code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
def lowerCamelCase__ ( A__ : str , A__ : str ): '''simple docstring''' assert x is not None assert y is not None __lowerCamelCase = len(A__ ) __lowerCamelCase = len(A__ ) # declaring the array for storing the dp values __lowerCamelCase = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 , m + 1 ): for j in range(1 , n + 1 ): __lowerCamelCase = 1 if x[i - 1] == y[j - 1] else 0 __lowerCamelCase = max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match ) __lowerCamelCase = """""" __lowerCamelCase, __lowerCamelCase = m, n while i > 0 and j > 0: __lowerCamelCase = 1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: __lowerCamelCase = x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": UpperCAmelCase_ = 'AGGTAB' UpperCAmelCase_ = 'GXTXAYB' UpperCAmelCase_ = 4 UpperCAmelCase_ = 'GTAB' UpperCAmelCase_ , UpperCAmelCase_ = longest_common_subsequence(a, b) print('len =', ln, ', sub-sequence =', subseq) import doctest doctest.testmod()
12
'''simple docstring''' # Lint as: python3 import itertools import os import re a : Tuple = re.compile(R"([A-Z]+)([A-Z][a-z])") a : Union[str, Any] = re.compile(R"([a-z\d])([A-Z])") a : str = re.compile(R"(?<!_)_(?!_)") a : List[Any] = re.compile(R"(_{2,})") a : List[Any] = R"^\w+(\.\w+)*$" a : Dict = R"<>:/\|?*" def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : Dict = _uppercase_uppercase_re.sub(R"\1_\2" , __magic_name__ ) UpperCAmelCase : List[str] = _lowercase_uppercase_re.sub(R"\1_\2" , __magic_name__ ) return name.lower() def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : Any = _single_underscore_re.split(__magic_name__ ) UpperCAmelCase : Union[str, Any] = [_multiple_underscores_re.split(__magic_name__ ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(__magic_name__ ) if n != "" ) def lowercase ( __magic_name__ ): '''simple docstring''' if os.path.basename(__magic_name__ ) != name: raise ValueError(F"Should be a dataset name, not a path: {name}" ) return camelcase_to_snakecase(__magic_name__ ) def lowercase ( __magic_name__ , __magic_name__ ): '''simple docstring''' if os.path.basename(__magic_name__ ) != name: raise ValueError(F"Should be a dataset name, not a path: {name}" ) if not re.match(_split_re , __magic_name__ ): raise ValueError(F"Split name should match '{_split_re}'' but got '{split}'." ) return F"{filename_prefix_for_name(__magic_name__ )}-{split}" def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None ): '''simple docstring''' UpperCAmelCase : List[str] = filename_prefix_for_split(__magic_name__ , __magic_name__ ) if filetype_suffix: prefix += F".{filetype_suffix}" UpperCAmelCase : int = os.path.join(__magic_name__ , __magic_name__ ) return F"{filepath}*" def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None , __magic_name__=None ): '''simple docstring''' UpperCAmelCase : List[str] = filename_prefix_for_split(__magic_name__ , __magic_name__ ) UpperCAmelCase : int = os.path.join(__magic_name__ , __magic_name__ ) if shard_lengths: UpperCAmelCase : Tuple = len(__magic_name__ ) UpperCAmelCase : Optional[int] = [F"{prefix}-{shard_id:05d}-of-{num_shards:05d}" for shard_id in range(__magic_name__ )] if filetype_suffix: UpperCAmelCase : Optional[int] = [filename + F".{filetype_suffix}" for filename in filenames] return filenames else: UpperCAmelCase : int = prefix if filetype_suffix: filename += F".{filetype_suffix}" return [filename]
311
0
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging __lowercase = logging.get_logger(__name__) logging.set_verbosity_info() def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' if "xprophetnet" in prophetnet_checkpoint_path: __UpperCamelCase :Dict = XLMProphetNetForConditionalGenerationOld.from_pretrained(SCREAMING_SNAKE_CASE ) __UpperCamelCase , __UpperCamelCase :int = XLMProphetNetForConditionalGeneration.from_pretrained( SCREAMING_SNAKE_CASE , output_loading_info=SCREAMING_SNAKE_CASE ) else: __UpperCamelCase :Union[str, Any] = ProphetNetForConditionalGenerationOld.from_pretrained(SCREAMING_SNAKE_CASE ) __UpperCamelCase , __UpperCamelCase :Union[str, Any] = ProphetNetForConditionalGeneration.from_pretrained( SCREAMING_SNAKE_CASE , output_loading_info=SCREAMING_SNAKE_CASE ) __UpperCamelCase :Dict = ['''key_proj''', '''value_proj''', '''query_proj'''] __UpperCamelCase :Optional[Any] = { '''self_attn''': '''ngram_self_attn''', '''cross_attn''': '''encoder_attn''', '''cross_attn_layer_norm''': '''encoder_attn_layer_norm''', '''feed_forward_layer_norm''': '''final_layer_norm''', '''feed_forward''': '''''', '''intermediate''': '''fc1''', '''output''': '''fc2''', '''key_proj''': '''k_proj''', '''query_proj''': '''q_proj''', '''value_proj''': '''v_proj''', '''word_embeddings''': '''embed_tokens''', '''embeddings_layer_norm''': '''emb_layer_norm''', '''relative_pos_embeddings''': '''relative_linear''', '''ngram_embeddings''': '''ngram_input_embed''', '''position_embeddings''': '''embed_positions''', } for key in loading_info["missing_keys"]: __UpperCamelCase :Tuple = key.split('''.''' ) if attributes[0] == "lm_head": __UpperCamelCase :Union[str, Any] = prophet __UpperCamelCase :Any = prophet_old else: __UpperCamelCase :Any = prophet.prophetnet __UpperCamelCase :int = prophet_old.model __UpperCamelCase :Optional[Any] = False for attribute in attributes: if attribute in mapping: __UpperCamelCase :str = mapping[attribute] if not hasattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and len(SCREAMING_SNAKE_CASE ) > 0: __UpperCamelCase :Optional[int] = attribute elif hasattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __UpperCamelCase :List[Any] = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" __UpperCamelCase :Tuple = old_model.weight logger.info(f"""{attribute} is initialized.""" ) __UpperCamelCase :Union[str, Any] = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" __UpperCamelCase :Union[str, Any] = old_model.bias logger.info(f"""{attribute} is initialized""" ) __UpperCamelCase :List[Any] = True break elif attribute in special_keys and hasattr(SCREAMING_SNAKE_CASE , '''in_proj_weight''' ): __UpperCamelCase :str = old_model.in_proj_weight.shape[0] // 3 __UpperCamelCase :Optional[Any] = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": __UpperCamelCase :Optional[int] = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) __UpperCamelCase :Tuple = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": __UpperCamelCase :List[Any] = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) __UpperCamelCase :Dict = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": __UpperCamelCase :Tuple = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) __UpperCamelCase :Dict = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) __UpperCamelCase :Optional[int] = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." __UpperCamelCase :Optional[int] = nn.Parameter(old_model.embed_positions.weight[:512, :] ) __UpperCamelCase :List[Any] = True break if attribute.isdigit(): __UpperCamelCase :List[Any] = model[int(SCREAMING_SNAKE_CASE )] __UpperCamelCase :Optional[int] = old_model[int(SCREAMING_SNAKE_CASE )] else: __UpperCamelCase :Optional[Any] = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if old_attribute == "": __UpperCamelCase :Any = old_model else: if not hasattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise ValueError(f"""{old_model} does not have {old_attribute}""" ) __UpperCamelCase :Any = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if not is_key_init: raise ValueError(f"""{key} was not correctly initialized!""" ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) prophet.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--prophetnet_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __lowercase = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
105
import os import pytest from transformers.dynamic_module_utils import get_imports __lowercase = ''' import os ''' __lowercase = ''' def foo(): import os return False ''' __lowercase = ''' def foo(): def bar(): if True: import os return False return bar() ''' __lowercase = ''' import os try: import bar except ImportError: raise ValueError() ''' __lowercase = ''' import os def foo(): try: import bar except ImportError: raise ValueError() ''' __lowercase = ''' import os try: import bar except (ImportError, AttributeError): raise ValueError() ''' __lowercase = ''' import os try: import bar except ImportError as e: raise ValueError() ''' __lowercase = ''' import os try: import bar except: raise ValueError() ''' __lowercase = ''' import os try: import bar import baz except ImportError: raise ValueError() ''' __lowercase = ''' import os try: import bar import baz except ImportError: x = 1 raise ValueError() ''' __lowercase = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , SCREAMING_SNAKE_CASE ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :List[Any] = os.path.join(SCREAMING_SNAKE_CASE , '''test_file.py''' ) with open(SCREAMING_SNAKE_CASE , '''w''' ) as _tmp_file: _tmp_file.write(SCREAMING_SNAKE_CASE ) __UpperCamelCase :Dict = get_imports(SCREAMING_SNAKE_CASE ) assert parsed_imports == ["os"]
105
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __SCREAMING_SNAKE_CASE :Optional[int] = logging.get_logger(__name__) class A_ ( lowerCAmelCase_ ): _lowerCamelCase : Tuple = ["""pixel_values"""] def __init__( self : List[str] , snake_case_ : bool = True , snake_case_ : Dict[str, int] = None , snake_case_ : float = None , snake_case_ : PILImageResampling = PILImageResampling.BILINEAR , snake_case_ : bool = True , snake_case_ : Union[int, float] = 1 / 2_5_5 , snake_case_ : bool = True , snake_case_ : Optional[Union[float, List[float]]] = None , snake_case_ : Optional[Union[float, List[float]]] = None , **snake_case_ : Tuple , ): super().__init__(**snake_case_ ) _UpperCAmelCase = size if size is not None else {"shortest_edge": 3_8_4} _UpperCAmelCase = get_size_dict(snake_case_ , default_to_square=snake_case_ ) _UpperCAmelCase = do_resize _UpperCAmelCase = size # Default value set here for backwards compatibility where the value in config is None _UpperCAmelCase = crop_pct if crop_pct is not None else 2_2_4 / 2_5_6 _UpperCAmelCase = resample _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase ( self : Any , snake_case_ : np.ndarray , snake_case_ : Dict[str, int] , snake_case_ : float , snake_case_ : PILImageResampling = PILImageResampling.BICUBIC , snake_case_ : Optional[Union[str, ChannelDimension]] = None , **snake_case_ : Optional[int] , ): _UpperCAmelCase = get_size_dict(snake_case_ , default_to_square=snake_case_ ) if "shortest_edge" not in size: raise ValueError(f'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' ) _UpperCAmelCase = size["shortest_edge"] if shortest_edge < 3_8_4: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct _UpperCAmelCase = int(shortest_edge / crop_pct ) _UpperCAmelCase = get_resize_output_image_size(snake_case_ , size=snake_case_ , default_to_square=snake_case_ ) _UpperCAmelCase = resize(image=snake_case_ , size=snake_case_ , resample=snake_case_ , data_format=snake_case_ , **snake_case_ ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=snake_case_ , size=(shortest_edge, shortest_edge) , data_format=snake_case_ , **snake_case_ ) else: # warping (no cropping) when evaluated at 384 or larger return resize( snake_case_ , size=(shortest_edge, shortest_edge) , resample=snake_case_ , data_format=snake_case_ , **snake_case_ ) def lowercase ( self : int , snake_case_ : np.ndarray , snake_case_ : Union[int, float] , snake_case_ : Optional[Union[str, ChannelDimension]] = None , **snake_case_ : Tuple , ): return rescale(snake_case_ , scale=snake_case_ , data_format=snake_case_ , **snake_case_ ) def lowercase ( self : Optional[int] , snake_case_ : np.ndarray , snake_case_ : Union[float, List[float]] , snake_case_ : Union[float, List[float]] , snake_case_ : Optional[Union[str, ChannelDimension]] = None , **snake_case_ : Union[str, Any] , ): return normalize(snake_case_ , mean=snake_case_ , std=snake_case_ , data_format=snake_case_ , **snake_case_ ) def lowercase ( self : Any , snake_case_ : ImageInput , snake_case_ : bool = None , snake_case_ : Dict[str, int] = None , snake_case_ : float = None , snake_case_ : PILImageResampling = None , snake_case_ : bool = None , snake_case_ : float = None , snake_case_ : bool = None , snake_case_ : Optional[Union[float, List[float]]] = None , snake_case_ : Optional[Union[float, List[float]]] = None , snake_case_ : Optional[Union[str, TensorType]] = None , snake_case_ : ChannelDimension = ChannelDimension.FIRST , **snake_case_ : str , ): _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = crop_pct if crop_pct is not None else self.crop_pct _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(snake_case_ , default_to_square=snake_case_ ) _UpperCAmelCase = make_list_of_images(snake_case_ ) if not valid_images(snake_case_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_resize and size["shortest_edge"] < 3_8_4 and crop_pct is None: raise ValueError("crop_pct must be specified if size < 384." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(snake_case_ ) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=snake_case_ , size=snake_case_ , crop_pct=snake_case_ , resample=snake_case_ ) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=snake_case_ , scale=snake_case_ ) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=snake_case_ , mean=snake_case_ , std=snake_case_ ) for image in images] _UpperCAmelCase = [to_channel_dimension_format(snake_case_ , snake_case_ ) for image in images] _UpperCAmelCase = {"pixel_values": images} return BatchFeature(data=snake_case_ , tensor_type=snake_case_ )
22
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def __lowerCAmelCase ( snake_case__=None ): if subparsers is not None: __UpperCamelCase : Any = subparsers.add_parser("test" ) else: __UpperCamelCase : Dict = argparse.ArgumentParser("Accelerate test command" ) parser.add_argument( "--config_file" , default=snake_case__ , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) , ) if subparsers is not None: parser.set_defaults(func=snake_case__ ) return parser def __lowerCAmelCase ( snake_case__ ): __UpperCamelCase : str = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["test_utils", "scripts", "test_script.py"] ) if args.config_file is None: __UpperCamelCase : str = script_name else: __UpperCamelCase : Tuple = F"--config_file={args.config_file} {script_name}" __UpperCamelCase : Optional[Any] = ["accelerate-launch"] + test_args.split() __UpperCamelCase : Optional[Any] = execute_subprocess_async(snake_case__ , env=os.environ.copy() ) if result.returncode == 0: print("Test is a success! You are ready for your distributed training!" ) def __lowerCAmelCase ( ): __UpperCamelCase : int = test_command_parser() __UpperCamelCase : Union[str, Any] = parser.parse_args() test_command(snake_case__ ) if __name__ == "__main__": main()
298
0
'''simple docstring''' from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput _lowercase : List[Any] = 8 def snake_case_ ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[str]=BITS ): """simple docstring""" lowercase_ : Union[str, Any] = x.device lowercase_ : Union[str, Any] = (x * 255).int().clamp(0 , 255 ) lowercase_ : str = 2 ** torch.arange(bits - 1 , -1 , -1 , device=__SCREAMING_SNAKE_CASE ) lowercase_ : str = rearrange(__SCREAMING_SNAKE_CASE , '''d -> d 1 1''' ) lowercase_ : Optional[int] = rearrange(__SCREAMING_SNAKE_CASE , '''b c h w -> b c 1 h w''' ) lowercase_ : List[str] = ((x & mask) != 0).float() lowercase_ : str = rearrange(__SCREAMING_SNAKE_CASE , '''b c d h w -> b (c d) h w''' ) lowercase_ : Any = bits * 2 - 1 return bits def snake_case_ ( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : str=BITS ): """simple docstring""" lowercase_ : List[str] = x.device lowercase_ : Tuple = (x > 0).int() lowercase_ : Optional[int] = 2 ** torch.arange(bits - 1 , -1 , -1 , device=__SCREAMING_SNAKE_CASE , dtype=torch.intaa ) lowercase_ : Any = rearrange(__SCREAMING_SNAKE_CASE , '''d -> d 1 1''' ) lowercase_ : Optional[Any] = rearrange(__SCREAMING_SNAKE_CASE , '''b (c d) h w -> b c d h w''' , d=8 ) lowercase_ : Any = reduce(x * mask , '''b c d h w -> b c h w''' , '''sum''' ) return (dec / 255).clamp(0.0 , 1.0 ) def snake_case_ ( self : List[str] , __SCREAMING_SNAKE_CASE : torch.FloatTensor , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : torch.FloatTensor , __SCREAMING_SNAKE_CASE : float = 0.0 , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : bool = True , ): """simple docstring""" if self.num_inference_steps is None: raise ValueError( '''Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler''' ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) lowercase_ : int = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas lowercase_ : Optional[int] = self.alphas_cumprod[timestep] lowercase_ : Optional[int] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod lowercase_ : Dict = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowercase_ : Optional[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" lowercase_ : List[Any] = self.bit_scale if self.config.clip_sample: lowercase_ : Dict = torch.clamp(__SCREAMING_SNAKE_CASE , -scale , __SCREAMING_SNAKE_CASE ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) lowercase_ : Optional[int] = self._get_variance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide lowercase_ : Tuple = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowercase_ : List[Any] = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowercase_ : str = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 lowercase_ : Union[str, Any] = model_output.device if torch.is_tensor(__SCREAMING_SNAKE_CASE ) else '''cpu''' lowercase_ : Dict = torch.randn(model_output.shape , dtype=model_output.dtype , generator=__SCREAMING_SNAKE_CASE ).to(__SCREAMING_SNAKE_CASE ) lowercase_ : int = self._get_variance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ** 0.5 * eta * noise lowercase_ : Union[str, Any] = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=__SCREAMING_SNAKE_CASE , pred_original_sample=__SCREAMING_SNAKE_CASE ) def snake_case_ ( self : List[Any] , __SCREAMING_SNAKE_CASE : torch.FloatTensor , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : torch.FloatTensor , __SCREAMING_SNAKE_CASE : Optional[Any]="epsilon" , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : bool = True , ): """simple docstring""" lowercase_ : Tuple = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: lowercase_ : str = torch.split(__SCREAMING_SNAKE_CASE , sample.shape[1] , dim=1 ) else: lowercase_ : Union[str, Any] = None # 1. compute alphas, betas lowercase_ : Optional[Any] = self.alphas_cumprod[t] lowercase_ : str = self.alphas_cumprod[t - 1] if t > 0 else self.one lowercase_ : Tuple = 1 - alpha_prod_t lowercase_ : List[str] = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": lowercase_ : Optional[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": lowercase_ : List[str] = model_output else: raise ValueError(F'''Unsupported prediction_type {prediction_type}.''' ) # 3. Clip "predicted x_0" lowercase_ : List[str] = self.bit_scale if self.config.clip_sample: lowercase_ : List[str] = torch.clamp(__SCREAMING_SNAKE_CASE , -scale , __SCREAMING_SNAKE_CASE ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowercase_ : int = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t lowercase_ : Any = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowercase_ : List[Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise lowercase_ : List[str] = 0 if t > 0: lowercase_ : Union[str, Any] = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=__SCREAMING_SNAKE_CASE ).to(model_output.device ) lowercase_ : List[Any] = (self._get_variance(__SCREAMING_SNAKE_CASE , predicted_variance=__SCREAMING_SNAKE_CASE ) ** 0.5) * noise lowercase_ : Dict = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=__SCREAMING_SNAKE_CASE , pred_original_sample=__SCREAMING_SNAKE_CASE ) class lowerCAmelCase__ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 1.0 , ): """simple docstring""" super().__init__() lowercase_ : Optional[int] = bit_scale lowercase_ : Optional[int] = ( ddim_bit_scheduler_step if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else ddpm_bit_scheduler_step ) self.register_modules(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) @torch.no_grad() def __call__( self , __SCREAMING_SNAKE_CASE = 2_56 , __SCREAMING_SNAKE_CASE = 2_56 , __SCREAMING_SNAKE_CASE = 50 , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = 1 , __SCREAMING_SNAKE_CASE = "pil" , __SCREAMING_SNAKE_CASE = True , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" lowercase_ : List[str] = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=__SCREAMING_SNAKE_CASE , ) lowercase_ : List[str] = decimal_to_bits(__SCREAMING_SNAKE_CASE ) * self.bit_scale lowercase_ : Dict = latents.to(self.device ) self.scheduler.set_timesteps(__SCREAMING_SNAKE_CASE ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual lowercase_ : Union[str, Any] = self.unet(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).sample # compute the previous noisy sample x_t -> x_t-1 lowercase_ : int = self.scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).prev_sample lowercase_ : Optional[int] = bits_to_decimal(__SCREAMING_SNAKE_CASE ) if output_type == "pil": lowercase_ : List[str] = self.numpy_to_pil(__SCREAMING_SNAKE_CASE ) if not return_dict: return (image,) return ImagePipelineOutput(images=__SCREAMING_SNAKE_CASE )
359
'''simple docstring''' from __future__ import annotations class lowerCAmelCase__ : def __init__( self , __SCREAMING_SNAKE_CASE = 0 ): """simple docstring""" lowercase_ : Any = key def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = key or self.__key or 1 # make sure key is an appropriate size key %= 2_55 return [chr(ord(__SCREAMING_SNAKE_CASE ) ^ key ) for ch in content] def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = key or self.__key or 1 # make sure key is an appropriate size key %= 2_55 return [chr(ord(__SCREAMING_SNAKE_CASE ) ^ key ) for ch in content] def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 0 ): """simple docstring""" assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : List[Any] = key or self.__key or 1 # make sure key can be any size while key > 2_55: key -= 2_55 # This will be returned lowercase_ : str = '''''' for ch in content: ans += chr(ord(__SCREAMING_SNAKE_CASE ) ^ key ) return ans def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 0 ): """simple docstring""" assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : Any = key or self.__key or 1 # make sure key can be any size while key > 2_55: key -= 2_55 # This will be returned lowercase_ : Dict = '''''' for ch in content: ans += chr(ord(__SCREAMING_SNAKE_CASE ) ^ key ) return ans def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 0 ): """simple docstring""" assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) try: with open(__SCREAMING_SNAKE_CASE ) as fin, open('''encrypt.out''' , '''w+''' ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) except OSError: return False return True def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) try: with open(__SCREAMING_SNAKE_CASE ) as fin, open('''decrypt.out''' , '''w+''' ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
264
0
'''simple docstring''' import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py _UpperCamelCase : Optional[int] = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. _UpperCamelCase : List[str] = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. _UpperCamelCase : Tuple = re.compile(R'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') _UpperCamelCase : str = re.compile(R'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _UpperCamelCase : Optional[int] = re.compile(R'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Fill this with tuples (pipeline_tag, model_mapping, auto_model) _UpperCamelCase : List[str] = [ ('pretraining', 'MODEL_FOR_PRETRAINING_MAPPING_NAMES', 'AutoModelForPreTraining'), ('feature-extraction', 'MODEL_MAPPING_NAMES', 'AutoModel'), ('audio-classification', 'MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioClassification'), ('text-generation', 'MODEL_FOR_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForCausalLM'), ('automatic-speech-recognition', 'MODEL_FOR_CTC_MAPPING_NAMES', 'AutoModelForCTC'), ('image-classification', 'MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForImageClassification'), ('image-segmentation', 'MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES', 'AutoModelForImageSegmentation'), ('fill-mask', 'MODEL_FOR_MASKED_LM_MAPPING_NAMES', 'AutoModelForMaskedLM'), ('object-detection', 'MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForObjectDetection'), ( 'zero-shot-object-detection', 'MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForZeroShotObjectDetection', ), ('question-answering', 'MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForQuestionAnswering'), ('text2text-generation', 'MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForSeq2SeqLM'), ('text-classification', 'MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForSequenceClassification'), ('automatic-speech-recognition', 'MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES', 'AutoModelForSpeechSeq2Seq'), ( 'table-question-answering', 'MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForTableQuestionAnswering', ), ('token-classification', 'MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForTokenClassification'), ('multiple-choice', 'MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES', 'AutoModelForMultipleChoice'), ( 'next-sentence-prediction', 'MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES', 'AutoModelForNextSentencePrediction', ), ( 'audio-frame-classification', 'MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioFrameClassification', ), ('audio-xvector', 'MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES', 'AutoModelForAudioXVector'), ( 'document-question-answering', 'MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForDocumentQuestionAnswering', ), ( 'visual-question-answering', 'MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForVisualQuestionAnswering', ), ('image-to-text', 'MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES', 'AutoModelForVision2Seq'), ( 'zero-shot-image-classification', 'MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForZeroShotImageClassification', ), ('depth-estimation', 'MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES', 'AutoModelForDepthEstimation'), ('video-classification', 'MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForVideoClassification'), ('mask-generation', 'MODEL_FOR_MASK_GENERATION_MAPPING_NAMES', 'AutoModelForMaskGeneration'), ] def __UpperCAmelCase ( A : Optional[int] ) -> int: UpperCAmelCase_ : Dict = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , A ) return [m.group(0 ) for m in matches] def __UpperCAmelCase ( ) -> str: UpperCAmelCase_ : Optional[int] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES UpperCAmelCase_ : Optional[Any] = { config.replace('''Config''' , '''''' ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. UpperCAmelCase_ : Dict = collections.defaultdict(A ) UpperCAmelCase_ : str = collections.defaultdict(A ) UpperCAmelCase_ : int = collections.defaultdict(A ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(A ): UpperCAmelCase_ : int = None if _re_tf_models.match(A ) is not None: UpperCAmelCase_ : Optional[Any] = tf_models UpperCAmelCase_ : Optional[int] = _re_tf_models.match(A ).groups()[0] elif _re_flax_models.match(A ) is not None: UpperCAmelCase_ : int = flax_models UpperCAmelCase_ : Any = _re_flax_models.match(A ).groups()[0] elif _re_pt_models.match(A ) is not None: UpperCAmelCase_ : Union[str, Any] = pt_models UpperCAmelCase_ : List[Any] = _re_pt_models.match(A ).groups()[0] if lookup_dict is not None: while len(A ) > 0: if attr_name in model_prefix_to_model_type: UpperCAmelCase_ : Optional[int] = True break # Try again after removing the last word in the name UpperCAmelCase_ : List[Any] = ''''''.join(camel_case_split(A )[:-1] ) UpperCAmelCase_ : Tuple = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) UpperCAmelCase_ : List[Any] = list(A ) all_models.sort() UpperCAmelCase_ : Dict = {'''model_type''': all_models} UpperCAmelCase_ : Tuple = [pt_models[t] for t in all_models] UpperCAmelCase_ : Dict = [tf_models[t] for t in all_models] UpperCAmelCase_ : Optional[int] = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure UpperCAmelCase_ : int = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: UpperCAmelCase_ : Any = '''AutoProcessor''' elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: UpperCAmelCase_ : Union[str, Any] = '''AutoTokenizer''' elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: UpperCAmelCase_ : int = '''AutoFeatureExtractor''' else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. UpperCAmelCase_ : Dict = '''AutoTokenizer''' UpperCAmelCase_ : str = [processors[t] for t in all_models] return pd.DataFrame(A ) def __UpperCAmelCase ( A : Optional[int] ) -> str: UpperCAmelCase_ : int = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: UpperCAmelCase_ : Tuple = [model_mapping, F"TF_{model_mapping}", F"FLAX_{model_mapping}"] UpperCAmelCase_ : Tuple = [auto_class, F"TF_{auto_class}", F"Flax_{auto_class}"] # Loop through all three frameworks for module, cls, mapping in zip(A , A , A ): # The type of pipeline may not exist in this framework if not hasattr(A , A ): continue # First extract all model_names UpperCAmelCase_ : List[str] = [] for name in getattr(A , A ).values(): if isinstance(A , A ): model_names.append(A ) else: model_names.extend(list(A ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def __UpperCAmelCase ( A : int , A : Any ) -> Tuple: UpperCAmelCase_ : Tuple = get_frameworks_table() UpperCAmelCase_ : Any = Dataset.from_pandas(A ) UpperCAmelCase_ : str = hf_hub_download( '''huggingface/transformers-metadata''' , '''pipeline_tags.json''' , repo_type='''dataset''' , token=A ) UpperCAmelCase_ : Union[str, Any] = Dataset.from_json(A ) UpperCAmelCase_ : Optional[int] = { tags_dataset[i]['''model_class''']: (tags_dataset[i]['''pipeline_tag'''], tags_dataset[i]['''auto_class''']) for i in range(len(A ) ) } UpperCAmelCase_ : str = update_pipeline_and_auto_class_table(A ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. UpperCAmelCase_ : Union[str, Any] = sorted(table.keys() ) UpperCAmelCase_ : Optional[Any] = pd.DataFrame( { '''model_class''': model_classes, '''pipeline_tag''': [table[m][0] for m in model_classes], '''auto_class''': [table[m][1] for m in model_classes], } ) UpperCAmelCase_ : Dict = Dataset.from_pandas(A ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(A , '''frameworks.json''' ) ) tags_dataset.to_json(os.path.join(A , '''pipeline_tags.json''' ) ) if commit_sha is not None: UpperCAmelCase_ : List[str] = ( F"Update with commit {commit_sha}\n\nSee: " F"https://github.com/huggingface/transformers/commit/{commit_sha}" ) else: UpperCAmelCase_ : int = '''Update''' upload_folder( repo_id='''huggingface/transformers-metadata''' , folder_path=A , repo_type='''dataset''' , token=A , commit_message=A , ) def __UpperCAmelCase ( ) -> int: UpperCAmelCase_ : str = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} UpperCAmelCase_ : List[str] = transformers_module.pipelines.SUPPORTED_TASKS UpperCAmelCase_ : List[str] = [] for key in pipeline_tasks: if key not in in_table: UpperCAmelCase_ : Optional[Any] = pipeline_tasks[key]['''pt'''] if isinstance(A , (list, tuple) ): UpperCAmelCase_ : Dict = model[0] UpperCAmelCase_ : Any = model.__name__ if model not in in_table.values(): missing.append(A ) if len(A ) > 0: UpperCAmelCase_ : List[Any] = ''', '''.join(A ) raise ValueError( '''The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside ''' F"`utils/update_metadata.py`: {msg}. Please add them!" ) if __name__ == "__main__": _UpperCamelCase : int = argparse.ArgumentParser() parser.add_argument('--token', type=str, help='The token to use to push to the transformers-metadata dataset.') parser.add_argument('--commit_sha', type=str, help='The sha of the commit going with this update.') parser.add_argument('--check-only', action='store_true', help='Activate to just check all pipelines are present.') _UpperCamelCase : Tuple = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
