code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def _lowerCamelCase( a , a , a , a , a ): # load base model __a = StableDiffusionPipeline.from_pretrained(a , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors __a = load_file(a ) __a = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: __a = key.split("." )[0].split(LORA_PREFIX_TEXT_ENCODER + "_" )[-1].split("_" ) __a = pipeline.text_encoder else: __a = key.split("." )[0].split(LORA_PREFIX_UNET + "_" )[-1].split("_" ) __a = pipeline.unet # find the target layer __a = layer_infos.pop(0 ) while len(a ) > -1: try: __a = curr_layer.__getattr__(a ) if len(a ) > 0: __a = layer_infos.pop(0 ) elif len(a ) == 0: break except Exception: if len(a ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: __a = layer_infos.pop(0 ) __a = [] if "lora_down" in key: pair_keys.append(key.replace("lora_down" , "lora_up" ) ) pair_keys.append(a ) else: pair_keys.append(a ) pair_keys.append(key.replace("lora_up" , "lora_down" ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: __a = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) __a = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(a , a ).unsqueeze(2 ).unsqueeze(3 ) else: __a = state_dict[pair_keys[0]].to(torch.floataa ) __a = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(a , a ) # update visited list for item in pair_keys: visited.append(a ) return pipeline if __name__ == "__main__": SCREAMING_SNAKE_CASE__:Optional[Any] = argparse.ArgumentParser() parser.add_argument( """--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format.""" ) parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors""" ) parser.add_argument( """--lora_prefix_text_encoder""", default="""lora_te""", type=str, help="""The prefix of text encoder weight in safetensors""", ) parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""") parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""" ) parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") SCREAMING_SNAKE_CASE__:List[Any] = parser.parse_args() SCREAMING_SNAKE_CASE__:Any = args.base_model_path SCREAMING_SNAKE_CASE__:Dict = args.checkpoint_path SCREAMING_SNAKE_CASE__:Optional[Any] = args.dump_path SCREAMING_SNAKE_CASE__:List[Any] = args.lora_prefix_unet SCREAMING_SNAKE_CASE__:List[str] = args.lora_prefix_text_encoder SCREAMING_SNAKE_CASE__:Tuple = args.alpha SCREAMING_SNAKE_CASE__:Tuple = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) SCREAMING_SNAKE_CASE__:Optional[int] = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
261
"""simple docstring""" import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() SCREAMING_SNAKE_CASE__:Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__:Any = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } SCREAMING_SNAKE_CASE__:Optional[int] = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def _lowerCamelCase( a , a , a , a , a ): for attribute in key.split("." ): __a = getattr(a , a ) if weight_type is not None: __a = getattr(a , a ).shape else: __a = hf_pointer.shape assert hf_shape == value.shape, ( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": __a = value elif weight_type == "weight_g": __a = value elif weight_type == "weight_v": __a = value elif weight_type == "bias": __a = value else: __a = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def _lowerCamelCase( a , a ): __a = [] __a = fairseq_model.state_dict() __a = hf_model.feature_extractor __a = hf_model.adapter for name, value in fairseq_dict.items(): __a = False if "conv_layers" in name: load_conv_layer( a , a , a , a , hf_model.config.feat_extract_norm == "group" , ) __a = True elif any(x in name for x in ["adaptor", "w2v_encoder.proj.", "w2v_proj_ln."] ): load_adapter(a , a , a , a ) __a = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: __a = True if "*" in mapped_key: __a = name.split(a )[0].split("." )[-2] __a = mapped_key.replace("*" , a ) if "weight_g" in name: __a = "weight_g" elif "weight_v" in name: __a = "weight_v" elif "bias" in name: __a = "bias" elif "weight" in name: __a = "weight" else: __a = None set_recursively(a , a , a , a , a ) continue if not is_used: unused_weights.append(a ) logger.warning(F"Unused weights: {unused_weights}" ) def _lowerCamelCase( a , a , a , a , a ): __a = full_name.split("conv_layers." )[-1] __a = name.split("." ) __a = int(items[0] ) __a = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) __a = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) __a = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) __a = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) __a = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(a ) def _lowerCamelCase( a , a , a , a ): __a = full_name.split("adaptor." )[-1] __a = name.split("." ) if items[1].isdigit(): __a = int(items[1] ) else: __a = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found." __a = value logger.info(F"Adapter proj layer norm bias was initialized from {full_name}." ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found." __a = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found." __a = value logger.info(F"Adapter proj layer bias was initialized from {full_name}." ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found." __a = value logger.info(F"Adapter proj layer weight was initialized from {full_name}." ) elif isinstance(a , a ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F"{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found." __a = value logger.info(F"Adapter layer {layer_id} bias was initialized from {full_name}." ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F"{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found." __a = value logger.info(F"Adapter layer {layer_id} bias was initialized from {full_name}." ) else: unused_weights.append(a ) def _lowerCamelCase( a ): __a , __a = emb.weight.shape __a = nn.Linear(a , a , bias=a ) __a = emb.weight.data return lin_layer @torch.no_grad() def _lowerCamelCase( a , a , a , a , a , a , a , a , a , a , a , ): __a = WavaVecaConfig.from_pretrained( a , add_adapter=a , adapter_stride=a , adapter_kernel_size=a , use_auth_token=a , output_hidden_size=a , ) __a = MBartConfig.from_pretrained(a ) # load model __a , __a , __a = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ "config_yaml": config_yaml_path, "data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path, "load_pretrained_decoder_from": None, } , ) __a = model[0].eval() # load feature extractor __a = WavaVecaFeatureExtractor.from_pretrained(a , use_auth_token=a ) # set weights for wav2vec2 encoder __a = WavaVecaModel(a ) recursively_load_weights_wavaveca(model.encoder , a ) # load decoder weights __a = MBartForCausalLM(a ) __a , __a = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=a ) logger.warning(F"The following keys are missing when loading the decoder weights: {missing_keys}" ) logger.warning(F"The following keys are unexpected when loading the decoder weights: {unexpected_keys}" ) __a = SpeechEncoderDecoderModel(encoder=a , decoder=a ) __a = False __a = MBartaaTokenizer(a ) tokenizer.save_pretrained(a ) __a = hf_wavavec.config.to_dict() __a = tokenizer.pad_token_id __a = tokenizer.bos_token_id __a = tokenizer.eos_token_id __a = "mbart50" __a = "wav2vec2" __a = tokenizer.eos_token_id __a = 2_5_0_0_0_4 __a = tokenizer.eos_token_id __a = SpeechEncoderDecoderConfig.from_dict(a ) hf_wavavec.save_pretrained(a ) feature_extractor.save_pretrained(a ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__:int = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_yaml_path""", default=None, type=str, help="""Path to yaml file of fine-tuned model""") parser.add_argument( """--encoder_config_path""", default="""facebook/wav2vec2-xls-r-1b""", type=str, help="""Path to hf encoder wav2vec2 checkpoint config""", ) parser.add_argument( """--decoder_config_path""", default="""facebook/mbart-large-50-one-to-many-mmt""", type=str, help="""Path to hf decoder checkpoint config""", ) parser.add_argument("""--add_adapter""", default=True, type=bool, help="""whethere to add model adapter layers""") parser.add_argument("""--adapter_stride""", default=2, type=int, help="""stride of adapter layers""") parser.add_argument("""--adapter_kernel_size""", default=3, type=int, help="""kernel size of adapter layers""") parser.add_argument("""--encoder_output_dim""", default=1024, type=int, help="""encoder output dim""") parser.add_argument("""--start_token_id""", default=250004, type=int, help="""`decoder_start_token_id` of model config""") SCREAMING_SNAKE_CASE__:List[Any] = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
261
1
"""simple docstring""" import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class A__ ( _UpperCAmelCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self: int) -> str: """simple docstring""" __lowerCAmelCase : str = tempfile.mkdtemp() __lowerCAmelCase : List[Any] = 8 # DPR tok __lowerCAmelCase : Dict = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] __lowerCAmelCase : Any = os.path.join(self.tmpdirname , "dpr_tokenizer") os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_) __lowerCAmelCase : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE_ , DPR_VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) # BART tok __lowerCAmelCase : List[Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] __lowerCAmelCase : str = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_)))) __lowerCAmelCase : Dict = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] __lowerCAmelCase : str = {"""unk_token""": """<unk>"""} __lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , "bart_tokenizer") os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_) __lowerCAmelCase : Optional[int] = os.path.join(SCREAMING_SNAKE_CASE_ , BART_VOCAB_FILES_NAMES["vocab_file"]) __lowerCAmelCase : List[Any] = os.path.join(SCREAMING_SNAKE_CASE_ , BART_VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_) + "\n") with open(self.merges_file , "w" , encoding="utf-8") as fp: fp.write("\n".join(SCREAMING_SNAKE_CASE_)) def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> Union[str, Any]: """simple docstring""" return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , "dpr_tokenizer")) def _SCREAMING_SNAKE_CASE ( self: Any) -> List[Any]: """simple docstring""" return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , "dpr_tokenizer")) def _SCREAMING_SNAKE_CASE ( self: Any) -> int: """simple docstring""" return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , "bart_tokenizer")) def _SCREAMING_SNAKE_CASE ( self: Optional[int]) -> int: """simple docstring""" shutil.rmtree(self.tmpdirname) def _SCREAMING_SNAKE_CASE ( self: Optional[Any]) -> Optional[int]: """simple docstring""" __lowerCAmelCase : int = Dataset.from_dict( { "id": ["0", "1"], "text": ["foo", "bar"], "title": ["Foo", "Bar"], "embeddings": [np.ones(self.retrieval_vector_size), 2 * np.ones(self.retrieval_vector_size)], }) dataset.add_faiss_index("embeddings" , string_factory="Flat" , metric_type=faiss.METRIC_INNER_PRODUCT) return dataset def _SCREAMING_SNAKE_CASE ( self: List[str]) -> Dict: """simple docstring""" __lowerCAmelCase : List[str] = self.get_dummy_dataset() __lowerCAmelCase : str = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch("transformers.models.rag.retrieval_rag.load_dataset") as mock_load_dataset: __lowerCAmelCase : Any = dataset __lowerCAmelCase : Tuple = RagRetriever( SCREAMING_SNAKE_CASE_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def _SCREAMING_SNAKE_CASE ( self: str , _SCREAMING_SNAKE_CASE: Any) -> Dict: """simple docstring""" __lowerCAmelCase : int = self.get_dummy_dataset() __lowerCAmelCase : List[str] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name="custom" , ) if from_disk: __lowerCAmelCase : Optional[Any] = os.path.join(self.tmpdirname , "dataset") __lowerCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , "index.faiss") dataset.get_index("embeddings").save(os.path.join(self.tmpdirname , "index.faiss")) dataset.drop_index("embeddings") dataset.save_to_disk(os.path.join(self.tmpdirname , "dataset")) del dataset __lowerCAmelCase : int = RagRetriever( SCREAMING_SNAKE_CASE_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: __lowerCAmelCase : str = RagRetriever( SCREAMING_SNAKE_CASE_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , SCREAMING_SNAKE_CASE_) , ) return retriever def _SCREAMING_SNAKE_CASE ( self: Dict) -> Any: """simple docstring""" __lowerCAmelCase : int = Dataset.from_dict( { "id": ["0", "1"], "text": ["foo", "bar"], "title": ["Foo", "Bar"], "embeddings": [np.ones(self.retrieval_vector_size + 1), 2 * np.ones(self.retrieval_vector_size + 1)], }) dataset.add_faiss_index("embeddings" , string_factory="Flat" , metric_type=faiss.METRIC_INNER_PRODUCT) __lowerCAmelCase : Optional[Any] = os.path.join(self.tmpdirname , "hf_bert_base.hnswSQ8_correct_phi_128.c_index") dataset.save_faiss_index("embeddings" , index_file_name + ".index.dpr") pickle.dump(dataset["id"] , open(index_file_name + ".index_meta.dpr" , "wb")) __lowerCAmelCase : List[Any] = os.path.join(self.tmpdirname , "psgs_w100.tsv.pkl") __lowerCAmelCase : Dict = {sample["""id"""]: [sample["""text"""], sample["""title"""]] for sample in dataset} pickle.dump(SCREAMING_SNAKE_CASE_ , open(SCREAMING_SNAKE_CASE_ , "wb")) __lowerCAmelCase : Optional[Any] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name="legacy" , index_path=self.tmpdirname , ) __lowerCAmelCase : Optional[int] = RagRetriever( SCREAMING_SNAKE_CASE_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer()) return retriever def _SCREAMING_SNAKE_CASE ( self: int) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Any = 1 __lowerCAmelCase : List[Any] = self.get_dummy_canonical_hf_index_retriever() __lowerCAmelCase : Optional[int] = np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) __lowerCAmelCase : Tuple = retriever.retrieve(SCREAMING_SNAKE_CASE_ , n_docs=SCREAMING_SNAKE_CASE_) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size)) self.assertEqual(len(SCREAMING_SNAKE_CASE_) , 2) self.assertEqual(sorted(doc_dicts[0]) , ["embeddings", "id", "text", "title"]) self.assertEqual(len(doc_dicts[0]["id"]) , SCREAMING_SNAKE_CASE_) self.assertEqual(doc_dicts[0]["id"][0] , "1") # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0") # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]]) def _SCREAMING_SNAKE_CASE ( self: Tuple) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Optional[Any] = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch("transformers.models.rag.retrieval_rag.load_dataset") as mock_load_dataset: __lowerCAmelCase : Dict = self.get_dummy_dataset() retriever.save_pretrained(SCREAMING_SNAKE_CASE_) __lowerCAmelCase : Optional[int] = RagRetriever.from_pretrained(SCREAMING_SNAKE_CASE_) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) __lowerCAmelCase : str = np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) __lowerCAmelCase : Optional[Any] = retriever.retrieve(SCREAMING_SNAKE_CASE_ , n_docs=1) self.assertTrue(out is not None) def _SCREAMING_SNAKE_CASE ( self: List[str]) -> List[Any]: """simple docstring""" __lowerCAmelCase : Optional[int] = 1 __lowerCAmelCase : List[str] = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE_) __lowerCAmelCase : List[str] = np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) __lowerCAmelCase : Tuple = retriever.retrieve(SCREAMING_SNAKE_CASE_ , n_docs=SCREAMING_SNAKE_CASE_) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size)) self.assertEqual(len(SCREAMING_SNAKE_CASE_) , 2) self.assertEqual(sorted(doc_dicts[0]) , ["embeddings", "id", "text", "title"]) self.assertEqual(len(doc_dicts[0]["id"]) , SCREAMING_SNAKE_CASE_) self.assertEqual(doc_dicts[0]["id"][0] , "1") # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0") # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]]) def _SCREAMING_SNAKE_CASE ( self: Any) -> Any: """simple docstring""" __lowerCAmelCase : Tuple = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE_) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(SCREAMING_SNAKE_CASE_) __lowerCAmelCase : int = RagRetriever.from_pretrained(SCREAMING_SNAKE_CASE_) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) __lowerCAmelCase : List[str] = np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) __lowerCAmelCase : str = retriever.retrieve(SCREAMING_SNAKE_CASE_ , n_docs=1) self.assertTrue(out is not None) def _SCREAMING_SNAKE_CASE ( self: List[str]) -> str: """simple docstring""" __lowerCAmelCase : Union[str, Any] = 1 __lowerCAmelCase : List[str] = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE_) __lowerCAmelCase : List[Any] = np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) __lowerCAmelCase : str = retriever.retrieve(SCREAMING_SNAKE_CASE_ , n_docs=SCREAMING_SNAKE_CASE_) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size)) self.assertEqual(len(SCREAMING_SNAKE_CASE_) , 2) self.assertEqual(sorted(doc_dicts[0]) , ["embeddings", "id", "text", "title"]) self.assertEqual(len(doc_dicts[0]["id"]) , SCREAMING_SNAKE_CASE_) self.assertEqual(doc_dicts[0]["id"][0] , "1") # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0") # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]]) def _SCREAMING_SNAKE_CASE ( self: Optional[int]) -> Dict: """simple docstring""" __lowerCAmelCase : Tuple = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE_) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(SCREAMING_SNAKE_CASE_) __lowerCAmelCase : str = RagRetriever.from_pretrained(SCREAMING_SNAKE_CASE_) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) __lowerCAmelCase : int = np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) __lowerCAmelCase : List[Any] = retriever.retrieve(SCREAMING_SNAKE_CASE_ , n_docs=1) self.assertTrue(out is not None) def _SCREAMING_SNAKE_CASE ( self: Dict) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Optional[Any] = 1 __lowerCAmelCase : List[str] = self.get_dummy_legacy_index_retriever() __lowerCAmelCase : Dict = np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) __lowerCAmelCase : Union[str, Any] = retriever.retrieve(SCREAMING_SNAKE_CASE_ , n_docs=SCREAMING_SNAKE_CASE_) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size)) self.assertEqual(len(SCREAMING_SNAKE_CASE_) , 2) self.assertEqual(sorted(doc_dicts[0]) , ["text", "title"]) self.assertEqual(len(doc_dicts[0]["text"]) , SCREAMING_SNAKE_CASE_) self.assertEqual(doc_dicts[0]["text"][0] , "bar") # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["text"][0] , "foo") # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]]) def _SCREAMING_SNAKE_CASE ( self: Optional[int]) -> str: """simple docstring""" __lowerCAmelCase : Optional[int] = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(SCREAMING_SNAKE_CASE_) __lowerCAmelCase : Tuple = RagRetriever.from_pretrained(SCREAMING_SNAKE_CASE_) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) __lowerCAmelCase : Optional[Any] = np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) __lowerCAmelCase : Optional[Any] = retriever.retrieve(SCREAMING_SNAKE_CASE_ , n_docs=1) self.assertTrue(out is not None) @require_torch @require_tokenizers @require_sentencepiece def _SCREAMING_SNAKE_CASE ( self: Dict) -> List[Any]: """simple docstring""" import torch __lowerCAmelCase : str = 1 __lowerCAmelCase : List[Any] = self.get_dummy_canonical_hf_index_retriever() __lowerCAmelCase : Tuple = [[5, 7], [10, 11]] __lowerCAmelCase : str = np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) __lowerCAmelCase : Any = retriever(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , prefix=retriever.config.generator.prefix , n_docs=SCREAMING_SNAKE_CASE_) __lowerCAmelCase : Any = ( out["""context_input_ids"""], out["""context_attention_mask"""], out["""retrieved_doc_embeds"""], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size)) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , np.ndarray) __lowerCAmelCase : Dict = retriever( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , prefix=retriever.config.generator.prefix , n_docs=SCREAMING_SNAKE_CASE_ , return_tensors="pt" , ) __lowerCAmelCase : Union[str, Any] = ( # noqa: F841 out["""context_input_ids"""], out["""context_attention_mask"""], out["""retrieved_doc_embeds"""], out["""doc_ids"""], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size)) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , torch.Tensor) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , torch.Tensor) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , torch.Tensor) @require_torch @require_tokenizers @require_sentencepiece def _SCREAMING_SNAKE_CASE ( self: str) -> int: """simple docstring""" __lowerCAmelCase : Tuple = self.get_dpr_ctx_encoder_tokenizer() __lowerCAmelCase : Optional[int] = 1 __lowerCAmelCase : int = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE_) retriever.set_ctx_encoder_tokenizer(SCREAMING_SNAKE_CASE_) __lowerCAmelCase : Optional[int] = [[5, 7], [10, 11]] __lowerCAmelCase : List[Any] = np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) __lowerCAmelCase : Any = retriever(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , prefix=retriever.config.generator.prefix , n_docs=SCREAMING_SNAKE_CASE_) self.assertEqual( len(SCREAMING_SNAKE_CASE_) , 6) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ("tokenized_doc_ids", "tokenized_doc_attention_mask")) , SCREAMING_SNAKE_CASE_) # check for doc token related keys in dictionary.
355
"""simple docstring""" from math import pi def _lowercase ( __snake_case ,__snake_case ) -> float: return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
58
0
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
21
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE : str = { "configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Tuple = ["LlamaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Optional[Any] = ["LlamaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : int = [ "LlamaForCausalLM", "LlamaModel", "LlamaPreTrainedModel", "LlamaForSequenceClassification", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys SCREAMING_SNAKE_CASE : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
1
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels _UpperCAmelCase : Union[str, Any] = object() # For specifying empty leaf dict `{}` _UpperCAmelCase : Union[str, Any] = object() def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: lowerCamelCase__ : List[str] = tuple((re.compile(x + '$' ) for x in qs) ) for i in range(len(lowerCamelCase__ ) - len(lowerCamelCase__ ) + 1 ): lowerCamelCase__ : int = [x.match(lowerCamelCase__ ) for x, y in zip(lowerCamelCase__ , ks[i:] )] if matches and all(lowerCamelCase__ ): return True return False def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> str: def replace(_UpperCAmelCase , _UpperCAmelCase ): for rule, replacement in rules: if _match(lowerCamelCase__ , lowerCamelCase__ ): return replacement return val return replace def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: return [ # embeddings (("transformer", "wpe", "embedding"), P('mp' , lowerCamelCase__ )), (("transformer", "wte", "embedding"), P('mp' , lowerCamelCase__ )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(lowerCamelCase__ , 'mp' )), (("attention", "out_proj", "kernel"), P('mp' , lowerCamelCase__ )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(lowerCamelCase__ , 'mp' )), (("mlp", "c_fc", "bias"), P('mp' )), (("mlp", "c_proj", "kernel"), P('mp' , lowerCamelCase__ )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Any: lowerCamelCase__ : Dict = _get_partition_rules() lowerCamelCase__ : Union[str, Any] = _replacement_rules(lowerCamelCase__ ) lowerCamelCase__ : Union[str, Any] = {k: _unmatched for k in flatten_dict(lowerCamelCase__ )} lowerCamelCase__ : str = {k: replace(lowerCamelCase__ , lowerCamelCase__ ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(lowerCamelCase__ ) )
371
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _UpperCAmelCase : List[str] = { """configuration_m2m_100""": ["""M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP""", """M2M100Config""", """M2M100OnnxConfig"""], """tokenization_m2m_100""": ["""M2M100Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : List[Any] = [ """M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST""", """M2M100ForConditionalGeneration""", """M2M100Model""", """M2M100PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys _UpperCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
45
0
from __future__ import annotations from collections.abc import Callable def _a ( SCREAMING_SNAKE_CASE_ : Callable[[int | float], int | float] , SCREAMING_SNAKE_CASE_ : int | float , SCREAMING_SNAKE_CASE_ : int | float , SCREAMING_SNAKE_CASE_ : int = 1_00 , ): __lowerCAmelCase = x_start __lowerCAmelCase = fnc(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = 0.0 for _ in range(SCREAMING_SNAKE_CASE_ ): # Approximates small segments of curve as linear and solve # for trapezoidal area __lowerCAmelCase = (x_end - x_start) / steps + xa __lowerCAmelCase = fnc(SCREAMING_SNAKE_CASE_ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step __lowerCAmelCase = xa __lowerCAmelCase = fxa return area if __name__ == "__main__": def _a ( SCREAMING_SNAKE_CASE_ : Tuple ): return x**3 + x**2 print("""f(x) = x^3 + x^2""") print("""The area between the curve, x = -5, x = 5 and the x axis is:""") UpperCamelCase__ = 10 while i <= 100000: print(f'''with {i} steps: {trapezoidal_area(f, -5, 5, i)}''') i *= 10
92
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available UpperCamelCase__ = { """configuration_audio_spectrogram_transformer""": [ """AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ASTConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ """AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """ASTForAudioClassification""", """ASTModel""", """ASTPreTrainedModel""", ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = ["""ASTFeatureExtractor"""] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
92
1
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent lowercase_ = {"""UserAgent""": UserAgent().random} def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> dict: lowercase__ = script.contents[0] lowercase__ = json.loads(data[data.find('{"config"' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class SCREAMING_SNAKE_CASE : def __init__( self : Any , a : List[str] )-> Optional[int]: """simple docstring""" lowercase__ = f"""https://www.instagram.com/{username}/""" lowercase__ = self.get_json() def SCREAMING_SNAKE_CASE_ ( self : int )-> dict: """simple docstring""" lowercase__ = requests.get(self.url , headers=a ).text lowercase__ = BeautifulSoup(a , 'html.parser' ).find_all('script' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self : Any )-> str: """simple docstring""" return f"""{self.__class__.__name__}('{self.username}')""" def __str__( self : str )-> str: """simple docstring""" return f"""{self.fullname} ({self.username}) is {self.biography}""" @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] )-> str: """simple docstring""" return self.user_data["username"] @property def SCREAMING_SNAKE_CASE_ ( self : str )-> str: """simple docstring""" return self.user_data["full_name"] @property def SCREAMING_SNAKE_CASE_ ( self : Any )-> str: """simple docstring""" return self.user_data["biography"] @property def SCREAMING_SNAKE_CASE_ ( self : Any )-> str: """simple docstring""" return self.user_data["business_email"] @property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> str: """simple docstring""" return self.user_data["external_url"] @property def SCREAMING_SNAKE_CASE_ ( self : Dict )-> int: """simple docstring""" return self.user_data["edge_followed_by"]["count"] @property def SCREAMING_SNAKE_CASE_ ( self : str )-> int: """simple docstring""" return self.user_data["edge_follow"]["count"] @property def SCREAMING_SNAKE_CASE_ ( self : Optional[int] )-> int: """simple docstring""" return self.user_data["edge_owner_to_timeline_media"]["count"] @property def SCREAMING_SNAKE_CASE_ ( self : List[Any] )-> str: """simple docstring""" return self.user_data["profile_pic_url_hd"] @property def SCREAMING_SNAKE_CASE_ ( self : str )-> bool: """simple docstring""" return self.user_data["is_verified"] @property def SCREAMING_SNAKE_CASE_ ( self : Dict )-> bool: """simple docstring""" return self.user_data["is_private"] def __UpperCamelCase (_SCREAMING_SNAKE_CASE = "github" ) -> None: import os if os.environ.get('CI' ): return # test failing on GitHub Actions lowercase__ = InstagramUser(_SCREAMING_SNAKE_CASE ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , _SCREAMING_SNAKE_CASE ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('https://instagram.' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() lowercase_ = InstagramUser("""github""") print(instagram_user) print(f'''{instagram_user.number_of_posts = }''') print(f'''{instagram_user.number_of_followers = }''') print(f'''{instagram_user.number_of_followings = }''') print(f'''{instagram_user.email = }''') print(f'''{instagram_user.website = }''') print(f'''{instagram_user.profile_picture_url = }''') print(f'''{instagram_user.is_verified = }''') print(f'''{instagram_user.is_private = }''')
269
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class SCREAMING_SNAKE_CASE (UpperCAmelCase , UpperCAmelCase ): @register_to_config def __init__( self : str , a : int = 128 , a : int = 256 , a : float = 2000.0 , a : int = 768 , a : int = 12 , a : int = 12 , a : int = 64 , a : int = 2_048 , a : float = 0.1 , )-> Any: """simple docstring""" super().__init__() lowercase__ = nn.Sequential( nn.Linear(a , d_model * 4 , bias=a ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=a ) , nn.SiLU() , ) lowercase__ = nn.Embedding(a , a ) lowercase__ = False lowercase__ = nn.Linear(a , a , bias=a ) lowercase__ = nn.Dropout(p=a ) lowercase__ = nn.ModuleList() for lyr_num in range(a ): # FiLM conditional T5 decoder lowercase__ = DecoderLayer(d_model=a , d_kv=a , num_heads=a , d_ff=a , dropout_rate=a ) self.decoders.append(a ) lowercase__ = TaLayerNorm(a ) lowercase__ = nn.Dropout(p=a ) lowercase__ = nn.Linear(a , a , bias=a ) def SCREAMING_SNAKE_CASE_ ( self : str , a : int , a : List[Any] )-> str: """simple docstring""" lowercase__ = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , a : Dict , a : int , a : int )-> int: """simple docstring""" lowercase__ , lowercase__ , lowercase__ = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. lowercase__ = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) lowercase__ = self.conditioning_emb(a ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) lowercase__ = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. lowercase__ = torch.broadcast_to( torch.arange(a , device=decoder_input_tokens.device ) , (batch, seq_length) , ) lowercase__ = self.position_encoding(a ) lowercase__ = self.continuous_inputs_projection(a ) inputs += position_encodings lowercase__ = self.dropout(a ) # decoder: No padding present. lowercase__ = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. lowercase__ = [(x, self.encoder_decoder_mask(a , a )) for x, y in encodings_and_masks] # cross attend style: concat encodings lowercase__ = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) lowercase__ = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: lowercase__ = lyr( a , conditioning_emb=a , encoder_hidden_states=a , encoder_attention_mask=a , )[0] lowercase__ = self.decoder_norm(a ) lowercase__ = self.post_dropout(a ) lowercase__ = self.spec_out(a ) return spec_out class SCREAMING_SNAKE_CASE (nn.Module ): def __init__( self : Dict , a : List[Any] , a : str , a : Union[str, Any] , a : Optional[int] , a : Optional[int] , a : Tuple=1E-6 )-> Union[str, Any]: """simple docstring""" super().__init__() lowercase__ = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=a , d_kv=a , num_heads=a , dropout_rate=a ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=a , d_kv=a , num_heads=a , dropout_rate=a , layer_norm_epsilon=a , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=a , d_ff=a , dropout_rate=a , layer_norm_epsilon=a ) ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , a : str , a : Union[str, Any]=None , a : Dict=None , a : Union[str, Any]=None , a : List[Any]=None , a : List[str]=None , )-> List[Any]: """simple docstring""" lowercase__ = self.layer[0]( a , conditioning_emb=a , attention_mask=a , ) if encoder_hidden_states is not None: lowercase__ = torch.where(encoder_attention_mask > 0 , 0 , -1E1_0 ).to( encoder_hidden_states.dtype ) lowercase__ = self.layer[1]( a , key_value_states=a , attention_mask=a , ) # Apply Film Conditional Feed Forward layer lowercase__ = self.layer[-1](a , a ) return (hidden_states,) class SCREAMING_SNAKE_CASE (nn.Module ): def __init__( self : List[str] , a : List[Any] , a : Tuple , a : Union[str, Any] , a : int )-> List[str]: """simple docstring""" super().__init__() lowercase__ = TaLayerNorm(a ) lowercase__ = TaFiLMLayer(in_features=d_model * 4 , out_features=a ) lowercase__ = Attention(query_dim=a , heads=a , dim_head=a , out_bias=a , scale_qk=a ) lowercase__ = nn.Dropout(a ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , a : List[Any] , a : Union[str, Any]=None , a : Tuple=None , )-> int: """simple docstring""" lowercase__ = self.layer_norm(a ) if conditioning_emb is not None: lowercase__ = self.FiLMLayer(a , a ) # Self-attention block lowercase__ = self.attention(a ) lowercase__ = hidden_states + self.dropout(a ) return hidden_states class SCREAMING_SNAKE_CASE (nn.Module ): def __init__( self : Optional[int] , a : Optional[int] , a : int , a : Optional[int] , a : Dict , a : Any )-> Optional[int]: """simple docstring""" super().__init__() lowercase__ = Attention(query_dim=a , heads=a , dim_head=a , out_bias=a , scale_qk=a ) lowercase__ = TaLayerNorm(a , eps=a ) lowercase__ = nn.Dropout(a ) def SCREAMING_SNAKE_CASE_ ( self : int , a : List[Any] , a : str=None , a : Dict=None , )-> int: """simple docstring""" lowercase__ = self.layer_norm(a ) lowercase__ = self.attention( a , encoder_hidden_states=a , attention_mask=attention_mask.squeeze(1 ) , ) lowercase__ = hidden_states + self.dropout(a ) return layer_output class SCREAMING_SNAKE_CASE (nn.Module ): def __init__( self : Dict , a : str , a : int , a : List[Any] , a : List[str] )-> Dict: """simple docstring""" super().__init__() lowercase__ = TaDenseGatedActDense(d_model=a , d_ff=a , dropout_rate=a ) lowercase__ = TaFiLMLayer(in_features=d_model * 4 , out_features=a ) lowercase__ = TaLayerNorm(a , eps=a ) lowercase__ = nn.Dropout(a ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , a : List[Any] , a : List[Any]=None )-> List[Any]: """simple docstring""" lowercase__ = self.layer_norm(a ) if conditioning_emb is not None: lowercase__ = self.film(a , a ) lowercase__ = self.DenseReluDense(a ) lowercase__ = hidden_states + self.dropout(a ) return hidden_states class SCREAMING_SNAKE_CASE (nn.Module ): def __init__( self : Optional[Any] , a : Tuple , a : Tuple , a : Dict )-> Union[str, Any]: """simple docstring""" super().__init__() lowercase__ = nn.Linear(a , a , bias=a ) lowercase__ = nn.Linear(a , a , bias=a ) lowercase__ = nn.Linear(a , a , bias=a ) lowercase__ = nn.Dropout(a ) lowercase__ = NewGELUActivation() def SCREAMING_SNAKE_CASE_ ( self : Any , a : str )-> str: """simple docstring""" lowercase__ = self.act(self.wi_a(a ) ) lowercase__ = self.wi_a(a ) lowercase__ = hidden_gelu * hidden_linear lowercase__ = self.dropout(a ) lowercase__ = self.wo(a ) return hidden_states class SCREAMING_SNAKE_CASE (nn.Module ): def __init__( self : Dict , a : Dict , a : Dict=1E-6 )-> Optional[int]: """simple docstring""" super().__init__() lowercase__ = nn.Parameter(torch.ones(a ) ) lowercase__ = eps def SCREAMING_SNAKE_CASE_ ( self : Any , a : Optional[Any] )-> List[str]: """simple docstring""" lowercase__ = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=a ) lowercase__ = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: lowercase__ = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class SCREAMING_SNAKE_CASE (nn.Module ): def SCREAMING_SNAKE_CASE_ ( self : Tuple , a : torch.Tensor )-> torch.Tensor: """simple docstring""" return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.044715 * torch.pow(a , 3.0 )) )) class SCREAMING_SNAKE_CASE (nn.Module ): def __init__( self : int , a : Optional[Any] , a : Any )-> Optional[Any]: """simple docstring""" super().__init__() lowercase__ = nn.Linear(a , out_features * 2 , bias=a ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , a : Tuple , a : Dict )-> Optional[int]: """simple docstring""" lowercase__ = self.scale_bias(a ) lowercase__ , lowercase__ = torch.chunk(a , 2 , -1 ) lowercase__ = x * (1 + scale) + shift return x
269
1
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer __snake_case = logging.get_logger(__name__) __snake_case = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} # See all BART models at https://huggingface.co/models?filter=bart __snake_case = { '''vocab_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/vocab.json''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/vocab.json''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json''', }, '''merges_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/merges.txt''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/merges.txt''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json''', }, } __snake_case = { '''facebook/bart-base''': 10_24, '''facebook/bart-large''': 10_24, '''facebook/bart-large-mnli''': 10_24, '''facebook/bart-large-cnn''': 10_24, '''facebook/bart-large-xsum''': 10_24, '''yjernite/bart_eli5''': 10_24, } class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : Optional[int] = VOCAB_FILES_NAMES __lowerCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : List[Any] = ["""input_ids""", """attention_mask"""] __lowerCamelCase : Optional[Any] = BartTokenizer def __init__( self , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__="replace" , snake_case__="<s>" , snake_case__="</s>" , snake_case__="</s>" , snake_case__="<s>" , snake_case__="<unk>" , snake_case__="<pad>" , snake_case__="<mask>" , snake_case__=False , snake_case__=True , **snake_case__ , ) -> Optional[Any]: '''simple docstring''' super().__init__( snake_case__ , snake_case__ , tokenizer_file=snake_case__ , errors=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , add_prefix_space=snake_case__ , trim_offsets=snake_case__ , **snake_case__ , ) UpperCAmelCase : Tuple =json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , snake_case__ ) != add_prefix_space: UpperCAmelCase : str =getattr(snake_case__ , pre_tok_state.pop('''type''' ) ) UpperCAmelCase : Union[str, Any] =add_prefix_space UpperCAmelCase : Optional[int] =pre_tok_class(**snake_case__ ) UpperCAmelCase : List[str] =add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` UpperCAmelCase : Optional[Any] ='''post_processor''' UpperCAmelCase : Any =getattr(self.backend_tokenizer , snake_case__ , snake_case__ ) if tokenizer_component_instance: UpperCAmelCase : str =json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: UpperCAmelCase : Union[str, Any] =tuple(state['''sep'''] ) if "cls" in state: UpperCAmelCase : Any =tuple(state['''cls'''] ) UpperCAmelCase : Dict =False if state.get('''add_prefix_space''' , snake_case__ ) != add_prefix_space: UpperCAmelCase : List[Any] =add_prefix_space UpperCAmelCase : Dict =True if state.get('''trim_offsets''' , snake_case__ ) != trim_offsets: UpperCAmelCase : Union[str, Any] =trim_offsets UpperCAmelCase : int =True if changes_to_apply: UpperCAmelCase : Tuple =getattr(snake_case__ , state.pop('''type''' ) ) UpperCAmelCase : Optional[Any] =component_class(**snake_case__ ) setattr(self.backend_tokenizer , snake_case__ , snake_case__ ) @property def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def UpperCAmelCase__ ( self , snake_case__ ) -> str: '''simple docstring''' UpperCAmelCase : Optional[Any] =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else value UpperCAmelCase : str =value def UpperCAmelCase__ ( self , *snake_case__ , **snake_case__ ) -> BatchEncoding: '''simple docstring''' UpperCAmelCase : Any =kwargs.get('''is_split_into_words''' , snake_case__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' '''to use it with pretokenized inputs.''' ) return super()._batch_encode_plus(*snake_case__ , **snake_case__ ) def UpperCAmelCase__ ( self , *snake_case__ , **snake_case__ ) -> BatchEncoding: '''simple docstring''' UpperCAmelCase : Optional[int] =kwargs.get('''is_split_into_words''' , snake_case__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' '''to use it with pretokenized inputs.''' ) return super()._encode_plus(*snake_case__ , **snake_case__ ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> Tuple[str]: '''simple docstring''' UpperCAmelCase : str =self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__=None ) -> Tuple: '''simple docstring''' UpperCAmelCase : List[str] =[self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> List[int]: '''simple docstring''' UpperCAmelCase : str =[self.sep_token_id] UpperCAmelCase : Dict =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
348
import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : Optional[int] = (KDPMaDiscreteScheduler,) __lowerCamelCase : List[str] = 10 def UpperCAmelCase__ ( self , **snake_case__ ) -> str: '''simple docstring''' UpperCAmelCase : int ={ '''num_train_timesteps''': 1100, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**snake_case__ ) return config def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=snake_case__ ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=snake_case__ , beta_end=snake_case__ ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=snake_case__ ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=snake_case__ ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' UpperCAmelCase : Optional[Any] =self.scheduler_classes[0] UpperCAmelCase : Optional[int] =self.get_scheduler_config(prediction_type='''v_prediction''' ) UpperCAmelCase : Optional[Any] =scheduler_class(**snake_case__ ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase : str =self.dummy_model() UpperCAmelCase : Optional[Any] =self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase : Union[str, Any] =sample.to(snake_case__ ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase : str =scheduler.scale_model_input(snake_case__ , snake_case__ ) UpperCAmelCase : Any =model(snake_case__ , snake_case__ ) UpperCAmelCase : Union[str, Any] =scheduler.step(snake_case__ , snake_case__ , snake_case__ ) UpperCAmelCase : int =output.prev_sample UpperCAmelCase : Dict =torch.sum(torch.abs(snake_case__ ) ) UpperCAmelCase : Optional[Any] =torch.mean(torch.abs(snake_case__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.69_34e-07 ) < 1e-2 assert abs(result_mean.item() - 6.11_12e-10 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 4.6_93_42_86_50_17_09_72e-07 ) < 1e-2 assert abs(result_mean.item() - 0.0002 ) < 1e-3 def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' if torch_device == "mps": return UpperCAmelCase : Any =self.scheduler_classes[0] UpperCAmelCase : Optional[int] =self.get_scheduler_config() UpperCAmelCase : Optional[Any] =scheduler_class(**snake_case__ ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase : Optional[int] =self.dummy_model() UpperCAmelCase : Union[str, Any] =self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase : str =sample.to(snake_case__ ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase : Dict =scheduler.scale_model_input(snake_case__ , snake_case__ ) UpperCAmelCase : Union[str, Any] =model(snake_case__ , snake_case__ ) UpperCAmelCase : List[str] =scheduler.step(snake_case__ , snake_case__ , snake_case__ ) UpperCAmelCase : Optional[int] =output.prev_sample UpperCAmelCase : Any =torch.sum(torch.abs(snake_case__ ) ) UpperCAmelCase : Union[str, Any] =torch.mean(torch.abs(snake_case__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3 def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' if torch_device == "mps": return UpperCAmelCase : List[Any] =self.scheduler_classes[0] UpperCAmelCase : Dict =self.get_scheduler_config() UpperCAmelCase : List[str] =scheduler_class(**snake_case__ ) scheduler.set_timesteps(self.num_inference_steps , device=snake_case__ ) UpperCAmelCase : int =self.dummy_model() UpperCAmelCase : Tuple =self.dummy_sample_deter.to(snake_case__ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: UpperCAmelCase : Optional[Any] =scheduler.scale_model_input(snake_case__ , snake_case__ ) UpperCAmelCase : int =model(snake_case__ , snake_case__ ) UpperCAmelCase : str =scheduler.step(snake_case__ , snake_case__ , snake_case__ ) UpperCAmelCase : List[str] =output.prev_sample UpperCAmelCase : List[str] =torch.sum(torch.abs(snake_case__ ) ) UpperCAmelCase : Dict =torch.mean(torch.abs(snake_case__ ) ) if str(snake_case__ ).startswith('''cpu''' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3
348
1
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase ,_UpperCAmelCase : List[str] = len(lowerCAmelCase_ ), len(grid[0] ) if ( min(lowerCAmelCase_ , lowerCAmelCase_ ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) _UpperCAmelCase : Tuple = 0 count += depth_first_search(lowerCAmelCase_ , row + 1 , lowerCAmelCase_ , lowerCAmelCase_ ) count += depth_first_search(lowerCAmelCase_ , row - 1 , lowerCAmelCase_ , lowerCAmelCase_ ) count += depth_first_search(lowerCAmelCase_ , lowerCAmelCase_ , col + 1 , lowerCAmelCase_ ) count += depth_first_search(lowerCAmelCase_ , lowerCAmelCase_ , col - 1 , lowerCAmelCase_ ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
349
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def snake_case_ ( )-> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" ) _UpperCAmelCase : str = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(lowerCAmelCase_ ) # Let's go _UpperCAmelCase : Union[str, Any] = parser.parse_args() if not hasattr(lowerCAmelCase_ , """func""" ): parser.print_help() exit(1 ) # Run _UpperCAmelCase : Optional[int] = args.func(lowerCAmelCase_ ) service.run() if __name__ == "__main__": main()
349
1
"""simple docstring""" import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def __a ( *_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=2 ) ->Tuple: from .. import __version__ a__: Dict = take_from a__: Tuple = () if not isinstance(args[0] , _SCREAMING_SNAKE_CASE ): a__: int = (args,) for attribute, version_name, message in args: if version.parse(version.parse(_SCREAMING_SNAKE_CASE ).base_version ) >= version.parse(_SCREAMING_SNAKE_CASE ): raise ValueError( F'The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\'' F' version {__version__} is >= {version_name}' ) a__: Optional[Any] = None if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(_SCREAMING_SNAKE_CASE ),) a__: List[Any] = F'The `{attribute}` argument is deprecated and will be removed in version {version_name}.' elif hasattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): values += (getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ),) a__: Optional[int] = F'The `{attribute}` attribute is deprecated and will be removed in version {version_name}.' elif deprecated_kwargs is None: a__: Dict = F'`{attribute}` is deprecated and will be removed in version {version_name}.' if warning is not None: a__: Union[str, Any] = warning + ' ' if standard_warn else '' warnings.warn(warning + message , _SCREAMING_SNAKE_CASE , stacklevel=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and len(_SCREAMING_SNAKE_CASE ) > 0: a__: Optional[Any] = inspect.getouterframes(inspect.currentframe() )[1] a__: Dict = call_frame.filename a__: Union[str, Any] = call_frame.lineno a__: int = call_frame.function a__ , a__: Any = next(iter(deprecated_kwargs.items() ) ) raise TypeError(F'{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`' ) if len(_SCREAMING_SNAKE_CASE ) == 0: return elif len(_SCREAMING_SNAKE_CASE ) == 1: return values[0] return values
290
"""simple docstring""" import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() lowercase__ = logging.get_logger('transformers.models.encodec') lowercase__ = { 'quantizer.vq.layers.*._codebook.inited': 'quantizer.layers.*.codebook.inited', 'quantizer.vq.layers.*._codebook.cluster_size': 'quantizer.layers.*.codebook.cluster_size', 'quantizer.vq.layers.*._codebook.embed': 'quantizer.layers.*.codebook.embed', 'quantizer.vq.layers.*._codebook.embed_avg': 'quantizer.layers.*.codebook.embed_avg', } lowercase__ = { 'encoder.model.0.conv.conv': 'encoder.layers.0.conv', 'encoder.model.1.block.1.conv.conv': 'encoder.layers.1.block.1.conv', 'encoder.model.1.block.3.conv.conv': 'encoder.layers.1.block.3.conv', 'encoder.model.1.shortcut.conv.conv': 'encoder.layers.1.shortcut.conv', 'encoder.model.3.conv.conv': 'encoder.layers.3.conv', 'encoder.model.4.block.1.conv.conv': 'encoder.layers.4.block.1.conv', 'encoder.model.4.block.3.conv.conv': 'encoder.layers.4.block.3.conv', 'encoder.model.4.shortcut.conv.conv': 'encoder.layers.4.shortcut.conv', 'encoder.model.6.conv.conv': 'encoder.layers.6.conv', 'encoder.model.7.block.1.conv.conv': 'encoder.layers.7.block.1.conv', 'encoder.model.7.block.3.conv.conv': 'encoder.layers.7.block.3.conv', 'encoder.model.7.shortcut.conv.conv': 'encoder.layers.7.shortcut.conv', 'encoder.model.9.conv.conv': 'encoder.layers.9.conv', 'encoder.model.10.block.1.conv.conv': 'encoder.layers.10.block.1.conv', 'encoder.model.10.block.3.conv.conv': 'encoder.layers.10.block.3.conv', 'encoder.model.10.shortcut.conv.conv': 'encoder.layers.10.shortcut.conv', 'encoder.model.12.conv.conv': 'encoder.layers.12.conv', 'encoder.model.13.lstm': 'encoder.layers.13.lstm', 'encoder.model.15.conv.conv': 'encoder.layers.15.conv', } lowercase__ = { 'encoder.model.0.conv.norm': 'encoder.layers.0.norm', 'encoder.model.1.block.1.conv.norm': 'encoder.layers.1.block.1.norm', 'encoder.model.1.block.3.conv.norm': 'encoder.layers.1.block.3.norm', 'encoder.model.1.shortcut.conv.norm': 'encoder.layers.1.shortcut.norm', 'encoder.model.3.conv.norm': 'encoder.layers.3.norm', 'encoder.model.4.block.1.conv.norm': 'encoder.layers.4.block.1.norm', 'encoder.model.4.block.3.conv.norm': 'encoder.layers.4.block.3.norm', 'encoder.model.4.shortcut.conv.norm': 'encoder.layers.4.shortcut.norm', 'encoder.model.6.conv.norm': 'encoder.layers.6.norm', 'encoder.model.7.block.1.conv.norm': 'encoder.layers.7.block.1.norm', 'encoder.model.7.block.3.conv.norm': 'encoder.layers.7.block.3.norm', 'encoder.model.7.shortcut.conv.norm': 'encoder.layers.7.shortcut.norm', 'encoder.model.9.conv.norm': 'encoder.layers.9.norm', 'encoder.model.10.block.1.conv.norm': 'encoder.layers.10.block.1.norm', 'encoder.model.10.block.3.conv.norm': 'encoder.layers.10.block.3.norm', 'encoder.model.10.shortcut.conv.norm': 'encoder.layers.10.shortcut.norm', 'encoder.model.12.conv.norm': 'encoder.layers.12.norm', 'encoder.model.15.conv.norm': 'encoder.layers.15.norm', } lowercase__ = { 'decoder.model.0.conv.conv': 'decoder.layers.0.conv', 'decoder.model.1.lstm': 'decoder.layers.1.lstm', 'decoder.model.3.convtr.convtr': 'decoder.layers.3.conv', 'decoder.model.4.block.1.conv.conv': 'decoder.layers.4.block.1.conv', 'decoder.model.4.block.3.conv.conv': 'decoder.layers.4.block.3.conv', 'decoder.model.4.shortcut.conv.conv': 'decoder.layers.4.shortcut.conv', 'decoder.model.6.convtr.convtr': 'decoder.layers.6.conv', 'decoder.model.7.block.1.conv.conv': 'decoder.layers.7.block.1.conv', 'decoder.model.7.block.3.conv.conv': 'decoder.layers.7.block.3.conv', 'decoder.model.7.shortcut.conv.conv': 'decoder.layers.7.shortcut.conv', 'decoder.model.9.convtr.convtr': 'decoder.layers.9.conv', 'decoder.model.10.block.1.conv.conv': 'decoder.layers.10.block.1.conv', 'decoder.model.10.block.3.conv.conv': 'decoder.layers.10.block.3.conv', 'decoder.model.10.shortcut.conv.conv': 'decoder.layers.10.shortcut.conv', 'decoder.model.12.convtr.convtr': 'decoder.layers.12.conv', 'decoder.model.13.block.1.conv.conv': 'decoder.layers.13.block.1.conv', 'decoder.model.13.block.3.conv.conv': 'decoder.layers.13.block.3.conv', 'decoder.model.13.shortcut.conv.conv': 'decoder.layers.13.shortcut.conv', 'decoder.model.15.conv.conv': 'decoder.layers.15.conv', } lowercase__ = { 'decoder.model.0.conv.norm': 'decoder.layers.0.norm', 'decoder.model.3.convtr.norm': 'decoder.layers.3.norm', 'decoder.model.4.block.1.conv.norm': 'decoder.layers.4.block.1.norm', 'decoder.model.4.block.3.conv.norm': 'decoder.layers.4.block.3.norm', 'decoder.model.4.shortcut.conv.norm': 'decoder.layers.4.shortcut.norm', 'decoder.model.6.convtr.norm': 'decoder.layers.6.norm', 'decoder.model.7.block.1.conv.norm': 'decoder.layers.7.block.1.norm', 'decoder.model.7.block.3.conv.norm': 'decoder.layers.7.block.3.norm', 'decoder.model.7.shortcut.conv.norm': 'decoder.layers.7.shortcut.norm', 'decoder.model.9.convtr.norm': 'decoder.layers.9.norm', 'decoder.model.10.block.1.conv.norm': 'decoder.layers.10.block.1.norm', 'decoder.model.10.block.3.conv.norm': 'decoder.layers.10.block.3.norm', 'decoder.model.10.shortcut.conv.norm': 'decoder.layers.10.shortcut.norm', 'decoder.model.12.convtr.norm': 'decoder.layers.12.norm', 'decoder.model.13.block.1.conv.norm': 'decoder.layers.13.block.1.norm', 'decoder.model.13.block.3.conv.norm': 'decoder.layers.13.block.3.norm', 'decoder.model.13.shortcut.conv.norm': 'decoder.layers.13.shortcut.norm', 'decoder.model.15.conv.norm': 'decoder.layers.15.norm', } lowercase__ = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } lowercase__ = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } lowercase__ = [] lowercase__ = [] def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->int: for attribute in key.split('.' ): a__: str = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if weight_type is not None: a__: List[str] = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).shape else: a__: Optional[Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": a__: str = value elif weight_type == "weight_g": a__: int = value elif weight_type == "weight_v": a__: Tuple = value elif weight_type == "bias": a__: Dict = value elif weight_type == "running_mean": a__: Any = value elif weight_type == "running_var": a__: Tuple = value elif weight_type == "num_batches_tracked": a__: List[str] = value elif weight_type == "weight_ih_l0": a__: List[Any] = value elif weight_type == "weight_hh_l0": a__: List[Any] = value elif weight_type == "bias_ih_l0": a__: List[Any] = value elif weight_type == "bias_hh_l0": a__: List[Any] = value elif weight_type == "weight_ih_l1": a__: int = value elif weight_type == "weight_hh_l1": a__: str = value elif weight_type == "bias_ih_l1": a__: Union[str, Any] = value elif weight_type == "bias_hh_l1": a__: Any = value else: a__: Union[str, Any] = value logger.info(F'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' ) def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Dict: for key in ignore_keys: if key.endswith('.*' ): if name.startswith(key[:-1] ): return True elif ".*." in key: a__ , a__: Optional[Any] = key.split('.*.' ) if prefix in name and suffix in name: return True elif key in name: return True return False def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->List[str]: a__: List[Any] = [] if model_name == "encodec_24khz" or "encodec_32khz": a__: Optional[int] = MAPPING_24K elif model_name == "encodec_48khz": a__: List[Any] = MAPPING_48K else: raise ValueError(F'Unsupported model: {model_name}' ) for name, value in orig_dict.items(): if should_ignore(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): logger.info(F'{name} was ignored' ) continue a__: int = False for key, mapped_key in MAPPING.items(): if "*" in key: a__ , a__: str = key.split('.*.' ) if prefix in name and suffix in name: a__: List[str] = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('embed' ) and name.endswith('embed_avg' ): continue a__: List[str] = True if "*" in mapped_key: a__: List[str] = name.split(_SCREAMING_SNAKE_CASE )[0].split('.' )[-2] a__: str = mapped_key.replace('*' , _SCREAMING_SNAKE_CASE ) if "weight_g" in name: a__: int = 'weight_g' elif "weight_v" in name: a__: Dict = 'weight_v' elif "weight_ih_l0" in name: a__: int = 'weight_ih_l0' elif "weight_hh_l0" in name: a__: Union[str, Any] = 'weight_hh_l0' elif "bias_ih_l0" in name: a__: Optional[Any] = 'bias_ih_l0' elif "bias_hh_l0" in name: a__: Optional[int] = 'bias_hh_l0' elif "weight_ih_l1" in name: a__: Dict = 'weight_ih_l1' elif "weight_hh_l1" in name: a__: Optional[Any] = 'weight_hh_l1' elif "bias_ih_l1" in name: a__: List[str] = 'bias_ih_l1' elif "bias_hh_l1" in name: a__: Optional[Any] = 'bias_hh_l1' elif "bias" in name: a__: List[str] = 'bias' elif "weight" in name: a__: Any = 'weight' elif "running_mean" in name: a__: Dict = 'running_mean' elif "running_var" in name: a__: Dict = 'running_var' elif "num_batches_tracked" in name: a__: Dict = 'num_batches_tracked' else: a__: List[str] = None set_recursively(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(_SCREAMING_SNAKE_CASE ) logger.warning(F'Unused weights: {unused_weights}' ) @torch.no_grad() def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , ) ->int: if config_path is not None: a__: Dict = EncodecConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) else: a__: Tuple = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": a__: Any = [8, 5, 4, 4] a__: List[str] = [2.2] a__: List[Any] = 64 a__: Dict = 32000 a__: Union[str, Any] = 2048 a__: Union[str, Any] = False a__: Any = False a__: Optional[Any] = False elif model_name == "encodec_48khz": a__: Optional[int] = [8, 5, 4, 2] a__: Union[str, Any] = [3.0, 6.0, 12.0, 24.0] a__: List[str] = 48000 a__: Tuple = 2 a__: Optional[Any] = False a__: Optional[int] = 'time_group_norm' a__: Union[str, Any] = True a__: Dict = 1.0 a__: str = 0.01 else: raise ValueError(F'Unknown model name: {model_name}' ) a__: Optional[int] = EncodecModel(_SCREAMING_SNAKE_CASE ) a__: List[str] = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(_SCREAMING_SNAKE_CASE ) a__: int = torch.load(_SCREAMING_SNAKE_CASE ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights a__: str = original_checkpoint['best_state'] recursively_load_weights(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) if repo_id: print('Pushing to the hub...' ) feature_extractor.push_to_hub(_SCREAMING_SNAKE_CASE ) model.push_to_hub(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument( '--model', default='encodec_24khz', type=str, help='The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.', ) parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) lowercase__ = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
290
1
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer lowerCAmelCase_ = ['gpt2'] lowerCAmelCase_ = 'gpt2' if is_tf_available(): class _A ( tf.Module ): """simple docstring""" def __init__( self : Optional[Any] , _A : Optional[Any] ) -> str: """simple docstring""" super().__init__() lowercase : Dict = tokenizer lowercase : List[Any] = AutoConfig.from_pretrained(__A ) lowercase : int = TFGPTaLMHeadModel.from_config(__A ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='''text''' ),) ) def __a ( self : Optional[int] , _A : str ) -> Union[str, Any]: """simple docstring""" lowercase : Union[str, Any] = self.tokenizer(__A ) lowercase : Optional[Any] = tokenized["""input_ids"""].to_tensor() lowercase : Union[str, Any] = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) lowercase : Dict = self.model(input_ids=__A , attention_mask=__A )["""logits"""] return outputs @require_tf @require_keras_nlp class _A ( unittest.TestCase ): """simple docstring""" def __a ( self : List[str] ) -> Optional[int]: """simple docstring""" super().setUp() lowercase : List[str] = [GPTaTokenizer.from_pretrained(__A ) for checkpoint in (TOKENIZER_CHECKPOINTS)] lowercase : Tuple = [TFGPTaTokenizer.from_pretrained(__A ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) lowercase : Optional[int] = [ """This is a straightforward English test sentence.""", """This one has some weird characters\rto\nsee\r\nif those\u00E9break things.""", """Now we're going to add some Chinese: 一 二 三 一二三""", """And some much more rare Chinese: 齉 堃 齉堃""", """Je vais aussi écrire en français pour tester les accents""", """Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ""", ] lowercase : Union[str, Any] = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def __a ( self : Dict ) -> Any: """simple docstring""" for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: lowercase : Tuple = tokenizer([test_inputs] , return_tensors='''tf''' ) lowercase : List[Any] = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors lowercase : Union[str, Any] = python_outputs[key].numpy() lowercase : Tuple = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(__A , tf.intaa ) == tf_outputs_values ) ) @slow def __a ( self : int ) -> str: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: lowercase : str = tf.function(__A ) for test_inputs in self.test_sentences: lowercase : List[str] = tf.constant(__A ) lowercase : str = compiled_tokenizer(__A ) lowercase : Optional[Any] = tf_tokenizer(__A ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def __a ( self : Any ) -> Optional[int]: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: lowercase : Optional[Any] = ModelToSave(tokenizer=__A ) lowercase : Optional[int] = tf.convert_to_tensor([self.test_sentences[0]] ) lowercase : Dict = model.serving(__A ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: lowercase : Optional[int] = Path(__A ) / """saved.model""" tf.saved_model.save(__A , __A , signatures={'''serving_default''': model.serving} ) lowercase : Dict = tf.saved_model.load(__A ) lowercase : int = loaded_model.signatures["""serving_default"""](__A )["""output_0"""] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def __a ( self : Union[str, Any] ) -> Dict: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: lowercase : Union[str, Any] = tf.convert_to_tensor([self.test_sentences[0]] ) lowercase : Optional[Any] = tf_tokenizer(__A ) # Build model with some sample inputs lowercase : Any = tf_tokenizer.get_config() lowercase : str = TFGPTaTokenizer.from_config(__A ) lowercase : Optional[Any] = model_from_config(__A ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def __a ( self : Optional[int] ) -> Any: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: # for the test to run lowercase : Dict = 123_123 for max_length in [3, 5, 1_024]: lowercase : List[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) lowercase : Tuple = tf_tokenizer(__A , max_length=__A ) lowercase : Optional[int] = out["""input_ids"""].numpy().shape[1] assert out_length == max_length
351
import os from collections.abc import Iterator def snake_case( __magic_name__ = "." ) -> Iterator[str]: '''simple docstring''' for dir_path, dir_names, filenames in os.walk(__magic_name__ ): lowercase : Tuple = [d for d in dir_names if d != '''scripts''' and d[0] not in '''._'''] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(__magic_name__ )[1] in (".py", ".ipynb"): yield os.path.join(__magic_name__ , __magic_name__ ).lstrip('''./''' ) def snake_case( __magic_name__ ) -> Dict: '''simple docstring''' return F"""{i * ' '}*""" if i else "\n##" def snake_case( __magic_name__ , __magic_name__ ) -> str: '''simple docstring''' lowercase : Dict = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(__magic_name__ ) or old_parts[i] != new_part) and new_part: print(F"""{md_prefix(__magic_name__ )} {new_part.replace('_' , ' ' ).title()}""" ) return new_path def snake_case( __magic_name__ = "." ) -> None: '''simple docstring''' lowercase : str = '''''' for filepath in sorted(good_file_paths(__magic_name__ ) ): lowercase , lowercase : Optional[int] = os.path.split(__magic_name__ ) if filepath != old_path: lowercase : str = print_path(__magic_name__ , __magic_name__ ) lowercase : Optional[int] = (filepath.count(os.sep ) + 1) if filepath else 0 lowercase : Optional[Any] = F"""{filepath}/{filename}""".replace(''' ''' , '''%20''' ) lowercase : List[str] = os.path.splitext(filename.replace('''_''' , ''' ''' ).title() )[0] print(F"""{md_prefix(__magic_name__ )} [{filename}]({url})""" ) if __name__ == "__main__": print_directory_md('.')
