO["reverse_short_param"][p_k] A = p_v for k in cls.DEFAULTS: if k not in parameters: A = cls.DEFAULTS[k] return parameters
57
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class __UpperCamelCase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ (self : Dict): A = tempfile.mkdtemp() A = BlipImageProcessor() A = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model") A = BlipaProcessor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) processor.save_pretrained(self.tmpdirname) def SCREAMING_SNAKE_CASE__ (self : Dict , **__SCREAMING_SNAKE_CASE : Any): return AutoProcessor.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE).tokenizer def SCREAMING_SNAKE_CASE__ (self : Tuple , **__SCREAMING_SNAKE_CASE : int): return AutoProcessor.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE).image_processor def SCREAMING_SNAKE_CASE__ (self : Optional[int]): shutil.rmtree(self.tmpdirname) def SCREAMING_SNAKE_CASE__ (self : Any): A = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta)] A = [Image.fromarray(np.moveaxis(__SCREAMING_SNAKE_CASE , 0 , -1)) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE__ (self : Any): A = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) A = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)") A = self.get_image_processor(do_normalize=__SCREAMING_SNAKE_CASE , padding_value=1.0) A = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__SCREAMING_SNAKE_CASE , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , __SCREAMING_SNAKE_CASE) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , __SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : Optional[Any]): A = self.get_image_processor() A = self.get_tokenizer() A = BlipaProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE) A = self.prepare_image_inputs() A = image_processor(__SCREAMING_SNAKE_CASE , return_tensors="np") A = processor(images=__SCREAMING_SNAKE_CASE , return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2) def SCREAMING_SNAKE_CASE__ (self : Tuple): A = self.get_image_processor() A = self.get_tokenizer() A = BlipaProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE) A = "lower newer" A = processor(text=__SCREAMING_SNAKE_CASE) A = tokenizer(__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def SCREAMING_SNAKE_CASE__ (self : Optional[int]): A = self.get_image_processor() A = self.get_tokenizer() A = BlipaProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE) A = "lower newer" A = self.prepare_image_inputs() A = processor(text=__SCREAMING_SNAKE_CASE , images=__SCREAMING_SNAKE_CASE) self.assertListEqual(list(inputs.keys()) , ["pixel_values", "input_ids", "attention_mask"]) # test if it raises when no input is passed with pytest.raises(__SCREAMING_SNAKE_CASE): processor() def SCREAMING_SNAKE_CASE__ (self : List[Any]): A = self.get_image_processor() A = self.get_tokenizer() A = BlipaProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE) A = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A = processor.batch_decode(__SCREAMING_SNAKE_CASE) A = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : Optional[int]): A = self.get_image_processor() A = self.get_tokenizer() A = BlipaProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE) A = "lower newer" A = self.prepare_image_inputs() A = processor(text=__SCREAMING_SNAKE_CASE , images=__SCREAMING_SNAKE_CASE) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys()) , ["pixel_values", "input_ids", "attention_mask"])
57
1