304
'''simple docstring''' from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class snake_case__ : a_ = 42 # [batch_size x 3] a_ = 42 # [batch_size x 3] a_ = 42 # [batch_size x 3] a_ = 42 # [batch_size x 3] a_ = 42 a_ = 42 a_ = 42 a_ = 42 a_ = 42 def A ( self : Tuple ) -> Optional[int]: assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def A ( self : List[Any] ) -> Union[str, Any]: return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def A ( self : Any ) -> Optional[Any]: return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def A ( self : Optional[int] ) -> torch.Tensor: UpperCAmelCase_ : Dict = torch.arange(self.height * self.width ) UpperCAmelCase_ : int = torch.stack( [ pixel_indices % self.width, torch.div(_A , self.width , rounding_mode='''trunc''' ), ] , axis=1 , ) return coords @property def A ( self : Optional[Any] ) -> Optional[Any]: UpperCAmelCase_ , *UpperCAmelCase_ : Union[str, Any] = self.shape UpperCAmelCase_ : Optional[Any] = int(np.prod(_A ) ) UpperCAmelCase_ : Any = self.get_image_coords() UpperCAmelCase_ : Any = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) UpperCAmelCase_ : Union[str, Any] = self.get_camera_rays(_A ) UpperCAmelCase_ : str = rays.view(_A , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def A ( self : Optional[int] , _A : torch.Tensor ) -> torch.Tensor: UpperCAmelCase_ , *UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] UpperCAmelCase_ : Dict = coords.view(_A , -1 , 2 ) UpperCAmelCase_ : Union[str, Any] = self.resolution() UpperCAmelCase_ : int = self.fov() UpperCAmelCase_ : Dict = (flat.float() / (res - 1)) * 2 - 1 UpperCAmelCase_ : Optional[int] = fracs * torch.tan(fov / 2 ) UpperCAmelCase_ : Any = fracs.view(_A , -1 , 2 ) UpperCAmelCase_ : List[Any] = ( self.z.view(_A , 1 , 3 ) + self.x.view(_A , 1 , 3 ) * fracs[:, :, :1] + self.y.view(_A , 1 , 3 ) * fracs[:, :, 1:] ) UpperCAmelCase_ : Optional[Any] = directions / directions.norm(dim=-1 , keepdim=_A ) UpperCAmelCase_ : Union[str, Any] = torch.stack( [ torch.broadcast_to(self.origin.view(_A , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(_A , *_A , 2 , 3 ) def A ( self : Tuple , _A : int , _A : int ) -> "DifferentiableProjectiveCamera": assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=_A , height=_A , x_fov=self.x_fov , y_fov=self.y_fov , ) def __UpperCAmelCase ( A : int ) -> DifferentiableProjectiveCamera: UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : str = [] for theta in np.linspace(0 , 2 * np.pi , num=2_0 ): UpperCAmelCase_ : str = np.array([np.sin(A ), np.cos(A ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) UpperCAmelCase_ : Optional[int] = -z * 4 UpperCAmelCase_ : Optional[int] = np.array([np.cos(A ), -np.sin(A ), 0.0] ) UpperCAmelCase_ : List[Any] = np.cross(A , A ) origins.append(A ) xs.append(A ) ys.append(A ) zs.append(A ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(A , axis=0 ) ).float() , x=torch.from_numpy(np.stack(A , axis=0 ) ).float() , y=torch.from_numpy(np.stack(A , axis=0 ) ).float() , z=torch.from_numpy(np.stack(A , axis=0 ) ).float() , width=A , height=A , x_fov=0.7 , y_fov=0.7 , shape=(1, len(A )) , )
304
1
"""simple docstring""" def A_ ( ) -> Union[str, Any]: UpperCamelCase : List[str] = [] UpperCamelCase : Any = 1 while len(lowercase__ ) < 1e6: constant.append(str(lowercase__ ) ) i += 1 UpperCamelCase : List[str] = "".join(lowercase__ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[9_9999] ) * int(constant[99_9999] ) ) if __name__ == "__main__": print(solution())
363
import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging __lowerCamelCase : List[str] = logging.get_logger(__name__) __lowerCamelCase : Any = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax or scores for each vocabulary token after SoftMax. kwargs (`Dict[str, Any]`, *optional*): Additional stopping criteria specific kwargs. Return: `bool`. `False` indicates we should continue, `True` indicates we should stop. """ class A__ ( __snake_case ): @add_start_docstrings(A_ ) def __call__( self , A_ , A_ , **A_ ): '''simple docstring''' raise NotImplementedError("StoppingCriteria needs to be subclassed" ) class A__ ( __snake_case ): def __init__( self , A_ , A_ = None ): '''simple docstring''' UpperCamelCase : Union[str, Any] = max_length UpperCamelCase : Dict = max_position_embeddings @add_start_docstrings(A_ ) def __call__( self , A_ , A_ , **A_ ): '''simple docstring''' UpperCamelCase : int = input_ids.shape[-1] UpperCamelCase : str = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( "This is a friendly reminder - the current text generation call will exceed the model's predefined " F"""maximum length ({self.max_position_embeddings}). Depending on the model, you may observe """ "exceptions, performance degradation, or nothing at all." ) return is_done class A__ ( __snake_case ): def __init__( self , A_ , A_ ): '''simple docstring''' warnings.warn( "The class `MaxNewTokensCriteria` is deprecated. " F"""Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` """ "with `max_length = start_length + max_new_tokens` instead." , A_ , ) UpperCamelCase : Union[str, Any] = start_length UpperCamelCase : List[str] = max_new_tokens UpperCamelCase : Tuple = start_length + max_new_tokens @add_start_docstrings(A_ ) def __call__( self , A_ , A_ , **A_ ): '''simple docstring''' return input_ids.shape[-1] >= self.max_length class A__ ( __snake_case ): def __init__( self , A_ , A_ = None ): '''simple docstring''' UpperCamelCase : Optional[int] = max_time UpperCamelCase : Dict = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(A_ ) def __call__( self , A_ , A_ , **A_ ): '''simple docstring''' return time.time() - self.initial_timestamp > self.max_time class A__ ( __snake_case ): @add_start_docstrings(A_ ) def __call__( self , A_ , A_ , **A_ ): '''simple docstring''' return any(criteria(A_ , A_ ) for criteria in self ) @property def __UpperCamelCase( self ): '''simple docstring''' for stopping_criterium in self: if isinstance(A_ , A_ ): return stopping_criterium.max_length elif isinstance(A_ , A_ ): return stopping_criterium.max_length return None def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> StoppingCriteriaList: UpperCamelCase : Tuple = stopping_criteria.max_length UpperCamelCase : Union[str, Any] = deepcopy(_lowerCAmelCase ) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn("You set different `max_length` for stopping criteria and `max_length` parameter" , _lowerCAmelCase ) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=_lowerCAmelCase ) ) return new_stopping_criteria
140
0
"""simple docstring""" import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class __UpperCamelCase ( a__ ): lowerCamelCase : List[str] ="""char""" lowerCamelCase : Optional[Any] ="""bpe""" lowerCamelCase : int ="""wp""" a : Optional[int] = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class __UpperCamelCase ( a__ ): lowerCamelCase : Any =["""image_processor""", """char_tokenizer"""] lowerCamelCase : int ="""ViTImageProcessor""" lowerCamelCase : Any ="""MgpstrTokenizer""" def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , **lowerCAmelCase__ ) -> Optional[Any]: a : Dict = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , lowerCAmelCase__ , ) a : Optional[int] = kwargs.pop("feature_extractor" ) a : Optional[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) a : Tuple = tokenizer a : int = AutoTokenizer.from_pretrained("gpt2" ) a : Tuple = AutoTokenizer.from_pretrained("bert-base-uncased" ) super().__init__(lowerCAmelCase__ , lowerCAmelCase__ ) def __call__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , **lowerCAmelCase__ ) -> Optional[int]: if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process." ) if images is not None: a : Dict = self.image_processor(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ ) if text is not None: a : Tuple = self.char_tokenizer(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ ) if text is None: return inputs elif images is None: return encodings else: a : Tuple = encodings["input_ids"] return inputs def __a ( self , lowerCAmelCase__ ) -> Dict: a, a, a : str = sequences a : int = char_preds.size(0 ) a, a : Union[str, Any] = self._decode_helper(lowerCAmelCase__ , "char" ) a, a : Dict = self._decode_helper(lowerCAmelCase__ , "bpe" ) a, a : Any = self._decode_helper(lowerCAmelCase__ , "wp" ) a : Dict = [] a : int = [] for i in range(lowerCAmelCase__ ): a : Union[str, Any] = [char_scores[i], bpe_scores[i], wp_scores[i]] a : Optional[int] = [char_strs[i], bpe_strs[i], wp_strs[i]] a : str = scores.index(max(lowerCAmelCase__ ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) a : List[str] = {} a : int = final_strs a : List[str] = final_scores a : List[Any] = char_strs a : Tuple = bpe_strs a : Any = wp_strs return out def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: if format == DecodeType.CHARACTER: a : Optional[int] = self.char_decode a : Optional[int] = 1 a : Optional[int] = "[s]" elif format == DecodeType.BPE: a : Any = self.bpe_decode a : Union[str, Any] = 2 a : str = "#" elif format == DecodeType.WORDPIECE: a : Dict = self.wp_decode a : str = 102 a : Optional[Any] = "[SEP]" else: raise ValueError(f"""Format {format} is not supported.""" ) a, a : List[Any] = [], [] a : Optional[int] = pred_logits.size(0 ) a : List[Any] = pred_logits.size(1 ) a, a : List[Any] = pred_logits.topk(1 , dim=-1 , largest=lowerCAmelCase__ , sorted=lowerCAmelCase__ ) a : List[str] = preds_index.view(-1 , lowerCAmelCase__ )[:, 1:] a : Dict = decoder(lowerCAmelCase__ ) a, a : Dict = torch.nn.functional.softmax(lowerCAmelCase__ , dim=2 ).max(dim=2 ) a : List[Any] = preds_max_prob[:, 1:] for index in range(lowerCAmelCase__ ): a : Optional[int] = preds_str[index].find(lowerCAmelCase__ ) a : List[Any] = preds_str[index][:pred_eos] a : Optional[int] = preds_index[index].cpu().tolist() a : Any = pred_index.index(lowerCAmelCase__ ) if eos_token in pred_index else -1 a : Dict = preds_max_prob[index][: pred_eos_index + 1] a : List[str] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(lowerCAmelCase__ ) conf_scores.append(lowerCAmelCase__ ) return dec_strs, conf_scores def __a ( self , lowerCAmelCase__ ) -> str: a : List[Any] = [seq.replace(" " , "" ) for seq in self.char_tokenizer.batch_decode(lowerCAmelCase__ )] return decode_strs def __a ( self , lowerCAmelCase__ ) -> str: return self.bpe_tokenizer.batch_decode(lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__ ) -> Dict: a : Optional[int] = [seq.replace(" " , "" ) for seq in self.wp_tokenizer.batch_decode(lowerCAmelCase__ )] return decode_strs
105
'''simple docstring''' import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification a : str = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co a : int = """main""" # Default branch name a : Any = """f2c752cfc5c0ab6f4bdec59acea69eefbee381c2""" # One particular commit (not the top of `main`) a : str = """aaaaaaa""" # This commit does not exist, so we should 404. a : int = """d9e9f15bc825e4b2c9249e9578f884bbcb5e3684""" # Sha-1 of config.json on the top of `main`, for checking purposes a : Any = """4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3""" @contextlib.contextmanager def __lowerCamelCase ( ) -> List[str]: print("""Welcome!""" ) yield print("""Bye!""" ) @contextlib.contextmanager def __lowerCamelCase ( ) -> Optional[int]: print("""Bonjour!""" ) yield print("""Au revoir!""" ) class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> List[Any]: # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec("""transformers""" ) is not None class UpperCamelCase_ ( unittest.TestCase ): @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def _lowercase( self , A ) -> Tuple: with ContextManagers([] ): print("""Transformers are awesome!""" ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , """Transformers are awesome!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def _lowercase( self , A ) -> Dict: with ContextManagers([context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Welcome!\nTransformers are awesome!\nBye!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def _lowercase( self , A ) -> Union[str, Any]: with ContextManagers([context_fr(), context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n""" ) @require_torch def _lowercase( self ) -> Optional[int]: self.assertEqual(find_labels(A ) , ["""labels"""] ) self.assertEqual(find_labels(A ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(A ) , ["""start_positions""", """end_positions"""] ) class UpperCamelCase_ ( __magic_name__ ): pass self.assertEqual(find_labels(A ) , ["""labels"""] ) @require_tf def _lowercase( self ) -> int: self.assertEqual(find_labels(A ) , ["""labels"""] ) self.assertEqual(find_labels(A ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(A ) , ["""start_positions""", """end_positions"""] ) class UpperCamelCase_ ( __magic_name__ ): pass self.assertEqual(find_labels(A ) , ["""labels"""] ) @require_flax def _lowercase( self ) -> Any: # Flax models don't have labels self.assertEqual(find_labels(A ) , [] ) self.assertEqual(find_labels(A ) , [] ) self.assertEqual(find_labels(A ) , [] ) class UpperCamelCase_ ( __magic_name__ ): pass self.assertEqual(find_labels(A ) , [] )
265
0
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass _A = (3, 9, -11, 0, 7, 5, 1, -1) _A = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class UpperCAmelCase__ : """simple docstring""" UpperCAmelCase__ : int UpperCAmelCase__ : Node | None class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ ) -> None: __UpperCamelCase =None for i in sorted(A_ , reverse=A_ ): __UpperCamelCase =Node(A_ , self.head ) def __iter__( self ) -> Iterator[int]: __UpperCamelCase =self.head while node: yield node.data __UpperCamelCase =node.next_node def __len__( self ) -> int: return sum(1 for _ in self ) def __str__( self ) -> str: return " -> ".join([str(A_ ) for node in self] ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : SortedLinkedList , SCREAMING_SNAKE_CASE__ : SortedLinkedList ): return SortedLinkedList(list(SCREAMING_SNAKE_CASE__ ) + list(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": import doctest doctest.testmod() _A = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
117
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) _A = {'configuration_vit': ['VIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTConfig', 'ViTOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ['ViTFeatureExtractor'] _A = ['ViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'VIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTForImageClassification', 'ViTForMaskedImageModeling', 'ViTModel', 'ViTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'TFViTForImageClassification', 'TFViTModel', 'TFViTPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'FlaxViTForImageClassification', 'FlaxViTModel', 'FlaxViTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
117
1
"""simple docstring""" import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class A_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_=13 , lowercase_=7 , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=99 , lowercase_=64 , lowercase_=32 , lowercase_=5 , lowercase_=4 , lowercase_=37 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=512 , lowercase_=16 , lowercase_=2 , lowercase_=0.02 , lowercase_=3 , lowercase_=4 , lowercase_=None , ): """simple docstring""" UpperCAmelCase_ : Tuple = parent UpperCAmelCase_ : Union[str, Any] = batch_size UpperCAmelCase_ : List[str] = seq_length UpperCAmelCase_ : Optional[Any] = is_training UpperCAmelCase_ : Any = use_input_mask UpperCAmelCase_ : List[str] = use_token_type_ids UpperCAmelCase_ : str = use_labels UpperCAmelCase_ : int = vocab_size UpperCAmelCase_ : Optional[Any] = hidden_size UpperCAmelCase_ : Optional[int] = embedding_size UpperCAmelCase_ : Union[str, Any] = num_hidden_layers UpperCAmelCase_ : List[Any] = num_attention_heads UpperCAmelCase_ : str = intermediate_size UpperCAmelCase_ : List[Any] = hidden_act UpperCAmelCase_ : List[Any] = hidden_dropout_prob UpperCAmelCase_ : str = attention_probs_dropout_prob UpperCAmelCase_ : List[str] = max_position_embeddings UpperCAmelCase_ : List[str] = type_vocab_size UpperCAmelCase_ : Optional[int] = type_sequence_label_size UpperCAmelCase_ : Tuple = initializer_range UpperCAmelCase_ : Tuple = num_labels UpperCAmelCase_ : str = num_choices UpperCAmelCase_ : List[str] = scope def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : List[str] = None if self.use_input_mask: UpperCAmelCase_ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : List[str] = None if self.use_token_type_ids: UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ : str = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Union[str, Any] = None if self.use_labels: UpperCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : int = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self ): """simple docstring""" return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = MobileBertModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : Optional[int] = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ ) UpperCAmelCase_ : Dict = model(lowercase_ , token_type_ids=lowercase_ ) UpperCAmelCase_ : Union[str, Any] = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = MobileBertForMaskedLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : str = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Any = MobileBertForNextSentencePrediction(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : Optional[Any] = model( lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = MobileBertForPreTraining(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : Tuple = model( lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ , next_sentence_label=lowercase_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = MobileBertForQuestionAnswering(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : List[str] = model( lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : int = self.num_labels UpperCAmelCase_ : List[str] = MobileBertForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : Dict = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : str = self.num_labels UpperCAmelCase_ : Tuple = MobileBertForTokenClassification(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : str = self.num_choices UpperCAmelCase_ : Dict = MobileBertForMultipleChoice(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : int = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : str = model( lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : List[Any] = config_and_inputs UpperCAmelCase_ : Dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class A_ (lowercase__ ,lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ : Optional[Any] = ( { """feature-extraction""": MobileBertModel, """fill-mask""": MobileBertForMaskedLM, """question-answering""": MobileBertForQuestionAnswering, """text-classification""": MobileBertForSequenceClassification, """token-classification""": MobileBertForTokenClassification, """zero-shot""": MobileBertForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ : Any = True def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_=False ): """simple docstring""" UpperCAmelCase_ : str = super()._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_ ) if return_labels: if model_class in get_values(lowercase_ ): UpperCAmelCase_ : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowercase_ ) UpperCAmelCase_ : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase_ ) return inputs_dict def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = MobileBertModelTester(self ) UpperCAmelCase_ : Tuple = ConfigTester(self , config_class=lowercase_ , hidden_size=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowercase_ ) def __a ( __lowerCamelCase ): return torch.tensor( __lowerCamelCase, dtype=torch.long, device=__lowerCamelCase, ) _a = 1e-3 @require_torch @require_sentencepiece @require_tokenizers class A_ (unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = MobileBertModel.from_pretrained("google/mobilebert-uncased" ).to(lowercase_ ) UpperCAmelCase_ : int = _long_tensor([[101, 7110, 1005, 1056, 2023, 1_1333, 1_7413, 1029, 102]] ) with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(lowercase_ )[0] UpperCAmelCase_ : int = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , lowercase_ ) UpperCAmelCase_ : List[str] = torch.tensor( [ [ [-2.4_7_3_6_5_2_6E0_7, 8.2_6_9_1_6_5_6E0_4, 1.6_5_2_1_8_3_8E0_5], [-5.7_5_4_1_7_0_4E-0_1, 3.9_0_5_6_0_2_2E0_0, 4.4_0_1_1_5_0_7E0_0], [2.6_0_4_7_3_5_9E0_0, 1.5_6_7_7_6_5_2E0_0, -1.7_3_2_4_1_8_8E-0_1], ] ] , device=lowercase_ , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE UpperCAmelCase_ : Tuple = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) UpperCAmelCase_ : str = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
61
"""simple docstring""" from collections import namedtuple _a = namedtuple('from_to', 'from_ to') _a = { 'cubicmeter': from_to(1, 1), 'litre': from_to(0.001, 1_000), 'kilolitre': from_to(1, 1), 'gallon': from_to(0.0_0454, 264.172), 'cubicyard': from_to(0.7_6455, 1.3_0795), 'cubicfoot': from_to(0.028, 35.3147), 'cup': from_to(0.0_0023_6588, 4226.75), } def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): if from_type not in METRIC_CONVERSION: raise ValueError( f"""Invalid 'from_type' value: {from_type!r} Supported values are:\n""" + ", ".join(__lowerCamelCase ) ) if to_type not in METRIC_CONVERSION: raise ValueError( f"""Invalid 'to_type' value: {to_type!r}. Supported values are:\n""" + ", ".join(__lowerCamelCase ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
61
1
def _a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): return int((input_a, input_a).count(0 ) != 0 ) def _a ( ): assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
357
from __future__ import annotations def _a ( SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , ): if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative in a semiconductor" ) elif hole_conc < 0: raise ValueError("Hole concentration cannot be negative in a semiconductor" ) elif intrinsic_conc < 0: raise ValueError( "Intrinsic concentration cannot be negative in a semiconductor" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
102
0
import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowerCamelCase__ = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE : __lowerCamelCase : str =field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) __lowerCamelCase : Optional[str] =field( default=lowerCamelCase__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __lowerCamelCase : Optional[str] =field( default='NER' , metadata={'help': 'Task type to fine tune in training (e.g. NER, POS, etc)'} ) __lowerCamelCase : Optional[str] =field( default=lowerCamelCase__ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __lowerCamelCase : bool =field(default=lowerCamelCase__ , metadata={'help': 'Set this flag to use fast tokenization.'} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. __lowerCamelCase : Optional[str] =field( default=lowerCamelCase__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) @dataclass class SCREAMING_SNAKE_CASE : __lowerCamelCase : str =field( metadata={'help': 'The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task.'} ) __lowerCamelCase : Optional[str] =field( default=lowerCamelCase__ , metadata={'help': 'Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.'} , ) __lowerCamelCase : int =field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __lowerCamelCase : bool =field( default=lowerCamelCase__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def lowerCAmelCase__ ( ): """simple docstring""" __a = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __a , __a , __a = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __a , __a , __a = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" """ --overwrite_output_dir to overcome.""" ) __a = import_module("""tasks""" ) try: __a = getattr(_SCREAMING_SNAKE_CASE , model_args.task_type ) __a = token_classification_task_clazz() except AttributeError: raise ValueError( f"Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. " f"Available tasks classes are: {TokenClassificationTask.__subclasses__()}" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , _SCREAMING_SNAKE_CASE ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task __a = token_classification_task.get_labels(data_args.labels ) __a = dict(enumerate(_SCREAMING_SNAKE_CASE ) ) __a = len(_SCREAMING_SNAKE_CASE ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __a = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_SCREAMING_SNAKE_CASE , idalabel=_SCREAMING_SNAKE_CASE , labelaid={label: i for i, label in enumerate(_SCREAMING_SNAKE_CASE )} , cache_dir=model_args.cache_dir , ) __a = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) __a = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=_SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , ) # Get datasets __a = ( TokenClassificationDataset( token_classification_task=_SCREAMING_SNAKE_CASE , data_dir=data_args.data_dir , tokenizer=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) __a = ( TokenClassificationDataset( token_classification_task=_SCREAMING_SNAKE_CASE , data_dir=data_args.data_dir , tokenizer=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(_SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : np.ndarray ) -> Tuple[List[int], List[int]]: __a = np.argmax(_SCREAMING_SNAKE_CASE , axis=2 ) __a , __a = preds.shape __a = [[] for _ in range(_SCREAMING_SNAKE_CASE )] __a = [[] for _ in range(_SCREAMING_SNAKE_CASE )] for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(_SCREAMING_SNAKE_CASE : EvalPrediction ) -> Dict: __a , __a = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "precision": precision_score(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "recall": recall_score(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "f1": fa_score(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), } # Data collator __a = DataCollatorWithPadding(_SCREAMING_SNAKE_CASE , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer __a = Trainer( model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , train_dataset=_SCREAMING_SNAKE_CASE , eval_dataset=_SCREAMING_SNAKE_CASE , compute_metrics=_SCREAMING_SNAKE_CASE , data_collator=_SCREAMING_SNAKE_CASE , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __a = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __a = trainer.evaluate() __a = os.path.join(training_args.output_dir , """eval_results.txt""" ) if trainer.is_world_process_zero(): with open(_SCREAMING_SNAKE_CASE , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(""" %s = %s""" , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) writer.write("""%s = %s\n""" % (key, value) ) results.update(_SCREAMING_SNAKE_CASE ) # Predict if training_args.do_predict: __a = TokenClassificationDataset( token_classification_task=_SCREAMING_SNAKE_CASE , data_dir=data_args.data_dir , tokenizer=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) __a , __a , __a = trainer.predict(_SCREAMING_SNAKE_CASE ) __a , __a = align_predictions(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __a = os.path.join(training_args.output_dir , """test_results.txt""" ) if trainer.is_world_process_zero(): with open(_SCREAMING_SNAKE_CASE , """w""" ) as writer: for key, value in metrics.items(): logger.info(""" %s = %s""" , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) writer.write("""%s = %s\n""" % (key, value) ) # Save predictions __a = os.path.join(training_args.output_dir , """test_predictions.txt""" ) if trainer.is_world_process_zero(): with open(_SCREAMING_SNAKE_CASE , """w""" ) as writer: with open(os.path.join(data_args.data_dir , """test.txt""" ) , """r""" ) as f: token_classification_task.write_predictions_to_file(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return results def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" main() if __name__ == "__main__": main()
302