116
0
"""simple docstring""" import os import re import shutil import sys import tempfile import unittest import black __SCREAMING_SNAKE_CASE : List[str] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. __SCREAMING_SNAKE_CASE : str = " \"\"\"\n Output class for the scheduler's step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n" class __A (unittest.TestCase): '''simple docstring''' def lowerCAmelCase ( self : int ) ->List[Any]: """simple docstring""" snake_case_ = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , """schedulers/""" ) ) snake_case_ = self.diffusers_dir shutil.copy( os.path.join(_A , """src/diffusers/schedulers/scheduling_ddpm.py""" ) , os.path.join(self.diffusers_dir , """schedulers/scheduling_ddpm.py""" ) , ) def lowerCAmelCase ( self : Tuple ) ->Tuple: """simple docstring""" snake_case_ = 'src/diffusers' shutil.rmtree(self.diffusers_dir ) def lowerCAmelCase ( self : str , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Dict=None ) ->Any: """simple docstring""" snake_case_ = comment + F"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: snake_case_ = comment + F"""\nclass {class_name}(nn.Module):\n""" + overwrite_result snake_case_ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) snake_case_ = black.format_str(_A , mode=_A ) snake_case_ = os.path.join(self.diffusers_dir , """new_code.py""" ) with open(_A , """w""" , newline="""\n""" ) as f: f.write(_A ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_A ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_A ) with open(_A , """r""" ) as f: self.assertTrue(f.read() , _A ) def lowerCAmelCase ( self : int ) ->Dict: """simple docstring""" snake_case_ = check_copies.find_code_in_diffusers("""schedulers.scheduling_ddpm.DDPMSchedulerOutput""" ) self.assertEqual(_A , _A ) def lowerCAmelCase ( self : Dict ) ->Tuple: """simple docstring""" self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput""" , """DDPMSchedulerOutput""" , REFERENCE_CODE + """\n""" , ) # With no empty line at the end self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput""" , """DDPMSchedulerOutput""" , _A , ) # Copy consistency with rename self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test""" , """TestSchedulerOutput""" , re.sub("""DDPM""" , """Test""" , _A ) , ) # Copy consistency with a really long name snake_case_ = 'TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( F"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , F"""{long_class_name}SchedulerOutput""" , re.sub("""Bert""" , _A , _A ) , ) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test""" , """TestSchedulerOutput""" , _A , overwrite_result=re.sub("""DDPM""" , """Test""" , _A ) , )
347
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a : List[str]= logging.get_logger(__name__) _a : Optional[int]= { "weiweishi/roc-bert-base-zh": "https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json", } class UpperCamelCase ( lowercase ): UpperCAmelCase : Union[str, Any] = """roc_bert""" def __init__(self : Dict , _A : str=3_05_22 , _A : List[str]=7_68 , _A : int=12 , _A : int=12 , _A : Any=30_72 , _A : List[Any]="gelu" , _A : str=0.1 , _A : Tuple=0.1 , _A : Optional[Any]=5_12 , _A : Optional[Any]=2 , _A : Dict=0.02 , _A : Tuple=1E-12 , _A : Any=True , _A : List[str]=0 , _A : Tuple="absolute" , _A : List[str]=None , _A : Union[str, Any]=True , _A : Tuple=True , _A : Dict=7_68 , _A : str=9_10 , _A : List[str]=5_12 , _A : str=2_48_58 , _A : Tuple=True , **_A : Dict , ) -> List[Any]: __snake_case : Tuple = vocab_size __snake_case : List[Any] = max_position_embeddings __snake_case : Tuple = hidden_size __snake_case : Optional[Any] = num_hidden_layers __snake_case : Tuple = num_attention_heads __snake_case : Any = intermediate_size __snake_case : List[Any] = hidden_act __snake_case : Any = hidden_dropout_prob __snake_case : Union[str, Any] = attention_probs_dropout_prob __snake_case : List[str] = initializer_range __snake_case : Optional[Any] = type_vocab_size __snake_case : str = layer_norm_eps __snake_case : Dict = use_cache __snake_case : int = enable_pronunciation __snake_case : Dict = enable_shape __snake_case : Any = pronunciation_embed_dim __snake_case : Union[str, Any] = pronunciation_vocab_size __snake_case : List[Any] = shape_embed_dim __snake_case : List[Any] = shape_vocab_size __snake_case : List[Any] = concat_input __snake_case : str = position_embedding_type __snake_case : List[Any] = classifier_dropout super().__init__(pad_token_id=_A , **_A)
172
0
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--txt2img_unclip''', default='''kakaobrain/karlo-v1-alpha''', type=str, required=False, help='''The pretrained txt2img unclip.''', ) __lowerCamelCase = parser.parse_args() __lowerCamelCase = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) __lowerCamelCase = CLIPImageProcessor() __lowerCamelCase = CLIPVisionModelWithProjection.from_pretrained('''openai/clip-vit-large-patch14''') __lowerCamelCase = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
360
'''simple docstring''' import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) __lowerCamelCase = logging.getLogger(__name__) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = git.Repo(search_parent_directories=UpperCAmelCase__ ) A_ = { """repo_id""": str(UpperCAmelCase__ ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), } with open(os.path.join(UpperCAmelCase__, """git_log.json""" ), """w""" ) as f: json.dump(UpperCAmelCase__, UpperCAmelCase__, indent=4 ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Dict: if params.n_gpu <= 0: A_ = 0 A_ = -1 A_ = True A_ = False return assert torch.cuda.is_available() logger.info("""Initializing GPUs""" ) if params.n_gpu > 1: assert params.local_rank != -1 A_ = int(os.environ["""WORLD_SIZE"""] ) A_ = int(os.environ["""N_GPU_NODE"""] ) A_ = int(os.environ["""RANK"""] ) # number of nodes / node ID A_ = params.world_size // params.n_gpu_per_node A_ = params.global_rank // params.n_gpu_per_node A_ = True assert params.n_nodes == int(os.environ["""N_NODES"""] ) assert params.node_id == int(os.environ["""NODE_RANK"""] ) # local job (single GPU) else: assert params.local_rank == -1 A_ = 1 A_ = 0 A_ = 0 A_ = 0 A_ = 1 A_ = 1 A_ = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode A_ = params.node_id == 0 and params.local_rank == 0 A_ = params.n_nodes > 1 # summary A_ = F'''--- Global rank: {params.global_rank} - ''' logger.info(PREFIX + """Number of nodes: %i""" % params.n_nodes ) logger.info(PREFIX + """Node ID : %i""" % params.node_id ) logger.info(PREFIX + """Local rank : %i""" % params.local_rank ) logger.info(PREFIX + """World size : %i""" % params.world_size ) logger.info(PREFIX + """GPUs per node : %i""" % params.n_gpu_per_node ) logger.info(PREFIX + """Master : %s""" % str(params.is_master ) ) logger.info(PREFIX + """Multi-node : %s""" % str(params.multi_node ) ) logger.info(PREFIX + """Multi-GPU : %s""" % str(params.multi_gpu ) ) logger.info(PREFIX + """Hostname : %s""" % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info("""Initializing PyTorch distributed""" ) torch.distributed.init_process_group( init_method="""env://""", backend="""nccl""", ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
101
0
"""simple docstring""" import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa a_ = logging.getLogger(__name__) class __snake_case ( _snake_case ): """simple docstring""" _lowerCamelCase = """summarization""" _lowerCamelCase = ["""loss"""] _lowerCamelCase = ROUGE_KEYS _lowerCamelCase = """rouge2""" def __init__( self , __lowerCamelCase , **__lowerCamelCase ): '''simple docstring''' if hparams.sortish_sampler and hparams.gpus > 1: __A : List[str] = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError('''Dynamic Batch size does not work for multi-gpu training''' ) if hparams.sortish_sampler: raise ValueError('''--sortish_sampler and --max_tokens_per_batch may not be used simultaneously''' ) super().__init__(UpperCamelCase__ , num_labels=UpperCamelCase__ , mode=self.mode , **UpperCamelCase__ ) use_task_specific_params(self.model , '''summarization''' ) save_git_info(self.hparams.output_dir ) __A : Dict = Path(self.output_dir ) / '''metrics.json''' __A : str = Path(self.output_dir ) / '''hparams.pkl''' pickle_save(self.hparams , self.hparams_save_path ) __A : str = 0 __A : Any = defaultdict(UpperCamelCase__ ) __A : Union[str, Any] = self.config.model_type __A : List[Any] = self.config.tgt_vocab_size if self.model_type == '''fsmt''' else self.config.vocab_size __A : Dict = { '''data_dir''': self.hparams.data_dir, '''max_source_length''': self.hparams.max_source_length, '''prefix''': self.model.config.prefix or '''''', } __A : Union[str, Any] = { '''train''': self.hparams.n_train, '''val''': self.hparams.n_val, '''test''': self.hparams.n_test, } __A : Tuple = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} __A : str = { '''train''': self.hparams.max_target_length, '''val''': self.hparams.val_max_target_length, '''test''': self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F"""target_lens: {self.target_lens}""" assert self.target_lens["train"] <= self.target_lens["test"], F"""target_lens: {self.target_lens}""" if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) __A : List[str] = get_git_info()['''repo_sha'''] __A : int = hparams.num_workers __A : Optional[Any] = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , UpperCamelCase__ ): __A : List[str] = self.tokenizer.lang_code_to_id[hparams.tgt_lang] __A : Union[str, Any] = self.decoder_start_token_id __A : Optional[int] = ( SeqaSeqDataset if hasattr(self.tokenizer , '''prepare_seq2seq_batch''' ) else LegacySeqaSeqDataset ) __A : Any = False __A : Union[str, Any] = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: __A : Optional[int] = self.hparams.eval_max_gen_length else: __A : List[Any] = self.model.config.max_length __A : Dict = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' __A : str = { k: self.tokenizer.batch_decode(v.tolist() ) if '''mask''' not in k else v.shape for k, v in batch.items() } save_json(UpperCamelCase__ , Path(self.output_dir ) / '''text_batch.json''' ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / '''tok_batch.json''' ) __A : Any = True return readable_batch def UpperCamelCase__( self , __lowerCamelCase , **__lowerCamelCase ): '''simple docstring''' return self.model(UpperCamelCase__ , **UpperCamelCase__ ) def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' __A : int = self.tokenizer.batch_decode( UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ , clean_up_tokenization_spaces=UpperCamelCase__ ) return lmap(str.strip , UpperCamelCase__ ) def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' __A : List[Any] = self.tokenizer.pad_token_id __A , __A : List[Any] = batch['''input_ids'''], batch['''attention_mask'''] __A : Optional[Any] = batch['''labels'''] if isinstance(self.model , UpperCamelCase__ ): __A : Any = self.model._shift_right(UpperCamelCase__ ) else: __A : Dict = shift_tokens_right(UpperCamelCase__ , UpperCamelCase__ ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero __A : Tuple = decoder_input_ids self.save_readable_batch(UpperCamelCase__ ) __A : Dict = self(UpperCamelCase__ , attention_mask=UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ , use_cache=UpperCamelCase__ ) __A : Optional[int] = outputs['''logits'''] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id __A : Optional[Any] = nn.CrossEntropyLoss(ignore_index=UpperCamelCase__ ) assert lm_logits.shape[-1] == self.vocab_size __A : Dict = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: __A : Dict = nn.functional.log_softmax(UpperCamelCase__ , dim=-1 ) __A , __A : List[Any] = label_smoothed_nll_loss( UpperCamelCase__ , UpperCamelCase__ , self.hparams.label_smoothing , ignore_index=UpperCamelCase__ ) return (loss,) @property def UpperCamelCase__( self ): '''simple docstring''' return self.tokenizer.pad_token_id def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' __A : Union[str, Any] = self._step(UpperCamelCase__ ) __A : Dict = dict(zip(self.loss_names , UpperCamelCase__ ) ) # tokens per batch __A : Tuple = batch['''input_ids'''].ne(self.pad ).sum() + batch['''labels'''].ne(self.pad ).sum() __A : Optional[Any] = batch['''input_ids'''].shape[0] __A : int = batch['''input_ids'''].eq(self.pad ).sum() __A : Optional[Any] = batch['''input_ids'''].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' return self._generative_step(UpperCamelCase__ ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase="val" ): '''simple docstring''' self.step_count += 1 __A : List[str] = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} __A : int = losses['''loss'''] __A : List[str] = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ['''gen_time''', '''gen_len'''] } __A : Optional[int] = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) __A : Dict = torch.tensor(UpperCamelCase__ ).type_as(UpperCamelCase__ ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(UpperCamelCase__ ) __A : Optional[Any] = {F"""{prefix}_avg_{k}""": x for k, x in losses.items()} __A : Optional[Any] = self.step_count self.metrics[prefix].append(UpperCamelCase__ ) # callback writes this to self.metrics_save_path __A : Dict = flatten_list([x['''preds'''] for x in outputs] ) return { "log": all_metrics, "preds": preds, F"""{prefix}_loss""": loss, F"""{prefix}_{self.val_metric}""": metric_tensor, } def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' return calculate_rouge(UpperCamelCase__ , UpperCamelCase__ ) def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' __A : List[str] = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') __A : Dict = self.model.generate( batch['''input_ids'''] , attention_mask=batch['''attention_mask'''] , use_cache=UpperCamelCase__ , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) __A : Optional[Any] = (time.time() - ta) / batch['''input_ids'''].shape[0] __A : Tuple = self.ids_to_clean_text(UpperCamelCase__ ) __A : List[Any] = self.ids_to_clean_text(batch['''labels'''] ) __A : Optional[Any] = self._step(UpperCamelCase__ ) __A : str = dict(zip(self.loss_names , UpperCamelCase__ ) ) __A : Dict = self.calc_generative_metrics(UpperCamelCase__ , UpperCamelCase__ ) __A : Dict = np.mean(lmap(UpperCamelCase__ , UpperCamelCase__ ) ) base_metrics.update(gen_time=UpperCamelCase__ , gen_len=UpperCamelCase__ , preds=UpperCamelCase__ , target=UpperCamelCase__ , **UpperCamelCase__ ) return base_metrics def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' return self._generative_step(UpperCamelCase__ ) def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' return self.validation_epoch_end(UpperCamelCase__ , prefix='''test''' ) def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' __A : Optional[int] = self.n_obs[type_path] __A : Union[str, Any] = self.target_lens[type_path] __A : List[str] = self.dataset_class( self.tokenizer , type_path=UpperCamelCase__ , n_obs=UpperCamelCase__ , max_target_length=UpperCamelCase__ , **self.dataset_kwargs , ) return dataset def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = False ): '''simple docstring''' __A : Tuple = self.get_dataset(UpperCamelCase__ ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": __A : Optional[Any] = dataset.make_sortish_sampler(UpperCamelCase__ , distributed=self.hparams.gpus > 1 ) return DataLoader( UpperCamelCase__ , batch_size=UpperCamelCase__ , collate_fn=dataset.collate_fn , shuffle=UpperCamelCase__ , num_workers=self.num_workers , sampler=UpperCamelCase__ , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": __A : List[Any] = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( UpperCamelCase__ , batch_sampler=UpperCamelCase__ , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( UpperCamelCase__ , batch_size=UpperCamelCase__ , collate_fn=dataset.collate_fn , shuffle=UpperCamelCase__ , num_workers=self.num_workers , sampler=UpperCamelCase__ , ) def UpperCamelCase__( self ): '''simple docstring''' __A : Optional[Any] = self.get_dataloader('''train''' , batch_size=self.hparams.train_batch_size , shuffle=UpperCamelCase__ ) return dataloader def UpperCamelCase__( self ): '''simple docstring''' return self.get_dataloader('''val''' , batch_size=self.hparams.eval_batch_size ) def UpperCamelCase__( self ): '''simple docstring''' return self.get_dataloader('''test''' , batch_size=self.hparams.eval_batch_size ) @staticmethod def UpperCamelCase__( __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' BaseTransformer.add_model_specific_args(UpperCamelCase__ , UpperCamelCase__ ) add_generic_args(UpperCamelCase__ , UpperCamelCase__ ) parser.add_argument( '''--max_source_length''' , default=1024 , type=UpperCamelCase__ , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--max_target_length''' , default=56 , type=UpperCamelCase__ , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--val_max_target_length''' , default=142 , type=UpperCamelCase__ , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--test_max_target_length''' , default=142 , type=UpperCamelCase__ , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument('''--freeze_encoder''' , action='''store_true''' ) parser.add_argument('''--freeze_embeds''' , action='''store_true''' ) parser.add_argument('''--sortish_sampler''' , action='''store_true''' , default=UpperCamelCase__ ) parser.add_argument('''--overwrite_output_dir''' , action='''store_true''' , default=UpperCamelCase__ ) parser.add_argument('''--max_tokens_per_batch''' , type=UpperCamelCase__ , default=UpperCamelCase__ ) parser.add_argument('''--logger_name''' , type=UpperCamelCase__ , choices=['''default''', '''wandb''', '''wandb_shared'''] , default='''default''' ) parser.add_argument('''--n_train''' , type=UpperCamelCase__ , default=-1 , required=UpperCamelCase__ , help='''# examples. -1 means use all.''' ) parser.add_argument('''--n_val''' , type=UpperCamelCase__ , default=500 , required=UpperCamelCase__ , help='''# examples. -1 means use all.''' ) parser.add_argument('''--n_test''' , type=UpperCamelCase__ , default=-1 , required=UpperCamelCase__ , help='''# examples. -1 means use all.''' ) parser.add_argument( '''--task''' , type=UpperCamelCase__ , default='''summarization''' , required=UpperCamelCase__ , help='''# examples. -1 means use all.''' ) parser.add_argument('''--label_smoothing''' , type=UpperCamelCase__ , default=0.0 , required=UpperCamelCase__ ) parser.add_argument('''--src_lang''' , type=UpperCamelCase__ , default='''''' , required=UpperCamelCase__ ) parser.add_argument('''--tgt_lang''' , type=UpperCamelCase__ , default='''''' , required=UpperCamelCase__ ) parser.add_argument('''--eval_beams''' , type=UpperCamelCase__ , default=UpperCamelCase__ , required=UpperCamelCase__ ) parser.add_argument( '''--val_metric''' , type=UpperCamelCase__ , default=UpperCamelCase__ , required=UpperCamelCase__ , choices=['''bleu''', '''rouge2''', '''loss''', None] ) parser.add_argument('''--eval_max_gen_length''' , type=UpperCamelCase__ , default=UpperCamelCase__ , help='''never generate more than n tokens''' ) parser.add_argument('''--save_top_k''' , type=UpperCamelCase__ , default=1 , required=UpperCamelCase__ , help='''How many checkpoints to save''' ) parser.add_argument( '''--early_stopping_patience''' , type=UpperCamelCase__ , default=-1 , required=UpperCamelCase__ , help=( '''-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So''' ''' val_check_interval will effect it.''' ) , ) return parser class __snake_case ( _snake_case ): """simple docstring""" _lowerCamelCase = """translation""" _lowerCamelCase = ["""loss"""] _lowerCamelCase = ["""bleu"""] _lowerCamelCase = """bleu""" def __init__( self , __lowerCamelCase , **__lowerCamelCase ): '''simple docstring''' super().__init__(UpperCamelCase__ , **UpperCamelCase__ ) __A : Any = hparams.src_lang __A : Optional[Any] = hparams.tgt_lang def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' return calculate_bleu(UpperCamelCase__ , UpperCamelCase__ ) def __lowercase ( snake_case_ : Dict ,snake_case_ : Optional[int]=None ) ->SummarizationModule: '''simple docstring''' Path(args.output_dir ).mkdir(exist_ok=UpperCAmelCase__ ) check_output_dir(UpperCAmelCase__ ,expected_items=3 ) if model is None: if "summarization" in args.task: __A : Optional[int] = SummarizationModule(UpperCAmelCase__ ) else: __A : Tuple = TranslationModule(UpperCAmelCase__ ) __A : List[Any] = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith('''/tmp''' ) or str(args.output_dir ).startswith('''/var''' ) ): __A : List[str] = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger __A : List[Any] = os.environ.get('''WANDB_PROJECT''' ,UpperCAmelCase__ ) __A : int = WandbLogger(name=model.output_dir.name ,project=UpperCAmelCase__ ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger __A : Optional[Any] = WandbLogger(name=model.output_dir.name ,project=F"""hf_{dataset}""" ) if args.early_stopping_patience >= 0: __A : int = get_early_stopping_callback(model.val_metric ,args.early_stopping_patience ) else: __A : str = False __A : List[str] = args.val_metric == '''loss''' __A : Any = generic_train( UpperCAmelCase__ ,UpperCAmelCase__ ,logging_callback=SeqaSeqLoggingCallback() ,checkpoint_callback=get_checkpoint_callback( args.output_dir ,model.val_metric ,args.save_top_k ,UpperCAmelCase__ ) ,early_stopping_callback=UpperCAmelCase__ ,logger=UpperCAmelCase__ ,) pickle_save(model.hparams ,model.output_dir / '''hparams.pkl''' ) if not args.do_predict: return model __A : Any = '''''' __A : Optional[int] = sorted(glob.glob(os.path.join(args.output_dir ,'''*.ckpt''' ) ,recursive=UpperCAmelCase__ ) ) if checkpoints: __A : str = checkpoints[-1] __A : Optional[Any] = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": a_ = argparse.ArgumentParser() a_ = pl.Trainer.add_argparse_args(parser) a_ = SummarizationModule.add_model_specific_args(parser, os.getcwd()) a_ = parser.parse_args() main(args)
179
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { '''weiweishi/roc-bert-base-zh''': '''https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json''', } class A__ ( _snake_case ): lowercase = "roc_bert" def __init__( self , UpperCamelCase__=30522 , UpperCamelCase__=768 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=3072 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=2 , UpperCamelCase__=0.02 , UpperCamelCase__=1e-1_2 , UpperCamelCase__=True , UpperCamelCase__=0 , UpperCamelCase__="absolute" , UpperCamelCase__=None , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=768 , UpperCamelCase__=910 , UpperCamelCase__=512 , UpperCamelCase__=24858 , UpperCamelCase__=True , **UpperCamelCase__ , ) -> Tuple: '''simple docstring''' A_ = vocab_size A_ = max_position_embeddings A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = initializer_range A_ = type_vocab_size A_ = layer_norm_eps A_ = use_cache A_ = enable_pronunciation A_ = enable_shape A_ = pronunciation_embed_dim A_ = pronunciation_vocab_size A_ = shape_embed_dim A_ = shape_vocab_size A_ = concat_input A_ = position_embedding_type A_ = classifier_dropout super().__init__(pad_token_id=UpperCamelCase__ , **UpperCamelCase__ )
162
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCAmelCase = { '''configuration_tapas''': ['''TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TapasConfig'''], '''tokenization_tapas''': ['''TapasTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ '''TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TapasForMaskedLM''', '''TapasForQuestionAnswering''', '''TapasForSequenceClassification''', '''TapasModel''', '''TapasPreTrainedModel''', '''load_tf_weights_in_tapas''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ '''TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFTapasForMaskedLM''', '''TFTapasForQuestionAnswering''', '''TFTapasForSequenceClassification''', '''TFTapasModel''', '''TFTapasPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
352
import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def _lowerCamelCase( lowercase__ , lowercase__ ) -> Optional[int]: '''simple docstring''' __lowercase= 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' __lowercase= Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ).convert('RGB' ) __lowercase= transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.4814_5466, 0.457_8275, 0.4082_1073) , (0.2686_2954, 0.2613_0258, 0.2757_7711) ), ] ) __lowercase= transform(lowercase__ ).unsqueeze(0 ).to(lowercase__ ) return image def _lowerCamelCase( lowercase__ ) -> Dict: '''simple docstring''' if "visual_encoder" in key: __lowercase= re.sub('visual_encoder*' , 'vision_model.encoder' , lowercase__ ) if "blocks" in key: __lowercase= re.sub(R'blocks' , 'layers' , lowercase__ ) if "attn" in key: __lowercase= re.sub(R'attn' , 'self_attn' , lowercase__ ) if "norm1" in key: __lowercase= re.sub(R'norm1' , 'layer_norm1' , lowercase__ ) if "norm2" in key: __lowercase= re.sub(R'norm2' , 'layer_norm2' , lowercase__ ) if "encoder.norm" in key: __lowercase= re.sub(R'encoder.norm' , 'post_layernorm' , lowercase__ ) if "encoder.patch_embed.proj" in key: __lowercase= re.sub(R'encoder.patch_embed.proj' , 'embeddings.patch_embedding' , lowercase__ ) if "encoder.pos_embed" in key: __lowercase= re.sub(R'encoder.pos_embed' , 'embeddings.position_embedding' , lowercase__ ) if "encoder.cls_token" in key: __lowercase= re.sub(R'encoder.cls_token' , 'embeddings.class_embedding' , lowercase__ ) if "self_attn" in key: __lowercase= re.sub(R'self_attn.proj' , 'self_attn.projection' , lowercase__ ) return key @torch.no_grad() def _lowerCamelCase( lowercase__ , lowercase__=None ) -> int: '''simple docstring''' if config_path is not None: __lowercase= BlipConfig.from_pretrained(lowercase__ ) else: __lowercase= BlipConfig(projection_dim=5_1_2 , text_config={} , vision_config={} ) __lowercase= BlipForConditionalGeneration(lowercase__ ).eval() __lowercase= 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth' __lowercase= blip_decoder(pretrained=lowercase__ , image_size=3_8_4 , vit='base' ) __lowercase= pt_model.eval() __lowercase= pt_model.state_dict() for key in modified_state_dict.copy(): __lowercase= modified_state_dict.pop(lowercase__ ) __lowercase= rename_key(lowercase__ ) __lowercase= value hf_model.load_state_dict(lowercase__ ) __lowercase= 3_8_4 __lowercase= load_demo_image(image_size=lowercase__ , device='cpu' ) __lowercase= BertTokenizer.from_pretrained('bert-base-uncased' ) __lowercase= tokenizer(['a picture of'] ).input_ids __lowercase= hf_model.generate(lowercase__ , lowercase__ ) assert out[0].tolist() == [3_0_5_2_2, 1_0_3_7, 3_8_6_1, 1_9_9_7, 1_0_3_7, 2_4_5_0, 3_5_6_4, 2_0_0_6, 1_9_9_6, 3_5_0_9, 2_0_0_7, 2_0_1_4, 3_8_9_9, 1_0_2] __lowercase= hf_model.generate(lowercase__ ) assert out[0].tolist() == [3_0_5_2_2, 1_0_3_7, 2_4_5_0, 3_5_6_4, 2_0_0_6, 1_9_9_6, 3_5_0_9, 2_0_0_7, 2_0_1_4, 3_8_9_9, 1_0_2] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(lowercase__ ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' __lowercase= ( 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth' ) __lowercase= blip_vqa(pretrained=lowercase__ , image_size=lowercase__ , vit='base' ) vqa_model.eval() __lowercase= vqa_model.state_dict() for key in modified_state_dict.copy(): __lowercase= modified_state_dict.pop(lowercase__ ) __lowercase= rename_key(lowercase__ ) __lowercase= value __lowercase= BlipForQuestionAnswering(lowercase__ ) hf_vqa_model.load_state_dict(lowercase__ ) __lowercase= ['How many dogs are in this image?'] __lowercase= tokenizer(lowercase__ , return_tensors='pt' ).input_ids __lowercase= hf_vqa_model.generate(lowercase__ , lowercase__ ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '_vqa' ) __lowercase= 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth' __lowercase= blip_itm(pretrained=lowercase__ , image_size=lowercase__ , vit='base' ) itm_model.eval() __lowercase= itm_model.state_dict() for key in modified_state_dict.copy(): __lowercase= modified_state_dict.pop(lowercase__ ) __lowercase= rename_key(lowercase__ ) __lowercase= value __lowercase= BlipForImageTextRetrieval(lowercase__ ) __lowercase= ['A picture of a woman with a dog sitting in a beach'] __lowercase= tokenizer( lowercase__ , return_tensors='pt' , padding='max_length' , truncation=lowercase__ , max_length=3_5 , ).input_ids hf_itm_model.load_state_dict(lowercase__ ) hf_itm_model.eval() __lowercase= hf_itm_model(lowercase__ , lowercase__ , use_itm_head=lowercase__ ) __lowercase= hf_itm_model(lowercase__ , lowercase__ , use_itm_head=lowercase__ ) assert out[0].item() == 0.2110_6874_9427_7954 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_5698_8453_8650_5127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '_itm' ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') lowerCAmelCase = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
304
0
'''simple docstring''' from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
53
"""simple docstring""" import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy UpperCAmelCase__ : Union[str, Any] = logging.getLogger(__name__) def lowercase_ ( _snake_case ,_snake_case ,_snake_case = None ,_snake_case = None ,_snake_case = None ,_snake_case = None ,_snake_case = None ,_snake_case = False ,): SCREAMING_SNAKE_CASE__ : List[Any] = bnb_quantization_config.load_in_abit SCREAMING_SNAKE_CASE__ : int = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( """You have a version of `bitsandbytes` that is not compatible with 8bit quantization,""" """ make sure you have the latest version of `bitsandbytes` installed.""" ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( """You have a version of `bitsandbytes` that is not compatible with 4bit quantization,""" """make sure you have the latest version of `bitsandbytes` installed.""" ) SCREAMING_SNAKE_CASE__ : int = [] # custom device map if isinstance(_snake_case ,_snake_case ) and len(device_map.keys() ) > 1: SCREAMING_SNAKE_CASE__ : Optional[int] = [key for key, value in device_map.items() if value in ["""disk""", """cpu"""]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: SCREAMING_SNAKE_CASE__ : int = get_keys_to_not_convert(_snake_case ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(_snake_case ) SCREAMING_SNAKE_CASE__ : List[Any] = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: SCREAMING_SNAKE_CASE__ : Optional[Any] = [] SCREAMING_SNAKE_CASE__ : Dict = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(_snake_case ) # compatibility with peft SCREAMING_SNAKE_CASE__ : Any = load_in_abit SCREAMING_SNAKE_CASE__ : Any = load_in_abit SCREAMING_SNAKE_CASE__ : Tuple = get_parameter_device(_snake_case ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( """It is not recommended to quantize a loaded model. """ """The model should be instantiated under the `init_empty_weights` context manager.""" ) SCREAMING_SNAKE_CASE__ : int = replace_with_bnb_layers(_snake_case ,_snake_case ,modules_to_not_convert=_snake_case ) # convert param to the right dtype SCREAMING_SNAKE_CASE__ : str = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: SCREAMING_SNAKE_CASE__ : Tuple = name.replace(""".weight""" ,"""""" ).replace(""".bias""" ,"""""" ) SCREAMING_SNAKE_CASE__ : Dict = getattr(_snake_case ,_snake_case ,_snake_case ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(_snake_case ): param.to(_snake_case ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" ) logger.info( f'''The model device type is {model_device.type}. However, cuda is needed for quantization.''' """We move the model to cuda.""" ) return model elif weights_location is None: raise RuntimeError( f'''`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ''' ) else: with init_empty_weights(): SCREAMING_SNAKE_CASE__ : Dict = replace_with_bnb_layers( _snake_case ,_snake_case ,modules_to_not_convert=_snake_case ) SCREAMING_SNAKE_CASE__ : Optional[Any] = get_quantized_model_device_map( _snake_case ,_snake_case ,_snake_case ,max_memory=_snake_case ,no_split_module_classes=_snake_case ,) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): SCREAMING_SNAKE_CASE__ : Tuple = True SCREAMING_SNAKE_CASE__ : Optional[Any] = any(x in list(device_map.values() ) for x in ["""cpu""", """disk"""] ) load_checkpoint_in_model( _snake_case ,_snake_case ,_snake_case ,dtype=bnb_quantization_config.torch_dtype ,offload_folder=_snake_case ,offload_state_dict=_snake_case ,keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules ,offload_abit_bnb=load_in_abit and offload ,) return dispatch_model(_snake_case ,device_map=_snake_case ,offload_dir=_snake_case ) def lowercase_ ( _snake_case ,_snake_case ,_snake_case=None ,_snake_case=None ,_snake_case=None ): if device_map is None: if torch.cuda.is_available(): SCREAMING_SNAKE_CASE__ : int = {"""""": torch.cuda.current_device()} else: raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" ) logger.info("""The device_map was not initialized.""" """Setting device_map to `{'':torch.cuda.current_device()}`.""" ) if isinstance(_snake_case ,_snake_case ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( """If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or """ """'sequential'.""" ) SCREAMING_SNAKE_CASE__ : Optional[Any] = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) SCREAMING_SNAKE_CASE__ : List[Any] = {} SCREAMING_SNAKE_CASE__ : Union[str, Any] = special_dtypes SCREAMING_SNAKE_CASE__ : Optional[Any] = no_split_module_classes SCREAMING_SNAKE_CASE__ : int = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": SCREAMING_SNAKE_CASE__ : int = get_balanced_memory( _snake_case ,low_zero=(device_map == """balanced_low_0""") ,max_memory=_snake_case ,**_snake_case ,) SCREAMING_SNAKE_CASE__ : Optional[Any] = max_memory SCREAMING_SNAKE_CASE__ : str = infer_auto_device_map(_snake_case ,**_snake_case ) if isinstance(_snake_case ,_snake_case ): # check if don't have any quantized module on the cpu SCREAMING_SNAKE_CASE__ : Tuple = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules SCREAMING_SNAKE_CASE__ : Optional[Any] = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( """ Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in `torch_dtype`, you need to pass a custom `device_map` to `load_and_quantize_model`. Check https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk for more details. """ ) else: logger.info( """Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit""" ) del device_map_without_some_modules return device_map def lowercase_ ( _snake_case ,_snake_case ,_snake_case=None ,_snake_case=None ): if modules_to_not_convert is None: SCREAMING_SNAKE_CASE__ : Tuple = [] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = _replace_with_bnb_layers( _snake_case ,_snake_case ,_snake_case ,_snake_case ) if not has_been_replaced: logger.warning( """You are loading your model in 8bit or 4bit but no linear modules were found in your model.""" """ this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.""" """ Please double check your model architecture, or submit an issue on github if you think this is""" """ a bug.""" ) return model def lowercase_ ( _snake_case ,_snake_case ,_snake_case=None ,_snake_case=None ,): SCREAMING_SNAKE_CASE__ : Tuple = False for name, module in model.named_children(): if current_key_name is None: SCREAMING_SNAKE_CASE__ : Any = [] current_key_name.append(_snake_case ) if isinstance(_snake_case ,nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` SCREAMING_SNAKE_CASE__ : Tuple = """.""".join(_snake_case ) SCREAMING_SNAKE_CASE__ : List[str] = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: SCREAMING_SNAKE_CASE__ : List[str] = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: SCREAMING_SNAKE_CASE__ : Tuple = bnb.nn.LinearabitLt( module.in_features ,module.out_features ,module.bias is not None ,has_fpaa_weights=_snake_case ,threshold=bnb_quantization_config.llm_inta_threshold ,) elif bnb_quantization_config.load_in_abit: SCREAMING_SNAKE_CASE__ : Dict = bnb.nn.Linearabit( module.in_features ,module.out_features ,module.bias is not None ,bnb_quantization_config.bnb_abit_compute_dtype ,compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant ,quant_type=bnb_quantization_config.bnb_abit_quant_type ,) else: raise ValueError("""load_in_8bit and load_in_4bit can't be both False""" ) SCREAMING_SNAKE_CASE__ : str = module.weight.data if module.bias is not None: SCREAMING_SNAKE_CASE__ : Optional[int] = module.bias.data bnb_module.requires_grad_(_snake_case ) setattr(_snake_case ,_snake_case ,_snake_case ) SCREAMING_SNAKE_CASE__ : List[str] = True if len(list(module.children() ) ) > 0: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = _replace_with_bnb_layers( _snake_case ,_snake_case ,_snake_case ,_snake_case ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def lowercase_ ( _snake_case ): # Create a copy of the model with init_empty_weights(): SCREAMING_SNAKE_CASE__ : Any = deepcopy(_snake_case ) # this has 0 cost since it is done inside `init_empty_weights` context manager` SCREAMING_SNAKE_CASE__ : Tuple = find_tied_parameters(_snake_case ) # For compatibility with Accelerate < 0.18 if isinstance(_snake_case ,_snake_case ): SCREAMING_SNAKE_CASE__ : Tuple = sum(list(tied_params.values() ) ,[] ) + list(tied_params.keys() ) else: SCREAMING_SNAKE_CASE__ : List[str] = sum(_snake_case ,[] ) SCREAMING_SNAKE_CASE__ : Dict = len(_snake_case ) > 0 # Check if it is a base model SCREAMING_SNAKE_CASE__ : Optional[int] = False if hasattr(_snake_case ,"""base_model_prefix""" ): SCREAMING_SNAKE_CASE__ : Dict = not hasattr(_snake_case ,model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head SCREAMING_SNAKE_CASE__ : Optional[Any] = list(model.named_children() ) SCREAMING_SNAKE_CASE__ : Optional[Any] = [list_modules[-1][0]] # add last module together with tied weights SCREAMING_SNAKE_CASE__ : List[str] = set(_snake_case ) - set(_snake_case ) SCREAMING_SNAKE_CASE__ : Tuple = list(set(_snake_case ) ) + list(_snake_case ) # remove ".weight" from the keys SCREAMING_SNAKE_CASE__ : Tuple = [""".weight""", """.bias"""] SCREAMING_SNAKE_CASE__ : Union[str, Any] = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: SCREAMING_SNAKE_CASE__ : Union[str, Any] = name.replace(_snake_case ,"""""" ) filtered_module_names.append(_snake_case ) return filtered_module_names def lowercase_ ( _snake_case ): for m in model.modules(): if isinstance(_snake_case ,bnb.nn.Linearabit ): return True return False def lowercase_ ( _snake_case ): return next(parameter.parameters() ).device def lowercase_ ( _snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ): # if it is not quantized, we quantize and offload the quantized weights and the SCB stats if fpaa_statistics is None: set_module_tensor_to_device(_snake_case ,_snake_case ,0 ,dtype=_snake_case ,value=_snake_case ) SCREAMING_SNAKE_CASE__ : str = param_name SCREAMING_SNAKE_CASE__ : Dict = model if "." in tensor_name: SCREAMING_SNAKE_CASE__ : Any = tensor_name.split(""".""" ) for split in splits[:-1]: SCREAMING_SNAKE_CASE__ : List[str] = getattr(_snake_case ,_snake_case ) if new_module is None: raise ValueError(f'''{module} has no attribute {split}.''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] = new_module SCREAMING_SNAKE_CASE__ : List[Any] = splits[-1] # offload weights SCREAMING_SNAKE_CASE__ : List[Any] = False offload_weight(module._parameters[tensor_name] ,_snake_case ,_snake_case ,index=_snake_case ) if hasattr(module._parameters[tensor_name] ,"""SCB""" ): offload_weight( module._parameters[tensor_name].SCB ,param_name.replace("""weight""" ,"""SCB""" ) ,_snake_case ,index=_snake_case ,) else: offload_weight(_snake_case ,_snake_case ,_snake_case ,index=_snake_case ) offload_weight(_snake_case ,param_name.replace("""weight""" ,"""SCB""" ) ,_snake_case ,index=_snake_case ) set_module_tensor_to_device(_snake_case ,_snake_case ,"""meta""" ,dtype=_snake_case ,value=torch.empty(*param.size() ) )
25
0
from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case_ ( __lowercase ): A_ = 'new-model' if is_tf_available(): class snake_case_ ( __lowercase ): A_ = NewModelConfig @require_tf class snake_case_ ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self : Tuple )->List[str]: '''simple docstring''' __lowerCAmelCase : Tuple = """bert-base-cased""" __lowerCAmelCase : List[str] = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case , _snake_case ) __lowerCAmelCase : Tuple = TFAutoModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case , _snake_case ) @slow def UpperCAmelCase__ ( self : List[Any] )->str: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = """bert-base-cased""" __lowerCAmelCase : List[Any] = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case , _snake_case ) __lowerCAmelCase : List[Any] = TFAutoModelForPreTraining.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case , _snake_case ) @slow def UpperCAmelCase__ ( self : List[str] )->int: '''simple docstring''' for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase : Union[str, Any] = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case , _snake_case ) __lowerCAmelCase : Union[str, Any] = TFAutoModelForCausalLM.from_pretrained(_snake_case ) __lowerCAmelCase : Dict = TFAutoModelForCausalLM.from_pretrained(_snake_case , output_loading_info=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case , _snake_case ) @slow def UpperCAmelCase__ ( self : Union[str, Any] )->str: '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase : List[str] = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case , _snake_case ) __lowerCAmelCase : List[Any] = TFAutoModelWithLMHead.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case , _snake_case ) @slow def UpperCAmelCase__ ( self : Any )->Tuple: '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase : Dict = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case , _snake_case ) __lowerCAmelCase : List[str] = TFAutoModelForMaskedLM.from_pretrained(_snake_case ) __lowerCAmelCase : str = TFAutoModelForMaskedLM.from_pretrained(_snake_case , output_loading_info=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case , _snake_case ) @slow def UpperCAmelCase__ ( self : List[str] )->int: '''simple docstring''' for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase : int = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case , _snake_case ) __lowerCAmelCase : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained(_snake_case ) __lowerCAmelCase : List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(_snake_case , output_loading_info=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case , _snake_case ) @slow def UpperCAmelCase__ ( self : Optional[int] )->Dict: '''simple docstring''' for model_name in ["bert-base-uncased"]: __lowerCAmelCase : Optional[Any] = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case , _snake_case ) __lowerCAmelCase : Optional[Any] = TFAutoModelForSequenceClassification.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case , _snake_case ) @slow def UpperCAmelCase__ ( self : str )->Dict: '''simple docstring''' for model_name in ["bert-base-uncased"]: __lowerCAmelCase : Dict = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case , _snake_case ) __lowerCAmelCase : str = TFAutoModelForQuestionAnswering.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case , _snake_case ) @slow @require_tensorflow_probability def UpperCAmelCase__ ( self : Dict )->int: '''simple docstring''' for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: __lowerCAmelCase : List[str] = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case , _snake_case ) __lowerCAmelCase : Optional[Any] = TFAutoModelForTableQuestionAnswering.from_pretrained(_snake_case ) __lowerCAmelCase : Any = TFAutoModelForTableQuestionAnswering.from_pretrained( _snake_case , output_loading_info=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case , _snake_case ) def UpperCAmelCase__ ( self : List[Any] )->int: '''simple docstring''' __lowerCAmelCase : Any = TFAutoModelWithLMHead.from_pretrained(_snake_case ) self.assertIsInstance(_snake_case , _snake_case ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) , 14410 ) def UpperCAmelCase__ ( self : Dict )->Any: '''simple docstring''' __lowerCAmelCase : Tuple = TFAutoModelWithLMHead.from_pretrained(_snake_case ) self.assertIsInstance(_snake_case , _snake_case ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) , 14410 ) def UpperCAmelCase__ ( self : Optional[int] )->List[Any]: '''simple docstring''' __lowerCAmelCase : Optional[Any] = TFAutoModel.from_pretrained("""sgugger/funnel-random-tiny""" ) self.assertIsInstance(_snake_case , _snake_case ) __lowerCAmelCase : Optional[int] = copy.deepcopy(model.config ) __lowerCAmelCase : List[Any] = ["""FunnelBaseModel"""] __lowerCAmelCase : Optional[int] = TFAutoModel.from_config(_snake_case ) self.assertIsInstance(_snake_case , _snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_snake_case ) __lowerCAmelCase : Dict = TFAutoModel.from_pretrained(_snake_case ) self.assertIsInstance(_snake_case , _snake_case ) def UpperCAmelCase__ ( self : List[str] )->Any: '''simple docstring''' try: AutoConfig.register("""new-model""" , _snake_case ) __lowerCAmelCase : int = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(_snake_case ): auto_class.register(_snake_case , _snake_case ) auto_class.register(_snake_case , _snake_case ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_snake_case ): auto_class.register(_snake_case , _snake_case ) # Now that the config is registered, it can be used as any other config with the auto-API __lowerCAmelCase : Union[str, Any] = BertModelTester(self ).get_config() __lowerCAmelCase : Any = NewModelConfig(**tiny_config.to_dict() ) __lowerCAmelCase : str = auto_class.from_config(_snake_case ) self.assertIsInstance(_snake_case , _snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_snake_case ) __lowerCAmelCase : Union[str, Any] = auto_class.from_pretrained(_snake_case ) self.assertIsInstance(_snake_case , _snake_case ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def UpperCAmelCase__ ( self : Any )->Dict: '''simple docstring''' with self.assertRaisesRegex( _snake_case , """bert-base is not a local folder and is not a valid model identifier""" ): __lowerCAmelCase : Any = TFAutoModel.from_pretrained("""bert-base""" ) def UpperCAmelCase__ ( self : Optional[int] )->str: '''simple docstring''' with self.assertRaisesRegex( _snake_case , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): __lowerCAmelCase : Tuple = TFAutoModel.from_pretrained(_snake_case , revision="""aaaaaa""" ) def UpperCAmelCase__ ( self : Dict )->Any: '''simple docstring''' with self.assertRaisesRegex( _snake_case , """hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin""" , ): __lowerCAmelCase : Any = TFAutoModel.from_pretrained("""hf-internal-testing/config-no-model""" ) def UpperCAmelCase__ ( self : Optional[int] )->Union[str, Any]: '''simple docstring''' with self.assertRaisesRegex(_snake_case , """Use `from_pt=True` to load this model""" ): __lowerCAmelCase : Optional[int] = TFAutoModel.from_pretrained("""hf-internal-testing/tiny-bert-pt-only""" ) def UpperCAmelCase__ ( self : int )->Optional[Any]: '''simple docstring''' __lowerCAmelCase : str = TFAutoModel.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) with RequestCounter() as counter: __lowerCAmelCase : Optional[int] = TFAutoModel.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint __lowerCAmelCase : Dict = TFAutoModel.from_pretrained("""ArthurZ/tiny-random-bert-sharded""" ) with RequestCounter() as counter: __lowerCAmelCase : List[Any] = TFAutoModel.from_pretrained("""ArthurZ/tiny-random-bert-sharded""" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
370
import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class snake_case_ ( unittest.TestCase ): def __init__( self : List[Any] , _snake_case : List[Any] , _snake_case : str=13 , _snake_case : int=30 , _snake_case : str=2 , _snake_case : int=3 , _snake_case : Optional[Any]=True , _snake_case : str=True , _snake_case : Optional[int]=32 , _snake_case : Dict=5 , _snake_case : Optional[int]=4 , _snake_case : List[Any]=37 , _snake_case : Union[str, Any]="gelu" , _snake_case : str=0.1 , _snake_case : str=0.1 , _snake_case : str=10 , _snake_case : Any=0.02 , )->Tuple: '''simple docstring''' __lowerCAmelCase : Optional[int] = parent __lowerCAmelCase : Any = batch_size __lowerCAmelCase : int = image_size __lowerCAmelCase : int = patch_size __lowerCAmelCase : List[Any] = num_channels __lowerCAmelCase : str = is_training __lowerCAmelCase : str = use_labels __lowerCAmelCase : List[str] = hidden_size __lowerCAmelCase : Dict = num_hidden_layers __lowerCAmelCase : List[str] = num_attention_heads __lowerCAmelCase : Any = intermediate_size __lowerCAmelCase : List[str] = hidden_act __lowerCAmelCase : List[str] = hidden_dropout_prob __lowerCAmelCase : Any = attention_probs_dropout_prob __lowerCAmelCase : Tuple = type_sequence_label_size __lowerCAmelCase : Union[str, Any] = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __lowerCAmelCase : Tuple = (image_size // patch_size) ** 2 __lowerCAmelCase : Optional[Any] = num_patches + 1 def UpperCAmelCase__ ( self : Any )->Any: '''simple docstring''' __lowerCAmelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase : Tuple = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_snake_case , initializer_range=self.initializer_range , ) return config, pixel_values def UpperCAmelCase__ ( self : List[Any] , _snake_case : List[str] , _snake_case : List[Any] )->Any: '''simple docstring''' __lowerCAmelCase : str = FlaxViTModel(config=_snake_case ) __lowerCAmelCase : int = model(_snake_case ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) __lowerCAmelCase : Dict = (self.image_size, self.image_size) __lowerCAmelCase : Any = (self.patch_size, self.patch_size) __lowerCAmelCase : Any = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def UpperCAmelCase__ ( self : Dict , _snake_case : str , _snake_case : List[Any] )->Union[str, Any]: '''simple docstring''' __lowerCAmelCase : Tuple = self.type_sequence_label_size __lowerCAmelCase : Tuple = FlaxViTForImageClassification(config=_snake_case ) __lowerCAmelCase : List[str] = model(_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowerCAmelCase : str = 1 __lowerCAmelCase : Any = FlaxViTForImageClassification(_snake_case ) __lowerCAmelCase : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCAmelCase : Dict = model(_snake_case ) def UpperCAmelCase__ ( self : str )->Any: '''simple docstring''' __lowerCAmelCase : Any = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) : Union[str, Any] = config_and_inputs __lowerCAmelCase : str = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class snake_case_ ( __lowercase ,unittest.TestCase ): A_ = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def UpperCAmelCase__ ( self : str )->None: '''simple docstring''' __lowerCAmelCase : List[str] = FlaxViTModelTester(self ) __lowerCAmelCase : Optional[Any] = ConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case , hidden_size=37 ) def UpperCAmelCase__ ( self : Any )->Dict: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : Any )->Any: '''simple docstring''' __lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCAmelCase__ ( self : Union[str, Any] )->str: '''simple docstring''' __lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) def UpperCAmelCase__ ( self : int )->int: '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase : int = model_class(_snake_case ) __lowerCAmelCase : Optional[int] = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase : Tuple = [*signature.parameters.keys()] __lowerCAmelCase : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _snake_case ) def UpperCAmelCase__ ( self : str )->str: '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCAmelCase : Optional[int] = self._prepare_for_class(_snake_case , _snake_case ) __lowerCAmelCase : List[str] = model_class(_snake_case ) @jax.jit def model_jitted(_snake_case : Dict , **_snake_case : Union[str, Any] ): return model(pixel_values=_snake_case , **_snake_case ) with self.subTest("""JIT Enabled""" ): __lowerCAmelCase : List[Any] = model_jitted(**_snake_case ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __lowerCAmelCase : str = model_jitted(**_snake_case ).to_tuple() self.assertEqual(len(_snake_case ) , len(_snake_case ) ) for jitted_output, output in zip(_snake_case , _snake_case ): self.assertEqual(jitted_output.shape , output.shape ) @slow def UpperCAmelCase__ ( self : Dict )->str: '''simple docstring''' for model_class_name in self.all_model_classes: __lowerCAmelCase : List[str] = model_class_name.from_pretrained("""google/vit-base-patch16-224""" ) __lowerCAmelCase : List[str] = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(_snake_case )
232
0
import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def A_ ( _lowerCAmelCase ) -> Union[str, Any]: UpperCamelCase : Optional[Any] = os.path.join(args.tf_model_dir , "parameters.json" ) UpperCamelCase : Optional[int] = json.loads(open(__snake_case ).read() ) if not params: raise ValueError( F"""It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.""" ) if not args.output.endswith(".pt" ): UpperCamelCase : Tuple = args.output + ".pt" UpperCamelCase : List[str] = OrderedDict() with tf.device("/CPU:0" ): UpperCamelCase : Optional[int] = tf.train.load_checkpoint(args.tf_model_dir ) UpperCamelCase : Dict = reader.get_variable_to_shape_map() for key_name in shapes.keys(): UpperCamelCase : List[Any] = reader.get_tensor(__snake_case ).astype(np.floataa ) if key_name.endswith("/adam_m" ) or key_name.endswith("/adam_v" ): continue if key_name.startswith("pasts/" ): if key_name.startswith("pasts/mlp" ): UpperCamelCase : Optional[int] = int(key_name[9] ) elif key_name.startswith("pasts/out" ): UpperCamelCase : List[Any] = 8 UpperCamelCase : Tuple = "model.sqout.%d.weight" % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time UpperCamelCase : Dict = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCamelCase : Dict = torch.tensor(__snake_case ) elif key_name.startswith("model/moe" ): UpperCamelCase : Optional[Any] = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/switch_gating/kernel" ): UpperCamelCase : Optional[int] = "model.blocks.%d.feed_forward.mlp.router.classifier.weight" % player UpperCamelCase : Union[str, Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCamelCase : Any = torch.tensor(__snake_case ) elif key_name.endswith("/softmlp/kernel" ): UpperCamelCase : Optional[int] = "model.blocks.%d.feed_forward.soft_bypass_mlp.weight" % player UpperCamelCase : int = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCamelCase : Tuple = torch.tensor(__snake_case ) elif key_name.endswith("/wo/kernel" ) or key_name.endswith("/wi/kernel" ): UpperCamelCase : Any = key_name[-9:-7] for i in range(16 ): UpperCamelCase : Any = "model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight" % (player, i, nlayer) UpperCamelCase : Union[str, Any] = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided UpperCamelCase : Tuple = torch.tensor(__snake_case ) elif key_name.startswith("model/mlp" ): UpperCamelCase : Union[str, Any] = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/p1/kernel" ): UpperCamelCase : Tuple = "model.blocks.%d.feed_forward.mlp.wi.weight" % player UpperCamelCase : str = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCamelCase : Dict = torch.tensor(__snake_case ) elif key_name.endswith("/p1/bias" ): UpperCamelCase : List[Any] = "model.blocks.%d.feed_forward.mlp.wi.bias" % player UpperCamelCase : Union[str, Any] = vnp.copy() # same because it is one dimensional UpperCamelCase : Any = torch.tensor(__snake_case ) elif key_name.endswith("/p2/kernel" ): UpperCamelCase : List[str] = "model.blocks.%d.feed_forward.mlp.wo.weight" % player UpperCamelCase : Optional[int] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCamelCase : List[str] = torch.tensor(__snake_case ) elif key_name.endswith("/p2/bias" ): UpperCamelCase : List[Any] = "model.blocks.%d.feed_forward.mlp.wo.bias" % player UpperCamelCase : Dict = vnp.copy() # same because it is one dimensional UpperCamelCase : Optional[Any] = torch.tensor(__snake_case ) elif key_name.startswith("model/ln" ): UpperCamelCase : str = int(key_name[8:].split("/" )[0] ) if key_name.endswith("/b" ): UpperCamelCase : int = "model.blocks.%d.feed_forward.norm.bias" % player UpperCamelCase : Any = vnp.copy() # same because it is one dimensional UpperCamelCase : str = torch.tensor(__snake_case ) elif key_name.endswith("/g" ): UpperCamelCase : Union[str, Any] = "model.blocks.%d.feed_forward.norm.weight" % player UpperCamelCase : Optional[Any] = vnp.copy() # same because it is one dimensional UpperCamelCase : Union[str, Any] = torch.tensor(__snake_case ) elif key_name.startswith("model/att" ): UpperCamelCase : Tuple = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/qkv/kernel" ): UpperCamelCase : List[Any] = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum UpperCamelCase : int = state[:, 0, :, :] UpperCamelCase : List[str] = state[:, 1, :, :] UpperCamelCase : Dict = state[:, 2, :, :] UpperCamelCase : Any = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix UpperCamelCase : Union[str, Any] = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix UpperCamelCase : Union[str, Any] = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix UpperCamelCase : Optional[int] = "model.blocks.%d.self_attn.self_attn.q_proj.weight" % player UpperCamelCase : List[str] = torch.tensor(__snake_case ) UpperCamelCase : Union[str, Any] = "model.blocks.%d.self_attn.self_attn.k_proj.weight" % player UpperCamelCase : int = torch.tensor(__snake_case ) UpperCamelCase : Optional[int] = "model.blocks.%d.self_attn.self_attn.v_proj.weight" % player UpperCamelCase : List[str] = torch.tensor(__snake_case ) elif key_name.endswith("/o/kernel" ): UpperCamelCase : Any = "model.blocks.%d.self_attn.self_attn.out_proj.weight" % player UpperCamelCase : Optional[Any] = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix UpperCamelCase : List[str] = torch.tensor(__snake_case ) elif key_name.startswith("model/an" ): UpperCamelCase : Tuple = int(key_name[8:].split("/" )[0] ) if key_name.endswith("/b" ): UpperCamelCase : int = "model.blocks.%d.self_attn.norm.bias" % player UpperCamelCase : Union[str, Any] = vnp.copy() # same because it is one dimensional UpperCamelCase : List[Any] = torch.tensor(__snake_case ) elif key_name.endswith("/g" ): UpperCamelCase : List[Any] = "model.blocks.%d.self_attn.norm.weight" % player UpperCamelCase : Union[str, Any] = vnp.copy() # same because it is one dimensional UpperCamelCase : List[str] = torch.tensor(__snake_case ) elif ( key_name.startswith("model/wte" ) or key_name.startswith("model/wpe" ) or key_name.startswith("model/ete" ) ): UpperCamelCase : str = {"wte": "embed_tokens", "wpe": "position_embeddings", "ete": "extra_position_embeddings"}[ key_name[-3:] ] UpperCamelCase : int = "model.%s.weight" % nlayer UpperCamelCase : Optional[Any] = vnp.copy() # same in embedded UpperCamelCase : Dict = torch.tensor(__snake_case ) if key_name.startswith("model/wte" ): UpperCamelCase : Tuple = "lm_head.weight" UpperCamelCase : List[str] = vnp.copy() # same in embedded UpperCamelCase : Dict = torch.tensor(__snake_case ) elif key_name.startswith("model/wob" ): UpperCamelCase : int = "final_logits_bias" UpperCamelCase : int = vnp.copy() # same in embedded UpperCamelCase : List[str] = state.reshape((1, -1) ) UpperCamelCase : Optional[Any] = torch.tensor(__snake_case ) elif key_name == "model/dense/kernel": UpperCamelCase : Tuple = "model.last_project.weight" UpperCamelCase : Dict = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCamelCase : Optional[Any] = torch.tensor(__snake_case ) elif key_name == "model/dense_1/bias": UpperCamelCase : int = "model.last_project.bias" UpperCamelCase : List[str] = vnp.copy() # same because it is one dimensional UpperCamelCase : Optional[int] = torch.tensor(__snake_case ) torch.save(__snake_case , args.output ) if __name__ == "__main__": __lowerCamelCase : Optional[int] = argparse.ArgumentParser( description="""model converter.""", formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("""--tf_model_dir""", metavar="""PATH""", type=str, required=True, help="""import model""") parser.add_argument("""--output""", metavar="""PATH""", type=str, required=True, help="""output model""") __lowerCamelCase : List[str] = parser.parse_args() convert_tf_gptsan_to_pt(args)
52
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging a_ : Union[str, Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Tuple =['pixel_values'] def __init__( self, lowerCAmelCase = True, lowerCAmelCase = None, lowerCAmelCase = PILImageResampling.BICUBIC, lowerCAmelCase = True, lowerCAmelCase = None, lowerCAmelCase = True, lowerCAmelCase = 1 / 255, lowerCAmelCase = True, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = True, **lowerCAmelCase, ): """simple docstring""" super().__init__(**lowerCAmelCase ) lowerCamelCase_ =size if size is not None else {'''shortest_edge''': 224} lowerCamelCase_ =get_size_dict(lowerCAmelCase, default_to_square=lowerCAmelCase ) lowerCamelCase_ =crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} lowerCamelCase_ =get_size_dict(lowerCAmelCase, default_to_square=lowerCAmelCase, param_name='''crop_size''' ) lowerCamelCase_ =do_resize lowerCamelCase_ =size lowerCamelCase_ =resample lowerCamelCase_ =do_center_crop lowerCamelCase_ =crop_size lowerCamelCase_ =do_rescale lowerCamelCase_ =rescale_factor lowerCamelCase_ =do_normalize lowerCamelCase_ =image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowerCamelCase_ =image_std if image_std is not None else OPENAI_CLIP_STD lowerCamelCase_ =do_convert_rgb def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = PILImageResampling.BICUBIC, lowerCAmelCase = None, **lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =get_size_dict(lowerCAmelCase, default_to_square=lowerCAmelCase ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) lowerCamelCase_ =get_resize_output_image_size(lowerCAmelCase, size=size['''shortest_edge'''], default_to_square=lowerCAmelCase ) return resize(lowerCAmelCase, size=lowerCAmelCase, resample=lowerCAmelCase, data_format=lowerCAmelCase, **lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = None, **lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =get_size_dict(lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(lowerCAmelCase, size=(size['''height'''], size['''width''']), data_format=lowerCAmelCase, **lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = None, **lowerCAmelCase, ): """simple docstring""" return rescale(lowerCAmelCase, scale=lowerCAmelCase, data_format=lowerCAmelCase, **lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = None, **lowerCAmelCase, ): """simple docstring""" return normalize(lowerCAmelCase, mean=lowerCAmelCase, std=lowerCAmelCase, data_format=lowerCAmelCase, **lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = ChannelDimension.FIRST, **lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =do_resize if do_resize is not None else self.do_resize lowerCamelCase_ =size if size is not None else self.size lowerCamelCase_ =get_size_dict(lowerCAmelCase, param_name='''size''', default_to_square=lowerCAmelCase ) lowerCamelCase_ =resample if resample is not None else self.resample lowerCamelCase_ =do_center_crop if do_center_crop is not None else self.do_center_crop lowerCamelCase_ =crop_size if crop_size is not None else self.crop_size lowerCamelCase_ =get_size_dict(lowerCAmelCase, param_name='''crop_size''', default_to_square=lowerCAmelCase ) lowerCamelCase_ =do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase_ =rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase_ =do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase_ =image_mean if image_mean is not None else self.image_mean lowerCamelCase_ =image_std if image_std is not None else self.image_std lowerCamelCase_ =do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowerCamelCase_ =make_list_of_images(lowerCAmelCase ) if not valid_images(lowerCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowerCamelCase_ =[convert_to_rgb(lowerCAmelCase ) for image in images] # All transformations expect numpy arrays. lowerCamelCase_ =[to_numpy_array(lowerCAmelCase ) for image in images] if do_resize: lowerCamelCase_ =[self.resize(image=lowerCAmelCase, size=lowerCAmelCase, resample=lowerCAmelCase ) for image in images] if do_center_crop: lowerCamelCase_ =[self.center_crop(image=lowerCAmelCase, size=lowerCAmelCase ) for image in images] if do_rescale: lowerCamelCase_ =[self.rescale(image=lowerCAmelCase, scale=lowerCAmelCase ) for image in images] if do_normalize: lowerCamelCase_ =[self.normalize(image=lowerCAmelCase, mean=lowerCAmelCase, std=lowerCAmelCase ) for image in images] lowerCamelCase_ =[to_channel_dimension_format(lowerCAmelCase, lowerCAmelCase ) for image in images] lowerCamelCase_ ={'''pixel_values''': images} return BatchFeature(data=lowerCAmelCase, tensor_type=lowerCAmelCase )
75
0
'''simple docstring''' from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput _lowercase = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): '''simple docstring''' @register_to_config def __init__( self , _lowercase , _lowercase = None , _lowercase = None ): """simple docstring""" super().__init__() _lowerCAmelCase = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" _lowerCAmelCase = torch.zeros(_lowercase , _lowercase ) else: _lowerCAmelCase = None _lowerCAmelCase = torch.nn.Parameter(_lowercase ) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : VQModel _lowercase : CLIPTextModel _lowercase : CLIPTokenizer _lowercase : TransformeraDModel _lowercase : LearnedClassifierFreeSamplingEmbeddings _lowercase : VQDiffusionScheduler def __init__( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , ): """simple docstring""" super().__init__() self.register_modules( vqvae=_lowercase , transformer=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , scheduler=_lowercase , learned_classifier_free_sampling_embeddings=_lowercase , ) def _lowercase ( self , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = len(_lowercase ) if isinstance(_lowercase , _lowercase ) else 1 # get prompt text embeddings _lowerCAmelCase = self.tokenizer( _lowercase , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) _lowerCAmelCase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: _lowerCAmelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" F' {self.tokenizer.model_max_length} tokens: {removed_text}' ) _lowerCAmelCase = text_input_ids[:, : self.tokenizer.model_max_length] _lowerCAmelCase = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 _lowerCAmelCase = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=_lowercase ) # duplicate text embeddings for each generation per prompt _lowerCAmelCase = prompt_embeds.repeat_interleave(_lowercase , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: _lowerCAmelCase = self.learned_classifier_free_sampling_embeddings.embeddings _lowerCAmelCase = negative_prompt_embeds.unsqueeze(0 ).repeat(_lowercase , 1 , 1 ) else: _lowerCAmelCase = [""""""] * batch_size _lowerCAmelCase = text_input_ids.shape[-1] _lowerCAmelCase = self.tokenizer( _lowercase , padding="""max_length""" , max_length=_lowercase , truncation=_lowercase , return_tensors="""pt""" , ) _lowerCAmelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings _lowerCAmelCase = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=_lowercase ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method _lowerCAmelCase = negative_prompt_embeds.shape[1] _lowerCAmelCase = negative_prompt_embeds.repeat(1 , _lowercase , 1 ) _lowerCAmelCase = negative_prompt_embeds.view(batch_size * num_images_per_prompt , _lowercase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowerCAmelCase = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self , _lowercase , _lowercase = 100 , _lowercase = 5.0 , _lowercase = 1.0 , _lowercase = 1 , _lowercase = None , _lowercase = None , _lowercase = "pil" , _lowercase = True , _lowercase = None , _lowercase = 1 , ): """simple docstring""" if isinstance(_lowercase , _lowercase ): _lowerCAmelCase = 1 elif isinstance(_lowercase , _lowercase ): _lowerCAmelCase = len(_lowercase ) else: raise ValueError(F'`prompt` has to be of type `str` or `list` but is {type(_lowercase )}' ) _lowerCAmelCase = batch_size * num_images_per_prompt _lowerCAmelCase = guidance_scale > 1.0 _lowerCAmelCase = self._encode_prompt(_lowercase , _lowercase , _lowercase ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_lowercase , _lowercase ) or callback_steps <= 0) ): raise ValueError( F'`callback_steps` has to be a positive integer but is {callback_steps} of type' F' {type(_lowercase )}.' ) # get the initial completely masked latents unless the user supplied it _lowerCAmelCase = (batch_size, self.transformer.num_latent_pixels) if latents is None: _lowerCAmelCase = self.transformer.num_vector_embeds - 1 _lowerCAmelCase = torch.full(_lowercase , _lowercase ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( """Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,""" F' {self.transformer.num_vector_embeds - 1} (inclusive).' ) _lowerCAmelCase = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(_lowercase , device=self.device ) _lowerCAmelCase = self.scheduler.timesteps.to(self.device ) _lowerCAmelCase = latents for i, t in enumerate(self.progress_bar(_lowercase ) ): # expand the sample if we are doing classifier free guidance _lowerCAmelCase = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` _lowerCAmelCase = self.transformer(_lowercase , encoder_hidden_states=_lowercase , timestep=_lowercase ).sample if do_classifier_free_guidance: _lowerCAmelCase , _lowerCAmelCase = model_output.chunk(2 ) _lowerCAmelCase = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(_lowercase , dim=1 , keepdim=_lowercase ) _lowerCAmelCase = self.truncate(_lowercase , _lowercase ) # remove `log(0)`'s (`-inf`s) _lowerCAmelCase = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase = self.scheduler.step(_lowercase , timestep=_lowercase , sample=_lowercase , generator=_lowercase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_lowercase , _lowercase , _lowercase ) _lowerCAmelCase = self.vqvae.config.vq_embed_dim _lowerCAmelCase = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) _lowerCAmelCase = self.vqvae.quantize.get_codebook_entry(_lowercase , shape=_lowercase ) _lowerCAmelCase = self.vqvae.decode(_lowercase , force_not_quantize=_lowercase ).sample _lowerCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _lowerCAmelCase = self.numpy_to_pil(_lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowercase ) def _lowercase ( self , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = torch.sort(_lowercase , 1 , descending=_lowercase ) _lowerCAmelCase = torch.exp(_lowercase ) _lowerCAmelCase = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out _lowerCAmelCase = torch.full_like(keep_mask[:, 0:1, :] , _lowercase ) _lowerCAmelCase = torch.cat((all_true, keep_mask) , dim=1 ) _lowerCAmelCase = keep_mask[:, :-1, :] _lowerCAmelCase = keep_mask.gather(1 , indices.argsort(1 ) ) _lowerCAmelCase = log_p_x_0.clone() _lowerCAmelCase = -torch.inf # -inf = log(0) return rv
229
'''simple docstring''' import logging from transformers import PretrainedConfig _lowercase = logging.getLogger(__name__) _lowercase = { """bertabs-finetuned-cnndm""": """https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json""", } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Optional[Any] = '''bertabs''' def __init__( self , _lowercase=30_522 , _lowercase=512 , _lowercase=6 , _lowercase=512 , _lowercase=8 , _lowercase=512 , _lowercase=0.2 , _lowercase=6 , _lowercase=768 , _lowercase=8 , _lowercase=2_048 , _lowercase=0.2 , **_lowercase , ): """simple docstring""" super().__init__(**_lowercase ) _lowerCAmelCase = vocab_size _lowerCAmelCase = max_pos _lowerCAmelCase = enc_layers _lowerCAmelCase = enc_hidden_size _lowerCAmelCase = enc_heads _lowerCAmelCase = enc_ff_size _lowerCAmelCase = enc_dropout _lowerCAmelCase = dec_layers _lowerCAmelCase = dec_hidden_size _lowerCAmelCase = dec_heads _lowerCAmelCase = dec_ff_size _lowerCAmelCase = dec_dropout
229
1
def lowerCAmelCase_ ( __A ) -> str: '''simple docstring''' UpperCAmelCase__ = "" for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def lowerCAmelCase_ ( __A ) -> dict[str, str]: '''simple docstring''' UpperCAmelCase__ = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key UpperCAmelCase__ = remove_duplicates(key.upper() ) UpperCAmelCase__ = len(__A ) # First fill cipher with key characters UpperCAmelCase__ = {alphabet[i]: char for i, char in enumerate(__A )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(__A ), 26 ): UpperCAmelCase__ = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 UpperCAmelCase__ = alphabet[i - offset] UpperCAmelCase__ = char return cipher_alphabet def lowerCAmelCase_ ( __A, __A ) -> str: '''simple docstring''' return "".join(cipher_map.get(__A, __A ) for ch in message.upper() ) def lowerCAmelCase_ ( __A, __A ) -> str: '''simple docstring''' UpperCAmelCase__ = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(__A, __A ) for ch in message.upper() ) def lowerCAmelCase_ ( ) -> None: '''simple docstring''' UpperCAmelCase__ = input("Enter message to encode or decode: " ).strip() UpperCAmelCase__ = input("Enter keyword: " ).strip() UpperCAmelCase__ = input("Encipher or decipher? E/D:" ).strip()[0].lower() try: UpperCAmelCase__ = {"e": encipher, "d": decipher}[option] except KeyError: raise KeyError("invalid input option" ) UpperCAmelCase__ = create_cipher_map(__A ) print(func(__A, __A ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
65