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : Optional[int] =(IPNDMScheduler,) __lowerCamelCase : int =(('num_inference_steps', 50),) def UpperCamelCase_ ( self : str , **__lowercase : Dict ): '''simple docstring''' __a = {"""num_train_timesteps""": 1000} config.update(**__lowercase ) return config def UpperCamelCase_ ( self : Any , __lowercase : Tuple=0 , **__lowercase : Dict ): '''simple docstring''' __a = dict(self.forward_default_kwargs ) __a = kwargs.pop("""num_inference_steps""" , __lowercase ) __a = self.dummy_sample __a = 0.1 * sample __a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __a = self.get_scheduler_config(**__lowercase ) __a = scheduler_class(**__lowercase ) scheduler.set_timesteps(__lowercase ) # copy over dummy past residuals __a = dummy_past_residuals[:] if time_step is None: __a = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowercase ) __a = scheduler_class.from_pretrained(__lowercase ) new_scheduler.set_timesteps(__lowercase ) # copy over dummy past residuals __a = dummy_past_residuals[:] __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample __a = new_scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample __a = new_scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase_ ( self : str ): '''simple docstring''' pass def UpperCamelCase_ ( self : str , __lowercase : int=0 , **__lowercase : Dict ): '''simple docstring''' __a = dict(self.forward_default_kwargs ) __a = kwargs.pop("""num_inference_steps""" , __lowercase ) __a = self.dummy_sample __a = 0.1 * sample __a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __a = self.get_scheduler_config() __a = scheduler_class(**__lowercase ) scheduler.set_timesteps(__lowercase ) # copy over dummy past residuals (must be after setting timesteps) __a = dummy_past_residuals[:] if time_step is None: __a = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowercase ) __a = scheduler_class.from_pretrained(__lowercase ) # copy over dummy past residuals new_scheduler.set_timesteps(__lowercase ) # copy over dummy past residual (must be after setting timesteps) __a = dummy_past_residuals[:] __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample __a = new_scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample __a = new_scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase_ ( self : List[str] , **__lowercase : Dict ): '''simple docstring''' __a = self.scheduler_classes[0] __a = self.get_scheduler_config(**__lowercase ) __a = scheduler_class(**__lowercase ) __a = 10 __a = self.dummy_model() __a = self.dummy_sample_deter scheduler.set_timesteps(__lowercase ) for i, t in enumerate(scheduler.timesteps ): __a = model(__lowercase , __lowercase ) __a = scheduler.step(__lowercase , __lowercase , __lowercase ).prev_sample for i, t in enumerate(scheduler.timesteps ): __a = model(__lowercase , __lowercase ) __a = scheduler.step(__lowercase , __lowercase , __lowercase ).prev_sample return sample def UpperCamelCase_ ( self : str ): '''simple docstring''' __a = dict(self.forward_default_kwargs ) __a = kwargs.pop("""num_inference_steps""" , __lowercase ) for scheduler_class in self.scheduler_classes: __a = self.get_scheduler_config() __a = scheduler_class(**__lowercase ) __a = self.dummy_sample __a = 0.1 * sample if num_inference_steps is not None and hasattr(__lowercase , """set_timesteps""" ): scheduler.set_timesteps(__lowercase ) elif num_inference_steps is not None and not hasattr(__lowercase , """set_timesteps""" ): __a = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] __a = dummy_past_residuals[:] __a = scheduler.timesteps[5] __a = scheduler.timesteps[6] __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=__lowercase , time_step=__lowercase ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=__lowercase , time_step=__lowercase ) def UpperCamelCase_ ( self : int ): '''simple docstring''' __a = self.full_loop() __a = torch.mean(torch.abs(__lowercase ) ) assert abs(result_mean.item() - 2540529 ) < 10
302
1
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class A_ : def __init__( self: int ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: List[str]=13 ,__lowerCAmelCase: Union[str, Any]=30 ,__lowerCAmelCase: Optional[Any]=2 ,__lowerCAmelCase: str=3 ,__lowerCAmelCase: List[Any]=True ,__lowerCAmelCase: Tuple=True ,__lowerCAmelCase: Dict=32 ,__lowerCAmelCase: Optional[Any]=2 ,__lowerCAmelCase: Union[str, Any]=4 ,__lowerCAmelCase: Union[str, Any]=37 ,__lowerCAmelCase: List[Any]="gelu" ,__lowerCAmelCase: Union[str, Any]=0.1 ,__lowerCAmelCase: Dict=0.1 ,__lowerCAmelCase: Tuple=10 ,__lowerCAmelCase: str=0.02 ,__lowerCAmelCase: Any=3 ,__lowerCAmelCase: str=None ,__lowerCAmelCase: Tuple=2 ,): '''simple docstring''' _lowerCamelCase : Dict = parent _lowerCamelCase : int = batch_size _lowerCamelCase : Union[str, Any] = image_size _lowerCamelCase : List[str] = patch_size _lowerCamelCase : str = num_channels _lowerCamelCase : int = is_training _lowerCamelCase : List[str] = use_labels _lowerCamelCase : str = hidden_size _lowerCamelCase : Tuple = num_hidden_layers _lowerCamelCase : Optional[int] = num_attention_heads _lowerCamelCase : Dict = intermediate_size _lowerCamelCase : Union[str, Any] = hidden_act _lowerCamelCase : Tuple = hidden_dropout_prob _lowerCamelCase : Dict = attention_probs_dropout_prob _lowerCamelCase : str = type_sequence_label_size _lowerCamelCase : int = initializer_range _lowerCamelCase : Dict = scope _lowerCamelCase : Dict = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) _lowerCamelCase : Tuple = (image_size // patch_size) ** 2 _lowerCamelCase : str = num_patches + 2 def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase : int = None if self.use_labels: _lowerCamelCase : str = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _lowerCamelCase : str = self.get_config() return config, pixel_values, labels def _lowercase ( self: str ): '''simple docstring''' return DeiTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=__lowerCAmelCase ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def _lowercase ( self: List[str] ,__lowerCAmelCase: int ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: Optional[int] ): '''simple docstring''' _lowerCamelCase : int = TFDeiTModel(config=__lowerCAmelCase ) _lowerCamelCase : Tuple = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self: List[str] ,__lowerCAmelCase: int ,__lowerCAmelCase: Dict ,__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : int = TFDeiTForMaskedImageModeling(config=__lowerCAmelCase ) _lowerCamelCase : str = model(__lowerCAmelCase ) self.parent.assertEqual( result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _lowerCamelCase : Any = 1 _lowerCamelCase : List[Any] = TFDeiTForMaskedImageModeling(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase : List[str] = model(__lowerCAmelCase ) self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def _lowercase ( self: Dict ,__lowerCAmelCase: int ,__lowerCAmelCase: Dict ,__lowerCAmelCase: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Optional[Any] = self.type_sequence_label_size _lowerCamelCase : List[str] = TFDeiTForImageClassification(__lowerCAmelCase ) _lowerCamelCase : Tuple = model(__lowerCAmelCase ,labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCamelCase : Any = 1 _lowerCamelCase : List[Any] = TFDeiTForImageClassification(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase : int = model(__lowerCAmelCase ,labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : List[Any] = self.prepare_config_and_inputs() _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Dict = config_and_inputs _lowerCamelCase : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class A_ ( _a , _a , unittest.TestCase ): lowerCAmelCase__ = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) lowerCAmelCase__ = ( { 'feature-extraction': TFDeiTModel, 'image-classification': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : str = TFDeiTModelTester(self ) _lowerCamelCase : Union[str, Any] = ConfigTester(self ,config_class=__lowerCAmelCase ,has_text_modality=__lowerCAmelCase ,hidden_size=37 ) def _lowercase ( self: List[str] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="DeiT does not use inputs_embeds" ) def _lowercase ( self: Optional[int] ): '''simple docstring''' pass def _lowercase ( self: int ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : List[Any] = model_class(__lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() ,(tf.keras.layers.Layer) ) _lowerCamelCase : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCAmelCase ,tf.keras.layers.Dense ) ) def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Optional[Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : List[Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : Optional[Any] = [*signature.parameters.keys()] _lowerCamelCase : List[str] = ["pixel_values"] self.assertListEqual(arg_names[:1] ,__lowerCAmelCase ) def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__lowerCAmelCase ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCAmelCase ) def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: str ,__lowerCAmelCase: str=False ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = super()._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ,return_labels=__lowerCAmelCase ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def _lowercase ( self: Optional[int] ): '''simple docstring''' for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Dict = TFDeiTModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def lowerCamelCase_( ) -> Union[str, Any]: '''simple docstring''' _lowerCamelCase : int = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class A_ ( unittest.TestCase ): @cached_property def _lowercase ( self: Optional[Any] ): '''simple docstring''' return ( DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" ) if is_vision_available() else None ) @slow def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : int = TFDeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" ) _lowerCamelCase : Any = self.default_image_processor _lowerCamelCase : str = prepare_img() _lowerCamelCase : List[Any] = image_processor(images=__lowerCAmelCase ,return_tensors="tf" ) # forward pass _lowerCamelCase : List[str] = model(**__lowerCAmelCase ) # verify the logits _lowerCamelCase : Any = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape ,__lowerCAmelCase ) _lowerCamelCase : Any = tf.constant([-1.02_66, 0.19_12, -1.28_61] ) self.assertTrue(np.allclose(outputs.logits[0, :3] ,__lowerCAmelCase ,atol=1e-4 ) )
340
"""simple docstring""" import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class A_ ( _a ): lowerCAmelCase__ = 42 lowerCAmelCase__ = None def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=0.9_9_9 , _lowerCamelCase="cosine" , ) -> List[str]: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(_lowerCamelCase ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_lowerCamelCase ): return math.exp(t * -1_2.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) _lowerCamelCase : str = [] for i in range(_lowerCamelCase ): _lowerCamelCase : Any = i / num_diffusion_timesteps _lowerCamelCase : Optional[Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_lowerCamelCase ) / alpha_bar_fn(_lowerCamelCase ) , _lowerCamelCase ) ) return torch.tensor(_lowerCamelCase , dtype=torch.floataa ) class A_ ( _a , _a ): @register_to_config def __init__( self: str ,__lowerCAmelCase: int = 1_000 ,__lowerCAmelCase: str = "fixed_small_log" ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: Optional[float] = 1.0 ,__lowerCAmelCase: str = "epsilon" ,__lowerCAmelCase: str = "squaredcos_cap_v2" ,): '''simple docstring''' if beta_schedule != "squaredcos_cap_v2": raise ValueError("UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'" ) _lowerCamelCase : Union[str, Any] = betas_for_alpha_bar(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = 1.0 - self.betas _lowerCamelCase : Dict = torch.cumprod(self.alphas ,dim=0 ) _lowerCamelCase : int = torch.tensor(1.0 ) # standard deviation of the initial noise distribution _lowerCamelCase : Tuple = 1.0 # setable values _lowerCamelCase : List[Any] = None _lowerCamelCase : Union[str, Any] = torch.from_numpy(np.arange(0 ,__lowerCAmelCase )[::-1].copy() ) _lowerCamelCase : List[str] = variance_type def _lowercase ( self: Any ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: Optional[int] = None ): '''simple docstring''' return sample def _lowercase ( self: Optional[int] ,__lowerCAmelCase: int ,__lowerCAmelCase: Union[str, torch.device] = None ): '''simple docstring''' _lowerCamelCase : str = num_inference_steps _lowerCamelCase : str = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) _lowerCamelCase : Union[str, Any] = (np.arange(0 ,__lowerCAmelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa ) _lowerCamelCase : int = torch.from_numpy(__lowerCAmelCase ).to(__lowerCAmelCase ) def _lowercase ( self: List[Any] ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: List[str]=None ,__lowerCAmelCase: str=None ): '''simple docstring''' if prev_timestep is None: _lowerCamelCase : List[str] = t - 1 _lowerCamelCase : Optional[int] = self.alphas_cumprod[t] _lowerCamelCase : Dict = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one _lowerCamelCase : Dict = 1 - alpha_prod_t _lowerCamelCase : str = 1 - alpha_prod_t_prev if prev_timestep == t - 1: _lowerCamelCase : List[Any] = self.betas[t] else: _lowerCamelCase : str = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample _lowerCamelCase : int = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: _lowerCamelCase : List[str] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": _lowerCamelCase : Dict = torch.log(torch.clamp(__lowerCAmelCase ,min=1e-20 ) ) _lowerCamelCase : str = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler _lowerCamelCase : str = variance.log() _lowerCamelCase : str = beta.log() _lowerCamelCase : Optional[int] = (predicted_variance + 1) / 2 _lowerCamelCase : Union[str, Any] = frac * max_log + (1 - frac) * min_log return variance def _lowercase ( self: str ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: int ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: Optional[int] = None ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: bool = True ,): '''simple docstring''' _lowerCamelCase : str = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": _lowerCamelCase, _lowerCamelCase : int = torch.split(__lowerCAmelCase ,sample.shape[1] ,dim=1 ) else: _lowerCamelCase : List[Any] = None # 1. compute alphas, betas if prev_timestep is None: _lowerCamelCase : List[Any] = t - 1 _lowerCamelCase : Dict = self.alphas_cumprod[t] _lowerCamelCase : int = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one _lowerCamelCase : Dict = 1 - alpha_prod_t _lowerCamelCase : List[str] = 1 - alpha_prod_t_prev if prev_timestep == t - 1: _lowerCamelCase : Any = self.betas[t] _lowerCamelCase : str = self.alphas[t] else: _lowerCamelCase : Any = 1 - alpha_prod_t / alpha_prod_t_prev _lowerCamelCase : Optional[Any] = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": _lowerCamelCase : List[str] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": _lowerCamelCase : List[Any] = model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`""" " for the UnCLIPScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: _lowerCamelCase : Any = torch.clamp( __lowerCAmelCase ,-self.config.clip_sample_range ,self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _lowerCamelCase : List[str] = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t _lowerCamelCase : Optional[int] = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _lowerCamelCase : str = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise _lowerCamelCase : Union[str, Any] = 0 if t > 0: _lowerCamelCase : Dict = randn_tensor( model_output.shape ,dtype=model_output.dtype ,generator=__lowerCAmelCase ,device=model_output.device ) _lowerCamelCase : Any = self._get_variance( __lowerCAmelCase ,predicted_variance=__lowerCAmelCase ,prev_timestep=__lowerCAmelCase ,) if self.variance_type == "fixed_small_log": _lowerCamelCase : Optional[Any] = variance elif self.variance_type == "learned_range": _lowerCamelCase : Optional[int] = (0.5 * variance).exp() else: raise ValueError( F"""variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`""" " for the UnCLIPScheduler." ) _lowerCamelCase : Dict = variance * variance_noise _lowerCamelCase : List[Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=__lowerCAmelCase ,pred_original_sample=__lowerCAmelCase ) def _lowercase ( self: str ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: torch.IntTensor ,): '''simple docstring''' _lowerCamelCase : int = self.alphas_cumprod.to(device=original_samples.device ,dtype=original_samples.dtype ) _lowerCamelCase : Any = timesteps.to(original_samples.device ) _lowerCamelCase : List[Any] = alphas_cumprod[timesteps] ** 0.5 _lowerCamelCase : List[Any] = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): _lowerCamelCase : int = sqrt_alpha_prod.unsqueeze(-1 ) _lowerCamelCase : Union[str, Any] = (1 - alphas_cumprod[timesteps]) ** 0.5 _lowerCamelCase : str = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): _lowerCamelCase : Union[str, Any] = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) _lowerCamelCase : Dict = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
340
1
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer lowercase = ["gpt2"] lowercase = "gpt2" if is_tf_available(): class UpperCamelCase_ ( tf.Module ): '''simple docstring''' def __init__( self , a ) -> List[str]: super().__init__() snake_case_ = tokenizer snake_case_ = AutoConfig.from_pretrained(a ) snake_case_ = TFGPTaLMHeadModel.from_config(a ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='text' ),) ) def _UpperCamelCase ( self , a ) -> List[str]: snake_case_ = self.tokenizer(a ) snake_case_ = tokenized['input_ids'].to_tensor() snake_case_ = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) snake_case_ = self.model(input_ids=a , attention_mask=a )['logits'] return outputs @require_tf @require_keras_nlp class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ) -> Any: super().setUp() snake_case_ = [GPTaTokenizer.from_pretrained(a ) for checkpoint in (TOKENIZER_CHECKPOINTS)] snake_case_ = [TFGPTaTokenizer.from_pretrained(a ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) snake_case_ = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] snake_case_ = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def _UpperCamelCase ( self ) -> Optional[Any]: for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: snake_case_ = tokenizer([test_inputs] , return_tensors='tf' ) snake_case_ = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors snake_case_ = python_outputs[key].numpy() snake_case_ = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(a , tf.intaa ) == tf_outputs_values ) ) @slow def _UpperCamelCase ( self ) -> Dict: for tf_tokenizer in self.tf_tokenizers: snake_case_ = tf.function(a ) for test_inputs in self.test_sentences: snake_case_ = tf.constant(a ) snake_case_ = compiled_tokenizer(a ) snake_case_ = tf_tokenizer(a ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def _UpperCamelCase ( self ) -> Dict: for tf_tokenizer in self.tf_tokenizers: snake_case_ = ModelToSave(tokenizer=a ) snake_case_ = tf.convert_to_tensor([self.test_sentences[0]] ) snake_case_ = model.serving(a ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: snake_case_ = Path(a ) / 'saved.model' tf.saved_model.save(a , a , signatures={'serving_default': model.serving} ) snake_case_ = tf.saved_model.load(a ) snake_case_ = loaded_model.signatures['serving_default'](a )['output_0'] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def _UpperCamelCase ( self ) -> List[Any]: for tf_tokenizer in self.tf_tokenizers: snake_case_ = tf.convert_to_tensor([self.test_sentences[0]] ) snake_case_ = tf_tokenizer(a ) # Build model with some sample inputs snake_case_ = tf_tokenizer.get_config() snake_case_ = TFGPTaTokenizer.from_config(a ) snake_case_ = model_from_config(a ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def _UpperCamelCase ( self ) -> Optional[Any]: for tf_tokenizer in self.tf_tokenizers: # for the test to run snake_case_ = 12_31_23 for max_length in [3, 5, 10_24]: snake_case_ = tf.convert_to_tensor([self.test_sentences[0]] ) snake_case_ = tf_tokenizer(a , max_length=a ) snake_case_ = out['input_ids'].numpy().shape[1] assert out_length == max_length
178
import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments lowercase = logging.getLogger(__name__) @dataclass class UpperCamelCase_ ( snake_case_ ): '''simple docstring''' lowerCAmelCase = field( default=0.0 , metadata={'''help''': '''The label smoothing epsilon to apply (if not zero).'''} ) lowerCAmelCase = field(default=snake_case_ , metadata={'''help''': '''Whether to SortishSamler or not.'''} ) lowerCAmelCase = field( default=snake_case_ , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) lowerCAmelCase = field(default=snake_case_ , metadata={'''help''': '''whether to use adafactor'''} ) lowerCAmelCase = field( default=snake_case_ , metadata={'''help''': '''Encoder layer dropout probability. Goes into model.config.'''} ) lowerCAmelCase = field( default=snake_case_ , metadata={'''help''': '''Decoder layer dropout probability. Goes into model.config.'''} ) lowerCAmelCase = field(default=snake_case_ , metadata={'''help''': '''Dropout probability. Goes into model.config.'''} ) lowerCAmelCase = field( default=snake_case_ , metadata={'''help''': '''Attention dropout probability. Goes into model.config.'''} ) lowerCAmelCase = field( default='''linear''' , metadata={'''help''': F'''Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'''} , )
178
1
"""simple docstring""" import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class UpperCAmelCase_ ( unittest.TestCase ): def __init__( self : int , snake_case_ : Optional[int] , snake_case_ : int=13 , snake_case_ : Optional[Any]=7 , snake_case_ : int=True , snake_case_ : Optional[int]=True , snake_case_ : Optional[int]=True , snake_case_ : Optional[int]=True , snake_case_ : Optional[int]=99 , snake_case_ : Union[str, Any]=32 , snake_case_ : List[Any]=5 , snake_case_ : Optional[int]=4 , snake_case_ : Optional[int]=37 , snake_case_ : Tuple="gelu" , snake_case_ : Any=0.1 , snake_case_ : Tuple=0.1 , snake_case_ : Any=512 , snake_case_ : Optional[Any]=16 , snake_case_ : Dict=2 , snake_case_ : List[str]=0.02 , snake_case_ : Tuple=4 , ) -> Optional[int]: '''simple docstring''' A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_attention_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = type_sequence_label_size A__ = initializer_range A__ = num_choices def __magic_name__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = None if self.use_attention_mask: A__ = random_attention_mask([self.batch_size, self.seq_length] ) A__ = None if self.use_token_type_ids: A__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A__ = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __magic_name__ ( self : List[str] ) -> List[str]: '''simple docstring''' A__ = self.prepare_config_and_inputs() A__, A__, A__, A__ = config_and_inputs A__ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def __magic_name__ ( self : Optional[int] ) -> Dict: '''simple docstring''' A__ = self.prepare_config_and_inputs() A__, A__, A__, A__ = config_and_inputs A__ = True A__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) A__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class UpperCAmelCase_ ( A_, unittest.TestCase ): lowercase__ = True lowercase__ = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def __magic_name__ ( self : str ) -> Union[str, Any]: '''simple docstring''' A__ = FlaxRobertaModelTester(self ) @slow def __magic_name__ ( self : str ) -> Optional[Any]: '''simple docstring''' for model_class_name in self.all_model_classes: A__ = model_class_name.from_pretrained("roberta-base" , from_pt=snake_case_ ) A__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(snake_case_ )
354
"""simple docstring""" # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def _SCREAMING_SNAKE_CASE ( lowercase_=None ) -> Any: if subparsers is not None: A__ = subparsers.add_parser("env" ) else: A__ = argparse.ArgumentParser("Accelerate env command" ) parser.add_argument( "--config_file" , default=lowercase_ , help="The config file to use for the default values in the launching script." ) if subparsers is not None: parser.set_defaults(func=lowercase_ ) return parser def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> Dict: A__ = torch.__version__ A__ = torch.cuda.is_available() A__ = is_xpu_available() A__ = is_npu_available() A__ = "Not found" # Get the default from the config file. if args.config_file is not None or os.path.isfile(lowercase_ ): A__ = load_config_from_file(args.config_file ).to_dict() A__ = { "`Accelerate` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "Numpy version": np.__version__, "PyTorch version (GPU?)": f"""{pt_version} ({pt_cuda_available})""", "PyTorch XPU available": str(lowercase_ ), "PyTorch NPU available": str(lowercase_ ), "System RAM": f"""{psutil.virtual_memory().total / 10_24 ** 3:.2f} GB""", } if pt_cuda_available: A__ = torch.cuda.get_device_name() print("\nCopy-and-paste the text below in your GitHub issue\n" ) print("\n".join([f"""- {prop}: {val}""" for prop, val in info.items()] ) ) print("- `Accelerate` default config:" if args.config_file is None else "- `Accelerate` config passed:" ) A__ = ( "\n".join([f"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()] ) if isinstance(lowercase_ , lowercase_ ) else f"""\t{accelerate_config}""" ) print(lowercase_ ) A__ = accelerate_config return info def _SCREAMING_SNAKE_CASE ( ) -> int: A__ = env_command_parser() A__ = parser.parse_args() env_command(lowercase_ ) return 0 if __name__ == "__main__": raise SystemExit(main())
230
0
"""simple docstring""" import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel __snake_case = False __snake_case = True __snake_case = False if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument( """--repo_path""", default=None, type=str, required=True, help="""The config json file corresponding to the architecture.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") __snake_case = parser.parse_args() __snake_case = { """image_size""": """sample_size""", """num_res_blocks""": """layers_per_block""", """block_channels""": """block_out_channels""", """down_blocks""": """down_block_types""", """up_blocks""": """up_block_types""", """downscale_freq_shift""": """freq_shift""", """resnet_num_groups""": """norm_num_groups""", """resnet_act_fn""": """act_fn""", """resnet_eps""": """norm_eps""", """num_head_channels""": """attention_head_dim""", } __snake_case = { """time_steps""": """time_proj""", """mid""": """mid_block""", """downsample_blocks""": """down_blocks""", """upsample_blocks""": """up_blocks""", } __snake_case = """""" if has_file(args.repo_path, """config.json""") else """unet""" with open(os.path.join(args.repo_path, subfolder, """config.json"""), """r""", encoding="""utf-8""") as reader: __snake_case = reader.read() __snake_case = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, """config.json"""): __snake_case = UNetaDModel(**config) else: __snake_case = UNetaDConditionModel if """ldm-text2im-large-256""" in args.repo_path else UNetaDModel __snake_case = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) __snake_case = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: __snake_case = config[key] del config[key] __snake_case = [k.replace("""UNetRes""", """""") for k in config["""down_block_types"""]] __snake_case = [k.replace("""UNetRes""", """""") for k in config["""up_block_types"""]] if do_only_weights: __snake_case = torch.load(os.path.join(args.repo_path, subfolder, """diffusion_pytorch_model.bin""")) __snake_case = {} for param_key, param_value in state_dict.items(): if param_key.endswith(""".op.bias""") or param_key.endswith(""".op.weight"""): continue __snake_case = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split(""".""")[0] == key: __snake_case = param_value __snake_case = True if not has_changed: __snake_case = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
203
"""simple docstring""" import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class _lowerCAmelCase ( unittest.TestCase ): __UpperCAmelCase : Union[str, Any] = JukeboxTokenizer __UpperCAmelCase : Union[str, Any] = { '''artist''': '''Zac Brown Band''', '''genres''': '''Country''', '''lyrics''': '''I met a traveller from an antique land, Who said "Two vast and trunkless legs of stone Stand in the desert. . . . Near them, on the sand, Half sunk a shattered visage lies, whose frown, And wrinkled lip, and sneer of cold command, Tell that its sculptor well those passions read Which yet survive, stamped on these lifeless things, The hand that mocked them, and the heart that fed; And on the pedestal, these words appear: My name is Ozymandias, King of Kings; Look on my Works, ye Mighty, and despair! Nothing beside remains. Round the decay Of that colossal Wreck, boundless and bare The lone and level sands stretch far away ''', } @require_torch def lowerCamelCase ( self ) -> int: '''simple docstring''' import torch snake_case : Any = JukeboxTokenizer.from_pretrained("openai/jukebox-1b-lyrics" ) snake_case : Optional[Any] = tokenizer(**self.metas )["input_ids"] # fmt: off snake_case : Optional[int] = [ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def lowerCamelCase ( self ) -> Any: '''simple docstring''' import torch snake_case : Tuple = JukeboxTokenizer.from_pretrained("openai/jukebox-5b-lyrics" ) snake_case : Optional[Any] = tokenizer(**self.metas )["input_ids"] # fmt: off snake_case : List[Any] = [ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
203
1
from collections import defaultdict def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> int: '''simple docstring''' lowerCAmelCase : List[str] = 1 lowerCAmelCase : str = True for v in tree[start]: if v not in visited: ret += dfs(_UpperCAmelCase ) if ret % 2 == 0: cuts.append(_UpperCAmelCase ) return ret def SCREAMING_SNAKE_CASE__ ( ) -> str: '''simple docstring''' dfs(1 ) if __name__ == "__main__": __A : Union[str, Any] = 10, 9 __A : Tuple = defaultdict(list) __A : dict[int, bool] = {} __A : list[int] = [] __A : Any = 0 __A : Tuple = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
350
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class __A ( lowerCAmelCase ): lowerCAmelCase_ : Union[List[PIL.Image.Image], np.ndarray] lowerCAmelCase_ : Optional[List[bool]] lowerCAmelCase_ : Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
323
0
"""simple docstring""" import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin a : List[str] = get_tests_dir('''fixtures/test_sentencepiece.model''') a : Dict = get_tests_dir('''fixtures/test_sentencepiece_bpe.model''') a : List[Any] = '''pt''' if is_torch_available() else '''tf''' @require_sentencepiece @require_tokenizers class __UpperCamelCase ( a__ , unittest.TestCase ): lowerCamelCase : Tuple =CamembertTokenizer lowerCamelCase : Tuple =CamembertTokenizerFast lowerCamelCase : Any =True lowerCamelCase : Tuple =True def __a ( self ) -> Dict: super().setUp() # We have a SentencePiece fixture for testing a : Union[str, Any] = CamembertTokenizer(lowerCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def __a ( self ) -> Dict: a : Dict = "<pad>" a : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ ) def __a ( self ) -> Tuple: a : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>NOTUSED" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(lowerCAmelCase__ ) , 1004 ) def __a ( self ) -> str: self.assertEqual(self.get_tokenizer().vocab_size , 1005 ) def __a ( self ) -> Any: a : int = CamembertTokenizer(lowerCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) a : Dict = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) a : Tuple = "I was born in 92000, and this is falsé." a : Tuple = tokenizer.encode(lowerCAmelCase__ ) a : Any = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) a : str = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) a : int = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) a : Dict = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) a : List[Any] = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def __a ( self ) -> Optional[Any]: if not self.test_rust_tokenizer: return a : Dict = self.get_tokenizer() a : str = self.get_rust_tokenizer() a : Dict = "I was born in 92000, and this is falsé." a : List[str] = tokenizer.tokenize(lowerCAmelCase__ ) a : Optional[Any] = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) a : Dict = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) a : Union[str, Any] = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) a : Tuple = self.get_rust_tokenizer() a : Any = tokenizer.encode(lowerCAmelCase__ ) a : str = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def __a ( self ) -> int: # fmt: off a : List[str] = {"input_ids": [[5, 54, 7196, 297, 30, 23, 776, 18, 11, 3215, 3705, 8252, 22, 3164, 1181, 2116, 29, 16, 813, 25, 791, 3314, 20, 3446, 38, 2_7575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9088, 20, 1517, 8, 2_2804, 1_8818, 10, 38, 629, 607, 607, 142, 19, 7196, 867, 56, 1_0326, 24, 2267, 20, 416, 5072, 1_5612, 233, 734, 7, 2399, 27, 16, 3015, 1649, 7, 24, 20, 4338, 2399, 27, 13, 3400, 14, 13, 6189, 8, 930, 9, 6]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. a : Optional[Any] = [ "Le transformeur est un modèle d'apprentissage profond introduit en 2017, " "utilisé principalement dans le domaine du traitement automatique des langues (TAL).", "À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus " "pour gérer des données séquentielles, telles que le langage naturel, pour des tâches " "telles que la traduction et la synthèse de texte.", ] self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name="camembert-base" , revision="3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf" , sequences=lowerCAmelCase__ , )
105
"""simple docstring""" a : Any = { '''a''': '''AAAAA''', '''b''': '''AAAAB''', '''c''': '''AAABA''', '''d''': '''AAABB''', '''e''': '''AABAA''', '''f''': '''AABAB''', '''g''': '''AABBA''', '''h''': '''AABBB''', '''i''': '''ABAAA''', '''j''': '''BBBAA''', '''k''': '''ABAAB''', '''l''': '''ABABA''', '''m''': '''ABABB''', '''n''': '''ABBAA''', '''o''': '''ABBAB''', '''p''': '''ABBBA''', '''q''': '''ABBBB''', '''r''': '''BAAAA''', '''s''': '''BAAAB''', '''t''': '''BAABA''', '''u''': '''BAABB''', '''v''': '''BBBAB''', '''w''': '''BABAA''', '''x''': '''BABAB''', '''y''': '''BABBA''', '''z''': '''BABBB''', ''' ''': ''' ''', } a : List[Any] = {value: key for key, value in encode_dict.items()} def _SCREAMING_SNAKE_CASE ( _lowercase : str ) ->str: '''simple docstring''' a : int = "" for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception("encode() accepts only letters of the alphabet and spaces" ) return encoded def _SCREAMING_SNAKE_CASE ( _lowercase : str ) ->str: '''simple docstring''' if set(_lowercase ) - {"A", "B", " "} != set(): raise Exception("decode() accepts only 'A', 'B' and spaces" ) a : Optional[Any] = "" for word in coded.split(): while len(_lowercase ) != 0: decoded += decode_dict[word[:5]] a : List[Any] = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
105
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class _lowerCamelCase ( metaclass=_lowercase ): UpperCAmelCase_ = ["speech"] def __init__(self , *__a , **__a ) -> int: requires_backends(self , ["speech"] ) class _lowerCamelCase ( metaclass=_lowercase ): UpperCAmelCase_ = ["speech"] def __init__(self , *__a , **__a ) -> List[Any]: requires_backends(self , ["speech"] )
244
"""simple docstring""" import doctest from collections import deque import numpy as np class _lowerCamelCase : def __init__(self ) -> None: UpperCamelCase = [2, 1, 2, -1] UpperCamelCase = [1, 2, 3, 4] def snake_case_ (self ) -> list[float]: UpperCamelCase = len(self.first_signal ) UpperCamelCase = len(self.second_signal ) UpperCamelCase = max(__a , __a ) # create a zero matrix of max_length x max_length UpperCamelCase = [[0] * max_length for i in range(__a )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(__a ): UpperCamelCase = deque(self.second_signal ) rotated_signal.rotate(__a ) for j, item in enumerate(__a ): matrix[i][j] += item # multiply the matrix with the first signal UpperCamelCase = np.matmul(np.transpose(__a ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(__a , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
244
1
'''simple docstring''' from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _snake_case ( a__ ): lowerCAmelCase :Optional[int] = ['''image_processor''', '''tokenizer'''] lowerCAmelCase :Dict = '''Pix2StructImageProcessor''' lowerCAmelCase :Optional[int] = ('''T5Tokenizer''', '''T5TokenizerFast''') def __init__( self , _lowerCamelCase , _lowerCamelCase): UpperCAmelCase__ : Any = False super().__init__(_lowerCamelCase , _lowerCamelCase) def __call__( self , _lowerCamelCase=None , _lowerCamelCase = None , _lowerCamelCase = True , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = 2048 , _lowerCamelCase = 0 , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = True , _lowerCamelCase = None , **_lowerCamelCase , ): if images is None and text is None: raise ValueError("""You have to specify either images or text.""") # Get only text if images is None and not self.image_processor.is_vqa: UpperCAmelCase__ : List[Any] = self.tokenizer UpperCAmelCase__ : int = self.tokenizer( text=_lowerCamelCase , add_special_tokens=_lowerCamelCase , padding=_lowerCamelCase , truncation=_lowerCamelCase , max_length=_lowerCamelCase , stride=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_attention_mask=_lowerCamelCase , return_overflowing_tokens=_lowerCamelCase , return_special_tokens_mask=_lowerCamelCase , return_offsets_mapping=_lowerCamelCase , return_token_type_ids=_lowerCamelCase , return_length=_lowerCamelCase , verbose=_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values UpperCAmelCase__ : List[str] = self.image_processor( _lowerCamelCase , return_tensors=_lowerCamelCase , max_patches=_lowerCamelCase , **_lowerCamelCase) else: # add pixel_values and bbox UpperCAmelCase__ : str = self.image_processor( _lowerCamelCase , return_tensors=_lowerCamelCase , max_patches=_lowerCamelCase , header_text=_lowerCamelCase , **_lowerCamelCase) if text is not None and not self.image_processor.is_vqa: UpperCAmelCase__ : Union[str, Any] = self.tokenizer( text=_lowerCamelCase , add_special_tokens=_lowerCamelCase , padding=_lowerCamelCase , truncation=_lowerCamelCase , max_length=_lowerCamelCase , stride=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_attention_mask=_lowerCamelCase , return_overflowing_tokens=_lowerCamelCase , return_special_tokens_mask=_lowerCamelCase , return_offsets_mapping=_lowerCamelCase , return_token_type_ids=_lowerCamelCase , return_length=_lowerCamelCase , verbose=_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase , ) if "attention_mask" in text_encoding: UpperCAmelCase__ : Any = text_encoding.pop("""attention_mask""") if "input_ids" in text_encoding: UpperCAmelCase__ : Any = text_encoding.pop("""input_ids""") else: UpperCAmelCase__ : int = None if text_encoding is not None: encoding_image_processor.update(_lowerCamelCase) return encoding_image_processor def snake_case__ ( self , *_lowerCamelCase , **_lowerCamelCase): return self.tokenizer.batch_decode(*_lowerCamelCase , **_lowerCamelCase) def snake_case__ ( self , *_lowerCamelCase , **_lowerCamelCase): return self.tokenizer.decode(*_lowerCamelCase , **_lowerCamelCase) @property def snake_case__ ( self): UpperCAmelCase__ : Dict = self.tokenizer.model_input_names UpperCAmelCase__ : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
163
'''simple docstring''' import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class _snake_case ( unittest.TestCase ): def __init__( self , _lowerCamelCase): UpperCAmelCase__ : Any = parent def snake_case__ ( self): return {} def _UpperCamelCase ( ): UpperCAmelCase__ : List[str] = """<HTML> <HEAD> <TITLE>sample document</TITLE> </HEAD> <BODY BGCOLOR=\"FFFFFF\"> <HR> <a href=\"http://google.com\">Goog</a> <H1>This is one header</H1> <H2>This is a another Header</H2> <P>Travel from <P> <B>SFO to JFK</B> <BR> <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B> <HR> <div style=\"color:#0000FF\"> <h3>Traveler <b> name </b> is <p> John Doe </p> </div>""" UpperCAmelCase__ : Tuple = """ <!DOCTYPE html> <html> <body> <h1>My First Heading</h1> <p>My first paragraph.</p> </body> </html> """ return [html_string_a, html_string_a] @require_bsa class _snake_case ( a__ , unittest.TestCase ): lowerCAmelCase :Optional[int] = MarkupLMFeatureExtractor if is_bsa_available() else None def snake_case__ ( self): UpperCAmelCase__ : Union[str, Any] = MarkupLMFeatureExtractionTester(self) @property def snake_case__ ( self): return self.feature_extract_tester.prepare_feat_extract_dict() def snake_case__ ( self): # Initialize feature_extractor UpperCAmelCase__ : List[Any] = self.feature_extraction_class() # Test not batched input UpperCAmelCase__ : Optional[Any] = get_html_strings()[0] UpperCAmelCase__ : Any = feature_extractor(_lowerCamelCase) # fmt: off UpperCAmelCase__ : Dict = [["""sample document""", """Goog""", """This is one header""", """This is a another Header""", """Travel from""", """SFO to JFK""", """on May 2, 2015 at 2:00 pm. For details go to confirm.com""", """Traveler""", """name""", """is""", """John Doe"""]] UpperCAmelCase__ : List[str] = [["""/html/head/title""", """/html/body/a""", """/html/body/h1""", """/html/body/h2""", """/html/body/p""", """/html/body/p/p/b[1]""", """/html/body/p/p/b[2]/i""", """/html/body/p/p/div/h3""", """/html/body/p/p/div/h3/b""", """/html/body/p/p/div/h3""", """/html/body/p/p/div/h3/p"""]] # fmt: on self.assertEqual(encoding.nodes , _lowerCamelCase) self.assertEqual(encoding.xpaths , _lowerCamelCase) # Test batched UpperCAmelCase__ : int = get_html_strings() UpperCAmelCase__ : Optional[Any] = feature_extractor(_lowerCamelCase) # fmt: off UpperCAmelCase__ : List[str] = expected_nodes + [["""My First Heading""", """My first paragraph."""]] UpperCAmelCase__ : str = expected_xpaths + [["""/html/body/h1""", """/html/body/p"""]] self.assertEqual(len(encoding.nodes) , 2) self.assertEqual(len(encoding.xpaths) , 2) self.assertEqual(encoding.nodes , _lowerCamelCase) self.assertEqual(encoding.xpaths , _lowerCamelCase)
163
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer _A = logging.get_logger(__name__) _A = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _A = { 'vocab_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/vocab.txt', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/vocab.txt', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt' ), 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt' ), 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt', 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json' ), 'bert-base-multilingual-cased': ( 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json' ), 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-cased': ( 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json' ), }, } _A = { 'bert-base-uncased': 512, 'bert-large-uncased': 512, 'bert-base-cased': 512, 'bert-large-cased': 512, 'bert-base-multilingual-uncased': 512, 'bert-base-multilingual-cased': 512, 'bert-base-chinese': 512, 'bert-base-german-cased': 512, 'bert-large-uncased-whole-word-masking': 512, 'bert-large-cased-whole-word-masking': 512, 'bert-large-uncased-whole-word-masking-finetuned-squad': 512, 'bert-large-cased-whole-word-masking-finetuned-squad': 512, 'bert-base-cased-finetuned-mrpc': 512, 'bert-base-german-dbmdz-cased': 512, 'bert-base-german-dbmdz-uncased': 512, 'TurkuNLP/bert-base-finnish-cased-v1': 512, 'TurkuNLP/bert-base-finnish-uncased-v1': 512, 'wietsedv/bert-base-dutch-cased': 512, } _A = { 'bert-base-uncased': {'do_lower_case': True}, 'bert-large-uncased': {'do_lower_case': True}, 'bert-base-cased': {'do_lower_case': False}, 'bert-large-cased': {'do_lower_case': False}, 'bert-base-multilingual-uncased': {'do_lower_case': True}, 'bert-base-multilingual-cased': {'do_lower_case': False}, 'bert-base-chinese': {'do_lower_case': False}, 'bert-base-german-cased': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking-finetuned-squad': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking-finetuned-squad': {'do_lower_case': False}, 'bert-base-cased-finetuned-mrpc': {'do_lower_case': False}, 'bert-base-german-dbmdz-cased': {'do_lower_case': False}, 'bert-base-german-dbmdz-uncased': {'do_lower_case': True}, 'TurkuNLP/bert-base-finnish-cased-v1': {'do_lower_case': False}, 'TurkuNLP/bert-base-finnish-uncased-v1': {'do_lower_case': True}, 'wietsedv/bert-base-dutch-cased': {'do_lower_case': False}, } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Any = VOCAB_FILES_NAMES UpperCAmelCase__ : List[str] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Optional[int] = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : Dict = BertTokenizer def __init__( self , A_=None , A_=None , A_=True , A_="[UNK]" , A_="[SEP]" , A_="[PAD]" , A_="[CLS]" , A_="[MASK]" , A_=True , A_=None , **A_ , ) -> Any: super().__init__( A_ , tokenizer_file=A_ , do_lower_case=A_ , unk_token=A_ , sep_token=A_ , pad_token=A_ , cls_token=A_ , mask_token=A_ , tokenize_chinese_chars=A_ , strip_accents=A_ , **A_ , ) __UpperCamelCase =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , A_ ) != do_lower_case or normalizer_state.get('strip_accents' , A_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , A_ ) != tokenize_chinese_chars ): __UpperCamelCase =getattr(A_ , normalizer_state.pop('type' ) ) __UpperCamelCase =do_lower_case __UpperCamelCase =strip_accents __UpperCamelCase =tokenize_chinese_chars __UpperCamelCase =normalizer_class(**A_ ) __UpperCamelCase =do_lower_case def _a ( self , A_ , A_=None ) -> List[str]: __UpperCamelCase =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _a ( self , A_ , A_ = None ) -> List[int]: __UpperCamelCase =[self.sep_token_id] __UpperCamelCase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _a ( self , A_ , A_ = None ) -> Tuple[str]: __UpperCamelCase =self._tokenizer.model.save(A_ , name=A_ ) return tuple(A_ )
363
from __future__ import annotations from typing import Any def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : list[Any] ): create_state_space_tree(SCREAMING_SNAKE_CASE__ , [] , 0 ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : list[Any] , SCREAMING_SNAKE_CASE__ : list[Any] , SCREAMING_SNAKE_CASE__ : int ): if index == len(SCREAMING_SNAKE_CASE__ ): print(SCREAMING_SNAKE_CASE__ ) return create_state_space_tree(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , index + 1 ) current_subsequence.pop() if __name__ == "__main__": _A = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(['A', 'B', 'C']) generate_all_subsequences(seq)
117
0
"""simple docstring""" from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { 'EleutherAI/gpt-j-6B': 'https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class __lowerCamelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Optional[Any] = """gptj""" a_ : Any = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Tuple , a_ : int=5_04_00 , a_ : Union[str, Any]=20_48 , a_ : List[Any]=40_96 , a_ : Any=28 , a_ : str=16 , a_ : Any=64 , a_ : str=None , a_ : Any="gelu_new" , a_ : Optional[Any]=0.0 , a_ : Dict=0.0 , a_ : Tuple=0.0 , a_ : List[str]=1e-5 , a_ : Any=0.02 , a_ : Optional[Any]=True , a_ : Dict=5_02_56 , a_ : Tuple=5_02_56 , a_ : Optional[Any]=False , **a_ : int , ): lowerCAmelCase_ : Tuple = vocab_size lowerCAmelCase_ : Union[str, Any] = n_positions lowerCAmelCase_ : List[Any] = n_embd lowerCAmelCase_ : Union[str, Any] = n_layer lowerCAmelCase_ : List[Any] = n_head lowerCAmelCase_ : List[str] = n_inner lowerCAmelCase_ : Optional[int] = rotary_dim lowerCAmelCase_ : str = activation_function lowerCAmelCase_ : Any = resid_pdrop lowerCAmelCase_ : Optional[Any] = embd_pdrop lowerCAmelCase_ : Tuple = attn_pdrop lowerCAmelCase_ : Tuple = layer_norm_epsilon lowerCAmelCase_ : Dict = initializer_range lowerCAmelCase_ : Optional[int] = use_cache lowerCAmelCase_ : str = bos_token_id lowerCAmelCase_ : Optional[Any] = eos_token_id super().__init__( bos_token_id=a_ , eos_token_id=a_ , tie_word_embeddings=a_ , **a_ ) class __lowerCamelCase ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : Union[str, Any] , a_ : Optional[int] , a_ : int = "default" , a_ : int = None , a_ : List[str] = False , ): super().__init__(a_ , task=a_ , patching_specs=a_ , use_past=a_ ) if not getattr(self._config , "pad_token_id" , a_ ): # TODO: how to do that better? lowerCAmelCase_ : Tuple = 0 @property def lowerCamelCase ( self : str ): lowerCAmelCase_ : str = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(a_ , direction="inputs" ) lowerCAmelCase_ : Optional[Any] = {0: "batch", 1: "past_sequence + sequence"} else: lowerCAmelCase_ : Optional[Any] = {0: "batch", 1: "sequence"} return common_inputs @property def lowerCamelCase ( self : str ): return self._config.n_layer @property def lowerCamelCase ( self : Dict ): return self._config.n_head def lowerCamelCase ( self : Any , a_ : int , a_ : List[str] = -1 , a_ : Optional[int] = -1 , a_ : Optional[int] = False , a_ : Dict = None , ): lowerCAmelCase_ : Union[str, Any] = super(a_ , self ).generate_dummy_inputs( a_ , batch_size=a_ , seq_length=a_ , is_pair=a_ , framework=a_ ) # We need to order the input in the way they appears in the forward() lowerCAmelCase_ : Dict = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch lowerCAmelCase_ , lowerCAmelCase_ : Dict = common_inputs["input_ids"].shape # Not using the same length for past_key_values lowerCAmelCase_ : str = seqlen + 2 lowerCAmelCase_ : Tuple = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowerCAmelCase_ : int = [ (torch.zeros(a_ ), torch.zeros(a_ )) for _ in range(self.num_layers ) ] lowerCAmelCase_ : Dict = common_inputs["attention_mask"] if self.use_past: lowerCAmelCase_ : List[str] = ordered_inputs["attention_mask"].dtype lowerCAmelCase_ : Union[str, Any] = torch.cat( [ordered_inputs["attention_mask"], torch.ones(a_ , a_ , dtype=a_ )] , dim=1 ) return ordered_inputs @property def lowerCamelCase ( self : Optional[Any] ): return 13
241
'''simple docstring''' import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def _lowercase ( __A ): '''simple docstring''' return (data["data"], data["target"]) def _lowercase ( __A ,__A ,__A ): '''simple docstring''' __UpperCamelCase = XGBRegressor(verbosity=0 ,random_state=42 ) xgb.fit(__A ,__A ) # Predict target for test data __UpperCamelCase = xgb.predict(__A ) __UpperCamelCase = predictions.reshape(len(__A ) ,1 ) return predictions def _lowercase ( ): '''simple docstring''' __UpperCamelCase = fetch_california_housing() __UpperCamelCase , __UpperCamelCase = data_handling(__A ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = train_test_split( __A ,__A ,test_size=0.25 ,random_state=1 ) __UpperCamelCase = xgboost(__A ,__A ,__A ) # Error printing print(f"Mean Absolute Error : {mean_absolute_error(__A ,__A )}" ) print(f"Mean Square Error : {mean_squared_error(__A ,__A )}" ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
349
0
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""" ) ) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , ) @pytest.mark.usefixtures("""sm_env""" ) @parameterized_class( [ { """framework""": """pytorch""", """script""": """run_glue.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 650, """eval_accuracy""": 0.7, """eval_loss""": 0.6}, }, { """framework""": """pytorch""", """script""": """run_ddp.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 600, """eval_accuracy""": 0.7, """eval_loss""": 0.6}, }, { """framework""": """tensorflow""", """script""": """run_tf_dist.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 600, """eval_accuracy""": 0.6, """eval_loss""": 0.7}, }, ] ) class lowercase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ (self ) -> Dict: """simple docstring""" if self.framework == "pytorch": subprocess.run( F"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split() , encoding='utf-8' , check=__a , ) assert hasattr(self , 'env' ) def UpperCamelCase__ (self , __a ) -> int: """simple docstring""" UpperCAmelCase__ = F"{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}" # distributed data settings UpperCAmelCase__ = {'smdistributed': {'dataparallel': {'enabled': True}}} if self.script != 'run_ddp.py' else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=__a , instance_count=__a , instance_type=self.instance_type , debugger_hook_config=__a , hyperparameters={**self.env.distributed_hyperparameters, 'model_name_or_path': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=__a , py_version='py36' , ) def UpperCamelCase__ (self , __a ) -> str: """simple docstring""" TrainingJobAnalytics(__a ).export_csv(F"{self.env.test_path}/{job_name}_metrics.csv" ) @parameterized.expand([(2,)] ) def UpperCamelCase__ (self , __a ) -> Dict: """simple docstring""" UpperCAmelCase__ = self.create_estimator(__a ) # run training estimator.fit() # result dataframe UpperCAmelCase__ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis UpperCAmelCase__ = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) UpperCAmelCase__ = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping UpperCAmelCase__ = ( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' , 999999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"{estimator.latest_training_job.name}.json" , 'w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , __a )
354
from collections import deque def UpperCamelCase_( snake_case__: Tuple ) -> Tuple: UpperCAmelCase__ = len(snake_case__ ) UpperCAmelCase__ = deque() UpperCAmelCase__ = [False for _ in range(snake_case__ )] UpperCAmelCase__ = [-1 for _ in range(snake_case__ )] UpperCAmelCase__ = index_of[:] def strong_connect(snake_case__: List[str] , snake_case__: List[str] , snake_case__: List[str] ): UpperCAmelCase__ = index # the number when this node is seen UpperCAmelCase__ = index # lowest rank node reachable from here index += 1 stack.append(snake_case__ ) UpperCAmelCase__ = True for w in g[v]: if index_of[w] == -1: UpperCAmelCase__ = strong_connect(snake_case__ , snake_case__ , snake_case__ ) UpperCAmelCase__ = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: UpperCAmelCase__ = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: UpperCAmelCase__ = [] UpperCAmelCase__ = stack.pop() UpperCAmelCase__ = False component.append(snake_case__ ) while w != v: UpperCAmelCase__ = stack.pop() UpperCAmelCase__ = False component.append(snake_case__ ) components.append(snake_case__ ) return index UpperCAmelCase__ = [] for v in range(snake_case__ ): if index_of[v] == -1: strong_connect(snake_case__ , 0 , snake_case__ ) return components def UpperCamelCase_( snake_case__: Dict , snake_case__: List[Any] ) -> Optional[int]: UpperCAmelCase__ = [[] for _ in range(snake_case__ )] for u, v in edges: g[u].append(snake_case__ ) return g if __name__ == "__main__": # Test _UpperCamelCase = 7 _UpperCamelCase = [0, 0, 1, 2, 3, 3, 4, 4, 6] _UpperCamelCase = [1, 3, 2, 0, 1, 4, 5, 6, 5] _UpperCamelCase = [(u, v) for u, v in zip(source, target)] _UpperCamelCase = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
335
0
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class lowerCamelCase ( lowerCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
171
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _A = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class lowerCamelCase ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = XLNetTokenizer SCREAMING_SNAKE_CASE = XLNetTokenizerFast SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True def _a (self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase__ : List[str] = XLNetTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def _a (self ): """simple docstring""" UpperCAmelCase__ : str = """<s>""" UpperCAmelCase__ : str = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCamelCase ) , _lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """<eod>""" ) self.assertEqual(len(_lowerCamelCase ) , 1006 ) def _a (self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = XLNetTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase ) UpperCAmelCase__ : List[Any] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_lowerCamelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [285, 46, 10, 170, 382] ) UpperCAmelCase__ : Tuple = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) UpperCAmelCase__ : List[Any] = tokenizer.convert_tokens_to_ids(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] ) UpperCAmelCase__ : int = tokenizer.convert_ids_to_tokens(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def _a (self ): """simple docstring""" UpperCAmelCase__ : List[str] = XLNetTokenizer(_lowerCamelCase , do_lower_case=_lowerCamelCase ) UpperCAmelCase__ : str = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + """""", """i""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] , ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""▁he""", """ll""", """o"""] ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Tuple = XLNetTokenizer(_lowerCamelCase , do_lower_case=_lowerCamelCase ) UpperCAmelCase__ : Any = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] , ) @slow def _a (self ): """simple docstring""" UpperCAmelCase__ : Dict = XLNetTokenizer.from_pretrained("""xlnet-base-cased""" ) UpperCAmelCase__ : int = tokenizer.encode("""sequence builders""" , add_special_tokens=_lowerCamelCase ) UpperCAmelCase__ : int = tokenizer.encode("""multi-sequence build""" , add_special_tokens=_lowerCamelCase ) UpperCAmelCase__ : str = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase ) UpperCAmelCase__ : Optional[int] = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase , _lowerCamelCase ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def _a (self ): """simple docstring""" UpperCAmelCase__ : Tuple = {"""input_ids""": [[17, 21442, 270, 17, 10, 14645, 318, 34, 17, 4546, 3145, 787, 13, 7752, 22018, 23, 21, 17, 4546, 3145, 787, 13, 3352, 14431, 13, 5500, 11, 1176, 580, 13, 16819, 4797, 23, 17, 10, 17135, 658, 19, 457, 7932, 13, 184, 19, 3154, 17135, 6468, 19, 1404, 12269, 19, 4229, 5356, 16264, 46, 19, 17, 20545, 10395, 9, 9, 9, 11, 28, 6421, 9531, 20729, 17, 10, 353, 17022, 11, 21, 6421, 9531, 16949, 17, 10, 11509, 753, 11, 33, 95, 2421, 7385, 956, 14431, 2626, 25, 842, 7385, 4836, 21, 1429, 2272, 9855, 3120, 161, 24738, 19, 13203, 658, 218, 787, 21, 430, 18482, 847, 2637, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 322, 22178, 27, 1064, 22, 956, 13, 11101, 1429, 5854, 24313, 18953, 40, 422, 24366, 68, 1758, 37, 10483, 14257, 31, 207, 263, 21, 203, 3773, 25, 71, 9735, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 2049, 3442, 17, 13894, 3380, 23, 95, 18, 17634, 2288, 9, 4, 3]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCamelCase , model_name="""xlnet-base-cased""" , revision="""c841166438c31ec7ca9a106dee7bb312b73ae511""" , )
171
1
from collections.abc import Sequence def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase = False): if not arr: return 0 SCREAMING_SNAKE_CASE = 0 if allow_empty_subarrays else float('-inf') SCREAMING_SNAKE_CASE = 0.0 for num in arr: SCREAMING_SNAKE_CASE = max(0 if allow_empty_subarrays else num , curr_sum + num) SCREAMING_SNAKE_CASE = max(UpperCamelCase__ , UpperCamelCase__) return max_sum if __name__ == "__main__": from doctest import testmod testmod() a_ : Optional[Any] = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(f"""{max_subarray_sum(nums) = }""")
363
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class _snake_case ( unittest.TestCase ): _lowercase : List[Any] = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _lowercase : int = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def SCREAMING_SNAKE_CASE__ ( self , a , a , a) -> Any: SCREAMING_SNAKE_CASE = TextaTextGenerationPipeline(model=a , tokenizer=a) return generator, ["Something to write", "Something else"] def SCREAMING_SNAKE_CASE__ ( self , a , a) -> Any: SCREAMING_SNAKE_CASE = generator('Something there') self.assertEqual(a , [{'generated_text': ANY(a)}]) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]['generated_text'].startswith('Something there')) SCREAMING_SNAKE_CASE = generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=a) self.assertEqual( a , [ [{'generated_text': ANY(a)}, {'generated_text': ANY(a)}], [{'generated_text': ANY(a)}, {'generated_text': ANY(a)}], ] , ) SCREAMING_SNAKE_CASE = generator( ['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=a) self.assertEqual( a , [ [{'generated_text': ANY(a)}, {'generated_text': ANY(a)}], [{'generated_text': ANY(a)}, {'generated_text': ANY(a)}], ] , ) with self.assertRaises(a): generator(4) @require_torch def SCREAMING_SNAKE_CASE__ ( self) -> Any: SCREAMING_SNAKE_CASE = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='pt') # do_sample=False necessary for reproducibility SCREAMING_SNAKE_CASE = generator('Something there' , do_sample=a) self.assertEqual(a , [{'generated_text': ''}]) SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = generator( 'Something there' , num_return_sequences=a , num_beams=a , ) SCREAMING_SNAKE_CASE = [ {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': ''}, ] self.assertEqual(a , a) SCREAMING_SNAKE_CASE = generator('This is a test' , do_sample=a , num_return_sequences=2 , return_tensors=a) self.assertEqual( a , [ {'generated_token_ids': ANY(torch.Tensor)}, {'generated_token_ids': ANY(torch.Tensor)}, ] , ) SCREAMING_SNAKE_CASE = generator.model.config.eos_token_id SCREAMING_SNAKE_CASE = '<pad>' SCREAMING_SNAKE_CASE = generator( ['This is a test', 'This is a second test'] , do_sample=a , num_return_sequences=2 , batch_size=2 , return_tensors=a , ) self.assertEqual( a , [ [ {'generated_token_ids': ANY(torch.Tensor)}, {'generated_token_ids': ANY(torch.Tensor)}, ], [ {'generated_token_ids': ANY(torch.Tensor)}, {'generated_token_ids': ANY(torch.Tensor)}, ], ] , ) @require_tf def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: SCREAMING_SNAKE_CASE = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='tf') # do_sample=False necessary for reproducibility SCREAMING_SNAKE_CASE = generator('Something there' , do_sample=a) self.assertEqual(a , [{'generated_text': ''}])
327
0