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "microsoft/beit-base-patch16-224-pt22k": ( "https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json" ), # See all BEiT models at https://huggingface.co/models?filter=beit } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[str] = 'beit' def __init__( self , _a=8_192 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.0 , _a=0.0 , _a=0.02 , _a=1E-12 , _a=224 , _a=16 , _a=3 , _a=False , _a=False , _a=False , _a=False , _a=0.1 , _a=0.1 , _a=True , _a=[3, 5, 7, 11] , _a=[1, 2, 3, 6] , _a=True , _a=0.4 , _a=256 , _a=1 , _a=False , _a=255 , **_a , ): super().__init__(**_a ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = initializer_range __a = layer_norm_eps __a = image_size __a = patch_size __a = num_channels __a = use_mask_token __a = use_absolute_position_embeddings __a = use_relative_position_bias __a = use_shared_relative_position_bias __a = layer_scale_init_value __a = drop_path_rate __a = use_mean_pooling # decode head attributes (semantic segmentation) __a = out_indices __a = pool_scales # auxiliary head attributes (semantic segmentation) __a = use_auxiliary_head __a = auxiliary_loss_weight __a = auxiliary_channels __a = auxiliary_num_convs __a = auxiliary_concat_input __a = semantic_loss_ignore_index class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[Any] = version.parse('1.11' ) @property def __UpperCAmelCase ( self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def __UpperCAmelCase ( self ): return 1E-4
45
0
'''simple docstring''' import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowercase : Optional[Any] = 16 _lowercase : Any = 32 def lowerCamelCase ( UpperCAmelCase__ : Accelerator , UpperCAmelCase__ : int = 16 ): lowercase_ : Optional[int] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowercase_ : Any = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(UpperCAmelCase__ : str ): # max_length=None => use the model max length (it's actually the default) lowercase_ : List[Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase_ : List[str] = datasets.map( UpperCAmelCase__ , batched=UpperCAmelCase__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase_ : List[Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(UpperCAmelCase__ : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase_ : List[str] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase_ : List[Any] = 16 elif accelerator.mixed_precision != "no": lowercase_ : List[str] = 8 else: lowercase_ : Optional[Any] = None return tokenizer.pad( UpperCAmelCase__ , padding="""longest""" , max_length=UpperCAmelCase__ , pad_to_multiple_of=UpperCAmelCase__ , return_tensors="""pt""" , ) # Instantiate dataloaders. lowercase_ : Tuple = DataLoader( tokenized_datasets["""train"""] , shuffle=UpperCAmelCase__ , collate_fn=UpperCAmelCase__ , batch_size=UpperCAmelCase__ , drop_last=UpperCAmelCase__ ) lowercase_ : str = DataLoader( tokenized_datasets["""validation"""] , shuffle=UpperCAmelCase__ , collate_fn=UpperCAmelCase__ , batch_size=UpperCAmelCase__ , drop_last=(accelerator.mixed_precision == """fp8""") , ) return train_dataloader, eval_dataloader def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict ): # Initialize accelerator lowercase_ : Optional[int] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase_ : Tuple = config["""lr"""] lowercase_ : Optional[Any] = int(config["""num_epochs"""] ) lowercase_ : List[Any] = int(config["""seed"""] ) lowercase_ : int = int(config["""batch_size"""] ) lowercase_ : int = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation lowercase_ : List[str] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowercase_ : int = batch_size // MAX_GPU_BATCH_SIZE lowercase_ : Optional[int] = MAX_GPU_BATCH_SIZE set_seed(UpperCAmelCase__ ) lowercase_ : str = get_dataloaders(UpperCAmelCase__ , UpperCAmelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase_ : Optional[int] = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=UpperCAmelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase_ : Optional[int] = model.to(accelerator.device ) # Instantiate optimizer lowercase_ : Union[str, Any] = AdamW(params=model.parameters() , lr=UpperCAmelCase__ ) # Instantiate scheduler lowercase_ : Union[str, Any] = get_linear_schedule_with_warmup( optimizer=UpperCAmelCase__ , num_warmup_steps=100 , num_training_steps=(len(UpperCAmelCase__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase_ : str = accelerator.prepare( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # Now we train the model for epoch in range(UpperCAmelCase__ ): model.train() for step, batch in enumerate(UpperCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowercase_ : Union[str, Any] = model(**UpperCAmelCase__ ) lowercase_ : int = outputs.loss lowercase_ : Any = loss / gradient_accumulation_steps accelerator.backward(UpperCAmelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(UpperCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase_ : str = model(**UpperCAmelCase__ ) lowercase_ : Union[str, Any] = outputs.logits.argmax(dim=-1 ) lowercase_ : int = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=UpperCAmelCase__ , references=UpperCAmelCase__ , ) lowercase_ : Dict = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , UpperCAmelCase__ ) def lowerCamelCase ( ): lowercase_ : str = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=UpperCAmelCase__ , default=UpperCAmelCase__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) lowercase_ : int = parser.parse_args() lowercase_ : Optional[Any] = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(UpperCAmelCase__ , UpperCAmelCase__ ) if __name__ == "__main__": main()
366
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm _lowercase : int = logging.get_logger(__name__) @dataclass class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = [ '''no_inference''', '''no_cuda''', '''no_tpu''', '''no_speed''', '''no_memory''', '''no_env_print''', '''no_multi_process''', ] def __init__( self : Optional[Any] , **lowercase_ : int ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: lowercase_ : Optional[int] = deprecated_arg[3:] setattr(self , lowercase_ , not kwargs.pop(lowercase_ ) ) logger.warning( f'''{deprecated_arg} is depreciated. Please use --no_{positive_arg} or''' f''' {positive_arg}={kwargs[positive_arg]}''' ) lowercase_ : Tuple = kwargs.pop("""torchscript""" , self.torchscript ) lowercase_ : List[Any] = kwargs.pop("""torch_xla_tpu_print_metrics""" , self.torch_xla_tpu_print_metrics ) lowercase_ : List[Any] = kwargs.pop("""fp16_opt_level""" , self.fpaa_opt_level ) super().__init__(**lowercase_ ) UpperCamelCase__ = field(default=_UpperCAmelCase, metadata={'''help''': '''Trace the models using torchscript'''}) UpperCamelCase__ = field(default=_UpperCAmelCase, metadata={'''help''': '''Print Xla/PyTorch tpu metrics'''}) UpperCamelCase__ = field( default='''O1''', metadata={ '''help''': ( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. ''' '''See details at https://nvidia.github.io/apex/amp.html''' ) }, ) @cached_property def SCREAMING_SNAKE_CASE_ ( self : Tuple ): requires_backends(self , ["""torch"""] ) logger.info("""PyTorch: setting up devices""" ) if not self.cuda: lowercase_ : Optional[Any] = torch.device("""cpu""" ) lowercase_ : Tuple = 0 elif is_torch_tpu_available(): lowercase_ : Optional[int] = xm.xla_device() lowercase_ : str = 0 else: lowercase_ : int = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) lowercase_ : str = torch.cuda.device_count() return device, n_gpu @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): return is_torch_tpu_available() and self.tpu @property def SCREAMING_SNAKE_CASE_ ( self : List[str] ): requires_backends(self , ["""torch"""] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): requires_backends(self , ["""torch"""] ) return self._setup_devices[0] @property def SCREAMING_SNAKE_CASE_ ( self : int ): requires_backends(self , ["""torch"""] ) return self._setup_devices[1] @property def SCREAMING_SNAKE_CASE_ ( self : int ): return self.n_gpu > 0
21
0
import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. _lowerCamelCase =abspath(join(dirname(__file__), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" config.addinivalue_line( 'markers', 'is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested' ) config.addinivalue_line( 'markers', 'is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested' ) config.addinivalue_line('markers', 'is_pipeline_test: mark test to run only when pipelines are tested' ) config.addinivalue_line('markers', 'is_staging_test: mark test to run only in the staging environment' ) config.addinivalue_line('markers', 'accelerate_tests: mark test that require accelerate' ) config.addinivalue_line('markers', 'tool_tests: mark the tool tests that are run on their specific schedule' ) def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(__A ) def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" from transformers.testing_utils import pytest_terminal_summary_main SCREAMING_SNAKE_CASE =terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(__A, id=__A ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" if exitstatus == 5: SCREAMING_SNAKE_CASE =0 # Doctest custom flag to ignore output. _lowerCamelCase =doctest.register_optionflag("IGNORE_RESULT") _lowerCamelCase =doctest.OutputChecker class a_ ( UpperCAmelCase_ ): """simple docstring""" def _lowerCAmelCase ( self : Optional[int] ,snake_case : Any ,snake_case : str ,snake_case : int ): if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self ,snake_case ,snake_case ,snake_case ) _lowerCamelCase =CustomOutputChecker _lowerCamelCase =HfDoctestModule _lowerCamelCase =HfDocTestParser
334
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer a__ : Optional[Any] = logging.get_logger(__name__) a__ : Union[str, Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} a__ : Any = { 'vocab_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt' ), 'squeezebert/squeezebert-mnli': 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt', 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli': ( 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json' ), }, } a__ : Optional[Any] = { 'squeezebert/squeezebert-uncased': 5_1_2, 'squeezebert/squeezebert-mnli': 5_1_2, 'squeezebert/squeezebert-mnli-headless': 5_1_2, } a__ : Optional[Any] = { 'squeezebert/squeezebert-uncased': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli-headless': {'do_lower_case': True}, } class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_INIT_CONFIGURATION __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = SqueezeBertTokenizer def __init__( self , lowercase=None , lowercase=None , lowercase=True , lowercase="[UNK]" , lowercase="[SEP]" , lowercase="[PAD]" , lowercase="[CLS]" , lowercase="[MASK]" , lowercase=True , lowercase=None , **lowercase , ) -> Tuple: super().__init__( lowercase , tokenizer_file=lowercase , do_lower_case=lowercase , unk_token=lowercase , sep_token=lowercase , pad_token=lowercase , cls_token=lowercase , mask_token=lowercase , tokenize_chinese_chars=lowercase , strip_accents=lowercase , **lowercase , ) __UpperCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , lowercase ) != do_lower_case or normalizer_state.get("""strip_accents""" , lowercase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , lowercase ) != tokenize_chinese_chars ): __UpperCamelCase = getattr(lowercase , normalizer_state.pop("""type""" ) ) __UpperCamelCase = do_lower_case __UpperCamelCase = strip_accents __UpperCamelCase = tokenize_chinese_chars __UpperCamelCase = normalizer_class(**lowercase ) __UpperCamelCase = do_lower_case def __lowerCamelCase ( self , lowercase , lowercase=None ) -> Tuple: __UpperCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCamelCase ( self , lowercase , lowercase = None ) -> List[int]: __UpperCamelCase = [self.sep_token_id] __UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCamelCase ( self , lowercase , lowercase = None ) -> Tuple[str]: __UpperCamelCase = self._tokenizer.model.save(lowercase , name=lowercase ) return tuple(lowercase )
349
0
"""simple docstring""" import functools def UpperCAmelCase ( a_, a_ ): '''simple docstring''' lowerCamelCase : str = len(a_ ) lowerCamelCase : Optional[int] = len(a_ ) @functools.cache def min_distance(a_, a_ ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa lowerCamelCase : str = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1, a_ ), 1 + min_distance(a_, indexa + 1 ), diff + min_distance(indexa + 1, indexa + 1 ), ) return min_distance(0, 0 ) if __name__ == "__main__": import doctest doctest.testmod()
369
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) class _lowercase ( __UpperCAmelCase ): lowercase_ = 'encoder-decoder' lowercase_ = True def __init__( self , **UpperCAmelCase_ ) -> str: super().__init__(**UpperCAmelCase_ ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" lowerCamelCase : List[Any] = kwargs.pop('encoder' ) lowerCamelCase : Optional[int] = encoder_config.pop('model_type' ) lowerCamelCase : str = kwargs.pop('decoder' ) lowerCamelCase : Dict = decoder_config.pop('model_type' ) from ..auto.configuration_auto import AutoConfig lowerCamelCase : int = AutoConfig.for_model(UpperCAmelCase_ , **UpperCAmelCase_ ) lowerCamelCase : List[str] = AutoConfig.for_model(UpperCAmelCase_ , **UpperCAmelCase_ ) lowerCamelCase : List[str] = True @classmethod def _UpperCamelCase ( cls , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ) -> PretrainedConfig: logger.info('Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' ) lowerCamelCase : str = True lowerCamelCase : Optional[Any] = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **UpperCAmelCase_ ) def _UpperCamelCase ( self ) -> Union[str, Any]: lowerCamelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) lowerCamelCase : Union[str, Any] = self.encoder.to_dict() lowerCamelCase : List[Any] = self.decoder.to_dict() lowerCamelCase : Tuple = self.__class__.model_type return output
205
0
"""simple docstring""" import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase : Optional[Any] = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class lowerCamelCase__ ( __A , unittest.TestCase ): """simple docstring""" __a = XGLMTokenizer __a = XGLMTokenizerFast __a = True __a = True def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __UpperCAmelCase : Tuple = XGLMTokenizer(lowerCAmelCase_ , keep_accents=lowerCAmelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : List[str] = "<pad>" __UpperCAmelCase : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase_ ) , lowerCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase_ ) , lowerCAmelCase_ ) def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(len(lowerCAmelCase_ ) , 1_008 ) def lowerCamelCase__ ( self : int ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_008 ) def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : Any = XGLMTokenizer(lowerCAmelCase_ , keep_accents=lowerCAmelCase_ ) __UpperCAmelCase : str = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCAmelCase_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __UpperCAmelCase : List[Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) __UpperCAmelCase : List[str] = tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __UpperCAmelCase : Tuple = tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def lowerCamelCase__ ( self : Any ): '''simple docstring''' return XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCAmelCase_ , f.name ) __UpperCAmelCase : Union[str, Any] = XGLMTokenizer(f.name , keep_accents=lowerCAmelCase_ ) __UpperCAmelCase : List[str] = pickle.dumps(lowerCAmelCase_ ) pickle.loads(lowerCAmelCase_ ) def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' if not self.test_rust_tokenizer: return __UpperCAmelCase : Optional[int] = self.get_tokenizer() __UpperCAmelCase : str = self.get_rust_tokenizer() __UpperCAmelCase : Tuple = "I was born in 92000, and this is falsé." __UpperCAmelCase : Dict = tokenizer.tokenize(lowerCAmelCase_ ) __UpperCAmelCase : Optional[int] = rust_tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) __UpperCAmelCase : Optional[Any] = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) __UpperCAmelCase : Dict = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) __UpperCAmelCase : Optional[int] = self.get_rust_tokenizer() __UpperCAmelCase : Dict = tokenizer.encode(lowerCAmelCase_ ) __UpperCAmelCase : List[Any] = rust_tokenizer.encode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def lowerCamelCase__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : Any = "Hello World!" __UpperCAmelCase : Optional[Any] = [2, 31_227, 4_447, 35] self.assertListEqual(lowerCAmelCase_ , self.big_tokenizer.encode(lowerCAmelCase_ ) ) @slow def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth" ) # fmt: off __UpperCAmelCase : Optional[int] = [2, 1_018, 67, 11, 1_988, 2_617, 5_631, 278, 11, 3_407, 48, 71_630, 28_085, 4, 3_234, 157, 13, 6, 5, 6, 4, 3_526, 768, 15, 659, 57, 298, 3_983, 864, 129, 21, 6, 5, 13_675, 377, 652, 7_580, 10_341, 155, 2_817, 422, 1_666, 7, 1_674, 53, 113, 202_277, 17_892, 33, 60, 87, 4, 3_234, 157, 61, 2_667, 52_376, 19, 88, 23, 735] # fmt: on self.assertListEqual(lowerCAmelCase_ , self.big_tokenizer.encode(lowerCAmelCase_ ) ) @slow def lowerCamelCase__ ( self : str ): '''simple docstring''' __UpperCAmelCase : Dict = { "input_ids": [[2, 108_825, 1_163, 15, 88_010, 473, 15_898, 157, 13_672, 1_857, 312, 8, 238_021, 1_163, 53, 13_672, 1_857, 312, 8, 53_283, 182_396, 8, 18_566, 16, 36_733, 4_101, 8, 230, 244_017, 122_553, 7, 15, 132_597, 4, 293, 12_511, 7_610, 4, 3_414, 132_597, 9, 4, 32_361, 362, 4, 734, 28_512, 32_569, 18, 4, 32_361, 26_096, 14_982, 73, 18_715, 21_433, 235_261, 15, 492, 12_427, 16, 53, 18_715, 21_433, 65_454, 15, 23_659, 563, 16, 278, 597, 2_843, 595, 7_931, 182_396, 64_186, 22, 886, 595, 132_981, 53, 25_540, 3_449, 43_982, 39_901, 5_951, 878, 330, 4, 27_694, 80_269, 312, 53, 6_517, 11_780, 611, 20_408, 5], [2, 6, 132_597, 67, 42_897, 33, 592, 8, 163_729, 25_540, 361, 136_997, 109_514, 173_230, 7, 501, 60, 102_913, 196, 5_631, 235, 63_243, 473, 6, 231_757, 74, 5_277, 7_905, 53, 3_095, 37_317, 22, 454, 183_874, 5], [2, 268, 31_298, 46_530, 6, 132_935, 43_831, 7, 597, 32, 24, 3_688, 9_865, 5]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase_ , model_name="""facebook/xglm-564M""" , padding=lowerCAmelCase_ , )
115
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: lowerCamelCase_ = None lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} lowerCamelCase_ = { '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''', '''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''', }, } lowerCamelCase_ = { '''facebook/mbart-large-en-ro''': 1024, '''facebook/mbart-large-cc25''': 1024, } # fmt: off lowerCamelCase_ = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class UpperCamelCase_ (__A ): __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = ['''input_ids''', '''attention_mask'''] __magic_name__ = MBartTokenizer __magic_name__ = [] __magic_name__ = [] def __init__( self : List[str] , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : str=None , lowerCAmelCase_ : List[Any]="<s>" , lowerCAmelCase_ : Optional[Any]="</s>" , lowerCAmelCase_ : str="</s>" , lowerCAmelCase_ : str="<s>" , lowerCAmelCase_ : List[Any]="<unk>" , lowerCAmelCase_ : Tuple="<pad>" , lowerCAmelCase_ : Union[str, Any]="<mask>" , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : str=None , lowerCAmelCase_ : Optional[Any]=None , **lowerCAmelCase_ : Any , ) -> Tuple: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase_ : Union[str, Any] = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else mask_token super().__init__( vocab_file=lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , src_lang=lowerCAmelCase_ , tgt_lang=lowerCAmelCase_ , additional_special_tokens=lowerCAmelCase_ , **lowerCAmelCase_ , ) UpperCAmelCase_ : Tuple = vocab_file UpperCAmelCase_ : str = False if not self.vocab_file else True UpperCAmelCase_ : List[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"additional_special_tokens": _additional_special_tokens} ) UpperCAmelCase_ : Tuple = { lang_code: self.convert_tokens_to_ids(lowerCAmelCase_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } UpperCAmelCase_ : int = src_lang if src_lang is not None else "en_XX" UpperCAmelCase_ : Union[str, Any] = self.convert_tokens_to_ids(self._src_lang ) UpperCAmelCase_ : Any = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: return self._src_lang @src_lang.setter def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase_ : str ) -> None: UpperCAmelCase_ : List[Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: UpperCAmelCase_ : List[str] = [self.sep_token_id] UpperCAmelCase_ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] , lowerCAmelCase_ : Optional[str] , **lowerCAmelCase_ : Union[str, Any] ) -> Dict: if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) UpperCAmelCase_ : str = src_lang UpperCAmelCase_ : str = self(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ) UpperCAmelCase_ : Optional[int] = self.convert_tokens_to_ids(lowerCAmelCase_ ) UpperCAmelCase_ : Dict = tgt_lang_id return inputs def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str = "en_XX" , lowerCAmelCase_ : Optional[List[str]] = None , lowerCAmelCase_ : str = "ro_RO" , **lowerCAmelCase_ : Dict , ) -> BatchEncoding: UpperCAmelCase_ : List[Any] = src_lang UpperCAmelCase_ : Tuple = tgt_lang return super().prepare_seqaseq_batch(lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: return self.set_src_lang_special_tokens(self.src_lang ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase_ : List[Any] ) -> None: UpperCAmelCase_ : int = self.convert_tokens_to_ids(lowerCAmelCase_ ) UpperCAmelCase_ : str = [] UpperCAmelCase_ : str = [self.eos_token_id, self.cur_lang_code] UpperCAmelCase_ : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCAmelCase_ : List[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCAmelCase_ : Optional[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : str ) -> None: UpperCAmelCase_ : Union[str, Any] = self.convert_tokens_to_ids(lowerCAmelCase_ ) UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : Optional[int] = [self.eos_token_id, self.cur_lang_code] UpperCAmelCase_ : Tuple = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCAmelCase_ : Tuple = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCAmelCase_ : Optional[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(lowerCAmelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" ) return UpperCAmelCase_ : List[str] = os.path.join( lowerCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ): copyfile(self.vocab_file , lowerCAmelCase_ ) return (out_vocab_file,)
268
0
"""simple docstring""" import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class _A ( _a ,_a ,_a ,unittest.TestCase ): """simple docstring""" UpperCAmelCase : Dict = StableUnCLIPPipeline UpperCAmelCase : Any = TEXT_TO_IMAGE_PARAMS UpperCAmelCase : Any = TEXT_TO_IMAGE_BATCH_PARAMS UpperCAmelCase : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase : Tuple = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false UpperCAmelCase : int = False def __snake_case ( self : Optional[Any]): a : List[str] = 32 a : Dict = embedder_hidden_size # prior components torch.manual_seed(0) a : List[str] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") torch.manual_seed(0) a : Optional[int] = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__UpperCAmelCase , projection_dim=__UpperCAmelCase , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )) torch.manual_seed(0) a : Optional[int] = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=__UpperCAmelCase , num_layers=1 , ) torch.manual_seed(0) a : str = DDPMScheduler( variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=1000 , clip_sample=__UpperCAmelCase , clip_sample_range=5.0 , beta_schedule="squaredcos_cap_v2" , ) # regular denoising components torch.manual_seed(0) a : Tuple = StableUnCLIPImageNormalizer(embedding_dim=__UpperCAmelCase) a : Dict = DDPMScheduler(beta_schedule="squaredcos_cap_v2") torch.manual_seed(0) a : Union[str, Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") torch.manual_seed(0) a : Union[str, Any] = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__UpperCAmelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )) torch.manual_seed(0) a : Any = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=__UpperCAmelCase , layers_per_block=1 , upcast_attention=__UpperCAmelCase , use_linear_projection=__UpperCAmelCase , ) torch.manual_seed(0) a : List[str] = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.00_085 , beta_end=0.012 , prediction_type="v_prediction" , set_alpha_to_one=__UpperCAmelCase , steps_offset=1 , ) torch.manual_seed(0) a : Any = AutoencoderKL() a : Optional[int] = { # prior components "prior_tokenizer": prior_tokenizer, "prior_text_encoder": prior_text_encoder, "prior": prior, "prior_scheduler": prior_scheduler, # image noising components "image_normalizer": image_normalizer, "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder, "unet": unet, "scheduler": scheduler, "vae": vae, } return components def __snake_case ( self : Dict , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : str=0): if str(__UpperCAmelCase).startswith("mps"): a : Optional[Any] = torch.manual_seed(__UpperCAmelCase) else: a : str = torch.Generator(device=__UpperCAmelCase).manual_seed(__UpperCAmelCase) a : int = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "prior_num_inference_steps": 2, "output_type": "numpy", } return inputs def __snake_case ( self : Dict): a : Any = torch_device == "cpu" self._test_attention_slicing_forward_pass(test_max_difference=__UpperCAmelCase) def __snake_case ( self : int): a : Any = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=__UpperCAmelCase) @slow @require_torch_gpu class _A ( unittest.TestCase ): """simple docstring""" def __snake_case ( self : Optional[int]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case ( self : List[Any]): a : List[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy") a : Dict = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa) pipe.to(__UpperCAmelCase) pipe.set_progress_bar_config(disable=__UpperCAmelCase) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() a : List[Any] = torch.Generator(device="cpu").manual_seed(0) a : str = pipe("anime turle" , generator=__UpperCAmelCase , output_type="np") a : Optional[Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__UpperCAmelCase , __UpperCAmelCase) def __snake_case ( self : Any): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() a : Optional[Any] = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa) a : List[Any] = pipe.to(__UpperCAmelCase) pipe.set_progress_bar_config(disable=__UpperCAmelCase) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() a : Any = pipe( "anime turtle" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="np" , ) a : str = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
226
"""simple docstring""" from __future__ import annotations class _A : """simple docstring""" def __init__( self : Tuple , __UpperCAmelCase : List[Any]=None): a : int = data a : Dict = None def __repr__( self : Dict): a : List[Any] = [] a : str = self while temp: string_rep.append(f'''{temp.data}''') a : Tuple = temp.next return "->".join(__UpperCAmelCase) def lowercase ( A_ )-> Any: '''simple docstring''' if not elements_list: raise Exception("The Elements List is empty" ) a : Any = Node(elements_list[0] ) for i in range(1 , len(A_ ) ): a : int = Node(elements_list[i] ) a : Optional[Any] = current.next return head def lowercase ( A_ )-> None: '''simple docstring''' if head_node is not None and isinstance(A_ , A_ ): print_reverse(head_node.next ) print(head_node.data ) def lowercase ( )-> List[Any]: '''simple docstring''' from doctest import testmod testmod() a : Union[str, Any] = make_linked_list([14, 52, 14, 12, 43] ) print("Linked List:" ) print(A_ ) print("Elements in Reverse:" ) print_reverse(A_ ) if __name__ == "__main__": main()
226
1
import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def __magic_name__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Tuple=1024 ) -> Optional[int]: __lowerCamelCase , __lowerCamelCase = [], [] __lowerCamelCase = list(zip(__lowerCAmelCase , __lowerCAmelCase ) ) __lowerCamelCase , __lowerCamelCase = sorted_examples[0] def is_too_big(__lowerCAmelCase : Union[str, Any] ): return tok(__lowerCAmelCase , return_tensors='''pt''' ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): __lowerCamelCase = new_src + ''' ''' + src __lowerCamelCase = new_tgt + ''' ''' + tgt if is_too_big(__lowerCAmelCase ) or is_too_big(__lowerCAmelCase ): # cant fit, finalize example finished_src.append(__lowerCAmelCase ) finished_tgt.append(__lowerCAmelCase ) __lowerCamelCase , __lowerCamelCase = src, tgt else: # can fit, keep adding __lowerCamelCase , __lowerCamelCase = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(__lowerCAmelCase ) finished_tgt.append(__lowerCAmelCase ) return finished_src, finished_tgt def __magic_name__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Path , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any ) -> List[str]: __lowerCamelCase = Path(__lowerCAmelCase ) save_path.mkdir(exist_ok=__lowerCAmelCase ) for split in ["train"]: __lowerCamelCase , __lowerCamelCase = data_dir / f'''{split}.source''', data_dir / f'''{split}.target''' __lowerCamelCase = [x.rstrip() for x in Path(__lowerCAmelCase ).open().readlines()] __lowerCamelCase = [x.rstrip() for x in Path(__lowerCAmelCase ).open().readlines()] __lowerCamelCase , __lowerCamelCase = pack_examples(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) print(f'''packed {split} split from {len(__lowerCAmelCase )} examples -> {len(__lowerCAmelCase )}.''' ) Path(save_path / f'''{split}.source''' ).open('''w''' ).write('''\n'''.join(__lowerCAmelCase ) ) Path(save_path / f'''{split}.target''' ).open('''w''' ).write('''\n'''.join(__lowerCAmelCase ) ) for split in ["val", "test"]: __lowerCamelCase , __lowerCamelCase = data_dir / f'''{split}.source''', data_dir / f'''{split}.target''' shutil.copyfile(__lowerCAmelCase , save_path / f'''{split}.source''' ) shutil.copyfile(__lowerCAmelCase , save_path / f'''{split}.target''' ) def __magic_name__ ( ) -> str: __lowerCamelCase = argparse.ArgumentParser() parser.add_argument('''--tok_name''' , type=__lowerCAmelCase , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''--max_seq_len''' , type=__lowerCAmelCase , default=128 ) parser.add_argument('''--data_dir''' , type=__lowerCAmelCase ) parser.add_argument('''--save_path''' , type=__lowerCAmelCase ) __lowerCamelCase = parser.parse_args() __lowerCamelCase = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(__lowerCAmelCase , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
270
from ...configuration_utils import PretrainedConfig from ...utils import logging A : List[str] = logging.get_logger(__name__) A : Any = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''falcon''' A__ = ['''past_key_values'''] def __init__(self : str , _UpperCAmelCase : Dict=6_5024 , _UpperCAmelCase : Optional[Any]=4544 , _UpperCAmelCase : Optional[int]=32 , _UpperCAmelCase : Optional[Any]=71 , _UpperCAmelCase : List[Any]=1E-5 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : str=True , _UpperCAmelCase : Tuple=0.0 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : str=None , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : int=False , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Optional[int]=11 , _UpperCAmelCase : Optional[Any]=11 , **_UpperCAmelCase : Union[str, Any] , ) -> List[str]: """simple docstring""" lowercase__ = vocab_size # Backward compatibility with n_embed kwarg lowercase__ = kwargs.pop("""n_embed""" , _UpperCAmelCase ) lowercase__ = hidden_size if n_embed is None else n_embed lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = layer_norm_epsilon lowercase__ = initializer_range lowercase__ = use_cache lowercase__ = hidden_dropout lowercase__ = attention_dropout lowercase__ = bos_token_id lowercase__ = eos_token_id lowercase__ = num_attention_heads if num_kv_heads is None else num_kv_heads lowercase__ = alibi lowercase__ = new_decoder_architecture lowercase__ = multi_query # Ignored when new_decoder_architecture is True lowercase__ = parallel_attn lowercase__ = bias super().__init__(bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) @property def lowerCamelCase__ (self : Tuple ) -> int: """simple docstring""" return self.hidden_size // self.num_attention_heads @property def lowerCamelCase__ (self : List[str] ) -> Tuple: """simple docstring""" return not self.alibi
305
0
'''simple docstring''' from __future__ import annotations def a ( lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None ): '''simple docstring''' if start is None: A_ : Tuple = 0 if end is None: A_ : List[Any] = len(lowerCamelCase__ ) - 1 if start >= end: return A_ : int = (start + end) // 2 slowsort(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) slowsort(lowerCamelCase__ , mid + 1 , lowerCamelCase__ ) if sequence[end] < sequence[mid]: A_, A_ : Optional[int] = sequence[mid], sequence[end] slowsort(lowerCamelCase__ , lowerCamelCase__ , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
135
'''simple docstring''' import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging lowerCamelCase :Tuple = logging.get_logger(__name__) lowerCamelCase :Optional[int] = {'''vocab_file''': '''spiece.model'''} lowerCamelCase :int = { '''vocab_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/spiece.model''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/spiece.model''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/spiece.model''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/spiece.model''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/spiece.model''', } } # TODO(PVP) - this should be removed in Transformers v5 lowerCamelCase :Tuple = { '''t5-small''': 5_1_2, '''t5-base''': 5_1_2, '''t5-large''': 5_1_2, '''t5-3b''': 5_1_2, '''t5-11b''': 5_1_2, } lowerCamelCase :str = '''▁''' class _lowerCAmelCase ( __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : Any = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Union[str, Any] = ['input_ids', 'attention_mask'] def __init__(self , lowercase , lowercase="</s>" , lowercase="<unk>" , lowercase="<pad>" , lowercase=100 , lowercase=None , lowercase = None , lowercase=True , **lowercase , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: A_ : Any = [F'<extra_id_{i}>' for i in range(lowercase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens A_ : Tuple = len(set(filter(lambda lowercase : bool("""extra_id""" in str(lowercase ) ) , lowercase ) ) ) if extra_tokens != extra_ids: raise ValueError( F'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are' """ provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids""" """ tokens""" ) if legacy: logger.warning_once( F'You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to' """ read the related pull request available at https://github.com/huggingface/transformers/pull/24565""" ) A_ : str = legacy A_ : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=lowercase , unk_token=lowercase , pad_token=lowercase , extra_ids=lowercase , additional_special_tokens=lowercase , sp_model_kwargs=self.sp_model_kwargs , legacy=lowercase , **lowercase , ) A_ : List[str] = vocab_file A_ : Tuple = extra_ids A_ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase ) @staticmethod def _a (lowercase , lowercase , lowercase ): if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: A_ : Union[str, Any] = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( """This tokenizer was incorrectly instantiated with a model max length of""" F' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this' """ behavior is kept to avoid breaking backwards compatibility when padding/encoding with""" """ `truncation is True`.\n- Be aware that you SHOULD NOT rely on""" F' {pretrained_model_name_or_path} automatically truncating your input to' F' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences' F' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with' """ `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please""" """ instantiate this tokenizer with `model_max_length` set to your preferred value.""" , lowercase , ) return max_model_length @property def _a (self ): return self.sp_model.get_piece_size() + self._extra_ids def _a (self ): A_ : Union[str, Any] = {self.convert_ids_to_tokens(lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _a (self , lowercase , lowercase = None , lowercase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase , token_ids_a=lowercase , already_has_special_tokens=lowercase ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(lowercase )) + [1] return ([0] * len(lowercase )) + [1] + ([0] * len(lowercase )) + [1] def _a (self ): return list( set(filter(lambda lowercase : bool(re.search(R"""<extra_id_\d+>""" , lowercase ) ) is not None , self.additional_special_tokens ) ) ) def _a (self ): return [self._convert_token_to_id(lowercase ) for token in self.get_sentinel_tokens()] def _a (self , lowercase ): if len(lowercase ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F'This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated' """ eos tokens being added.""" ) return token_ids else: return token_ids + [self.eos_token_id] def _a (self , lowercase , lowercase = None ): A_ : Dict = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def _a (self , lowercase , lowercase = None ): A_ : Optional[Any] = self._add_eos_if_not_present(lowercase ) if token_ids_a is None: return token_ids_a else: A_ : List[Any] = self._add_eos_if_not_present(lowercase ) return token_ids_a + token_ids_a def __getstate__(self ): A_ : int = self.__dict__.copy() A_ : Tuple = None return state def __setstate__(self , lowercase ): A_ : Tuple = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): A_ : Dict = {} A_ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _a (self , lowercase , **lowercase ): # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: A_ : Tuple = SPIECE_UNDERLINE + text.replace(lowercase , """ """ ) return super().tokenize(lowercase , **lowercase ) def _a (self , lowercase , **lowercase ): if not self.legacy: A_ : Dict = text.startswith(lowercase ) if is_first: A_ : str = text[1:] A_ : Optional[int] = self.sp_model.encode(lowercase , out_type=lowercase ) if not self.legacy and not is_first and not text.startswith(""" """ ) and tokens[0].startswith(lowercase ): A_ : Optional[int] = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def _a (self , lowercase ): if token.startswith("""<extra_id_""" ): A_ : Union[str, Any] = re.match(R"""<extra_id_(\d+)>""" , lowercase ) A_ : str = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(lowercase ) def _a (self , lowercase ): if index < self.sp_model.get_piece_size(): A_ : List[Any] = self.sp_model.IdToPiece(lowercase ) else: A_ : Dict = F'<extra_id_{self.vocab_size - 1 - index}>' return token def _a (self , lowercase ): A_ : Union[str, Any] = [] A_ : int = """""" A_ : Any = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowercase ) + token A_ : Dict = True A_ : Union[str, Any] = [] else: current_sub_tokens.append(lowercase ) A_ : Optional[Any] = False out_string += self.sp_model.decode(lowercase ) return out_string.strip() def _a (self , lowercase , lowercase = None ): if not os.path.isdir(lowercase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return A_ : Optional[Any] = os.path.join( lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase ) elif not os.path.isfile(self.vocab_file ): with open(lowercase , """wb""" ) as fi: A_ : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(lowercase ) return (out_vocab_file,)
135
1
import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _UpperCAmelCase : Any = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( lowerCAmelCase , unittest.TestCase): _a = XLNetTokenizer _a = XLNetTokenizerFast _a = True _a = True def SCREAMING_SNAKE_CASE ( self: Any ): super().setUp() # We have a SentencePiece fixture for testing lowercase :List[Any] = XLNetTokenizer(_lowerCAmelCase , keep_accents=_lowerCAmelCase ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self: Tuple ): lowercase :Optional[Any] = "<s>" lowercase :str = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCAmelCase ) , _lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): lowercase :Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "<eod>" ) self.assertEqual(len(_lowerCAmelCase ) , 10_06 ) def SCREAMING_SNAKE_CASE ( self: Tuple ): self.assertEqual(self.get_tokenizer().vocab_size , 10_00 ) def SCREAMING_SNAKE_CASE ( self: int ): lowercase :int = XLNetTokenizer(_lowerCAmelCase , keep_accents=_lowerCAmelCase ) lowercase :int = tokenizer.tokenize("This is a test" ) self.assertListEqual(_lowerCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , [2_85, 46, 10, 1_70, 3_82] ) lowercase :str = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _lowerCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) lowercase :Tuple = tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] ) lowercase :str = tokenizer.convert_ids_to_tokens(_lowerCAmelCase ) self.assertListEqual( _lowerCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) def SCREAMING_SNAKE_CASE ( self: List[Any] ): lowercase :Tuple = XLNetTokenizer(_lowerCAmelCase , do_lower_case=_lowerCAmelCase ) lowercase :Optional[Any] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _lowerCAmelCase , [ SPIECE_UNDERLINE + "", "i", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "se", ".", ] , ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["▁he", "ll", "o"] ) def SCREAMING_SNAKE_CASE ( self: Tuple ): lowercase :Any = XLNetTokenizer(_lowerCAmelCase , do_lower_case=_lowerCAmelCase ) lowercase :int = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _lowerCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "se", ".", ] , ) @slow def SCREAMING_SNAKE_CASE ( self: Any ): lowercase :Any = XLNetTokenizer.from_pretrained("xlnet-base-cased" ) lowercase :Optional[Any] = tokenizer.encode("sequence builders" , add_special_tokens=_lowerCAmelCase ) lowercase :Dict = tokenizer.encode("multi-sequence build" , add_special_tokens=_lowerCAmelCase ) lowercase :Dict = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase ) lowercase :List[Any] = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase , _lowerCAmelCase ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def SCREAMING_SNAKE_CASE ( self: Optional[int] ): # fmt: off lowercase :Dict = {"input_ids": [[17, 2_14_42, 2_70, 17, 10, 1_46_45, 3_18, 34, 17, 45_46, 31_45, 7_87, 13, 77_52, 2_20_18, 23, 21, 17, 45_46, 31_45, 7_87, 13, 33_52, 1_44_31, 13, 55_00, 11, 11_76, 5_80, 13, 1_68_19, 47_97, 23, 17, 10, 1_71_35, 6_58, 19, 4_57, 79_32, 13, 1_84, 19, 31_54, 1_71_35, 64_68, 19, 14_04, 1_22_69, 19, 42_29, 53_56, 1_62_64, 46, 19, 17, 2_05_45, 1_03_95, 9, 9, 9, 11, 28, 64_21, 95_31, 2_07_29, 17, 10, 3_53, 1_70_22, 11, 21, 64_21, 95_31, 1_69_49, 17, 10, 1_15_09, 7_53, 11, 33, 95, 24_21, 73_85, 9_56, 1_44_31, 26_26, 25, 8_42, 73_85, 48_36, 21, 14_29, 22_72, 98_55, 31_20, 1_61, 2_47_38, 19, 1_32_03, 6_58, 2_18, 7_87, 21, 4_30, 1_84_82, 8_47, 26_37, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_22, 2_21_78, 27, 10_64, 22, 9_56, 13, 1_11_01, 14_29, 58_54, 2_43_13, 1_89_53, 40, 4_22, 2_43_66, 68, 17_58, 37, 1_04_83, 1_42_57, 31, 2_07, 2_63, 21, 2_03, 37_73, 25, 71, 97_35, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 20_49, 34_42, 17, 1_38_94, 33_80, 23, 95, 18, 1_76_34, 22_88, 9, 4, 3]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCAmelCase , model_name="xlnet-base-cased" , revision="c841166438c31ec7ca9a106dee7bb312b73ae511" , )
236
from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig _UpperCAmelCase : Tuple = { "susnato/ernie-m-base_pytorch": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json", "susnato/ernie-m-large_pytorch": "https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json", } class __lowerCAmelCase ( lowerCAmelCase): _a = '''ernie_m''' _a = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self: List[Any] , _lowerCAmelCase: int = 25_00_02 , _lowerCAmelCase: int = 7_68 , _lowerCAmelCase: int = 12 , _lowerCAmelCase: int = 12 , _lowerCAmelCase: int = 30_72 , _lowerCAmelCase: str = "gelu" , _lowerCAmelCase: float = 0.1 , _lowerCAmelCase: float = 0.1 , _lowerCAmelCase: int = 5_14 , _lowerCAmelCase: float = 0.02 , _lowerCAmelCase: int = 1 , _lowerCAmelCase: float = 1e-0_5 , _lowerCAmelCase: Dict=None , _lowerCAmelCase: Optional[int]=False , _lowerCAmelCase: List[str]=0.0 , **_lowerCAmelCase: Tuple , ): super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase ) lowercase :Tuple = vocab_size lowercase :List[str] = hidden_size lowercase :Optional[int] = num_hidden_layers lowercase :Optional[Any] = num_attention_heads lowercase :Optional[Any] = intermediate_size lowercase :Optional[Any] = hidden_act lowercase :Any = hidden_dropout_prob lowercase :int = attention_probs_dropout_prob lowercase :Dict = max_position_embeddings lowercase :Optional[Any] = initializer_range lowercase :Any = layer_norm_eps lowercase :Union[str, Any] = classifier_dropout lowercase :int = is_decoder lowercase :List[str] = act_dropout
236
1
"""simple docstring""" from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def _lowerCamelCase( a ): return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) SCREAMING_SNAKE_CASE__:int = """ transformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires TensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions. """ class snake_case__ ( snake_case_ ): @staticmethod def a__ ( lowerCamelCase ): __a = parser.add_parser( "convert" , help="CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints." , ) train_parser.add_argument("--model_type" , type=lowerCamelCase , required=lowerCamelCase , help="Model's type." ) train_parser.add_argument( "--tf_checkpoint" , type=lowerCamelCase , required=lowerCamelCase , help="TensorFlow checkpoint path or folder." ) train_parser.add_argument( "--pytorch_dump_output" , type=lowerCamelCase , required=lowerCamelCase , help="Path to the PyTorch saved model output." ) train_parser.add_argument("--config" , type=lowerCamelCase , default="" , help="Configuration file path or folder." ) train_parser.add_argument( "--finetuning_task_name" , type=lowerCamelCase , default=lowerCamelCase , help="Optional fine-tuning task name if the TF model was a finetuned model." , ) train_parser.set_defaults(func=lowerCamelCase ) def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , *lowerCamelCase , ): __a = logging.get_logger("transformers-cli/converting" ) self._logger.info(F"Loading model {model_type}" ) __a = model_type __a = tf_checkpoint __a = pytorch_dump_output __a = config __a = finetuning_task_name def a__ ( self ): if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(lowerCamelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(lowerCamelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(lowerCamelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(lowerCamelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(lowerCamelCase ) if "ckpt" in self._tf_checkpoint.lower(): __a = self._tf_checkpoint __a = "" else: __a = self._tf_checkpoint __a = "" convert_transfo_xl_checkpoint_to_pytorch( lowerCamelCase , self._config , self._pytorch_dump_output , lowerCamelCase ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(lowerCamelCase ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(lowerCamelCase ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( "--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]" )
358
"""simple docstring""" from ..utils import DummyObject, requires_backends class snake_case__ ( metaclass=snake_case_ ): _snake_case : Union[str, Any] = ["""onnx"""] def __init__( self , *lowerCamelCase , **lowerCamelCase ): requires_backends(self , ["onnx"] ) @classmethod def a__ ( cls , *lowerCamelCase , **lowerCamelCase ): requires_backends(cls , ["onnx"] ) @classmethod def a__ ( cls , *lowerCamelCase , **lowerCamelCase ): requires_backends(cls , ["onnx"] )
268
0
def lowercase_ ( _A : list[int] ): """simple docstring""" lowerCamelCase__ : str = len(_A ) for i in range(_A ): for j in range(i + 1 , _A ): if numbers[j] < numbers[i]: lowerCamelCase__ , lowerCamelCase__ : Dict = numbers[j], numbers[i] return numbers if __name__ == "__main__": A : List[str] = input("Enter numbers separated by a comma:\n").strip() A : Dict = [int(item) for item in user_input.split(",")] print(exchange_sort(unsorted))
184
class _lowercase : """simple docstring""" def __init__( self : Any , __lowerCamelCase : int ): '''simple docstring''' lowerCamelCase__ : List[str] = n lowerCamelCase__ : Union[str, Any] = [None] * self.n lowerCamelCase__ : List[str] = 0 # index of the first element lowerCamelCase__ : Any = 0 lowerCamelCase__ : Any = 0 def __len__( self : Tuple ): '''simple docstring''' return self.size def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' return self.size == 0 def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' return False if self.is_empty() else self.array[self.front] def lowerCAmelCase ( self : str , __lowerCamelCase : List[str] ): '''simple docstring''' if self.size >= self.n: raise Exception("QUEUE IS FULL" ) lowerCamelCase__ : Optional[Any] = data lowerCamelCase__ : Tuple = (self.rear + 1) % self.n self.size += 1 return self def lowerCAmelCase ( self : Tuple ): '''simple docstring''' if self.size == 0: raise Exception("UNDERFLOW" ) lowerCamelCase__ : Any = self.array[self.front] lowerCamelCase__ : List[Any] = None lowerCamelCase__ : str = (self.front + 1) % self.n self.size -= 1 return temp
184
1
"""simple docstring""" from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging _a = logging.get_logger(__name__) class _UpperCAmelCase( lowerCamelCase__ ): lowercase__ = ['input_features', 'attention_mask'] def __init__( self , __a=80 , __a=1_60_00 , __a=80 , __a=0.0 , __a=True , __a=True , __a=True , **__a , ) -> Optional[Any]: '''simple docstring''' super().__init__(feature_size=lowercase__ , sampling_rate=lowercase__ , padding_value=lowercase__ , **lowercase__) _UpperCamelCase = num_mel_bins _UpperCamelCase = do_ceptral_normalize _UpperCamelCase = normalize_means _UpperCamelCase = normalize_vars _UpperCamelCase = True def UpperCAmelCase ( self , __a , ) -> Any: '''simple docstring''' _UpperCamelCase = waveform * (2**15) # Kaldi compliance: 16-bit signed integers _UpperCamelCase = torch.from_numpy(lowercase__).unsqueeze(0) _UpperCamelCase = ta_kaldi.fbank(lowercase__ , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate) return features.numpy() @staticmethod def UpperCAmelCase ( __a , __a , __a = True , __a = True , __a = 0.0 , ) -> Dict: '''simple docstring''' # make sure we normalize float32 arrays if normalize_means: _UpperCamelCase = x[:input_length].mean(axis=0) _UpperCamelCase = np.subtract(lowercase__ , lowercase__) if normalize_vars: _UpperCamelCase = x[:input_length].std(axis=0) _UpperCamelCase = np.divide(lowercase__ , lowercase__) if input_length < x.shape[0]: _UpperCamelCase = padding_value # make sure array is in float32 _UpperCamelCase = x.astype(np.floataa) return x def UpperCAmelCase ( self , __a , __a = None) -> Any: '''simple docstring''' _UpperCamelCase = attention_mask.sum(-1) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(lowercase__ , lowercase__ , self.normalize_means , self.normalize_vars , self.padding_value) for x, n in zip(lowercase__ , lowercase__) ] def __call__( self , __a , __a = False , __a = None , __a = False , __a = None , __a = None , __a = None , __a = None , **__a , ) -> str: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''') else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''') _UpperCamelCase = isinstance(lowercase__ , np.ndarray) and len(raw_speech.shape) > 1 if is_batched_numpy and len(raw_speech.shape) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''') _UpperCamelCase = is_batched_numpy or ( isinstance(lowercase__ , (list, tuple)) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list))) ) if is_batched: _UpperCamelCase = [np.asarray(lowercase__ , dtype=np.floataa) for speech in raw_speech] elif not is_batched and not isinstance(lowercase__ , np.ndarray): _UpperCamelCase = np.asarray(lowercase__ , dtype=np.floataa) elif isinstance(lowercase__ , np.ndarray) and raw_speech.dtype is np.dtype(np.floataa): _UpperCamelCase = raw_speech.astype(np.floataa) # always return batch if not is_batched: _UpperCamelCase = [raw_speech] # extract fbank features _UpperCamelCase = [self._extract_fbank_features(lowercase__) for waveform in raw_speech] # convert into correct format for padding _UpperCamelCase = BatchFeature({'''input_features''': features}) _UpperCamelCase = self.pad( lowercase__ , padding=lowercase__ , max_length=lowercase__ , truncation=lowercase__ , pad_to_multiple_of=lowercase__ , return_attention_mask=lowercase__ , **lowercase__ , ) # make sure list is in array format _UpperCamelCase = padded_inputs.get('''input_features''') if isinstance(input_features[0] , lowercase__): _UpperCamelCase = [np.asarray(lowercase__ , dtype=np.floataa) for feature in input_features] _UpperCamelCase = padded_inputs.get('''attention_mask''') if attention_mask is not None: _UpperCamelCase = [np.asarray(lowercase__ , dtype=np.intaa) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: _UpperCamelCase = ( np.array(lowercase__ , dtype=np.intaa) if self._get_padding_strategies(lowercase__ , max_length=lowercase__) is not PaddingStrategy.DO_NOT_PAD else None ) _UpperCamelCase = self.normalize( padded_inputs['''input_features'''] , attention_mask=lowercase__) if return_tensors is not None: _UpperCamelCase = padded_inputs.convert_to_tensors(lowercase__) return padded_inputs
358
"""simple docstring""" import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( """The `inpainting.py` script is outdated. Please use directly `from diffusers import""" """ StableDiffusionInpaintPipeline` instead.""" )
100
0
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/text-classification/requirements.txt') lowerCamelCase__ = logging.getLogger(__name__) @dataclass class lowerCAmelCase__ : lowerCAmelCase : Optional[int] = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) lowerCAmelCase : bool = field( default=UpperCAmelCase__ , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) lowerCAmelCase : bool = field( default=UpperCAmelCase__ , metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } , ) lowerCAmelCase : Optional[int] = field( default=UpperCAmelCase__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) lowerCAmelCase : Optional[int] = field( default=UpperCAmelCase__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) lowerCAmelCase : Optional[int] = field( default=UpperCAmelCase__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) } , ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : str = field( default=UpperCAmelCase__ , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) lowerCAmelCase : str = field( default=UpperCAmelCase__ , metadata={"help": "Evaluation language. Also train language if `train_language` is set to None."} ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "Train language if it is different from the evaluation language."} ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) lowerCAmelCase : Optional[bool] = field( default=UpperCAmelCase__ , metadata={"help": "arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"} , ) lowerCAmelCase : bool = field( default=UpperCAmelCase__ , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) lowerCAmelCase : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) lowerCAmelCase : bool = field( default=UpperCAmelCase__ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) lowerCAmelCase : bool = field( default=UpperCAmelCase__ , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def __lowerCAmelCase (): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : int = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_xnli" , __lowerCAmelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _UpperCAmelCase : int = training_args.get_process_log_level() logger.setLevel(__lowerCAmelCase ) datasets.utils.logging.set_verbosity(__lowerCAmelCase ) transformers.utils.logging.set_verbosity(__lowerCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. _UpperCAmelCase : Union[str, Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase : Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: _UpperCAmelCase : List[Any] = load_dataset( "xnli" , model_args.language , split="train" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: _UpperCAmelCase : Union[str, Any] = load_dataset( "xnli" , model_args.train_language , split="train" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) _UpperCAmelCase : List[str] = train_dataset.features["label"].names if training_args.do_eval: _UpperCAmelCase : Optional[Any] = load_dataset( "xnli" , model_args.language , split="validation" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) _UpperCAmelCase : Optional[Any] = eval_dataset.features["label"].names if training_args.do_predict: _UpperCAmelCase : int = load_dataset( "xnli" , model_args.language , split="test" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) _UpperCAmelCase : Dict = predict_dataset.features["label"].names # Labels _UpperCAmelCase : Optional[int] = len(__lowerCAmelCase ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase : List[str] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__lowerCAmelCase , idalabel={str(__lowerCAmelCase ): label for i, label in enumerate(__lowerCAmelCase )} , labelaid={label: i for i, label in enumerate(__lowerCAmelCase )} , finetuning_task="xnli" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _UpperCAmelCase : str = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=__lowerCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: _UpperCAmelCase : Optional[Any] = "max_length" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch _UpperCAmelCase : List[str] = False def preprocess_function(__lowerCAmelCase ): # Tokenize the texts return tokenizer( examples["premise"] , examples["hypothesis"] , padding=__lowerCAmelCase , max_length=data_args.max_seq_length , truncation=__lowerCAmelCase , ) if training_args.do_train: if data_args.max_train_samples is not None: _UpperCAmelCase : Any = min(len(__lowerCAmelCase ) , data_args.max_train_samples ) _UpperCAmelCase : Union[str, Any] = train_dataset.select(range(__lowerCAmelCase ) ) with training_args.main_process_first(desc="train dataset map pre-processing" ): _UpperCAmelCase : Optional[Any] = train_dataset.map( __lowerCAmelCase , batched=__lowerCAmelCase , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on train dataset" , ) # Log a few random samples from the training set: for index in random.sample(range(len(__lowerCAmelCase ) ) , 3 ): logger.info(F"""Sample {index} of the training set: {train_dataset[index]}.""" ) if training_args.do_eval: if data_args.max_eval_samples is not None: _UpperCAmelCase : List[str] = min(len(__lowerCAmelCase ) , data_args.max_eval_samples ) _UpperCAmelCase : Union[str, Any] = eval_dataset.select(range(__lowerCAmelCase ) ) with training_args.main_process_first(desc="validation dataset map pre-processing" ): _UpperCAmelCase : Tuple = eval_dataset.map( __lowerCAmelCase , batched=__lowerCAmelCase , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on validation dataset" , ) if training_args.do_predict: if data_args.max_predict_samples is not None: _UpperCAmelCase : int = min(len(__lowerCAmelCase ) , data_args.max_predict_samples ) _UpperCAmelCase : Dict = predict_dataset.select(range(__lowerCAmelCase ) ) with training_args.main_process_first(desc="prediction dataset map pre-processing" ): _UpperCAmelCase : Tuple = predict_dataset.map( __lowerCAmelCase , batched=__lowerCAmelCase , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on prediction dataset" , ) # Get the metric function _UpperCAmelCase : Dict = evaluate.load("xnli" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = p.predictions[0] if isinstance(p.predictions , __lowerCAmelCase ) else p.predictions _UpperCAmelCase : Union[str, Any] = np.argmax(__lowerCAmelCase , axis=1 ) return metric.compute(predictions=__lowerCAmelCase , references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: _UpperCAmelCase : Union[str, Any] = default_data_collator elif training_args.fpaa: _UpperCAmelCase : List[Any] = DataCollatorWithPadding(__lowerCAmelCase , pad_to_multiple_of=8 ) else: _UpperCAmelCase : Tuple = None # Initialize our Trainer _UpperCAmelCase : int = Trainer( model=__lowerCAmelCase , args=__lowerCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=__lowerCAmelCase , tokenizer=__lowerCAmelCase , data_collator=__lowerCAmelCase , ) # Training if training_args.do_train: _UpperCAmelCase : Union[str, Any] = None if training_args.resume_from_checkpoint is not None: _UpperCAmelCase : str = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCAmelCase : int = last_checkpoint _UpperCAmelCase : List[str] = trainer.train(resume_from_checkpoint=__lowerCAmelCase ) _UpperCAmelCase : int = train_result.metrics _UpperCAmelCase : Optional[int] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__lowerCAmelCase ) ) _UpperCAmelCase : Any = min(__lowerCAmelCase , len(__lowerCAmelCase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("train" , __lowerCAmelCase ) trainer.save_metrics("train" , __lowerCAmelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) _UpperCAmelCase : Any = trainer.evaluate(eval_dataset=__lowerCAmelCase ) _UpperCAmelCase : Tuple = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__lowerCAmelCase ) _UpperCAmelCase : List[str] = min(__lowerCAmelCase , len(__lowerCAmelCase ) ) trainer.log_metrics("eval" , __lowerCAmelCase ) trainer.save_metrics("eval" , __lowerCAmelCase ) # Prediction if training_args.do_predict: logger.info("*** Predict ***" ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : int = trainer.predict(__lowerCAmelCase , metric_key_prefix="predict" ) _UpperCAmelCase : List[Any] = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(__lowerCAmelCase ) ) _UpperCAmelCase : int = min(__lowerCAmelCase , len(__lowerCAmelCase ) ) trainer.log_metrics("predict" , __lowerCAmelCase ) trainer.save_metrics("predict" , __lowerCAmelCase ) _UpperCAmelCase : Optional[int] = np.argmax(__lowerCAmelCase , axis=1 ) _UpperCAmelCase : Dict = os.path.join(training_args.output_dir , "predictions.txt" ) if trainer.is_world_process_zero(): with open(__lowerCAmelCase , "w" ) as writer: writer.write("index\tprediction\n" ) for index, item in enumerate(__lowerCAmelCase ): _UpperCAmelCase : Tuple = label_list[item] writer.write(F"""{index}\t{item}\n""" ) if __name__ == "__main__": main()
234
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {'vocab_file': 'sentencepiece.bpe.model'} lowerCamelCase__ = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, } lowerCamelCase__ = { 'moussaKam/mbarthez': 1_024, 'moussaKam/barthez': 1_024, 'moussaKam/barthez-orangesum-title': 1_024, } lowerCamelCase__ = '▁' class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Any = VOCAB_FILES_NAMES lowerCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase : int = ["input_ids", "attention_mask"] def __init__( self : int , lowerCamelCase__ : Tuple , lowerCamelCase__ : List[Any]="<s>" , lowerCamelCase__ : Dict="</s>" , lowerCamelCase__ : Union[str, Any]="</s>" , lowerCamelCase__ : List[Any]="<s>" , lowerCamelCase__ : List[str]="<unk>" , lowerCamelCase__ : str="<pad>" , lowerCamelCase__ : Tuple="<mask>" , lowerCamelCase__ : Optional[Dict[str, Any]] = None , **lowerCamelCase__ : Dict , ) ->None: '''simple docstring''' _UpperCAmelCase : Dict = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else mask_token _UpperCAmelCase : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase__ , ) _UpperCAmelCase : Union[str, Any] = vocab_file _UpperCAmelCase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCamelCase__ ) ) _UpperCAmelCase : Optional[int] = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} _UpperCAmelCase : List[str] = len(self.sp_model ) - 1 _UpperCAmelCase : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ) ->List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCAmelCase : Union[str, Any] = [self.cls_token_id] _UpperCAmelCase : str = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase__ ( self : int , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None , lowerCamelCase__ : bool = False ) ->List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ , token_ids_a=lowerCamelCase__ , already_has_special_tokens=lowerCamelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase__ )) + [1] return [1] + ([0] * len(lowerCamelCase__ )) + [1, 1] + ([0] * len(lowerCamelCase__ )) + [1] def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ) ->List[int]: '''simple docstring''' _UpperCAmelCase : Optional[int] = [self.sep_token_id] _UpperCAmelCase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCAmelCase__ ( self : List[Any] ) ->List[str]: '''simple docstring''' return len(self.sp_model ) def lowerCAmelCase__ ( self : int ) ->int: '''simple docstring''' _UpperCAmelCase : List[Any] = {self.convert_ids_to_tokens(lowerCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCAmelCase__ ( self : int , lowerCamelCase__ : str ) ->List[str]: '''simple docstring''' return self.sp_model.encode(lowerCamelCase__ , out_type=lowerCamelCase__ ) def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : Union[str, Any] ) ->List[Any]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _UpperCAmelCase : Optional[Any] = self.sp_model.PieceToId(lowerCamelCase__ ) return spm_id if spm_id else self.unk_token_id def lowerCAmelCase__ ( self : str , lowerCamelCase__ : Any ) ->Optional[Any]: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(lowerCamelCase__ ) def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : List[Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = [] _UpperCAmelCase : Optional[Any] = "" _UpperCAmelCase : Optional[int] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCamelCase__ ) + token _UpperCAmelCase : Union[str, Any] = True _UpperCAmelCase : Union[str, Any] = [] else: current_sub_tokens.append(lowerCamelCase__ ) _UpperCAmelCase : int = False out_string += self.sp_model.decode(lowerCamelCase__ ) return out_string.strip() def __getstate__( self : Dict ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : List[str] = self.__dict__.copy() _UpperCAmelCase : Optional[int] = None return state def __setstate__( self : Any , lowerCamelCase__ : Dict ) ->Tuple: '''simple docstring''' _UpperCAmelCase : Dict = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _UpperCAmelCase : List[Any] = {} _UpperCAmelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : str , lowerCamelCase__ : Optional[str] = None ) ->Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCamelCase__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _UpperCAmelCase : Union[str, Any] = os.path.join( lowerCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase__ , "wb" ) as fi: _UpperCAmelCase : Dict = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase__ ) return (out_vocab_file,)
234
1
'''simple docstring''' from __future__ import annotations def UpperCAmelCase ( a_ , a_ , a_ ) -> dict[str, float]: """simple docstring""" if (voltage, current, resistance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if resistance < 0: raise ValueError("""Resistance cannot be negative""" ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
164
'''simple docstring''' import math def UpperCAmelCase ( a_ ) -> bool: """simple docstring""" return math.sqrt(a_ ) * math.sqrt(a_ ) == num def UpperCAmelCase ( a_ ) -> bool: """simple docstring""" A_ : Tuple = 0 A_ : Tuple = n while left <= right: A_ : int = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: A_ : Dict = mid - 1 else: A_ : str = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
164
1
'''simple docstring''' import numpy as np def __lowerCamelCase ( lowerCAmelCase_ ) -> Tuple: return 1 / (1 + np.exp(-vector )) def __lowerCamelCase ( lowerCAmelCase_ ) -> int: return vector * sigmoid(1.702 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
89
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __snake_case = logging.get_logger(__name__) if is_vision_available(): import PIL class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : List[str] = ['pixel_values'] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , **__UpperCAmelCase , ) -> None: super().__init__(**__UpperCAmelCase ) _a = size if size is not None else {'''shortest_edge''': 224} _a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) _a = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} _a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase , param_name='''crop_size''' ) _a = do_resize _a = size _a = resample _a = do_center_crop _a = crop_size _a = do_rescale _a = rescale_factor _a = do_normalize _a = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _a = image_std if image_std is not None else OPENAI_CLIP_STD _a = do_convert_rgb def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: _a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) _a = get_resize_output_image_size(__UpperCAmelCase , size=size['''shortest_edge'''] , default_to_square=__UpperCAmelCase ) return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: _a = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(__UpperCAmelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> Optional[Any]: return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image: _a = do_resize if do_resize is not None else self.do_resize _a = size if size is not None else self.size _a = get_size_dict(__UpperCAmelCase , param_name='''size''' , default_to_square=__UpperCAmelCase ) _a = resample if resample is not None else self.resample _a = do_center_crop if do_center_crop is not None else self.do_center_crop _a = crop_size if crop_size is not None else self.crop_size _a = get_size_dict(__UpperCAmelCase , param_name='''crop_size''' , default_to_square=__UpperCAmelCase ) _a = do_rescale if do_rescale is not None else self.do_rescale _a = rescale_factor if rescale_factor is not None else self.rescale_factor _a = do_normalize if do_normalize is not None else self.do_normalize _a = image_mean if image_mean is not None else self.image_mean _a = image_std if image_std is not None else self.image_std _a = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _a = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: _a = [convert_to_rgb(__UpperCAmelCase ) for image in images] # All transformations expect numpy arrays. _a = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_resize: _a = [self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images] if do_center_crop: _a = [self.center_crop(image=__UpperCAmelCase , size=__UpperCAmelCase ) for image in images] if do_rescale: _a = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images] if do_normalize: _a = [self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) for image in images] _a = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] _a = {'''pixel_values''': images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
320
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase__ = { '''vocab_file''': { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt''' ), } } lowerCAmelCase__ = { '''junnyu/roformer_chinese_small''': 1_536, '''junnyu/roformer_chinese_base''': 1_536, '''junnyu/roformer_chinese_char_small''': 512, '''junnyu/roformer_chinese_char_base''': 512, '''junnyu/roformer_small_discriminator''': 128, '''junnyu/roformer_small_generator''': 128, } lowerCAmelCase__ = { '''junnyu/roformer_chinese_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_base''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_base''': {'''do_lower_case''': True}, '''junnyu/roformer_small_discriminator''': {'''do_lower_case''': True}, '''junnyu/roformer_small_generator''': {'''do_lower_case''': True}, } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Optional[Any] =VOCAB_FILES_NAMES a : Any =PRETRAINED_VOCAB_FILES_MAP a : int =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : Dict =PRETRAINED_INIT_CONFIGURATION a : Dict =RoFormerTokenizer def __init__( self , snake_case__=None , snake_case__=None , snake_case__=True , snake_case__="[UNK]" , snake_case__="[SEP]" , snake_case__="[PAD]" , snake_case__="[CLS]" , snake_case__="[MASK]" , snake_case__=True , snake_case__=None , **snake_case__ , ): """simple docstring""" super().__init__( snake_case__ , tokenizer_file=snake_case__ , do_lower_case=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , tokenize_chinese_chars=snake_case__ , strip_accents=snake_case__ , **snake_case__ , ) lowerCAmelCase : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get("lowercase" , snake_case__ ) != do_lower_case or pre_tok_state.get("strip_accents" , snake_case__ ) != strip_accents ): lowerCAmelCase : List[Any] = getattr(snake_case__ , pre_tok_state.pop("type" ) ) lowerCAmelCase : int = do_lower_case lowerCAmelCase : Any = strip_accents lowerCAmelCase : Optional[Any] = pre_tok_class(**snake_case__ ) lowerCAmelCase : List[Any] = do_lower_case def __getstate__( self ): """simple docstring""" lowerCAmelCase : int = self.__dict__.copy() lowerCAmelCase : List[Any] = BertPreTokenizer() return state def __setstate__( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Optional[Any] = d lowerCAmelCase : int = self.__dict__["_tokenizer"].get_vocab() lowerCAmelCase : Any = PreTokenizer.custom(JiebaPreTokenizer(snake_case__ ) ) def lowercase__ ( self , snake_case__ , snake_case__=None ): """simple docstring""" lowerCAmelCase : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase__ ( self , snake_case__ , snake_case__ = None ): """simple docstring""" lowerCAmelCase : Optional[int] = [self.sep_token_id] lowerCAmelCase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase__ ( self , snake_case__ , snake_case__ = None ): """simple docstring""" lowerCAmelCase : Any = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__=None , snake_case__=None , snake_case__=False , **snake_case__ , ): """simple docstring""" lowerCAmelCase : int = BertPreTokenizer() return super().save_pretrained(snake_case__ , snake_case__ , snake_case__ , snake_case__ , **snake_case__ )