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class snake_case_ : def __init__( self :int ,__snake_case :int ,__snake_case :Tuple=13 ,__snake_case :Optional[int]=7 ,__snake_case :Tuple=True ,__snake_case :List[Any]=True ,__snake_case :int=False ,__snake_case :str=True ,__snake_case :Optional[int]=99 ,__snake_case :int=32 ,__snake_case :List[Any]=5 ,__snake_case :Union[str, Any]=4 ,__snake_case :Tuple=37 ,__snake_case :List[str]="gelu" ,__snake_case :List[Any]=0.1 ,__snake_case :Union[str, Any]=0.1 ,__snake_case :Optional[Any]=5_12 ,__snake_case :str=16 ,__snake_case :str=2 ,__snake_case :List[Any]=0.02 ,__snake_case :Optional[int]=3 ,__snake_case :str=4 ,__snake_case :List[str]=None ,) -> Tuple: a__ = parent a__ = batch_size a__ = seq_length a__ = is_training a__ = use_input_mask a__ = use_token_type_ids a__ = use_labels a__ = vocab_size a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = max_position_embeddings a__ = type_vocab_size a__ = type_sequence_label_size a__ = initializer_range a__ = num_labels a__ = num_choices a__ = scope def lowerCamelCase__( self :str ) -> Optional[int]: a__ = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) a__ = None if self.use_input_mask: a__ = random_attention_mask([self.batch_size, self.seq_length] ) a__ = None if self.use_token_type_ids: a__ = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) a__ = None a__ = None a__ = None if self.use_labels: a__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) a__ = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) a__ = ids_tensor([self.batch_size] ,self.num_choices ) a__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase__( self :Union[str, Any] ) -> Optional[Any]: return OpenLlamaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=__SCREAMING_SNAKE_CASE ,initializer_range=self.initializer_range ,use_stable_embedding=__SCREAMING_SNAKE_CASE ,) def lowerCamelCase__( self :str ,__snake_case :List[Any] ,__snake_case :Union[str, Any] ,__snake_case :Optional[Any] ,__snake_case :Tuple ,__snake_case :Optional[Any] ,__snake_case :Dict ,__snake_case :List[str] ) -> List[Any]: a__ = OpenLlamaModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() a__ = model(__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ) a__ = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__( self :List[Any] ,__snake_case :Dict ,__snake_case :Optional[Any] ,__snake_case :Any ,__snake_case :int ,__snake_case :List[str] ,__snake_case :List[Any] ,__snake_case :Optional[int] ,__snake_case :str ,__snake_case :Any ,) -> List[Any]: a__ = True a__ = OpenLlamaModel(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() a__ = model( __SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ,encoder_hidden_states=__SCREAMING_SNAKE_CASE ,encoder_attention_mask=__SCREAMING_SNAKE_CASE ,) a__ = model( __SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ,encoder_hidden_states=__SCREAMING_SNAKE_CASE ,) a__ = model(__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__( self :int ,__snake_case :int ,__snake_case :Dict ,__snake_case :List[str] ,__snake_case :Tuple ,__snake_case :Optional[int] ,__snake_case :Dict ,__snake_case :List[Any] ,__snake_case :int ,__snake_case :str ,) -> Union[str, Any]: a__ = OpenLlamaForCausalLM(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() a__ = model(__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ,labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__( self :int ,__snake_case :Any ,__snake_case :Union[str, Any] ,__snake_case :Dict ,__snake_case :Optional[int] ,__snake_case :Optional[Any] ,__snake_case :Optional[Any] ,__snake_case :Tuple ,__snake_case :int ,__snake_case :int ,) -> Optional[int]: a__ = True a__ = True a__ = OpenLlamaForCausalLM(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() # first forward pass a__ = model( __SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ,encoder_hidden_states=__SCREAMING_SNAKE_CASE ,encoder_attention_mask=__SCREAMING_SNAKE_CASE ,use_cache=__SCREAMING_SNAKE_CASE ,) a__ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids a__ = ids_tensor((self.batch_size, 3) ,config.vocab_size ) a__ = ids_tensor((self.batch_size, 3) ,vocab_size=2 ) # append to next input_ids and a__ = torch.cat([input_ids, next_tokens] ,dim=-1 ) a__ = torch.cat([input_mask, next_mask] ,dim=-1 ) a__ = model( __SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ,encoder_hidden_states=__SCREAMING_SNAKE_CASE ,encoder_attention_mask=__SCREAMING_SNAKE_CASE ,output_hidden_states=__SCREAMING_SNAKE_CASE ,)['hidden_states'][0] a__ = model( __SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ,encoder_hidden_states=__SCREAMING_SNAKE_CASE ,encoder_attention_mask=__SCREAMING_SNAKE_CASE ,past_key_values=__SCREAMING_SNAKE_CASE ,output_hidden_states=__SCREAMING_SNAKE_CASE ,)['hidden_states'][0] # select random slice a__ = ids_tensor((1,) ,output_from_past.shape[-1] ).item() a__ = output_from_no_past[:, -3:, random_slice_idx].detach() a__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,atol=1E-3 ) ) def lowerCamelCase__( self :Tuple ) -> Dict: a__ = self.prepare_config_and_inputs() ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ) = config_and_inputs a__ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class snake_case_ (UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : Union[str, Any] = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) UpperCAmelCase__ : Union[str, Any] = (OpenLlamaForCausalLM,) if is_torch_available() else () UpperCAmelCase__ : Any = ( { """feature-extraction""": OpenLlamaModel, """text-classification""": OpenLlamaForSequenceClassification, """text-generation""": OpenLlamaForCausalLM, """zero-shot""": OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : List[str] = False def lowerCamelCase__( self :int ) -> int: a__ = OpenLlamaModelTester(self ) a__ = ConfigTester(self ,config_class=__SCREAMING_SNAKE_CASE ,hidden_size=37 ) def lowerCamelCase__( self :Optional[int] ) -> int: self.config_tester.run_common_tests() def lowerCamelCase__( self :List[Any] ) -> List[Any]: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def lowerCamelCase__( self :List[str] ) -> Dict: a__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a__ = type self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def lowerCamelCase__( self :Dict ) -> str: a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() a__ = 3 a__ = input_dict['input_ids'] a__ = input_ids.ne(1 ).to(__SCREAMING_SNAKE_CASE ) a__ = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) a__ = OpenLlamaForSequenceClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() a__ = model(__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ,labels=__SCREAMING_SNAKE_CASE ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCamelCase__( self :Any ) -> str: a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() a__ = 3 a__ = 'single_label_classification' a__ = input_dict['input_ids'] a__ = input_ids.ne(1 ).to(__SCREAMING_SNAKE_CASE ) a__ = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) a__ = OpenLlamaForSequenceClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() a__ = model(__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ,labels=__SCREAMING_SNAKE_CASE ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCamelCase__( self :Optional[Any] ) -> List[Any]: a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() a__ = 3 a__ = 'multi_label_classification' a__ = input_dict['input_ids'] a__ = input_ids.ne(1 ).to(__SCREAMING_SNAKE_CASE ) a__ = ids_tensor( [self.model_tester.batch_size, config.num_labels] ,self.model_tester.type_sequence_label_size ).to(torch.float ) a__ = OpenLlamaForSequenceClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() a__ = model(__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ,labels=__SCREAMING_SNAKE_CASE ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('Open-Llama buffers include complex numbers, which breaks this test' ) def lowerCamelCase__( self :int ) -> int: pass @parameterized.expand([('linear',), ('dynamic',)] ) def lowerCamelCase__( self :int ,__snake_case :List[Any] ) -> Dict: a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() a__ = ids_tensor([1, 10] ,config.vocab_size ) a__ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] ,config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights a__ = OpenLlamaModel(__SCREAMING_SNAKE_CASE ) original_model.to(__SCREAMING_SNAKE_CASE ) original_model.eval() a__ = original_model(__SCREAMING_SNAKE_CASE ).last_hidden_state a__ = original_model(__SCREAMING_SNAKE_CASE ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights a__ = {'type': scaling_type, 'factor': 10.0} a__ = OpenLlamaModel(__SCREAMING_SNAKE_CASE ) scaled_model.to(__SCREAMING_SNAKE_CASE ) scaled_model.eval() a__ = scaled_model(__SCREAMING_SNAKE_CASE ).last_hidden_state a__ = scaled_model(__SCREAMING_SNAKE_CASE ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,atol=1E-5 ) ) else: self.assertFalse(torch.allclose(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,atol=1E-5 ) )
240
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class lowercase_ ( UpperCamelCase_ ): """simple docstring""" UpperCAmelCase_ : List[str] = ["""image_processor""", """tokenizer"""] UpperCAmelCase_ : int = """OwlViTImageProcessor""" UpperCAmelCase_ : Any = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE ) ->Any: lowerCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __SCREAMING_SNAKE_CASE , ) lowerCAmelCase = kwargs.pop('''feature_extractor''' ) lowerCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __call__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="max_length" , __SCREAMING_SNAKE_CASE="np" , **__SCREAMING_SNAKE_CASE ) ->int: if text is None and query_images is None and images is None: raise ValueError( '''You have to specify at least one text or query image or image. All three cannot be none.''' ) if text is not None: if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) or (isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and not isinstance(text[0] , __SCREAMING_SNAKE_CASE )): lowerCAmelCase = [self.tokenizer(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )] elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and isinstance(text[0] , __SCREAMING_SNAKE_CASE ): lowerCAmelCase = [] # Maximum number of queries across batch lowerCAmelCase = max([len(__SCREAMING_SNAKE_CASE ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(__SCREAMING_SNAKE_CASE ) != max_num_queries: lowerCAmelCase = t + [''' '''] * (max_num_queries - len(__SCREAMING_SNAKE_CASE )) lowerCAmelCase = self.tokenizer(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) encodings.append(__SCREAMING_SNAKE_CASE ) else: raise TypeError('''Input text should be a string, a list of strings or a nested list of strings''' ) if return_tensors == "np": lowerCAmelCase = np.concatenate([encoding['''input_ids'''] for encoding in encodings] , axis=0 ) lowerCAmelCase = np.concatenate([encoding['''attention_mask'''] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp lowerCAmelCase = jnp.concatenate([encoding['''input_ids'''] for encoding in encodings] , axis=0 ) lowerCAmelCase = jnp.concatenate([encoding['''attention_mask'''] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch lowerCAmelCase = torch.cat([encoding['''input_ids'''] for encoding in encodings] , dim=0 ) lowerCAmelCase = torch.cat([encoding['''attention_mask'''] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf lowerCAmelCase = tf.stack([encoding['''input_ids'''] for encoding in encodings] , axis=0 ) lowerCAmelCase = tf.stack([encoding['''attention_mask'''] for encoding in encodings] , axis=0 ) else: raise ValueError('''Target return tensor type could not be returned''' ) lowerCAmelCase = BatchEncoding() lowerCAmelCase = input_ids lowerCAmelCase = attention_mask if query_images is not None: lowerCAmelCase = BatchEncoding() lowerCAmelCase = self.image_processor( __SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).pixel_values lowerCAmelCase = query_pixel_values if images is not None: lowerCAmelCase = self.image_processor(__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) if text is not None and images is not None: lowerCAmelCase = image_features.pixel_values return encoding elif query_images is not None and images is not None: lowerCAmelCase = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__SCREAMING_SNAKE_CASE ) , tensor_type=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->Optional[int]: return self.image_processor.post_process(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->Any: return self.image_processor.post_process_object_detection(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->Tuple: return self.image_processor.post_process_image_guided_detection(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->str: return self.tokenizer.batch_decode(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->List[Any]: return self.tokenizer.decode(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) @property def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]: warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __SCREAMING_SNAKE_CASE , ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE_ ( self ) ->int: warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __SCREAMING_SNAKE_CASE , ) return self.image_processor
338
0
'''simple docstring''' import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Tuple =(PNDMScheduler,) lowercase : int =(('num_inference_steps', 50),) def lowercase__ ( self, **lowerCAmelCase ): """simple docstring""" lowerCamelCase_ ={ '''num_train_timesteps''': 1_000, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', } config.update(**lowerCAmelCase ) return config def lowercase__ ( self, lowerCAmelCase=0, **lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =dict(self.forward_default_kwargs ) lowerCamelCase_ =kwargs.pop('''num_inference_steps''', lowerCAmelCase ) lowerCamelCase_ =self.dummy_sample lowerCamelCase_ =0.1 * sample lowerCamelCase_ =[residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: lowerCamelCase_ =self.get_scheduler_config(**lowerCAmelCase ) lowerCamelCase_ =scheduler_class(**lowerCAmelCase ) scheduler.set_timesteps(lowerCAmelCase ) # copy over dummy past residuals lowerCamelCase_ =dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCAmelCase ) lowerCamelCase_ =scheduler_class.from_pretrained(lowerCAmelCase ) new_scheduler.set_timesteps(lowerCAmelCase ) # copy over dummy past residuals lowerCamelCase_ =dummy_past_residuals[:] lowerCamelCase_ =scheduler.step_prk(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, **lowerCAmelCase ).prev_sample lowerCamelCase_ =new_scheduler.step_prk(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, **lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" lowerCamelCase_ =scheduler.step_plms(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, **lowerCAmelCase ).prev_sample lowerCamelCase_ =new_scheduler.step_plms(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, **lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self, lowerCAmelCase=0, **lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =dict(self.forward_default_kwargs ) lowerCamelCase_ =kwargs.pop('''num_inference_steps''', lowerCAmelCase ) lowerCamelCase_ =self.dummy_sample lowerCamelCase_ =0.1 * sample lowerCamelCase_ =[residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: lowerCamelCase_ =self.get_scheduler_config() lowerCamelCase_ =scheduler_class(**lowerCAmelCase ) scheduler.set_timesteps(lowerCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) lowerCamelCase_ =dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCAmelCase ) lowerCamelCase_ =scheduler_class.from_pretrained(lowerCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCAmelCase ) # copy over dummy past residual (must be after setting timesteps) lowerCamelCase_ =dummy_past_residuals[:] lowerCamelCase_ =scheduler.step_prk(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, **lowerCAmelCase ).prev_sample lowerCamelCase_ =new_scheduler.step_prk(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, **lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" lowerCamelCase_ =scheduler.step_plms(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, **lowerCAmelCase ).prev_sample lowerCamelCase_ =new_scheduler.step_plms(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, **lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def lowercase__ ( self, **lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =self.scheduler_classes[0] lowerCamelCase_ =self.get_scheduler_config(**lowerCAmelCase ) lowerCamelCase_ =scheduler_class(**lowerCAmelCase ) lowerCamelCase_ =10 lowerCamelCase_ =self.dummy_model() lowerCamelCase_ =self.dummy_sample_deter scheduler.set_timesteps(lowerCAmelCase ) for i, t in enumerate(scheduler.prk_timesteps ): lowerCamelCase_ =model(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =scheduler.step_prk(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): lowerCamelCase_ =model(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =scheduler.step_plms(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ).prev_sample return sample def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =dict(self.forward_default_kwargs ) lowerCamelCase_ =kwargs.pop('''num_inference_steps''', lowerCAmelCase ) for scheduler_class in self.scheduler_classes: lowerCamelCase_ =self.get_scheduler_config() lowerCamelCase_ =scheduler_class(**lowerCAmelCase ) lowerCamelCase_ =self.dummy_sample lowerCamelCase_ =0.1 * sample if num_inference_steps is not None and hasattr(lowerCAmelCase, '''set_timesteps''' ): scheduler.set_timesteps(lowerCAmelCase ) elif num_inference_steps is not None and not hasattr(lowerCAmelCase, '''set_timesteps''' ): lowerCamelCase_ =num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowerCamelCase_ =[residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] lowerCamelCase_ =dummy_past_residuals[:] lowerCamelCase_ =scheduler.step_prk(lowerCAmelCase, 0, lowerCAmelCase, **lowerCAmelCase ).prev_sample lowerCamelCase_ =scheduler.step_prk(lowerCAmelCase, 1, lowerCAmelCase, **lowerCAmelCase ).prev_sample self.assertEqual(output_a.shape, sample.shape ) self.assertEqual(output_a.shape, output_a.shape ) lowerCamelCase_ =scheduler.step_plms(lowerCAmelCase, 0, lowerCAmelCase, **lowerCAmelCase ).prev_sample lowerCamelCase_ =scheduler.step_plms(lowerCAmelCase, 1, lowerCAmelCase, **lowerCAmelCase ).prev_sample self.assertEqual(output_a.shape, sample.shape ) self.assertEqual(output_a.shape, output_a.shape ) def lowercase__ ( self ): """simple docstring""" for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowerCAmelCase ) lowerCamelCase_ =self.scheduler_classes[0] lowerCamelCase_ =self.get_scheduler_config(steps_offset=1 ) lowerCamelCase_ =scheduler_class(**lowerCAmelCase ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps, torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ), ) def lowercase__ ( self ): """simple docstring""" for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1], [0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=lowerCAmelCase, beta_end=lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" for t in [1, 5, 10]: self.check_over_forward(time_step=lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100] ): self.check_over_forward(num_inference_steps=lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =27 for scheduler_class in self.scheduler_classes: lowerCamelCase_ =self.dummy_sample lowerCamelCase_ =0.1 * sample lowerCamelCase_ =self.get_scheduler_config() lowerCamelCase_ =scheduler_class(**lowerCAmelCase ) scheduler.set_timesteps(lowerCAmelCase ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): lowerCamelCase_ =scheduler.step_prk(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ).prev_sample def lowercase__ ( self ): """simple docstring""" with self.assertRaises(lowerCAmelCase ): lowerCamelCase_ =self.scheduler_classes[0] lowerCamelCase_ =self.get_scheduler_config() lowerCamelCase_ =scheduler_class(**lowerCAmelCase ) scheduler.step_plms(self.dummy_sample, 1, self.dummy_sample ).prev_sample def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.full_loop() lowerCamelCase_ =torch.sum(torch.abs(lowerCAmelCase ) ) lowerCamelCase_ =torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_sum.item() - 198.1_318 ) < 1e-2 assert abs(result_mean.item() - 0.2_5_8_0 ) < 1e-3 def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.full_loop(prediction_type='''v_prediction''' ) lowerCamelCase_ =torch.sum(torch.abs(lowerCAmelCase ) ) lowerCamelCase_ =torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_sum.item() - 67.3_986 ) < 1e-2 assert abs(result_mean.item() - 0.0_8_7_8 ) < 1e-3 def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.full_loop(set_alpha_to_one=lowerCAmelCase, beta_start=0.0_1 ) lowerCamelCase_ =torch.sum(torch.abs(lowerCAmelCase ) ) lowerCamelCase_ =torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_sum.item() - 230.0_399 ) < 1e-2 assert abs(result_mean.item() - 0.2_9_9_5 ) < 1e-3 def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.full_loop(set_alpha_to_one=lowerCAmelCase, beta_start=0.0_1 ) lowerCamelCase_ =torch.sum(torch.abs(lowerCAmelCase ) ) lowerCamelCase_ =torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_sum.item() - 186.9_482 ) < 1e-2 assert abs(result_mean.item() - 0.2_4_3_4 ) < 1e-3
362
'''simple docstring''' import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(""".""") def a_ ( __snake_case : Any ) -> Tuple: """simple docstring""" lowerCamelCase_ =test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '''`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ''' F'''{test_file} instead.''' ) lowerCamelCase_ =components[-1] if not test_fn.endswith('''py''' ): raise ValueError(F'''`test_file` should be a python file. Got {test_fn} instead.''' ) if not test_fn.startswith('''test_modeling_''' ): raise ValueError( F'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''' ) lowerCamelCase_ =components[:-1] + [test_fn.replace('''.py''' , '''''' )] lowerCamelCase_ ='''.'''.join(__snake_case ) return test_module_path def a_ ( __snake_case : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ =get_module_path(__snake_case ) lowerCamelCase_ =importlib.import_module(__snake_case ) return test_module def a_ ( __snake_case : Dict ) -> Tuple: """simple docstring""" lowerCamelCase_ =[] lowerCamelCase_ =get_test_module(__snake_case ) for attr in dir(__snake_case ): if attr.endswith('''ModelTester''' ): tester_classes.append(getattr(__snake_case , __snake_case ) ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def a_ ( __snake_case : List[Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ =[] lowerCamelCase_ =get_test_module(__snake_case ) for attr in dir(__snake_case ): lowerCamelCase_ =getattr(__snake_case , __snake_case ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). lowerCamelCase_ =getattr(__snake_case , '''all_model_classes''' , [] ) if len(__snake_case ) > 0: test_classes.append(__snake_case ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def a_ ( __snake_case : List[Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ =get_test_classes(__snake_case ) lowerCamelCase_ =set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def a_ ( __snake_case : str ) -> str: """simple docstring""" lowerCamelCase_ =test_class() if hasattr(__snake_case , '''setUp''' ): test.setUp() lowerCamelCase_ =None if hasattr(__snake_case , '''model_tester''' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: lowerCamelCase_ =test.model_tester.__class__ return model_tester def a_ ( __snake_case : Dict , __snake_case : List[str] ) -> List[Any]: """simple docstring""" lowerCamelCase_ =get_test_classes(__snake_case ) lowerCamelCase_ =[] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(__snake_case ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def a_ ( __snake_case : Optional[Any] , __snake_case : List[str] ) -> Any: """simple docstring""" lowerCamelCase_ =get_test_classes_for_model(__snake_case , __snake_case ) lowerCamelCase_ =[] for test_class in test_classes: lowerCamelCase_ =get_model_tester_from_test_class(__snake_case ) if tester_class is not None: tester_classes.append(__snake_case ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def a_ ( __snake_case : Tuple ) -> Tuple: """simple docstring""" lowerCamelCase_ =get_test_classes(__snake_case ) lowerCamelCase_ ={test_class: get_model_tester_from_test_class(__snake_case ) for test_class in test_classes} return test_tester_mapping def a_ ( __snake_case : Dict ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ =get_model_classes(__snake_case ) lowerCamelCase_ ={ model_class: get_test_classes_for_model(__snake_case , __snake_case ) for model_class in model_classes } return model_test_mapping def a_ ( __snake_case : Optional[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ =get_model_classes(__snake_case ) lowerCamelCase_ ={ model_class: get_tester_classes_for_model(__snake_case , __snake_case ) for model_class in model_classes } return model_to_tester_mapping def a_ ( __snake_case : List[str] ) -> List[Any]: """simple docstring""" if isinstance(__snake_case , __snake_case ): return o elif isinstance(__snake_case , __snake_case ): return o.__name__ elif isinstance(__snake_case , (list, tuple) ): return [to_json(__snake_case ) for x in o] elif isinstance(__snake_case , __snake_case ): return {to_json(__snake_case ): to_json(__snake_case ) for k, v in o.items()} else: return o
6
0
'''simple docstring''' import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class UpperCAmelCase ( unittest.TestCase , a_ ): def lowercase__ ( self : Optional[int] ) -> List[str]: _lowerCAmelCase = load_tool("""text-classification""" ) self.tool.setup() _lowerCAmelCase = load_tool("""text-classification""" , remote=__snake_case ) def lowercase__ ( self : str ) -> Any: _lowerCAmelCase = self.tool("""That's quite cool""" , ["""positive""", """negative"""] ) self.assertEqual(__snake_case , """positive""" ) def lowercase__ ( self : Any ) -> List[str]: _lowerCAmelCase = self.remote_tool("""That's quite cool""" , ["""positive""", """negative"""] ) self.assertEqual(__snake_case , """positive""" ) def lowercase__ ( self : Optional[int] ) -> Tuple: _lowerCAmelCase = self.tool(text="""That's quite cool""" , labels=["""positive""", """negative"""] ) self.assertEqual(__snake_case , """positive""" ) def lowercase__ ( self : Dict ) -> Dict: _lowerCAmelCase = self.remote_tool(text="""That's quite cool""" , labels=["""positive""", """negative"""] ) self.assertEqual(__snake_case , """positive""" )
70
import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def __lowerCamelCase ( lowerCamelCase__ : str , lowerCamelCase__ : str , **lowerCamelCase__ : Tuple ): '''simple docstring''' lowerCamelCase = AutoConfig.from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) lowerCamelCase = AutoModelForSeqaSeqLM.from_config(lowerCamelCase__ ) model.save_pretrained(lowerCamelCase__ ) AutoTokenizer.from_pretrained(lowerCamelCase__ ).save_pretrained(lowerCamelCase__ ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
252
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCAmelCase_ = { """configuration_ctrl""": ["""CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CTRLConfig"""], """tokenization_ctrl""": ["""CTRLTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """CTRL_PRETRAINED_MODEL_ARCHIVE_LIST""", """CTRLForSequenceClassification""", """CTRLLMHeadModel""", """CTRLModel""", """CTRLPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFCTRLForSequenceClassification""", """TFCTRLLMHeadModel""", """TFCTRLModel""", """TFCTRLPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
260
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : int ="""naver-clova-ix/donut-base-finetuned-docvqa""" a_ : Dict =( """This is a tool that answers a question about an document (pdf). It takes an input named `document` which """ """should be the document containing the information, as well as a `question` that is the question about the """ """document. It returns a text that contains the answer to the question.""" ) a_ : Optional[Any] ="""document_qa""" a_ : str =AutoProcessor a_ : Union[str, Any] =VisionEncoderDecoderModel a_ : List[Any] =["""image""", """text"""] a_ : List[Any] =["""text"""] def __init__( self : Any , *UpperCamelCase : List[Any] , **UpperCamelCase : List[Any] ): '''simple docstring''' if not is_vision_available(): raise ValueError('Pillow must be installed to use the DocumentQuestionAnsweringTool.' ) super().__init__(*UpperCamelCase , **UpperCamelCase ) def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : "Image" , UpperCamelCase : str ): '''simple docstring''' _snake_case : Dict = '<s_docvqa><s_question>{user_input}</s_question><s_answer>' _snake_case : int = task_prompt.replace('{user_input}' , UpperCamelCase ) _snake_case : Union[str, Any] = self.pre_processor.tokenizer( UpperCamelCase , add_special_tokens=UpperCamelCase , return_tensors='pt' ).input_ids _snake_case : Dict = self.pre_processor(UpperCamelCase , return_tensors='pt' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def UpperCamelCase_ ( self : Dict , UpperCamelCase : Optional[int] ): '''simple docstring''' return self.model.generate( inputs['pixel_values'].to(self.device ) , decoder_input_ids=inputs['decoder_input_ids'].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=UpperCamelCase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=UpperCamelCase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=UpperCamelCase , ).sequences def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : str ): '''simple docstring''' _snake_case : Optional[Any] = self.pre_processor.batch_decode(UpperCamelCase )[0] _snake_case : int = sequence.replace(self.pre_processor.tokenizer.eos_token , '' ) _snake_case : Optional[int] = sequence.replace(self.pre_processor.tokenizer.pad_token , '' ) _snake_case : int = re.sub(R'<.*?>' , '' , UpperCamelCase , count=1 ).strip() # remove first task start token _snake_case : str = self.pre_processor.tokenajson(UpperCamelCase ) return sequence["answer"]
260
1
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowercase ( UpperCamelCase__ ): _a = ["image_processor", "tokenizer"] _a = "CLIPImageProcessor" _a = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self , _a=None , _a=None , **_a ) -> Dict: _A : Any = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , _a , ) _A : Union[str, Any] = kwargs.pop("""feature_extractor""" ) _A : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(_a , _a ) def __call__( self , _a=None , _a=None , _a=None , **_a ) -> int: if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: _A : List[str] = self.tokenizer(_a , return_tensors=_a , **_a ) if images is not None: _A : Dict = self.image_processor(_a , return_tensors=_a , **_a ) if text is not None and images is not None: _A : Tuple = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_a ) , tensor_type=_a ) def a__ ( self , *_a , **_a ) -> List[Any]: return self.tokenizer.batch_decode(*_a , **_a ) def a__ ( self , *_a , **_a ) -> Any: return self.tokenizer.decode(*_a , **_a ) @property def a__ ( self ) -> List[Any]: _A : Union[str, Any] = self.tokenizer.model_input_names _A : str = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def a__ ( self ) -> List[str]: warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , _a , ) return self.image_processor_class @property def a__ ( self ) -> List[Any]: warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , _a , ) return self.image_processor