364
"""simple docstring""" import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) lowerCAmelCase__ = logging.getLogger() def a__ ( ): '''simple docstring''' lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("-f" ) lowerCAmelCase : Tuple = parser.parse_args() return args.f def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = {} lowerCAmelCase : List[str] = os.path.join(SCREAMING_SNAKE_CASE , "all_results.json" ) if os.path.exists(SCREAMING_SNAKE_CASE ): with open(SCREAMING_SNAKE_CASE , "r" ) as f: lowerCAmelCase : str = json.load(SCREAMING_SNAKE_CASE ) else: raise ValueError(f"""can't find {path}""" ) return results def a__ ( ): '''simple docstring''' lowerCAmelCase : Tuple = torch.cuda.is_available() and torch_device == "cuda" return is_using_cuda and is_apex_available() lowerCAmelCase__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" @classmethod def lowercase__ ( cls ): """simple docstring""" lowerCAmelCase : Any = tempfile.mkdtemp() lowerCAmelCase : List[Any] = os.path.join(cls.tmpdir , "default_config.yml" ) write_basic_config(save_location=cls.configPath ) lowerCAmelCase : Optional[int] = ["accelerate", "launch", "--config_file", cls.configPath] @classmethod def lowercase__ ( cls ): """simple docstring""" shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = self.get_auto_remove_tmp_dir() lowerCAmelCase : int = f""" {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --seed=42 --checkpointing_steps epoch --with_tracking """.split() if is_cuda_and_apex_available(): testargs.append("--fp16" ) run_command(self._launch_args + testargs ) lowerCAmelCase : Dict = get_results(snake_case__ ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "glue_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = self.get_auto_remove_tmp_dir() lowerCAmelCase : Tuple = f""" {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --block_size 128 --per_device_train_batch_size 5 --per_device_eval_batch_size 5 --num_train_epochs 2 --output_dir {tmp_dir} --checkpointing_steps epoch --with_tracking """.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) lowerCAmelCase : List[str] = get_results(snake_case__ ) self.assertLess(result["perplexity"] , 100 ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "clm_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = self.get_auto_remove_tmp_dir() lowerCAmelCase : Tuple = f""" {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --num_train_epochs=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) lowerCAmelCase : Any = get_results(snake_case__ ) self.assertLess(result["perplexity"] , 42 ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "mlm_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = 7 if get_gpu_count() > 1 else 2 lowerCAmelCase : Optional[Any] = self.get_auto_remove_tmp_dir() lowerCAmelCase : int = f""" {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) lowerCAmelCase : str = get_results(snake_case__ ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) self.assertLess(result["train_loss"] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "ner_no_trainer" ) ) ) @unittest.skip(reason="Fix me @muellerzr" ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = self.get_auto_remove_tmp_dir() lowerCAmelCase : List[str] = f""" {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --seed=42 --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) lowerCAmelCase : Optional[Any] = get_results(snake_case__ ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result["eval_f1"] , 28 ) self.assertGreaterEqual(result["eval_exact"] , 28 ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "qa_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = self.get_auto_remove_tmp_dir() lowerCAmelCase : List[Any] = f""" {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/swag/sample.json --validation_file tests/fixtures/tests_samples/swag/sample.json --output_dir {tmp_dir} --max_train_steps=20 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --with_tracking """.split() run_command(self._launch_args + testargs ) lowerCAmelCase : Tuple = get_results(snake_case__ ) self.assertGreaterEqual(result["eval_accuracy"] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "swag_no_trainer" ) ) ) @slow @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = self.get_auto_remove_tmp_dir() lowerCAmelCase : Tuple = f""" {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) lowerCAmelCase : str = get_results(snake_case__ ) self.assertGreaterEqual(result["eval_rouge1"] , 10 ) self.assertGreaterEqual(result["eval_rouge2"] , 2 ) self.assertGreaterEqual(result["eval_rougeL"] , 7 ) self.assertGreaterEqual(result["eval_rougeLsum"] , 7 ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "summarization_no_trainer" ) ) ) @slow @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = self.get_auto_remove_tmp_dir() lowerCAmelCase : Tuple = f""" {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py --model_name_or_path sshleifer/student_marian_en_ro_6_1 --source_lang en --target_lang ro --train_file tests/fixtures/tests_samples/wmt16/sample.json --validation_file tests/fixtures/tests_samples/wmt16/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --num_beams=6 --learning_rate=3e-3 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --source_lang en_XX --target_lang ro_RO --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) lowerCAmelCase : int = get_results(snake_case__ ) self.assertGreaterEqual(result["eval_bleu"] , 30 ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "translation_no_trainer" ) ) ) @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = logging.StreamHandler(sys.stdout ) logger.addHandler(snake_case__ ) lowerCAmelCase : Optional[Any] = self.get_auto_remove_tmp_dir() lowerCAmelCase : Any = f""" {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py --dataset_name huggingface/semantic-segmentation-test-sample --output_dir {tmp_dir} --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch """.split() run_command(self._launch_args + testargs ) lowerCAmelCase : int = get_results(snake_case__ ) self.assertGreaterEqual(result["eval_overall_accuracy"] , 0.10 ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = self.get_auto_remove_tmp_dir() lowerCAmelCase : Union[str, Any] = f""" {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py --model_name_or_path google/vit-base-patch16-224-in21k --dataset_name hf-internal-testing/cats_vs_dogs_sample --learning_rate 1e-4 --per_device_train_batch_size 2 --per_device_eval_batch_size 1 --max_train_steps 2 --train_val_split 0.1 --seed 42 --output_dir {tmp_dir} --with_tracking --checkpointing_steps 1 """.split() if is_cuda_and_apex_available(): testargs.append("--fp16" ) run_command(self._launch_args + testargs ) lowerCAmelCase : Dict = get_results(snake_case__ ) # The base model scores a 25% self.assertGreaterEqual(result["eval_accuracy"] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "step_1" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "image_classification_no_trainer" ) ) )
133
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class __A ( _a ): '''simple docstring''' lowerCAmelCase_ = """openai/whisper-base""" lowerCAmelCase_ = ( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) lowerCAmelCase_ = """transcriber""" lowerCAmelCase_ = WhisperProcessor lowerCAmelCase_ = WhisperForConditionalGeneration lowerCAmelCase_ = ["""audio"""] lowerCAmelCase_ = ["""text"""] def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' return self.pre_processor(__lowerCAmelCase , return_tensors='''pt''' ).input_features def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' return self.model.generate(inputs=__lowerCAmelCase ) def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' return self.pre_processor.batch_decode(__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase )[0]
209
from __future__ import annotations from math import ceil, floor, sqrt def UpperCamelCase_( lowerCamelCase_ = 200_0000 ) -> int: _lowercase : list[int] = [0] _lowercase : int for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target _lowercase : int = 0 # the area corresponding to the grid that gives the product closest to target _lowercase : int = 0 # an estimate of b, using the quadratic formula _lowercase : float # the largest integer less than b_estimate _lowercase : int # the largest integer less than b_estimate _lowercase : int # the triangle number corresponding to b_floor _lowercase : int # the triangle number corresponding to b_ceil _lowercase : int for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): _lowercase : Optional[int] = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 _lowercase : List[str] = floor(lowerCamelCase_ ) _lowercase : Dict = ceil(lowerCamelCase_ ) _lowercase : List[str] = triangle_numbers[b_floor] _lowercase : List[str] = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): _lowercase : Union[str, Any] = triangle_b_first_guess * triangle_a _lowercase : Union[str, Any] = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): _lowercase : Any = triangle_b_second_guess * triangle_a _lowercase : Optional[Any] = idx_a * b_ceil return area if __name__ == "__main__": print(F"{solution() = }")
21
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """facebook/data2vec-text-base""": """https://huggingface.co/data2vec/resolve/main/config.json""", } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Tuple = '''data2vec-text''' def __init__( self , _lowercase=30_522 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3_072 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=2 , _lowercase=0.02 , _lowercase=1e-12 , _lowercase=1 , _lowercase=0 , _lowercase=2 , _lowercase="absolute" , _lowercase=True , _lowercase=None , **_lowercase , ): """simple docstring""" super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_act _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = position_embedding_type _lowerCAmelCase = use_cache _lowerCAmelCase = classifier_dropout class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def _lowercase ( self ): """simple docstring""" if self.task == "multiple-choice": _lowerCAmelCase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _lowerCAmelCase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
229
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _lowercase = {"""configuration_deit""": ["""DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DeiTConfig""", """DeiTOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ["""DeiTFeatureExtractor"""] _lowercase = ["""DeiTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """DEIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DeiTForImageClassification""", """DeiTForImageClassificationWithTeacher""", """DeiTForMaskedImageModeling""", """DeiTModel""", """DeiTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDeiTForImageClassification""", """TFDeiTForImageClassificationWithTeacher""", """TFDeiTForMaskedImageModeling""", """TFDeiTModel""", """TFDeiTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
229
1
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class __magic_name__ : SCREAMING_SNAKE_CASE = None def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =self.feature_extraction_class(**self.feat_extract_dict ) __a =json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , lowerCamelCase__ ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __a =os.path.join(lowerCamelCase__ , 'feat_extract.json' ) feat_extract_first.to_json_file(lowerCamelCase__ ) __a =self.feature_extraction_class.from_json_file(lowerCamelCase__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def __magic_name__ ( self ) -> str: '''simple docstring''' __a =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __a =feat_extract_first.save_pretrained(lowerCamelCase__ )[0] check_json_file_has_correct_format(lowerCamelCase__ ) __a =self.feature_extraction_class.from_pretrained(lowerCamelCase__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =self.feature_extraction_class() self.assertIsNotNone(lowerCamelCase__ )
218
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __A = logging.get_logger(__name__) __A = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} __A = { "tokenizer_file": { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json", }, } __A = { "gpt-neox-20b": 20_48, } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__="<|endoftext|>" , lowerCamelCase__="<|endoftext|>" , lowerCamelCase__="<|endoftext|>" , lowerCamelCase__=False , **lowerCamelCase__ , ) -> int: '''simple docstring''' super().__init__( lowerCamelCase__ , lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , unk_token=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , **lowerCamelCase__ , ) __lowerCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , lowerCamelCase__ ) != add_prefix_space: __lowerCamelCase = getattr(lowerCamelCase__ , pre_tok_state.pop('type' ) ) __lowerCamelCase = add_prefix_space __lowerCamelCase = pre_tok_class(**lowerCamelCase__ ) __lowerCamelCase = add_prefix_space def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> Tuple[str]: '''simple docstring''' __lowerCamelCase = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ ) -> List[int]: '''simple docstring''' __lowerCamelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) + [self.eos_token_id] ) if len(lowerCamelCase__ ) > self.model_max_length: __lowerCamelCase = input_ids[-self.model_max_length :] return input_ids
90
0
import functools from typing import Any def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : List[Any] ) -> Optional[Any]: '''simple docstring''' if not isinstance(_A , _A ) or len(_A ) == 0: raise ValueError("""the string should be not empty string""" ) if not isinstance(_A , _A ) or not all( isinstance(_A , _A ) and len(_A ) > 0 for item in words ): raise ValueError("""the words should be a list of non-empty strings""" ) # Build trie lowerCAmelCase_ : dict[str, Any] = {} lowerCAmelCase_ : Tuple = 'WORD_KEEPER' for word in words: lowerCAmelCase_ : Dict = trie for c in word: if c not in trie_node: lowerCAmelCase_ : List[str] = {} lowerCAmelCase_ : List[str] = trie_node[c] lowerCAmelCase_ : List[Any] = True lowerCAmelCase_ : Optional[int] = len(_A ) # Dynamic programming method @functools.cache def is_breakable(lowercase__ : str ) -> bool: if index == len_string: return True lowerCAmelCase_ : Dict = trie for i in range(_A , _A ): lowerCAmelCase_ : Union[str, Any] = trie_node.get(string[i] , _A ) if trie_node is None: return False if trie_node.get(_A , _A ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
357
from math import factorial, pi def __UpperCamelCase ( lowercase__ : float , lowercase__ : int = 30 ) -> float: '''simple docstring''' if not isinstance(lowercase__ , (int, float) ): raise ValueError("""maclaurin_sin() requires either an int or float for theta""" ) if not isinstance(lowercase__ , lowercase__ ) or accuracy <= 0: raise ValueError("""maclaurin_sin() requires a positive int for accuracy""" ) lowerCAmelCase_ : Optional[int] = float(lowercase__ ) lowerCAmelCase_ : Union[str, Any] = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(lowercase__ ) ) def __UpperCamelCase ( lowercase__ : float , lowercase__ : int = 30 ) -> float: '''simple docstring''' if not isinstance(lowercase__ , (int, float) ): raise ValueError("""maclaurin_cos() requires either an int or float for theta""" ) if not isinstance(lowercase__ , lowercase__ ) or accuracy <= 0: raise ValueError("""maclaurin_cos() requires a positive int for accuracy""" ) lowerCAmelCase_ : int = float(lowercase__ ) lowerCAmelCase_ : Optional[int] = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(lowercase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
28
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { "configuration_time_series_transformer": [ "TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimeSeriesTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ "TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimeSeriesTransformerForPrediction", "TimeSeriesTransformerModel", "TimeSeriesTransformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
76
"""simple docstring""" import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor _lowercase : Any = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self : Any, *lowerCamelCase : str, **lowerCamelCase : Optional[Any] )-> None: warnings.warn( '''The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use OwlViTImageProcessor instead.''', lowerCamelCase, ) super().__init__(*lowerCamelCase, **lowerCamelCase )
238
0
'''simple docstring''' import os import re import shutil import sys import tempfile import unittest import black _snake_case = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. _snake_case = ' \"""\n Output class for the scheduler\'s step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"""\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n' class a__ ( unittest.TestCase ): def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Union[str, Any] = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , "schedulers/" ) ) _lowercase : Any = self.diffusers_dir shutil.copy( os.path.join(_UpperCamelCase , "src/diffusers/schedulers/scheduling_ddpm.py" ) , os.path.join(self.diffusers_dir , "schedulers/scheduling_ddpm.py" ) , ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : str = "src/diffusers" shutil.rmtree(self.diffusers_dir ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None ): """simple docstring""" _lowercase : Optional[int] = comment + f'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: _lowercase : Optional[int] = comment + f'''\nclass {class_name}(nn.Module):\n''' + overwrite_result _lowercase : Optional[int] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) _lowercase : int = black.format_str(_UpperCamelCase , mode=_UpperCamelCase ) _lowercase : Dict = os.path.join(self.diffusers_dir , "new_code.py" ) with open(_UpperCamelCase , "w" , newline="\n" ) as f: f.write(_UpperCamelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_UpperCamelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_UpperCamelCase ) with open(_UpperCamelCase , "r" ) as f: self.assertTrue(f.read() , _UpperCamelCase ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Any = check_copies.find_code_in_diffusers("schedulers.scheduling_ddpm.DDPMSchedulerOutput" ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def _lowerCamelCase ( self ): """simple docstring""" self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , _UpperCamelCase , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , re.sub("DDPM" , "Test" , _UpperCamelCase ) , ) # Copy consistency with a really long name _lowercase : Optional[Any] = "TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( f'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}''' , f'''{long_class_name}SchedulerOutput''' , re.sub("Bert" , _UpperCamelCase , _UpperCamelCase ) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , _UpperCamelCase , overwrite_result=re.sub("DDPM" , "Test" , _UpperCamelCase ) , )
199
'''simple docstring''' import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets _snake_case = '\\n @inproceedings{kakwani2020indicnlpsuite,\n title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}},\n author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar},\n year={2020},\n booktitle={Findings of EMNLP},\n}\n' _snake_case = '\\n IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide\n variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te.\n' _snake_case = '\nCompute IndicGLUE evaluation metric associated to each IndicGLUE dataset.\nArgs:\n predictions: list of predictions to score (as int64),\n except for \'cvit-mkb-clsr\' where each prediction is a vector (of float32).\n references: list of ground truth labels corresponding to the predictions (as int64),\n except for \'cvit-mkb-clsr\' where each reference is a vector (of float32).\nReturns: depending on the IndicGLUE subset, one or several of:\n "accuracy": Accuracy\n "f1": F1 score\n "precision": Precision@10\nExamples:\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wnli\') # \'wnli\' or any of ["copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wiki-ner\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'cvit-mkb-clsr\')\n >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'precision@10\': 1.0}\n\n' def _A ( snake_case , snake_case ) -> int: return float((preds == labels).mean() ) def _A ( snake_case , snake_case ) -> Union[str, Any]: _lowercase : Any = simple_accuracy(snake_case , snake_case ) _lowercase : List[Any] = float(fa_score(y_true=snake_case , y_pred=snake_case ) ) return { "accuracy": acc, "f1": fa, } def _A ( snake_case , snake_case ) -> List[str]: _lowercase : Any = np.array(snake_case ) _lowercase : Any = np.array(snake_case ) _lowercase : str = en_sentvecs.shape[0] # mean centering _lowercase : List[Any] = en_sentvecs - np.mean(snake_case , axis=0 ) _lowercase : Tuple = in_sentvecs - np.mean(snake_case , axis=0 ) _lowercase : Any = cdist(snake_case , snake_case , "cosine" ) _lowercase : Any = np.array(range(snake_case ) ) _lowercase : Dict = sim.argsort(axis=1 )[:, :10] _lowercase : List[str] = np.any(preds == actual[:, None] , axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): def _lowerCamelCase ( self ): """simple docstring""" if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( "You should supply a configuration name selected in " "[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", " "\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", " "\"wiki-ner\"]" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64" ) if self.config_name != "cvit-mkb-clsr" else datasets.Sequence(datasets.Value("float32" ) ), "references": datasets.Value("int64" ) if self.config_name != "cvit-mkb-clsr" else datasets.Sequence(datasets.Value("float32" ) ), } ) , codebase_urls=[] , reference_urls=[] , format="numpy" if self.config_name != "cvit-mkb-clsr" else None , ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(_UpperCamelCase , _UpperCamelCase )} elif self.config_name in ["wiki-ner"]: return acc_and_fa(_UpperCamelCase , _UpperCamelCase ) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(_UpperCamelCase , _UpperCamelCase )} else: raise KeyError( "You should supply a configuration name selected in " "[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", " "\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", " "\"wiki-ner\"]" )
199
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) __a = { "configuration_speecht5": [ "SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP", "SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP", "SpeechT5Config", "SpeechT5HifiGanConfig", ], "feature_extraction_speecht5": ["SpeechT5FeatureExtractor"], "processing_speecht5": ["SpeechT5Processor"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ["SpeechT5Tokenizer"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST", "SpeechT5ForSpeechToText", "SpeechT5ForSpeechToSpeech", "SpeechT5ForTextToSpeech", "SpeechT5Model", "SpeechT5PreTrainedModel", "SpeechT5HifiGan", ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
66
"""simple docstring""" import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py __a = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. __a = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. __a = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") __a = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. __a = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Fill this with tuples (pipeline_tag, model_mapping, auto_model) __a = [ ("pretraining", "MODEL_FOR_PRETRAINING_MAPPING_NAMES", "AutoModelForPreTraining"), ("feature-extraction", "MODEL_MAPPING_NAMES", "AutoModel"), ("audio-classification", "MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioClassification"), ("text-generation", "MODEL_FOR_CAUSAL_LM_MAPPING_NAMES", "AutoModelForCausalLM"), ("automatic-speech-recognition", "MODEL_FOR_CTC_MAPPING_NAMES", "AutoModelForCTC"), ("image-classification", "MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForImageClassification"), ("image-segmentation", "MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES", "AutoModelForImageSegmentation"), ("fill-mask", "MODEL_FOR_MASKED_LM_MAPPING_NAMES", "AutoModelForMaskedLM"), ("object-detection", "MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForObjectDetection"), ( "zero-shot-object-detection", "MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForZeroShotObjectDetection", ), ("question-answering", "MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForQuestionAnswering"), ("text2text-generation", "MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES", "AutoModelForSeq2SeqLM"), ("text-classification", "MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForSequenceClassification"), ("automatic-speech-recognition", "MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES", "AutoModelForSpeechSeq2Seq"), ( "table-question-answering", "MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForTableQuestionAnswering", ), ("token-classification", "MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES", "AutoModelForTokenClassification"), ("multiple-choice", "MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES", "AutoModelForMultipleChoice"), ( "next-sentence-prediction", "MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES", "AutoModelForNextSentencePrediction", ), ( "audio-frame-classification", "MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioFrameClassification", ), ("audio-xvector", "MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES", "AutoModelForAudioXVector"), ( "document-question-answering", "MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForDocumentQuestionAnswering", ), ( "visual-question-answering", "MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForVisualQuestionAnswering", ), ("image-to-text", "MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES", "AutoModelForVision2Seq"), ( "zero-shot-image-classification", "MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForZeroShotImageClassification", ), ("depth-estimation", "MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES", "AutoModelForDepthEstimation"), ("video-classification", "MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForVideoClassification"), ("mask-generation", "MODEL_FOR_MASK_GENERATION_MAPPING_NAMES", "AutoModelForMaskGeneration"), ] def A_ ( _lowercase ): '''simple docstring''' snake_case_ :Any = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""", _lowercase ) return [m.group(0 ) for m in matches] def A_ ( ): '''simple docstring''' snake_case_ :int = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES snake_case_ :Dict = { config.replace("""Config""", """""" ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. snake_case_ :Optional[Any] = collections.defaultdict(_lowercase ) snake_case_ :int = collections.defaultdict(_lowercase ) snake_case_ :List[str] = collections.defaultdict(_lowercase ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(_lowercase ): snake_case_ :int = None if _re_tf_models.match(_lowercase ) is not None: snake_case_ :int = tf_models snake_case_ :List[str] = _re_tf_models.match(_lowercase ).groups()[0] elif _re_flax_models.match(_lowercase ) is not None: snake_case_ :List[Any] = flax_models snake_case_ :Any = _re_flax_models.match(_lowercase ).groups()[0] elif _re_pt_models.match(_lowercase ) is not None: snake_case_ :Optional[Any] = pt_models snake_case_ :int = _re_pt_models.match(_lowercase ).groups()[0] if lookup_dict is not None: while len(_lowercase ) > 0: if attr_name in model_prefix_to_model_type: snake_case_ :Optional[int] = True break # Try again after removing the last word in the name snake_case_ :Optional[Any] = """""".join(camel_case_split(_lowercase )[:-1] ) snake_case_ :Optional[int] = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) snake_case_ :Optional[Any] = list(_lowercase ) all_models.sort() snake_case_ :Optional[int] = {"""model_type""": all_models} snake_case_ :Optional[int] = [pt_models[t] for t in all_models] snake_case_ :Any = [tf_models[t] for t in all_models] snake_case_ :Dict = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure snake_case_ :Dict = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: snake_case_ :Optional[Any] = """AutoProcessor""" elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: snake_case_ :Tuple = """AutoTokenizer""" elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: snake_case_ :Tuple = """AutoFeatureExtractor""" else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. snake_case_ :str = """AutoTokenizer""" snake_case_ :int = [processors[t] for t in all_models] return pd.DataFrame(_lowercase ) def A_ ( _lowercase ): '''simple docstring''' snake_case_ :List[Any] = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: snake_case_ :Optional[int] = [model_mapping, f"""TF_{model_mapping}""", f"""FLAX_{model_mapping}"""] snake_case_ :List[str] = [auto_class, f"""TF_{auto_class}""", f"""Flax_{auto_class}"""] # Loop through all three frameworks for module, cls, mapping in zip(_lowercase, _lowercase, _lowercase ): # The type of pipeline may not exist in this framework if not hasattr(_lowercase, _lowercase ): continue # First extract all model_names snake_case_ :Tuple = [] for name in getattr(_lowercase, _lowercase ).values(): if isinstance(_lowercase, _lowercase ): model_names.append(_lowercase ) else: model_names.extend(list(_lowercase ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def A_ ( _lowercase, _lowercase ): '''simple docstring''' snake_case_ :List[Any] = get_frameworks_table() snake_case_ :str = Dataset.from_pandas(_lowercase ) snake_case_ :List[Any] = hf_hub_download( """huggingface/transformers-metadata""", """pipeline_tags.json""", repo_type="""dataset""", token=_lowercase ) snake_case_ :List[str] = Dataset.from_json(_lowercase ) snake_case_ :int = { tags_dataset[i]["""model_class"""]: (tags_dataset[i]["""pipeline_tag"""], tags_dataset[i]["""auto_class"""]) for i in range(len(_lowercase ) ) } snake_case_ :Optional[int] = update_pipeline_and_auto_class_table(_lowercase ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. snake_case_ :Tuple = sorted(table.keys() ) snake_case_ :Tuple = pd.DataFrame( { """model_class""": model_classes, """pipeline_tag""": [table[m][0] for m in model_classes], """auto_class""": [table[m][1] for m in model_classes], } ) snake_case_ :Union[str, Any] = Dataset.from_pandas(_lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(_lowercase, """frameworks.json""" ) ) tags_dataset.to_json(os.path.join(_lowercase, """pipeline_tags.json""" ) ) if commit_sha is not None: snake_case_ :Union[str, Any] = ( f"""Update with commit {commit_sha}\n\nSee: """ f"""https://github.com/huggingface/transformers/commit/{commit_sha}""" ) else: snake_case_ :List[Any] = """Update""" upload_folder( repo_id="""huggingface/transformers-metadata""", folder_path=_lowercase, repo_type="""dataset""", token=_lowercase, commit_message=_lowercase, ) def A_ ( ): '''simple docstring''' snake_case_ :List[Any] = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} snake_case_ :Dict = transformers_module.pipelines.SUPPORTED_TASKS snake_case_ :List[str] = [] for key in pipeline_tasks: if key not in in_table: snake_case_ :int = pipeline_tasks[key]["""pt"""] if isinstance(_lowercase, (list, tuple) ): snake_case_ :Any = model[0] snake_case_ :str = model.__name__ if model not in in_table.values(): missing.append(_lowercase ) if len(_lowercase ) > 0: snake_case_ :Optional[int] = """, """.join(_lowercase ) raise ValueError( """The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside """ f"""`utils/update_metadata.py`: {msg}. Please add them!""" ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument("--token", type=str, help="The token to use to push to the transformers-metadata dataset.") parser.add_argument("--commit_sha", type=str, help="The sha of the commit going with this update.") parser.add_argument("--check-only", action="store_true", help="Activate to just check all pipelines are present.") __a = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
66
1
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class __UpperCamelCase ( lowerCAmelCase_ ): A_ = None A_ = None A_ = None A_ = None class __UpperCamelCase ( lowerCAmelCase_ ): def __init__( self , __a=1 , __a=0 , __a=2 , __a=512 , __a="cls" , __a=False , __a=True , **__a , ): '''simple docstring''' super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a ) __a : Any = project_dim __a : Optional[Any] = pooler_fn __a : int = learn_encoder __a : str = use_attention_mask class __UpperCamelCase ( lowerCAmelCase_ ): A_ = [r"pooler", r"logit_scale"] A_ = [r"position_ids", r"predictions.decoder.bias"] A_ = "roberta" A_ = RobertaSeriesConfig def __init__( self , __a ): '''simple docstring''' super().__init__(__a ) __a : Optional[Any] = XLMRobertaModel(__a ) __a : str = nn.Linear(config.hidden_size , config.project_dim ) __a : Optional[int] = getattr(__a , 'has_pre_transformation' , __a ) if self.has_pre_transformation: __a : int = nn.Linear(config.hidden_size , config.project_dim ) __a : List[str] = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps ) self.post_init() def __UpperCAmelCase ( self , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , ): '''simple docstring''' __a : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict __a : Tuple = self.base_model( input_ids=__a , attention_mask=__a , token_type_ids=__a , position_ids=__a , head_mask=__a , inputs_embeds=__a , encoder_hidden_states=__a , encoder_attention_mask=__a , output_attentions=__a , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=__a , ) if self.has_pre_transformation: __a : Optional[Any] = outputs['hidden_states'][-2] __a : Optional[int] = self.pre_LN(__a ) __a : Union[str, Any] = self.transformation_pre(__a ) return TransformationModelOutput( projection_state=__a , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: __a : Optional[Any] = self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=__a , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
294
'''simple docstring''' import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup __lowercase : str = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' ' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582' } def lowerCamelCase (_SCREAMING_SNAKE_CASE : str = "dhaka" , _SCREAMING_SNAKE_CASE : int = 5 ): __a : Optional[Any] = min(_SCREAMING_SNAKE_CASE , 50 ) # Prevent abuse! __a : Optional[Any] = { 'q': query, 'tbm': 'isch', 'hl': 'en', 'ijn': '0', } __a : Tuple = requests.get('https://www.google.com/search' , params=_SCREAMING_SNAKE_CASE , headers=_SCREAMING_SNAKE_CASE ) __a : Dict = BeautifulSoup(html.text , 'html.parser' ) __a : List[str] = ''.join( re.findall(r'AF_initDataCallback\(([^<]+)\);' , str(soup.select('script' ) ) ) ) __a : Optional[Any] = json.dumps(_SCREAMING_SNAKE_CASE ) __a : List[str] = json.loads(_SCREAMING_SNAKE_CASE ) __a : List[Any] = re.findall( r'\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",' , _SCREAMING_SNAKE_CASE , ) if not matched_google_image_data: return 0 __a : Tuple = re.sub( r'\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]' , '' , str(_SCREAMING_SNAKE_CASE ) , ) __a : Optional[Any] = re.findall( r'(?:\'|,),\[\"(https:|http.*?)\",\d+,\d+\]' , _SCREAMING_SNAKE_CASE , ) for index, fixed_full_res_image in enumerate(_SCREAMING_SNAKE_CASE ): if index >= max_images: return index __a : List[str] = bytes(_SCREAMING_SNAKE_CASE , 'ascii' ).decode( 'unicode-escape' ) __a : Tuple = bytes(_SCREAMING_SNAKE_CASE , 'ascii' ).decode( 'unicode-escape' ) __a : Dict = urllib.request.build_opener() __a : Union[str, Any] = [ ( 'User-Agent', 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' ' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582', ) ] urllib.request.install_opener(_SCREAMING_SNAKE_CASE ) __a : List[Any] = F"""query_{query.replace(" " , "_" )}""" if not os.path.exists(_SCREAMING_SNAKE_CASE ): os.makedirs(_SCREAMING_SNAKE_CASE ) urllib.request.urlretrieve( # noqa: S310 _SCREAMING_SNAKE_CASE , F"""{path_name}/original_size_img_{index}.jpg""" ) return index if __name__ == "__main__": try: __lowercase : Optional[int] = download_images_from_google_query(sys.argv[1]) print(f'''{image_count} images were downloaded to disk.''') except IndexError: print('Please provide a search term.') raise
294
1
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""" ) ) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , ) @pytest.mark.usefixtures("""sm_env""" ) @parameterized_class( [ { """framework""": """pytorch""", """script""": """run_glue_model_parallelism.py""", """model_name_or_path""": """roberta-large""", """instance_type""": """ml.p3dn.24xlarge""", """results""": {"""train_runtime""": 1_6_0_0, """eval_accuracy""": 0.3, """eval_loss""": 1.2}, }, { """framework""": """pytorch""", """script""": """run_glue.py""", """model_name_or_path""": """roberta-large""", """instance_type""": """ml.p3dn.24xlarge""", """results""": {"""train_runtime""": 1_6_0_0, """eval_accuracy""": 0.3, """eval_loss""": 1.2}, }, ] ) class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def _lowercase ( self ) -> List[str]: if self.framework == "pytorch": subprocess.run( F'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding="utf-8" , check=UpperCamelCase__ , ) assert hasattr(self , "env" ) def _lowercase ( self , UpperCamelCase__ ) -> Dict: # configuration for running training on smdistributed Model Parallel lowerCamelCase : Any = { "enabled": True, "processes_per_host": 8, } lowerCamelCase : Union[str, Any] = { "enabled": True, "parameters": { "microbatches": 4, "placement_strategy": "spread", "pipeline": "interleaved", "optimize": "speed", "partitions": 4, "ddp": True, }, } lowerCamelCase : List[Any] = {"smdistributed": {"modelparallel": smp_options}, "mpi": mpi_options} lowerCamelCase : Tuple = "trainer" if self.script == "run_glue.py" else "smtrainer" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F'''{self.env.base_job_name}-{instance_count}-smp-{name_extension}''' , instance_count=UpperCamelCase__ , instance_type=self.instance_type , debugger_hook_config=UpperCamelCase__ , hyperparameters={ **self.env.hyperparameters, "model_name_or_path": self.model_name_or_path, "max_steps": 500, } , metric_definitions=self.env.metric_definitions , distribution=UpperCamelCase__ , py_version="py36" , ) def _lowercase ( self , UpperCamelCase__ ) -> Optional[Any]: TrainingJobAnalytics(UpperCamelCase__ ).export_csv(F'''{self.env.test_path}/{job_name}_metrics.csv''' ) @parameterized.expand([(1,)] ) def _lowercase ( self , UpperCamelCase__ ) -> Tuple: # create estimator lowerCamelCase : Optional[Any] = self.create_estimator(UpperCamelCase__ ) # run training estimator.fit() # result dataframe lowerCamelCase : Any = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowerCamelCase : List[Any] = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) lowerCamelCase : Any = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowerCamelCase : Any = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds" , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(F'''{estimator.latest_training_job.name}.json''' , "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , UpperCamelCase__ )
48
import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline _snake_case = argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False) parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''') parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''') _snake_case = parser.parse_args() _snake_case = '''cpu''' _snake_case = '''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings''' _snake_case = '''path-to-your-trained-model''' _snake_case = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: _snake_case = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) _snake_case = pipe.to(device) # to channels last _snake_case = pipe.unet.to(memory_format=torch.channels_last) _snake_case = pipe.vae.to(memory_format=torch.channels_last) _snake_case = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: _snake_case = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex _snake_case = torch.randn(2, 4, 64, 64) _snake_case = torch.rand(1) * 9_99 _snake_case = torch.randn(2, 77, 7_68) _snake_case = (sample, timestep, encoder_hidden_status) try: _snake_case = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: _snake_case = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) _snake_case = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) _snake_case = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: _snake_case = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute _snake_case = 6_66 _snake_case = torch.Generator(device).manual_seed(seed) _snake_case = {'''generator''': generator} if args.steps is not None: _snake_case = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): _snake_case = pipe(prompt, **generate_kwargs).images[0] # save image image.save('''generated.png''')
283
0
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __a : """simple docstring""" def __init__( self : Tuple , lowercase_ : List[Any] , lowercase_ : Union[str, Any]=13 , lowercase_ : Any=[30, 30] , lowercase_ : str=2 , lowercase_ : Tuple=3 , lowercase_ : Union[str, Any]=True , lowercase_ : Optional[int]=True , lowercase_ : int=32 , lowercase_ : Dict=5 , lowercase_ : Dict=4 , lowercase_ : Any=37 , lowercase_ : List[str]="gelu" , lowercase_ : str=0.1 , lowercase_ : Dict=0.1 , lowercase_ : Any=10 , lowercase_ : List[Any]=0.0_2 , lowercase_ : int=3 , lowercase_ : List[Any]=None , lowercase_ : List[Any]=8 , lowercase_ : Any=10 , ): UpperCamelCase__ : Tuple =parent UpperCamelCase__ : Optional[int] =batch_size UpperCamelCase__ : str =image_size UpperCamelCase__ : Tuple =patch_size UpperCamelCase__ : str =num_channels UpperCamelCase__ : Any =is_training UpperCamelCase__ : List[Any] =use_labels UpperCamelCase__ : List[Any] =hidden_size UpperCamelCase__ : str =num_hidden_layers UpperCamelCase__ : Any =num_attention_heads UpperCamelCase__ : str =intermediate_size UpperCamelCase__ : Tuple =hidden_act UpperCamelCase__ : Any =hidden_dropout_prob UpperCamelCase__ : Optional[Any] =attention_probs_dropout_prob UpperCamelCase__ : Dict =type_sequence_label_size UpperCamelCase__ : List[str] =initializer_range UpperCamelCase__ : Any =num_labels UpperCamelCase__ : Any =scope UpperCamelCase__ : Union[str, Any] =n_targets UpperCamelCase__ : int =num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens UpperCamelCase__ : Optional[int] =(image_size[1] // patch_size) * (image_size[0] // patch_size) UpperCamelCase__ : Optional[Any] =num_patches + 1 + self.num_detection_tokens def _lowerCAmelCase ( self : Any ): UpperCamelCase__ : str =floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) UpperCamelCase__ : List[Any] =None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) UpperCamelCase__ : Tuple =[] for i in range(self.batch_size ): UpperCamelCase__ : str ={} UpperCamelCase__ : Dict =torch.randint( high=self.num_labels , size=(self.n_targets,) , device=lowercase_ ) UpperCamelCase__ : List[Any] =torch.rand(self.n_targets , 4 , device=lowercase_ ) labels.append(lowercase_ ) UpperCamelCase__ : List[str] =self.get_config() return config, pixel_values, labels def _lowerCAmelCase ( self : Any ): return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase_ , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def _lowerCAmelCase ( self : Union[str, Any] , lowercase_ : List[Any] , lowercase_ : str , lowercase_ : Tuple ): UpperCamelCase__ : Optional[int] =YolosModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCamelCase__ : str =model(lowercase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def _lowerCAmelCase ( self : Union[str, Any] , lowercase_ : str , lowercase_ : Any , lowercase_ : Any ): UpperCamelCase__ : str =YolosForObjectDetection(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCamelCase__ : List[Any] =model(pixel_values=lowercase_ ) UpperCamelCase__ : Any =model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) UpperCamelCase__ : Dict =model(pixel_values=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def _lowerCAmelCase ( self : Union[str, Any] ): UpperCamelCase__ : int =self.prepare_config_and_inputs() UpperCamelCase__ : Optional[Any] =config_and_inputs UpperCamelCase__ : str ={'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __a ( snake_case__, snake_case__, unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = (YolosModel, YolosForObjectDetection) if is_torch_available() else () SCREAMING_SNAKE_CASE_ = ( {'feature-extraction': YolosModel, 'object-detection': YolosForObjectDetection} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False def _lowerCAmelCase ( self : List[Any] , lowercase_ : Dict , lowercase_ : Optional[int] , lowercase_ : str=False ): UpperCamelCase__ : Optional[Any] =super()._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_ ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": UpperCamelCase__ : List[str] =[] for i in range(self.model_tester.batch_size ): UpperCamelCase__ : List[Any] ={} UpperCamelCase__ : str =torch.ones( size=(self.model_tester.n_targets,) , device=lowercase_ , dtype=torch.long ) UpperCamelCase__ : str =torch.ones( self.model_tester.n_targets , 4 , device=lowercase_ , dtype=torch.float ) labels.append(lowercase_ ) UpperCamelCase__ : Union[str, Any] =labels return inputs_dict def _lowerCAmelCase ( self : List[str] ): UpperCamelCase__ : Any =YolosModelTester(self ) UpperCamelCase__ : Union[str, Any] =ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ , hidden_size=37 ) def _lowerCAmelCase ( self : Optional[Any] ): self.config_tester.run_common_tests() def _lowerCAmelCase ( self : int ): # YOLOS does not use inputs_embeds pass def _lowerCAmelCase ( self : Tuple ): UpperCamelCase__ : Tuple =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : str =model_class(lowercase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase__ : Optional[int] =model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase_ , nn.Linear ) ) def _lowerCAmelCase ( self : List[Any] ): UpperCamelCase__ : List[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Dict =model_class(lowercase_ ) UpperCamelCase__ : List[Any] =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ : List[Any] =[*signature.parameters.keys()] UpperCamelCase__ : List[str] =['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowercase_ ) def _lowerCAmelCase ( self : List[Any] ): UpperCamelCase__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def _lowerCAmelCase ( self : Tuple ): UpperCamelCase__ : int =self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ : Union[str, Any] =True # in YOLOS, the seq_len is different UpperCamelCase__ : Union[str, Any] =self.model_tester.expected_seq_len for model_class in self.all_model_classes: UpperCamelCase__ : Union[str, Any] =True UpperCamelCase__ : int =False UpperCamelCase__ : Tuple =True UpperCamelCase__ : Optional[int] =model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): UpperCamelCase__ : Optional[int] =model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) UpperCamelCase__ : Optional[int] =outputs.attentions self.assertEqual(len(lowercase_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCamelCase__ : Union[str, Any] =True UpperCamelCase__ : str =model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): UpperCamelCase__ : str =model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) UpperCamelCase__ : Optional[int] =outputs.attentions self.assertEqual(len(lowercase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) UpperCamelCase__ : str =len(lowercase_ ) # Check attention is always last and order is fine UpperCamelCase__ : str =True UpperCamelCase__ : int =True UpperCamelCase__ : Optional[Any] =model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): UpperCamelCase__ : Optional[int] =model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) UpperCamelCase__ : Optional[int] =1 self.assertEqual(out_len + added_hidden_states , len(lowercase_ ) ) UpperCamelCase__ : int =outputs.attentions self.assertEqual(len(lowercase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def _lowerCAmelCase ( self : Optional[int] ): def check_hidden_states_output(lowercase_ : List[str] , lowercase_ : str , lowercase_ : List[Any] ): UpperCamelCase__ : Any =model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): UpperCamelCase__ : int =model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) UpperCamelCase__ : str =outputs.hidden_states UpperCamelCase__ : Tuple =getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(lowercase_ ) , lowercase_ ) # YOLOS has a different seq_length UpperCamelCase__ : Dict =self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) UpperCamelCase__ : str =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Tuple =True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase__ : Optional[Any] =True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) def _lowerCAmelCase ( self : int ): UpperCamelCase__ : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*lowercase_ ) @slow def _lowerCAmelCase ( self : Any ): for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ : Dict =YolosModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def _lowerCAmelCase ( ): '''simple docstring''' UpperCamelCase__ : Optional[int] =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __a ( unittest.TestCase ): """simple docstring""" @cached_property def _lowerCAmelCase ( self : Tuple ): return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None @slow def _lowerCAmelCase ( self : List[Any] ): UpperCamelCase__ : List[Any] =YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(lowercase_ ) UpperCamelCase__ : Union[str, Any] =self.default_image_processor UpperCamelCase__ : Any =prepare_img() UpperCamelCase__ : Dict =image_processor(images=lowercase_ , return_tensors='''pt''' ).to(lowercase_ ) # forward pass with torch.no_grad(): UpperCamelCase__ : Any =model(inputs.pixel_values ) # verify outputs UpperCamelCase__ : int =torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , lowercase_ ) UpperCamelCase__ : List[str] =torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] , device=lowercase_ , ) UpperCamelCase__ : Optional[Any] =torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] , device=lowercase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , lowercase_ , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , lowercase_ , atol=1e-4 ) ) # verify postprocessing UpperCamelCase__ : Dict =image_processor.post_process_object_detection( lowercase_ , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] UpperCamelCase__ : Tuple =torch.tensor([0.9_9_9_4, 0.9_7_9_0, 0.9_9_6_4, 0.9_9_7_2, 0.9_8_6_1] ).to(lowercase_ ) UpperCamelCase__ : List[str] =[75, 75, 17, 63, 17] UpperCamelCase__ : List[Any] =torch.tensor([335.0609, 79.3848, 375.4216, 187.2495] ).to(lowercase_ ) self.assertEqual(len(results['''scores'''] ) , 5 ) self.assertTrue(torch.allclose(results['''scores'''] , lowercase_ , atol=1e-4 ) ) self.assertSequenceEqual(results['''labels'''].tolist() , lowercase_ ) self.assertTrue(torch.allclose(results['''boxes'''][0, :] , lowercase_ ) )
364
"""simple docstring""" import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort _SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : List[Any] = { """tensor(bool)""": np.bool_, """tensor(int8)""": np.inta, """tensor(uint8)""": np.uinta, """tensor(int16)""": np.intaa, """tensor(uint16)""": np.uintaa, """tensor(int32)""": np.intaa, """tensor(uint32)""": np.uintaa, """tensor(int64)""": np.intaa, """tensor(uint64)""": np.uintaa, """tensor(float16)""": np.floataa, """tensor(float)""": np.floataa, """tensor(double)""": np.floataa, } class __a : """simple docstring""" def __init__( self : Optional[Any] , lowercase_ : Tuple=None , **lowercase_ : int ): logger.info('''`diffusers.OnnxRuntimeModel` is experimental and might change in the future.''' ) UpperCamelCase__ : Optional[Any] =model UpperCamelCase__ : str =kwargs.get('''model_save_dir''' , lowercase_ ) UpperCamelCase__ : int =kwargs.get('''latest_model_name''' , lowercase_ ) def __call__( self : Any , **lowercase_ : Any ): UpperCamelCase__ : str ={k: np.array(lowercase_ ) for k, v in kwargs.items()} return self.model.run(lowercase_ , lowercase_ ) @staticmethod def _lowerCAmelCase ( lowercase_ : Union[str, Path] , lowercase_ : Dict=None , lowercase_ : Optional[Any]=None ): if provider is None: logger.info('''No onnxruntime provider specified, using CPUExecutionProvider''' ) UpperCamelCase__ : List[str] ='''CPUExecutionProvider''' return ort.InferenceSession(lowercase_ , providers=[provider] , sess_options=lowercase_ ) def _lowerCAmelCase ( self : Union[str, Any] , lowercase_ : Union[str, Path] , lowercase_ : Optional[str] = None , **lowercase_ : Union[str, Any] ): UpperCamelCase__ : Union[str, Any] =file_name if file_name is not None else ONNX_WEIGHTS_NAME UpperCamelCase__ : Tuple =self.model_save_dir.joinpath(self.latest_model_name ) UpperCamelCase__ : str =Path(lowercase_ ).joinpath(lowercase_ ) try: shutil.copyfile(lowercase_ , lowercase_ ) except shutil.SameFileError: pass # copy external weights (for models >2GB) UpperCamelCase__ : List[str] =self.model_save_dir.joinpath(lowercase_ ) if src_path.exists(): UpperCamelCase__ : List[str] =Path(lowercase_ ).joinpath(lowercase_ ) try: shutil.copyfile(lowercase_ , lowercase_ ) except shutil.SameFileError: pass def _lowerCAmelCase ( self : Tuple , lowercase_ : Union[str, os.PathLike] , **lowercase_ : int , ): if os.path.isfile(lowercase_ ): logger.error(f'''Provided path ({save_directory}) should be a directory, not a file''' ) return os.makedirs(lowercase_ , exist_ok=lowercase_ ) # saving model weights/files self._save_pretrained(lowercase_ , **lowercase_ ) @classmethod def _lowerCAmelCase ( cls : List[str] , lowercase_ : Union[str, Path] , lowercase_ : Optional[Union[bool, str, None]] = None , lowercase_ : Optional[Union[str, None]] = None , lowercase_ : bool = False , lowercase_ : Optional[str] = None , lowercase_ : Optional[str] = None , lowercase_ : Optional[str] = None , lowercase_ : Optional["ort.SessionOptions"] = None , **lowercase_ : List[Any] , ): UpperCamelCase__ : Union[str, Any] =file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(lowercase_ ): UpperCamelCase__ : Any =OnnxRuntimeModel.load_model( os.path.join(lowercase_ , lowercase_ ) , provider=lowercase_ , sess_options=lowercase_ ) UpperCamelCase__ : List[str] =Path(lowercase_ ) # load model from hub else: # download model UpperCamelCase__ : Tuple =hf_hub_download( repo_id=lowercase_ , filename=lowercase_ , use_auth_token=lowercase_ , revision=lowercase_ , cache_dir=lowercase_ , force_download=lowercase_ , ) UpperCamelCase__ : Any =Path(lowercase_ ).parent UpperCamelCase__ : List[Any] =Path(lowercase_ ).name UpperCamelCase__ : Optional[int] =OnnxRuntimeModel.load_model(lowercase_ , provider=lowercase_ , sess_options=lowercase_ ) return cls(model=lowercase_ , **lowercase_ ) @classmethod def _lowerCAmelCase ( cls : Dict , lowercase_ : Union[str, Path] , lowercase_ : bool = True , lowercase_ : Optional[str] = None , lowercase_ : Optional[str] = None , **lowercase_ : List[Any] , ): UpperCamelCase__ : Dict =None if len(str(lowercase_ ).split('''@''' ) ) == 2: UpperCamelCase__ , UpperCamelCase__ : Union[str, Any] =model_id.split('''@''' ) return cls._from_pretrained( model_id=lowercase_ , revision=lowercase_ , cache_dir=lowercase_ , force_download=lowercase_ , use_auth_token=lowercase_ , **lowercase_ , )
157
0
"""simple docstring""" import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( 'kwargs, expected' , [ ({'num_shards': 0, 'max_num_jobs': 1}, []), ({'num_shards': 10, 'max_num_jobs': 1}, [range(10 )]), ({'num_shards': 10, 'max_num_jobs': 10}, [range(_lowerCamelCase , i + 1 ) for i in range(10 )]), ({'num_shards': 1, 'max_num_jobs': 10}, [range(1 )]), ({'num_shards': 10, 'max_num_jobs': 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({'num_shards': 3, 'max_num_jobs': 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def lowerCamelCase__ ( _lowerCamelCase : Tuple , _lowerCamelCase : List[Any] ) -> Tuple: lowerCamelCase_ = _distribute_shards(**_lowerCamelCase ) assert out == expected @pytest.mark.parametrize( 'gen_kwargs, max_num_jobs, expected' , [ ({'foo': 0}, 10, [{'foo': 0}]), ({'shards': [0, 1, 2, 3]}, 1, [{'shards': [0, 1, 2, 3]}]), ({'shards': [0, 1, 2, 3]}, 4, [{'shards': [0]}, {'shards': [1]}, {'shards': [2]}, {'shards': [3]}]), ({'shards': [0, 1]}, 4, [{'shards': [0]}, {'shards': [1]}]), ({'shards': [0, 1, 2, 3]}, 2, [{'shards': [0, 1]}, {'shards': [2, 3]}]), ] , ) def lowerCamelCase__ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Any , _lowerCamelCase : Union[str, Any] ) -> Optional[int]: lowerCamelCase_ = _split_gen_kwargs(_lowerCamelCase , _lowerCamelCase ) assert out == expected @pytest.mark.parametrize( 'gen_kwargs, expected' , [ ({'foo': 0}, 1), ({'shards': [0]}, 1), ({'shards': [0, 1, 2, 3]}, 4), ({'shards': [0, 1, 2, 3], 'foo': 0}, 4), ({'shards': [0, 1, 2, 3], 'other': (0, 1)}, 4), ({'shards': [0, 1, 2, 3], 'shards2': [0, 1]}, RuntimeError), ] , ) def lowerCamelCase__ ( _lowerCamelCase : Tuple , _lowerCamelCase : List[Any] ) -> Optional[int]: if expected is RuntimeError: with pytest.raises(_lowerCamelCase ): _number_of_shards_in_gen_kwargs(_lowerCamelCase ) else: lowerCamelCase_ = _number_of_shards_in_gen_kwargs(_lowerCamelCase ) assert out == expected
183
"""simple docstring""" def lowerCamelCase__ ( _lowerCamelCase : int , _lowerCamelCase : int ) -> int: lowerCamelCase_ = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): lowerCamelCase_ = n - k # Calculate C(n,k) for i in range(_lowerCamelCase ): result *= n - i result //= i + 1 return result def lowerCamelCase__ ( _lowerCamelCase : int ) -> int: return binomial_coefficient(2 * node_count , _lowerCamelCase ) // (node_count + 1) def lowerCamelCase__ ( _lowerCamelCase : int ) -> int: if n < 0: raise ValueError('factorial() not defined for negative values' ) lowerCamelCase_ = 1 for i in range(1 , n + 1 ): result *= i return result def lowerCamelCase__ ( _lowerCamelCase : int ) -> int: return catalan_number(_lowerCamelCase ) * factorial(_lowerCamelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : int = int(input('''Enter the number of nodes: ''').strip() or 0) if node_count <= 0: raise ValueError('''We need some nodes to work with.''') print( F'''Given {node_count} nodes, there are {binary_tree_count(node_count)} ''' F'''binary trees and {catalan_number(node_count)} binary search trees.''' )
183
1
"""simple docstring""" def lowercase (SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ) -> float: def get_matched_characters(SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ) -> str: SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): SCREAMING_SNAKE_CASE = int(max(0 , i - limit ) ) SCREAMING_SNAKE_CASE = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = F'{_stra[0:_stra.index(SCREAMING_SNAKE_CASE_ )]} {_stra[_stra.index(SCREAMING_SNAKE_CASE_ ) + 1:]}' return "".join(SCREAMING_SNAKE_CASE_ ) # matching characters SCREAMING_SNAKE_CASE = get_matched_characters(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = get_matched_characters(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = len(SCREAMING_SNAKE_CASE_ ) # transposition SCREAMING_SNAKE_CASE = ( len([(ca, ca) for ca, ca in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if ca != ca] ) // 2 ) if not match_count: SCREAMING_SNAKE_CASE = 0.0 else: SCREAMING_SNAKE_CASE = ( 1 / 3 * ( match_count / len(SCREAMING_SNAKE_CASE_ ) + match_count / len(SCREAMING_SNAKE_CASE_ ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters SCREAMING_SNAKE_CASE = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('''hello''', '''world'''))
352
"""simple docstring""" import operator as op def lowercase (SCREAMING_SNAKE_CASE_ : int ) -> int: SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = lambda SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int(x / y ) # noqa: E731 integer division operation SCREAMING_SNAKE_CASE = { '^': op.pow, '*': op.mul, '/': div, '+': op.add, '-': op.sub, } # operators & their respective operation # print table header print('Symbol'.center(8 ) , 'Action'.center(12 ) , 'Stack' , sep=' | ' ) print('-' * (30 + len(SCREAMING_SNAKE_CASE_ )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(SCREAMING_SNAKE_CASE_ ) # append x to stack # output in tabular format print(x.rjust(8 ) , ('push(' + x + ')').ljust(12 ) , ','.join(SCREAMING_SNAKE_CASE_ ) , sep=' | ' ) else: SCREAMING_SNAKE_CASE = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + b + ')').ljust(12 ) , ','.join(SCREAMING_SNAKE_CASE_ ) , sep=' | ' ) SCREAMING_SNAKE_CASE = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + a + ')').ljust(12 ) , ','.join(SCREAMING_SNAKE_CASE_ ) , sep=' | ' ) stack.append( str(opr[x](int(SCREAMING_SNAKE_CASE_ ) , int(SCREAMING_SNAKE_CASE_ ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ('push(' + a + x + b + ')').ljust(12 ) , ','.join(SCREAMING_SNAKE_CASE_ ) , sep=' | ' , ) return int(stack[0] ) if __name__ == "__main__": __UpperCamelCase = input('''\n\nEnter a Postfix Equation (space separated) = ''').split(''' ''') print('''\n\tResult = ''', solve(Postfix))
38
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ : Union[str, Any] = { '''configuration_time_series_transformer''': [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimeSeriesTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Union[str, Any] = [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimeSeriesTransformerForPrediction''', '''TimeSeriesTransformerModel''', '''TimeSeriesTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys UpperCAmelCase_ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
32
'''simple docstring''' import re def a ( lowerCamelCase__ ): '''simple docstring''' return [char.split() for char in re.split(r"""[^ a-z A-Z 0-9 \s]""" , str_ )] def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Optional[int] = split_input(str_ ) return "".join( ["""""".join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' try: A_ : List[Any] = split_input(lowerCamelCase__ ) if upper: A_ : Tuple = """""".join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: A_ : Optional[int] = """""".join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def a ( lowerCamelCase__ ): '''simple docstring''' return to_simple_case(lowerCamelCase__ ) def a ( lowerCamelCase__ ): '''simple docstring''' try: A_ : Tuple = to_simple_case(lowerCamelCase__ ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' return to_complex_case(lowerCamelCase__ , lowerCamelCase__ , """_""" ) def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' return to_complex_case(lowerCamelCase__ , lowerCamelCase__ , """-""" ) if __name__ == "__main__": __import__('''doctest''').testmod()
206
0
'''simple docstring''' import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset a : int = 'bert-base-cased' a : Optional[int] = 'google/pegasus-xsum' a : Optional[int] = [' Sam ate lunch today.', 'Sams lunch ingredients.'] a : int = ['A very interesting story about what I ate for lunch.', 'Avocado, celery, turkey, coffee'] a : Dict = 'patrickvonplaten/t5-tiny-random' a : Any = 'sshleifer/bart-tiny-random' a : Union[str, Any] = 'sshleifer/tiny-mbart' a : Optional[int] = 'sshleifer/tiny-marian-en-de' def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' snake_case_ = '''\n'''.join(__UpperCAmelCase ) Path(__UpperCAmelCase ).open('''w''' ).writelines(__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase ) -> str: '''simple docstring''' for split in ["train", "val", "test"]: _dump_articles(os.path.join(__UpperCAmelCase, F"{split}.source" ), __UpperCAmelCase ) _dump_articles(os.path.join(__UpperCAmelCase, F"{split}.target" ), __UpperCAmelCase ) return tmp_dir class a ( _lowerCamelCase ): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def A_ ( self : int , lowercase_ : Optional[Any] ): snake_case_ = AutoTokenizer.from_pretrained(lowercase_ ) snake_case_ = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) snake_case_ = max(len(tokenizer.encode(lowercase_ ) ) for a in ARTICLES ) snake_case_ = max(len(tokenizer.encode(lowercase_ ) ) for a in SUMMARIES ) snake_case_ = 4 snake_case_ = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated snake_case_ ,snake_case_ = '''ro_RO''', '''de_DE''' # ignored for all but mbart, but never causes error. snake_case_ = SeqaSeqDataset( lowercase_ , data_dir=lowercase_ , type_path='''train''' , max_source_length=lowercase_ , max_target_length=lowercase_ , src_lang=lowercase_ , tgt_lang=lowercase_ , ) snake_case_ = DataLoader(lowercase_ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(lowercase_ , lowercase_ ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place snake_case_ = shift_tokens_right(batch['''labels'''] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def A_ ( self : Union[str, Any] , lowercase_ : Dict ): snake_case_ = AutoTokenizer.from_pretrained(lowercase_ ) snake_case_ = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) snake_case_ = max(len(tokenizer.encode(lowercase_ ) ) for a in ARTICLES ) snake_case_ = max(len(tokenizer.encode(lowercase_ ) ) for a in SUMMARIES ) snake_case_ = 4 snake_case_ = LegacySeqaSeqDataset( lowercase_ , data_dir=lowercase_ , type_path='''train''' , max_source_length=20 , max_target_length=lowercase_ , ) snake_case_ = DataLoader(lowercase_ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def A_ ( self : Any ): snake_case_ = AutoTokenizer.from_pretrained('''facebook/mbart-large-cc25''' ) snake_case_ = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) snake_case_ = tmp_dir.joinpath('''train.source''' ).open().readlines() snake_case_ = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(lowercase_ , lowercase_ , 128 , lowercase_ ) snake_case_ = {x.name for x in tmp_dir.iterdir()} snake_case_ = {x.name for x in save_dir.iterdir()} snake_case_ = save_dir.joinpath('''train.source''' ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(lowercase_ ) < len(lowercase_ ) assert len(lowercase_ ) == 1 assert len(packed_examples[0] ) == sum(len(lowercase_ ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='''This test requires fairseq''' ) def A_ ( self : Any ): if not FAIRSEQ_AVAILABLE: return snake_case_ ,snake_case_ ,snake_case_ = self._get_dataset(max_len=64 ) snake_case_ = 64 snake_case_ = ds.make_dynamic_sampler(lowercase_ , required_batch_size_multiple=lowercase_ ) snake_case_ = [len(lowercase_ ) for x in batch_sampler] assert len(set(lowercase_ ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(lowercase_ ) == len(lowercase_ ) # no dropped or added examples snake_case_ = DataLoader(lowercase_ , batch_sampler=lowercase_ , collate_fn=ds.collate_fn , num_workers=2 ) snake_case_ = [] snake_case_ = [] for batch in data_loader: snake_case_ = batch['''input_ids'''].shape snake_case_ = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple snake_case_ = np.product(batch['''input_ids'''].shape ) num_src_per_batch.append(lowercase_ ) if num_src_tokens > (max_tokens * 1.1): failures.append(lowercase_ ) assert num_src_per_batch[0] == max(lowercase_ ) if failures: raise AssertionError(F"too many tokens in {len(lowercase_ )} batches" ) def A_ ( self : List[str] ): snake_case_ ,snake_case_ ,snake_case_ = self._get_dataset(max_len=512 ) snake_case_ = 2 snake_case_ = ds.make_sortish_sampler(lowercase_ , shuffle=lowercase_ ) snake_case_ = DataLoader(lowercase_ , batch_size=lowercase_ , collate_fn=ds.collate_fn , num_workers=2 ) snake_case_ = DataLoader(lowercase_ , batch_size=lowercase_ , collate_fn=ds.collate_fn , num_workers=2 , sampler=lowercase_ ) snake_case_ = tokenizer.pad_token_id def count_pad_tokens(lowercase_ : Any , lowercase_ : int="input_ids" ): return [batch[k].eq(lowercase_ ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(lowercase_ , k='''labels''' ) ) < sum(count_pad_tokens(lowercase_ , k='''labels''' ) ) assert sum(count_pad_tokens(lowercase_ ) ) < sum(count_pad_tokens(lowercase_ ) ) assert len(lowercase_ ) == len(lowercase_ ) def A_ ( self : List[str] , lowercase_ : Tuple=1000 , lowercase_ : Optional[Any]=128 ): if os.getenv('''USE_REAL_DATA''' , lowercase_ ): snake_case_ = '''examples/seq2seq/wmt_en_ro''' snake_case_ = max_len * 2 * 64 if not Path(lowercase_ ).joinpath('''train.len''' ).exists(): save_len_file(lowercase_ , lowercase_ ) else: snake_case_ = '''examples/seq2seq/test_data/wmt_en_ro''' snake_case_ = max_len * 4 save_len_file(lowercase_ , lowercase_ ) snake_case_ = AutoTokenizer.from_pretrained(lowercase_ ) snake_case_ = SeqaSeqDataset( lowercase_ , data_dir=lowercase_ , type_path='''train''' , max_source_length=lowercase_ , max_target_length=lowercase_ , n_obs=lowercase_ , ) return ds, max_tokens, tokenizer def A_ ( self : Any ): snake_case_ ,snake_case_ ,snake_case_ = self._get_dataset() snake_case_ = set(DistributedSortishSampler(lowercase_ , 256 , num_replicas=2 , rank=0 , add_extra_examples=lowercase_ ) ) snake_case_ = set(DistributedSortishSampler(lowercase_ , 256 , num_replicas=2 , rank=1 , add_extra_examples=lowercase_ ) ) assert idsa.intersection(lowercase_ ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def A_ ( self : List[str] , lowercase_ : Optional[Any] ): snake_case_ = AutoTokenizer.from_pretrained(lowercase_ , use_fast=lowercase_ ) if tok_name == MBART_TINY: snake_case_ = SeqaSeqDataset( lowercase_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='''train''' , max_source_length=4 , max_target_length=8 , src_lang='''EN''' , tgt_lang='''FR''' , ) snake_case_ = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: snake_case_ = SeqaSeqDataset( lowercase_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='''train''' , max_source_length=4 , max_target_length=8 , ) snake_case_ = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(lowercase_ ) == 1 if tok_name == BART_TINY else len(lowercase_ ) == 0
72
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available a : int = { 'configuration_xlm': ['XLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMConfig', 'XLMOnnxConfig'], 'tokenization_xlm': ['XLMTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : str = [ 'XLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMForMultipleChoice', 'XLMForQuestionAnswering', 'XLMForQuestionAnsweringSimple', 'XLMForSequenceClassification', 'XLMForTokenClassification', 'XLMModel', 'XLMPreTrainedModel', 'XLMWithLMHeadModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[int] = [ 'TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLMForMultipleChoice', 'TFXLMForQuestionAnsweringSimple', 'TFXLMForSequenceClassification', 'TFXLMForTokenClassification', 'TFXLMMainLayer', 'TFXLMModel', 'TFXLMPreTrainedModel', 'TFXLMWithLMHeadModel', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys a : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
72
1
"""simple docstring""" def a_ ( lowerCamelCase ): return str(lowerCamelCase ) == str(lowerCamelCase )[::-1] def a_ ( lowerCamelCase ): return int(lowerCamelCase ) + int(str(lowerCamelCase )[::-1] ) def a_ ( lowerCamelCase = 1_0_0_0_0 ): UpperCAmelCase__ = [] for num in range(1 , lowerCamelCase ): UpperCAmelCase__ = 0 UpperCAmelCase__ = num while iterations < 5_0: UpperCAmelCase__ = sum_reverse(lowerCamelCase ) iterations += 1 if is_palindrome(lowerCamelCase ): break else: lychrel_nums.append(lowerCamelCase ) return len(lowerCamelCase ) if __name__ == "__main__": print(F"""{solution() = }""")
98
"""simple docstring""" import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ : Optional[int] = logging.get_logger(__name__) class snake_case ( __UpperCAmelCase ): """simple docstring""" snake_case__ = ["input_ids", "attention_mask"] def __init__( self : Optional[int] ,lowerCamelCase__ : int="</s>" ,lowerCamelCase__ : str="<unk>" ,lowerCamelCase__ : Union[str, Any]="<pad>" ,lowerCamelCase__ : int=125 ,lowerCamelCase__ : str=None ,**lowerCamelCase__ : Union[str, Any] ,): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: UpperCAmelCase__ = [f'''<extra_id_{i}>''' for i in range(lowerCamelCase__ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens UpperCAmelCase__ = len(set(filter(lambda lowerCamelCase__ : bool('extra_id' in str(lowerCamelCase__ ) ) ,lowerCamelCase__ ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ' provided to ByT5Tokenizer. In this case the additional_special_tokens must include the' ' extra_ids tokens' ) UpperCAmelCase__ = AddedToken(lowerCamelCase__ ,lstrip=lowerCamelCase__ ,rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ ,lowerCamelCase__ ) else pad_token UpperCAmelCase__ = AddedToken(lowerCamelCase__ ,lstrip=lowerCamelCase__ ,rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ ,lowerCamelCase__ ) else eos_token UpperCAmelCase__ = AddedToken(lowerCamelCase__ ,lstrip=lowerCamelCase__ ,rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ ,lowerCamelCase__ ) else unk_token super().__init__( eos_token=lowerCamelCase__ ,unk_token=lowerCamelCase__ ,pad_token=lowerCamelCase__ ,extra_ids=lowerCamelCase__ ,additional_special_tokens=lowerCamelCase__ ,**lowerCamelCase__ ,) UpperCAmelCase__ = extra_ids UpperCAmelCase__ = 2**8 # utf is 8 bits # define special tokens dict UpperCAmelCase__ = { self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } UpperCAmelCase__ = len(self.special_tokens_encoder ) UpperCAmelCase__ = len(lowerCamelCase__ ) for i, token in enumerate(lowerCamelCase__ ): UpperCAmelCase__ = self.vocab_size + i - n UpperCAmelCase__ = {v: k for k, v in self.special_tokens_encoder.items()} @property def __lowerCAmelCase ( self : Union[str, Any] ): return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def __lowerCAmelCase ( self : Optional[Any] ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ,lowerCamelCase__ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ ,token_ids_a=lowerCamelCase__ ,already_has_special_tokens=lowerCamelCase__ ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(lowerCamelCase__ )) + [1] return ([0] * len(lowerCamelCase__ )) + [1] + ([0] * len(lowerCamelCase__ )) + [1] def __lowerCAmelCase ( self : str ,lowerCamelCase__ : List[int] ): if len(lowerCamelCase__ ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' ' eos tokens being added.' ) return token_ids else: return token_ids + [self.eos_token_id] def __lowerCAmelCase ( self : str ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ): UpperCAmelCase__ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def __lowerCAmelCase ( self : Dict ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ): UpperCAmelCase__ = self._add_eos_if_not_present(lowerCamelCase__ ) if token_ids_a is None: return token_ids_a else: UpperCAmelCase__ = self._add_eos_if_not_present(lowerCamelCase__ ) return token_ids_a + token_ids_a def __lowerCAmelCase ( self : Optional[Any] ,lowerCamelCase__ : str ): UpperCAmelCase__ = [chr(lowerCamelCase__ ) for i in text.encode('utf-8' )] return tokens def __lowerCAmelCase ( self : List[Any] ,lowerCamelCase__ : str ): if token in self.special_tokens_encoder: UpperCAmelCase__ = self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: UpperCAmelCase__ = self.added_tokens_encoder[token] elif len(lowerCamelCase__ ) != 1: UpperCAmelCase__ = self.unk_token_id else: UpperCAmelCase__ = ord(lowerCamelCase__ ) + self._num_special_tokens return token_id def __lowerCAmelCase ( self : Union[str, Any] ,lowerCamelCase__ : Any ): if index in self.special_tokens_decoder: UpperCAmelCase__ = self.special_tokens_decoder[index] else: UpperCAmelCase__ = chr(index - self._num_special_tokens ) return token def __lowerCAmelCase ( self : Optional[Any] ,lowerCamelCase__ : Union[str, Any] ): UpperCAmelCase__ = b'' for token in tokens: if token in self.special_tokens_decoder: UpperCAmelCase__ = self.special_tokens_decoder[token].encode('utf-8' ) elif token in self.added_tokens_decoder: UpperCAmelCase__ = self.special_tokens_decoder[token].encode('utf-8' ) elif token in self.special_tokens_encoder: UpperCAmelCase__ = token.encode('utf-8' ) elif token in self.added_tokens_encoder: UpperCAmelCase__ = token.encode('utf-8' ) else: UpperCAmelCase__ = bytes([ord(lowerCamelCase__ )] ) bstring += tok_string UpperCAmelCase__ = bstring.decode('utf-8' ,errors='ignore' ) return string def __lowerCAmelCase ( self : str ,lowerCamelCase__ : str ,lowerCamelCase__ : Optional[str] = None ): return ()
98
1
'''simple docstring''' from ... import PretrainedConfig snake_case__ = { """sijunhe/nezha-cn-base""": """https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json""", } class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP _lowerCAmelCase = 'nezha' def __init__( self : Tuple , _lowerCamelCase : int=21128 , _lowerCamelCase : Optional[Any]=768 , _lowerCamelCase : Dict=12 , _lowerCamelCase : List[str]=12 , _lowerCamelCase : int=3072 , _lowerCamelCase : List[str]="gelu" , _lowerCamelCase : Optional[int]=0.1 , _lowerCamelCase : Any=0.1 , _lowerCamelCase : List[Any]=512 , _lowerCamelCase : Optional[Any]=64 , _lowerCamelCase : Any=2 , _lowerCamelCase : int=0.02 , _lowerCamelCase : List[Any]=1E-12 , _lowerCamelCase : Optional[Any]=0.1 , _lowerCamelCase : Tuple=0 , _lowerCamelCase : Dict=2 , _lowerCamelCase : List[str]=3 , _lowerCamelCase : Union[str, Any]=True , **_lowerCamelCase : Optional[Any] , ): """simple docstring""" super().__init__(pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , **_lowerCamelCase ) A_ : Dict = vocab_size A_ : int = hidden_size A_ : str = num_hidden_layers A_ : Optional[int] = num_attention_heads A_ : List[Any] = hidden_act A_ : Optional[Any] = intermediate_size A_ : int = hidden_dropout_prob A_ : Union[str, Any] = attention_probs_dropout_prob A_ : Optional[int] = max_position_embeddings A_ : List[str] = max_relative_position A_ : Union[str, Any] = type_vocab_size A_ : Dict = initializer_range A_ : Tuple = layer_norm_eps A_ : Optional[Any] = classifier_dropout A_ : int = use_cache
4
'''simple docstring''' from __future__ import annotations from PIL import Image # Define glider example snake_case__ = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example snake_case__ = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def snake_case__ ( lowerCamelCase__ : list[list[int]] ) -> list[list[int]]: A_ : str = [] for i in range(len(lowerCamelCase__ ) ): A_ : Optional[Any] = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours A_ : Optional[int] = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(lowerCamelCase__ ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(lowerCamelCase__ ) - 1: neighbour_count += cells[i + 1][j] if i < len(lowerCamelCase__ ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. A_ : List[str] = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(lowerCamelCase__ ) return next_generation def snake_case__ ( lowerCamelCase__ : list[list[int]] , lowerCamelCase__ : int ) -> list[Image.Image]: A_ : List[Any] = [] for _ in range(lowerCamelCase__ ): # Create output image A_ : Optional[int] = Image.new('''RGB''' , (len(cells[0] ), len(lowerCamelCase__ )) ) A_ : int = img.load() # Save cells to image for x in range(len(lowerCamelCase__ ) ): for y in range(len(cells[0] ) ): A_ : Optional[Any] = 2_5_5 - cells[y][x] * 2_5_5 A_ : str = (colour, colour, colour) # Save image images.append(lowerCamelCase__ ) A_ : Optional[int] = new_generation(lowerCamelCase__ ) return images if __name__ == "__main__": snake_case__ = generate_images(GLIDER, 16) images[0].save("""out.gif""", save_all=True, append_images=images[1:])
4
1
"""simple docstring""" from argparse import ArgumentParser from .env import EnvironmentCommand def _snake_case ( ) -> Optional[int]: '''simple docstring''' _A = ArgumentParser('Diffusers CLI tool' , usage='diffusers-cli <command> [<args>]' ) _A = parser.add_subparsers(help='diffusers-cli command helpers' ) # Register commands EnvironmentCommand.register_subcommand(_snake_case ) # Let's go _A = parser.parse_args() if not hasattr(_snake_case , 'func' ): parser.print_help() exit(1 ) # Run _A = args.func(_snake_case ) service.run() if __name__ == "__main__": main()
315
"""simple docstring""" from __future__ import annotations def _snake_case ( _snake_case : tuple[int, int] , _snake_case : int ) -> list[tuple[int, int]]: '''simple docstring''' _A , _A = position _A = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] _A = [] for position in positions: _A , _A = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(_snake_case ) return permissible_positions def _snake_case ( _snake_case : list[list[int]] ) -> bool: '''simple docstring''' return not any(elem == 0 for row in board for elem in row ) def _snake_case ( _snake_case : list[list[int]] , _snake_case : tuple[int, int] , _snake_case : int ) -> bool: '''simple docstring''' if is_complete(_snake_case ): return True for position in get_valid_pos(_snake_case , len(_snake_case ) ): _A , _A = position if board[y][x] == 0: _A = curr + 1 if open_knight_tour_helper(_snake_case , _snake_case , curr + 1 ): return True _A = 0 return False def _snake_case ( _snake_case : int ) -> list[list[int]]: '''simple docstring''' _A = [[0 for i in range(_snake_case )] for j in range(_snake_case )] for i in range(_snake_case ): for j in range(_snake_case ): _A = 1 if open_knight_tour_helper(_snake_case , (i, j) , 1 ): return board _A = 0 _A = F'''Open Kight Tour cannot be performed on a board of size {n}''' raise ValueError(_snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
315
1
import warnings from .generation import TFGenerationMixin class UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' warnings.warn( """Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will """ """be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.""" , lowerCamelCase__ , )
356
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def UpperCamelCase ( _a ) -> Union[str, Any]: '''simple docstring''' return getitem, k def UpperCamelCase ( _a , _a ) -> int: '''simple docstring''' return setitem, k, v def UpperCamelCase ( _a ) -> int: '''simple docstring''' return delitem, k def UpperCamelCase ( _a , _a , *_a ) -> Any: '''simple docstring''' try: return fun(_a , *_a ), None except Exception as e: return None, e SCREAMING_SNAKE_CASE : List[Any] = ( _set("key_a", "val_a"), _set("key_b", "val_b"), ) SCREAMING_SNAKE_CASE : Tuple = [ _set("key_a", "val_a"), _set("key_a", "val_b"), ] SCREAMING_SNAKE_CASE : Any = [ _set("key_a", "val_a"), _set("key_b", "val_b"), _del("key_a"), _del("key_b"), _set("key_a", "val_a"), _del("key_a"), ] SCREAMING_SNAKE_CASE : Union[str, Any] = [ _get("key_a"), _del("key_a"), _set("key_a", "val_a"), _del("key_a"), _del("key_a"), _get("key_a"), ] SCREAMING_SNAKE_CASE : Any = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] SCREAMING_SNAKE_CASE : int = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("key_a", "val_b"), ] @pytest.mark.parametrize( '''operations''' , ( pytest.param(_add_items , id='''add items''' ), pytest.param(_overwrite_items , id='''overwrite items''' ), pytest.param(_delete_items , id='''delete items''' ), pytest.param(_access_absent_items , id='''access absent items''' ), pytest.param(_add_with_resize_up , id='''add with resize up''' ), pytest.param(_add_with_resize_down , id='''add with resize down''' ), ) , ) def UpperCamelCase ( _a ) -> List[str]: '''simple docstring''' lowercase_ :Optional[Any] = HashMap(initial_block_size=4 ) lowercase_ :Optional[int] = {} for _, (fun, *args) in enumerate(_a ): lowercase_ , lowercase_ :List[str] = _run_operation(_a , _a , *_a ) lowercase_ , lowercase_ :List[str] = _run_operation(_a , _a , *_a ) assert my_res == py_res assert str(_a ) == str(_a ) assert set(_a ) == set(_a ) assert len(_a ) == len(_a ) assert set(my.items() ) == set(py.items() ) def UpperCamelCase ( ) -> Optional[Any]: '''simple docstring''' def is_public(_a ) -> bool: return not name.startswith('''_''' ) lowercase_ :Dict = {name for name in dir({} ) if is_public(_a )} lowercase_ :Dict = {name for name in dir(HashMap() ) if is_public(_a )} assert dict_public_names > hash_public_names
252
0
from __future__ import annotations from math import pi def _A ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ): """simple docstring""" if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if inductance < 0: raise ValueError("Inductance cannot be negative" ) if frequency < 0: raise ValueError("Frequency cannot be negative" ) if reactance < 0: raise ValueError("Inductive reactance cannot be negative" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
95
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand _lowerCamelCase : Optional[int] = ( "4S 3H 2C 7S 5H", "9D 8H 2C 6S 7H", "2D 6D 9D TH 7D", "TC 8C 2S JH 6C", "JH 8S TH AH QH", "TS KS 5S 9S AC", "KD 6S 9D TH AD", "KS 8D 4D 9S 4S", # pair "8C 4S KH JS 4D", # pair "QH 8H KD JH 8S", # pair "KC 4H KS 2H 8D", # pair "KD 4S KC 3H 8S", # pair "AH 8S AS KC JH", # pair "3H 4C 4H 3S 2H", # 2 pairs "5S 5D 2C KH KH", # 2 pairs "3C KH 5D 5S KH", # 2 pairs "AS 3C KH AD KH", # 2 pairs "7C 7S 3S 7H 5S", # 3 of a kind "7C 7S KH 2H 7H", # 3 of a kind "AC KH QH AH AS", # 3 of a kind "2H 4D 3C AS 5S", # straight (low ace) "3C 5C 4C 2C 6H", # straight "6S 8S 7S 5H 9H", # straight "JS QS 9H TS KH", # straight "QC KH TS JS AH", # straight (high ace) "8C 9C 5C 3C TC", # flush "3S 8S 9S 5S KS", # flush "4C 5C 9C 8C KC", # flush "JH 8H AH KH QH", # flush "3D 2H 3H 2C 2D", # full house "2H 2C 3S 3H 3D", # full house "KH KC 3S 3H 3D", # full house "JC 6H JS JD JH", # 4 of a kind "JC 7H JS JD JH", # 4 of a kind "JC KH JS JD JH", # 4 of a kind "2S AS 4S 5S 3S", # straight flush (low ace) "2D 6D 3D 4D 5D", # straight flush "5C 6C 3C 7C 4C", # straight flush "JH 9H TH KH QH", # straight flush "JH AH TH KH QH", # royal flush (high ace straight flush) ) _lowerCamelCase : Union[str, Any] = ( ("2H 3H 4H 5H 6H", "KS AS TS QS JS", "Loss"), ("2H 3H 4H 5H 6H", "AS AD AC AH JD", "Win"), ("AS AH 2H AD AC", "JS JD JC JH 3D", "Win"), ("2S AH 2H AS AC", "JS JD JC JH AD", "Loss"), ("2S AH 2H AS AC", "2H 3H 5H 6H 7H", "Win"), ("AS 3S 4S 8S 2S", "2H 3H 5H 6H 7H", "Win"), ("2H 3H 5H 6H 7H", "2S 3H 4H 5S 6C", "Win"), ("2S 3H 4H 5S 6C", "3D 4C 5H 6H 2S", "Tie"), ("2S 3H 4H 5S 6C", "AH AC 5H 6H AS", "Win"), ("2S 2H 4H 5S 4C", "AH AC 5H 6H AS", "Loss"), ("2S 2H 4H 5S 4C", "AH AC 5H 6H 7S", "Win"), ("6S AD 7H 4S AS", "AH AC 5H 6H 7S", "Loss"), ("2S AH 4H 5S KC", "AH AC 5H 6H 7S", "Loss"), ("2S 3H 6H 7S 9C", "7H 3C TH 6H 9S", "Loss"), ("4S 5H 6H TS AC", "3S 5H 6H TS AC", "Win"), ("2S AH 4H 5S 6C", "AD 4C 5H 6H 2C", "Tie"), ("AS AH 3H AD AC", "AS AH 2H AD AC", "Win"), ("AH AC 5H 5C QS", "AH AC 5H 5C KS", "Loss"), ("AH AC 5H 5C QS", "KH KC 5H 5C QS", "Win"), ("7C 7S KH 2H 7H", "3C 3S AH 2H 3H", "Win"), ("3C 3S AH 2H 3H", "7C 7S KH 2H 7H", "Loss"), ("6H 5H 4H 3H 2H", "5H 4H 3H 2H AH", "Win"), ("5H 4H 3H 2H AH", "5H 4H 3H 2H AH", "Tie"), ("5H 4H 3H 2H AH", "6H 5H 4H 3H 2H", "Loss"), ("AH AD KS KC AC", "AH KD KH AC KC", "Win"), ("2H 4D 3C AS 5S", "2H 4D 3C 6S 5S", "Loss"), ("2H 3S 3C 3H 2S", "3S 3C 2S 2H 2D", "Win"), ("4D 6D 5D 2D JH", "3S 8S 3H TC KH", "Loss"), ("4S 6C 8S 3S 7S", "AD KS 2D 7D 7C", "Loss"), ("6S 4C 7H 8C 3H", "5H JC AH 9D 9C", "Loss"), ("9D 9H JH TC QH", "3C 2S JS 5C 7H", "Win"), ("2H TC 8S AD 9S", "4H TS 7H 2C 5C", "Win"), ("9D 3S 2C 7S 7C", "JC TD 3C TC 9H", "Loss"), ) _lowerCamelCase : Dict = ( ("2H 3H 4H 5H 6H", True), ("AS AH 2H AD AC", False), ("2H 3H 5H 6H 7H", True), ("KS AS TS QS JS", True), ("8H 9H QS JS TH", False), ("AS 3S 4S 8S 2S", True), ) _lowerCamelCase : Dict = ( ("2H 3H 4H 5H 6H", True), ("AS AH 2H AD AC", False), ("2H 3H 5H 6H 7H", False), ("KS AS TS QS JS", True), ("8H 9H QS JS TH", True), ) _lowerCamelCase : Optional[Any] = ( ("2H 4D 3C AS 5S", True, [5, 4, 3, 2, 14]), ("2H 5D 3C AS 5S", False, [14, 5, 5, 3, 2]), ("JH QD KC AS TS", False, [14, 13, 12, 11, 10]), ("9D 3S 2C 7S 7C", False, [9, 7, 7, 3, 2]), ) _lowerCamelCase : List[Any] = ( ("JH AH TH KH QH", 0), ("JH 9H TH KH QH", 0), ("JC KH JS JD JH", 7), ("KH KC 3S 3H 3D", 6), ("8C 9C 5C 3C TC", 0), ("JS QS 9H TS KH", 0), ("7C 7S KH 2H 7H", 3), ("3C KH 5D 5S KH", 2), ("QH 8H KD JH 8S", 1), ("2D 6D 9D TH 7D", 0), ) _lowerCamelCase : List[str] = ( ("JH AH TH KH QH", 23), ("JH 9H TH KH QH", 22), ("JC KH JS JD JH", 21), ("KH KC 3S 3H 3D", 20), ("8C 9C 5C 3C TC", 19), ("JS QS 9H TS KH", 18), ("7C 7S KH 2H 7H", 17), ("3C KH 5D 5S KH", 16), ("QH 8H KD JH 8S", 15), ("2D 6D 9D TH 7D", 14), ) def __lowerCamelCase ( ) -> Optional[Any]: """simple docstring""" UpperCamelCase , UpperCamelCase = randrange(len(A__ ) ), randrange(len(A__ ) ) UpperCamelCase = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] UpperCamelCase , UpperCamelCase = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def __lowerCamelCase ( A__ = 100 ) -> Optional[Any]: """simple docstring""" return (generate_random_hand() for _ in range(A__ )) @pytest.mark.parametrize('hand, expected' , A__ ) def __lowerCamelCase ( A__ , A__ ) -> Any: """simple docstring""" assert PokerHand(A__ )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , A__ ) def __lowerCamelCase ( A__ , A__ ) -> Any: """simple docstring""" assert PokerHand(A__ )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , A__ ) def __lowerCamelCase ( A__ , A__ , A__ ) -> str: """simple docstring""" UpperCamelCase = PokerHand(A__ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , A__ ) def __lowerCamelCase ( A__ , A__ ) -> Dict: """simple docstring""" assert PokerHand(A__ )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , A__ ) def __lowerCamelCase ( A__ , A__ ) -> str: """simple docstring""" assert PokerHand(A__ )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , A__ ) def __lowerCamelCase ( A__ , A__ , A__ ) -> Tuple: """simple docstring""" assert PokerHand(A__ ).compare_with(PokerHand(A__ ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def __lowerCamelCase ( A__ , A__ , A__ ) -> List[str]: """simple docstring""" assert PokerHand(A__ ).compare_with(PokerHand(A__ ) ) == expected def __lowerCamelCase ( ) -> str: """simple docstring""" UpperCamelCase = [PokerHand(A__ ) for hand in SORTED_HANDS] UpperCamelCase = poker_hands.copy() shuffle(A__ ) UpperCamelCase = chain(sorted(A__ ) ) for index, hand in enumerate(A__ ): assert hand == poker_hands[index] def __lowerCamelCase ( ) -> Optional[int]: """simple docstring""" # Test that five high straights are compared correctly. UpperCamelCase = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=A__ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def __lowerCamelCase ( ) -> str: """simple docstring""" # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. UpperCamelCase = PokerHand('2C 4S AS 3D 5C' ) UpperCamelCase = True UpperCamelCase = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def __lowerCamelCase ( ) -> List[str]: """simple docstring""" # Problem number 54 from Project Euler # Testing from poker_hands.txt file UpperCamelCase = 0 UpperCamelCase = os.path.abspath(os.path.dirname(A__ ) ) UpperCamelCase = os.path.join(A__ , 'poker_hands.txt' ) with open(A__ ) as file_hand: for line in file_hand: UpperCamelCase = line[:14].strip() UpperCamelCase = line[15:].strip() UpperCamelCase , UpperCamelCase = PokerHand(A__ ), PokerHand(A__ ) UpperCamelCase = player.compare_with(A__ ) if output == "Win": answer += 1 assert answer == 376
28
0
import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def _a ( lowerCamelCase: int , lowerCamelCase: str , lowerCamelCase: Optional[Any] , lowerCamelCase: Tuple ) -> Union[str, Any]: '''simple docstring''' __A = BigBirdConfig.from_json_file(lowerCamelCase ) print(F"""Building PyTorch model from configuration: {config}""" ) if is_trivia_qa: __A = BigBirdForQuestionAnswering(lowerCamelCase ) else: __A = BigBirdForPreTraining(lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(lowerCamelCase , lowerCamelCase , is_trivia_qa=lowerCamelCase ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(lowerCamelCase ) if __name__ == "__main__": snake_case__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--big_bird_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--is_trivia_qa', action='store_true', help='Whether to convert a model with a trivia_qa head.' ) snake_case__ : List[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
250
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
250
1
"""simple docstring""" from datetime import datetime import matplotlib.pyplot as plt import torch def _A ( UpperCamelCase_ : Optional[Any]) -> Union[str, Any]: '''simple docstring''' for param in module.parameters(): __lowercase = False def _A ( ) -> Optional[Any]: '''simple docstring''' __lowercase = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): __lowercase = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations.") return device def _A ( UpperCamelCase_ : int) -> Any: '''simple docstring''' __lowercase = plt.imshow(UpperCamelCase_) fig.axes.get_xaxis().set_visible(UpperCamelCase_) fig.axes.get_yaxis().set_visible(UpperCamelCase_) plt.show() def _A ( ) -> List[str]: '''simple docstring''' __lowercase = datetime.now() __lowercase = current_time.strftime("%H:%M:%S") return timestamp
17
from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class __lowerCAmelCase : def _lowercase ( self , lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' raise NotImplementedError() def _lowercase ( self ) -> int: '''simple docstring''' raise NotImplementedError() class __lowerCAmelCase ( UpperCamelCase__): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = False , **lowerCAmelCase__ ) -> int: '''simple docstring''' a__ : str =tokenizer a__ : List[str] =skip_prompt a__ : List[Any] =decode_kwargs # variables used in the streaming process a__ : Dict =[] a__ : int =0 a__ : str =True def _lowercase ( self , lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError("TextStreamer only supports batch size 1" ) elif len(value.shape ) > 1: a__ : Any =value[0] if self.skip_prompt and self.next_tokens_are_prompt: a__ : Dict =False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) a__ : Union[str, Any] =self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith("\n" ): a__ : List[Any] =text[self.print_len :] a__ : List[str] =[] a__ : Optional[int] =0 # If the last token is a CJK character, we print the characters. elif len(lowerCAmelCase__ ) > 0 and self._is_chinese_char(ord(text[-1] ) ): a__ : List[str] =text[self.print_len :] self.print_len += len(lowerCAmelCase__ ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: a__ : str =text[self.print_len : text.rfind(" " ) + 1] self.print_len += len(lowerCAmelCase__ ) self.on_finalized_text(lowerCAmelCase__ ) def _lowercase ( self ) -> Any: '''simple docstring''' if len(self.token_cache ) > 0: a__ : Union[str, Any] =self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) a__ : List[Any] =text[self.print_len :] a__ : List[str] =[] a__ : Optional[int] =0 else: a__ : Union[str, Any] ="" a__ : Any =True self.on_finalized_text(lowerCAmelCase__ , stream_end=lowerCAmelCase__ ) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ = False ) -> Optional[Any]: '''simple docstring''' print(lowerCAmelCase__ , flush=lowerCAmelCase__ , end="" if not stream_end else None ) def _lowercase ( self , lowerCAmelCase__ ) -> str: '''simple docstring''' if ( (cp >= 0X4E_00 and cp <= 0X9F_FF) or (cp >= 0X34_00 and cp <= 0X4D_BF) # or (cp >= 0X2_00_00 and cp <= 0X2_A6_DF) # or (cp >= 0X2_A7_00 and cp <= 0X2_B7_3F) # or (cp >= 0X2_B7_40 and cp <= 0X2_B8_1F) # or (cp >= 0X2_B8_20 and cp <= 0X2_CE_AF) # or (cp >= 0XF9_00 and cp <= 0XFA_FF) or (cp >= 0X2_F8_00 and cp <= 0X2_FA_1F) # ): # return True return False class __lowerCAmelCase ( UpperCamelCase__): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = False , lowerCAmelCase__ = None , **lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' super().__init__(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) a__ : str =Queue() a__ : Optional[Any] =None a__ : Any =timeout def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ = False ) -> List[str]: '''simple docstring''' self.text_queue.put(lowerCAmelCase__ , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self ) -> Dict: '''simple docstring''' return self def _lowercase ( self ) -> int: '''simple docstring''' a__ : int =self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
95
0
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowercase_ = get_tests_dir("""fixtures""") lowercase_ = get_tests_dir("""fixtures/dummy_feature_extractor_config.json""") lowercase_ = get_tests_dir("""fixtures/dummy-config.json""") class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = 0 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = AutoFeatureExtractor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(__A , __A ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = AutoFeatureExtractor.from_pretrained(__A ) self.assertIsInstance(__A , __A ) def _lowercase ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: _lowerCAmelCase = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally _lowerCAmelCase = AutoFeatureExtractor.from_pretrained(__A ).to_dict() config_dict.pop("""feature_extractor_type""" ) _lowerCAmelCase = WavaVecaFeatureExtractor(**__A ) # save in new folder model_config.save_pretrained(__A ) config.save_pretrained(__A ) _lowerCAmelCase = AutoFeatureExtractor.from_pretrained(__A ) # make sure private variable is not incorrectly saved _lowerCAmelCase = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(__A , __A ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = AutoFeatureExtractor.from_pretrained(__A ) self.assertIsInstance(__A , __A ) def _lowercase ( self ): """simple docstring""" with self.assertRaisesRegex( __A , """bert-base is not a local folder and is not a valid model identifier""" ): _lowerCAmelCase = AutoFeatureExtractor.from_pretrained("""bert-base""" ) def _lowercase ( self ): """simple docstring""" with self.assertRaisesRegex( __A , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): _lowerCAmelCase = AutoFeatureExtractor.from_pretrained(__A , revision="""aaaaaa""" ) def _lowercase ( self ): """simple docstring""" with self.assertRaisesRegex( __A , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): _lowerCAmelCase = AutoFeatureExtractor.from_pretrained("""hf-internal-testing/config-no-model""" ) def _lowercase ( self ): """simple docstring""" with self.assertRaises(__A ): _lowerCAmelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__A ): _lowerCAmelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=__A ) _lowerCAmelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=__A ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(__A ) _lowerCAmelCase = AutoFeatureExtractor.from_pretrained(__A , trust_remote_code=__A ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) def _lowercase ( self ): """simple docstring""" try: AutoConfig.register("""custom""" , __A ) AutoFeatureExtractor.register(__A , __A ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__A ): AutoFeatureExtractor.register(__A , __A ) # Now that the config is registered, it can be used as any other config with the auto-API _lowerCAmelCase = CustomFeatureExtractor.from_pretrained(__A ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(__A ) _lowerCAmelCase = AutoFeatureExtractor.from_pretrained(__A ) self.assertIsInstance(__A , __A ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def _lowercase ( self ): """simple docstring""" class UpperCAmelCase_ ( A__ ): '''simple docstring''' _lowercase : List[str] = True try: AutoConfig.register("""custom""" , __A ) AutoFeatureExtractor.register(__A , __A ) # If remote code is not set, the default is to use local _lowerCAmelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. _lowerCAmelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=__A ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub _lowerCAmelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=__A ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(not hasattr(__A , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
351
'''simple docstring''' def A (__lowerCamelCase :list[int] , __lowerCamelCase :list[int] ): # Check if the input is valid if not len(__lowerCamelCase ) == len(__lowerCamelCase ) == 3: raise ValueError("""Please enter a valid equation.""" ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError("""Both a & b of two equations can't be zero.""" ) # Extract the coefficients _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = equationa _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = equationa # Calculate the determinants of the matrices _lowerCAmelCase = aa * ba - aa * ba _lowerCAmelCase = ca * ba - ca * ba _lowerCAmelCase = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError("""Infinite solutions. (Consistent system)""" ) else: raise ValueError("""No solution. (Inconsistent system)""" ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: _lowerCAmelCase = determinant_x / determinant _lowerCAmelCase = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
229
0
"""simple docstring""" def _snake_case ( _snake_case : int ): if number < 0: raise ValueError('''number must not be negative''' ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
60
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() snake_case__ : int = logging.get_logger(__name__) def _snake_case ( _snake_case : Union[str, Any] ): lowerCAmelCase : Dict = OrderedDict() for key, value in state_dict.items(): if key.startswith('''module.encoder''' ): lowerCAmelCase : Union[str, Any] = key.replace('''module.encoder''' , '''glpn.encoder''' ) if key.startswith('''module.decoder''' ): lowerCAmelCase : str = key.replace('''module.decoder''' , '''decoder.stages''' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowerCAmelCase : Union[str, Any] = key[key.find('''patch_embed''' ) + len('''patch_embed''' )] lowerCAmelCase : str = key.replace(f'''patch_embed{idx}''' , f'''patch_embeddings.{int(_snake_case )-1}''' ) if "norm" in key: lowerCAmelCase : str = key.replace('''norm''' , '''layer_norm''' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowerCAmelCase : Optional[int] = key[key.find('''glpn.encoder.layer_norm''' ) + len('''glpn.encoder.layer_norm''' )] lowerCAmelCase : List[str] = key.replace(f'''layer_norm{idx}''' , f'''layer_norm.{int(_snake_case )-1}''' ) if "layer_norm1" in key: lowerCAmelCase : Union[str, Any] = key.replace('''layer_norm1''' , '''layer_norm_1''' ) if "layer_norm2" in key: lowerCAmelCase : Any = key.replace('''layer_norm2''' , '''layer_norm_2''' ) if "block" in key: # replace for example block1 by block.0 lowerCAmelCase : Tuple = key[key.find('''block''' ) + len('''block''' )] lowerCAmelCase : Tuple = key.replace(f'''block{idx}''' , f'''block.{int(_snake_case )-1}''' ) if "attn.q" in key: lowerCAmelCase : Optional[Any] = key.replace('''attn.q''' , '''attention.self.query''' ) if "attn.proj" in key: lowerCAmelCase : Dict = key.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in key: lowerCAmelCase : List[str] = key.replace('''attn''' , '''attention.self''' ) if "fc1" in key: lowerCAmelCase : List[Any] = key.replace('''fc1''' , '''dense1''' ) if "fc2" in key: lowerCAmelCase : Optional[Any] = key.replace('''fc2''' , '''dense2''' ) if "linear_pred" in key: lowerCAmelCase : List[Any] = key.replace('''linear_pred''' , '''classifier''' ) if "linear_fuse" in key: lowerCAmelCase : Optional[Any] = key.replace('''linear_fuse.conv''' , '''linear_fuse''' ) lowerCAmelCase : int = key.replace('''linear_fuse.bn''' , '''batch_norm''' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowerCAmelCase : Optional[Any] = key[key.find('''linear_c''' ) + len('''linear_c''' )] lowerCAmelCase : int = key.replace(f'''linear_c{idx}''' , f'''linear_c.{int(_snake_case )-1}''' ) if "bot_conv" in key: lowerCAmelCase : str = key.replace('''bot_conv''' , '''0.convolution''' ) if "skip_conv1" in key: lowerCAmelCase : int = key.replace('''skip_conv1''' , '''1.convolution''' ) if "skip_conv2" in key: lowerCAmelCase : str = key.replace('''skip_conv2''' , '''2.convolution''' ) if "fusion1" in key: lowerCAmelCase : Union[str, Any] = key.replace('''fusion1''' , '''1.fusion''' ) if "fusion2" in key: lowerCAmelCase : Any = key.replace('''fusion2''' , '''2.fusion''' ) if "fusion3" in key: lowerCAmelCase : List[Any] = key.replace('''fusion3''' , '''3.fusion''' ) if "fusion" in key and "conv" in key: lowerCAmelCase : Union[str, Any] = key.replace('''conv''' , '''convolutional_layer''' ) if key.startswith('''module.last_layer_depth''' ): lowerCAmelCase : Optional[Any] = key.replace('''module.last_layer_depth''' , '''head.head''' ) lowerCAmelCase : Union[str, Any] = value return new_state_dict def _snake_case ( _snake_case : Optional[Any] , _snake_case : str ): # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowerCAmelCase : int = state_dict.pop(f'''glpn.encoder.block.{i}.{j}.attention.self.kv.weight''' ) lowerCAmelCase : Optional[int] = state_dict.pop(f'''glpn.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict lowerCAmelCase : str = kv_weight[ : config.hidden_sizes[i], : ] lowerCAmelCase : Union[str, Any] = kv_bias[: config.hidden_sizes[i]] lowerCAmelCase : Dict = kv_weight[ config.hidden_sizes[i] :, : ] lowerCAmelCase : List[str] = kv_bias[config.hidden_sizes[i] :] def _snake_case ( ): lowerCAmelCase : int = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase : str = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) return image @torch.no_grad() def _snake_case ( _snake_case : Dict , _snake_case : Dict , _snake_case : Union[str, Any]=False , _snake_case : List[str]=None ): lowerCAmelCase : Optional[int] = GLPNConfig(hidden_sizes=[64, 128, 320, 512] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) lowerCAmelCase : Union[str, Any] = GLPNImageProcessor() # prepare image lowerCAmelCase : Tuple = prepare_img() lowerCAmelCase : Dict = image_processor(images=_snake_case , return_tensors='''pt''' ).pixel_values logger.info('''Converting model...''' ) # load original state dict lowerCAmelCase : List[str] = torch.load(_snake_case , map_location=torch.device('''cpu''' ) ) # rename keys lowerCAmelCase : Tuple = rename_keys(_snake_case ) # key and value matrices need special treatment read_in_k_v(_snake_case , _snake_case ) # create HuggingFace model and load state dict lowerCAmelCase : str = GLPNForDepthEstimation(_snake_case ) model.load_state_dict(_snake_case ) model.eval() # forward pass lowerCAmelCase : Union[str, Any] = model(_snake_case ) lowerCAmelCase : int = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: lowerCAmelCase : str = torch.tensor( [[4.4147, 4.0873, 4.0673], [3.7890, 3.2881, 3.1525], [3.7674, 3.5423, 3.4913]] ) elif "kitti" in model_name: lowerCAmelCase : str = torch.tensor( [[3.4291, 2.7865, 2.5151], [3.2841, 2.7021, 2.3502], [3.1147, 2.4625, 2.2481]] ) else: raise ValueError(f'''Unknown model name: {model_name}''' ) lowerCAmelCase : List[Any] = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , _snake_case , atol=1E-4 ) print('''Looks ok!''' ) # finally, push to hub if required if push_to_hub: logger.info('''Pushing model and image processor to the hub...''' ) model.push_to_hub( repo_path_or_name=Path(_snake_case , _snake_case ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=_snake_case , ) image_processor.push_to_hub( repo_path_or_name=Path(_snake_case , _snake_case ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=_snake_case , ) if __name__ == "__main__": snake_case__ : Tuple = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to upload the model to the HuggingFace hub.''' ) parser.add_argument( '''--model_name''', default='''glpn-kitti''', type=str, help='''Name of the model in case you\'re pushing to the hub.''', ) snake_case__ : List[str] = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
60
1
"""simple docstring""" import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase : def __init__( self, lowerCAmelCase__, lowerCAmelCase__=13, lowerCAmelCase__=7, lowerCAmelCase__=True, lowerCAmelCase__=True, lowerCAmelCase__=True, lowerCAmelCase__=True, lowerCAmelCase__=99, lowerCAmelCase__=24, lowerCAmelCase__=2, lowerCAmelCase__=6, lowerCAmelCase__=37, lowerCAmelCase__="gelu", lowerCAmelCase__=0.1, lowerCAmelCase__=0.1, lowerCAmelCase__=512, lowerCAmelCase__=16, lowerCAmelCase__=2, lowerCAmelCase__=0.02, lowerCAmelCase__=3, lowerCAmelCase__=None, lowerCAmelCase__=1000, ) -> List[Any]: snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = scope snake_case_ = range_bbox def a_ ( self) -> Tuple: snake_case_ = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) snake_case_ = ids_tensor([self.batch_size, self.seq_length, 4], self.range_bbox) # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: snake_case_ = bbox[i, j, 3] snake_case_ = bbox[i, j, 1] snake_case_ = t if bbox[i, j, 2] < bbox[i, j, 0]: snake_case_ = bbox[i, j, 2] snake_case_ = bbox[i, j, 0] snake_case_ = t snake_case_ = None if self.use_input_mask: snake_case_ = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size], self.type_sequence_label_size) snake_case_ = ids_tensor([self.batch_size, self.seq_length], self.num_labels) snake_case_ = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def a_ ( self) -> Optional[Any]: return LiltConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, ) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, ) -> List[str]: snake_case_ = LiltModel(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() snake_case_ = model(lowerCAmelCase__, bbox=lowerCAmelCase__, attention_mask=lowerCAmelCase__, token_type_ids=lowerCAmelCase__) snake_case_ = model(lowerCAmelCase__, bbox=lowerCAmelCase__, token_type_ids=lowerCAmelCase__) snake_case_ = model(lowerCAmelCase__, bbox=lowerCAmelCase__) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, ) -> List[Any]: snake_case_ = self.num_labels snake_case_ = LiltForTokenClassification(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() snake_case_ = model( lowerCAmelCase__, bbox=lowerCAmelCase__, attention_mask=lowerCAmelCase__, token_type_ids=lowerCAmelCase__, labels=lowerCAmelCase__) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, ) -> Optional[int]: snake_case_ = LiltForQuestionAnswering(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() snake_case_ = model( lowerCAmelCase__, bbox=lowerCAmelCase__, attention_mask=lowerCAmelCase__, token_type_ids=lowerCAmelCase__, start_positions=lowerCAmelCase__, end_positions=lowerCAmelCase__, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def a_ ( self) -> Dict: snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) = config_and_inputs snake_case_ = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ = ( { "feature-extraction": LiltModel, "question-answering": LiltForQuestionAnswering, "text-classification": LiltForSequenceClassification, "token-classification": LiltForTokenClassification, "zero-shot": LiltForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) -> str: return True def a_ ( self) -> str: snake_case_ = LiltModelTester(self) snake_case_ = ConfigTester(self, config_class=lowerCAmelCase__, hidden_size=37) def a_ ( self) -> int: self.config_tester.run_common_tests() def a_ ( self) -> int: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__) def a_ ( self) -> Dict: snake_case_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case_ = type self.model_tester.create_and_check_model(*lowerCAmelCase__) def a_ ( self) -> int: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase__) def a_ ( self) -> Optional[Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase__) @slow def a_ ( self) -> Any: for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = LiltModel.from_pretrained(lowerCAmelCase__) self.assertIsNotNone(lowerCAmelCase__) @require_torch @slow class UpperCamelCase ( unittest.TestCase ): def a_ ( self) -> Optional[Any]: snake_case_ = LiltModel.from_pretrained('SCUT-DLVCLab/lilt-roberta-en-base').to(lowerCAmelCase__) snake_case_ = torch.tensor([[1, 2]], device=lowerCAmelCase__) snake_case_ = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]], device=lowerCAmelCase__) # forward pass with torch.no_grad(): snake_case_ = model(input_ids=lowerCAmelCase__, bbox=lowerCAmelCase__) snake_case_ = torch.Size([1, 2, 768]) snake_case_ = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]], device=lowerCAmelCase__, ) self.assertTrue(outputs.last_hidden_state.shape, lowerCAmelCase__) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3], lowerCAmelCase__, atol=1e-3))
355
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: __UpperCamelCase = None __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} __UpperCamelCase = { '''vocab_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json''' ), }, } __UpperCamelCase = { '''moussaKam/mbarthez''': 1024, '''moussaKam/barthez''': 1024, '''moussaKam/barthez-orangesum-title''': 1024, } __UpperCamelCase = '''▁''' class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE_ = BarthezTokenizer def __init__( self, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__="<s>", lowerCAmelCase__="</s>", lowerCAmelCase__="</s>", lowerCAmelCase__="<s>", lowerCAmelCase__="<unk>", lowerCAmelCase__="<pad>", lowerCAmelCase__="<mask>", **lowerCAmelCase__, ) -> List[str]: # Mask token behave like a normal word, i.e. include the space before it snake_case_ = AddedToken(lowerCAmelCase__, lstrip=lowerCAmelCase__, rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__) else mask_token super().__init__( lowerCAmelCase__, tokenizer_file=lowerCAmelCase__, bos_token=lowerCAmelCase__, eos_token=lowerCAmelCase__, unk_token=lowerCAmelCase__, sep_token=lowerCAmelCase__, cls_token=lowerCAmelCase__, pad_token=lowerCAmelCase__, mask_token=lowerCAmelCase__, **lowerCAmelCase__, ) snake_case_ = vocab_file snake_case_ = False if not self.vocab_file else True def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case_ = [self.cls_token_id] snake_case_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(lowerCAmelCase__): logger.error(f'Vocabulary path ({save_directory}) should be a directory') return snake_case_ = os.path.join( lowerCAmelCase__, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCAmelCase__): copyfile(self.vocab_file, lowerCAmelCase__) return (out_vocab_file,)
312
0
'''simple docstring''' import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class __magic_name__ ( unittest.TestCase ): def __lowercase ( self : int ): _a : List[str] = inspect.getfile(accelerate.test_utils ) _a : Tuple = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) _a : Any = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_distributed_data_loop.py'] ) _a : Any = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_ops.py'] ) @require_multi_gpu def __lowercase ( self : Tuple ): print(F"""Found {torch.cuda.device_count()} devices.""" ) _a : Dict = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_UpperCAmelCase ,env=os.environ.copy() ) @require_multi_gpu def __lowercase ( self : Tuple ): print(F"""Found {torch.cuda.device_count()} devices.""" ) _a : Dict = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.operation_file_path] print(F"""Command: {cmd}""" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_UpperCAmelCase ,env=os.environ.copy() ) @require_multi_gpu def __lowercase ( self : List[str] ): _a : str = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_UpperCAmelCase ,env=os.environ.copy() ) @require_multi_gpu def __lowercase ( self : Tuple ): print(F"""Found {torch.cuda.device_count()} devices, using 2 devices only""" ) _a : Optional[int] = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.data_loop_file_path] with patch_environment(omp_num_threads=1 ,cuda_visible_devices='0,1' ): execute_subprocess_async(_UpperCAmelCase ,env=os.environ.copy() ) if __name__ == "__main__": __lowerCAmelCase = Accelerator() __lowerCAmelCase = (accelerator.state.process_index + 2, 10) __lowerCAmelCase = torch.randint(0, 10, shape).to(accelerator.device) __lowerCAmelCase = '''''' __lowerCAmelCase = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." __lowerCAmelCase = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." __lowerCAmelCase = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
89
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class A__ ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self : str ) -> int: """simple docstring""" _UpperCAmelCase : Any = AutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" , return_dict=lowerCAmelCase__ ).to(lowerCAmelCase__ ) _UpperCAmelCase : str = AutoTokenizer.from_pretrained("google/mt5-small" ) _UpperCAmelCase : str = tokenizer("Hello there" , return_tensors="pt" ).input_ids _UpperCAmelCase : str = tokenizer("Hi I am" , return_tensors="pt" ).input_ids _UpperCAmelCase : Any = model(input_ids.to(lowerCAmelCase__ ) , labels=labels.to(lowerCAmelCase__ ) ).loss _UpperCAmelCase : Dict = -(labels.shape[-1] * loss.item()) _UpperCAmelCase : Any = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
145
0
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : Tuple = { 'huggingface/informer-tourism-monthly': ( 'https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json' ), # See all Informer models at https://huggingface.co/models?filter=informer } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """informer""" _snake_case = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self , A = None , A = None , A = "student_t" , A = "nll" , A = 1 , A = None , A = "mean" , A = 0 , A = 0 , A = 0 , A = 0 , A = None , A = None , A = 6_4 , A = 3_2 , A = 3_2 , A = 2 , A = 2 , A = 2 , A = 2 , A = True , A = "gelu" , A = 0.05 , A = 0.1 , A = 0.1 , A = 0.1 , A = 0.1 , A = 1_0_0 , A = 0.02 , A=True , A = "prob" , A = 5 , A = True , **A , ) -> List[Any]: # time series specific configuration snake_case : Union[str, Any] = prediction_length snake_case : str = context_length or prediction_length snake_case : str = distribution_output snake_case : Optional[Any] = loss snake_case : Optional[int] = input_size snake_case : str = num_time_features snake_case : Optional[int] = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] snake_case : List[Any] = scaling snake_case : Optional[int] = num_dynamic_real_features snake_case : List[Any] = num_static_real_features snake_case : int = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(A ) != num_static_categorical_features: raise ValueError( """The cardinality should be a list of the same length as `num_static_categorical_features`""" ) snake_case : Union[str, Any] = cardinality else: snake_case : Union[str, Any] = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(A ) != num_static_categorical_features: raise ValueError( """The embedding dimension should be a list of the same length as `num_static_categorical_features`""" ) snake_case : Dict = embedding_dimension else: snake_case : int = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] snake_case : str = num_parallel_samples # Transformer architecture configuration snake_case : Tuple = input_size * len(self.lags_sequence ) + self._number_of_features snake_case : str = d_model snake_case : Dict = encoder_attention_heads snake_case : Union[str, Any] = decoder_attention_heads snake_case : Union[str, Any] = encoder_ffn_dim snake_case : Union[str, Any] = decoder_ffn_dim snake_case : Optional[Any] = encoder_layers snake_case : Optional[int] = decoder_layers snake_case : Tuple = dropout snake_case : Optional[Any] = attention_dropout snake_case : Dict = activation_dropout snake_case : Any = encoder_layerdrop snake_case : Any = decoder_layerdrop snake_case : List[str] = activation_function snake_case : Any = init_std snake_case : Dict = use_cache # Informer snake_case : Optional[int] = attention_type snake_case : Dict = sampling_factor snake_case : Optional[int] = distil super().__init__(is_encoder_decoder=A , **A ) @property def UpperCAmelCase ( self ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
176
# using dfs for finding eulerian path traversal def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase=None ) -> Any: snake_case : Union[str, Any] = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: snake_case , snake_case : int = True, True snake_case : List[Any] = dfs(lowercase ,lowercase ,lowercase ,lowercase ) return path def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> Tuple: snake_case : Union[str, Any] = 0 snake_case : Union[str, Any] = -1 for i in range(lowercase ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 snake_case : str = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> List[str]: snake_case : Tuple = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] snake_case , snake_case : Any = check_circuit_or_path(lowercase ,lowercase ) if check == 3: print("""graph is not Eulerian""" ) print("""no path""" ) return snake_case : str = 1 if check == 2: snake_case : Optional[int] = odd_node print("""graph has a Euler path""" ) if check == 1: print("""graph has a Euler cycle""" ) snake_case : Dict = dfs(lowercase ,lowercase ,lowercase ) print(lowercase ) def SCREAMING_SNAKE_CASE__ ( ) -> Optional[Any]: snake_case : Union[str, Any] = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} snake_case : Optional[int] = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} snake_case : Optional[int] = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} snake_case : List[Any] = {1: [2, 3], 2: [1, 3], 3: [1, 2]} snake_case : Tuple = { 1: [], 2: [] # all degree is zero } snake_case : Tuple = 10 check_euler(lowercase ,lowercase ) check_euler(lowercase ,lowercase ) check_euler(lowercase ,lowercase ) check_euler(lowercase ,lowercase ) check_euler(lowercase ,lowercase ) if __name__ == "__main__": main()
176
1
'''simple docstring''' import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py _lowerCamelCase : List[str] = '''\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation", author = "Lin, Chin-Yew and Och, Franz Josef", booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics", month = "aug 23{--}aug 27", year = "2004", address = "Geneva, Switzerland", publisher = "COLING", url = "https://www.aclweb.org/anthology/C04-1072", pages = "501--507", } ''' _lowerCamelCase : Optional[Any] = '''\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation, the better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. ''' _lowerCamelCase : Union[str, Any] = ''' Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: \'bleu\': bleu score, \'precisions\': geometric mean of n-gram precisions, \'brevity_penalty\': brevity penalty, \'length_ratio\': ratio of lengths, \'translation_length\': translation_length, \'reference_length\': reference_length Examples: >>> predictions = [ ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample ... ] >>> references = [ ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references) ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric("bleu") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results["bleu"]) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def A (self : int ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ), """references""": datasets.Sequence( datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"""] , reference_urls=[ """https://en.wikipedia.org/wiki/BLEU""", """https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""", ] , ) def A (self : Tuple , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[int]=4 , _lowerCAmelCase : Optional[Any]=False ): A = compute_bleu( reference_corpus=__lowerCamelCase , translation_corpus=__lowerCamelCase , max_order=__lowerCamelCase , smooth=__lowerCamelCase ) (A) = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
258
import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase_ : Optional[Any] = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn.grep_linear''': '''encoder.layers.*.attention.gru_rel_pos_linear''', '''self_attn.relative_attention_bias''': '''encoder.layers.*.attention.rel_attn_embed''', '''self_attn.grep_a''': '''encoder.layers.*.attention.gru_rel_pos_const''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''ctc_proj''', '''mask_emb''': '''masked_spec_embed''', } UpperCAmelCase_ : int = [ '''ctc_proj''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple , __magic_name__ : Optional[int] ) -> Dict: """simple docstring""" for attribute in key.split(""".""" ): UpperCamelCase :Dict = getattr(__magic_name__ , __magic_name__ ) if weight_type is not None: UpperCamelCase :Optional[int] = getattr(__magic_name__ , __magic_name__ ).shape else: UpperCamelCase :Optional[int] = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCamelCase :str = value elif weight_type == "weight_g": UpperCamelCase :int = value elif weight_type == "weight_v": UpperCamelCase :int = value elif weight_type == "bias": UpperCamelCase :List[Any] = value else: UpperCamelCase :Any = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Optional[Any] , __magic_name__ : List[str] ) -> Optional[Any]: """simple docstring""" UpperCamelCase :Union[str, Any] = [] UpperCamelCase :Dict = fairseq_model.state_dict() UpperCamelCase :int = hf_model.feature_extractor for name, value in fairseq_dict.items(): UpperCamelCase :str = False if "conv_layers" in name: load_conv_layer( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , hf_model.config.feat_extract_norm == """group""" , ) UpperCamelCase :Union[str, Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: UpperCamelCase :Optional[int] = True if "*" in mapped_key: UpperCamelCase :List[Any] = name.split(__magic_name__ )[0].split(""".""" )[-2] UpperCamelCase :int = mapped_key.replace("""*""" , __magic_name__ ) if "weight_g" in name: UpperCamelCase :List[Any] = """weight_g""" elif "weight_v" in name: UpperCamelCase :List[Any] = """weight_v""" elif "bias" in name and "relative_attention_bias" not in name: UpperCamelCase :Any = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCamelCase :List[str] = """weight""" else: UpperCamelCase :Optional[int] = None set_recursively(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) continue if not is_used: unused_weights.append(__magic_name__ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Any , __magic_name__ : str , __magic_name__ : int , __magic_name__ : int , __magic_name__ : List[str] ) -> Dict: """simple docstring""" UpperCamelCase :Dict = full_name.split("""conv_layers.""" )[-1] UpperCamelCase :int = name.split(""".""" ) UpperCamelCase :str = int(items[0] ) UpperCamelCase :str = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCamelCase :Tuple = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCamelCase :Dict = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) UpperCamelCase :Tuple = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCamelCase :Union[str, Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__magic_name__ ) @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( __magic_name__ : List[str] , __magic_name__ : List[Any] , __magic_name__ : str=None ) -> int: """simple docstring""" UpperCamelCase :List[Any] = torch.load(__magic_name__ ) UpperCamelCase :List[Any] = WavLMConfigOrig(checkpoint["""cfg"""] ) UpperCamelCase :int = WavLMOrig(__magic_name__ ) model.load_state_dict(checkpoint["""model"""] ) model.eval() if config_path is not None: UpperCamelCase :List[Any] = WavLMConfig.from_pretrained(__magic_name__ ) else: UpperCamelCase :Any = WavLMConfig() UpperCamelCase :Dict = WavLMModel(__magic_name__ ) recursively_load_weights(__magic_name__ , __magic_name__ ) hf_wavlm.save_pretrained(__magic_name__ ) if __name__ == "__main__": UpperCAmelCase_ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') UpperCAmelCase_ : Optional[int] = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
38
0
from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Any: if not arr: return None, None, 0 if low == high: return low, high, arr[low] lowerCamelCase__ : Any = (low + high) // 2 lowerCamelCase__ : Union[str, Any] = max_subarray(A__ , A__ , A__ ) lowerCamelCase__ : Optional[Any] = max_subarray(A__ , mid + 1 , A__ ) lowerCamelCase__ : int = max_cross_sum(A__ , A__ , A__ , A__ ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: lowerCamelCase__ : Any = float('-inf' ), -1 lowerCamelCase__ : Any = float('-inf' ), -1 lowerCamelCase__ : int | float = 0 for i in range(A__ , low - 1 , -1 ): summ += arr[i] if summ > left_sum: lowerCamelCase__ : Any = summ lowerCamelCase__ : str = i lowerCamelCase__ : List[str] = 0 for i in range(mid + 1 , high + 1 ): summ += arr[i] if summ > right_sum: lowerCamelCase__ : List[Any] = summ lowerCamelCase__ : Tuple = i return max_left, max_right, (left_sum + right_sum) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Optional[int]: lowerCamelCase__ : Optional[int] = [randint(1 , A__ ) for _ in range(A__ )] lowerCamelCase__ : List[str] = time.time() max_subarray(A__ , 0 , input_size - 1 ) lowerCamelCase__ : str = time.time() return end - start def SCREAMING_SNAKE_CASE ( ) -> List[str]: lowerCamelCase__ : str = [10, 100, 1000, 1_0000, 5_0000, 10_0000, 20_0000, 30_0000, 40_0000, 50_0000] lowerCamelCase__ : Tuple = [time_max_subarray(A__ ) for input_size in input_sizes] print('No of Inputs\t\tTime Taken' ) for input_size, runtime in zip(A__ , A__ ): print(A__ , '\t\t' , A__ ) plt.plot(A__ , A__ ) plt.xlabel('Number of Inputs' ) plt.ylabel('Time taken in seconds' ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
350
from __future__ import annotations def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> None: lowerCamelCase__ : Optional[Any] = len(_UpperCAmelCase ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append(['. ' * i + 'Q ' + '. ' * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(_UpperCAmelCase ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , _UpperCAmelCase , _UpperCAmelCase , ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> None: lowerCamelCase__ : list[list[str]] = [] depth_first_search([] , [] , [] , _UpperCAmelCase , _UpperCAmelCase ) # Print all the boards for board in boards: for column in board: print(_UpperCAmelCase ) print('' ) print(len(_UpperCAmelCase ) , 'solutions were found.' ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
45
0
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowercase_ = logging.get_logger(__name__) @add_end_docstrings(snake_case_ ) class a_ ( snake_case_ ): '''simple docstring''' def __init__( self , **A ) -> Optional[int]: super().__init__(**UpperCAmelCase__ ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self , A , **A ) -> Optional[Any]: return super().__call__(UpperCAmelCase__ , **UpperCAmelCase__ ) def snake_case_( self , **A ) -> Optional[int]: _SCREAMING_SNAKE_CASE = {} if "candidate_labels" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def snake_case_( self , A , A=None , A="This is a photo of {}." ) -> Dict: _SCREAMING_SNAKE_CASE = load_image(UpperCAmelCase__ ) _SCREAMING_SNAKE_CASE = self.image_processor(images=[image] , return_tensors=self.framework ) _SCREAMING_SNAKE_CASE = candidate_labels _SCREAMING_SNAKE_CASE = [hypothesis_template.format(UpperCAmelCase__ ) for x in candidate_labels] _SCREAMING_SNAKE_CASE = self.tokenizer(UpperCAmelCase__ , return_tensors=self.framework , padding=UpperCAmelCase__ ) _SCREAMING_SNAKE_CASE = [text_inputs] return inputs def snake_case_( self , A ) -> Any: _SCREAMING_SNAKE_CASE = model_inputs.pop("""candidate_labels""" ) _SCREAMING_SNAKE_CASE = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] , UpperCAmelCase__ ): _SCREAMING_SNAKE_CASE = text_inputs[0] else: # Batching case. _SCREAMING_SNAKE_CASE = text_inputs[0][0] _SCREAMING_SNAKE_CASE = self.model(**UpperCAmelCase__ , **UpperCAmelCase__ ) _SCREAMING_SNAKE_CASE = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_image, } return model_outputs def snake_case_( self , A ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = model_outputs.pop("""candidate_labels""" ) _SCREAMING_SNAKE_CASE = model_outputs["""logits"""][0] if self.framework == "pt": _SCREAMING_SNAKE_CASE = logits.softmax(dim=-1 ).squeeze(-1 ) _SCREAMING_SNAKE_CASE = probs.tolist() if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): _SCREAMING_SNAKE_CASE = [scores] elif self.framework == "tf": _SCREAMING_SNAKE_CASE = stable_softmax(UpperCAmelCase__ , axis=-1 ) _SCREAMING_SNAKE_CASE = probs.numpy().tolist() else: raise ValueError(f'Unsupported framework: {self.framework}' ) _SCREAMING_SNAKE_CASE = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(UpperCAmelCase__ , UpperCAmelCase__ ) , key=lambda A : -x[0] ) ] return result
58
import re from filelock import FileLock try: import nltk UpperCAmelCase__ : Tuple = True except (ImportError, ModuleNotFoundError): UpperCAmelCase__ : Optional[Any] = False if NLTK_AVAILABLE: with FileLock(""".lock""") as lock: nltk.download("""punkt""", quiet=True) def __lowercase ( _A ) -> str: re.sub("""<n>""" , """""" , _A ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(_A ) )
245
0
"""simple docstring""" import csv import tweepy # Twitter API credentials snake_case_ = """""" snake_case_ = """""" snake_case_ = """""" snake_case_ = """""" def _lowerCAmelCase ( lowercase_ ): # authorize twitter, initialize tweepy UpperCAmelCase = tweepy.OAuthHandler(lowercase_ , lowercase_ ) auth.set_access_token(lowercase_ , lowercase_ ) UpperCAmelCase = tweepy.API(lowercase_ ) # initialize a list to hold all the tweepy Tweets UpperCAmelCase = [] # make initial request for most recent tweets (200 is the maximum allowed count) UpperCAmelCase = api.user_timeline(screen_name=lowercase_ , count=200 ) # save most recent tweets alltweets.extend(lowercase_ ) # save the id of the oldest tweet less one UpperCAmelCase = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(lowercase_ ) > 0: print(F"""getting tweets before {oldest}""" ) # all subsequent requests use the max_id param to prevent duplicates UpperCAmelCase = api.user_timeline( screen_name=lowercase_ , count=200 , max_id=lowercase_ ) # save most recent tweets alltweets.extend(lowercase_ ) # update the id of the oldest tweet less one UpperCAmelCase = alltweets[-1].id - 1 print(F"""...{len(lowercase_ )} tweets downloaded so far""" ) # transform the tweepy tweets into a 2D array that will populate the csv UpperCAmelCase = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F"""new_{screen_name}_tweets.csv""" , 'w' ) as f: UpperCAmelCase = csv.writer(lowercase_ ) writer.writerow(['id', 'created_at', 'text'] ) writer.writerows(lowercase_ ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("""FirePing32""")
181
"""simple docstring""" def _lowerCAmelCase ( lowercase_ ): if not isinstance(lowercase_ , lowercase_ ): UpperCAmelCase = F"""Input value of [number={number}] must be an integer""" raise TypeError(lowercase_ ) if number < 1: UpperCAmelCase = F"""Input value of [number={number}] must be > 0""" raise ValueError(lowercase_ ) UpperCAmelCase = 1 for i in range(1 , lowercase_ ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
181
1
'''simple docstring''' from ... import PretrainedConfig __snake_case ={ """sijunhe/nezha-cn-base""": """https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json""", } class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : Dict = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP lowerCamelCase : Optional[Any] = '''nezha''' def __init__( self : List[str] , UpperCAmelCase__ : str=2_1_1_2_8 , UpperCAmelCase__ : Optional[int]=7_6_8 , UpperCAmelCase__ : Dict=1_2 , UpperCAmelCase__ : Any=1_2 , UpperCAmelCase__ : Optional[Any]=3_0_7_2 , UpperCAmelCase__ : Optional[Any]="gelu" , UpperCAmelCase__ : Tuple=0.1 , UpperCAmelCase__ : Optional[Any]=0.1 , UpperCAmelCase__ : int=5_1_2 , UpperCAmelCase__ : Optional[int]=6_4 , UpperCAmelCase__ : Any=2 , UpperCAmelCase__ : Tuple=0.02 , UpperCAmelCase__ : List[Any]=1E-12 , UpperCAmelCase__ : Dict=0.1 , UpperCAmelCase__ : int=0 , UpperCAmelCase__ : Optional[int]=2 , UpperCAmelCase__ : Union[str, Any]=3 , UpperCAmelCase__ : Union[str, Any]=True , **UpperCAmelCase__ : Dict , ) -> Optional[Any]: super().__init__(pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__ ) lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_act lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = max_relative_position lowerCAmelCase = type_vocab_size lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = classifier_dropout lowerCAmelCase = use_cache
4
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin __snake_case =random.Random() if is_torch_available(): import torch def a_ ( lowerCamelCase : Dict , lowerCamelCase : Dict=1.0 , lowerCamelCase : List[Any]=None , lowerCamelCase : Union[str, Any]=None ): if rng is None: lowerCAmelCase = global_rng lowerCAmelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class UpperCAmelCase_ ( unittest.TestCase ): def __init__( self : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[str]=7 , UpperCAmelCase__ : int=4_0_0 , UpperCAmelCase__ : int=2_0_0_0 , UpperCAmelCase__ : List[str]=1 , UpperCAmelCase__ : Tuple=0.0 , UpperCAmelCase__ : Tuple=1_6_0_0_0 , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : Union[str, Any]=True , ) -> Any: lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = min_seq_length lowerCAmelCase = max_seq_length lowerCAmelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCAmelCase = feature_size lowerCAmelCase = padding_value lowerCAmelCase = sampling_rate lowerCAmelCase = return_attention_mask lowerCAmelCase = do_normalize def __UpperCAmelCase ( self : Optional[Any] ) -> List[str]: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __UpperCAmelCase ( self : str , UpperCAmelCase__ : Union[str, Any]=False , UpperCAmelCase__ : Union[str, Any]=False ) -> Optional[Any]: def _flatten(UpperCAmelCase__ : int ): return list(itertools.chain(*UpperCAmelCase__ ) ) if equal_length: lowerCAmelCase = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size lowerCAmelCase = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCAmelCase = [np.asarray(UpperCAmelCase__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): lowerCamelCase : Dict = ASTFeatureExtractor def __UpperCAmelCase ( self : str ) -> Optional[int]: lowerCAmelCase = ASTFeatureExtractionTester(self ) def __UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: # Tests that all call wrap to encode_plus and batch_encode_plus lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] lowerCAmelCase = [np.asarray(UpperCAmelCase__ ) for speech_input in speech_inputs] # Test not batched input lowerCAmelCase = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values lowerCAmelCase = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) # Test batched lowerCAmelCase = feat_extract(UpperCAmelCase__ , padding=UpperCAmelCase__ , return_tensors='np' ).input_values lowerCAmelCase = feat_extract(UpperCAmelCase__ , padding=UpperCAmelCase__ , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. lowerCAmelCase = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] lowerCAmelCase = np.asarray(UpperCAmelCase__ ) lowerCAmelCase = feat_extract(UpperCAmelCase__ , return_tensors='np' ).input_values lowerCAmelCase = feat_extract(UpperCAmelCase__ , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) @require_torch def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: import torch lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase = np.random.rand(1_0_0 ).astype(np.floataa ) lowerCAmelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCAmelCase = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) lowerCAmelCase = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def __UpperCAmelCase ( self : int , UpperCAmelCase__ : str ) -> Tuple: from datasets import load_dataset lowerCAmelCase = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech lowerCAmelCase = ds.sort('id' ).select(range(UpperCAmelCase__ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] @require_torch def __UpperCAmelCase ( self : str ) -> Optional[Any]: # fmt: off lowerCAmelCase = torch.tensor( [-0.9_894, -1.2_776, -0.9_066, -1.2_776, -0.9_349, -1.2_609, -1.0_386, -1.2_776, -1.1_561, -1.2_776, -1.2_052, -1.2_723, -1.2_190, -1.2_132, -1.2_776, -1.1_133, -1.1_953, -1.1_343, -1.1_584, -1.2_203, -1.1_770, -1.2_474, -1.2_381, -1.1_936, -0.9_270, -0.8_317, -0.8_049, -0.7_706, -0.7_565, -0.7_869] ) # fmt: on lowerCAmelCase = self._load_datasamples(1 ) lowerCAmelCase = ASTFeatureExtractor() lowerCAmelCase = feature_extractor(UpperCAmelCase__ , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 1_0_2_4, 1_2_8) ) self.assertTrue(torch.allclose(input_values[0, 0, :3_0] , UpperCAmelCase__ , atol=1E-4 ) )
4
1
from torch import nn class lowercase ( nn.Module ): def __init__( self , snake_case , snake_case ): super().__init__() snake_case_ = class_size snake_case_ = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) snake_case_ = nn.Linear(snake_case , snake_case ) def a ( self , snake_case ): # hidden_state = nn.functional.relu(self.mlp1(hidden_state)) # hidden_state = self.mlp2(hidden_state) snake_case_ = self.mlp(snake_case ) return logits
200
from math import sqrt def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = 0 for i in range(1 , int(sqrt(UpperCamelCase__ ) + 1 ) ): if n % i == 0 and i != sqrt(UpperCamelCase__ ): total += i + n // i elif i == sqrt(UpperCamelCase__ ): total += i return total - n def __lowerCamelCase ( UpperCamelCase__ = 10000 ): '''simple docstring''' snake_case_ = sum( i for i in range(1 , UpperCamelCase__ ) if sum_of_divisors(sum_of_divisors(UpperCamelCase__ ) ) == i and sum_of_divisors(UpperCamelCase__ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
200
1
'''simple docstring''' from __future__ import annotations from decimal import Decimal from numpy import array def _A ( A__ ): """simple docstring""" __lowercase = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(A__ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix __lowercase = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError('''This matrix has no inverse.''' ) # Creates a copy of the matrix with swapped positions of the elements __lowercase = [[0.0, 0.0], [0.0, 0.0]] __lowercase , __lowercase = matrix[1][1], matrix[0][0] __lowercase , __lowercase = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(A__ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(A__ ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule __lowercase = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError('''This matrix has no inverse.''' ) # Creating cofactor matrix __lowercase = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] __lowercase = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) __lowercase = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) __lowercase = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) __lowercase = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) __lowercase = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) __lowercase = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) __lowercase = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) __lowercase = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) __lowercase = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) __lowercase = array(A__ ) for i in range(3 ): for j in range(3 ): __lowercase = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix __lowercase = array(A__ ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(A__ ) # Calculate the inverse of the matrix return [[float(d(A__ ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError('''Please provide a matrix of size 2x2 or 3x3.''' )
104
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __lowercase ( unittest.TestCase ): """simple docstring""" def __A ( self ) -> Optional[int]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __A ( self ) -> int: '''simple docstring''' lowerCamelCase = 1 lowerCamelCase = 3 lowerCamelCase = (32, 32) lowerCamelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(A ) return image @property def __A ( self ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) return model @property def __A ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def __A ( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=50_06 , ) return RobertaSeriesModelWithTransformation(A ) @property def __A ( self ) -> str: '''simple docstring''' def extract(*A , **A ): class __lowercase : """simple docstring""" def __init__( self ) -> Tuple: '''simple docstring''' lowerCamelCase = torch.ones([0] ) def __A ( self , A ) -> Union[str, Any]: '''simple docstring''' self.pixel_values.to(A ) return self return Out() return extract def __A ( self ) -> int: '''simple docstring''' lowerCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCamelCase = self.dummy_cond_unet lowerCamelCase = PNDMScheduler(skip_prk_steps=A ) lowerCamelCase = self.dummy_vae lowerCamelCase = self.dummy_text_encoder lowerCamelCase = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) lowerCamelCase = 77 lowerCamelCase = self.dummy_image.to(A ) lowerCamelCase = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk lowerCamelCase = AltDiffusionImgaImgPipeline( unet=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , safety_checker=A , feature_extractor=self.dummy_extractor , ) lowerCamelCase = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=A ) lowerCamelCase = alt_pipe.to(A ) alt_pipe.set_progress_bar_config(disable=A ) lowerCamelCase = """A painting of a squirrel eating a burger""" lowerCamelCase = torch.Generator(device=A ).manual_seed(0 ) lowerCamelCase = alt_pipe( [prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=A , ) lowerCamelCase = output.images lowerCamelCase = torch.Generator(device=A ).manual_seed(0 ) lowerCamelCase = alt_pipe( [prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=A , return_dict=A , )[0] lowerCamelCase = image[0, -3:, -3:, -1] lowerCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCamelCase = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def __A ( self ) -> Tuple: '''simple docstring''' lowerCamelCase = self.dummy_cond_unet lowerCamelCase = PNDMScheduler(skip_prk_steps=A ) lowerCamelCase = self.dummy_vae lowerCamelCase = self.dummy_text_encoder lowerCamelCase = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) lowerCamelCase = 77 lowerCamelCase = self.dummy_image.to(A ) # put models in fp16 lowerCamelCase = unet.half() lowerCamelCase = vae.half() lowerCamelCase = bert.half() # make sure here that pndm scheduler skips prk lowerCamelCase = AltDiffusionImgaImgPipeline( unet=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , safety_checker=A , feature_extractor=self.dummy_extractor , ) lowerCamelCase = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=A ) lowerCamelCase = alt_pipe.to(A ) alt_pipe.set_progress_bar_config(disable=A ) lowerCamelCase = """A painting of a squirrel eating a burger""" lowerCamelCase = torch.manual_seed(0 ) lowerCamelCase = alt_pipe( [prompt] , generator=A , num_inference_steps=2 , output_type="""np""" , image=A , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def __A ( self ) -> Tuple: '''simple docstring''' lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) # resize to resolution that is divisible by 8 but not 16 or 32 lowerCamelCase = init_image.resize((7_60, 5_04) ) lowerCamelCase = """BAAI/AltDiffusion""" lowerCamelCase = AltDiffusionImgaImgPipeline.from_pretrained( A , safety_checker=A , ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() lowerCamelCase = """A fantasy landscape, trending on artstation""" lowerCamelCase = torch.manual_seed(0 ) lowerCamelCase = pipe( prompt=A , image=A , strength=0.75 , guidance_scale=7.5 , generator=A , output_type="""np""" , ) lowerCamelCase = output.images[0] lowerCamelCase = image[2_55:2_58, 3_83:3_86, -1] assert image.shape == (5_04, 7_60, 3) lowerCamelCase = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): """simple docstring""" def __A ( self ) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) lowerCamelCase = init_image.resize((7_68, 5_12) ) lowerCamelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy""" ) lowerCamelCase = """BAAI/AltDiffusion""" lowerCamelCase = AltDiffusionImgaImgPipeline.from_pretrained( A , safety_checker=A , ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() lowerCamelCase = """A fantasy landscape, trending on artstation""" lowerCamelCase = torch.manual_seed(0 ) lowerCamelCase = pipe( prompt=A , image=A , strength=0.75 , guidance_scale=7.5 , generator=A , output_type="""np""" , ) lowerCamelCase = output.images[0] assert image.shape == (5_12, 7_68, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