26
"""simple docstring""" import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel __UpperCamelCase : int = logging.getLogger(__name__) def __SCREAMING_SNAKE_CASE ( A_ , A_ ): # save results if os.path.exists(A_ ): if os.path.exists(os.path.join(A_ , '''config.json''' ) ) and os.path.isfile( os.path.join(A_ , '''config.json''' ) ): os.remove(os.path.join(A_ , '''config.json''' ) ) if os.path.exists(os.path.join(A_ , '''pytorch_model.bin''' ) ) and os.path.isfile( os.path.join(A_ , '''pytorch_model.bin''' ) ): os.remove(os.path.join(A_ , '''pytorch_model.bin''' ) ) else: os.makedirs(A_ ) model.save_pretrained(A_ ) def __SCREAMING_SNAKE_CASE ( A_ , A_=False ): lowerCAmelCase__ : Optional[Any] = 2 if unlogit: lowerCAmelCase__ : Union[str, Any] = torch.pow(A_ , A_ ) lowerCAmelCase__ : Optional[Any] = p * torch.log(A_ ) lowerCAmelCase__ : List[Any] = 0 return -plogp.sum(dim=-1 ) def __SCREAMING_SNAKE_CASE ( A_ ): logger.info('''lv, h >\t''' + '''\t'''.join(f'{x + 1}' for x in range(len(A_ ) ) ) ) for row in range(len(A_ ) ): if tensor.dtype != torch.long: logger.info(f'layer {row + 1}:\t' + '''\t'''.join(f'{x:.5f}' for x in tensor[row].cpu().data ) ) else: logger.info(f'layer {row + 1}:\t' + '''\t'''.join(f'{x:d}' for x in tensor[row].cpu().data ) ) def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , A_=True , A_=True , A_=None , A_=False ): lowerCAmelCase__ ,lowerCAmelCase__ : List[Any] = model.config.num_hidden_layers, model.config.num_attention_heads lowerCAmelCase__ : Dict = torch.zeros(A_ , A_ ).to(args.device ) lowerCAmelCase__ : int = torch.zeros(A_ , A_ ).to(args.device ) if head_mask is None: lowerCAmelCase__ : Union[str, Any] = torch.ones(A_ , A_ ).to(args.device ) head_mask.requires_grad_(requires_grad=A_ ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: lowerCAmelCase__ : Union[str, Any] = None lowerCAmelCase__ : Optional[int] = 0.0 lowerCAmelCase__ : Optional[int] = 0.0 for step, inputs in enumerate(tqdm(A_ , desc='''Iteration''' , disable=args.local_rank not in [-1, 0] ) ): lowerCAmelCase__ : Any = tuple(t.to(args.device ) for t in inputs ) ((lowerCAmelCase__) ,) : List[Any] = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) lowerCAmelCase__ : Any = model(A_ , labels=A_ , head_mask=A_ ) # (loss), lm_logits, presents, (all hidden_states), (attentions) lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Dict = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(A_ ): lowerCAmelCase__ : Dict = entropy(attn.detach() , A_ ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(A_ ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: lowerCAmelCase__ : Any = 2 lowerCAmelCase__ : Dict = torch.pow(torch.pow(A_ , A_ ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-2_0 if not args.dont_normalize_global_importance: lowerCAmelCase__ : List[Any] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('''Attention entropies''' ) print_ad_tensor(A_ ) if compute_importance: logger.info('''Head importance scores''' ) print_ad_tensor(A_ ) logger.info('''Head ranked by importance scores''' ) lowerCAmelCase__ : str = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) lowerCAmelCase__ : Optional[int] = torch.arange( head_importance.numel() , device=args.device ) lowerCAmelCase__ : int = head_ranks.view_as(A_ ) print_ad_tensor(A_ ) return attn_entropy, head_importance, total_loss def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ ): lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : List[str] = compute_heads_importance(A_ , A_ , A_ , compute_entropy=A_ ) lowerCAmelCase__ : Union[str, Any] = 1 / loss # instead of downsteam score use the LM loss logger.info('''Pruning: original score: %f, threshold: %f''' , A_ , original_score * args.masking_threshold ) lowerCAmelCase__ : Union[str, Any] = torch.ones_like(A_ ) lowerCAmelCase__ : List[str] = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) lowerCAmelCase__ : int = original_score while current_score >= original_score * args.masking_threshold: lowerCAmelCase__ : Union[str, Any] = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads lowerCAmelCase__ : str = float('''Inf''' ) lowerCAmelCase__ : List[Any] = head_importance.view(-1 ).sort()[1] if len(A_ ) <= num_to_mask: print('''BREAK BY num_to_mask''' ) break # mask heads lowerCAmelCase__ : List[Any] = current_heads_to_mask[:num_to_mask] logger.info('''Heads to mask: %s''' , str(current_heads_to_mask.tolist() ) ) lowerCAmelCase__ : int = new_head_mask.view(-1 ) lowerCAmelCase__ : Optional[int] = 0.0 lowerCAmelCase__ : Union[str, Any] = new_head_mask.view_as(A_ ) lowerCAmelCase__ : Tuple = new_head_mask.clone().detach() print_ad_tensor(A_ ) # Compute metric and head importance again lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : List[Any] = compute_heads_importance( A_ , A_ , A_ , compute_entropy=A_ , head_mask=A_ ) lowerCAmelCase__ : Tuple = 1 / loss logger.info( '''Masking: current score: %f, remaining heads %d (%.1f percents)''' , A_ , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_00 , ) logger.info('''Final head mask''' ) print_ad_tensor(A_ ) np.save(os.path.join(args.output_dir , '''head_mask.npy''' ) , head_mask.detach().cpu().numpy() ) return head_mask def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , A_ ): lowerCAmelCase__ : Optional[Any] = datetime.now() lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Optional[Any] = compute_heads_importance( A_ , A_ , A_ , compute_entropy=A_ , compute_importance=A_ , head_mask=A_ ) lowerCAmelCase__ : Optional[Any] = 1 / loss lowerCAmelCase__ : Tuple = datetime.now() - before_time lowerCAmelCase__ : int = sum(p.numel() for p in model.parameters() ) lowerCAmelCase__ : List[Any] = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(A_ ) ) } for k, v in heads_to_prune.items(): if isinstance(A_ , A_ ): lowerCAmelCase__ : int = [ v, ] assert sum(len(A_ ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(A_ ) lowerCAmelCase__ : List[Any] = sum(p.numel() for p in model.parameters() ) lowerCAmelCase__ : Any = datetime.now() lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : int = compute_heads_importance( A_ , A_ , A_ , compute_entropy=A_ , compute_importance=A_ , head_mask=A_ , actually_pruned=A_ , ) lowerCAmelCase__ : int = 1 / loss lowerCAmelCase__ : Dict = datetime.now() - before_time logger.info( '''Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)''' , A_ , A_ , pruned_num_params / original_num_params * 1_00 , ) logger.info('''Pruning: score with masking: %f score with pruning: %f''' , A_ , A_ ) logger.info('''Pruning: speed ratio (original timing / new timing): %f percents''' , original_time / new_time * 1_00 ) save_model(A_ , args.output_dir ) def __SCREAMING_SNAKE_CASE ( ): lowerCAmelCase__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--data_dir''' , default=A_ , type=A_ , required=A_ , help='''The input data dir. Should contain the .tsv files (or other data files) for the task.''' , ) parser.add_argument( '''--model_name_or_path''' , default=A_ , type=A_ , required=A_ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--output_dir''' , default=A_ , type=A_ , required=A_ , help='''The output directory where the model predictions and checkpoints will be written.''' , ) # Other parameters parser.add_argument( '''--config_name''' , default='''''' , type=A_ , help='''Pretrained config name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--tokenizer_name''' , default='''''' , type=A_ , help='''Pretrained tokenizer name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--cache_dir''' , default=A_ , type=A_ , help='''Where do you want to store the pre-trained models downloaded from s3''' , ) parser.add_argument( '''--data_subset''' , type=A_ , default=-1 , help='''If > 0: limit the data to a subset of data_subset instances.''' ) parser.add_argument( '''--overwrite_output_dir''' , action='''store_true''' , help='''Whether to overwrite data in output directory''' ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) parser.add_argument( '''--dont_normalize_importance_by_layer''' , action='''store_true''' , help='''Don\'t normalize importance score by layers''' ) parser.add_argument( '''--dont_normalize_global_importance''' , action='''store_true''' , help='''Don\'t normalize all importance scores between 0 and 1''' , ) parser.add_argument( '''--try_masking''' , action='''store_true''' , help='''Whether to try to mask head until a threshold of accuracy.''' ) parser.add_argument( '''--masking_threshold''' , default=0.9 , type=A_ , help='''masking threshold in term of metrics (stop masking when metric < threshold * original metric value).''' , ) parser.add_argument( '''--masking_amount''' , default=0.1 , type=A_ , help='''Amount to heads to masking at each masking step.''' ) parser.add_argument('''--metric_name''' , default='''acc''' , type=A_ , help='''Metric to use for head masking.''' ) parser.add_argument( '''--max_seq_length''' , default=1_28 , type=A_ , help=( '''The maximum total input sequence length after WordPiece tokenization. \n''' '''Sequences longer than this will be truncated, sequences shorter padded.''' ) , ) parser.add_argument('''--batch_size''' , default=1 , type=A_ , help='''Batch size.''' ) parser.add_argument('''--seed''' , type=A_ , default=42 ) parser.add_argument('''--local_rank''' , type=A_ , default=-1 , help='''local_rank for distributed training on gpus''' ) parser.add_argument('''--no_cuda''' , action='''store_true''' , help='''Whether not to use CUDA when available''' ) parser.add_argument('''--server_ip''' , type=A_ , default='''''' , help='''Can be used for distant debugging.''' ) parser.add_argument('''--server_port''' , type=A_ , default='''''' , help='''Can be used for distant debugging.''' ) lowerCAmelCase__ : Optional[Any] = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=A_ ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: lowerCAmelCase__ : Union[str, Any] = torch.device('''cuda''' if torch.cuda.is_available() and not args.no_cuda else '''cpu''' ) lowerCAmelCase__ : str = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) lowerCAmelCase__ : Dict = torch.device('''cuda''' , args.local_rank ) lowerCAmelCase__ : Union[str, Any] = 1 torch.distributed.init_process_group(backend='''nccl''' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('''device: {} n_gpu: {}, distributed: {}'''.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) lowerCAmelCase__ : List[str] = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: lowerCAmelCase__ : Dict = nn.parallel.DistributedDataParallel( A_ , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=A_ ) elif args.n_gpu > 1: lowerCAmelCase__ : List[Any] = nn.DataParallel(A_ ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=A_ ) torch.save(A_ , os.path.join(args.output_dir , '''run_args.bin''' ) ) logger.info('''Training/evaluation parameters %s''' , A_ ) # Prepare dataset lowerCAmelCase__ : str = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) lowerCAmelCase__ : Union[str, Any] = (torch.from_numpy(A_ ),) lowerCAmelCase__ : Tuple = TensorDataset(*A_ ) lowerCAmelCase__ : Optional[int] = RandomSampler(A_ ) lowerCAmelCase__ : Dict = DataLoader(A_ , sampler=A_ , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(A_ , A_ , A_ ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: lowerCAmelCase__ : Tuple = mask_heads(A_ , A_ , A_ ) prune_heads(A_ , A_ , A_ , A_ ) if __name__ == "__main__": main()
106
0
'''simple docstring''' def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase__ : Any = len(UpperCamelCase__ ) UpperCAmelCase__ : List[Any] = [[0] * n for i in range(UpperCamelCase__ )] for i in range(UpperCamelCase__ ): UpperCAmelCase__ : Dict = y_points[i] for i in range(2 , UpperCamelCase__ ): for j in range(UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase__ : int = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
363
'''simple docstring''' import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class _snake_case ( unittest.TestCase ): def snake_case__ ( self): UpperCAmelCase__ : str = Vector([1, 2, 3]) self.assertEqual(x.component(0) , 1) self.assertEqual(x.component(2) , 3) UpperCAmelCase__ : List[str] = Vector() def snake_case__ ( self): UpperCAmelCase__ : Any = Vector([0, 0, 0, 0, 0, 1]) self.assertEqual(str(_lowerCamelCase) , """(0,0,0,0,0,1)""") def snake_case__ ( self): UpperCAmelCase__ : Optional[int] = Vector([1, 2, 3, 4]) self.assertEqual(len(_lowerCamelCase) , 4) def snake_case__ ( self): UpperCAmelCase__ : List[str] = Vector([1, 2]) UpperCAmelCase__ : Optional[int] = Vector([1, 2, 3, 4, 5]) UpperCAmelCase__ : Optional[Any] = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) UpperCAmelCase__ : Union[str, Any] = Vector([1, -1, 1, -1, 2, -3, 4, -5]) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3) self.assertEqual(z.euclidean_length() , 0) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3) def snake_case__ ( self): UpperCAmelCase__ : int = Vector([1, 2, 3]) UpperCAmelCase__ : Optional[Any] = Vector([1, 1, 1]) self.assertEqual((x + y).component(0) , 2) self.assertEqual((x + y).component(1) , 3) self.assertEqual((x + y).component(2) , 4) def snake_case__ ( self): UpperCAmelCase__ : Optional[int] = Vector([1, 2, 3]) UpperCAmelCase__ : Dict = Vector([1, 1, 1]) self.assertEqual((x - y).component(0) , 0) self.assertEqual((x - y).component(1) , 1) self.assertEqual((x - y).component(2) , 2) def snake_case__ ( self): UpperCAmelCase__ : Tuple = Vector([1, 2, 3]) UpperCAmelCase__ : Optional[int] = Vector([2, -1, 4]) # for test of dot product UpperCAmelCase__ : Any = Vector([1, -2, -1]) self.assertEqual(str(x * 3.0) , """(3.0,6.0,9.0)""") self.assertEqual((a * b) , 0) def snake_case__ ( self): self.assertEqual(str(zero_vector(10)).count("""0""") , 10) def snake_case__ ( self): self.assertEqual(str(unit_basis_vector(3 , 1)) , """(0,1,0)""") def snake_case__ ( self): UpperCAmelCase__ : Any = Vector([1, 2, 3]) UpperCAmelCase__ : List[str] = Vector([1, 0, 1]) self.assertEqual(str(axpy(2 , _lowerCamelCase , _lowerCamelCase)) , """(3,4,7)""") def snake_case__ ( self): UpperCAmelCase__ : Optional[int] = Vector([1, 0, 0, 0, 0, 0]) UpperCAmelCase__ : Optional[int] = x.copy() self.assertEqual(str(_lowerCamelCase) , str(_lowerCamelCase)) def snake_case__ ( self): UpperCAmelCase__ : str = Vector([1, 0, 0]) x.change_component(0 , 0) x.change_component(1 , 1) self.assertEqual(str(_lowerCamelCase) , """(0,1,0)""") def snake_case__ ( self): UpperCAmelCase__ : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) self.assertEqual("""|1,2,3|\n|2,4,5|\n|6,7,8|\n""" , str(_lowerCamelCase)) def snake_case__ ( self): UpperCAmelCase__ : List[str] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) UpperCAmelCase__ : Dict = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height()): for y in range(a.width()): self.assertEqual(minors[x][y] , a.minor(_lowerCamelCase , _lowerCamelCase)) def snake_case__ ( self): UpperCAmelCase__ : Any = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) UpperCAmelCase__ : Tuple = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height()): for y in range(a.width()): self.assertEqual(cofactors[x][y] , a.cofactor(_lowerCamelCase , _lowerCamelCase)) def snake_case__ ( self): UpperCAmelCase__ : Any = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) self.assertEqual(-5 , a.determinant()) def snake_case__ ( self): UpperCAmelCase__ : str = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3) UpperCAmelCase__ : List[Any] = Vector([1, 2, 3]) self.assertEqual("""(14,32,50)""" , str(a * x)) self.assertEqual("""|2,4,6|\n|8,10,12|\n|14,16,18|\n""" , str(a * 2)) def snake_case__ ( self): UpperCAmelCase__ : Union[str, Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) a.change_component(0 , 2 , 5) self.assertEqual("""|1,2,5|\n|2,4,5|\n|6,7,8|\n""" , str(_lowerCamelCase)) def snake_case__ ( self): UpperCAmelCase__ : Any = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) self.assertEqual(7 , a.component(2 , 1) , 0.01) def snake_case__ ( self): UpperCAmelCase__ : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) UpperCAmelCase__ : List[Any] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3) self.assertEqual("""|2,4,10|\n|4,8,10|\n|12,14,18|\n""" , str(a + b)) def snake_case__ ( self): UpperCAmelCase__ : List[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) UpperCAmelCase__ : Dict = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3) self.assertEqual("""|0,0,-4|\n|0,0,0|\n|0,0,-2|\n""" , str(a - b)) def snake_case__ ( self): self.assertEqual( """|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n""" , str(square_zero_matrix(5)) , ) if __name__ == "__main__": unittest.main()
283
0
from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers __lowerCAmelCase = [ '''python''', '''tqdm''', '''regex''', '''requests''', '''packaging''', '''filelock''', '''numpy''', '''tokenizers''', '''huggingface-hub''', '''safetensors''', '''accelerate''', '''pyyaml''', ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def snake_case_ ( snake_case , snake_case=None ) -> Union[str, Any]: require_version(deps[pkg] , lowerCamelCase_ )
196
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def __A ( lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : str = 3_84 SCREAMING_SNAKE_CASE : Union[str, Any] = 7 if "tiny" in model_name: SCREAMING_SNAKE_CASE : List[str] = 96 SCREAMING_SNAKE_CASE : List[str] = (2, 2, 6, 2) SCREAMING_SNAKE_CASE : List[Any] = (3, 6, 12, 24) elif "small" in model_name: SCREAMING_SNAKE_CASE : Any = 96 SCREAMING_SNAKE_CASE : List[str] = (2, 2, 18, 2) SCREAMING_SNAKE_CASE : int = (3, 6, 12, 24) elif "base" in model_name: SCREAMING_SNAKE_CASE : int = 1_28 SCREAMING_SNAKE_CASE : Any = (2, 2, 18, 2) SCREAMING_SNAKE_CASE : int = (4, 8, 16, 32) SCREAMING_SNAKE_CASE : Optional[Any] = 12 SCREAMING_SNAKE_CASE : str = 5_12 elif "large" in model_name: SCREAMING_SNAKE_CASE : Tuple = 1_92 SCREAMING_SNAKE_CASE : Tuple = (2, 2, 18, 2) SCREAMING_SNAKE_CASE : List[str] = (6, 12, 24, 48) SCREAMING_SNAKE_CASE : Tuple = 12 SCREAMING_SNAKE_CASE : Union[str, Any] = 7_68 # set label information SCREAMING_SNAKE_CASE : List[str] = 1_50 SCREAMING_SNAKE_CASE : Optional[Any] = """huggingface/label-files""" SCREAMING_SNAKE_CASE : List[str] = """ade20k-id2label.json""" SCREAMING_SNAKE_CASE : Optional[int] = json.load(open(hf_hub_download(lowerCamelCase_ , lowerCamelCase_ , repo_type="""dataset""" ) , """r""" ) ) SCREAMING_SNAKE_CASE : str = {int(lowerCamelCase_ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE : int = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE : Optional[Any] = SwinConfig( embed_dim=lowerCamelCase_ , depths=lowerCamelCase_ , num_heads=lowerCamelCase_ , window_size=lowerCamelCase_ , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , ) SCREAMING_SNAKE_CASE : List[str] = UperNetConfig( backbone_config=lowerCamelCase_ , auxiliary_in_channels=lowerCamelCase_ , num_labels=lowerCamelCase_ , idalabel=lowerCamelCase_ , labelaid=lowerCamelCase_ , ) return config def __A ( lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = [] # fmt: off # stem rename_keys.append(("""backbone.patch_embed.projection.weight""", """backbone.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.patch_embed.projection.bias""", """backbone.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.patch_embed.norm.weight""", """backbone.embeddings.norm.weight""") ) rename_keys.append(("""backbone.patch_embed.norm.bias""", """backbone.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm1.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm1.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm2.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm2.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((f'''backbone.stages.{i}.downsample.reduction.weight''', f'''backbone.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((f'''backbone.stages.{i}.downsample.norm.weight''', f'''backbone.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((f'''backbone.stages.{i}.downsample.norm.bias''', f'''backbone.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""), ("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""), ("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""), ("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""), ] ) # fmt: on return rename_keys def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : int = dct.pop(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = val def __A ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): SCREAMING_SNAKE_CASE : Dict = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) SCREAMING_SNAKE_CASE : Union[str, Any] = state_dict.pop(f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = state_dict.pop(f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE : int = in_proj_weight[:dim, :] SCREAMING_SNAKE_CASE : Optional[int] = in_proj_bias[: dim] SCREAMING_SNAKE_CASE : Union[str, Any] = in_proj_weight[ dim : dim * 2, : ] SCREAMING_SNAKE_CASE : Any = in_proj_bias[ dim : dim * 2 ] SCREAMING_SNAKE_CASE : List[Any] = in_proj_weight[ -dim :, : ] SCREAMING_SNAKE_CASE : str = in_proj_bias[-dim :] # fmt: on def __A ( lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Tuple = x.shape SCREAMING_SNAKE_CASE : Any = x.reshape(lowerCamelCase_ , 4 , in_channel // 4 ) SCREAMING_SNAKE_CASE : Any = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(lowerCamelCase_ , lowerCamelCase_ ) return x def __A ( lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = x.shape SCREAMING_SNAKE_CASE : Dict = x.reshape(lowerCamelCase_ , in_channel // 4 , 4 ) SCREAMING_SNAKE_CASE : str = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(lowerCamelCase_ , lowerCamelCase_ ) return x def __A ( lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : str = x.shape[0] SCREAMING_SNAKE_CASE : List[str] = x.reshape(4 , in_channel // 4 ) SCREAMING_SNAKE_CASE : str = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(lowerCamelCase_ ) return x def __A ( lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = x.shape[0] SCREAMING_SNAKE_CASE : Optional[int] = x.reshape(in_channel // 4 , 4 ) SCREAMING_SNAKE_CASE : str = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(lowerCamelCase_ ) return x def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = { """upernet-swin-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth""", """upernet-swin-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth""", """upernet-swin-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth""", """upernet-swin-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth""", } SCREAMING_SNAKE_CASE : List[str] = model_name_to_url[model_name] SCREAMING_SNAKE_CASE : Optional[int] = torch.hub.load_state_dict_from_url(lowerCamelCase_ , map_location="""cpu""" , file_name=lowerCamelCase_ )[ """state_dict""" ] for name, param in state_dict.items(): print(lowerCamelCase_ , param.shape ) SCREAMING_SNAKE_CASE : Dict = get_upernet_config(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = UperNetForSemanticSegmentation(lowerCamelCase_ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): SCREAMING_SNAKE_CASE : Union[str, Any] = state_dict.pop(lowerCamelCase_ ) if "bn" in key: SCREAMING_SNAKE_CASE : List[str] = key.replace("""bn""" , """batch_norm""" ) SCREAMING_SNAKE_CASE : Optional[Any] = val # rename keys SCREAMING_SNAKE_CASE : Union[str, Any] = create_rename_keys(lowerCamelCase_ ) for src, dest in rename_keys: rename_key(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) read_in_q_k_v(lowerCamelCase_ , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: SCREAMING_SNAKE_CASE : Tuple = reverse_correct_unfold_reduction_order(lowerCamelCase_ ) if "norm" in key: SCREAMING_SNAKE_CASE : Optional[int] = reverse_correct_unfold_norm_order(lowerCamelCase_ ) model.load_state_dict(lowerCamelCase_ ) # verify on image SCREAMING_SNAKE_CASE : Optional[int] = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg""" SCREAMING_SNAKE_CASE : Tuple = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ).convert("""RGB""" ) SCREAMING_SNAKE_CASE : Optional[int] = SegformerImageProcessor() SCREAMING_SNAKE_CASE : str = processor(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = model(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = outputs.logits print(logits.shape ) print("""First values of logits:""" , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor( [[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]] ) elif model_name == "upernet-swin-small": SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor( [[-7.1_921, -7.1_921, -6.9_532], [-7.1_921, -7.1_921, -6.9_532], [-7.0_908, -7.0_908, -6.8_534]] ) elif model_name == "upernet-swin-base": SCREAMING_SNAKE_CASE : str = torch.tensor( [[-6.5_851, -6.5_851, -6.4_330], [-6.5_851, -6.5_851, -6.4_330], [-6.4_763, -6.4_763, -6.3_254]] ) elif model_name == "upernet-swin-large": SCREAMING_SNAKE_CASE : str = torch.tensor( [[-7.5_297, -7.5_297, -7.3_802], [-7.5_297, -7.5_297, -7.3_802], [-7.4_044, -7.4_044, -7.2_586]] ) print("""Logits:""" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCamelCase_ , atol=1E-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCamelCase_ ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(lowerCamelCase_ ) if push_to_hub: print(f'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(f'''openmmlab/{model_name}''' ) processor.push_to_hub(f'''openmmlab/{model_name}''' ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""upernet-swin-tiny""", type=str, choices=[f'''upernet-swin-{size}''' for size in ["""tiny""", """small""", """base""", """large"""]], help="""Name of the Swin + UperNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) __UpperCAmelCase = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
323
0
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem UpperCamelCase__ =importlib.util.find_spec('s3fs') is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 UpperCamelCase__ =[ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(f"A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.") fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def lowerCamelCase__ (__lowerCamelCase ): if "://" in dataset_path: _SCREAMING_SNAKE_CASE : Union[str, Any] = dataset_path.split("://" )[1] return dataset_path def lowerCamelCase__ (__lowerCamelCase ): if fs is not None and fs.protocol != "file": return True else: return False def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : Any = not is_remote_filesystem(__lowerCamelCase ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(__lowerCamelCase ), fs._strip_protocol(__lowerCamelCase ) ) else: fs.mv(__lowerCamelCase, __lowerCamelCase, recursive=__lowerCamelCase ) def lowerCamelCase__ (): if hasattr(fsspec.asyn, "reset_lock" ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: _SCREAMING_SNAKE_CASE : List[str] = None _SCREAMING_SNAKE_CASE : List[Any] = None _SCREAMING_SNAKE_CASE : Union[str, Any] = threading.Lock()
357
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCamelCase__ ='src/diffusers' UpperCamelCase__ ='.' # This is to make sure the diffusers module imported is the one in the repo. UpperCamelCase__ =importlib.util.spec_from_file_location( 'diffusers', os.path.join(DIFFUSERS_PATH, '__init__.py'), submodule_search_locations=[DIFFUSERS_PATH], ) UpperCamelCase__ =spec.loader.load_module() def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): return line.startswith(__lowerCamelCase ) or len(__lowerCamelCase ) <= 1 or re.search(R"^\s*\)(\s*->.*:|:)\s*$", __lowerCamelCase ) is not None def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Any = object_name.split("." ) _SCREAMING_SNAKE_CASE : List[Any] = 0 # First let's find the module where our object lives. _SCREAMING_SNAKE_CASE : Any = parts[i] while i < len(__lowerCamelCase ) and not os.path.isfile(os.path.join(__lowerCamelCase, f"""{module}.py""" ) ): i += 1 if i < len(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Any = os.path.join(__lowerCamelCase, parts[i] ) if i >= len(__lowerCamelCase ): raise ValueError(f"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""" ) with open(os.path.join(__lowerCamelCase, f"""{module}.py""" ), "r", encoding="utf-8", newline="\n" ) as f: _SCREAMING_SNAKE_CASE : int = f.readlines() # Now let's find the class / func in the code! _SCREAMING_SNAKE_CASE : Union[str, Any] = "" _SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for name in parts[i + 1 :]: while ( line_index < len(__lowerCamelCase ) and re.search(Rf"""^{indent}(class|def)\s+{name}(\(|\:)""", lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(__lowerCamelCase ): raise ValueError(f""" {object_name} does not match any function or class in {module}.""" ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). _SCREAMING_SNAKE_CASE : Optional[int] = line_index while line_index < len(__lowerCamelCase ) and _should_continue(lines[line_index], __lowerCamelCase ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _SCREAMING_SNAKE_CASE : Optional[int] = lines[start_index:line_index] return "".join(__lowerCamelCase ) UpperCamelCase__ =re.compile(R'^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)') UpperCamelCase__ =re.compile(R'^\s*(\S+)->(\S+)(\s+.*|$)') UpperCamelCase__ =re.compile(R'<FILL\s+[^>]*>') def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = code.split("\n" ) _SCREAMING_SNAKE_CASE : Union[str, Any] = 0 while idx < len(__lowerCamelCase ) and len(lines[idx] ) == 0: idx += 1 if idx < len(__lowerCamelCase ): return re.search(R"^(\s*)\S", lines[idx] ).groups()[0] return "" def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Optional[int] = len(get_indent(__lowerCamelCase ) ) > 0 if has_indent: _SCREAMING_SNAKE_CASE : Union[str, Any] = f"""class Bla:\n{code}""" _SCREAMING_SNAKE_CASE : Any = black.Mode(target_versions={black.TargetVersion.PYaa}, line_length=119, preview=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = black.format_str(__lowerCamelCase, mode=__lowerCamelCase ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[Any] = style_docstrings_in_code(__lowerCamelCase ) return result[len("class Bla:\n" ) :] if has_indent else result def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase=False ): with open(__lowerCamelCase, "r", encoding="utf-8", newline="\n" ) as f: _SCREAMING_SNAKE_CASE : int = f.readlines() _SCREAMING_SNAKE_CASE : Dict = [] _SCREAMING_SNAKE_CASE : Tuple = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str = search.groups() _SCREAMING_SNAKE_CASE : Any = find_code_in_diffusers(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = get_indent(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = line_index + 1 if indent == theoretical_indent else line_index + 2 _SCREAMING_SNAKE_CASE : int = theoretical_indent _SCREAMING_SNAKE_CASE : str = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. _SCREAMING_SNAKE_CASE : Any = True while line_index < len(__lowerCamelCase ) and should_continue: line_index += 1 if line_index >= len(__lowerCamelCase ): break _SCREAMING_SNAKE_CASE : Union[str, Any] = lines[line_index] _SCREAMING_SNAKE_CASE : str = _should_continue(__lowerCamelCase, __lowerCamelCase ) and re.search(f"""^{indent}# End copy""", __lowerCamelCase ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _SCREAMING_SNAKE_CASE : List[Any] = lines[start_index:line_index] _SCREAMING_SNAKE_CASE : Optional[Any] = "".join(__lowerCamelCase ) # Remove any nested `Copied from` comments to avoid circular copies _SCREAMING_SNAKE_CASE : Dict = [line for line in theoretical_code.split("\n" ) if _re_copy_warning.search(__lowerCamelCase ) is None] _SCREAMING_SNAKE_CASE : str = "\n".join(__lowerCamelCase ) # Before comparing, use the `replace_pattern` on the original code. if len(__lowerCamelCase ) > 0: _SCREAMING_SNAKE_CASE : str = replace_pattern.replace("with", "" ).split("," ) _SCREAMING_SNAKE_CASE : Union[str, Any] = [_re_replace_pattern.search(__lowerCamelCase ) for p in patterns] for pattern in patterns: if pattern is None: continue _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = pattern.groups() _SCREAMING_SNAKE_CASE : Tuple = re.sub(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) if option.strip() == "all-casing": _SCREAMING_SNAKE_CASE : List[Any] = re.sub(obja.lower(), obja.lower(), __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = re.sub(obja.upper(), obja.upper(), __lowerCamelCase ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line _SCREAMING_SNAKE_CASE : int = blackify(lines[start_index - 1] + theoretical_code ) _SCREAMING_SNAKE_CASE : List[str] = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: _SCREAMING_SNAKE_CASE : Optional[int] = lines[:start_index] + [theoretical_code] + lines[line_index:] _SCREAMING_SNAKE_CASE : int = start_index + 1 if overwrite and len(__lowerCamelCase ) > 0: # Warn the user a file has been modified. print(f"""Detected changes, rewriting {filename}.""" ) with open(__lowerCamelCase, "w", encoding="utf-8", newline="\n" ) as f: f.writelines(__lowerCamelCase ) return diffs def lowerCamelCase__ (__lowerCamelCase = False ): _SCREAMING_SNAKE_CASE : int = glob.glob(os.path.join(__lowerCamelCase, "**/*.py" ), recursive=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = [] for filename in all_files: _SCREAMING_SNAKE_CASE : int = is_copy_consistent(__lowerCamelCase, __lowerCamelCase ) diffs += [f"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs] if not overwrite and len(__lowerCamelCase ) > 0: _SCREAMING_SNAKE_CASE : Dict = "\n".join(__lowerCamelCase ) raise Exception( "Found the following copy inconsistencies:\n" + diff + "\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them." ) if __name__ == "__main__": UpperCamelCase__ =argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') UpperCamelCase__ =parser.parse_args() check_copies(args.fix_and_overwrite)