252
0
"""simple docstring""" import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class UpperCAmelCase_ ( unittest.TestCase ): def __init__( self : int , snake_case_ : Optional[int] , snake_case_ : int=13 , snake_case_ : Optional[Any]=7 , snake_case_ : int=True , snake_case_ : Optional[int]=True , snake_case_ : Optional[int]=True , snake_case_ : Optional[int]=True , snake_case_ : Optional[int]=99 , snake_case_ : Union[str, Any]=32 , snake_case_ : List[Any]=5 , snake_case_ : Optional[int]=4 , snake_case_ : Optional[int]=37 , snake_case_ : Tuple="gelu" , snake_case_ : Any=0.1 , snake_case_ : Tuple=0.1 , snake_case_ : Any=512 , snake_case_ : Optional[Any]=16 , snake_case_ : Dict=2 , snake_case_ : List[str]=0.02 , snake_case_ : Tuple=4 , ) -> Optional[int]: '''simple docstring''' A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_attention_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = type_sequence_label_size A__ = initializer_range A__ = num_choices def __magic_name__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = None if self.use_attention_mask: A__ = random_attention_mask([self.batch_size, self.seq_length] ) A__ = None if self.use_token_type_ids: A__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A__ = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __magic_name__ ( self : List[str] ) -> List[str]: '''simple docstring''' A__ = self.prepare_config_and_inputs() A__, A__, A__, A__ = config_and_inputs A__ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def __magic_name__ ( self : Optional[int] ) -> Dict: '''simple docstring''' A__ = self.prepare_config_and_inputs() A__, A__, A__, A__ = config_and_inputs A__ = True A__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) A__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class UpperCAmelCase_ ( A_, unittest.TestCase ): lowercase__ = True lowercase__ = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def __magic_name__ ( self : str ) -> Union[str, Any]: '''simple docstring''' A__ = FlaxRobertaModelTester(self ) @slow def __magic_name__ ( self : str ) -> Optional[Any]: '''simple docstring''' for model_class_name in self.all_model_classes: A__ = model_class_name.from_pretrained("roberta-base" , from_pt=snake_case_ ) A__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(snake_case_ )
230
"""simple docstring""" SCREAMING_SNAKE_CASE = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" SCREAMING_SNAKE_CASE = [{"type": "code", "content": INSTALL_CONTENT}] SCREAMING_SNAKE_CASE = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
230
1
'''simple docstring''' import numpy as np def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[Any]: __lowerCamelCase = int(np.ceil((x_end - xa) / h ) ) __lowerCamelCase = np.zeros((n + 1,) ) __lowerCamelCase = ya __lowerCamelCase = xa for k in range(UpperCamelCase__ ): __lowerCamelCase = f(UpperCamelCase__ , y[k] ) __lowerCamelCase = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) __lowerCamelCase = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) __lowerCamelCase = f(x + h , y[k] + h * ka ) __lowerCamelCase = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
67
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase =logging.get_logger(__name__) __UpperCAmelCase ={ "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json", } class a__ ( UpperCAmelCase__ ): lowerCamelCase : Optional[int] ="gpt_neox_japanese" def __init__( self : List[Any] , a : Tuple=3_20_00 , a : Dict=25_60 , a : Union[str, Any]=32 , a : Dict=32 , a : Dict=4 , a : Optional[Any]="gelu" , a : Any=1.00 , a : str=1_00_00 , a : List[str]=20_48 , a : str=0.02 , a : Union[str, Any]=1e-5 , a : Optional[Any]=True , a : str=3_19_96 , a : List[str]=3_19_99 , a : str=0.1 , a : Union[str, Any]=0.0 , **a : Optional[Any] , ): """simple docstring""" super().__init__(bos_token_id=a , eos_token_id=a , **a ) __lowerCamelCase = vocab_size __lowerCamelCase = max_position_embeddings __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_multiple_size __lowerCamelCase = hidden_act __lowerCamelCase = rotary_pct __lowerCamelCase = rotary_emb_base __lowerCamelCase = initializer_range __lowerCamelCase = layer_norm_eps __lowerCamelCase = use_cache __lowerCamelCase = attention_dropout __lowerCamelCase = hidden_dropout
67
1
def _a ( _lowerCamelCase ) -> str: """simple docstring""" return "".join([hex(a__ )[2:].zfill(2 ).upper() for byte in list(a__ )] ) def _a ( _lowerCamelCase ) -> bytes: """simple docstring""" if (len(a__ ) % 2) != 0: raise ValueError( """Base16 encoded data is invalid:\nData does not have an even number of hex digits.""" ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(a__ ) <= set("""0123456789ABCDEF""" ): raise ValueError( """Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.""" ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(a__ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
368
'''simple docstring''' import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever __UpperCamelCase = logging.getLogger(__name__) class _A ( __lowercase ): def __init__( self : List[Any] , __magic_name__ : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[str]=None ) -> int: """simple docstring""" super().__init__( __magic_name__ , question_encoder_tokenizer=__magic_name__ , generator_tokenizer=__magic_name__ , index=__magic_name__ , init_retrieval=__magic_name__ , ) __snake_case : List[str] = None def lowercase__ ( self : int , __magic_name__ : int ) -> List[str]: """simple docstring""" logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually __snake_case : List[Any] = self._infer_socket_ifname() # avoid clash with the NCCL port __snake_case : List[str] = str(distributed_port + 1 ) __snake_case : Any = dist.new_group(ranks=__magic_name__ , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def lowercase__ ( self : int ) -> int: """simple docstring""" return dist.get_rank(group=self.process_group ) == 0 def lowercase__ ( self : Dict , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int]=torch.floataa ) -> List[str]: """simple docstring""" __snake_case : Optional[int] = torch.empty(__magic_name__ , dtype=__magic_name__ ) dist.scatter(__magic_name__ , src=0 , scatter_list=__magic_name__ , group=self.process_group ) return target_tensor def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" __snake_case : int = psutil.net_if_addrs() # a hacky way to deal with varying network interface names __snake_case : Union[str, Any] = next((addr for addr in addrs if addr.startswith("""e""" )) , __magic_name__ ) return ifname def lowercase__ ( self : Union[str, Any] , __magic_name__ : np.ndarray , __magic_name__ : int ) -> Tuple[np.ndarray, List[dict]]: """simple docstring""" if not dist.is_initialized(): __snake_case , __snake_case : List[Any] = self._main_retrieve(__magic_name__ , __magic_name__ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__magic_name__ ) # distributed training __snake_case : Union[str, Any] = dist.get_world_size(group=self.process_group ) # gather logic __snake_case : Tuple = None if self._is_main(): __snake_case : Dict = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(__magic_name__ )] dist.gather(torch.tensor(__magic_name__ ) , dst=0 , gather_list=__magic_name__ , group=self.process_group ) # scatter logic __snake_case : Optional[int] = question_hidden_states.shape[0] __snake_case : Optional[Any] = [] __snake_case : Any = [] if self._is_main(): assert len(__magic_name__ ) == world_size __snake_case , __snake_case : Optional[int] = self._main_retrieve(torch.cat(__magic_name__ ).numpy() , __magic_name__ ) __snake_case , __snake_case : Tuple = torch.tensor(__magic_name__ ), torch.tensor(__magic_name__ ) __snake_case : Any = self._chunk_tensor(__magic_name__ , __magic_name__ ) __snake_case : Any = self._chunk_tensor(__magic_name__ , __magic_name__ ) __snake_case : Optional[Any] = self._scattered(__magic_name__ , [n_queries, n_docs] , target_type=torch.intaa ) __snake_case : Any = self._scattered(__magic_name__ , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(__magic_name__ )
13
0
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class SCREAMING_SNAKE_CASE__ ( pl.LightningModule ): def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Dict: super().__init__() a_ : Union[str, Any] = model a_ : int = 2 a_ : Optional[int] = nn.Linear(self.model.config.hidden_size , self.num_labels ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: pass def SCREAMING_SNAKE_CASE_ ( __A : str , __A : str , __A : str ) -> int: """simple docstring""" a_ : Optional[Any] = LongformerModel.from_pretrained(__A ) a_ : Optional[int] = LightningModel(__A ) a_ : Union[str, Any] = torch.load(__A , map_location=torch.device('cpu' ) ) lightning_model.load_state_dict(ckpt['state_dict'] ) # init longformer question answering model a_ : Optional[Any] = LongformerForQuestionAnswering.from_pretrained(__A ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(__A ) print(F"""Conversion successful. Model saved under {pytorch_dump_folder_path}""" ) if __name__ == "__main__": UpperCAmelCase_ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--longformer_model', default=None, type=str, required=True, help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.', ) parser.add_argument( '--longformer_question_answering_ckpt_path', default=None, type=str, required=True, help='Path the official PyTorch Lightning Checkpoint.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) UpperCAmelCase_ : Optional[int] = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
32
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer _lowerCAmelCase : int = logging.get_logger(__name__) _lowerCAmelCase : Optional[int] = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} _lowerCAmelCase : List[Any] = { '''vocab_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/vocab.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/vocab.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/vocab.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json''' ), }, '''merges_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/merges.txt''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/merges.txt''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/merges.txt''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt''' ), }, '''tokenizer_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/tokenizer.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/tokenizer.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json''', '''roberta-base-openai-detector''': ( '''https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json''' ), '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json''' ), }, } _lowerCAmelCase : Any = { '''roberta-base''': 512, '''roberta-large''': 512, '''roberta-large-mnli''': 512, '''distilroberta-base''': 512, '''roberta-base-openai-detector''': 512, '''roberta-large-openai-detector''': 512, } class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ['''input_ids''', '''attention_mask'''] __UpperCamelCase = RobertaTokenizer def __init__( self :Dict , snake_case :List[str]=None , snake_case :List[Any]=None , snake_case :Union[str, Any]=None , snake_case :List[str]="replace" , snake_case :Tuple="<s>" , snake_case :Union[str, Any]="</s>" , snake_case :str="</s>" , snake_case :Union[str, Any]="<s>" , snake_case :int="<unk>" , snake_case :Tuple="<pad>" , snake_case :List[str]="<mask>" , snake_case :Any=False , snake_case :Union[str, Any]=True , **snake_case :Optional[int] , ): '''simple docstring''' super().__init__( snake_case , snake_case , tokenizer_file=snake_case , errors=snake_case , bos_token=snake_case , eos_token=snake_case , sep_token=snake_case , cls_token=snake_case , unk_token=snake_case , pad_token=snake_case , mask_token=snake_case , add_prefix_space=snake_case , trim_offsets=snake_case , **snake_case , ) A_ : Optional[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , snake_case ) != add_prefix_space: A_ : Dict = getattr(snake_case , pre_tok_state.pop("type" ) ) A_ : Optional[int] = add_prefix_space A_ : int = pre_tok_class(**snake_case ) A_ : Optional[int] = add_prefix_space A_ : Optional[int] = "post_processor" A_ : Dict = getattr(self.backend_tokenizer , snake_case , snake_case ) if tokenizer_component_instance: A_ : Dict = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: A_ : List[Any] = tuple(state["sep"] ) if "cls" in state: A_ : Optional[Any] = tuple(state["cls"] ) A_ : Tuple = False if state.get("add_prefix_space" , snake_case ) != add_prefix_space: A_ : List[Any] = add_prefix_space A_ : Optional[int] = True if state.get("trim_offsets" , snake_case ) != trim_offsets: A_ : List[str] = trim_offsets A_ : Any = True if changes_to_apply: A_ : Optional[Any] = getattr(snake_case , state.pop("type" ) ) A_ : Any = component_class(**snake_case ) setattr(self.backend_tokenizer , snake_case , snake_case ) @property def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def SCREAMING_SNAKE_CASE ( self :Any , snake_case :Dict ): '''simple docstring''' A_ : Dict = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else value A_ : Any = value def SCREAMING_SNAKE_CASE ( self :Dict , *snake_case :Tuple , **snake_case :Union[str, Any] ): '''simple docstring''' A_ : Any = kwargs.get("is_split_into_words" , snake_case ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*snake_case , **snake_case ) def SCREAMING_SNAKE_CASE ( self :List[str] , *snake_case :str , **snake_case :Union[str, Any] ): '''simple docstring''' A_ : Any = kwargs.get("is_split_into_words" , snake_case ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*snake_case , **snake_case ) def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :str , snake_case :Optional[str] = None ): '''simple docstring''' A_ : str = self._tokenizer.model.save(snake_case , name=snake_case ) return tuple(snake_case ) def SCREAMING_SNAKE_CASE ( self :List[str] , snake_case :List[str] , snake_case :Optional[Any]=None ): '''simple docstring''' A_ : int = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE ( self :Any , snake_case :List[int] , snake_case :Optional[List[int]] = None ): '''simple docstring''' A_ : Any = [self.sep_token_id] A_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
300
0
"""simple docstring""" import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def _lowercase ( __lowerCAmelCase ) -> int: SCREAMING_SNAKE_CASE__ : Union[str, Any] = VideoMAEConfig() set_architecture_configs(__lowerCAmelCase , __lowerCAmelCase ) if "finetuned" not in model_name: SCREAMING_SNAKE_CASE__ : Any = False if "finetuned" in model_name: SCREAMING_SNAKE_CASE__ : Tuple = """huggingface/label-files""" if "kinetics" in model_name: SCREAMING_SNAKE_CASE__ : Optional[int] = 400 SCREAMING_SNAKE_CASE__ : List[Any] = """kinetics400-id2label.json""" elif "ssv2" in model_name: SCREAMING_SNAKE_CASE__ : List[str] = 174 SCREAMING_SNAKE_CASE__ : Dict = """something-something-v2-id2label.json""" else: raise ValueError("""Model name should either contain 'kinetics' or 'ssv2' in case it's fine-tuned.""" ) SCREAMING_SNAKE_CASE__ : Optional[Any] = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) ) SCREAMING_SNAKE_CASE__ : Dict = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE__ : Union[str, Any] = idalabel SCREAMING_SNAKE_CASE__ : Dict = {v: k for k, v in idalabel.items()} return config def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> Any: if "small" in model_name: SCREAMING_SNAKE_CASE__ : Tuple = 384 SCREAMING_SNAKE_CASE__ : int = 1536 SCREAMING_SNAKE_CASE__ : Tuple = 12 SCREAMING_SNAKE_CASE__ : Dict = 16 SCREAMING_SNAKE_CASE__ : List[Any] = 12 SCREAMING_SNAKE_CASE__ : str = 3 SCREAMING_SNAKE_CASE__ : Any = 192 SCREAMING_SNAKE_CASE__ : Tuple = 768 elif "large" in model_name: SCREAMING_SNAKE_CASE__ : Optional[Any] = 1024 SCREAMING_SNAKE_CASE__ : Optional[Any] = 4096 SCREAMING_SNAKE_CASE__ : Union[str, Any] = 24 SCREAMING_SNAKE_CASE__ : Dict = 16 SCREAMING_SNAKE_CASE__ : List[str] = 12 SCREAMING_SNAKE_CASE__ : Any = 8 SCREAMING_SNAKE_CASE__ : Tuple = 512 SCREAMING_SNAKE_CASE__ : int = 2048 elif "huge" in model_name: SCREAMING_SNAKE_CASE__ : Optional[int] = 1280 SCREAMING_SNAKE_CASE__ : Dict = 5120 SCREAMING_SNAKE_CASE__ : Union[str, Any] = 32 SCREAMING_SNAKE_CASE__ : Optional[int] = 16 SCREAMING_SNAKE_CASE__ : int = 12 SCREAMING_SNAKE_CASE__ : Dict = 8 SCREAMING_SNAKE_CASE__ : List[str] = 640 SCREAMING_SNAKE_CASE__ : Dict = 2560 elif "base" not in model_name: raise ValueError("""Model name should include either \"small\", \"base\", \"large\", or \"huge\"""" ) def _lowercase ( __lowerCAmelCase ) -> Tuple: if "encoder." in name: SCREAMING_SNAKE_CASE__ : List[Any] = name.replace("""encoder.""" , """""" ) if "cls_token" in name: SCREAMING_SNAKE_CASE__ : List[str] = name.replace("""cls_token""" , """videomae.embeddings.cls_token""" ) if "decoder_pos_embed" in name: SCREAMING_SNAKE_CASE__ : Optional[Any] = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: SCREAMING_SNAKE_CASE__ : Union[str, Any] = name.replace("""pos_embed""" , """videomae.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: SCREAMING_SNAKE_CASE__ : Dict = name.replace("""patch_embed.proj""" , """videomae.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: SCREAMING_SNAKE_CASE__ : str = name.replace("""patch_embed.norm""" , """videomae.embeddings.norm""" ) if "decoder.blocks" in name: SCREAMING_SNAKE_CASE__ : Union[str, Any] = name.replace("""decoder.blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: SCREAMING_SNAKE_CASE__ : str = name.replace("""blocks""" , """videomae.encoder.layer""" ) if "attn.proj" in name: SCREAMING_SNAKE_CASE__ : List[Any] = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name and "bias" not in name: SCREAMING_SNAKE_CASE__ : Tuple = name.replace("""attn""" , """attention.self""" ) if "attn" in name: SCREAMING_SNAKE_CASE__ : Optional[Any] = name.replace("""attn""" , """attention.attention""" ) if "norm1" in name: SCREAMING_SNAKE_CASE__ : List[Any] = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: SCREAMING_SNAKE_CASE__ : Any = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE__ : Any = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE__ : Dict = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: SCREAMING_SNAKE_CASE__ : Optional[Any] = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: SCREAMING_SNAKE_CASE__ : Any = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: SCREAMING_SNAKE_CASE__ : int = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: SCREAMING_SNAKE_CASE__ : str = name.replace("""norm.weight""" , """videomae.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: SCREAMING_SNAKE_CASE__ : Optional[Any] = name.replace("""norm.bias""" , """videomae.layernorm.bias""" ) if "head" in name and "decoder" not in name: SCREAMING_SNAKE_CASE__ : int = name.replace("""head""" , """classifier""" ) return name def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> Any: for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE__ : List[str] = orig_state_dict.pop(__lowerCAmelCase ) if key.startswith("""encoder.""" ): SCREAMING_SNAKE_CASE__ : str = key.replace("""encoder.""" , """""" ) if "qkv" in key: SCREAMING_SNAKE_CASE__ : str = key.split(""".""" ) if key.startswith("""decoder.blocks""" ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = config.decoder_hidden_size SCREAMING_SNAKE_CASE__ : Optional[Any] = int(key_split[2] ) SCREAMING_SNAKE_CASE__ : Any = """decoder.decoder_layers.""" if "weight" in key: SCREAMING_SNAKE_CASE__ : Any = val[:dim, :] SCREAMING_SNAKE_CASE__ : Tuple = val[dim : dim * 2, :] SCREAMING_SNAKE_CASE__ : str = val[-dim:, :] else: SCREAMING_SNAKE_CASE__ : Any = config.hidden_size SCREAMING_SNAKE_CASE__ : Optional[int] = int(key_split[1] ) SCREAMING_SNAKE_CASE__ : Optional[int] = """videomae.encoder.layer.""" if "weight" in key: SCREAMING_SNAKE_CASE__ : List[Any] = val[:dim, :] SCREAMING_SNAKE_CASE__ : Optional[int] = val[dim : dim * 2, :] SCREAMING_SNAKE_CASE__ : List[str] = val[-dim:, :] else: SCREAMING_SNAKE_CASE__ : Any = val return orig_state_dict def _lowercase ( ) -> Any: SCREAMING_SNAKE_CASE__ : Optional[Any] = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) SCREAMING_SNAKE_CASE__ : List[Any] = np.load(__lowerCAmelCase ) return list(__lowerCAmelCase ) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[str]: SCREAMING_SNAKE_CASE__ : str = get_videomae_config(__lowerCAmelCase ) if "finetuned" in model_name: SCREAMING_SNAKE_CASE__ : Dict = VideoMAEForVideoClassification(__lowerCAmelCase ) else: SCREAMING_SNAKE_CASE__ : Tuple = VideoMAEForPreTraining(__lowerCAmelCase ) # download original checkpoint, hosted on Google Drive SCREAMING_SNAKE_CASE__ : Tuple = """pytorch_model.bin""" gdown.cached_download(__lowerCAmelCase , __lowerCAmelCase , quiet=__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Tuple = torch.load(__lowerCAmelCase , map_location="""cpu""" ) if "model" in files: SCREAMING_SNAKE_CASE__ : Tuple = files["""model"""] else: SCREAMING_SNAKE_CASE__ : Union[str, Any] = files["""module"""] SCREAMING_SNAKE_CASE__ : int = convert_state_dict(__lowerCAmelCase , __lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) model.eval() # verify model on basic input SCREAMING_SNAKE_CASE__ : str = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) SCREAMING_SNAKE_CASE__ : str = prepare_video() SCREAMING_SNAKE_CASE__ : List[Any] = image_processor(__lowerCAmelCase , return_tensors="""pt""" ) if "finetuned" not in model_name: SCREAMING_SNAKE_CASE__ : Tuple = hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" , filename="""bool_masked_pos.pt""" ) SCREAMING_SNAKE_CASE__ : str = torch.load(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : int = model(**__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : List[str] = outputs.logits SCREAMING_SNAKE_CASE__ : Tuple = [ """videomae-small-finetuned-kinetics""", """videomae-small-finetuned-ssv2""", # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) """videomae-base-short""", """videomae-base-short-finetuned-kinetics""", """videomae-base""", """videomae-base-finetuned-kinetics""", """videomae-large""", """videomae-large-finetuned-kinetics""", """videomae-huge-finetuned-kinetics""", # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) """videomae-base-short-ssv2""", """videomae-base-short-finetuned-ssv2""", """videomae-base-ssv2""", """videomae-base-finetuned-ssv2""", ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": SCREAMING_SNAKE_CASE__ : Tuple = torch.Size([1, 400] ) SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.tensor([-0.9_291, -0.4_061, -0.9_307] ) elif model_name == "videomae-small-finetuned-ssv2": SCREAMING_SNAKE_CASE__ : Any = torch.Size([1, 174] ) SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.tensor([0.2_671, -0.4_689, -0.8_235] ) elif model_name == "videomae-base": SCREAMING_SNAKE_CASE__ : Dict = torch.Size([1, 1408, 1536] ) SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.tensor([[0.7_739, 0.7_968, 0.7_089], [0.6_701, 0.7_487, 0.6_209], [0.4_287, 0.5_158, 0.4_773]] ) elif model_name == "videomae-base-short": SCREAMING_SNAKE_CASE__ : Any = torch.Size([1, 1408, 1536] ) SCREAMING_SNAKE_CASE__ : Dict = torch.tensor([[0.7_994, 0.9_612, 0.8_508], [0.7_401, 0.8_958, 0.8_302], [0.5_862, 0.7_468, 0.7_325]] ) # we verified the loss both for normalized and unnormalized targets for this one SCREAMING_SNAKE_CASE__ : Optional[int] = torch.tensor([0.5_142] ) if config.norm_pix_loss else torch.tensor([0.6_469] ) elif model_name == "videomae-large": SCREAMING_SNAKE_CASE__ : Dict = torch.Size([1, 1408, 1536] ) SCREAMING_SNAKE_CASE__ : Any = torch.tensor([[0.7_149, 0.7_997, 0.6_966], [0.6_768, 0.7_869, 0.6_948], [0.5_139, 0.6_221, 0.5_605]] ) elif model_name == "videomae-large-finetuned-kinetics": SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.Size([1, 400] ) SCREAMING_SNAKE_CASE__ : Optional[int] = torch.tensor([0.0_771, 0.0_011, -0.3_625] ) elif model_name == "videomae-huge-finetuned-kinetics": SCREAMING_SNAKE_CASE__ : str = torch.Size([1, 400] ) SCREAMING_SNAKE_CASE__ : Any = torch.tensor([0.2_433, 0.1_632, -0.4_894] ) elif model_name == "videomae-base-short-finetuned-kinetics": SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.Size([1, 400] ) SCREAMING_SNAKE_CASE__ : List[str] = torch.tensor([0.6_588, 0.0_990, -0.2_493] ) elif model_name == "videomae-base-finetuned-kinetics": SCREAMING_SNAKE_CASE__ : Optional[int] = torch.Size([1, 400] ) SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.tensor([0.3_669, -0.0_688, -0.2_421] ) elif model_name == "videomae-base-short-ssv2": SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.Size([1, 1408, 1536] ) SCREAMING_SNAKE_CASE__ : Any = torch.tensor([[0.4_712, 0.5_296, 0.5_786], [0.2_278, 0.2_729, 0.4_026], [0.0_352, 0.0_730, 0.2_506]] ) elif model_name == "videomae-base-short-finetuned-ssv2": SCREAMING_SNAKE_CASE__ : str = torch.Size([1, 174] ) SCREAMING_SNAKE_CASE__ : Dict = torch.tensor([-0.0_537, -0.1_539, -0.3_266] ) elif model_name == "videomae-base-ssv2": SCREAMING_SNAKE_CASE__ : Tuple = torch.Size([1, 1408, 1536] ) SCREAMING_SNAKE_CASE__ : str = torch.tensor([[0.8_131, 0.8_727, 0.8_546], [0.7_366, 0.9_377, 0.8_870], [0.5_935, 0.8_874, 0.8_564]] ) elif model_name == "videomae-base-finetuned-ssv2": SCREAMING_SNAKE_CASE__ : Optional[int] = torch.Size([1, 174] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.tensor([0.1_961, -0.8_337, -0.6_389] ) else: raise ValueError(F'''Model name not supported. Should be one of {model_names}''' ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , __lowerCAmelCase , atol=1E-4 ) else: print("""Logits:""" , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , __lowerCAmelCase , atol=1E-4 ) print("""Logits ok!""" ) # verify loss, if applicable if model_name == "videomae-base-short": SCREAMING_SNAKE_CASE__ : List[str] = outputs.loss assert torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-4 ) print("""Loss ok!""" ) if pytorch_dump_folder_path is not None: print(F'''Saving model and image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) if push_to_hub: print("""Pushing to the hub...""" ) model.push_to_hub(__lowerCAmelCase , organization="""nielsr""" ) if __name__ == "__main__": a :List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4", type=str, help=( "URL of the original PyTorch checkpoint (on Google Drive) you'd like to convert. Should be a direct" " download link." ), ) parser.add_argument( "--pytorch_dump_folder_path", default="/Users/nielsrogge/Documents/VideoMAE/Test", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--model_name", default="videomae-base", type=str, help="Name of the model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) a :Optional[int] = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
56
"""simple docstring""" def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> int: return number | (1 << position) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> int: return number & ~(1 << position) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> int: return number ^ (1 << position) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> bool: return ((number >> position) & 1) == 1 def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> int: return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
56
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: UpperCamelCase : Dict = None UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) UpperCamelCase : List[Any] = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} UpperCamelCase : List[str] = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json' ), }, } UpperCamelCase : Dict = { 'moussaKam/mbarthez': 1_0_2_4, 'moussaKam/barthez': 1_0_2_4, 'moussaKam/barthez-orangesum-title': 1_0_2_4, } UpperCamelCase : Optional[int] = '▁' class __lowerCAmelCase ( snake_case_ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ['input_ids', 'attention_mask'] lowercase = BarthezTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<mask>" , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , **__UpperCAmelCase , ) __UpperCamelCase = vocab_file __UpperCamelCase = False if not self.vocab_file else True def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCamelCase = [self.cls_token_id] __UpperCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' __UpperCamelCase = [self.sep_token_id] __UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(__UpperCAmelCase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __UpperCamelCase = os.path.join( __UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ): copyfile(self.vocab_file , __UpperCAmelCase ) return (out_vocab_file,)
316
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a :Any = { 'configuration_mgp_str': ['MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MgpstrConfig'], 'processing_mgp_str': ['MgpstrProcessor'], 'tokenization_mgp_str': ['MgpstrTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Optional[Any] = [ 'MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST', 'MgpstrModel', 'MgpstrPreTrainedModel', 'MgpstrForSceneTextRecognition', ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys __a :List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
312
0
"""simple docstring""" import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def lowercase__(*A , A = None , A=True , A=2 ) ->Union[str, Any]: """simple docstring""" from .. import __version__ lowercase__ : Any= take_from lowercase__ : List[str]= () if not isinstance(args[0] , A ): lowercase__ : Any= (args,) for attribute, version_name, message in args: if version.parse(version.parse(A ).base_version ) >= version.parse(A ): raise ValueError( f'''The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\'''' f''' version {__version__} is >= {version_name}''' ) lowercase__ : str= None if isinstance(A , A ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(A ),) lowercase__ : str= f'''The `{attribute}` argument is deprecated and will be removed in version {version_name}.''' elif hasattr(A , A ): values += (getattr(A , A ),) lowercase__ : Dict= f'''The `{attribute}` attribute is deprecated and will be removed in version {version_name}.''' elif deprecated_kwargs is None: lowercase__ : List[str]= f'''`{attribute}` is deprecated and will be removed in version {version_name}.''' if warning is not None: lowercase__ : Optional[Any]= warning + " " if standard_warn else "" warnings.warn(warning + message , A , stacklevel=A ) if isinstance(A , A ) and len(A ) > 0: lowercase__ : Dict= inspect.getouterframes(inspect.currentframe() )[1] lowercase__ : List[str]= call_frame.filename lowercase__ : List[Any]= call_frame.lineno lowercase__ : Optional[Any]= call_frame.function lowercase__, lowercase__ : Dict= next(iter(deprecated_kwargs.items() ) ) raise TypeError(f'''{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`''' ) if len(A ) == 0: return elif len(A ) == 1: return values[0] return values
150
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , ): '''simple docstring''' super().__init__() self.register_modules(transformer=snake_case__ , vae=snake_case__ , scheduler=snake_case__ ) # create a imagenet -> id dictionary for easier use lowercase__ : int= {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split("," ): lowercase__ : Tuple= int(snake_case__ ) lowercase__ : Union[str, Any]= dict(sorted(self.labels.items() ) ) def UpperCAmelCase_ ( self , snake_case__ ): '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ): lowercase__ : List[Any]= list(snake_case__ ) for l in label: if l not in self.labels: raise ValueError( F'''{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.''' ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self , snake_case__ , snake_case__ = 4.0 , snake_case__ = None , snake_case__ = 50 , snake_case__ = "pil" , snake_case__ = True , ): '''simple docstring''' lowercase__ : List[Any]= len(snake_case__ ) lowercase__ : Optional[int]= self.transformer.config.sample_size lowercase__ : List[str]= self.transformer.config.in_channels lowercase__ : Any= randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=snake_case__ , device=self.device , dtype=self.transformer.dtype , ) lowercase__ : Any= torch.cat([latents] * 2 ) if guidance_scale > 1 else latents lowercase__ : Tuple= torch.tensor(snake_case__ , device=self.device ).reshape(-1 ) lowercase__ : Any= torch.tensor([1000] * batch_size , device=self.device ) lowercase__ : Tuple= torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(snake_case__ ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: lowercase__ : List[str]= latent_model_input[: len(snake_case__ ) // 2] lowercase__ : int= torch.cat([half, half] , dim=0 ) lowercase__ : Union[str, Any]= self.scheduler.scale_model_input(snake_case__ , snake_case__ ) lowercase__ : Optional[int]= t if not torch.is_tensor(snake_case__ ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) lowercase__ : List[str]= latent_model_input.device.type == "mps" if isinstance(snake_case__ , snake_case__ ): lowercase__ : int= torch.floataa if is_mps else torch.floataa else: lowercase__ : Dict= torch.intaa if is_mps else torch.intaa lowercase__ : Tuple= torch.tensor([timesteps] , dtype=snake_case__ , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: lowercase__ : Dict= timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML lowercase__ : int= timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output lowercase__ : Union[str, Any]= self.transformer( snake_case__ , timestep=snake_case__ , class_labels=snake_case__ ).sample # perform guidance if guidance_scale > 1: lowercase__, lowercase__ : Tuple= noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] lowercase__, lowercase__ : Union[str, Any]= torch.split(snake_case__ , len(snake_case__ ) // 2 , dim=0 ) lowercase__ : str= uncond_eps + guidance_scale * (cond_eps - uncond_eps) lowercase__ : Dict= torch.cat([half_eps, half_eps] , dim=0 ) lowercase__ : Optional[int]= torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: lowercase__, lowercase__ : Union[str, Any]= torch.split(snake_case__ , snake_case__ , dim=1 ) else: lowercase__ : int= noise_pred # compute previous image: x_t -> x_t-1 lowercase__ : List[Any]= self.scheduler.step(snake_case__ , snake_case__ , snake_case__ ).prev_sample if guidance_scale > 1: lowercase__, lowercase__ : Any= latent_model_input.chunk(2 , dim=0 ) else: lowercase__ : str= latent_model_input lowercase__ : Dict= 1 / self.vae.config.scaling_factor * latents lowercase__ : Any= self.vae.decode(snake_case__ ).sample lowercase__ : Tuple= (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowercase__ : List[Any]= samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowercase__ : Optional[Any]= self.numpy_to_pil(snake_case__ ) if not return_dict: return (samples,) return ImagePipelineOutput(images=snake_case__ )
150
1
"""simple docstring""" import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging a_ = logging.get_logger(__name__) logging.set_verbosity_info() def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): if "xprophetnet" in prophetnet_checkpoint_path: __lowercase : List[str] = XLMProphetNetForConditionalGenerationOld.from_pretrained(_UpperCAmelCase ) __lowercase : Tuple = XLMProphetNetForConditionalGeneration.from_pretrained( _UpperCAmelCase , output_loading_info=_UpperCAmelCase ) else: __lowercase : Any = ProphetNetForConditionalGenerationOld.from_pretrained(_UpperCAmelCase ) __lowercase : Dict = ProphetNetForConditionalGeneration.from_pretrained( _UpperCAmelCase , output_loading_info=_UpperCAmelCase ) __lowercase : int = ['key_proj', 'value_proj', 'query_proj'] __lowercase : Tuple = { 'self_attn': 'ngram_self_attn', 'cross_attn': 'encoder_attn', 'cross_attn_layer_norm': 'encoder_attn_layer_norm', 'feed_forward_layer_norm': 'final_layer_norm', 'feed_forward': '', 'intermediate': 'fc1', 'output': 'fc2', 'key_proj': 'k_proj', 'query_proj': 'q_proj', 'value_proj': 'v_proj', 'word_embeddings': 'embed_tokens', 'embeddings_layer_norm': 'emb_layer_norm', 'relative_pos_embeddings': 'relative_linear', 'ngram_embeddings': 'ngram_input_embed', 'position_embeddings': 'embed_positions', } for key in loading_info["missing_keys"]: __lowercase : List[Any] = key.split('''.''' ) if attributes[0] == "lm_head": __lowercase : Dict = prophet __lowercase : Dict = prophet_old else: __lowercase : List[str] = prophet.prophetnet __lowercase : List[Any] = prophet_old.model __lowercase : str = False for attribute in attributes: if attribute in mapping: __lowercase : Any = mapping[attribute] if not hasattr(_UpperCAmelCase , _UpperCAmelCase ) and len(_UpperCAmelCase ) > 0: __lowercase : int = attribute elif hasattr(_UpperCAmelCase , _UpperCAmelCase ): __lowercase : List[str] = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" __lowercase : int = old_model.weight logger.info(f"""{attribute} is initialized.""" ) __lowercase : Tuple = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" __lowercase : Tuple = old_model.bias logger.info(f"""{attribute} is initialized""" ) __lowercase : List[str] = True break elif attribute in special_keys and hasattr(_UpperCAmelCase , '''in_proj_weight''' ): __lowercase : str = old_model.in_proj_weight.shape[0] // 3 __lowercase : Tuple = getattr(_UpperCAmelCase , _UpperCAmelCase ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": __lowercase : Dict = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) __lowercase : Tuple = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": __lowercase : Tuple = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) __lowercase : Optional[int] = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": __lowercase : Optional[int] = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) __lowercase : Tuple = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) __lowercase : Union[str, Any] = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings." __lowercase : List[Any] = nn.Parameter(old_model.embed_positions.weight[:5_12, :] ) __lowercase : Union[str, Any] = True break if attribute.isdigit(): __lowercase : str = model[int(_UpperCAmelCase )] __lowercase : Union[str, Any] = old_model[int(_UpperCAmelCase )] else: __lowercase : str = getattr(_UpperCAmelCase , _UpperCAmelCase ) if old_attribute == "": __lowercase : Union[str, Any] = old_model else: if not hasattr(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError(f"""{old_model} does not have {old_attribute}""" ) __lowercase : Any = getattr(_UpperCAmelCase , _UpperCAmelCase ) if not is_key_init: raise ValueError(f"""{key} was not correctly initialized!""" ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) prophet.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) a_ = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
249
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class __A : def __init__( self : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : str=13 , UpperCAmelCase_ : Any=7 , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Optional[int]=99 , UpperCAmelCase_ : Dict=32 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : Tuple=4 , UpperCAmelCase_ : Dict=37 , UpperCAmelCase_ : List[str]="gelu" , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : Any=512 , UpperCAmelCase_ : Dict=16 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : Union[str, Any]=0.02 , UpperCAmelCase_ : Optional[int]=3 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Dict=0 , ): lowerCAmelCase : Any = parent lowerCAmelCase : int = batch_size lowerCAmelCase : Optional[int] = seq_length lowerCAmelCase : Optional[Any] = is_training lowerCAmelCase : Optional[Any] = use_input_mask lowerCAmelCase : Union[str, Any] = use_token_type_ids lowerCAmelCase : Any = use_labels lowerCAmelCase : Dict = vocab_size lowerCAmelCase : str = hidden_size lowerCAmelCase : str = num_hidden_layers lowerCAmelCase : int = num_attention_heads lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : str = hidden_act lowerCAmelCase : Optional[Any] = hidden_dropout_prob lowerCAmelCase : Any = attention_probs_dropout_prob lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : Optional[int] = type_vocab_size lowerCAmelCase : str = type_sequence_label_size lowerCAmelCase : int = initializer_range lowerCAmelCase : Dict = num_labels lowerCAmelCase : List[Any] = num_choices lowerCAmelCase : Optional[Any] = scope lowerCAmelCase : Optional[Any] = projection_dim def lowercase__ ( self : Any ): lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : List[Any] = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py lowerCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Any = None if self.use_token_type_ids: lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : Tuple = None lowerCAmelCase : Optional[Any] = None lowerCAmelCase : str = None if self.use_labels: lowerCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : Dict = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Dict = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , ) lowerCAmelCase : Tuple = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str ): lowerCAmelCase : int = TFDPRContextEncoder(config=UpperCAmelCase_ ) lowerCAmelCase : Any = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) lowerCAmelCase : List[str] = model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) lowerCAmelCase : Tuple = model(UpperCAmelCase_ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] ): lowerCAmelCase : List[str] = TFDPRQuestionEncoder(config=UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) lowerCAmelCase : int = model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) lowerCAmelCase : Any = model(UpperCAmelCase_ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def lowercase__ ( self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] ): lowerCAmelCase : Optional[int] = TFDPRReader(config=UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def lowercase__ ( self : Any ): lowerCAmelCase : List[Any] = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : List[Any] = config_and_inputs lowerCAmelCase : str = {'input_ids': input_ids} return config, inputs_dict @require_tf class __A ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : int = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) lowerCAmelCase_ : str = {"feature-extraction": TFDPRQuestionEncoder} if is_tf_available() else {} lowerCAmelCase_ : Optional[int] = False lowerCAmelCase_ : Union[str, Any] = False lowerCAmelCase_ : str = False lowerCAmelCase_ : List[Any] = False lowerCAmelCase_ : Dict = False def lowercase__ ( self : List[str] ): lowerCAmelCase : Optional[Any] = TFDPRModelTester(self ) lowerCAmelCase : List[Any] = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def lowercase__ ( self : Union[str, Any] ): self.config_tester.run_common_tests() def lowercase__ ( self : Any ): lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*UpperCAmelCase_ ) def lowercase__ ( self : Any ): lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*UpperCAmelCase_ ) def lowercase__ ( self : Dict ): lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*UpperCAmelCase_ ) @slow def lowercase__ ( self : List[Any] ): for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : int = TFDPRContextEncoder.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : str = TFDPRContextEncoder.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : Any = TFDPRQuestionEncoder.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : Optional[int] = TFDPRReader.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) @require_tf class __A ( unittest.TestCase ): @slow def lowercase__ ( self : Any ): lowerCAmelCase : List[str] = TFDPRQuestionEncoder.from_pretrained('facebook/dpr-question_encoder-single-nq-base' ) lowerCAmelCase : List[Any] = tf.constant( [[101, 7592, 1010, 2003, 2026, 3899, 10140, 1029, 102]] ) # [CLS] hello, is my dog cute? [SEP] lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ )[0] # embedding shape = (1, 768) # compare the actual values for a slice. lowerCAmelCase : List[Any] = tf.constant( [ [ 0.03_23_62_53, 0.12_75_33_35, 0.16_81_85_09, 0.00_27_97_86, 0.3_89_69_33, 0.24_26_49_45, 0.2_17_89_71, -0.02_33_52_27, -0.08_48_19_59, -0.14_32_41_17, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1E-4 ) )
138
0
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image UpperCamelCase = ["""text""", """image""", """audio"""] def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): A_ : Any = [] for input_type in input_types: if input_type == "text": inputs.append('''Text input''' ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3_000 ) ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): inputs.append(create_inputs(SCREAMING_SNAKE_CASE ) ) else: raise ValueError(f'''Invalid type requested: {input_type}''' ) return inputs def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): A_ : Optional[int] = [] for output in outputs: if isinstance(SCREAMING_SNAKE_CASE , (str, AgentText) ): output_types.append('''text''' ) elif isinstance(SCREAMING_SNAKE_CASE , (Image.Image, AgentImage) ): output_types.append('''image''' ) elif isinstance(SCREAMING_SNAKE_CASE , (torch.Tensor, AgentAudio) ): output_types.append('''audio''' ) else: raise ValueError(f'''Invalid output: {output}''' ) return output_types @is_tool_test class _lowerCamelCase : """simple docstring""" def _snake_case ( self )->Union[str, Any]: '''simple docstring''' self.assertTrue(hasattr(self.tool , '''inputs''' ) ) self.assertTrue(hasattr(self.tool , '''outputs''' ) ) A_ : Union[str, Any] = self.tool.inputs for _input in inputs: if isinstance(_input , _SCREAMING_SNAKE_CASE ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) A_ : Dict = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def _snake_case ( self )->str: '''simple docstring''' A_ : Optional[int] = create_inputs(self.tool.inputs ) A_ : Optional[int] = self.tool(*_SCREAMING_SNAKE_CASE ) # There is a single output if len(self.tool.outputs ) == 1: A_ : Tuple = [outputs] self.assertListEqual(output_types(_SCREAMING_SNAKE_CASE ) , self.tool.outputs ) def _snake_case ( self )->Union[str, Any]: '''simple docstring''' self.assertTrue(hasattr(self.tool , '''description''' ) ) self.assertTrue(hasattr(self.tool , '''default_checkpoint''' ) ) self.assertTrue(self.tool.description.startswith('''This is a tool that''' ) ) def _snake_case ( self )->List[str]: '''simple docstring''' A_ : Dict = create_inputs(self.tool.inputs ) A_ : Dict = self.tool(*_SCREAMING_SNAKE_CASE ) if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ : Any = [outputs] self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(self.tool.outputs ) ) for output, output_type in zip(_SCREAMING_SNAKE_CASE , self.tool.outputs ): A_ : List[Any] = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def _snake_case ( self )->int: '''simple docstring''' A_ : Dict = create_inputs(self.tool.inputs ) A_ : Dict = [] for _input, input_type in zip(_SCREAMING_SNAKE_CASE , self.tool.inputs ): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error A_ : Union[str, Any] = self.tool(*_SCREAMING_SNAKE_CASE ) if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ : List[Any] = [outputs] self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(self.tool.outputs ) )
65
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor UpperCamelCase = logging.get_logger(__name__) class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )->None: '''simple docstring''' warnings.warn( '''The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use YolosImageProcessor instead.''' , _SCREAMING_SNAKE_CASE , ) super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
65
1
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer __lowerCAmelCase : Any = logging.get_logger(__name__) __lowerCAmelCase : Dict = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} # See all BART models at https://huggingface.co/models?filter=bart __lowerCAmelCase : Dict = { 'vocab_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/vocab.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/vocab.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json', }, 'merges_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/merges.txt', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/merges.txt', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt', }, 'tokenizer_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json', }, } __lowerCAmelCase : str = { 'facebook/bart-base': 1024, 'facebook/bart-large': 1024, 'facebook/bart-large-mnli': 1024, 'facebook/bart-large-cnn': 1024, 'facebook/bart-large-xsum': 1024, 'yjernite/bart_eli5': 1024, } class UpperCAmelCase_ ( _A ): '''simple docstring''' a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = ["""input_ids""", """attention_mask"""] a__ = BartTokenizer def __init__( self : Any , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : List[Any]="replace" , UpperCamelCase__ : Union[str, Any]="<s>" , UpperCamelCase__ : Optional[Any]="</s>" , UpperCamelCase__ : Optional[int]="</s>" , UpperCamelCase__ : Tuple="<s>" , UpperCamelCase__ : Optional[Any]="<unk>" , UpperCamelCase__ : Any="<pad>" , UpperCamelCase__ : int="<mask>" , UpperCamelCase__ : Any=False , UpperCamelCase__ : Optional[int]=True , **UpperCamelCase__ : str , ) -> Dict: """simple docstring""" super().__init__( UpperCamelCase__ , UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , errors=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ , **UpperCamelCase__ , ) __magic_name__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , UpperCamelCase__ ) != add_prefix_space: __magic_name__ = getattr(UpperCamelCase__ , pre_tok_state.pop("""type""" ) ) __magic_name__ = add_prefix_space __magic_name__ = pre_tok_class(**UpperCamelCase__ ) __magic_name__ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` __magic_name__ = """post_processor""" __magic_name__ = getattr(self.backend_tokenizer , UpperCamelCase__ , UpperCamelCase__ ) if tokenizer_component_instance: __magic_name__ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __magic_name__ = tuple(state["""sep"""] ) if "cls" in state: __magic_name__ = tuple(state["""cls"""] ) __magic_name__ = False if state.get("""add_prefix_space""" , UpperCamelCase__ ) != add_prefix_space: __magic_name__ = add_prefix_space __magic_name__ = True if state.get("""trim_offsets""" , UpperCamelCase__ ) != trim_offsets: __magic_name__ = trim_offsets __magic_name__ = True if changes_to_apply: __magic_name__ = getattr(UpperCamelCase__ , state.pop("""type""" ) ) __magic_name__ = component_class(**UpperCamelCase__ ) setattr(self.backend_tokenizer , UpperCamelCase__ , UpperCamelCase__ ) @property def _lowercase ( self : Tuple ) -> str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def _lowercase ( self : Dict , UpperCamelCase__ : List[Any] ) -> Dict: """simple docstring""" __magic_name__ = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else value __magic_name__ = value def _lowercase ( self : Tuple , *UpperCamelCase__ : Dict , **UpperCamelCase__ : List[Any] ) -> BatchEncoding: """simple docstring""" __magic_name__ = kwargs.get("""is_split_into_words""" , UpperCamelCase__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._batch_encode_plus(*UpperCamelCase__ , **UpperCamelCase__ ) def _lowercase ( self : List[Any] , *UpperCamelCase__ : Any , **UpperCamelCase__ : Optional[Any] ) -> BatchEncoding: """simple docstring""" __magic_name__ = kwargs.get("""is_split_into_words""" , UpperCamelCase__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._encode_plus(*UpperCamelCase__ , **UpperCamelCase__ ) def _lowercase ( self : List[str] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" __magic_name__ = self._tokenizer.model.save(UpperCamelCase__ , name=UpperCamelCase__ ) return tuple(UpperCamelCase__ ) def _lowercase ( self : str , UpperCamelCase__ : Any , UpperCamelCase__ : int=None ) -> Any: """simple docstring""" __magic_name__ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowercase ( self : Union[str, Any] , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __magic_name__ = [self.sep_token_id] __magic_name__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
88
"""simple docstring""" def lowercase ( lowerCAmelCase__ : str ) -> list: if n_term == "": return [] __a = [] for temp in range(int(lowerCAmelCase__ ) ): series.append(f'''1/{temp + 1}''' if series else '''1''' ) return series if __name__ == "__main__": lowercase_ = input("Enter the last number (nth term) of the Harmonic Series") print("Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n") print(harmonic_series(nth_term))
45
0
'''simple docstring''' import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin __snake_case : Union[str, Any] = logging.get_logger(__name__) enable_full_determinism() class lowerCamelCase ( lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' __snake_case = UNetaDModel __snake_case = 'sample' @property def lowercase__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' A__ : Optional[Any] =4 A__ : Dict =3 A__ : str =(32, 32) A__ : List[str] =floats_tensor((batch_size, num_channels) + sizes ).to(lowerCAmelCase_ ) A__ : List[str] =torch.tensor([10] ).to(lowerCAmelCase_ ) return {"sample": noise, "timestep": time_step} @property def lowercase__ ( self : str ) -> str: '''simple docstring''' return (3, 32, 32) @property def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' return (3, 32, 32) def lowercase__ ( self : Optional[int] ) -> str: '''simple docstring''' A__ : Dict ={ """block_out_channels""": (32, 64), """down_block_types""": ("""DownBlock2D""", """AttnDownBlock2D"""), """up_block_types""": ("""AttnUpBlock2D""", """UpBlock2D"""), """attention_head_dim""": 3, """out_channels""": 3, """in_channels""": 3, """layers_per_block""": 2, """sample_size""": 32, } A__ : int =self.dummy_input return init_dict, inputs_dict class lowerCamelCase ( lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' __snake_case = UNetaDModel __snake_case = 'sample' @property def lowercase__ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' A__ : int =4 A__ : Union[str, Any] =4 A__ : Optional[int] =(32, 32) A__ : int =floats_tensor((batch_size, num_channels) + sizes ).to(lowerCAmelCase_ ) A__ : Dict =torch.tensor([10] ).to(lowerCAmelCase_ ) return {"sample": noise, "timestep": time_step} @property def lowercase__ ( self : Optional[int] ) -> str: '''simple docstring''' return (4, 32, 32) @property def lowercase__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' return (4, 32, 32) def lowercase__ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' A__ : Any ={ """sample_size""": 32, """in_channels""": 4, """out_channels""": 4, """layers_per_block""": 2, """block_out_channels""": (32, 64), """attention_head_dim""": 32, """down_block_types""": ("""DownBlock2D""", """DownBlock2D"""), """up_block_types""": ("""UpBlock2D""", """UpBlock2D"""), } A__ : int =self.dummy_input return init_dict, inputs_dict def lowercase__ ( self : Optional[Any] ) -> Any: '''simple docstring''' A__ , A__ : str =UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" , output_loading_info=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(lowerCAmelCase_ ) A__ : Optional[Any] =model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != """cuda""" , """This test is supposed to run on GPU""" ) def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' A__ , A__ : int =UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" , output_loading_info=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) A__ : Dict =model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != """cuda""" , """This test is supposed to run on GPU""" ) def lowercase__ ( self : Any ) -> Optional[int]: '''simple docstring''' # by defautl model loading will use accelerate as `low_cpu_mem_usage=True` A__ , A__ : Optional[int] =UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" , output_loading_info=lowerCAmelCase_ ) model_accelerate.to(lowerCAmelCase_ ) model_accelerate.eval() A__ : int =torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) A__ : int =noise.to(lowerCAmelCase_ ) A__ : Optional[int] =torch.tensor([10] * noise.shape[0] ).to(lowerCAmelCase_ ) A__ : Union[str, Any] =model_accelerate(lowerCAmelCase_ , lowerCAmelCase_ )["""sample"""] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() A__ , A__ : int =UNetaDModel.from_pretrained( """fusing/unet-ldm-dummy-update""" , output_loading_info=lowerCAmelCase_ , low_cpu_mem_usage=lowerCAmelCase_ ) model_normal_load.to(lowerCAmelCase_ ) model_normal_load.eval() A__ : List[Any] =model_normal_load(lowerCAmelCase_ , lowerCAmelCase_ )["""sample"""] assert torch_all_close(lowerCAmelCase_ , lowerCAmelCase_ , rtol=1e-3 ) def lowercase__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' A__ : Optional[int] =UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" ) model.eval() model.to(lowerCAmelCase_ ) A__ : Tuple =torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) A__ : str =noise.to(lowerCAmelCase_ ) A__ : Optional[int] =torch.tensor([10] * noise.shape[0] ).to(lowerCAmelCase_ ) with torch.no_grad(): A__ : List[Any] =model(lowerCAmelCase_ , lowerCAmelCase_ ).sample A__ : Optional[int] =output[0, -1, -3:, -3:].flatten().cpu() # fmt: off A__ : Optional[Any] =torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800] ) # fmt: on self.assertTrue(torch_all_close(lowerCAmelCase_ , lowerCAmelCase_ , rtol=1e-3 ) ) class lowerCamelCase ( lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' __snake_case = UNetaDModel __snake_case = 'sample' @property def lowercase__ ( self : List[Any] , lowerCAmelCase_ : Optional[Any]=(32, 32) ) -> Optional[int]: '''simple docstring''' A__ : Any =4 A__ : int =3 A__ : List[str] =floats_tensor((batch_size, num_channels) + sizes ).to(lowerCAmelCase_ ) A__ : Tuple =torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=lowerCAmelCase_ ) return {"sample": noise, "timestep": time_step} @property def lowercase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' return (3, 32, 32) @property def lowercase__ ( self : str ) -> List[str]: '''simple docstring''' return (3, 32, 32) def lowercase__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' A__ : Union[str, Any] ={ """block_out_channels""": [32, 64, 64, 64], """in_channels""": 3, """layers_per_block""": 1, """out_channels""": 3, """time_embedding_type""": """fourier""", """norm_eps""": 1e-6, """mid_block_scale_factor""": math.sqrt(2.0 ), """norm_num_groups""": None, """down_block_types""": [ """SkipDownBlock2D""", """AttnSkipDownBlock2D""", """SkipDownBlock2D""", """SkipDownBlock2D""", ], """up_block_types""": [ """SkipUpBlock2D""", """SkipUpBlock2D""", """AttnSkipUpBlock2D""", """SkipUpBlock2D""", ], } A__ : Optional[Any] =self.dummy_input return init_dict, inputs_dict @slow def lowercase__ ( self : List[str] ) -> List[str]: '''simple docstring''' A__ , A__ : Optional[Any] =UNetaDModel.from_pretrained("""google/ncsnpp-celebahq-256""" , output_loading_info=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(lowerCAmelCase_ ) A__ : Optional[Any] =self.dummy_input A__ : Tuple =floats_tensor((4, 3) + (2_56, 2_56) ).to(lowerCAmelCase_ ) A__ : List[str] =noise A__ : int =model(**lowerCAmelCase_ ) assert image is not None, "Make sure output is not None" @slow def lowercase__ ( self : List[str] ) -> Tuple: '''simple docstring''' A__ : Tuple =UNetaDModel.from_pretrained("""google/ncsnpp-celebahq-256""" ) model.to(lowerCAmelCase_ ) A__ : Union[str, Any] =4 A__ : Dict =3 A__ : List[Any] =(2_56, 2_56) A__ : Dict =torch.ones((batch_size, num_channels) + sizes ).to(lowerCAmelCase_ ) A__ : List[Any] =torch.tensor(batch_size * [1e-4] ).to(lowerCAmelCase_ ) with torch.no_grad(): A__ : Optional[Any] =model(lowerCAmelCase_ , lowerCAmelCase_ ).sample A__ : Tuple =output[0, -3:, -3:, -1].flatten().cpu() # fmt: off A__ : str =torch.tensor([-4842.8691, -6499.6631, -3800.1953, -7978.2686, -10980.7129, -20028.8535, 8148.2822, 2342.2905, 567.7608] ) # fmt: on self.assertTrue(torch_all_close(lowerCAmelCase_ , lowerCAmelCase_ , rtol=1e-2 ) ) def lowercase__ ( self : Any ) -> Dict: '''simple docstring''' A__ : Any =UNetaDModel.from_pretrained("""fusing/ncsnpp-ffhq-ve-dummy-update""" ) model.to(lowerCAmelCase_ ) A__ : List[str] =4 A__ : List[Any] =3 A__ : Dict =(32, 32) A__ : Optional[int] =torch.ones((batch_size, num_channels) + sizes ).to(lowerCAmelCase_ ) A__ : Union[str, Any] =torch.tensor(batch_size * [1e-4] ).to(lowerCAmelCase_ ) with torch.no_grad(): A__ : Any =model(lowerCAmelCase_ , lowerCAmelCase_ ).sample A__ : List[Any] =output[0, -3:, -3:, -1].flatten().cpu() # fmt: off A__ : List[Any] =torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256] ) # fmt: on self.assertTrue(torch_all_close(lowerCAmelCase_ , lowerCAmelCase_ , rtol=1e-2 ) ) def lowercase__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' # not required for this model pass
136
'''simple docstring''' def __lowerCamelCase ( __snake_case : int ) -> bool: """simple docstring""" if p < 2: raise ValueError("""p should not be less than 2!""" ) elif p == 2: return True A__ : Any =4 A__ : int =(1 << p) - 1 for _ in range(p - 2 ): A__ : Dict =((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
136
1
import argparse import os import torch from transformers.utils import WEIGHTS_NAME __lowerCamelCase = ["""small""", """medium""", """large"""] __lowerCamelCase = """lm_head.decoder.weight""" __lowerCamelCase = """lm_head.weight""" def UpperCamelCase ( __lowerCamelCase : str , __lowerCamelCase : str ): snake_case : Optional[int] = torch.load(__lowerCamelCase ) snake_case : Any = d.pop(__lowerCamelCase ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) torch.save(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--dialogpt_path""", default=""".""", type=str) __lowerCamelCase = parser.parse_args() for MODEL in DIALOGPT_MODELS: __lowerCamelCase = os.path.join(args.dialogpt_path, F'{MODEL}_ft.pkl') __lowerCamelCase = F'./DialoGPT-{MODEL}' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
59
"""simple docstring""" import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features _lowercase : Optional[int] = logging.get_logger(__name__) _lowercase : Tuple = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) _lowercase : Tuple = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __SCREAMING_SNAKE_CASE : '''simple docstring''' _a = field( default=lowerCAmelCase_ , metadata={'help': 'Model type selected in the list: ' + ', '.join(lowerCAmelCase_ )} ) _a = field( default=lowerCAmelCase_ , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} ) _a = field( default=1_2_8 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) _a = field( default=1_2_8 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , ) _a = field( default=6_4 , metadata={ 'help': ( 'The maximum number of tokens for the question. Questions longer than this will ' 'be truncated to this length.' ) } , ) _a = field( default=3_0 , metadata={ 'help': ( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ) } , ) _a = field( default=lowerCAmelCase_ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) _a = field( default=lowerCAmelCase_ , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} ) _a = field( default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) _a = field( default=2_0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) _a = field( default=0 , metadata={ 'help': ( 'language id of input for language-specific xlm models (see' ' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)' ) } , ) _a = field(default=1 , metadata={'help': 'multiple threads for converting example to features'} ) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' _a = 'train' _a = 'dev' class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' _a = 42 _a = 42 _a = 42 _a = 42 def __init__( self : Dict, lowerCamelCase : SquadDataTrainingArguments, lowerCamelCase : PreTrainedTokenizer, lowerCamelCase : Optional[int] = None, lowerCamelCase : Union[str, Split] = Split.train, lowerCamelCase : Optional[bool] = False, lowerCamelCase : Optional[str] = None, lowerCamelCase : Optional[str] = "pt", )-> List[str]: lowerCamelCase__ : List[str] =args lowerCamelCase__ : Optional[Any] =is_language_sensitive lowerCamelCase__ : Any =SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(lowerCamelCase, lowerCamelCase ): try: lowerCamelCase__ : int =Split[mode] except KeyError: raise KeyError('''mode is not a valid split name''' ) lowerCamelCase__ : Optional[Any] =mode # Load data features from cache or dataset file lowerCamelCase__ : Any ='''v2''' if args.version_2_with_negative else '''v1''' lowerCamelCase__ : Optional[int] =os.path.join( cache_dir if cache_dir is not None else args.data_dir, F'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''', ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCamelCase__ : Optional[Any] =cached_features_file + '''.lock''' with FileLock(lowerCamelCase ): if os.path.exists(lowerCamelCase ) and not args.overwrite_cache: lowerCamelCase__ : Tuple =time.time() lowerCamelCase__ : str =torch.load(lowerCamelCase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. lowerCamelCase__ : int =self.old_features['''features'''] lowerCamelCase__ : Optional[int] =self.old_features.get('''dataset''', lowerCamelCase ) lowerCamelCase__ : int =self.old_features.get('''examples''', lowerCamelCase ) logger.info( F'''Loading features from cached file {cached_features_file} [took %.3f s]''', time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( F'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in''' ''' future run''' ) else: if mode == Split.dev: lowerCamelCase__ : Tuple =self.processor.get_dev_examples(args.data_dir ) else: lowerCamelCase__ : Optional[int] =self.processor.get_train_examples(args.data_dir ) lowerCamelCase__ , lowerCamelCase__ : List[str] =squad_convert_examples_to_features( examples=self.examples, tokenizer=lowerCamelCase, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=mode == Split.train, threads=args.threads, return_dataset=lowerCamelCase, ) lowerCamelCase__ : List[str] =time.time() torch.save( {'''features''': self.features, '''dataset''': self.dataset, '''examples''': self.examples}, lowerCamelCase, ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self : Optional[int] )-> Dict: return len(self.features ) def __getitem__( self : List[str], lowerCamelCase : List[Any] )-> Dict[str, torch.Tensor]: # Convert to Tensors and build dataset lowerCamelCase__ : List[Any] =self.features[i] lowerCamelCase__ : List[Any] =torch.tensor(feature.input_ids, dtype=torch.long ) lowerCamelCase__ : List[str] =torch.tensor(feature.attention_mask, dtype=torch.long ) lowerCamelCase__ : List[Any] =torch.tensor(feature.token_type_ids, dtype=torch.long ) lowerCamelCase__ : Optional[int] =torch.tensor(feature.cls_index, dtype=torch.long ) lowerCamelCase__ : Optional[int] =torch.tensor(feature.p_mask, dtype=torch.float ) lowerCamelCase__ : List[Any] =torch.tensor(feature.is_impossible, dtype=torch.float ) lowerCamelCase__ : Optional[Any] ={ '''input_ids''': input_ids, '''attention_mask''': attention_mask, '''token_type_ids''': token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'''cls_index''': cls_index, '''p_mask''': p_mask} ) if self.args.version_2_with_negative: inputs.update({'''is_impossible''': is_impossible} ) if self.is_language_sensitive: inputs.update({'''langs''': (torch.ones(input_ids.shape, dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: lowerCamelCase__ : str =torch.tensor(feature.start_position, dtype=torch.long ) lowerCamelCase__ : int =torch.tensor(feature.end_position, dtype=torch.long ) inputs.update({'''start_positions''': start_positions, '''end_positions''': end_positions} ) return inputs
238
0