325
0
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class __A( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result["""bs"""] , model_result["""ss"""] ): UpperCamelCase__ = model_result["""result"""][batch_size][sequence_length] self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = """sshleifer/tiny-gpt2""" UpperCamelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE_ , inference=SCREAMING_SNAKE_CASE_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase_ (self ): UpperCamelCase__ = """sgugger/tiny-distilbert-classification""" UpperCamelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE_ , inference=SCREAMING_SNAKE_CASE_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE_ , only_pretrain_model=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase_ (self ): UpperCamelCase__ = """sshleifer/tiny-gpt2""" UpperCamelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE_ , inference=SCREAMING_SNAKE_CASE_ , torchscript=SCREAMING_SNAKE_CASE_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" ) def UpperCAmelCase_ (self ): UpperCamelCase__ = """sshleifer/tiny-gpt2""" UpperCamelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE_ , inference=SCREAMING_SNAKE_CASE_ , fpaa=SCREAMING_SNAKE_CASE_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase_ (self ): UpperCamelCase__ = """sshleifer/tiny-gpt2""" UpperCamelCase__ = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) # set architectures equal to `None` UpperCamelCase__ = None UpperCamelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE_ , inference=SCREAMING_SNAKE_CASE_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE_ , configs=[config] ) UpperCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase_ (self ): UpperCamelCase__ = """sshleifer/tiny-gpt2""" UpperCamelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE_ , inference=SCREAMING_SNAKE_CASE_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == """cpu""" , """Can't do half precision""" ) def UpperCAmelCase_ (self ): UpperCamelCase__ = """sshleifer/tiny-gpt2""" UpperCamelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE_ , inference=SCREAMING_SNAKE_CASE_ , sequence_lengths=[8] , batch_sizes=[1] , fpaa=SCREAMING_SNAKE_CASE_ , multi_process=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCAmelCase_ (self ): UpperCamelCase__ = """sshleifer/tiny-gpt2""" UpperCamelCase__ = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE_ , inference=SCREAMING_SNAKE_CASE_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE_ , configs=[config] ) UpperCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase_ (self ): UpperCamelCase__ = """sshleifer/tinier_bart""" UpperCamelCase__ = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE_ , inference=SCREAMING_SNAKE_CASE_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE_ , configs=[config] ) UpperCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase_ (self ): UpperCamelCase__ = """sshleifer/tiny-gpt2""" UpperCamelCase__ = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE_ , inference=SCREAMING_SNAKE_CASE_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE_ , configs=[config] ) UpperCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCAmelCase_ (self ): UpperCamelCase__ = """sshleifer/tinier_bart""" UpperCamelCase__ = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE_ , inference=SCREAMING_SNAKE_CASE_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE_ , configs=[config] ) UpperCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCAmelCase_ (self ): UpperCamelCase__ = """sshleifer/tiny-gpt2""" with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE_ , inference=SCREAMING_SNAKE_CASE_ , save_to_csv=SCREAMING_SNAKE_CASE_ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(SCREAMING_SNAKE_CASE_ , """inf_time.csv""" ) , train_memory_csv_file=os.path.join(SCREAMING_SNAKE_CASE_ , """train_mem.csv""" ) , inference_memory_csv_file=os.path.join(SCREAMING_SNAKE_CASE_ , """inf_mem.csv""" ) , train_time_csv_file=os.path.join(SCREAMING_SNAKE_CASE_ , """train_time.csv""" ) , env_info_csv_file=os.path.join(SCREAMING_SNAKE_CASE_ , """env.csv""" ) , multi_process=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE_ ) benchmark.run() self.assertTrue(Path(os.path.join(SCREAMING_SNAKE_CASE_ , """inf_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(SCREAMING_SNAKE_CASE_ , """train_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(SCREAMING_SNAKE_CASE_ , """inf_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(SCREAMING_SNAKE_CASE_ , """train_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(SCREAMING_SNAKE_CASE_ , """env.csv""" ) ).exists() ) def UpperCAmelCase_ (self ): UpperCamelCase__ = """sshleifer/tiny-gpt2""" def _check_summary_is_not_empty(SCREAMING_SNAKE_CASE_ ): self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """sequential""" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """cumulative""" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """current""" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """total""" ) ) with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE_ , inference=SCREAMING_SNAKE_CASE_ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(SCREAMING_SNAKE_CASE_ , """log.txt""" ) , log_print=SCREAMING_SNAKE_CASE_ , trace_memory_line_by_line=SCREAMING_SNAKE_CASE_ , multi_process=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(SCREAMING_SNAKE_CASE_ , """log.txt""" ) ).exists() )
244
import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class __A( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = (CMStochasticIterativeScheduler,) SCREAMING_SNAKE_CASE__ = 10 def UpperCAmelCase_ (self , **SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = { """num_train_timesteps""": 2_01, """sigma_min""": 0.002, """sigma_max""": 80.0, } config.update(**SCREAMING_SNAKE_CASE_ ) return config def UpperCAmelCase_ (self ): UpperCamelCase__ = 10 UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = self.scheduler_classes[0](**SCREAMING_SNAKE_CASE_ ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = scheduler.timesteps[0] UpperCamelCase__ = scheduler.timesteps[1] UpperCamelCase__ = self.dummy_sample UpperCamelCase__ = 0.1 * sample UpperCamelCase__ = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).prev_sample UpperCamelCase__ = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCAmelCase_ (self ): for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = 1 scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = scheduler.timesteps UpperCamelCase__ = torch.manual_seed(0 ) UpperCamelCase__ = self.dummy_model() UpperCamelCase__ = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(SCREAMING_SNAKE_CASE_ ): # 1. scale model input UpperCamelCase__ = scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # 2. predict noise residual UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # 3. predict previous sample x_t-1 UpperCamelCase__ = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ ).prev_sample UpperCamelCase__ = pred_prev_sample UpperCamelCase__ = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase__ = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) assert abs(result_sum.item() - 192.7614 ) < 1E-2 assert abs(result_mean.item() - 0.2510 ) < 1E-3 def UpperCAmelCase_ (self ): UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = [1_06, 0] scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = scheduler.timesteps UpperCamelCase__ = torch.manual_seed(0 ) UpperCamelCase__ = self.dummy_model() UpperCamelCase__ = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input UpperCamelCase__ = scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # 2. predict noise residual UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # 3. predict previous sample x_t-1 UpperCamelCase__ = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ ).prev_sample UpperCamelCase__ = pred_prev_sample UpperCamelCase__ = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase__ = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) assert abs(result_sum.item() - 347.6357 ) < 1E-2 assert abs(result_mean.item() - 0.4527 ) < 1E-3 def UpperCAmelCase_ (self ): UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = [39, 30, 12, 15, 0] with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="""`timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = [39, 30, 12, 1, 0] UpperCamelCase__ = len(SCREAMING_SNAKE_CASE_ ) with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="""Can only pass one of `num_inference_steps` or `timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=SCREAMING_SNAKE_CASE_ , timesteps=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = [scheduler.config.num_train_timesteps] with self.assertRaises( SCREAMING_SNAKE_CASE_ , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_ )
244
1
import requests def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : str ) -> None: SCREAMING_SNAKE_CASE_ = {'Content-Type': 'application/json'} SCREAMING_SNAKE_CASE_ = requests.post(__UpperCAmelCase , json={'text': message_body} , headers=__UpperCAmelCase ) if response.status_code != 2_00: SCREAMING_SNAKE_CASE_ = ( 'Request to slack returned an error ' f"{response.status_code}, the response is:\n{response.text}" ) raise ValueError(__UpperCAmelCase ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message('<YOUR MESSAGE BODY>', '<SLACK CHANNEL URL>')
210
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class lowerCamelCase_ : '''simple docstring''' def __init__( self : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any]=2 , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : Any=False , _lowerCAmelCase : Tuple=10 , _lowerCAmelCase : Optional[int]=3 , _lowerCAmelCase : Dict=32 * 8 , _lowerCAmelCase : List[str]=32 * 8 , _lowerCAmelCase : List[Any]=4 , _lowerCAmelCase : Optional[Any]=64 , ): SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_auxiliary_loss SCREAMING_SNAKE_CASE_ = num_queries SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = min_size SCREAMING_SNAKE_CASE_ = max_size SCREAMING_SNAKE_CASE_ = num_labels SCREAMING_SNAKE_CASE_ = hidden_dim SCREAMING_SNAKE_CASE_ = hidden_dim def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_lowerCAmelCase ) > 0.5 ).float() SCREAMING_SNAKE_CASE_ = (torch.rand((self.batch_size, self.num_labels) , device=_lowerCAmelCase ) > 0.5).long() SCREAMING_SNAKE_CASE_ = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ = MaskaFormerConfig( hidden_size=self.hidden_dim , ) SCREAMING_SNAKE_CASE_ = self.num_queries SCREAMING_SNAKE_CASE_ = self.num_labels SCREAMING_SNAKE_CASE_ = [1, 1, 1, 1] SCREAMING_SNAKE_CASE_ = self.num_channels SCREAMING_SNAKE_CASE_ = 64 SCREAMING_SNAKE_CASE_ = 128 SCREAMING_SNAKE_CASE_ = self.hidden_dim SCREAMING_SNAKE_CASE_ = self.hidden_dim SCREAMING_SNAKE_CASE_ = self.hidden_dim return config def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple ): SCREAMING_SNAKE_CASE_ = output.encoder_hidden_states SCREAMING_SNAKE_CASE_ = output.pixel_decoder_hidden_states SCREAMING_SNAKE_CASE_ = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_lowerCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowerCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowerCAmelCase ) , config.decoder_layers ) def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : Any=False ): with torch.no_grad(): SCREAMING_SNAKE_CASE_ = MaskaFormerModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model(pixel_values=_lowerCAmelCase , pixel_mask=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , output_hidden_states=_lowerCAmelCase ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : str , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : str , _lowerCAmelCase : Any ): SCREAMING_SNAKE_CASE_ = MaskaFormerForUniversalSegmentation(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() def comm_check_on_output(_lowerCAmelCase : List[str] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(pixel_values=_lowerCAmelCase , pixel_mask=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase ) comm_check_on_output(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model( pixel_values=_lowerCAmelCase , pixel_mask=_lowerCAmelCase , mask_labels=_lowerCAmelCase , class_labels=_lowerCAmelCase ) comm_check_on_output(_lowerCAmelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () lowercase_ = {"feature-extraction": MaskaFormerModel} if is_torch_available() else {} lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = False def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ = MaskaFormerModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] ): self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : Tuple ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_lowerCAmelCase , **_lowerCAmelCase , output_hidden_states=_lowerCAmelCase ) def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_lowerCAmelCase ) @unittest.skip(reason='Mask2Former does not use inputs_embeds' ) def lowerCAmelCase_ ( self : Optional[int] ): pass @unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' ) def lowerCAmelCase_ ( self : Tuple ): pass @unittest.skip(reason='Mask2Former is not a generative model' ) def lowerCAmelCase_ ( self : List[Any] ): pass @unittest.skip(reason='Mask2Former does not use token embeddings' ) def lowerCAmelCase_ ( self : Tuple ): pass @require_torch_multi_gpu @unittest.skip( reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def lowerCAmelCase_ ( self : Any ): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCAmelCase_ ( self : int ): pass def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) @slow def lowerCAmelCase_ ( self : Any ): for model_name in ["facebook/mask2former-swin-small-coco-instance"]: SCREAMING_SNAKE_CASE_ = MaskaFormerModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ = (self.model_tester.min_size,) * 2 SCREAMING_SNAKE_CASE_ = { 'pixel_values': torch.randn((2, 3, *size) , device=_lowerCAmelCase ), 'mask_labels': torch.randn((2, 10, *size) , device=_lowerCAmelCase ), 'class_labels': torch.zeros(2 , 10 , device=_lowerCAmelCase ).long(), } SCREAMING_SNAKE_CASE_ = self.model_tester.get_config() SCREAMING_SNAKE_CASE_ = MaskaFormerForUniversalSegmentation(_lowerCAmelCase ).to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model(**_lowerCAmelCase ) self.assertTrue(outputs.loss is not None ) def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_lowerCAmelCase , **_lowerCAmelCase , output_hidden_states=_lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_lowerCAmelCase ).to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model(**_lowerCAmelCase , output_attentions=_lowerCAmelCase ) self.assertTrue(outputs.attentions is not None ) def lowerCAmelCase_ ( self : List[str] ): if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE_ = self.all_model_classes[1] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.train() SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , mask_labels=_lowerCAmelCase , class_labels=_lowerCAmelCase ).loss loss.backward() def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = self.all_model_classes[1] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = model_class(_lowerCAmelCase ).to(_lowerCAmelCase ) model.train() SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , mask_labels=_lowerCAmelCase , class_labels=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() SCREAMING_SNAKE_CASE_ = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() SCREAMING_SNAKE_CASE_ = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() SCREAMING_SNAKE_CASE_ = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_lowerCAmelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) lowerCamelCase__ : Tuple = 1E-4 def UpperCAmelCase_ ( ) -> List[Any]: SCREAMING_SNAKE_CASE_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase_ ( self : Optional[int] ): return "facebook/mask2former-swin-small-coco-instance" @cached_property def lowerCAmelCase_ ( self : int ): return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(_lowerCAmelCase , return_tensors='pt' ).to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_lowerCAmelCase , (1, 3, 384, 384) ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(_lowerCAmelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ = torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(_lowerCAmelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ = torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(_lowerCAmelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_lowerCAmelCase ).eval() SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(_lowerCAmelCase , return_tensors='pt' ).to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_lowerCAmelCase , (1, 3, 384, 384) ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**_lowerCAmelCase ) # masks_queries_logits SCREAMING_SNAKE_CASE_ = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) SCREAMING_SNAKE_CASE_ = [ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] SCREAMING_SNAKE_CASE_ = torch.tensor(_lowerCAmelCase ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) # class_queries_logits SCREAMING_SNAKE_CASE_ = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) SCREAMING_SNAKE_CASE_ = torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_lowerCAmelCase ).eval() SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = image_processor( [np.zeros((3, 800, 1_333) ), np.zeros((3, 800, 1_333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='pt' , ) SCREAMING_SNAKE_CASE_ = inputs['pixel_values'].to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = [el.to(_lowerCAmelCase ) for el in inputs['mask_labels']] SCREAMING_SNAKE_CASE_ = [el.to(_lowerCAmelCase ) for el in inputs['class_labels']] with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**_lowerCAmelCase ) self.assertTrue(outputs.loss is not None )
210
1
import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask lowerCAmelCase__ = logging.getLogger(__name__) class a__ ( snake_case ): """simple docstring""" def __init__( self , lowercase=-1 ) -> Optional[Any]: '''simple docstring''' A__ = label_idx def UpperCamelCase ( self , lowercase , lowercase ) -> List[InputExample]: '''simple docstring''' if isinstance(lowercase , lowercase ): A__ = mode.value A__ = os.path.join(lowercase , F'{mode}.txt' ) A__ = 1 A__ = [] with open(lowercase , encoding="utf-8" ) as f: A__ = [] A__ = [] for line in f: if line.startswith("-DOCSTART-" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=F'{mode}-{guid_index}' , words=lowercase , labels=lowercase ) ) guid_index += 1 A__ = [] A__ = [] else: A__ = line.split(" " ) words.append(splits[0] ) if len(lowercase ) > 1: labels.append(splits[self.label_idx].replace("\n" , "" ) ) else: # Examples could have no label for mode = "test" labels.append("O" ) if words: examples.append(InputExample(guid=F'{mode}-{guid_index}' , words=lowercase , labels=lowercase ) ) return examples def UpperCamelCase ( self , lowercase , lowercase , lowercase ) -> Optional[Any]: '''simple docstring''' A__ = 0 for line in test_input_reader: if line.startswith("-DOCSTART-" ) or line == "" or line == "\n": writer.write(lowercase ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: A__ = line.split()[0] + " " + preds_list[example_id].pop(0 ) + "\n" writer.write(lowercase ) else: logger.warning("Maximum sequence length exceeded: No prediction for '%s'." , line.split()[0] ) def UpperCamelCase ( self , lowercase ) -> List[str]: '''simple docstring''' if path: with open(lowercase , "r" ) as f: A__ = f.read().splitlines() if "O" not in labels: A__ = ["O"] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class a__ ( snake_case ): """simple docstring""" def __init__( self ) -> Union[str, Any]: '''simple docstring''' super().__init__(label_idx=-2 ) def UpperCamelCase ( self , lowercase ) -> List[str]: '''simple docstring''' if path: with open(lowercase , "r" ) as f: A__ = f.read().splitlines() if "O" not in labels: A__ = ["O"] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class a__ ( snake_case ): """simple docstring""" def UpperCamelCase ( self , lowercase , lowercase ) -> List[InputExample]: '''simple docstring''' if isinstance(lowercase , lowercase ): A__ = mode.value A__ = os.path.join(lowercase , F'{mode}.txt' ) A__ = 1 A__ = [] with open(lowercase , encoding="utf-8" ) as f: for sentence in parse_incr(lowercase ): A__ = [] A__ = [] for token in sentence: words.append(token["form"] ) labels.append(token["upos"] ) assert len(lowercase ) == len(lowercase ) if words: examples.append(InputExample(guid=F'{mode}-{guid_index}' , words=lowercase , labels=lowercase ) ) guid_index += 1 return examples def UpperCamelCase ( self , lowercase , lowercase , lowercase ) -> List[Any]: '''simple docstring''' A__ = 0 for sentence in parse_incr(lowercase ): A__ = preds_list[example_id] A__ = "" for token in sentence: out += F'{token["form"]} ({token["upos"]}|{s_p.pop(0 )}) ' out += "\n" writer.write(lowercase ) example_id += 1 def UpperCamelCase ( self , lowercase ) -> List[str]: '''simple docstring''' if path: with open(lowercase , "r" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
68
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Optional[int] , SCREAMING_SNAKE_CASE_: int ) -> int: '''simple docstring''' A__ = nn.functional.normalize(SCREAMING_SNAKE_CASE_ ) A__ = nn.functional.normalize(SCREAMING_SNAKE_CASE_ ) return torch.mm(SCREAMING_SNAKE_CASE_ , normalized_text_embeds.t() ) class a__ ( snake_case ): """simple docstring""" __lowerCamelCase = CLIPConfig __lowerCamelCase = ['CLIPEncoderLayer'] def __init__( self , lowercase ) -> Optional[int]: '''simple docstring''' super().__init__(lowercase ) A__ = CLIPVisionModel(config.vision_config ) A__ = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=lowercase ) A__ = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=lowercase ) A__ = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=lowercase ) A__ = nn.Parameter(torch.ones(17 ) , requires_grad=lowercase ) A__ = nn.Parameter(torch.ones(3 ) , requires_grad=lowercase ) @torch.no_grad() def UpperCamelCase ( self , lowercase , lowercase ) -> Any: '''simple docstring''' A__ = self.vision_model(lowercase )[1] # pooled_output A__ = self.visual_projection(lowercase ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A__ = cosine_distance(lowercase , self.special_care_embeds ).cpu().float().numpy() A__ = cosine_distance(lowercase , self.concept_embeds ).cpu().float().numpy() A__ = [] A__ = image_embeds.shape[0] for i in range(lowercase ): A__ = {"special_scores": {}, "special_care": [], "concept_scores": {}, "bad_concepts": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images A__ = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): A__ = special_cos_dist[i][concept_idx] A__ = self.special_care_embeds_weights[concept_idx].item() A__ = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["special_scores"][concept_idx]} ) A__ = 0.01 for concept_idx in range(len(cos_dist[0] ) ): A__ = cos_dist[i][concept_idx] A__ = self.concept_embeds_weights[concept_idx].item() A__ = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(lowercase ) result.append(lowercase ) A__ = [len(res["bad_concepts"] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def UpperCamelCase ( self , lowercase , lowercase ) -> Any: '''simple docstring''' A__ = self.vision_model(lowercase )[1] # pooled_output A__ = self.visual_projection(lowercase ) A__ = cosine_distance(lowercase , self.special_care_embeds ) A__ = cosine_distance(lowercase , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images A__ = 0.0 A__ = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) A__ = torch.any(special_scores > 0 , dim=1 ) A__ = special_care * 0.01 A__ = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) A__ = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) A__ = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
68
1
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): """simple docstring""" A_ = 'char' A_ = 'bpe' A_ = 'wp' __A = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): """simple docstring""" A_ = ['image_processor', 'char_tokenizer'] A_ = 'ViTImageProcessor' A_ = 'MgpstrTokenizer' def __init__( self: Optional[int] , __A: int=None , __A: Any=None , **__A: Optional[int] ) -> Tuple: _A = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __lowerCAmelCase , ) _A = kwargs.pop('''feature_extractor''' ) _A = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) _A = tokenizer _A = AutoTokenizer.from_pretrained('''gpt2''' ) _A = AutoTokenizer.from_pretrained('''bert-base-uncased''' ) super().__init__(__lowerCAmelCase , __lowerCAmelCase ) def __call__( self: Union[str, Any] , __A: List[Any]=None , __A: int=None , __A: Union[str, Any]=None , **__A: Any ) -> Optional[Any]: if images is None and text is None: raise ValueError('''You need to specify either an `images` or `text` input to process.''' ) if images is not None: _A = self.image_processor(__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase ) if text is not None: _A = self.char_tokenizer(__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase ) if text is None: return inputs elif images is None: return encodings else: _A = encodings['''input_ids'''] return inputs def __A ( self: int , __A: Dict ) -> Optional[Any]: _A ,_A ,_A = sequences _A = char_preds.size(0 ) _A ,_A = self._decode_helper(__lowerCAmelCase , '''char''' ) _A ,_A = self._decode_helper(__lowerCAmelCase , '''bpe''' ) _A ,_A = self._decode_helper(__lowerCAmelCase , '''wp''' ) _A = [] _A = [] for i in range(__lowerCAmelCase ): _A = [char_scores[i], bpe_scores[i], wp_scores[i]] _A = [char_strs[i], bpe_strs[i], wp_strs[i]] _A = scores.index(max(__lowerCAmelCase ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) _A = {} _A = final_strs _A = final_scores _A = char_strs _A = bpe_strs _A = wp_strs return out def __A ( self: str , __A: Tuple , __A: Optional[int] ) -> str: if format == DecodeType.CHARACTER: _A = self.char_decode _A = 1 _A = '''[s]''' elif format == DecodeType.BPE: _A = self.bpe_decode _A = 2 _A = '''#''' elif format == DecodeType.WORDPIECE: _A = self.wp_decode _A = 1_02 _A = '''[SEP]''' else: raise ValueError(f"""Format {format} is not supported.""" ) _A ,_A = [], [] _A = pred_logits.size(0 ) _A = pred_logits.size(1 ) _A ,_A = pred_logits.topk(1 , dim=-1 , largest=__lowerCAmelCase , sorted=__lowerCAmelCase ) _A = preds_index.view(-1 , __lowerCAmelCase )[:, 1:] _A = decoder(__lowerCAmelCase ) _A ,_A = torch.nn.functional.softmax(__lowerCAmelCase , dim=2 ).max(dim=2 ) _A = preds_max_prob[:, 1:] for index in range(__lowerCAmelCase ): _A = preds_str[index].find(__lowerCAmelCase ) _A = preds_str[index][:pred_eos] _A = preds_index[index].cpu().tolist() _A = pred_index.index(__lowerCAmelCase ) if eos_token in pred_index else -1 _A = preds_max_prob[index][: pred_eos_index + 1] _A = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(__lowerCAmelCase ) conf_scores.append(__lowerCAmelCase ) return dec_strs, conf_scores def __A ( self: Optional[Any] , __A: str ) -> Optional[int]: _A = [seq.replace(''' ''' , '''''' ) for seq in self.char_tokenizer.batch_decode(__lowerCAmelCase )] return decode_strs def __A ( self: Optional[int] , __A: Dict ) -> List[str]: return self.bpe_tokenizer.batch_decode(__lowerCAmelCase ) def __A ( self: List[str] , __A: Optional[int] ) -> Any: _A = [seq.replace(''' ''' , '''''' ) for seq in self.wp_tokenizer.batch_decode(__lowerCAmelCase )] return decode_strs
358