"""simple docstring""" import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' _a = AudioLDMPipeline _a = TEXT_TO_AUDIO_PARAMS _a = TEXT_TO_AUDIO_BATCH_PARAMS _a = frozenset( [ 'num_inference_steps', 'num_waveforms_per_prompt', 'generator', 'latents', 'output_type', 'return_dict', 'callback', 'callback_steps', ] ) def snake_case ( self : Any )-> Optional[Any]: torch.manual_seed(0 ) lowerCamelCase__ : Any =UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D'''), up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D'''), cross_attention_dim=(32, 64), class_embed_type='''simple_projection''', projection_class_embeddings_input_dim=32, class_embeddings_concat=lowerCamelCase, ) lowerCamelCase__ : List[str] =DDIMScheduler( beta_start=0.00_085, beta_end=0.012, beta_schedule='''scaled_linear''', clip_sample=lowerCamelCase, set_alpha_to_one=lowerCamelCase, ) torch.manual_seed(0 ) lowerCamelCase__ : int =AutoencoderKL( block_out_channels=[32, 64], in_channels=1, out_channels=1, down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], latent_channels=4, ) torch.manual_seed(0 ) lowerCamelCase__ : List[str] =ClapTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, projection_dim=32, ) lowerCamelCase__ : Dict =ClapTextModelWithProjection(lowerCamelCase ) lowerCamelCase__ : List[Any] =RobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-roberta''', model_max_length=77 ) lowerCamelCase__ : Union[str, Any] =SpeechTaHifiGanConfig( model_in_dim=8, sampling_rate=1_6000, upsample_initial_channel=16, upsample_rates=[2, 2], upsample_kernel_sizes=[4, 4], resblock_kernel_sizes=[3, 7], resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]], normalize_before=lowerCamelCase, ) lowerCamelCase__ : Tuple =SpeechTaHifiGan(lowerCamelCase ) lowerCamelCase__ : List[Any] ={ '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''vocoder''': vocoder, } return components def snake_case ( self : str, lowerCamelCase : Any, lowerCamelCase : List[str]=0 )-> Optional[int]: if str(lowerCamelCase ).startswith('''mps''' ): lowerCamelCase__ : Optional[int] =torch.manual_seed(lowerCamelCase ) else: lowerCamelCase__ : List[Any] =torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) lowerCamelCase__ : str ={ '''prompt''': '''A hammer hitting a wooden surface''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, } return inputs def snake_case ( self : int )-> Union[str, Any]: lowerCamelCase__ : str ='''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCamelCase__ : Union[str, Any] =self.get_dummy_components() lowerCamelCase__ : int =AudioLDMPipeline(**lowerCamelCase ) lowerCamelCase__ : List[Any] =audioldm_pipe.to(lowerCamelCase ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase ) lowerCamelCase__ : str =self.get_dummy_inputs(lowerCamelCase ) lowerCamelCase__ : List[Any] =audioldm_pipe(**lowerCamelCase ) lowerCamelCase__ : Any =output.audios[0] assert audio.ndim == 1 assert len(lowerCamelCase ) == 256 lowerCamelCase__ : str =audio[:10] lowerCamelCase__ : str =np.array( [-0.0_050, 0.0_050, -0.0_060, 0.0_033, -0.0_026, 0.0_033, -0.0_027, 0.0_033, -0.0_028, 0.0_033] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def snake_case ( self : Dict )-> List[str]: lowerCamelCase__ : Any =self.get_dummy_components() lowerCamelCase__ : int =AudioLDMPipeline(**lowerCamelCase ) lowerCamelCase__ : Dict =audioldm_pipe.to(lowerCamelCase ) lowerCamelCase__ : Union[str, Any] =audioldm_pipe.to(lowerCamelCase ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase ) lowerCamelCase__ : int =self.get_dummy_inputs(lowerCamelCase ) lowerCamelCase__ : str =3 * [inputs['''prompt''']] # forward lowerCamelCase__ : Union[str, Any] =audioldm_pipe(**lowerCamelCase ) lowerCamelCase__ : Optional[Any] =output.audios[0] lowerCamelCase__ : Optional[Any] =self.get_dummy_inputs(lowerCamelCase ) lowerCamelCase__ : Tuple =3 * [inputs.pop('''prompt''' )] lowerCamelCase__ : Optional[int] =audioldm_pipe.tokenizer( lowerCamelCase, padding='''max_length''', max_length=audioldm_pipe.tokenizer.model_max_length, truncation=lowerCamelCase, return_tensors='''pt''', ) lowerCamelCase__ : Dict =text_inputs['''input_ids'''].to(lowerCamelCase ) lowerCamelCase__ : Optional[Any] =audioldm_pipe.text_encoder( lowerCamelCase, ) lowerCamelCase__ : List[Any] =prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state lowerCamelCase__ : Any =F.normalize(lowerCamelCase, dim=-1 ) lowerCamelCase__ : Dict =prompt_embeds # forward lowerCamelCase__ : int =audioldm_pipe(**lowerCamelCase ) lowerCamelCase__ : Tuple =output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def snake_case ( self : Dict )-> Dict: lowerCamelCase__ : Dict =self.get_dummy_components() lowerCamelCase__ : Union[str, Any] =AudioLDMPipeline(**lowerCamelCase ) lowerCamelCase__ : Optional[int] =audioldm_pipe.to(lowerCamelCase ) lowerCamelCase__ : Any =audioldm_pipe.to(lowerCamelCase ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase ) lowerCamelCase__ : str =self.get_dummy_inputs(lowerCamelCase ) lowerCamelCase__ : int =3 * ['''this is a negative prompt'''] lowerCamelCase__ : List[Any] =negative_prompt lowerCamelCase__ : Tuple =3 * [inputs['''prompt''']] # forward lowerCamelCase__ : Union[str, Any] =audioldm_pipe(**lowerCamelCase ) lowerCamelCase__ : Optional[Any] =output.audios[0] lowerCamelCase__ : Optional[Any] =self.get_dummy_inputs(lowerCamelCase ) lowerCamelCase__ : Tuple =3 * [inputs.pop('''prompt''' )] lowerCamelCase__ : List[str] =[] for p in [prompt, negative_prompt]: lowerCamelCase__ : Optional[Any] =audioldm_pipe.tokenizer( lowerCamelCase, padding='''max_length''', max_length=audioldm_pipe.tokenizer.model_max_length, truncation=lowerCamelCase, return_tensors='''pt''', ) lowerCamelCase__ : Optional[int] =text_inputs['''input_ids'''].to(lowerCamelCase ) lowerCamelCase__ : Tuple =audioldm_pipe.text_encoder( lowerCamelCase, ) lowerCamelCase__ : str =text_embeds.text_embeds # additional L_2 normalization over each hidden-state lowerCamelCase__ : Any =F.normalize(lowerCamelCase, dim=-1 ) embeds.append(lowerCamelCase ) lowerCamelCase__ , lowerCamelCase__ : Any =embeds # forward lowerCamelCase__ : Optional[Any] =audioldm_pipe(**lowerCamelCase ) lowerCamelCase__ : Union[str, Any] =output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def snake_case ( self : int )-> int: lowerCamelCase__ : List[str] ='''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCamelCase__ : int =self.get_dummy_components() lowerCamelCase__ : Optional[int] =PNDMScheduler(skip_prk_steps=lowerCamelCase ) lowerCamelCase__ : List[Any] =AudioLDMPipeline(**lowerCamelCase ) lowerCamelCase__ : Optional[int] =audioldm_pipe.to(lowerCamelCase ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase ) lowerCamelCase__ : Union[str, Any] =self.get_dummy_inputs(lowerCamelCase ) lowerCamelCase__ : Union[str, Any] ='''egg cracking''' lowerCamelCase__ : Optional[Any] =audioldm_pipe(**lowerCamelCase, negative_prompt=lowerCamelCase ) lowerCamelCase__ : Any =output.audios[0] assert audio.ndim == 1 assert len(lowerCamelCase ) == 256 lowerCamelCase__ : List[Any] =audio[:10] lowerCamelCase__ : Dict =np.array( [-0.0_051, 0.0_050, -0.0_060, 0.0_034, -0.0_026, 0.0_033, -0.0_027, 0.0_033, -0.0_028, 0.0_032] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def snake_case ( self : Any )-> str: lowerCamelCase__ : str ='''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCamelCase__ : str =self.get_dummy_components() lowerCamelCase__ : str =PNDMScheduler(skip_prk_steps=lowerCamelCase ) lowerCamelCase__ : Dict =AudioLDMPipeline(**lowerCamelCase ) lowerCamelCase__ : str =audioldm_pipe.to(lowerCamelCase ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase ) lowerCamelCase__ : List[str] ='''A hammer hitting a wooden surface''' # test num_waveforms_per_prompt=1 (default) lowerCamelCase__ : Optional[int] =audioldm_pipe(lowerCamelCase, num_inference_steps=2 ).audios assert audios.shape == (1, 256) # test num_waveforms_per_prompt=1 (default) for batch of prompts lowerCamelCase__ : Dict =2 lowerCamelCase__ : List[Any] =audioldm_pipe([prompt] * batch_size, num_inference_steps=2 ).audios assert audios.shape == (batch_size, 256) # test num_waveforms_per_prompt for single prompt lowerCamelCase__ : Optional[Any] =2 lowerCamelCase__ : Optional[Any] =audioldm_pipe(lowerCamelCase, num_inference_steps=2, num_waveforms_per_prompt=lowerCamelCase ).audios assert audios.shape == (num_waveforms_per_prompt, 256) # test num_waveforms_per_prompt for batch of prompts lowerCamelCase__ : Any =2 lowerCamelCase__ : Dict =audioldm_pipe( [prompt] * batch_size, num_inference_steps=2, num_waveforms_per_prompt=lowerCamelCase ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 256) def snake_case ( self : Dict )-> Any: lowerCamelCase__ : Optional[int] ='''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCamelCase__ : Any =self.get_dummy_components() lowerCamelCase__ : Any =AudioLDMPipeline(**lowerCamelCase ) lowerCamelCase__ : Tuple =audioldm_pipe.to(lowerCamelCase ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase ) lowerCamelCase__ : Any =audioldm_pipe.vocoder.config.sampling_rate lowerCamelCase__ : Any =self.get_dummy_inputs(lowerCamelCase ) lowerCamelCase__ : Tuple =audioldm_pipe(audio_length_in_s=0.016, **lowerCamelCase ) lowerCamelCase__ : Union[str, Any] =output.audios[0] assert audio.ndim == 1 assert len(lowerCamelCase ) / vocoder_sampling_rate == 0.016 lowerCamelCase__ : List[Any] =audioldm_pipe(audio_length_in_s=0.032, **lowerCamelCase ) lowerCamelCase__ : Union[str, Any] =output.audios[0] assert audio.ndim == 1 assert len(lowerCamelCase ) / vocoder_sampling_rate == 0.032 def snake_case ( self : Optional[Any] )-> List[Any]: lowerCamelCase__ : Tuple =self.get_dummy_components() lowerCamelCase__ : Tuple =AudioLDMPipeline(**lowerCamelCase ) lowerCamelCase__ : Optional[int] =audioldm_pipe.to(lowerCamelCase ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase ) lowerCamelCase__ : Union[str, Any] =['''hey'''] lowerCamelCase__ : List[Any] =audioldm_pipe(lowerCamelCase, num_inference_steps=1 ) lowerCamelCase__ : Tuple =output.audios.shape assert audio_shape == (1, 256) lowerCamelCase__ : Tuple =audioldm_pipe.vocoder.config config.model_in_dim *= 2 lowerCamelCase__ : Union[str, Any] =SpeechTaHifiGan(lowerCamelCase ).to(lowerCamelCase ) lowerCamelCase__ : Dict =audioldm_pipe(lowerCamelCase, num_inference_steps=1 ) lowerCamelCase__ : Any =output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 256) def snake_case ( self : Optional[Any] )-> int: self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowerCamelCase ) def snake_case ( self : Tuple )-> Optional[int]: self._test_inference_batch_single_identical(test_mean_pixel_difference=lowerCamelCase ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available(), reason='''XFormers attention is only available with CUDA and `xformers` installed''', ) def snake_case ( self : Dict )-> List[Any]: self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowerCamelCase ) @slow class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def snake_case ( self : str )-> Dict: super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case ( self : List[Any], lowerCamelCase : Optional[Any], lowerCamelCase : Optional[Any]="cpu", lowerCamelCase : Optional[Any]=torch.floataa, lowerCamelCase : int=0 )-> str: lowerCamelCase__ : List[str] =torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) lowerCamelCase__ : Union[str, Any] =np.random.RandomState(lowerCamelCase ).standard_normal((1, 8, 128, 16) ) lowerCamelCase__ : str =torch.from_numpy(lowerCamelCase ).to(device=lowerCamelCase, dtype=lowerCamelCase ) lowerCamelCase__ : Union[str, Any] ={ '''prompt''': '''A hammer hitting a wooden surface''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 2.5, } return inputs def snake_case ( self : Any )-> Optional[Any]: lowerCamelCase__ : Tuple =AudioLDMPipeline.from_pretrained('''cvssp/audioldm''' ) lowerCamelCase__ : Tuple =audioldm_pipe.to(lowerCamelCase ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase ) lowerCamelCase__ : List[Any] =self.get_inputs(lowerCamelCase ) lowerCamelCase__ : int =25 lowerCamelCase__ : Optional[Any] =audioldm_pipe(**lowerCamelCase ).audios[0] assert audio.ndim == 1 assert len(lowerCamelCase ) == 8_1920 lowerCamelCase__ : int =audio[7_7230:7_7240] lowerCamelCase__ : str =np.array( [-0.4_884, -0.4_607, 0.0_023, 0.5_007, 0.5_896, 0.5_151, 0.3_813, -0.0_208, -0.3_687, -0.4_315] ) lowerCamelCase__ : Tuple =np.abs(expected_slice - audio_slice ).max() assert max_diff < 1E-2 def snake_case ( self : List[str] )-> Union[str, Any]: lowerCamelCase__ : Dict =AudioLDMPipeline.from_pretrained('''cvssp/audioldm''' ) lowerCamelCase__ : List[Any] =LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) lowerCamelCase__ : Optional[int] =audioldm_pipe.to(lowerCamelCase ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase ) lowerCamelCase__ : Tuple =self.get_inputs(lowerCamelCase ) lowerCamelCase__ : Optional[int] =audioldm_pipe(**lowerCamelCase ).audios[0] assert audio.ndim == 1 assert len(lowerCamelCase ) == 8_1920 lowerCamelCase__ : int =audio[2_7780:2_7790] lowerCamelCase__ : Tuple =np.array([-0.2_131, -0.0_873, -0.0_124, -0.0_189, 0.0_569, 0.1_373, 0.1_883, 0.2_886, 0.3_297, 0.2_212] ) lowerCamelCase__ : int =np.abs(expected_slice - audio_slice ).max() assert max_diff < 3E-2
272
"""simple docstring""" from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse("3.8"): import importlib_metadata else: import importlib.metadata as importlib_metadata _lowercase : List[str] = "" if version.parse(importlib_metadata.version("jiwer")) < version.parse("2.3.0"): class __SCREAMING_SNAKE_CASE ( tr.AbstractTransform ): '''simple docstring''' def __init__( self : List[Any], lowerCamelCase : str = " " )-> List[str]: lowerCamelCase__ : List[str] =sentence_delimiter def snake_case ( self : Any, lowerCamelCase : str )-> Optional[Any]: return list(lowerCamelCase ) def snake_case ( self : Optional[Any], lowerCamelCase : List[str] )-> Tuple: lowerCamelCase__ : Optional[int] =[] for sent_idx, sentence in enumerate(lowerCamelCase ): chars.extend(self.process_string(lowerCamelCase ) ) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(lowerCamelCase ) - 1: chars.append(self.sentence_delimiter ) return chars _lowercase : Optional[int] = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: _lowercase : List[str] = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) _lowercase : Dict = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n" _lowercase : List[Any] = "\\nCharacter error rate (CER) is a common metric of the performance of an automatic speech recognition system.\n\nCER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.\n\nCharacter error rate can be computed as:\n\nCER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct characters,\nN is the number of characters in the reference (N=S+D+C).\n\nCER's output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the\nperformance of the ASR system with a CER of 0 being a perfect score.\n" _lowercase : Dict = "\nComputes CER score of transcribed segments against references.\nArgs:\n references: list of references for each speech input.\n predictions: list of transcribtions to score.\n concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.\nReturns:\n (float): the character error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> cer = datasets.load_metric(\"cer\")\n >>> cer_score = cer.compute(predictions=predictions, references=references)\n >>> print(cer_score)\n 0.34146341463414637\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE ( datasets.Metric ): '''simple docstring''' def snake_case ( self : Dict )-> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { '''predictions''': datasets.Value('''string''', id='''sequence''' ), '''references''': datasets.Value('''string''', id='''sequence''' ), } ), codebase_urls=['''https://github.com/jitsi/jiwer/'''], reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', '''https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates''', ], ) def snake_case ( self : Optional[Any], lowerCamelCase : Union[str, Any], lowerCamelCase : List[str], lowerCamelCase : Dict=False )-> List[Any]: if concatenate_texts: return jiwer.compute_measures( lowerCamelCase, lowerCamelCase, truth_transform=lowerCamelCase, hypothesis_transform=lowerCamelCase, )["wer"] lowerCamelCase__ : Optional[Any] =0 lowerCamelCase__ : Union[str, Any] =0 for prediction, reference in zip(lowerCamelCase, lowerCamelCase ): lowerCamelCase__ : int =jiwer.compute_measures( lowerCamelCase, lowerCamelCase, truth_transform=lowerCamelCase, hypothesis_transform=lowerCamelCase, ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
272
1
'''simple docstring''' # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file lowerCAmelCase__ = '''Run commands across TPU VMs for initial setup before running `accelerate launch`.''' def _A ( A__=None ): """simple docstring""" if subparsers is not None: __lowercase = subparsers.add_parser('''tpu-config''' , description=_description ) else: __lowercase = argparse.ArgumentParser('''Accelerate tpu-config command''' , description=_description ) # Core arguments __lowercase = parser.add_argument_group( '''Config Arguments''' , '''Arguments that can be configured through `accelerate config`.''' ) config_args.add_argument( '''--config_file''' , type=A__ , default=A__ , help='''Path to the config file to use for accelerate.''' , ) config_args.add_argument( '''--tpu_name''' , default=A__ , help='''The name of the TPU to use. If not specified, will use the TPU specified in the config file.''' , ) config_args.add_argument( '''--tpu_zone''' , default=A__ , help='''The zone of the TPU to use. If not specified, will use the zone specified in the config file.''' , ) __lowercase = parser.add_argument_group('''TPU Arguments''' , '''Arguments for options ran inside the TPU.''' ) pod_args.add_argument( '''--use_alpha''' , action='''store_true''' , help='''Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.''' , ) pod_args.add_argument( '''--command_file''' , default=A__ , help='''The path to the file containing the commands to run on the pod on startup.''' , ) pod_args.add_argument( '''--command''' , action='''append''' , nargs='''+''' , help='''A command to run on the pod. Can be passed multiple times.''' , ) pod_args.add_argument( '''--install_accelerate''' , action='''store_true''' , help='''Whether to install accelerate on the pod. Defaults to False.''' , ) pod_args.add_argument( '''--accelerate_version''' , default='''latest''' , help='''The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.''' , ) pod_args.add_argument( '''--debug''' , action='''store_true''' , help='''If set, will print the command that would be run instead of running it.''' ) if subparsers is not None: parser.set_defaults(func=A__ ) return parser def _A ( A__ ): """simple docstring""" __lowercase = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(A__ ): __lowercase = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: __lowercase = defaults.command_file if not args.command and defaults.commands is not None: __lowercase = defaults.commands if not args.tpu_name: __lowercase = defaults.tpu_name if not args.tpu_zone: __lowercase = defaults.tpu_zone if args.accelerate_version == "dev": __lowercase = '''git+https://github.com/huggingface/accelerate.git''' elif args.accelerate_version == "latest": __lowercase = '''accelerate -U''' elif isinstance(parse(args.accelerate_version ) , A__ ): __lowercase = F"accelerate=={args.accelerate_version}" if not args.command_file and not args.command: raise ValueError('''You must specify either a command file or a command to run on the pod.''' ) if args.command_file: with open(args.command_file , '''r''' ) as f: __lowercase = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , A__ ): __lowercase = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate __lowercase = ['''cd /usr/share'''] if args.install_accelerate: new_cmd += [F"pip install {args.accelerate_version}"] new_cmd += args.command __lowercase = '''; '''.join(A__ ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess __lowercase = ['''gcloud'''] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F"Running {' '.join(A__ )}" ) return subprocess.run(A__ ) print('''Successfully setup pod.''' ) def _A ( ): """simple docstring""" __lowercase = tpu_command_parser() __lowercase = parser.parse_args() tpu_command_launcher(A__ )
104
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') __lowercase : Dict = logging.getLogger(__name__) @dataclass class __lowercase : lowerCamelCase : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) lowerCamelCase : Optional[str] = field( default=_lowercase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCamelCase : Optional[str] = field( default=_lowercase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) lowerCamelCase : Optional[str] = field( default=_lowercase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) lowerCamelCase : bool = field( default=_lowercase , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) lowerCamelCase : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) lowerCamelCase : bool = field( default=_lowercase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) @dataclass class __lowercase : lowerCamelCase : Optional[str] = field(default=_lowercase , metadata={"help": "The input training data file (a text file)."} ) lowerCamelCase : Optional[str] = field( default=_lowercase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) lowerCamelCase : bool = field( default=_lowercase , metadata={"help": "Overwrite the cached training and evaluation sets"} ) lowerCamelCase : Optional[int] = field( default=_lowercase , metadata={"help": "The number of processes to use for the preprocessing."} , ) lowerCamelCase : Optional[int] = field( default=_lowercase , metadata={ "help": ( "The maximum total input sequence length after tokenization. If passed, sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) lowerCamelCase : bool = field( default=_lowercase , metadata={ "help": ( "Whether to pad all samples to the maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." ) } , ) lowerCamelCase : Optional[int] = field( default=_lowercase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) lowerCamelCase : Optional[int] = field( default=_lowercase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def UpperCAmelCase__ (self ): if self.train_file is not None: lowerCamelCase_ : Optional[Any] = self.train_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: lowerCamelCase_ : Optional[Any] = self.validation_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class __lowercase : lowerCamelCase : PreTrainedTokenizerBase lowerCamelCase : Union[bool, str, PaddingStrategy] = True lowerCamelCase : Optional[int] = None lowerCamelCase : Optional[int] = None def __call__(self , A ): lowerCamelCase_ : List[str] = '''label''' if '''label''' in features[0].keys() else '''labels''' lowerCamelCase_ : str = [feature.pop(A ) for feature in features] lowerCamelCase_ : Any = len(A ) lowerCamelCase_ : List[Any] = len(features[0]['''input_ids'''] ) lowerCamelCase_ : Union[str, Any] = [ [{k: v[i] for k, v in feature.items()} for i in range(A )] for feature in features ] lowerCamelCase_ : str = list(chain(*A ) ) lowerCamelCase_ : Any = self.tokenizer.pad( A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) # Un-flatten lowerCamelCase_ : int = {k: v.view(A , A , -1 ) for k, v in batch.items()} # Add back labels lowerCamelCase_ : Tuple = torch.tensor(A , dtype=torch.intaa ) return batch def lowercase_ ( ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : str = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_swag''' , _lowercase , _lowercase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCamelCase_ : Optional[int] = training_args.get_process_log_level() logger.setLevel(_lowercase ) datasets.utils.logging.set_verbosity(_lowercase ) transformers.utils.logging.set_verbosity(_lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. lowerCamelCase_ : Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase_ : str = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: lowerCamelCase_ : Optional[Any] = {} if data_args.train_file is not None: lowerCamelCase_ : Union[str, Any] = data_args.train_file if data_args.validation_file is not None: lowerCamelCase_ : Tuple = data_args.validation_file lowerCamelCase_ : Optional[Any] = data_args.train_file.split('''.''' )[-1] lowerCamelCase_ : Dict = load_dataset( _lowercase , data_files=_lowercase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. lowerCamelCase_ : Optional[Any] = load_dataset( '''swag''' , '''regular''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase_ : str = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ : List[Any] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. lowerCamelCase_ : int = [F"""ending{i}""" for i in range(4 )] lowerCamelCase_ : List[Any] = '''sent1''' lowerCamelCase_ : Dict = '''sent2''' if data_args.max_seq_length is None: lowerCamelCase_ : str = tokenizer.model_max_length if max_seq_length > 1_024: logger.warning( '''The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value''' ''' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can''' ''' override this default with `--block_size xxx`.''' ) lowerCamelCase_ : Optional[int] = 1_024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) lowerCamelCase_ : Optional[int] = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(_lowercase ): lowerCamelCase_ : Tuple = [[context] * 4 for context in examples[context_name]] lowerCamelCase_ : List[Any] = examples[question_header_name] lowerCamelCase_ : Optional[Any] = [ [F"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(_lowercase ) ] # Flatten out lowerCamelCase_ : Optional[Any] = list(chain(*_lowercase ) ) lowerCamelCase_ : List[Any] = list(chain(*_lowercase ) ) # Tokenize lowerCamelCase_ : List[str] = tokenizer( _lowercase , _lowercase , truncation=_lowercase , max_length=_lowercase , padding='''max_length''' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(_lowercase ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''' ) lowerCamelCase_ : Union[str, Any] = raw_datasets['''train'''] if data_args.max_train_samples is not None: lowerCamelCase_ : List[str] = min(len(_lowercase ) , data_args.max_train_samples ) lowerCamelCase_ : List[str] = train_dataset.select(range(_lowercase ) ) with training_args.main_process_first(desc='''train dataset map pre-processing''' ): lowerCamelCase_ : Dict = train_dataset.map( _lowercase , batched=_lowercase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''' ) lowerCamelCase_ : Optional[int] = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: lowerCamelCase_ : Optional[int] = min(len(_lowercase ) , data_args.max_eval_samples ) lowerCamelCase_ : Any = eval_dataset.select(range(_lowercase ) ) with training_args.main_process_first(desc='''validation dataset map pre-processing''' ): lowerCamelCase_ : Tuple = eval_dataset.map( _lowercase , batched=_lowercase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator lowerCamelCase_ : int = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=_lowercase , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(_lowercase ): lowerCamelCase_, lowerCamelCase_ : Optional[Any] = eval_predictions lowerCamelCase_ : Any = np.argmax(_lowercase , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer lowerCamelCase_ : Any = Trainer( model=_lowercase , args=_lowercase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=_lowercase , data_collator=_lowercase , compute_metrics=_lowercase , ) # Training if training_args.do_train: lowerCamelCase_ : int = None if training_args.resume_from_checkpoint is not None: lowerCamelCase_ : Dict = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase_ : List[Any] = last_checkpoint lowerCamelCase_ : Dict = trainer.train(resume_from_checkpoint=_lowercase ) trainer.save_model() # Saves the tokenizer too for easy upload lowerCamelCase_ : Any = train_result.metrics lowerCamelCase_ : Union[str, Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_lowercase ) ) lowerCamelCase_ : List[Any] = min(_lowercase , len(_lowercase ) ) trainer.log_metrics('''train''' , _lowercase ) trainer.save_metrics('''train''' , _lowercase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowerCamelCase_ : str = trainer.evaluate() lowerCamelCase_ : Dict = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_lowercase ) lowerCamelCase_ : Union[str, Any] = min(_lowercase , len(_lowercase ) ) trainer.log_metrics('''eval''' , _lowercase ) trainer.save_metrics('''eval''' , _lowercase ) lowerCamelCase_ : List[str] = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''multiple-choice''', '''dataset_tags''': '''swag''', '''dataset_args''': '''regular''', '''dataset''': '''SWAG''', '''language''': '''en''', } if training_args.push_to_hub: trainer.push_to_hub(**_lowercase ) else: trainer.create_model_card(**_lowercase ) def lowercase_ ( _lowercase ) -> Dict: '''simple docstring''' main() if __name__ == "__main__": main()
318
0
import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() SCREAMING_SNAKE_CASE_:List[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_:List[str] = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } SCREAMING_SNAKE_CASE_:int = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Tuple: """simple docstring""" for attribute in key.split(""".""" ): A : str = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) if weight_type is not None: A : List[str] = getattr(lowerCAmelCase__ , lowerCAmelCase__ ).shape else: A : List[Any] = hf_pointer.shape assert hf_shape == value.shape, ( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": A : List[Any] = value elif weight_type == "weight_g": A : List[str] = value elif weight_type == "weight_v": A : Tuple = value elif weight_type == "bias": A : List[Any] = value else: A : Union[str, Any] = value logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> str: """simple docstring""" A : Optional[int] = [] A : int = fairseq_model.state_dict() A : Tuple = hf_model.feature_extractor A : Dict = hf_model.adapter for name, value in fairseq_dict.items(): A : List[str] = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , hf_model.config.feat_extract_norm == """group""" , ) A : Optional[Any] = True elif any(x in name for x in ["""adaptor""", """w2v_encoder.proj.""", """w2v_proj_ln."""] ): load_adapter(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) A : Dict = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: A : Union[str, Any] = True if "*" in mapped_key: A : List[str] = name.split(lowerCAmelCase__ )[0].split(""".""" )[-2] A : int = mapped_key.replace("""*""" , lowerCAmelCase__ ) if "weight_g" in name: A : int = """weight_g""" elif "weight_v" in name: A : str = """weight_v""" elif "bias" in name: A : int = """bias""" elif "weight" in name: A : Optional[Any] = """weight""" else: A : Tuple = None set_recursively(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) continue if not is_used: unused_weights.append(lowerCAmelCase__ ) logger.warning(f'''Unused weights: {unused_weights}''' ) def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Any: """simple docstring""" A : List[str] = full_name.split("""conv_layers.""" )[-1] A : int = name.split(""".""" ) A : Optional[int] = int(items[0] ) A : int = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) A : Tuple = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) A : Union[str, Any] = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) A : Union[str, Any] = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) A : Union[str, Any] = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowerCAmelCase__ ) def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[Any]: """simple docstring""" A : Optional[Any] = full_name.split("""adaptor.""" )[-1] A : List[str] = name.split(""".""" ) if items[1].isdigit(): A : Any = int(items[1] ) else: A : List[Any] = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.''' A : Dict = value logger.info(f'''Adapter proj layer norm bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.''' A : Tuple = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.''' A : Tuple = value logger.info(f'''Adapter proj layer bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.''' A : str = value logger.info(f'''Adapter proj layer weight was initialized from {full_name}.''' ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.''' A : Optional[Any] = value logger.info(f'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.''' A : str = value logger.info(f'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) else: unused_weights.append(lowerCAmelCase__ ) def __UpperCamelCase ( _lowerCAmelCase ) -> Tuple: """simple docstring""" A , A : Any = emb.weight.shape A : List[str] = nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ , bias=lowerCAmelCase__ ) A : Union[str, Any] = emb.weight.data return lin_layer @torch.no_grad() def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) -> Optional[Any]: """simple docstring""" A : int = WavaVecaConfig.from_pretrained( lowerCAmelCase__ , add_adapter=lowerCAmelCase__ , adapter_stride=lowerCAmelCase__ , adapter_kernel_size=lowerCAmelCase__ , use_auth_token=lowerCAmelCase__ , output_hidden_size=lowerCAmelCase__ , ) A : int = MBartConfig.from_pretrained(lowerCAmelCase__ ) # load model A , A , A : Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ """config_yaml""": config_yaml_path, """data""": """/""".join(dict_path.split("""/""" )[:-1] ), """w2v_path""": checkpoint_path, """load_pretrained_decoder_from""": None, } , ) A : int = model[0].eval() # load feature extractor A : Dict = WavaVecaFeatureExtractor.from_pretrained(lowerCAmelCase__ , use_auth_token=lowerCAmelCase__ ) # set weights for wav2vec2 encoder A : Optional[Any] = WavaVecaModel(lowerCAmelCase__ ) recursively_load_weights_wavaveca(model.encoder , lowerCAmelCase__ ) # load decoder weights A : int = MBartForCausalLM(lowerCAmelCase__ ) A , A : Tuple = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=lowerCAmelCase__ ) logger.warning(f'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(f'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) A : str = SpeechEncoderDecoderModel(encoder=lowerCAmelCase__ , decoder=lowerCAmelCase__ ) A : Any = False A : List[str] = MBartaaTokenizer(lowerCAmelCase__ ) tokenizer.save_pretrained(lowerCAmelCase__ ) A : int = hf_wavavec.config.to_dict() A : List[Any] = tokenizer.pad_token_id A : Optional[Any] = tokenizer.bos_token_id A : Optional[Any] = tokenizer.eos_token_id A : Union[str, Any] = """mbart50""" A : str = """wav2vec2""" A : List[str] = tokenizer.eos_token_id A : int = 25_0004 A : List[Any] = tokenizer.eos_token_id A : Any = SpeechEncoderDecoderConfig.from_dict(lowerCAmelCase__ ) hf_wavavec.save_pretrained(lowerCAmelCase__ ) feature_extractor.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_:Union[str, Any] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_yaml_path""", default=None, type=str, help="""Path to yaml file of fine-tuned model""") parser.add_argument( """--encoder_config_path""", default="""facebook/wav2vec2-xls-r-1b""", type=str, help="""Path to hf encoder wav2vec2 checkpoint config""", ) parser.add_argument( """--decoder_config_path""", default="""facebook/mbart-large-50-one-to-many-mmt""", type=str, help="""Path to hf decoder checkpoint config""", ) parser.add_argument("""--add_adapter""", default=True, type=bool, help="""whethere to add model adapter layers""") parser.add_argument("""--adapter_stride""", default=2, type=int, help="""stride of adapter layers""") parser.add_argument("""--adapter_kernel_size""", default=3, type=int, help="""kernel size of adapter layers""") parser.add_argument("""--encoder_output_dim""", default=1_024, type=int, help="""encoder output dim""") parser.add_argument("""--start_token_id""", default=250_004, type=int, help="""`decoder_start_token_id` of model config""") SCREAMING_SNAKE_CASE_:Dict = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
359
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE_:Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_:int = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } SCREAMING_SNAKE_CASE_:Tuple = { """vocab_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json""" }, """merges_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt""" }, """tokenizer_config_file""": { """facebook/blenderbot_small-90M""": ( """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json""" ) }, } SCREAMING_SNAKE_CASE_:Optional[int] = {"""facebook/blenderbot_small-90M""": 512} def __UpperCamelCase ( _lowerCAmelCase ) -> Dict: """simple docstring""" A : Optional[int] = set() A : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) A : List[Any] = char A : Optional[int] = set(_lowerCAmelCase ) return pairs class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = VOCAB_FILES_NAMES __lowerCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : int = ["input_ids", "attention_mask"] def __init__( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__="__start__", lowerCamelCase__="__end__", lowerCamelCase__="__unk__", lowerCamelCase__="__null__", **lowerCamelCase__, ): super().__init__(unk_token=lowerCamelCase__, bos_token=lowerCamelCase__, eos_token=lowerCamelCase__, pad_token=lowerCamelCase__, **lowerCamelCase__ ) with open(lowerCamelCase__, encoding="""utf-8""" ) as vocab_handle: A : Tuple = json.load(lowerCamelCase__ ) A : Optional[Any] = {v: k for k, v in self.encoder.items()} with open(lowerCamelCase__, encoding="""utf-8""" ) as merges_handle: A : str = merges_handle.read().split("""\n""" )[1:-1] A : List[str] = [tuple(merge.split() ) for merge in merges] A : int = dict(zip(lowerCamelCase__, range(len(lowerCamelCase__ ) ) ) ) A : Optional[int] = {} @property def _lowerCAmelCase ( self ): return len(self.encoder ) def _lowerCAmelCase ( self ): return dict(self.encoder, **self.added_tokens_encoder ) def _lowerCAmelCase ( self, lowerCamelCase__ ): if token in self.cache: return self.cache[token] A : Optional[int] = re.sub("""([.,!?()])""", R""" \1""", lowerCamelCase__ ) A : List[Any] = re.sub("""(')""", R""" \1 """, lowerCamelCase__ ) A : int = re.sub(R"""\s{2,}""", """ """, lowerCamelCase__ ) if "\n" in token: A : Dict = token.replace("""\n""", """ __newln__""" ) A : Tuple = token.split(""" """ ) A : Union[str, Any] = [] for token in tokens: if not len(lowerCamelCase__ ): continue A : Optional[int] = token.lower() A : Optional[Any] = tuple(lowerCamelCase__ ) A : int = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) A : Tuple = get_pairs(lowerCamelCase__ ) if not pairs: words.append(lowerCamelCase__ ) continue while True: A : Any = min(lowerCamelCase__, key=lambda lowerCamelCase__ : self.bpe_ranks.get(lowerCamelCase__, float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break A , A : Any = bigram A : Optional[Any] = [] A : Any = 0 while i < len(lowerCamelCase__ ): try: A : List[str] = word.index(lowerCamelCase__, lowerCamelCase__ ) new_word.extend(word[i:j] ) A : Dict = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(lowerCamelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A : Tuple = tuple(lowerCamelCase__ ) A : int = new_word if len(lowerCamelCase__ ) == 1: break else: A : Dict = get_pairs(lowerCamelCase__ ) A : Any = """@@ """.join(lowerCamelCase__ ) A : Dict = word[:-4] A : Union[str, Any] = word words.append(lowerCamelCase__ ) return " ".join(lowerCamelCase__ ) def _lowerCAmelCase ( self, lowerCamelCase__ ): A : int = [] A : Optional[Any] = re.findall(R"""\S+\n?""", lowerCamelCase__ ) for token in words: split_tokens.extend(list(self.bpe(lowerCamelCase__ ).split(""" """ ) ) ) return split_tokens def _lowerCAmelCase ( self, lowerCamelCase__ ): A : List[Any] = token.lower() return self.encoder.get(lowerCamelCase__, self.encoder.get(self.unk_token ) ) def _lowerCAmelCase ( self, lowerCamelCase__ ): return self.decoder.get(lowerCamelCase__, self.unk_token ) def _lowerCAmelCase ( self, lowerCamelCase__ ): A : Dict = """ """.join(lowerCamelCase__ ).replace("""@@ """, """""" ).strip() return out_string def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ = None ): if not os.path.isdir(lowerCamelCase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return A : str = os.path.join( lowerCamelCase__, (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) A : int = os.path.join( lowerCamelCase__, (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(lowerCamelCase__, """w""", encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=lowerCamelCase__, ensure_ascii=lowerCamelCase__ ) + """\n""" ) A : str = 0 with open(lowerCamelCase__, """w""", encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda lowerCamelCase__ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' """ Please check that the tokenizer is not corrupted!""" ) A : List[Any] = token_index writer.write(""" """.join(lowerCamelCase__ ) + """\n""" ) index += 1 return vocab_file, merge_file
115
0
import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _lowercase ( snake_case_ , unittest.TestCase ): lowercase = XLMTokenizer lowercase = False def SCREAMING_SNAKE_CASE__ ( self : Any ) -> List[Any]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase_ : List[Any] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] UpperCamelCase_ : str = dict(zip(snake_case , range(len(snake_case ) ) ) ) UpperCamelCase_ : Tuple = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] UpperCamelCase_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) UpperCamelCase_ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' ) as fp: fp.write(json.dumps(snake_case ) ) with open(self.merges_file , 'w' ) as fp: fp.write('\n'.join(snake_case ) ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , snake_case : Union[str, Any] ) -> int: """simple docstring""" UpperCamelCase_ : Tuple = 'lower newer' UpperCamelCase_ : Optional[int] = 'lower newer' return input_text, output_text def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" UpperCamelCase_ : int = XLMTokenizer(self.vocab_file , self.merges_file ) UpperCamelCase_ : List[str] = 'lower' UpperCamelCase_ : Optional[int] = ['low', 'er</w>'] UpperCamelCase_ : Optional[Any] = tokenizer.tokenize(snake_case ) self.assertListEqual(snake_case , snake_case ) UpperCamelCase_ : List[Any] = tokens + ['<unk>'] UpperCamelCase_ : int = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case ) , snake_case ) @slow def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : int = XLMTokenizer.from_pretrained('xlm-mlm-en-2048' ) UpperCamelCase_ : int = tokenizer.encode('sequence builders' , add_special_tokens=snake_case ) UpperCamelCase_ : Optional[int] = tokenizer.encode('multi-sequence build' , add_special_tokens=snake_case ) UpperCamelCase_ : Tuple = tokenizer.build_inputs_with_special_tokens(snake_case ) UpperCamelCase_ : Any = tokenizer.build_inputs_with_special_tokens(snake_case , snake_case ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
175
import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int a_ = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class _lowercase ( datasets.BuilderConfig ): lowercase = None def __lowercase ( lowerCamelCase : "pyspark.sql.DataFrame" , lowerCamelCase : List[int] , ): import pyspark def generate_fn(): UpperCamelCase_ : Dict = df.select('*' , pyspark.sql.functions.spark_partition_id().alias('part_id' ) ) for partition_id in partition_order: UpperCamelCase_ : Tuple = df_with_partition_id.select('*' ).where(F"part_id = {partition_id}" ).drop('part_id' ) UpperCamelCase_ : Union[str, Any] = partition_df.collect() UpperCamelCase_ : Any = 0 for row in rows: yield F"{partition_id}_{row_id}", row.asDict() row_id += 1 return generate_fn class _lowercase ( _BaseExamplesIterable ): def __init__( self : Optional[int] , snake_case : "pyspark.sql.DataFrame" , snake_case : Tuple=None , ) -> Tuple: """simple docstring""" UpperCamelCase_ : Dict = df UpperCamelCase_ : int = partition_order or range(self.df.rdd.getNumPartitions() ) UpperCamelCase_ : Optional[Any] = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self : Optional[int] ) -> Any: """simple docstring""" yield from self.generate_examples_fn() def SCREAMING_SNAKE_CASE__ ( self : Any , snake_case : np.random.Generator ) -> "SparkExamplesIterable": """simple docstring""" UpperCamelCase_ : Optional[Any] = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(snake_case ) return SparkExamplesIterable(self.df , partition_order=snake_case ) def SCREAMING_SNAKE_CASE__ ( self : int , snake_case : int , snake_case : int ) -> "SparkExamplesIterable": """simple docstring""" UpperCamelCase_ : Tuple = self.split_shard_indices_by_worker(snake_case , snake_case ) return SparkExamplesIterable(self.df , partition_order=snake_case ) @property def SCREAMING_SNAKE_CASE__ ( self : int ) -> int: """simple docstring""" return len(self.partition_order ) class _lowercase ( datasets.DatasetBuilder ): lowercase = SparkConfig def __init__( self : List[Any] , snake_case : "pyspark.sql.DataFrame" , snake_case : str = None , snake_case : str = None , **snake_case : Optional[Any] , ) -> List[str]: """simple docstring""" import pyspark UpperCamelCase_ : List[Any] = pyspark.sql.SparkSession.builder.getOrCreate() UpperCamelCase_ : str = df UpperCamelCase_ : Tuple = working_dir super().__init__( cache_dir=snake_case , config_name=str(self.df.semanticHash() ) , **snake_case , ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Dict: """simple docstring""" def create_cache_and_write_probe(snake_case : str ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=snake_case ) UpperCamelCase_ : Tuple = os.path.join(self._cache_dir , 'fs_test' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(snake_case , 'a' ) return [probe_file] if self._spark.conf.get('spark.master' , '' ).startswith('local' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: UpperCamelCase_ : Tuple = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(snake_case ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( 'When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir' ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> Union[str, Any]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , snake_case : datasets.download.download_manager.DownloadManager ) -> Optional[int]: """simple docstring""" return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , snake_case : Optional[int] ) -> List[Any]: """simple docstring""" import pyspark def get_arrow_batch_size(snake_case : Dict ): for batch in it: yield pa.RecordBatch.from_pydict({'batch_bytes': [batch.nbytes]} ) UpperCamelCase_ : List[str] = self.df.count() UpperCamelCase_ : Union[str, Any] = df_num_rows if df_num_rows <= 1_0_0 else 1_0_0 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. UpperCamelCase_ : str = ( self.df.limit(snake_case ) .repartition(1 ) .mapInArrow(snake_case , 'batch_bytes: long' ) .agg(pyspark.sql.functions.sum('batch_bytes' ).alias('sample_bytes' ) ) .collect()[0] .sample_bytes / sample_num_rows ) UpperCamelCase_ : Optional[int] = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. UpperCamelCase_ : Optional[Any] = min(snake_case , int(approx_total_size / max_shard_size ) ) UpperCamelCase_ : int = self.df.repartition(snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , snake_case : str , snake_case : str , snake_case : int , ) -> Iterable[Tuple[int, bool, Union[int, tuple]]]: """simple docstring""" import pyspark UpperCamelCase_ : List[Any] = ParquetWriter if file_format == 'parquet' else ArrowWriter UpperCamelCase_ : List[str] = os.path.join(self._working_dir , os.path.basename(snake_case ) ) if self._working_dir else fpath UpperCamelCase_ : Union[str, Any] = file_format == 'parquet' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. UpperCamelCase_ : Union[str, Any] = self.config.features UpperCamelCase_ : Any = self._writer_batch_size UpperCamelCase_ : Dict = self._fs.storage_options def write_arrow(snake_case : List[str] ): # Within the same SparkContext, no two task attempts will share the same attempt ID. UpperCamelCase_ : Any = pyspark.TaskContext().taskAttemptId() UpperCamelCase_ : str = next(snake_case , snake_case ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=['task_id', 'num_examples', 'num_bytes'] , ) UpperCamelCase_ : Any = 0 UpperCamelCase_ : Optional[Any] = writer_class( features=snake_case , path=working_fpath.replace('SSSSS' , f"{shard_id:05d}" ).replace('TTTTT' , f"{task_id:05d}" ) , writer_batch_size=snake_case , storage_options=snake_case , embed_local_files=snake_case , ) UpperCamelCase_ : str = pa.Table.from_batches([first_batch] ) writer.write_table(snake_case ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: UpperCamelCase_, UpperCamelCase_ : str = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , ) shard_id += 1 UpperCamelCase_ : Union[str, Any] = writer_class( features=writer._features , path=working_fpath.replace('SSSSS' , f"{shard_id:05d}" ).replace('TTTTT' , f"{task_id:05d}" ) , writer_batch_size=snake_case , storage_options=snake_case , embed_local_files=snake_case , ) UpperCamelCase_ : Optional[Any] = pa.Table.from_batches([batch] ) writer.write_table(snake_case ) if writer._num_bytes > 0: UpperCamelCase_, UpperCamelCase_ : str = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(snake_case ) ): UpperCamelCase_ : Dict = os.path.join(os.path.dirname(snake_case ) , os.path.basename(snake_case ) ) shutil.move(snake_case , snake_case ) UpperCamelCase_ : int = ( self.df.mapInArrow(snake_case , 'task_id: long, num_examples: long, num_bytes: long' ) .groupBy('task_id' ) .agg( pyspark.sql.functions.sum('num_examples' ).alias('total_num_examples' ) , pyspark.sql.functions.sum('num_bytes' ).alias('total_num_bytes' ) , pyspark.sql.functions.count('num_bytes' ).alias('num_shards' ) , pyspark.sql.functions.collect_list('num_examples' ).alias('shard_lengths' ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def SCREAMING_SNAKE_CASE__ ( self : int , snake_case : "datasets.SplitGenerator" , snake_case : str = "arrow" , snake_case : Optional[Union[str, int]] = None , snake_case : Optional[int] = None , **snake_case : Any , ) -> int: """simple docstring""" self._validate_cache_dir() UpperCamelCase_ : Optional[int] = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(snake_case ) UpperCamelCase_ : List[str] = not is_remote_filesystem(self._fs ) UpperCamelCase_ : List[Any] = os.path.join if is_local else posixpath.join UpperCamelCase_ : Optional[int] = '-TTTTT-SSSSS-of-NNNNN' UpperCamelCase_ : Dict = f"{self.name}-{split_generator.name}{SUFFIX}.{file_format}" UpperCamelCase_ : int = path_join(self._output_dir , snake_case ) UpperCamelCase_ : int = 0 UpperCamelCase_ : Optional[int] = 0 UpperCamelCase_ : Union[str, Any] = 0 UpperCamelCase_ : Optional[Any] = [] UpperCamelCase_ : Any = [] for task_id, content in self._prepare_split_single(snake_case , snake_case , snake_case ): ( ( UpperCamelCase_ ), ( UpperCamelCase_ ), ( UpperCamelCase_ ), ( UpperCamelCase_ ), ) : Optional[Any] = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(snake_case ) UpperCamelCase_ : Optional[Any] = total_num_examples UpperCamelCase_ : Any = total_num_bytes # should rename everything at the end logger.debug(f"Renaming {total_shards} shards." ) if total_shards > 1: UpperCamelCase_ : List[Any] = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. UpperCamelCase_ : int = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( snake_case : int , snake_case : int , snake_case : int , ): rename( snake_case , fpath.replace('SSSSS' , f"{shard_id:05d}" ).replace('TTTTT' , f"{task_id:05d}" ) , fpath.replace('TTTTT-SSSSS' , f"{global_shard_id:05d}" ).replace('NNNNN' , f"{total_shards:05d}" ) , ) UpperCamelCase_ : Any = [] UpperCamelCase_ : Optional[int] = 0 for i in range(len(snake_case ) ): UpperCamelCase_, UpperCamelCase_ : Union[str, Any] = task_id_and_num_shards[i] for shard_id in range(snake_case ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(snake_case , len(snake_case ) ).map(lambda snake_case : _rename_shard(*snake_case ) ).collect() else: # don't use any pattern UpperCamelCase_ : Tuple = 0 UpperCamelCase_ : Optional[Any] = task_id_and_num_shards[0][0] self._rename( fpath.replace('SSSSS' , f"{shard_id:05d}" ).replace('TTTTT' , f"{task_id:05d}" ) , fpath.replace(snake_case , '' ) , ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , snake_case : "datasets.SplitGenerator" , ) -> SparkExamplesIterable: """simple docstring""" return SparkExamplesIterable(self.df )
175
1
from string import ascii_uppercase __a :Dict = {char: i for i, char in enumerate(ascii_uppercase)} __a :int = dict(enumerate(ascii_uppercase)) def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : str ): """simple docstring""" A_ = len(__UpperCamelCase ) A_ = 0 while True: if x == i: A_ = 0 if len(__UpperCamelCase ) == len(__UpperCamelCase ): break key += key[i] i += 1 return key def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : str ): """simple docstring""" A_ = "" A_ = 0 for letter in message: if letter == " ": cipher_text += " " else: A_ = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : str ): """simple docstring""" A_ = "" A_ = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: A_ = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def __snake_case ( ): """simple docstring""" A_ = "THE GERMAN ATTACK" A_ = "SECRET" A_ = generate_key(__UpperCamelCase ,__UpperCamelCase ) A_ = cipher_text(__UpperCamelCase ,__UpperCamelCase ) print(f'''Encrypted Text = {s}''' ) print(f'''Original Text = {original_text(__UpperCamelCase ,__UpperCamelCase )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
329
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class _a ( unittest.TestCase ): """simple docstring""" def __A ( self : int ): A_ = tempfile.mkdtemp() A_ = BlipImageProcessor() A_ = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" ) A_ = BlipProcessor(UpperCAmelCase , UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def __A ( self : Optional[int] , **UpperCAmelCase : Union[str, Any] ): return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ).tokenizer def __A ( self : Optional[Any] , **UpperCAmelCase : int ): return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ).image_processor def __A ( self : Any ): shutil.rmtree(self.tmpdirname ) def __A ( self : Dict ): A_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] A_ = [Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __A ( self : Any ): A_ = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A_ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) A_ = self.get_image_processor(do_normalize=UpperCAmelCase , padding_value=1.0 ) A_ = BlipProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase ) def __A ( self : Dict ): A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) A_ = self.prepare_image_inputs() A_ = image_processor(UpperCAmelCase , return_tensors="np" ) A_ = processor(images=UpperCAmelCase , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __A ( self : int ): A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) A_ = "lower newer" A_ = processor(text=UpperCAmelCase ) A_ = tokenizer(UpperCAmelCase , return_token_type_ids=UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __A ( self : Tuple ): A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) A_ = "lower newer" A_ = self.prepare_image_inputs() A_ = processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase ): processor() def __A ( self : Any ): A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) A_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A_ = processor.batch_decode(UpperCAmelCase ) A_ = tokenizer.batch_decode(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def __A ( self : Optional[Any] ): A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) A_ = "lower newer" A_ = self.prepare_image_inputs() A_ = processor(text=UpperCAmelCase , images=UpperCAmelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
329
1
'''simple docstring''' def _lowerCamelCase ( lowercase : list , lowercase : int , lowercase : int = 0 , lowercase : int = 0 ) -> int: _a = right or len(lowercase ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(lowercase , lowercase , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
63
import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase : Optional[Any] = 16 lowerCAmelCase : List[str] = 32 def A_ ( _UpperCAmelCase , _UpperCAmelCase = 16 ): SCREAMING_SNAKE_CASE_: Tuple = AutoTokenizer.from_pretrained("bert-base-cased" ) SCREAMING_SNAKE_CASE_: List[Any] = load_dataset("glue" , "mrpc" ) def tokenize_function(_UpperCAmelCase ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE_: Any = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE_: Tuple = datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_UpperCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE_: List[str] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE_: List[Any] = 16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE_: Optional[Any] = 8 else: SCREAMING_SNAKE_CASE_: List[str] = None return tokenizer.pad( _UpperCAmelCase , padding="longest" , max_length=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_tensors="pt" , ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE_: Dict = DataLoader( tokenized_datasets["train"] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase , drop_last=_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] = DataLoader( tokenized_datasets["validation"] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase , drop_last=(accelerator.mixed_precision == "fp8") , ) return train_dataloader, eval_dataloader def A_ ( _UpperCAmelCase , _UpperCAmelCase ): # Initialize accelerator SCREAMING_SNAKE_CASE_: str = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE_: int = config["lr"] SCREAMING_SNAKE_CASE_: Any = int(config["num_epochs"] ) SCREAMING_SNAKE_CASE_: Optional[int] = int(config["seed"] ) SCREAMING_SNAKE_CASE_: List[Any] = int(config["batch_size"] ) SCREAMING_SNAKE_CASE_: List[str] = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation SCREAMING_SNAKE_CASE_: Optional[int] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: SCREAMING_SNAKE_CASE_: Tuple = batch_size // MAX_GPU_BATCH_SIZE SCREAMING_SNAKE_CASE_: Dict = MAX_GPU_BATCH_SIZE set_seed(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = get_dataloaders(_UpperCAmelCase , _UpperCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE_: List[Any] = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=_UpperCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE_: Tuple = model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE_: Optional[int] = AdamW(params=model.parameters() , lr=_UpperCAmelCase ) # Instantiate scheduler SCREAMING_SNAKE_CASE_: Optional[int] = get_linear_schedule_with_warmup( optimizer=_UpperCAmelCase , num_warmup_steps=1_00 , num_training_steps=(len(_UpperCAmelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] = accelerator.prepare( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Now we train the model for epoch in range(_UpperCAmelCase ): model.train() for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) SCREAMING_SNAKE_CASE_: Tuple = model(**_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] = outputs.loss SCREAMING_SNAKE_CASE_: Tuple = loss / gradient_accumulation_steps accelerator.backward(_UpperCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[int] = model(**_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: int = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=_UpperCAmelCase , references=_UpperCAmelCase , ) SCREAMING_SNAKE_CASE_: List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , _UpperCAmelCase ) def A_ ( ): SCREAMING_SNAKE_CASE_: Any = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=_UpperCAmelCase , default=_UpperCAmelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) SCREAMING_SNAKE_CASE_: Optional[Any] = parser.parse_args() SCREAMING_SNAKE_CASE_: Optional[int] = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
13
0
__lowerCamelCase : Tuple = { 0: """0""", 1: """1""", 2: """2""", 3: """3""", 4: """4""", 5: """5""", 6: """6""", 7: """7""", 8: """8""", 9: """9""", 10: """a""", 11: """b""", 12: """c""", 13: """d""", 14: """e""", 15: """f""", } def SCREAMING_SNAKE_CASE ( snake_case_ : float ): assert type(snake_case_ ) in (int, float) and decimal == int(snake_case_ ) snake_case__ : Optional[Any] = int(snake_case_ ) snake_case__ : List[str] = "" snake_case__ : Optional[Any] = False if decimal < 0: snake_case__ : Optional[int] = True decimal *= -1 while decimal > 0: snake_case__ : int = divmod(snake_case_ , 16 ) snake_case__ : int = values[remainder] + hexadecimal snake_case__ : str = "0x" + hexadecimal if negative: snake_case__ : List[str] = "-" + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
364
def SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : float , snake_case_ : float ): return round(float(moles / volume ) * nfactor ) def SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : float , snake_case_ : float ): return round(float((moles * 0.08_21 * temperature) / (volume) ) ) def SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : float , snake_case_ : float ): return round(float((moles * 0.08_21 * temperature) / (pressure) ) ) def SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : float , snake_case_ : float ): return round(float((pressure * volume) / (0.08_21 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
286
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { 's-JoL/Open-Llama-V1': 'https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json', } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Any = "open-llama" def __init__( self , A_=100000 , A_=4096 , A_=11008 , A_=32 , A_=32 , A_="silu" , A_=2048 , A_=0.02 , A_=1E-6 , A_=True , A_=0 , A_=1 , A_=2 , A_=False , A_=True , A_=0.1 , A_=0.1 , A_=True , A_=True , A_=None , **A_ , ) -> List[Any]: __UpperCamelCase =vocab_size __UpperCamelCase =max_position_embeddings __UpperCamelCase =hidden_size __UpperCamelCase =intermediate_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =hidden_act __UpperCamelCase =initializer_range __UpperCamelCase =rms_norm_eps __UpperCamelCase =use_cache __UpperCamelCase =kwargs.pop( 'use_memorry_efficient_attention' , A_ ) __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_dropout_prob __UpperCamelCase =use_stable_embedding __UpperCamelCase =shared_input_output_embedding __UpperCamelCase =rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , tie_word_embeddings=A_ , **A_ , ) def _a ( self ) -> List[str]: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , A_ ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' f'got {self.rope_scaling}' ) __UpperCamelCase =self.rope_scaling.get('type' , A_ ) __UpperCamelCase =self.rope_scaling.get('factor' , A_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}' ) if rope_scaling_factor is None or not isinstance(A_ , A_ ) or rope_scaling_factor <= 1.0: raise ValueError(f'`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}' )
62
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class lowerCamelCase_ : """simple docstring""" def __init__( self : Tuple , _a : List[Any] , _a : Dict=2 , _a : Dict=32 , _a : int=16 , _a : str=3 , _a : Optional[int]=True , _a : List[Any]=True , _a : int=32 , _a : int=4 , _a : Optional[Any]=[0, 1, 2, 3] , _a : int=4 , _a : Union[str, Any]=37 , _a : List[str]="gelu" , _a : List[str]=0.1 , _a : List[str]=0.1 , _a : Union[str, Any]=0.02 , _a : str=3 , _a : int=[1, 384, 24, 24] , _a : Optional[Any]=True , _a : Tuple=None , ) -> Tuple: __lowerCamelCase : Dict = parent __lowerCamelCase : List[Any] = batch_size __lowerCamelCase : int = image_size __lowerCamelCase : Any = patch_size __lowerCamelCase : Tuple = num_channels __lowerCamelCase : Dict = is_training __lowerCamelCase : List[str] = use_labels __lowerCamelCase : Union[str, Any] = hidden_size __lowerCamelCase : List[Any] = num_hidden_layers __lowerCamelCase : List[Any] = backbone_out_indices __lowerCamelCase : Tuple = num_attention_heads __lowerCamelCase : Optional[Any] = intermediate_size __lowerCamelCase : Any = hidden_act __lowerCamelCase : List[str] = hidden_dropout_prob __lowerCamelCase : Tuple = attention_probs_dropout_prob __lowerCamelCase : List[str] = initializer_range __lowerCamelCase : Dict = num_labels __lowerCamelCase : List[Any] = backbone_featmap_shape __lowerCamelCase : Optional[int] = scope __lowerCamelCase : str = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) __lowerCamelCase : Union[str, Any] = (image_size // patch_size) ** 2 __lowerCamelCase : Optional[Any] = num_patches + 1 def _lowercase ( self : Dict ) -> Any: __lowerCamelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase : List[str] = None if self.use_labels: __lowerCamelCase : Dict = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __lowerCamelCase : Dict = self.get_config() return config, pixel_values, labels def _lowercase ( self : Optional[Any] ) -> List[str]: __lowerCamelCase : Optional[Any] = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, 'hidden_sizes': [96, 192, 384, 768], 'num_groups': 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_a , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=_a , backbone_featmap_shape=self.backbone_featmap_shape , ) def _lowercase ( self : Optional[int] , _a : int , _a : str , _a : Optional[int] ) -> Optional[int]: __lowerCamelCase : Any = DPTModel(config=_a ) model.to(_a ) model.eval() __lowerCamelCase : List[str] = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : Optional[Any] , _a : Union[str, Any] , _a : Optional[Any] , _a : List[Any] ) -> List[Any]: __lowerCamelCase : Dict = self.num_labels __lowerCamelCase : List[Any] = DPTForDepthEstimation(_a ) model.to(_a ) model.eval() __lowerCamelCase : List[str] = model(_a ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def _lowercase ( self : List[str] , _a : Optional[Any] , _a : Tuple , _a : Tuple ) -> List[Any]: __lowerCamelCase : Union[str, Any] = self.num_labels __lowerCamelCase : Optional[Any] = DPTForSemanticSegmentation(_a ) model.to(_a ) model.eval() __lowerCamelCase : int = model(_a , labels=_a ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def _lowercase ( self : Optional[Any] ) -> Union[str, Any]: __lowerCamelCase : Tuple = self.prepare_config_and_inputs() __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase : str = config_and_inputs __lowerCamelCase : Optional[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowerCamelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" a_ =(DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () a_ =( { """depth-estimation""": DPTForDepthEstimation, """feature-extraction""": DPTModel, """image-segmentation""": DPTForSemanticSegmentation, } if is_torch_available() else {} ) a_ =False a_ =False a_ =False def _lowercase ( self : Dict ) -> Any: __lowerCamelCase : Optional[Any] = DPTModelTester(self ) __lowerCamelCase : Union[str, Any] = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 ) def _lowercase ( self : Tuple ) -> Union[str, Any]: self.config_tester.run_common_tests() @unittest.skip(reason='DPT does not use inputs_embeds' ) def _lowercase ( self : Dict ) -> Union[str, Any]: pass def _lowercase ( self : Dict ) -> str: __lowerCamelCase ,__lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : Union[str, Any] = model_class(_a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowerCamelCase : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a , nn.Linear ) ) def _lowercase ( self : List[str] ) -> Any: __lowerCamelCase ,__lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : str = model_class(_a ) __lowerCamelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase : Optional[Any] = [*signature.parameters.keys()] __lowerCamelCase : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _a ) def _lowercase ( self : Dict ) -> Any: __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def _lowercase ( self : Union[str, Any] ) -> int: __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*_a ) def _lowercase ( self : List[Any] ) -> Any: __lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_a ) def _lowercase ( self : Optional[int] ) -> Dict: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __lowerCamelCase ,__lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : Optional[int] = True if model_class in get_values(_a ): continue __lowerCamelCase : Tuple = model_class(_a ) model.to(_a ) model.train() __lowerCamelCase : str = self._prepare_for_class(_a , _a , return_labels=_a ) __lowerCamelCase : Dict = model(**_a ).loss loss.backward() def _lowercase ( self : Union[str, Any] ) -> str: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __lowerCamelCase ,__lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : Tuple = False __lowerCamelCase : List[str] = True if model_class in get_values(_a ) or not model_class.supports_gradient_checkpointing: continue __lowerCamelCase : Optional[int] = model_class(_a ) model.to(_a ) model.gradient_checkpointing_enable() model.train() __lowerCamelCase : List[Any] = self._prepare_for_class(_a , _a , return_labels=_a ) __lowerCamelCase : str = model(**_a ).loss loss.backward() def _lowercase ( self : Dict ) -> Optional[Any]: __lowerCamelCase ,__lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : Union[str, Any] = _config_zero_init(_a ) for model_class in self.all_model_classes: __lowerCamelCase : List[Any] = model_class(config=_a ) # Skip the check for the backbone __lowerCamelCase : Any = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": __lowerCamelCase : Dict = [f'{name}.{key}' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _lowercase ( self : Dict ) -> Optional[int]: pass @slow def _lowercase ( self : Any ) -> int: for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: __lowerCamelCase : Union[str, Any] = DPTModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def _lowercase ( self : List[Any] ) -> List[Any]: # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type __lowerCamelCase ,__lowerCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : List[Any] = 'add' with self.assertRaises(_a ): __lowerCamelCase : int = DPTForDepthEstimation(_a ) def a_ ( ) -> str: __lowerCamelCase : List[str] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision @slow class lowerCamelCase_ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Dict ) -> Tuple: __lowerCamelCase : Any = DPTImageProcessor.from_pretrained('Intel/dpt-hybrid-midas' ) __lowerCamelCase : Any = DPTForDepthEstimation.from_pretrained('Intel/dpt-hybrid-midas' ).to(_a ) __lowerCamelCase : Any = prepare_img() __lowerCamelCase : Dict = image_processor(images=_a , return_tensors='pt' ).to(_a ) # forward pass with torch.no_grad(): __lowerCamelCase : Any = model(**_a ) __lowerCamelCase : Any = outputs.predicted_depth # verify the predicted depth __lowerCamelCase : int = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , _a ) __lowerCamelCase : Tuple = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(_a ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , _a , atol=1e-4 ) )
208
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : Any = { '''configuration_clap''': [ '''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ClapAudioConfig''', '''ClapConfig''', '''ClapTextConfig''', ], '''processing_clap''': ['''ClapProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Tuple = [ '''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ClapModel''', '''ClapPreTrainedModel''', '''ClapTextModel''', '''ClapTextModelWithProjection''', '''ClapAudioModel''', '''ClapAudioModelWithProjection''', ] _lowerCAmelCase : int = ['''ClapFeatureExtractor'''] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys _lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
70
from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
70
1
"""simple docstring""" import colorsys from PIL import Image # type: ignore def lowercase_ ( _snake_case ,_snake_case ,_snake_case ): SCREAMING_SNAKE_CASE__ : List[str] = x SCREAMING_SNAKE_CASE__ : Optional[int] = y for step in range(_snake_case ): # noqa: B007 SCREAMING_SNAKE_CASE__ : str = a * a - b * b + x SCREAMING_SNAKE_CASE__ : str = 2 * a * b + y SCREAMING_SNAKE_CASE__ : str = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def lowercase_ ( _snake_case ): if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def lowercase_ ( _snake_case ): if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(_snake_case ,1 ,1 ) ) def lowercase_ ( _snake_case = 800 ,_snake_case = 600 ,_snake_case = -0.6 ,_snake_case = 0 ,_snake_case = 3.2 ,_snake_case = 50 ,_snake_case = True ,): SCREAMING_SNAKE_CASE__ : Tuple = Image.new("""RGB""" ,(image_width, image_height) ) SCREAMING_SNAKE_CASE__ : Dict = img.load() # loop through the image-coordinates for image_x in range(_snake_case ): for image_y in range(_snake_case ): # determine the figure-coordinates based on the image-coordinates SCREAMING_SNAKE_CASE__ : Union[str, Any] = figure_width / image_width * image_height SCREAMING_SNAKE_CASE__ : Any = figure_center_x + (image_x / image_width - 0.5) * figure_width SCREAMING_SNAKE_CASE__ : Any = figure_center_y + (image_y / image_height - 0.5) * figure_height SCREAMING_SNAKE_CASE__ : str = get_distance(_snake_case ,_snake_case ,_snake_case ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: SCREAMING_SNAKE_CASE__ : List[Any] = get_color_coded_rgb(_snake_case ) else: SCREAMING_SNAKE_CASE__ : List[str] = get_black_and_white_rgb(_snake_case ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure UpperCAmelCase__ : str = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
25
import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class lowercase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): lowercase_ : Union[str, Any] =RoCBertTokenizer lowercase_ : str =None lowercase_ : Optional[Any] =False lowercase_ : Any =True lowercase_ : int =filter_non_english def A__ ( self): super().setUp() lowercase = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''你''', '''好''', '''是''', '''谁''', '''a''', '''b''', '''c''', '''d'''] lowercase = {} lowercase = {} for i, value in enumerate(A__): lowercase = i lowercase = i lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file''']) lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''word_shape_file''']) lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''word_pronunciation_file''']) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''') as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens])) with open(self.word_shape_file ,'''w''' ,encoding='''utf-8''') as word_shape_writer: json.dump(A__ ,A__ ,ensure_ascii=A__) with open(self.word_pronunciation_file ,'''w''' ,encoding='''utf-8''') as word_pronunciation_writer: json.dump(A__ ,A__ ,ensure_ascii=A__) def A__ ( self): lowercase = self.tokenizer_class(self.vocab_file ,self.word_shape_file ,self.word_pronunciation_file) lowercase = tokenizer.tokenize('''你好[SEP]你是谁''') self.assertListEqual(A__ ,['''你''', '''好''', '''[SEP]''', '''你''', '''是''', '''谁''']) self.assertListEqual(tokenizer.convert_tokens_to_ids(A__) ,[5, 6, 2, 5, 7, 8]) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(A__) ,[5, 6, 2, 5, 7, 8]) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(A__) ,[5, 6, 2, 5, 7, 8]) def A__ ( self): lowercase = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''') ,['''ah''', '''\u535A''', '''\u63A8''', '''zz''']) def A__ ( self): lowercase = RoCBertBasicTokenizer(do_lower_case=A__) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''') ,['''hello''', '''!''', '''how''', '''are''', '''you''', '''?''']) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''') ,['''hello''']) def A__ ( self): lowercase = RoCBertBasicTokenizer(do_lower_case=A__ ,strip_accents=A__) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''') ,['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?''']) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''') ,['''h\u00E9llo''']) def A__ ( self): lowercase = RoCBertBasicTokenizer(do_lower_case=A__ ,strip_accents=A__) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''') ,['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?''']) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''') ,['''hello''']) def A__ ( self): lowercase = RoCBertBasicTokenizer(do_lower_case=A__) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''') ,['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?''']) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''') ,['''hello''']) def A__ ( self): lowercase = RoCBertBasicTokenizer(do_lower_case=A__) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''') ,['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''']) def A__ ( self): lowercase = RoCBertBasicTokenizer(do_lower_case=A__ ,strip_accents=A__) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''') ,['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''']) def A__ ( self): lowercase = RoCBertBasicTokenizer(do_lower_case=A__ ,strip_accents=A__) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''') ,['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''']) def A__ ( self): lowercase = RoCBertBasicTokenizer(do_lower_case=A__ ,never_split=['''[UNK]''']) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''') ,['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]''']) def A__ ( self): lowercase = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] lowercase = {} for i, token in enumerate(A__): lowercase = i lowercase = RoCBertWordpieceTokenizer(vocab=A__ ,unk_token='''[UNK]''') self.assertListEqual(tokenizer.tokenize('''''') ,[]) self.assertListEqual(tokenizer.tokenize('''unwanted running''') ,['''un''', '''##want''', '''##ed''', '''runn''', '''##ing''']) self.assertListEqual(tokenizer.tokenize('''unwantedX running''') ,['''[UNK]''', '''runn''', '''##ing''']) def A__ ( self): self.assertTrue(_is_whitespace(''' ''')) self.assertTrue(_is_whitespace('''\t''')) self.assertTrue(_is_whitespace('''\r''')) self.assertTrue(_is_whitespace('''\n''')) self.assertTrue(_is_whitespace('''\u00A0''')) self.assertFalse(_is_whitespace('''A''')) self.assertFalse(_is_whitespace('''-''')) def A__ ( self): self.assertTrue(_is_control('''\u0005''')) self.assertFalse(_is_control('''A''')) self.assertFalse(_is_control(''' ''')) self.assertFalse(_is_control('''\t''')) self.assertFalse(_is_control('''\r''')) def A__ ( self): self.assertTrue(_is_punctuation('''-''')) self.assertTrue(_is_punctuation('''$''')) self.assertTrue(_is_punctuation('''`''')) self.assertTrue(_is_punctuation('''.''')) self.assertFalse(_is_punctuation('''A''')) self.assertFalse(_is_punctuation(''' ''')) def A__ ( self): lowercase = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(A__) for t in ['''Test''', '''\xad''', '''test''']] ,[['''[UNK]'''], [], ['''[UNK]''']]) if self.test_rust_tokenizer: lowercase = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(A__) for t in ['''Test''', '''\xad''', '''test''']] ,[['''[UNK]'''], [], ['''[UNK]''']]) def A__ ( self): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})'): lowercase = self.rust_tokenizer_class.from_pretrained(A__ ,**A__) lowercase = f'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.' lowercase = tokenizer_r.encode_plus( A__ ,return_attention_mask=A__ ,return_token_type_ids=A__ ,return_offsets_mapping=A__ ,add_special_tokens=A__ ,) lowercase = tokenizer_r.do_lower_case if hasattr(A__ ,'''do_lower_case''') else False lowercase = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), '''Allen'''), ((2_1, 2_3), '''##NL'''), ((2_3, 2_4), '''##P'''), ((2_5, 3_3), '''sentence'''), ((3_3, 3_4), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), '''allen'''), ((2_1, 2_3), '''##nl'''), ((2_3, 2_4), '''##p'''), ((2_5, 3_3), '''sentence'''), ((3_3, 3_4), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] ,tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''])) self.assertEqual([e[0] for e in expected_results] ,tokens['''offset_mapping''']) def A__ ( self): lowercase = ['''的''', '''人''', '''有'''] lowercase = ''''''.join(A__) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})'): lowercase = True lowercase = self.tokenizer_class.from_pretrained(A__ ,**A__) lowercase = self.rust_tokenizer_class.from_pretrained(A__ ,**A__) lowercase = tokenizer_p.encode(A__ ,add_special_tokens=A__) lowercase = tokenizer_r.encode(A__ ,add_special_tokens=A__) lowercase = tokenizer_r.convert_ids_to_tokens(A__) lowercase = tokenizer_p.convert_ids_to_tokens(A__) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(A__ ,A__) self.assertListEqual(A__ ,A__) lowercase = False lowercase = self.rust_tokenizer_class.from_pretrained(A__ ,**A__) lowercase = self.tokenizer_class.from_pretrained(A__ ,**A__) lowercase = tokenizer_r.encode(A__ ,add_special_tokens=A__) lowercase = tokenizer_p.encode(A__ ,add_special_tokens=A__) lowercase = tokenizer_r.convert_ids_to_tokens(A__) lowercase = tokenizer_p.convert_ids_to_tokens(A__) # it is expected that only the first Chinese character is not preceded by "##". lowercase = [ f'##{token}' if idx != 0 else token for idx, token in enumerate(A__) ] self.assertListEqual(A__ ,A__) self.assertListEqual(A__ ,A__) @slow def A__ ( self): lowercase = self.tokenizer_class(self.vocab_file ,self.word_shape_file ,self.word_pronunciation_file) lowercase = tokenizer.encode('''你好''' ,add_special_tokens=A__) lowercase = tokenizer.encode('''你是谁''' ,add_special_tokens=A__) lowercase = tokenizer.build_inputs_with_special_tokens(A__) lowercase = tokenizer.build_inputs_with_special_tokens(A__ ,A__) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def A__ ( self): lowercase = self.get_tokenizers(do_lower_case=A__) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}'): lowercase = '''你好,你是谁''' lowercase = tokenizer.tokenize(A__) lowercase = tokenizer.convert_tokens_to_ids(A__) lowercase = tokenizer.convert_tokens_to_shape_ids(A__) lowercase = tokenizer.convert_tokens_to_pronunciation_ids(A__) lowercase = tokenizer.prepare_for_model( A__ ,A__ ,A__ ,add_special_tokens=A__) lowercase = tokenizer.encode_plus(A__ ,add_special_tokens=A__) self.assertEqual(A__ ,A__)
101
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE : List[str] = { "configuration_convbert": ["CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvBertConfig", "ConvBertOnnxConfig"], "tokenization_convbert": ["ConvBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Tuple = ["ConvBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Optional[int] = [ "CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvBertForMaskedLM", "ConvBertForMultipleChoice", "ConvBertForQuestionAnswering", "ConvBertForSequenceClassification", "ConvBertForTokenClassification", "ConvBertLayer", "ConvBertModel", "ConvBertPreTrainedModel", "load_tf_weights_in_convbert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Optional[Any] = [ "TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFConvBertForMaskedLM", "TFConvBertForMultipleChoice", "TFConvBertForQuestionAnswering", "TFConvBertForSequenceClassification", "TFConvBertForTokenClassification", "TFConvBertLayer", "TFConvBertModel", "TFConvBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
351
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Any = { "edbeeching/decision-transformer-gym-hopper-medium": ( "https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class UpperCamelCase ( lowercase__ ): '''simple docstring''' lowercase : Optional[int] ="""decision_transformer""" lowercase : Dict =["""past_key_values"""] lowercase : Any ={ """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , UpperCamelCase_=17 , UpperCamelCase_=4 , UpperCamelCase_=128 , UpperCamelCase_=4096 , UpperCamelCase_=True , UpperCamelCase_=1 , UpperCamelCase_=1024 , UpperCamelCase_=3 , UpperCamelCase_=1 , UpperCamelCase_=None , UpperCamelCase_="relu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=1E-5 , UpperCamelCase_=0.02 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=5_0256 , UpperCamelCase_=5_0256 , UpperCamelCase_=False , UpperCamelCase_=False , **UpperCamelCase_ , ): lowercase_ :Any = state_dim lowercase_ :List[str] = act_dim lowercase_ :List[str] = hidden_size lowercase_ :int = max_ep_len lowercase_ :List[str] = action_tanh lowercase_ :Any = vocab_size lowercase_ :List[Any] = n_positions lowercase_ :List[str] = n_layer lowercase_ :Optional[Any] = n_head lowercase_ :int = n_inner lowercase_ :List[str] = activation_function lowercase_ :List[str] = resid_pdrop lowercase_ :Dict = embd_pdrop lowercase_ :List[Any] = attn_pdrop lowercase_ :Union[str, Any] = layer_norm_epsilon lowercase_ :List[str] = initializer_range lowercase_ :Any = scale_attn_weights lowercase_ :Union[str, Any] = use_cache lowercase_ :Any = scale_attn_by_inverse_layer_idx lowercase_ :Tuple = reorder_and_upcast_attn lowercase_ :int = bos_token_id lowercase_ :List[str] = eos_token_id super().__init__(bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ )
252
0
"""simple docstring""" import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def _snake_case ( lowercase__ : List[Any] , lowercase__ : Optional[Any] , lowercase__ : Union[str, Any] ) -> List[str]: '''simple docstring''' lowerCAmelCase_ :str = ("""dense.weight""", """attention.self.query""", """attention.self.key""", """attention.self.value""") lowerCAmelCase_ :Optional[int] = ( ("""layer.""", """layer_"""), ("""word_embeddings.weight""", """word_embeddings"""), ("""position_embeddings.weight""", """position_embeddings"""), ("""token_type_embeddings.weight""", """token_type_embeddings"""), (""".""", """/"""), ("""LayerNorm/weight""", """LayerNorm/gamma"""), ("""LayerNorm/bias""", """LayerNorm/beta"""), ("""weight""", """kernel"""), ) if not os.path.isdir(_lowerCAmelCase ): os.makedirs(_lowerCAmelCase ) lowerCAmelCase_ :Any = model.state_dict() def to_tf_var_name(lowercase__ : List[Any] ): for patt, repl in iter(_lowerCAmelCase ): lowerCAmelCase_ :Any = name.replace(_lowerCAmelCase , _lowerCAmelCase ) return f"""bert/{name}""" def create_tf_var(lowercase__ : Dict , lowercase__ : Optional[Any] , lowercase__ : Optional[int] ): lowerCAmelCase_ :List[Any] = tf.dtypes.as_dtype(tensor.dtype ) lowerCAmelCase_ :Optional[int] = tf.get_variable(dtype=_lowerCAmelCase , shape=tensor.shape , name=_lowerCAmelCase , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(_lowerCAmelCase ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: lowerCAmelCase_ :Tuple = to_tf_var_name(_lowerCAmelCase ) lowerCAmelCase_ :str = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): lowerCAmelCase_ :Union[str, Any] = torch_tensor.T lowerCAmelCase_ :Tuple = create_tf_var(tensor=_lowerCAmelCase , name=_lowerCAmelCase , session=_lowerCAmelCase ) tf.keras.backend.set_value(_lowerCAmelCase , _lowerCAmelCase ) lowerCAmelCase_ :int = session.run(_lowerCAmelCase ) print(f"""Successfully created {tf_name}: {np.allclose(_lowerCAmelCase , _lowerCAmelCase )}""" ) lowerCAmelCase_ :Tuple = tf.train.Saver(tf.trainable_variables() ) saver.save(_lowerCAmelCase , os.path.join(_lowerCAmelCase , model_name.replace("""-""" , """_""" ) + """.ckpt""" ) ) def _snake_case ( lowercase__ : str=None ) -> int: '''simple docstring''' lowerCAmelCase_ :Any = argparse.ArgumentParser() parser.add_argument("""--model_name""" , type=_lowerCAmelCase , required=_lowerCAmelCase , help="""model name e.g. bert-base-uncased""" ) parser.add_argument( """--cache_dir""" , type=_lowerCAmelCase , default=_lowerCAmelCase , required=_lowerCAmelCase , help="""Directory containing pytorch model""" ) parser.add_argument("""--pytorch_model_path""" , type=_lowerCAmelCase , required=_lowerCAmelCase , help="""/path/to/<pytorch-model-name>.bin""" ) parser.add_argument("""--tf_cache_dir""" , type=_lowerCAmelCase , required=_lowerCAmelCase , help="""Directory in which to save tensorflow model""" ) lowerCAmelCase_ :Optional[int] = parser.parse_args(_lowerCAmelCase ) lowerCAmelCase_ :int = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=_lowerCAmelCase , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
84
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE_:Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_:Dict = { """facebook/xmod-base""": """https://huggingface.co/facebook/xmod-base/resolve/main/config.json""", """facebook/xmod-large-prenorm""": """https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json""", """facebook/xmod-base-13-125k""": """https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json""", """facebook/xmod-base-30-125k""": """https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json""", """facebook/xmod-base-30-195k""": """https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json""", """facebook/xmod-base-60-125k""": """https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json""", """facebook/xmod-base-60-265k""": """https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json""", """facebook/xmod-base-75-125k""": """https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json""", """facebook/xmod-base-75-269k""": """https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : Dict = "xmod" def __init__( self, lowerCamelCase__=3_0522, lowerCamelCase__=768, lowerCamelCase__=12, lowerCamelCase__=12, lowerCamelCase__=3072, lowerCamelCase__="gelu", lowerCamelCase__=0.1, lowerCamelCase__=0.1, lowerCamelCase__=512, lowerCamelCase__=2, lowerCamelCase__=0.02, lowerCamelCase__=1e-12, lowerCamelCase__=1, lowerCamelCase__=0, lowerCamelCase__=2, lowerCamelCase__="absolute", lowerCamelCase__=True, lowerCamelCase__=None, lowerCamelCase__=False, lowerCamelCase__=2, lowerCamelCase__=False, lowerCamelCase__=True, lowerCamelCase__=True, lowerCamelCase__=("en_XX",), lowerCamelCase__=None, **lowerCamelCase__, ): super().__init__(pad_token_id=lowerCamelCase__, bos_token_id=lowerCamelCase__, eos_token_id=lowerCamelCase__, **lowerCamelCase__ ) A : int = vocab_size A : int = hidden_size A : str = num_hidden_layers A : List[str] = num_attention_heads A : List[str] = hidden_act A : Dict = intermediate_size A : Optional[int] = hidden_dropout_prob A : Union[str, Any] = attention_probs_dropout_prob A : int = max_position_embeddings A : Tuple = type_vocab_size A : List[Any] = initializer_range A : str = layer_norm_eps A : Union[str, Any] = position_embedding_type A : Any = use_cache A : int = classifier_dropout A : int = pre_norm A : List[str] = adapter_reduction_factor A : Any = adapter_layer_norm A : Any = adapter_reuse_layer_norm A : str = ln_before_adapter A : Dict = list(lowerCamelCase__ ) A : Union[str, Any] = default_language class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' @property def _lowerCAmelCase ( self ): if self.task == "multiple-choice": A : Any = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A : int = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
116
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Optional[int] = logging.get_logger(__name__) def _lowerCAmelCase ( __snake_case : Union[str, Any] , __snake_case : int=False ) -> int: __A : Optional[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'blocks.{i}.norm1.weight', f'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'blocks.{i}.norm1.bias', f'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((f'blocks.{i}.attn.proj.weight', f'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((f'blocks.{i}.attn.proj.bias', f'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'blocks.{i}.norm2.weight', f'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'blocks.{i}.norm2.bias', f'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'vit.embeddings.cls_token'), ('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __A : List[str] = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def _lowerCAmelCase ( __snake_case : Tuple , __snake_case : int , __snake_case : List[str]=False ) -> List[Any]: for i in range(config.num_hidden_layers ): if base_model: __A : int = '' else: __A : List[str] = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __A : Dict = state_dict.pop(f'blocks.{i}.attn.qkv.weight' ) __A : Union[str, Any] = state_dict.pop(f'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __A : Optional[int] = in_proj_weight[ : config.hidden_size, : ] __A : Any = in_proj_bias[: config.hidden_size] __A : Optional[int] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __A : Union[str, Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __A : Dict = in_proj_weight[ -config.hidden_size :, : ] __A : List[str] = in_proj_bias[-config.hidden_size :] def _lowerCAmelCase ( __snake_case : Union[str, Any] ) -> List[Any]: __A : Dict = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(__snake_case , __snake_case ) def _lowerCAmelCase ( __snake_case : Union[str, Any] , __snake_case : Tuple , __snake_case : int ) -> List[str]: __A : int = dct.pop(__snake_case ) __A : int = val def _lowerCAmelCase ( ) -> Tuple: __A : Dict = 'http://images.cocodataset.org/val2017/000000039769.jpg' __A : Union[str, Any] = Image.open(requests.get(__snake_case , stream=__snake_case ).raw ) return im @torch.no_grad() def _lowerCAmelCase ( __snake_case : Dict , __snake_case : List[str] , __snake_case : List[Any]=True ) -> List[Any]: __A : Dict = ViTConfig() # patch_size if model_name[-1] == "8": __A : List[Any] = 8 # set labels if required if not base_model: __A : List[Any] = 10_00 __A : Any = 'huggingface/label-files' __A : List[str] = 'imagenet-1k-id2label.json' __A : List[Any] = json.load(open(hf_hub_download(__snake_case , __snake_case , repo_type='dataset' ) , 'r' ) ) __A : List[str] = {int(__snake_case ): v for k, v in idalabel.items()} __A : Optional[int] = idalabel __A : int = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: __A : Dict = 3_84 __A : List[str] = 15_36 __A : int = 12 __A : Optional[Any] = 6 # load original model from torch hub __A : Dict = torch.hub.load('facebookresearch/dino:main' , __snake_case ) original_model.eval() # load state_dict of original model, remove and rename some keys __A : List[Any] = original_model.state_dict() if base_model: remove_classification_head_(__snake_case ) __A : Optional[Any] = create_rename_keys(__snake_case , base_model=__snake_case ) for src, dest in rename_keys: rename_key(__snake_case , __snake_case , __snake_case ) read_in_q_k_v(__snake_case , __snake_case , __snake_case ) # load HuggingFace model if base_model: __A : Any = ViTModel(__snake_case , add_pooling_layer=__snake_case ).eval() else: __A : int = ViTForImageClassification(__snake_case ).eval() model.load_state_dict(__snake_case ) # Check outputs on an image, prepared by ViTImageProcessor __A : Optional[Any] = ViTImageProcessor() __A : Optional[Any] = image_processor(images=prepare_img() , return_tensors='pt' ) __A : List[Any] = encoding['pixel_values'] __A : Dict = model(__snake_case ) if base_model: __A : Optional[Any] = original_model(__snake_case ) assert torch.allclose(__snake_case , outputs.last_hidden_state[:, 0, :] , atol=1e-1 ) else: __A : int = original_model(__snake_case ) assert logits.shape == outputs.logits.shape assert torch.allclose(__snake_case , outputs.logits , atol=1e-3 ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__snake_case ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__snake_case ) if __name__ == "__main__": lowercase__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''dino_vitb16''', type=str, help='''Name of the model trained with DINO you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--base_model''', action='''store_true''', help='''Whether to only convert the base model (no projection head weights).''', ) parser.set_defaults(base_model=True) lowercase__ : Dict = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
190
'''simple docstring''' import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel lowercase__ : Optional[int] = HfApi() lowercase__ : Dict = {} # fmt: off lowercase__ : List[str] = torch.tensor([ -0.7515, -1.6883, 0.2420, 0.0300, 0.6347, 1.3433, -1.1743, -3.7467, 1.2342, -2.2485, 0.4636, 0.8076, -0.7991, 0.3969, 0.8498, 0.9189, -1.8887, -3.3522, 0.7639, 0.2040, 0.6271, -2.7148, -1.6316, 3.0839, 0.3186, 0.2721, -0.9759, -1.2461, 2.6257, 1.3557 ]) lowercase__ : Tuple = torch.tensor([ -2.3639, -2.5344, 0.0054, -0.6674, 1.5990, 1.0158, 0.3124, -2.1436, 1.8795, -2.5429, -0.1566, -0.3973, 1.2490, 2.6447, 1.2283, -0.5208, -2.8154, -3.5119, 2.3838, 1.2033, 1.7201, -2.1256, -1.4576, 2.7948, 2.4204, -0.9752, -1.2546, 0.8027, 3.2758, 3.1365 ]) lowercase__ : Optional[Any] = torch.tensor([ -0.6531, -0.6891, -0.3172, -0.5375, -0.9140, -0.5367, -0.1175, -0.7869, -0.3808, -0.4513, -0.2098, -0.0083, 0.3183, 0.5140, 0.2247, -0.1304, -0.1302, -0.2802, -0.2084, -0.2025, -0.4967, -0.4873, -0.0861, 0.6925, 0.0250, 0.1290, -0.1543, 0.6316, 1.0460, 1.4943 ]) lowercase__ : List[Any] = torch.tensor([ 0.0911, 0.1107, 0.0182, 0.0435, -0.0805, -0.0608, 0.0381, 0.2172, -0.0280, 0.1327, -0.0299, -0.0255, -0.0050, -0.1170, -0.1046, 0.0309, 0.1367, 0.1728, -0.0533, -0.0748, -0.0534, 0.1624, 0.0384, -0.1805, -0.0707, 0.0642, 0.0220, -0.0134, -0.1333, -0.1505 ]) lowercase__ : Dict = torch.tensor([ 0.1321, 0.1337, 0.0440, 0.0622, -0.0591, -0.0370, 0.0503, 0.2133, -0.0177, 0.1415, -0.0116, -0.0112, 0.0044, -0.0980, -0.0789, 0.0395, 0.1502, 0.1785, -0.0488, -0.0514, -0.0404, 0.1539, 0.0454, -0.1559, -0.0665, 0.0659, 0.0383, -0.0005, -0.1266, -0.1386 ]) lowercase__ : Optional[int] = torch.tensor([ 0.1154, 0.1218, 0.0307, 0.0526, -0.0711, -0.0541, 0.0366, 0.2078, -0.0267, 0.1317, -0.0226, -0.0193, -0.0014, -0.1055, -0.0902, 0.0330, 0.1391, 0.1709, -0.0562, -0.0693, -0.0560, 0.1482, 0.0381, -0.1683, -0.0681, 0.0661, 0.0331, -0.0046, -0.1268, -0.1431 ]) lowercase__ : List[Any] = torch.tensor([ 0.1192, 0.1240, 0.0414, 0.0606, -0.0557, -0.0412, 0.0430, 0.2042, -0.0200, 0.1385, -0.0115, -0.0132, 0.0017, -0.0965, -0.0802, 0.0398, 0.1433, 0.1747, -0.0458, -0.0533, -0.0407, 0.1545, 0.0419, -0.1574, -0.0645, 0.0626, 0.0341, -0.0010, -0.1199, -0.1390 ]) lowercase__ : List[str] = torch.tensor([ 0.1075, 0.1074, 0.0205, 0.0431, -0.0774, -0.0607, 0.0298, 0.2042, -0.0320, 0.1267, -0.0281, -0.0250, -0.0064, -0.1091, -0.0946, 0.0290, 0.1328, 0.1650, -0.0580, -0.0738, -0.0586, 0.1440, 0.0337, -0.1746, -0.0712, 0.0605, 0.0250, -0.0099, -0.1316, -0.1473 ]) lowercase__ : Dict = torch.tensor([ -1.4572, -2.0481, -0.0414, -0.6005, 1.4136, 0.5848, 0.4028, -2.7330, 1.2212, -2.1228, 0.2155, 0.4039, 0.7662, 2.0535, 0.7477, -0.3243, -2.1758, -2.7648, 1.6947, 0.7026, 1.2338, -1.6078, -0.8682, 2.2810, 1.8574, -0.5718, -0.5586, -0.0186, 2.3415, 2.1251]) lowercase__ : Optional[int] = torch.tensor([ -1.3690, -1.9720, -0.4090, -0.6966, 1.4660, 0.9938, -0.1385, -2.7324, 0.7736, -1.8917, 0.2923, 0.4293, 0.1693, 1.4112, 1.1887, -0.3181, -2.2160, -2.6381, 1.3170, 0.8163, 0.9240, -1.6544, -0.6099, 2.5259, 1.6430, -0.9090, -0.9392, -0.0126, 2.4268, 2.3266 ]) lowercase__ : List[str] = torch.tensor([ -1.3525, -1.9628, -0.3956, -0.6860, 1.4664, 1.0014, -0.1259, -2.7212, 0.7772, -1.8811, 0.2996, 0.4388, 0.1704, 1.4029, 1.1701, -0.3027, -2.2053, -2.6287, 1.3350, 0.8131, 0.9274, -1.6292, -0.6098, 2.5131, 1.6505, -0.8958, -0.9298, -0.0151, 2.4257, 2.3355 ]) lowercase__ : Optional[int] = torch.tensor([ -2.0585, -2.7897, -0.2850, -0.8940, 1.9052, 0.5702, 0.6345, -3.8959, 1.5932, -3.2319, 0.1974, 0.0287, 1.7566, 2.6543, 0.8387, -0.5351, -3.2736, -4.3375, 2.9029, 1.6390, 1.4640, -2.1701, -1.9013, 2.9341, 3.4981, -0.6255, -1.1644, -0.1591, 3.7097, 3.2066 ]) lowercase__ : int = torch.tensor([ -2.3139, -2.5594, -0.0197, -0.6785, 1.7001, 1.1606, 0.3075, -2.1740, 1.8071, -2.5630, -0.0926, -0.3811, 1.2116, 2.6246, 1.2731, -0.5398, -2.8153, -3.6140, 2.3893, 1.3262, 1.6258, -2.1856, -1.3267, 2.8395, 2.3779, -1.0623, -1.2468, 0.8959, 3.3367, 3.2243 ]) lowercase__ : int = torch.tensor([ -2.0628, -2.7667, -0.2089, -0.8263, 2.0539, 0.5992, 0.6495, -3.8336, 1.6025, -3.2817, 0.1721, -0.0633, 1.7516, 2.7039, 0.8100, -0.5908, -3.2113, -4.4343, 2.9257, 1.3632, 1.5562, -2.1489, -1.9894, 3.0560, 3.3396, -0.7328, -1.0417, 0.0383, 3.7093, 3.2343 ]) lowercase__ : List[Any] = torch.tensor([ -1.4574, -2.0569, -0.0473, -0.6117, 1.4018, 0.5769, 0.4129, -2.7344, 1.2241, -2.1397, 0.2000, 0.3937, 0.7616, 2.0453, 0.7324, -0.3391, -2.1746, -2.7744, 1.6963, 0.6921, 1.2187, -1.6172, -0.8877, 2.2439, 1.8471, -0.5839, -0.5605, -0.0464, 2.3250, 2.1219 ]) # fmt: on lowercase__ : str = api.list_models(filter='''diffusers''') for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": lowercase__ : int = '''/home/patrick/google_checkpoints/''' + mod.modelId.split('''/''')[-1] print(f"""Started running {mod.modelId}!!!""") if mod.modelId.startswith('''CompVis'''): lowercase__ : Optional[Any] = UNetaDModel.from_pretrained(local_checkpoint, subfolder='''unet''') else: lowercase__ : Tuple = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) lowercase__ : List[str] = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) lowercase__ : int = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): lowercase__ : Tuple = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results['''_'''.join('''_'''.join(mod.modelId.split('''/''')).split('''-'''))], atol=1e-3 ) print(f"""{mod.modelId} has passed successfully!!!""")
190
1
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = 42 lowercase__ = 42 lowercase__ = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
136
"""simple docstring""" import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder UpperCAmelCase : Union[str, Any] = "__DUMMY_TRANSFORMERS_USER__" UpperCAmelCase : Dict = "Dummy User" UpperCAmelCase : Optional[int] = "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" UpperCAmelCase : Tuple = "https://hub-ci.huggingface.co" UpperCAmelCase : Optional[Any] = CI_HUB_ENDPOINT + "/datasets/{repo_id}/resolve/{revision}/{path}" UpperCAmelCase : Tuple = CI_HUB_ENDPOINT + "/{repo_id}/resolve/{revision}/{filename}" UpperCAmelCase : int = Path("~/.huggingface/hub_ci_token").expanduser() @pytest.fixture def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Dict: '''simple docstring''' monkeypatch.setattr( """huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE""" , __lowerCAmelCase ) @pytest.fixture def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' monkeypatch.setattr("""datasets.config.HF_ENDPOINT""" , __lowerCAmelCase ) monkeypatch.setattr("""datasets.config.HUB_DATASETS_URL""" , __lowerCAmelCase ) @pytest.fixture def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int: '''simple docstring''' monkeypatch.setattr("""huggingface_hub.hf_api.HfFolder.path_token""" , __lowerCAmelCase ) @pytest.fixture def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' HfFolder.save_token(__lowerCAmelCase ) yield HfFolder.delete_token() @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE () -> Dict: '''simple docstring''' return HfApi(endpoint=__lowerCAmelCase ) @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[str]: '''simple docstring''' lowercase_ = HfFolder.get_token() HfFolder.save_token(__lowerCAmelCase ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(__lowerCAmelCase ) @pytest.fixture def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' def _cleanup_repo(__lowerCAmelCase ): hf_api.delete_repo(__lowerCAmelCase , token=__lowerCAmelCase , repo_type="""dataset""" ) return _cleanup_repo @pytest.fixture def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' @contextmanager def _temporary_repo(__lowerCAmelCase ): try: yield repo_id finally: cleanup_repo(__lowerCAmelCase ) return _temporary_repo @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: '''simple docstring''' lowercase_ = F'''repo_txt_data-{int(time.time() * 10E3 )}''' lowercase_ = F'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(__lowerCAmelCase , token=__lowerCAmelCase , repo_type="""dataset""" , private=__lowerCAmelCase ) hf_api.upload_file( token=__lowerCAmelCase , path_or_fileobj=str(__lowerCAmelCase ) , path_in_repo="""data/text_data.txt""" , repo_id=__lowerCAmelCase , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(__lowerCAmelCase , token=__lowerCAmelCase , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Any: '''simple docstring''' return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ = F'''repo_zipped_txt_data-{int(time.time() * 10E3 )}''' lowercase_ = F'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(__lowerCAmelCase , token=__lowerCAmelCase , repo_type="""dataset""" , private=__lowerCAmelCase ) hf_api.upload_file( token=__lowerCAmelCase , path_or_fileobj=str(__lowerCAmelCase ) , path_in_repo="""data.zip""" , repo_id=__lowerCAmelCase , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(__lowerCAmelCase , token=__lowerCAmelCase , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="""session""" ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ = F'''repo_zipped_img_data-{int(time.time() * 10E3 )}''' lowercase_ = F'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(__lowerCAmelCase , token=__lowerCAmelCase , repo_type="""dataset""" , private=__lowerCAmelCase ) hf_api.upload_file( token=__lowerCAmelCase , path_or_fileobj=str(__lowerCAmelCase ) , path_in_repo="""data.zip""" , repo_id=__lowerCAmelCase , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(__lowerCAmelCase , token=__lowerCAmelCase , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Dict: '''simple docstring''' return hf_private_dataset_repo_zipped_img_data_
136
1
import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class snake_case__ (snake_case_ , unittest.TestCase ): """simple docstring""" __lowerCAmelCase :Optional[Any] = KandinskyVaaControlnetPipeline __lowerCAmelCase :int = ["image_embeds", "negative_image_embeds", "hint"] __lowerCAmelCase :Optional[Any] = ["image_embeds", "negative_image_embeds", "hint"] __lowerCAmelCase :List[Any] = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] __lowerCAmelCase :int = False @property def SCREAMING_SNAKE_CASE__( self ) -> Optional[Any]: """simple docstring""" return 3_2 @property def SCREAMING_SNAKE_CASE__( self ) -> Any: """simple docstring""" return 3_2 @property def SCREAMING_SNAKE_CASE__( self ) -> Optional[int]: """simple docstring""" return self.time_input_dim @property def SCREAMING_SNAKE_CASE__( self ) -> Any: """simple docstring""" return self.time_input_dim * 4 @property def SCREAMING_SNAKE_CASE__( self ) -> int: """simple docstring""" return 1_0_0 @property def SCREAMING_SNAKE_CASE__( self ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) a__ : Union[str, Any] = { 'in_channels': 8, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image_hint', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } a__ : Union[str, Any] = UNetaDConditionModel(**__lowercase ) return model @property def SCREAMING_SNAKE_CASE__( self ) -> int: """simple docstring""" return { "block_out_channels": [3_2, 3_2, 6_4, 6_4], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def SCREAMING_SNAKE_CASE__( self ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) a__ : Tuple = VQModel(**self.dummy_movq_kwargs ) return model def SCREAMING_SNAKE_CASE__( self ) -> str: """simple docstring""" a__ : List[str] = self.dummy_unet a__ : int = self.dummy_movq a__ : Any = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule="""linear""" , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=__lowercase , set_alpha_to_one=__lowercase , steps_offset=1 , prediction_type="""epsilon""" , thresholding=__lowercase , ) a__ : List[Any] = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase=0 ) -> Dict: """simple docstring""" a__ : Union[str, Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__lowercase ) ).to(__lowercase ) a__ : List[str] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __lowercase ) # create hint a__ : List[Any] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(__lowercase ) ).to(__lowercase ) if str(__lowercase ).startswith("""mps""" ): a__ : Union[str, Any] = torch.manual_seed(__lowercase ) else: a__ : Any = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) a__ : List[str] = { 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'hint': hint, 'generator': generator, 'height': 6_4, 'width': 6_4, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def SCREAMING_SNAKE_CASE__( self ) -> str: """simple docstring""" a__ : str = 'cpu' a__ : int = self.get_dummy_components() a__ : int = self.pipeline_class(**__lowercase ) a__ : Optional[int] = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) a__ : Any = pipe(**self.get_dummy_inputs(__lowercase ) ) a__ : Any = output.images a__ : Union[str, Any] = pipe( **self.get_dummy_inputs(__lowercase ) , return_dict=__lowercase , )[0] a__ : str = image[0, -3:, -3:, -1] a__ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) a__ : Tuple = np.array( [0.6_9_5_9_8_2_6, 0.8_6_8_2_7_9, 0.7_5_5_8_0_9_2, 0.6_8_7_6_9_4_6_7, 0.8_5_8_0_5_8_0_4, 0.6_5_9_7_7_4_9_6, 0.4_4_8_8_5_3_0_2, 0.5_9_5_9_1_1_1, 0.4_2_5_1_5_9_5] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class snake_case__ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__( self ) -> Optional[int]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__( self ) -> List[str]: """simple docstring""" a__ : Tuple = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy""" ) a__ : Dict = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) a__ : Any = torch.from_numpy(np.array(__lowercase ) ).float() / 2_5_5.0 a__ : Dict = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) a__ : int = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__lowercase ) a__ : List[str] = KandinskyVaaControlnetPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa ) a__ : int = pipeline.to(__lowercase ) pipeline.set_progress_bar_config(disable=__lowercase ) a__ : Any = 'A robot, 4k photo' a__ : Union[str, Any] = torch.Generator(device="""cuda""" ).manual_seed(0 ) a__ : Optional[Any] = pipe_prior( __lowercase , generator=__lowercase , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() a__ : Optional[Any] = torch.Generator(device="""cuda""" ).manual_seed(0 ) a__ : Optional[Any] = pipeline( image_embeds=__lowercase , negative_image_embeds=__lowercase , hint=__lowercase , generator=__lowercase , num_inference_steps=1_0_0 , output_type="""np""" , ) a__ : Optional[int] = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert_mean_pixel_difference(__lowercase , __lowercase )
356
from __future__ import annotations import math def lowerCAmelCase_ ( _lowercase : float , _lowercase : int) -> float: """simple docstring""" a__ : Union[str, Any] = u for i in range(1 , _lowercase): a__ : Optional[int] = temp * (u - i) return temp def lowerCAmelCase_ ( ) -> None: """simple docstring""" a__ : Tuple = int(input("""enter the numbers of values: """)) a__ : list[list[float]] = [] for _ in range(_lowercase): y.append([]) for i in range(_lowercase): for j in range(_lowercase): y[i].append(_lowercase) a__ : Optional[Any] = 0 print("""enter the values of parameters in a list: """) a__ : List[Any] = list(map(_lowercase , input().split())) print("""enter the values of corresponding parameters: """) for i in range(_lowercase): a__ : Optional[Any] = float(input()) a__ : Tuple = int(input("""enter the value to interpolate: """)) a__ : int = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , _lowercase): for j in range(n - i): a__ : int = y[j + 1][i - 1] - y[j][i - 1] a__ : Optional[int] = y[0][0] for i in range(1 , _lowercase): summ += (ucal(_lowercase , _lowercase) * y[0][i]) / math.factorial(_lowercase) print(F'''the value at {value} is {summ}''') if __name__ == "__main__": main()
266
0
"""simple docstring""" import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm __UpperCamelCase = re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex __UpperCamelCase = 10 __UpperCamelCase = 256 def lowercase (SCREAMING_SNAKE_CASE_ : List[str] ) -> Optional[MinHash]: if len(SCREAMING_SNAKE_CASE_ ) < MIN_NUM_TOKENS: return None SCREAMING_SNAKE_CASE = MinHash(num_perm=SCREAMING_SNAKE_CASE_ ) for token in set(SCREAMING_SNAKE_CASE_ ): min_hash.update(token.encode() ) return min_hash def lowercase (SCREAMING_SNAKE_CASE_ : str ) -> Set[str]: return {t for t in NON_ALPHA.split(SCREAMING_SNAKE_CASE_ ) if len(t.strip() ) > 0} class lowerCAmelCase : '''simple docstring''' def __init__( self , *, lowerCAmelCase__ = 0.85 , ) -> Optional[int]: SCREAMING_SNAKE_CASE = duplication_jaccard_threshold SCREAMING_SNAKE_CASE = NUM_PERM SCREAMING_SNAKE_CASE = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) SCREAMING_SNAKE_CASE = defaultdict(lowerCAmelCase__ ) def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: SCREAMING_SNAKE_CASE = self._index.query(lowerCAmelCase__ ) if code_key in self._index.keys: print(F'Duplicate key {code_key}' ) return self._index.insert(lowerCAmelCase__ , lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(lowerCAmelCase__ ) break else: self._duplicate_clusters[close_duplicates[0]].add(lowerCAmelCase__ ) def __A ( self ) -> List[List[Dict]]: SCREAMING_SNAKE_CASE = [] for base, duplicates in self._duplicate_clusters.items(): SCREAMING_SNAKE_CASE = [base] + list(lowerCAmelCase__ ) # reformat the cluster to be a list of dict SCREAMING_SNAKE_CASE = [{'base_index': el[0], 'repo_name': el[1], 'path': el[2]} for el in cluster] duplicate_clusters.append(lowerCAmelCase__ ) return duplicate_clusters def __A ( self , lowerCAmelCase__ ) -> None: SCREAMING_SNAKE_CASE = self.get_duplicate_clusters() with open(lowerCAmelCase__ , 'w' ) as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase (SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> str: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = element SCREAMING_SNAKE_CASE = get_min_hash([t for t in NON_ALPHA.split(data['content'] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def lowercase (SCREAMING_SNAKE_CASE_ : Type[Dataset] ) -> Tuple: with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(SCREAMING_SNAKE_CASE_ , max_queue_size=1_00_00 ) , chunksize=1_00 , ): if data is not None: yield data def lowercase (SCREAMING_SNAKE_CASE_ : Type[Dataset] , SCREAMING_SNAKE_CASE_ : float ) -> Dict: SCREAMING_SNAKE_CASE = DuplicationIndex(duplication_jaccard_threshold=SCREAMING_SNAKE_CASE_ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(SCREAMING_SNAKE_CASE_ ) ) , max_queue_size=1_00 ) ): di.add(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def lowercase (SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ) -> float: SCREAMING_SNAKE_CASE = get_tokens(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = get_tokens(SCREAMING_SNAKE_CASE_ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) __UpperCamelCase = None def lowercase (SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Dict ) -> Optional[int]: SCREAMING_SNAKE_CASE = [] for elementa in cluster: SCREAMING_SNAKE_CASE = _shared_dataset[elementa['base_index']]['content'] for elementa in extremes: SCREAMING_SNAKE_CASE = _shared_dataset[elementa['base_index']]['content'] if jaccard_similarity(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) >= jaccard_threshold: elementa["copies"] += 1 break else: SCREAMING_SNAKE_CASE = 1 extremes.append(SCREAMING_SNAKE_CASE_ ) return extremes def lowercase (SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ) -> Any: global _shared_dataset SCREAMING_SNAKE_CASE = dataset SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = partial(_find_cluster_extremes_shared , jaccard_threshold=SCREAMING_SNAKE_CASE_ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) , total=len(SCREAMING_SNAKE_CASE_ ) , ): extremes_list.append(SCREAMING_SNAKE_CASE_ ) return extremes_list def lowercase (SCREAMING_SNAKE_CASE_ : Type[Dataset] , SCREAMING_SNAKE_CASE_ : float = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]: SCREAMING_SNAKE_CASE = make_duplicate_clusters(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = {x['base_index'] for cluster in duplicate_clusters for x in cluster} SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = find_extremes(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for extremes in extremes_clusters: for element in extremes: SCREAMING_SNAKE_CASE = element SCREAMING_SNAKE_CASE = duplicate_indices - set(extreme_dict.keys() ) SCREAMING_SNAKE_CASE = dataset.filter(lambda SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : idx not in remove_indices , with_indices=SCREAMING_SNAKE_CASE_ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: SCREAMING_SNAKE_CASE = element['base_index'] in extreme_dict if element["is_extreme"]: SCREAMING_SNAKE_CASE = extreme_dict[element['base_index']]['copies'] print(F'Original dataset size: {len(SCREAMING_SNAKE_CASE_ )}' ) print(F'Number of duplicate clusters: {len(SCREAMING_SNAKE_CASE_ )}' ) print(F'Files in duplicate cluster: {len(SCREAMING_SNAKE_CASE_ )}' ) print(F'Unique files in duplicate cluster: {len(SCREAMING_SNAKE_CASE_ )}' ) print(F'Filtered dataset size: {len(SCREAMING_SNAKE_CASE_ )}' ) return ds_filter, duplicate_clusters
113
"""simple docstring""" import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @property def __A ( self ) -> List[Any]: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __A ( self ) -> List[str]: SCREAMING_SNAKE_CASE = ort.SessionOptions() SCREAMING_SNAKE_CASE = False return options def __A ( self ) -> Dict: SCREAMING_SNAKE_CASE = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png' ) SCREAMING_SNAKE_CASE = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png' ) SCREAMING_SNAKE_CASE = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy' ) # using the PNDM scheduler by default SCREAMING_SNAKE_CASE = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='onnx' , safety_checker=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = 'A red cat sitting on a park bench' SCREAMING_SNAKE_CASE = np.random.RandomState(0 ) SCREAMING_SNAKE_CASE = pipe( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , mask_image=lowerCAmelCase__ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=lowerCAmelCase__ , output_type='np' , ) SCREAMING_SNAKE_CASE = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1e-2
113
1
"""simple docstring""" from math import ceil, sqrt def lowercase ( A_ = 1_000_000 )-> int: '''simple docstring''' a : Tuple = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: a : str = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: a : Tuple = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f'''{solution() = }''')
226
"""simple docstring""" import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def lowercase ( )-> Union[str, Any]: '''simple docstring''' a : Union[str, Any] = torch.nn.Linear(2 , 4 ) a : Tuple = torch.optim.AdamW(model.parameters() , lr=1.0 ) a : Union[str, Any] = torch.optim.lr_scheduler.OneCycleLR(A_ , max_lr=0.0_1 , steps_per_epoch=2 , epochs=1 ) a : List[str] = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) a : int = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def lowercase ( A_ )-> List[Any]: '''simple docstring''' return (model.weight.abs().sum() + model.bias.abs().sum()).item() def lowercase ( A_ )-> Tuple: '''simple docstring''' a : Optional[int] = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(A_ ) class _A ( _a ): """simple docstring""" @require_cuda def __snake_case ( self : Any): a : List[str] = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(__UpperCAmelCase): a : Any = Accelerator(cpu=__UpperCAmelCase) def __snake_case ( self : List[Any]): a : str = Accelerator() a : Optional[Any] = GradientState() assert state.num_steps == 1 a : Dict = 4 assert state.num_steps == 4 assert state.sync_gradients is True a : Optional[int] = False assert state.sync_gradients is False GradientState._reset_state() def __snake_case ( self : str): a : int = Accelerator() a , a , a , a , a : Tuple = create_components() ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) : Tuple = accelerator.prepare(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) self.assertTrue(prepared_model in accelerator._models) self.assertTrue(prepared_optimizer in accelerator._optimizers) self.assertTrue(prepared_scheduler in accelerator._schedulers) self.assertTrue(prepared_train_dl in accelerator._dataloaders) self.assertTrue(prepared_valid_dl in accelerator._dataloaders) def __snake_case ( self : Dict): a : Dict = Accelerator() a , a , a , a , a : Any = create_components() accelerator.prepare(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) accelerator.free_memory() self.assertTrue(len(accelerator._models) == 0) self.assertTrue(len(accelerator._optimizers) == 0) self.assertTrue(len(accelerator._schedulers) == 0) self.assertTrue(len(accelerator._dataloaders) == 0) def __snake_case ( self : int): PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : Any): pass with patch("torch.cuda.set_device" , __UpperCAmelCase), patch_environment(ACCELERATE_TORCH_DEVICE="cuda:64"): a : int = Accelerator() self.assertEqual(str(accelerator.state.device) , "cuda:64") def __snake_case ( self : List[str]): a : Tuple = Accelerator() a , a , a , a , a : Optional[Any] = create_components() accelerator.prepare(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) a : Dict = get_signature(__UpperCAmelCase) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(__UpperCAmelCase) # make sure random weights don't match load_random_weights(__UpperCAmelCase) self.assertTrue(abs(model_signature - get_signature(__UpperCAmelCase)) > 1e-3) # make sure loaded weights match accelerator.load_state(__UpperCAmelCase) self.assertTrue(abs(model_signature - get_signature(__UpperCAmelCase)) < 1e-3) def __snake_case ( self : Optional[int]): a : str = Accelerator() a , a , a , a , a : Dict = create_components() accelerator.prepare(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) a : Union[str, Any] = get_signature(__UpperCAmelCase) # saving hook def save_config(__UpperCAmelCase : Tuple , __UpperCAmelCase : int , __UpperCAmelCase : Union[str, Any]): a : Tuple = {"class_name": models[0].__class__.__name__} with open(os.path.join(__UpperCAmelCase , "data.json") , "w") as f: json.dump(__UpperCAmelCase , __UpperCAmelCase) # loading hook def load_config(__UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any]): with open(os.path.join(__UpperCAmelCase , "data.json") , "r") as f: a : Optional[Any] = json.load(__UpperCAmelCase) a : Tuple = config["class_name"] a : Optional[int] = accelerator.register_save_state_pre_hook(__UpperCAmelCase) a : Tuple = accelerator.register_load_state_pre_hook(__UpperCAmelCase) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(__UpperCAmelCase) # make sure random weights don't match with hooks load_random_weights(__UpperCAmelCase) self.assertTrue(abs(model_signature - get_signature(__UpperCAmelCase)) > 1e-3) # random class name to verify correct one is loaded a : int = "random" # make sure loaded weights match with hooks accelerator.load_state(__UpperCAmelCase) self.assertTrue(abs(model_signature - get_signature(__UpperCAmelCase)) < 1e-3) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(__UpperCAmelCase) # make sure random weights don't match with hooks removed load_random_weights(__UpperCAmelCase) self.assertTrue(abs(model_signature - get_signature(__UpperCAmelCase)) > 1e-3) # random class name to verify correct one is loaded a : Dict = "random" # make sure loaded weights match with hooks removed accelerator.load_state(__UpperCAmelCase) self.assertTrue(abs(model_signature - get_signature(__UpperCAmelCase)) < 1e-3) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__) def __snake_case ( self : Optional[Any]): a : List[str] = Accelerator() a , a , a , a , a : int = create_components() a : Tuple = None # This should work a , a , a , a , a , a : Any = accelerator.prepare( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) self.assertTrue(dummy_obj is None) def __snake_case ( self : List[str]): a : str = Accelerator() a , a , a , a , a : List[Any] = create_components() a : Union[str, Any] = [1, 2, 3] # This should work a , a , a , a , a , a : str = accelerator.prepare( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) self.assertEqual( getattr(__UpperCAmelCase , "_is_accelerate_prepared" , __UpperCAmelCase) , __UpperCAmelCase , "Dummy object should have `_is_accelerate_prepared` set to `True`" , ) self.assertEqual( getattr(__UpperCAmelCase , "_is_accelerate_prepared" , __UpperCAmelCase) , __UpperCAmelCase , "Model is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(__UpperCAmelCase , "_is_accelerate_prepared" , __UpperCAmelCase) , __UpperCAmelCase , "Optimizer is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(__UpperCAmelCase , "_is_accelerate_prepared" , __UpperCAmelCase) , __UpperCAmelCase , "Scheduler is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(__UpperCAmelCase , "_is_accelerate_prepared" , __UpperCAmelCase) , __UpperCAmelCase , "Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(__UpperCAmelCase , "_is_accelerate_prepared" , __UpperCAmelCase) , __UpperCAmelCase , "Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`" , ) @slow @require_bnb def __snake_case ( self : Optional[int]): from transformers import AutoModelForCausalLM a : Optional[int] = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=__UpperCAmelCase , device_map={"": 0} , ) a : Tuple = Accelerator() # This should work a : List[Any] = accelerator.prepare(__UpperCAmelCase) @slow @require_bnb def __snake_case ( self : Optional[int]): from transformers import AutoModelForCausalLM a : Dict = Accelerator() with init_empty_weights(): a : Any = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) model.tie_weights() a : Union[str, Any] = infer_auto_device_map(__UpperCAmelCase) a : str = "cpu" a : int = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , device_map=__UpperCAmelCase , load_in_abit=__UpperCAmelCase , llm_inta_enable_fpaa_cpu_offload=__UpperCAmelCase) # This should not work and get value error with self.assertRaises(__UpperCAmelCase): a : Optional[int] = accelerator.prepare(__UpperCAmelCase) @slow @require_bnb @require_multi_gpu def __snake_case ( self : Optional[int]): from transformers import AutoModelForCausalLM a : Union[str, Any] = {"distributed_type": DistributedType.MULTI_GPU} with init_empty_weights(): a : List[str] = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) model.tie_weights() a : Any = infer_auto_device_map(__UpperCAmelCase) a : Dict = 1 a : Any = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=__UpperCAmelCase , device_map=__UpperCAmelCase , ) a : int = Accelerator() # This should not work and get value error with self.assertRaises(__UpperCAmelCase): a : Optional[int] = accelerator.prepare(__UpperCAmelCase) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def __snake_case ( self : Tuple): from transformers import AutoModelForCausalLM with init_empty_weights(): a : List[str] = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) a : Tuple = infer_auto_device_map(__UpperCAmelCase) a : str = 1 a : Optional[int] = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=__UpperCAmelCase , device_map=__UpperCAmelCase , ) a : str = Accelerator() # This should work a : Any = accelerator.prepare(__UpperCAmelCase) @require_cuda def __snake_case ( self : List[Any]): a : Tuple = torch.nn.Linear(10 , 10) a : int = torch.optim.SGD(model.parameters() , lr=0.01) a : Optional[Any] = Accelerator(cpu=__UpperCAmelCase) a : List[str] = accelerator.prepare(__UpperCAmelCase)
226
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer a__ : str = logging.get_logger(__name__) a__ : int = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} a__ : Optional[int] = { 'vocab_file': { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt', }, 'tokenizer_file': { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json' ), 'google/realm-orqa-nq-openqa': ( 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json' ), 'google/realm-orqa-nq-reader': ( 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json' ), 'google/realm-orqa-wq-openqa': ( 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json' ), 'google/realm-orqa-wq-reader': ( 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json' ), }, } a__ : int = { 'google/realm-cc-news-pretrained-embedder': 5_1_2, 'google/realm-cc-news-pretrained-encoder': 5_1_2, 'google/realm-cc-news-pretrained-scorer': 5_1_2, 'google/realm-cc-news-pretrained-openqa': 5_1_2, 'google/realm-orqa-nq-openqa': 5_1_2, 'google/realm-orqa-nq-reader': 5_1_2, 'google/realm-orqa-wq-openqa': 5_1_2, 'google/realm-orqa-wq-reader': 5_1_2, } a__ : Union[str, Any] = { 'google/realm-cc-news-pretrained-embedder': {'do_lower_case': True}, 'google/realm-cc-news-pretrained-encoder': {'do_lower_case': True}, 'google/realm-cc-news-pretrained-scorer': {'do_lower_case': True}, 'google/realm-cc-news-pretrained-openqa': {'do_lower_case': True}, 'google/realm-orqa-nq-openqa': {'do_lower_case': True}, 'google/realm-orqa-nq-reader': {'do_lower_case': True}, 'google/realm-orqa-wq-openqa': {'do_lower_case': True}, 'google/realm-orqa-wq-reader': {'do_lower_case': True}, } class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_INIT_CONFIGURATION __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = RealmTokenizer def __init__( self , lowercase=None , lowercase=None , lowercase=True , lowercase="[UNK]" , lowercase="[SEP]" , lowercase="[PAD]" , lowercase="[CLS]" , lowercase="[MASK]" , lowercase=True , lowercase=None , **lowercase , ) -> List[Any]: super().__init__( __SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , do_lower_case=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , tokenize_chinese_chars=__SCREAMING_SNAKE_CASE , strip_accents=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) __UpperCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , __SCREAMING_SNAKE_CASE ) != do_lower_case or normalizer_state.get("""strip_accents""" , __SCREAMING_SNAKE_CASE ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , __SCREAMING_SNAKE_CASE ) != tokenize_chinese_chars ): __UpperCamelCase = getattr(__SCREAMING_SNAKE_CASE , normalizer_state.pop("""type""" ) ) __UpperCamelCase = do_lower_case __UpperCamelCase = strip_accents __UpperCamelCase = tokenize_chinese_chars __UpperCamelCase = normalizer_class(**__SCREAMING_SNAKE_CASE ) __UpperCamelCase = do_lower_case def __lowerCamelCase ( self , lowercase , **lowercase ) -> Optional[Any]: __UpperCamelCase = PaddingStrategy.MAX_LENGTH __UpperCamelCase = text __UpperCamelCase = kwargs.pop("""text_pair""" , __SCREAMING_SNAKE_CASE ) __UpperCamelCase = kwargs.pop("""return_tensors""" , __SCREAMING_SNAKE_CASE ) __UpperCamelCase = { """input_ids""": [], """attention_mask""": [], """token_type_ids""": [], } for idx, candidate_text in enumerate(__SCREAMING_SNAKE_CASE ): if batch_text_pair is not None: __UpperCamelCase = batch_text_pair[idx] else: __UpperCamelCase = None __UpperCamelCase = super().__call__(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __UpperCamelCase = encoded_candidates.get("""input_ids""" ) __UpperCamelCase = encoded_candidates.get("""attention_mask""" ) __UpperCamelCase = encoded_candidates.get("""token_type_ids""" ) if encoded_input_ids is not None: output_data["input_ids"].append(__SCREAMING_SNAKE_CASE ) if encoded_attention_mask is not None: output_data["attention_mask"].append(__SCREAMING_SNAKE_CASE ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(__SCREAMING_SNAKE_CASE ) __UpperCamelCase = {key: item for key, item in output_data.items() if len(__SCREAMING_SNAKE_CASE ) != 0} return BatchEncoding(__SCREAMING_SNAKE_CASE , tensor_type=__SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self , lowercase , lowercase=None ) -> Optional[Any]: __UpperCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCamelCase ( self , lowercase , lowercase = None ) -> List[int]: __UpperCamelCase = [self.sep_token_id] __UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCamelCase ( self , lowercase , lowercase = None ) -> Tuple[str]: __UpperCamelCase = self._tokenizer.model.save(__SCREAMING_SNAKE_CASE , name=__SCREAMING_SNAKE_CASE ) return tuple(__SCREAMING_SNAKE_CASE )
349
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowerCAmelCase__ : """simple docstring""" @staticmethod def UpperCAmelCase__ ( *__SCREAMING_SNAKE_CASE : Tuple , **__SCREAMING_SNAKE_CASE : Union[str, Any] ) -> List[str]: """simple docstring""" pass @is_pipeline_test @require_vision @require_timm @require_torch class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = MODEL_FOR_OBJECT_DETECTION_MAPPING def UpperCAmelCase__ ( self : List[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Tuple ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = ObjectDetectionPipeline(model=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def UpperCAmelCase__ ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = object_detector("""./tests/fixtures/tests_samples/COCO/000000039769.png""" , threshold=0.0 ) self.assertGreater(len(__SCREAMING_SNAKE_CASE ) , 0 ) for detected_object in outputs: self.assertEqual( __SCREAMING_SNAKE_CASE , { """score""": ANY(__SCREAMING_SNAKE_CASE ), """label""": ANY(__SCREAMING_SNAKE_CASE ), """box""": {"""xmin""": ANY(__SCREAMING_SNAKE_CASE ), """ymin""": ANY(__SCREAMING_SNAKE_CASE ), """xmax""": ANY(__SCREAMING_SNAKE_CASE ), """ymax""": ANY(__SCREAMING_SNAKE_CASE )}, } , ) import datasets __SCREAMING_SNAKE_CASE = datasets.load_dataset("""hf-internal-testing/fixtures_image_utils""" , """image""" , split="""test""" ) __SCREAMING_SNAKE_CASE = [ Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """http://images.cocodataset.org/val2017/000000039769.jpg""", # RGBA dataset[0]["""file"""], # LA dataset[1]["""file"""], # L dataset[2]["""file"""], ] __SCREAMING_SNAKE_CASE = object_detector(__SCREAMING_SNAKE_CASE , threshold=0.0 ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , len(__SCREAMING_SNAKE_CASE ) ) for outputs in batch_outputs: self.assertGreater(len(__SCREAMING_SNAKE_CASE ) , 0 ) for detected_object in outputs: self.assertEqual( __SCREAMING_SNAKE_CASE , { """score""": ANY(__SCREAMING_SNAKE_CASE ), """label""": ANY(__SCREAMING_SNAKE_CASE ), """box""": {"""xmin""": ANY(__SCREAMING_SNAKE_CASE ), """ymin""": ANY(__SCREAMING_SNAKE_CASE ), """xmax""": ANY(__SCREAMING_SNAKE_CASE ), """ymax""": ANY(__SCREAMING_SNAKE_CASE )}, } , ) @require_tf @unittest.skip("""Object detection not implemented in TF""" ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> str: """simple docstring""" pass @require_torch def UpperCAmelCase__ ( self : str ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = """hf-internal-testing/tiny-detr-mobilenetsv3""" __SCREAMING_SNAKE_CASE = AutoModelForObjectDetection.from_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = AutoFeatureExtractor.from_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = ObjectDetectionPipeline(model=__SCREAMING_SNAKE_CASE , feature_extractor=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" , threshold=0.0 ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE , decimals=4 ) , [ {"""score""": 0.3376, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, {"""score""": 0.3376, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, ] , ) __SCREAMING_SNAKE_CASE = object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE , decimals=4 ) , [ [ {"""score""": 0.3376, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, {"""score""": 0.3376, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, ], [ {"""score""": 0.3376, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, {"""score""": 0.3376, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, ], ] , ) @require_torch @slow def UpperCAmelCase__ ( self : Optional[int] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = """facebook/detr-resnet-50""" __SCREAMING_SNAKE_CASE = AutoModelForObjectDetection.from_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = AutoFeatureExtractor.from_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = ObjectDetectionPipeline(model=__SCREAMING_SNAKE_CASE , feature_extractor=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE , decimals=4 ) , [ {"""score""": 0.9982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.9960, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.9955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ] , ) __SCREAMING_SNAKE_CASE = object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE , decimals=4 ) , [ [ {"""score""": 0.9982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.9960, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.9955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ], [ {"""score""": 0.9982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.9960, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.9955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ], ] , ) @require_torch @slow def UpperCAmelCase__ ( self : List[Any] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = """facebook/detr-resnet-50""" __SCREAMING_SNAKE_CASE = pipeline("""object-detection""" , model=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE , decimals=4 ) , [ {"""score""": 0.9982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.9960, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.9955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ] , ) __SCREAMING_SNAKE_CASE = object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE , decimals=4 ) , [ [ {"""score""": 0.9982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.9960, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.9955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ], [ {"""score""": 0.9982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.9960, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.9955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ], ] , ) @require_torch @slow def UpperCAmelCase__ ( self : Dict ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = 0.9985 __SCREAMING_SNAKE_CASE = """facebook/detr-resnet-50""" __SCREAMING_SNAKE_CASE = pipeline("""object-detection""" , model=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" , threshold=__SCREAMING_SNAKE_CASE ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE , decimals=4 ) , [ {"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ] , ) @require_torch @require_pytesseract @slow def UpperCAmelCase__ ( self : int ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = """Narsil/layoutlmv3-finetuned-funsd""" __SCREAMING_SNAKE_CASE = 0.9993 __SCREAMING_SNAKE_CASE = pipeline("""object-detection""" , model=__SCREAMING_SNAKE_CASE , threshold=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = object_detector( """https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png""" ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE , decimals=4 ) , [ {"""score""": 0.9993, """label""": """I-ANSWER""", """box""": {"""xmin""": 294, """ymin""": 254, """xmax""": 343, """ymax""": 264}}, {"""score""": 0.9993, """label""": """I-ANSWER""", """box""": {"""xmin""": 294, """ymin""": 254, """xmax""": 343, """ymax""": 264}}, ] , )
267
0
from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class A__ ( __lowercase ): def __init__( self : Union[str, Any] , a : Tuple = None , a : str = None , a : Optional[int] = None , a : Dict = None , a : str = False , a : str = False , a : int = None , **a : Tuple , ): '''simple docstring''' lowerCAmelCase__ : Tuple = path_or_paths lowerCAmelCase__ : Dict = split if split or isinstance(_a , _a ) else 'train' lowerCAmelCase__ : List[Any] = features lowerCAmelCase__ : Union[str, Any] = cache_dir lowerCAmelCase__ : Optional[int] = keep_in_memory lowerCAmelCase__ : Dict = streaming lowerCAmelCase__ : str = num_proc lowerCAmelCase__ : List[str] = kwargs @abstractmethod def _lowerCamelCase ( self : List[str] ): '''simple docstring''' pass class A__ ( __lowercase ): def __init__( self : Union[str, Any] , a : List[Any] = None , a : Union[str, Any] = None , a : List[str] = False , a : Optional[Any] = False , a : Optional[Any] = None , **a : Dict , ): '''simple docstring''' lowerCAmelCase__ : Any = features lowerCAmelCase__ : int = cache_dir lowerCAmelCase__ : List[str] = keep_in_memory lowerCAmelCase__ : List[str] = streaming lowerCAmelCase__ : Tuple = num_proc lowerCAmelCase__ : int = kwargs @abstractmethod def _lowerCamelCase ( self : str ): '''simple docstring''' pass
350
import torch from torch import nn class A__ ( nn.Module ): def __init__( self : Optional[int] , a : Union[str, Any] , a : str , a : str , a : List[Any] , a : List[Any]=1 , a : Tuple=False ): '''simple docstring''' super().__init__() lowerCAmelCase__ : Dict = n_token lowerCAmelCase__ : Any = d_embed lowerCAmelCase__ : str = d_proj lowerCAmelCase__ : int = cutoffs + [n_token] lowerCAmelCase__ : Union[str, Any] = [0] + self.cutoffs lowerCAmelCase__ : str = div_val lowerCAmelCase__ : Tuple = self.cutoffs[0] lowerCAmelCase__ : Dict = len(self.cutoffs ) - 1 lowerCAmelCase__ : Any = self.shortlist_size + self.n_clusters if self.n_clusters > 0: lowerCAmelCase__ : int = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) lowerCAmelCase__ : Optional[Any] = nn.Parameter(torch.zeros(self.n_clusters ) ) lowerCAmelCase__ : Optional[int] = nn.ModuleList() lowerCAmelCase__ : Tuple = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(a , a ) ) ) else: self.out_projs.append(a ) self.out_layers.append(nn.Linear(a , a ) ) else: for i in range(len(self.cutoffs ) ): lowerCAmelCase__ , lowerCAmelCase__ : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCAmelCase__ : Optional[Any] = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(a , a ) ) ) self.out_layers.append(nn.Linear(a , r_idx - l_idx ) ) lowerCAmelCase__ : Tuple = keep_order def _lowerCamelCase ( self : Optional[int] , a : List[str] , a : int , a : List[str] , a : str ): '''simple docstring''' if proj is None: lowerCAmelCase__ : Tuple = nn.functional.linear(a , a , bias=a ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: lowerCAmelCase__ : int = nn.functional.linear(a , proj.t().contiguous() ) lowerCAmelCase__ : Tuple = nn.functional.linear(a , a , bias=a ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def _lowerCamelCase ( self : List[str] , a : List[Any] , a : Optional[int]=None , a : Tuple=False ): '''simple docstring''' if labels is not None: # Shift so that tokens < n predict n lowerCAmelCase__ : str = hidden[..., :-1, :].contiguous() lowerCAmelCase__ : Optional[Any] = labels[..., 1:].contiguous() lowerCAmelCase__ : List[Any] = hidden.view(-1 , hidden.size(-1 ) ) lowerCAmelCase__ : Tuple = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError('Input and labels should have the same size in the batch dimension.' ) else: lowerCAmelCase__ : Optional[Any] = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: lowerCAmelCase__ : Optional[Any] = self._compute_logit(a , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: lowerCAmelCase__ : str = labels != -100 lowerCAmelCase__ : int = torch.zeros_like(a , dtype=hidden.dtype , device=hidden.device ) lowerCAmelCase__ : List[str] = ( -nn.functional.log_softmax(a , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: lowerCAmelCase__ : Optional[Any] = nn.functional.log_softmax(a , dim=-1 ) else: # construct weights and biases lowerCAmelCase__ , lowerCAmelCase__ : int = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCAmelCase__ : Any = self.out_layers[0].weight[l_idx:r_idx] lowerCAmelCase__ : Any = self.out_layers[0].bias[l_idx:r_idx] else: lowerCAmelCase__ : Optional[Any] = self.out_layers[i].weight lowerCAmelCase__ : Optional[int] = self.out_layers[i].bias if i == 0: lowerCAmelCase__ : Dict = torch.cat([weight_i, self.cluster_weight] , dim=0 ) lowerCAmelCase__ : Union[str, Any] = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(a ) biases.append(a ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = weights[0], biases[0], self.out_projs[0] lowerCAmelCase__ : List[Any] = self._compute_logit(a , a , a , a ) lowerCAmelCase__ : Union[str, Any] = nn.functional.log_softmax(a , dim=1 ) if labels is None: lowerCAmelCase__ : Tuple = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: lowerCAmelCase__ : Dict = torch.zeros_like(a , dtype=hidden.dtype , device=hidden.device ) lowerCAmelCase__ : Tuple = 0 lowerCAmelCase__ : Union[str, Any] = [0] + self.cutoffs for i in range(len(a ) - 1 ): lowerCAmelCase__ , lowerCAmelCase__ : Tuple = cutoff_values[i], cutoff_values[i + 1] if labels is not None: lowerCAmelCase__ : Tuple = (labels >= l_idx) & (labels < r_idx) lowerCAmelCase__ : int = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue lowerCAmelCase__ : Tuple = labels.index_select(0 , a ) - l_idx lowerCAmelCase__ : Any = head_logprob.index_select(0 , a ) lowerCAmelCase__ : Optional[int] = hidden.index_select(0 , a ) else: lowerCAmelCase__ : Any = hidden if i == 0: if labels is not None: lowerCAmelCase__ : Union[str, Any] = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: lowerCAmelCase__ : List[str] = head_logprob[:, : self.cutoffs[0]] else: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Any = weights[i], biases[i], self.out_projs[i] lowerCAmelCase__ : Union[str, Any] = self._compute_logit(a , a , a , a ) lowerCAmelCase__ : Optional[int] = nn.functional.log_softmax(a , dim=1 ) lowerCAmelCase__ : List[Any] = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: lowerCAmelCase__ : List[str] = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: lowerCAmelCase__ : Tuple = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i lowerCAmelCase__ : Union[str, Any] = logprob_i if labels is not None: if (hasattr(self , 'keep_order' ) and self.keep_order) or keep_order: out.index_copy_(0 , a , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def _lowerCamelCase ( self : List[Any] , a : Any ): '''simple docstring''' if self.n_clusters == 0: lowerCAmelCase__ : Union[str, Any] = self._compute_logit(a , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(a , dim=-1 ) else: # construct weights and biases lowerCAmelCase__ , lowerCAmelCase__ : str = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCAmelCase__ : str = self.out_layers[0].weight[l_idx:r_idx] lowerCAmelCase__ : Dict = self.out_layers[0].bias[l_idx:r_idx] else: lowerCAmelCase__ : int = self.out_layers[i].weight lowerCAmelCase__ : int = self.out_layers[i].bias if i == 0: lowerCAmelCase__ : Optional[int] = torch.cat([weight_i, self.cluster_weight] , dim=0 ) lowerCAmelCase__ : Union[str, Any] = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(a ) biases.append(a ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : str = weights[0], biases[0], self.out_projs[0] lowerCAmelCase__ : Dict = self._compute_logit(a , a , a , a ) lowerCAmelCase__ : List[Any] = hidden.new_empty((head_logit.size(0 ), self.n_token) ) lowerCAmelCase__ : Optional[Any] = nn.functional.log_softmax(a , dim=1 ) lowerCAmelCase__ : List[Any] = [0] + self.cutoffs for i in range(len(a ) - 1 ): lowerCAmelCase__ , lowerCAmelCase__ : str = cutoff_values[i], cutoff_values[i + 1] if i == 0: lowerCAmelCase__ : Union[str, Any] = head_logprob[:, : self.cutoffs[0]] else: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = weights[i], biases[i], self.out_projs[i] lowerCAmelCase__ : Dict = self._compute_logit(a , a , a , a ) lowerCAmelCase__ : List[str] = nn.functional.log_softmax(a , dim=1 ) lowerCAmelCase__ : Dict = head_logprob[:, -i] + tail_logprob_i lowerCAmelCase__ : List[str] = logprob_i return out
307
0
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Dict = { """huggingface/informer-tourism-monthly""": ( """https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json""" ), # See all Informer models at https://huggingface.co/models?filter=informer } class _UpperCAmelCase ( _UpperCAmelCase ): '''simple docstring''' lowerCamelCase__ ="""informer""" lowerCamelCase__ ={ """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__(self , a_ = None , a_ = None , a_ = "student_t" , a_ = "nll" , a_ = 1 , a_ = None , a_ = "mean" , a_ = 0 , a_ = 0 , a_ = 0 , a_ = 0 , a_ = None , a_ = None , a_ = 64 , a_ = 32 , a_ = 32 , a_ = 2 , a_ = 2 , a_ = 2 , a_ = 2 , a_ = True , a_ = "gelu" , a_ = 0.05 , a_ = 0.1 , a_ = 0.1 , a_ = 0.1 , a_ = 0.1 , a_ = 1_00 , a_ = 0.02 , a_=True , a_ = "prob" , a_ = 5 , a_ = True , **a_ , ): '''simple docstring''' __snake_case : Dict = prediction_length __snake_case : Any = context_length or prediction_length __snake_case : int = distribution_output __snake_case : int = loss __snake_case : Any = input_size __snake_case : Union[str, Any] = num_time_features __snake_case : int = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] __snake_case : Union[str, Any] = scaling __snake_case : List[Any] = num_dynamic_real_features __snake_case : Dict = num_static_real_features __snake_case : Optional[int] = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(UpperCAmelCase_ ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) __snake_case : int = cardinality else: __snake_case : List[str] = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(UpperCAmelCase_ ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) __snake_case : str = embedding_dimension else: __snake_case : str = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] __snake_case : Optional[Any] = num_parallel_samples # Transformer architecture configuration __snake_case : Optional[Any] = input_size * len(self.lags_sequence ) + self._number_of_features __snake_case : str = d_model __snake_case : Tuple = encoder_attention_heads __snake_case : Dict = decoder_attention_heads __snake_case : List[str] = encoder_ffn_dim __snake_case : Tuple = decoder_ffn_dim __snake_case : Optional[int] = encoder_layers __snake_case : List[Any] = decoder_layers __snake_case : List[str] = dropout __snake_case : Optional[Any] = attention_dropout __snake_case : int = activation_dropout __snake_case : List[Any] = encoder_layerdrop __snake_case : Tuple = decoder_layerdrop __snake_case : str = activation_function __snake_case : List[str] = init_std __snake_case : Dict = use_cache # Informer __snake_case : Optional[Any] = attention_type __snake_case : Any = sampling_factor __snake_case : Dict = distil super().__init__(is_encoder_decoder=UpperCAmelCase_ , **UpperCAmelCase_ ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
102
import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument( """--original_config_file""", type=str, required=True, help="""The YAML config file corresponding to the original architecture.""", ) parser.add_argument( """--num_in_channels""", default=None, type=int, help="""The number of input channels. If `None` number of input channels will be automatically inferred.""", ) parser.add_argument( """--image_size""", default=5_12, type=int, help=( """The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2""" """ Base. Use 768 for Stable Diffusion v2.""" ), ) parser.add_argument( """--extract_ema""", action="""store_true""", help=( """Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights""" """ or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield""" """ higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.""" ), ) parser.add_argument( """--upcast_attention""", action="""store_true""", help=( """Whether the attention computation should always be upcasted. This is necessary when running stable""" """ diffusion 2.1.""" ), ) parser.add_argument( """--from_safetensors""", action="""store_true""", help="""If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.""", ) parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") def _lowercase ( UpperCamelCase_ ) -> Dict: '''simple docstring''' if string == "True": return True elif string == "False": return False else: raise ValueError(F'could not parse string as bool {string}' ) parser.add_argument( """--use_linear_projection""", help="""Override for use linear projection""", required=False, type=parse_bool ) parser.add_argument("""--cross_attention_dim""", help="""Override for cross attention_dim""", required=False, type=int) __snake_case = parser.parse_args() __snake_case = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
176
0
lowerCAmelCase__ : Dict ='''0.18.2''' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
118
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase__ : str ={'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Optional[int] =[ '''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMAEForPreTraining''', '''ViTMAELayer''', '''ViTMAEModel''', '''ViTMAEPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : List[str] =[ '''TFViTMAEForPreTraining''', '''TFViTMAEModel''', '''TFViTMAEPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys lowerCAmelCase__ : Optional[int] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
118
1