__A = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] __A = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] __A = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] __A = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] __A = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] __A = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] __A = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] __A = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
75
0
'''simple docstring''' import argparse import os import torch from transformers.utils import WEIGHTS_NAME UpperCamelCase = ['''small''', '''medium''', '''large'''] UpperCamelCase = '''lm_head.decoder.weight''' UpperCamelCase = '''lm_head.weight''' def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Optional[int]: A: Tuple = torch.load(__lowercase ) A: str = d.pop(__lowercase ) os.makedirs(__lowercase , exist_ok=__lowercase ) torch.save(__lowercase , os.path.join(__lowercase , __lowercase ) ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--dialogpt_path''', default='''.''', type=str) UpperCamelCase = parser.parse_args() for MODEL in DIALOGPT_MODELS: UpperCamelCase = os.path.join(args.dialogpt_path, f'{MODEL}_ft.pkl') UpperCamelCase = f'./DialoGPT-{MODEL}' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
319
'''simple docstring''' import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor UpperCamelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : Union[str, Any] , *SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> None: '''simple docstring''' warnings.warn( '''The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use BeitImageProcessor instead.''' , SCREAMING_SNAKE_CASE_ , ) super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
319
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase = {'''configuration_ibert''': ['''IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''IBertConfig''', '''IBertOnnxConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''IBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''IBertForMaskedLM''', '''IBertForMultipleChoice''', '''IBertForQuestionAnswering''', '''IBertForSequenceClassification''', '''IBertForTokenClassification''', '''IBertModel''', '''IBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
85
"""simple docstring""" import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def lowerCAmelCase (__UpperCamelCase : Tuple ): """simple docstring""" __UpperCamelCase =SwinConfig() __UpperCamelCase =swin_name.split('''_''' ) __UpperCamelCase =name_split[1] __UpperCamelCase =int(name_split[4] ) __UpperCamelCase =int(name_split[3][-1] ) if model_size == "tiny": __UpperCamelCase =9_6 __UpperCamelCase =(2, 2, 6, 2) __UpperCamelCase =(3, 6, 1_2, 2_4) elif model_size == "small": __UpperCamelCase =9_6 __UpperCamelCase =(2, 2, 1_8, 2) __UpperCamelCase =(3, 6, 1_2, 2_4) elif model_size == "base": __UpperCamelCase =1_2_8 __UpperCamelCase =(2, 2, 1_8, 2) __UpperCamelCase =(4, 8, 1_6, 3_2) else: __UpperCamelCase =1_9_2 __UpperCamelCase =(2, 2, 1_8, 2) __UpperCamelCase =(6, 1_2, 2_4, 4_8) if "in22k" in swin_name: __UpperCamelCase =2_1_8_4_1 else: __UpperCamelCase =1_0_0_0 __UpperCamelCase ='''huggingface/label-files''' __UpperCamelCase ='''imagenet-1k-id2label.json''' __UpperCamelCase =json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type='''dataset''' ) , '''r''' ) ) __UpperCamelCase ={int(__UpperCamelCase ): v for k, v in idalabel.items()} __UpperCamelCase =idalabel __UpperCamelCase ={v: k for k, v in idalabel.items()} __UpperCamelCase =img_size __UpperCamelCase =num_classes __UpperCamelCase =embed_dim __UpperCamelCase =depths __UpperCamelCase =num_heads __UpperCamelCase =window_size return config def lowerCAmelCase (__UpperCamelCase : Optional[int] ): """simple docstring""" if "patch_embed.proj" in name: __UpperCamelCase =name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: __UpperCamelCase =name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: __UpperCamelCase ='''encoder.''' + name if "attn.proj" in name: __UpperCamelCase =name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: __UpperCamelCase =name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: __UpperCamelCase =name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: __UpperCamelCase =name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: __UpperCamelCase =name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: __UpperCamelCase =name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "norm.weight": __UpperCamelCase ='''layernorm.weight''' if name == "norm.bias": __UpperCamelCase ='''layernorm.bias''' if "head" in name: __UpperCamelCase =name.replace('''head''' , '''classifier''' ) else: __UpperCamelCase ='''swin.''' + name return name def lowerCAmelCase (__UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] ): """simple docstring""" for key in orig_state_dict.copy().keys(): __UpperCamelCase =orig_state_dict.pop(__UpperCamelCase ) if "mask" in key: continue elif "qkv" in key: __UpperCamelCase =key.split('''.''' ) __UpperCamelCase =int(key_split[1] ) __UpperCamelCase =int(key_split[3] ) __UpperCamelCase =model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __UpperCamelCase =val[:dim, :] __UpperCamelCase =val[ dim : dim * 2, : ] __UpperCamelCase =val[-dim:, :] else: __UpperCamelCase =val[ :dim ] __UpperCamelCase =val[ dim : dim * 2 ] __UpperCamelCase =val[ -dim: ] else: __UpperCamelCase =val return orig_state_dict def lowerCAmelCase (__UpperCamelCase : int , __UpperCamelCase : Any ): """simple docstring""" __UpperCamelCase =timm.create_model(__UpperCamelCase , pretrained=__UpperCamelCase ) timm_model.eval() __UpperCamelCase =get_swin_config(__UpperCamelCase ) __UpperCamelCase =SwinForImageClassification(__UpperCamelCase ) model.eval() __UpperCamelCase =convert_state_dict(timm_model.state_dict() , __UpperCamelCase ) model.load_state_dict(__UpperCamelCase ) __UpperCamelCase ='''http://images.cocodataset.org/val2017/000000039769.jpg''' __UpperCamelCase =AutoImageProcessor.from_pretrained('''microsoft/{}'''.format(swin_name.replace('''_''' , '''-''' ) ) ) __UpperCamelCase =Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) __UpperCamelCase =image_processor(images=__UpperCamelCase , return_tensors='''pt''' ) __UpperCamelCase =timm_model(inputs['''pixel_values'''] ) __UpperCamelCase =model(**__UpperCamelCase ).logits assert torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-3 ) print(F"""Saving model {swin_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__UpperCamelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swin_name''', default='''swin_tiny_patch4_window7_224''', type=str, help='''Name of the Swin timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __lowercase = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
85
1
"""simple docstring""" import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _UpperCamelCase : Any = logging.get_logger(__name__) _UpperCamelCase : str = {'''vocab_file''': '''spiece.model'''} _UpperCamelCase : Dict = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), } } _UpperCamelCase : Any = { '''google/bigbird-roberta-base''': 4_0_9_6, '''google/bigbird-roberta-large''': 4_0_9_6, '''google/bigbird-base-trivia-itc''': 4_0_9_6, } class a ( lowerCAmelCase__ ): UpperCAmelCase_ : Union[str, Any] =VOCAB_FILES_NAMES UpperCAmelCase_ : Any =PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : Tuple =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : int =["""input_ids""", """attention_mask"""] UpperCAmelCase_ : List[int] =[] def __init__( self , _lowerCamelCase , _lowerCamelCase="<unk>" , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<pad>" , _lowerCamelCase="[SEP]" , _lowerCamelCase="[MASK]" , _lowerCamelCase="[CLS]" , _lowerCamelCase = None , **_lowerCamelCase , ): lowercase = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else bos_token lowercase = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else eos_token lowercase = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else unk_token lowercase = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else pad_token lowercase = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else cls_token lowercase = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it lowercase = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else mask_token lowercase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , pad_token=lowercase_ , sep_token=lowercase_ , mask_token=lowercase_ , cls_token=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , **lowercase_ , ) lowercase = vocab_file lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase_ ) @property def UpperCamelCase_ ( self ): return self.sp_model.get_piece_size() def UpperCamelCase_ ( self ): lowercase = {self.convert_ids_to_tokens(lowercase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): lowercase = self.__dict__.copy() lowercase = None return state def __setstate__( self , _lowerCamelCase ): lowercase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowercase = {} lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase_ ( self , _lowerCamelCase ): return self.sp_model.encode(lowercase_ , out_type=lowercase_ ) def UpperCamelCase_ ( self , _lowerCamelCase ): return self.sp_model.piece_to_id(lowercase_ ) def UpperCamelCase_ ( self , _lowerCamelCase ): lowercase = self.sp_model.IdToPiece(lowercase_ ) return token def UpperCamelCase_ ( self , _lowerCamelCase ): lowercase = [] lowercase = '''''' lowercase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowercase_ ) + token lowercase = True lowercase = [] else: current_sub_tokens.append(lowercase_ ) lowercase = False out_string += self.sp_model.decode(lowercase_ ) return out_string.strip() def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = True , **_lowerCamelCase , ): lowercase = kwargs.pop('use_source_tokenizer' , lowercase_ ) lowercase = self.convert_ids_to_tokens(lowercase_ , skip_special_tokens=lowercase_ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 lowercase = [] lowercase = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowercase_ ) ) lowercase = [] sub_texts.append(lowercase_ ) else: current_sub_text.append(lowercase_ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowercase_ ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: lowercase = re.sub(R' (\[(MASK|SEP)\])' , R'\1' , ' '.join(lowercase_ ) ) else: lowercase = ''''''.join(lowercase_ ) lowercase = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: lowercase = self.clean_up_tokenization(lowercase_ ) return clean_text else: return text def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None ): if not os.path.isdir(lowercase_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowercase = os.path.join( lowercase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase_ , 'wb' ) as fi: lowercase = self.sp_model.serialized_model_proto() fi.write(lowercase_ ) return (out_vocab_file,) def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase = [self.cls_token_id] lowercase = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_ ) if token_ids_a is None: return [1] + ([0] * len(lowercase_ )) + [1] return [1] + ([0] * len(lowercase_ )) + [1] + ([0] * len(lowercase_ )) + [1] def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None ): lowercase = [self.sep_token_id] lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
220
"""simple docstring""" from functools import lru_cache @lru_cache def __lowercase ( _a ): if num < 0: raise ValueError('''Number should not be negative.''' ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
264
0
"""simple docstring""" import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file SCREAMING_SNAKE_CASE__:Tuple = '''Run commands across TPU VMs for initial setup before running `accelerate launch`.''' def _lowerCamelCase( a=None ): if subparsers is not None: __a = subparsers.add_parser("tpu-config" , description=_description ) else: __a = argparse.ArgumentParser("Accelerate tpu-config command" , description=_description ) # Core arguments __a = parser.add_argument_group( "Config Arguments" , "Arguments that can be configured through `accelerate config`." ) config_args.add_argument( "--config_file" , type=_UpperCAmelCase , default=_UpperCAmelCase , help="Path to the config file to use for accelerate." , ) config_args.add_argument( "--tpu_name" , default=_UpperCAmelCase , help="The name of the TPU to use. If not specified, will use the TPU specified in the config file." , ) config_args.add_argument( "--tpu_zone" , default=_UpperCAmelCase , help="The zone of the TPU to use. If not specified, will use the zone specified in the config file." , ) __a = parser.add_argument_group("TPU Arguments" , "Arguments for options ran inside the TPU." ) pod_args.add_argument( "--use_alpha" , action="store_true" , help="Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`." , ) pod_args.add_argument( "--command_file" , default=_UpperCAmelCase , help="The path to the file containing the commands to run on the pod on startup." , ) pod_args.add_argument( "--command" , action="append" , nargs="+" , help="A command to run on the pod. Can be passed multiple times." , ) pod_args.add_argument( "--install_accelerate" , action="store_true" , help="Whether to install accelerate on the pod. Defaults to False." , ) pod_args.add_argument( "--accelerate_version" , default="latest" , help="The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub." , ) pod_args.add_argument( "--debug" , action="store_true" , help="If set, will print the command that would be run instead of running it." ) if subparsers is not None: parser.set_defaults(func=_UpperCAmelCase ) return parser def _lowerCamelCase( a ): __a = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(_UpperCAmelCase ): __a = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: __a = defaults.command_file if not args.command and defaults.commands is not None: __a = defaults.commands if not args.tpu_name: __a = defaults.tpu_name if not args.tpu_zone: __a = defaults.tpu_zone if args.accelerate_version == "dev": __a = 'git+https://github.com/huggingface/accelerate.git' elif args.accelerate_version == "latest": __a = 'accelerate -U' elif isinstance(parse(args.accelerate_version ) , _UpperCAmelCase ): __a = F"accelerate=={args.accelerate_version}" if not args.command_file and not args.command: raise ValueError("You must specify either a command file or a command to run on the pod." ) if args.command_file: with open(args.command_file , "r" ) as f: __a = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , _UpperCAmelCase ): __a = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate __a = ['cd /usr/share'] if args.install_accelerate: new_cmd += [F"pip install {args.accelerate_version}"] new_cmd += args.command __a = '; '.join(_UpperCAmelCase ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess __a = ['gcloud'] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F"Running {' '.join(_UpperCAmelCase )}" ) return subprocess.run(_UpperCAmelCase ) print("Successfully setup pod." ) def _lowerCamelCase( ): __a = tpu_command_parser() __a = parser.parse_args() tpu_command_launcher(_UpperCAmelCase )
350
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL SCREAMING_SNAKE_CASE__:Tuple = logging.get_logger(__name__) class snake_case__ ( snake_case_ ): _snake_case : Optional[Any] = ["""pixel_values"""] def __init__( self , lowerCamelCase = True , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = PILImageResampling.BILINEAR , lowerCamelCase = True , lowerCamelCase = 1 / 255 , lowerCamelCase = True , lowerCamelCase = None , lowerCamelCase = None , **lowerCamelCase , ): super().__init__(**lowerCamelCase ) __a = size if size is not None else {"shortest_edge": 384} __a = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase ) __a = do_resize __a = size # Default value set here for backwards compatibility where the value in config is None __a = crop_pct if crop_pct is not None else 224 / 256 __a = resample __a = do_rescale __a = rescale_factor __a = do_normalize __a = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __a = image_std if image_std is not None else IMAGENET_STANDARD_STD def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = PILImageResampling.BICUBIC , lowerCamelCase = None , **lowerCamelCase , ): __a = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase ) if "shortest_edge" not in size: raise ValueError(F"Size dictionary must contain 'shortest_edge' key. Got {size.keys()}" ) __a = size["shortest_edge"] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct __a = int(shortest_edge / crop_pct ) __a = get_resize_output_image_size(lowerCamelCase , size=lowerCamelCase , default_to_square=lowerCamelCase ) __a = resize(image=lowerCamelCase , size=lowerCamelCase , resample=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=lowerCamelCase , size=(shortest_edge, shortest_edge) , data_format=lowerCamelCase , **lowerCamelCase ) else: # warping (no cropping) when evaluated at 384 or larger return resize( lowerCamelCase , size=(shortest_edge, shortest_edge) , resample=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase , ): return rescale(lowerCamelCase , scale=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase , ): return normalize(lowerCamelCase , mean=lowerCamelCase , std=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def a__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = ChannelDimension.FIRST , **lowerCamelCase , ): __a = do_resize if do_resize is not None else self.do_resize __a = crop_pct if crop_pct is not None else self.crop_pct __a = resample if resample is not None else self.resample __a = do_rescale if do_rescale is not None else self.do_rescale __a = rescale_factor if rescale_factor is not None else self.rescale_factor __a = do_normalize if do_normalize is not None else self.do_normalize __a = image_mean if image_mean is not None else self.image_mean __a = image_std if image_std is not None else self.image_std __a = size if size is not None else self.size __a = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase ) __a = make_list_of_images(lowerCamelCase ) if not valid_images(lowerCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("crop_pct must be specified if size < 384." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. __a = [to_numpy_array(lowerCamelCase ) for image in images] if do_resize: __a = [self.resize(image=lowerCamelCase , size=lowerCamelCase , crop_pct=lowerCamelCase , resample=lowerCamelCase ) for image in images] if do_rescale: __a = [self.rescale(image=lowerCamelCase , scale=lowerCamelCase ) for image in images] if do_normalize: __a = [self.normalize(image=lowerCamelCase , mean=lowerCamelCase , std=lowerCamelCase ) for image in images] __a = [to_channel_dimension_format(lowerCamelCase , lowerCamelCase ) for image in images] __a = {"pixel_values": images} return BatchFeature(data=lowerCamelCase , tensor_type=lowerCamelCase )
268
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __A : Tuple = { 'configuration_graphormer': ['GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GraphormerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Tuple = [ 'GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'GraphormerForGraphClassification', 'GraphormerModel', 'GraphormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys __A : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
138
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __A( a ): snake_case_ = ['''image_processor''', '''tokenizer'''] snake_case_ = '''ChineseCLIPImageProcessor''' snake_case_ = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self , _snake_case=None , _snake_case=None , **_snake_case ) -> Tuple: '''simple docstring''' __a = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _snake_case , ) __a = kwargs.pop('''feature_extractor''' ) __a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_snake_case , _snake_case ) __a = self.image_processor def __call__( self , _snake_case=None , _snake_case=None , _snake_case=None , **_snake_case ) -> Optional[Any]: '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __a = self.tokenizer(_snake_case , return_tensors=_snake_case , **_snake_case ) if images is not None: __a = self.image_processor(_snake_case , return_tensors=_snake_case , **_snake_case ) if text is not None and images is not None: __a = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_snake_case ) , tensor_type=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , *_snake_case , **_snake_case ) -> str: '''simple docstring''' return self.tokenizer.batch_decode(*_snake_case , **_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , *_snake_case , **_snake_case ) -> Dict: '''simple docstring''' return self.tokenizer.decode(*_snake_case , **_snake_case ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' __a = self.tokenizer.model_input_names __a = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _snake_case , ) return self.image_processor_class
6
0
from typing import List from .keymap import KEYMAP, get_character def A__ ( SCREAMING_SNAKE_CASE__) -> Any: def decorator(SCREAMING_SNAKE_CASE__): __snake_case: List[str] = getattr(SCREAMING_SNAKE_CASE__ , """handle_key""" , []) handle += [key] setattr(SCREAMING_SNAKE_CASE__ , """handle_key""" , SCREAMING_SNAKE_CASE__) return func return decorator def A__ ( *SCREAMING_SNAKE_CASE__) -> Union[str, Any]: def decorator(SCREAMING_SNAKE_CASE__): __snake_case: Tuple = getattr(SCREAMING_SNAKE_CASE__ , """handle_key""" , []) handle += keys setattr(SCREAMING_SNAKE_CASE__ , """handle_key""" , SCREAMING_SNAKE_CASE__) return func return decorator class __snake_case ( __lowerCamelCase ): '''simple docstring''' def __new__( cls : Any , A : Dict , A : List[str] , A : List[str] ): __snake_case: List[str] = super().__new__(cls , A , A , A ) if not hasattr(A , """key_handler""" ): setattr(A , """key_handler""" , {} ) setattr(A , """handle_input""" , KeyHandler.handle_input ) for value in attrs.values(): __snake_case: int = getattr(A , """handle_key""" , [] ) for key in handled_keys: __snake_case: List[Any] = value return new_cls @staticmethod def UpperCAmelCase__ ( cls : Optional[int] ): __snake_case: List[Any] = get_character() if char != KEYMAP["undefined"]: __snake_case: str = ord(A ) __snake_case: List[str] = cls.key_handler.get(A ) if handler: __snake_case: Any = char return handler(cls ) else: return None def A__ ( cls) -> Tuple: return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy())
293
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) __UpperCAmelCase : Union[str, Any] = { "asapp/sew-d-tiny-100k": "https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class __snake_case ( __lowerCamelCase ): '''simple docstring''' lowerCAmelCase__ = """sew-d""" def __init__( self : Dict , A : Any=32 , A : Dict=768 , A : Optional[Any]=12 , A : Union[str, Any]=12 , A : Union[str, Any]=3_072 , A : Optional[Any]=2 , A : Union[str, Any]=512 , A : List[Any]=256 , A : Dict=True , A : Union[str, Any]=True , A : Optional[int]=("p2c", "c2p") , A : str="layer_norm" , A : Dict="gelu_python" , A : Tuple=0.1 , A : Any=0.1 , A : Tuple=0.1 , A : Optional[int]=0.0 , A : Any=0.1 , A : Any=0.02 , A : Dict=1E-7 , A : str=1E-5 , A : int="group" , A : int="gelu" , A : str=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , A : Union[str, Any]=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , A : List[Any]=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , A : Optional[int]=False , A : int=128 , A : int=16 , A : Optional[Any]=True , A : List[Any]=0.05 , A : Any=10 , A : Dict=2 , A : List[Any]=0.0 , A : Union[str, Any]=10 , A : int=0 , A : List[Any]="mean" , A : Union[str, Any]=False , A : Any=False , A : Optional[int]=256 , A : List[Any]=0 , A : Any=1 , A : List[Any]=2 , **A : List[Any] , ): super().__init__(**A , pad_token_id=A , bos_token_id=A , eos_token_id=A ) __snake_case: Optional[int] = hidden_size __snake_case: str = feat_extract_norm __snake_case: int = feat_extract_activation __snake_case: str = list(A ) __snake_case: Any = list(A ) __snake_case: str = list(A ) __snake_case: Union[str, Any] = conv_bias __snake_case: int = num_conv_pos_embeddings __snake_case: str = num_conv_pos_embedding_groups __snake_case: List[Any] = len(self.conv_dim ) __snake_case: List[str] = num_hidden_layers __snake_case: Union[str, Any] = intermediate_size __snake_case: Dict = squeeze_factor __snake_case: List[Any] = max_position_embeddings __snake_case: List[Any] = position_buckets __snake_case: List[str] = share_att_key __snake_case: int = relative_attention __snake_case: Union[str, Any] = norm_rel_ebd __snake_case: List[str] = list(A ) __snake_case: Tuple = hidden_act __snake_case: List[Any] = num_attention_heads __snake_case: str = hidden_dropout __snake_case: int = attention_dropout __snake_case: Dict = activation_dropout __snake_case: Any = feat_proj_dropout __snake_case: int = final_dropout __snake_case: List[Any] = layer_norm_eps __snake_case: List[str] = feature_layer_norm_eps __snake_case: List[Any] = initializer_range __snake_case: List[Any] = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect.""" """It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,""" f'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' f'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __snake_case: List[Any] = apply_spec_augment __snake_case: List[Any] = mask_time_prob __snake_case: str = mask_time_length __snake_case: List[str] = mask_time_min_masks __snake_case: str = mask_feature_prob __snake_case: Optional[int] = mask_feature_length __snake_case: Dict = mask_feature_min_masks # ctc loss __snake_case: Any = ctc_loss_reduction __snake_case: str = ctc_zero_infinity # sequence classification __snake_case: Optional[Any] = use_weighted_layer_sum __snake_case: List[Any] = classifier_proj_size @property def UpperCAmelCase__ ( self : int ): return functools.reduce(operator.mul , self.conv_stride , 1 )
293
1
"""simple docstring""" def lowerCamelCase ( _UpperCamelCase : str ) -> bool: '''simple docstring''' if not all(x.isalpha() for x in string ): raise ValueError("""String must only contain alphabetic characters.""" ) __UpperCAmelCase : Optional[int] = sorted(string.lower() ) return len(_UpperCamelCase ) == len(set(_UpperCamelCase ) ) if __name__ == "__main__": UpperCAmelCase : Optional[Any] = input('Enter a string ').strip() UpperCAmelCase : Optional[Any] = is_isogram(input_str) print(F"{input_str} is {'an' if isogram else 'not an'} isogram.")
115
"""simple docstring""" def lowerCamelCase ( _UpperCamelCase : int = 4_0_0_0_0_0_0 ) -> int: '''simple docstring''' __UpperCAmelCase : int = [0, 1] __UpperCAmelCase : Optional[Any] = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 __UpperCAmelCase : str = 0 for j in range(len(_UpperCamelCase ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(F"{solution() = }")
115
1
"""simple docstring""" import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging SCREAMING_SNAKE_CASE_ : Optional[int] = logging.get_logger(__name__) def _snake_case ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple ): A__ = nn.functional.normalize(UpperCAmelCase_ ) A__ = nn.functional.normalize(UpperCAmelCase_ ) return torch.mm(UpperCAmelCase_ , normalized_text_embeds.t() ) class a ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = CLIPConfig UpperCAmelCase = ["CLIPEncoderLayer"] def __init__( self: str , UpperCamelCase: CLIPConfig ): """simple docstring""" super().__init__(UpperCamelCase ) A__ = CLIPVisionModel(config.vision_config ) A__ = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=UpperCamelCase ) A__ = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=UpperCamelCase ) A__ = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=UpperCamelCase ) A__ = nn.Parameter(torch.ones(17 ) , requires_grad=UpperCamelCase ) A__ = nn.Parameter(torch.ones(3 ) , requires_grad=UpperCamelCase ) @torch.no_grad() def UpperCamelCase ( self: Tuple , UpperCamelCase: List[str] , UpperCamelCase: Dict ): """simple docstring""" A__ = self.vision_model(UpperCamelCase )[1] # pooled_output A__ = self.visual_projection(UpperCamelCase ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A__ = cosine_distance(UpperCamelCase , self.special_care_embeds ).cpu().float().numpy() A__ = cosine_distance(UpperCamelCase , self.concept_embeds ).cpu().float().numpy() A__ = [] A__ = image_embeds.shape[0] for i in range(UpperCamelCase ): A__ = {"""special_scores""": {}, """special_care""": [], """concept_scores""": {}, """bad_concepts""": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images A__ = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): A__ = special_cos_dist[i][concept_idx] A__ = self.special_care_embeds_weights[concept_idx].item() A__ = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["""special_scores"""][concept_idx]} ) A__ = 0.01 for concept_idx in range(len(cos_dist[0] ) ): A__ = cos_dist[i][concept_idx] A__ = self.concept_embeds_weights[concept_idx].item() A__ = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(UpperCamelCase ) result.append(UpperCamelCase ) A__ = [len(res["""bad_concepts"""] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def UpperCamelCase ( self: int , UpperCamelCase: torch.FloatTensor , UpperCamelCase: torch.FloatTensor ): """simple docstring""" A__ = self.vision_model(UpperCamelCase )[1] # pooled_output A__ = self.visual_projection(UpperCamelCase ) A__ = cosine_distance(UpperCamelCase , self.special_care_embeds ) A__ = cosine_distance(UpperCamelCase , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images A__ = 0.0 A__ = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) A__ = torch.any(special_scores > 0 , dim=1 ) A__ = special_care * 0.01 A__ = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) A__ = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) A__ = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
69
"""simple docstring""" import sys from collections import defaultdict class a : """simple docstring""" def __init__( self: Union[str, Any] ): """simple docstring""" A__ = [] def UpperCamelCase ( self: List[str] , UpperCamelCase: int ): """simple docstring""" return self.node_position[vertex] def UpperCamelCase ( self: Union[str, Any] , UpperCamelCase: Optional[Any] , UpperCamelCase: str ): """simple docstring""" A__ = pos def UpperCamelCase ( self: Dict , UpperCamelCase: List[Any] , UpperCamelCase: Any , UpperCamelCase: str , UpperCamelCase: List[str] ): """simple docstring""" if start > size // 2 - 1: return else: if 2 * start + 2 >= size: A__ = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: A__ = 2 * start + 1 else: A__ = 2 * start + 2 if heap[smallest_child] < heap[start]: A__ , A__ = heap[smallest_child], positions[smallest_child] A__ , A__ = ( heap[start], positions[start], ) A__ , A__ = temp, tempa A__ = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , UpperCamelCase ) self.top_to_bottom(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) def UpperCamelCase ( self: Tuple , UpperCamelCase: Tuple , UpperCamelCase: Any , UpperCamelCase: Optional[Any] , UpperCamelCase: Any ): """simple docstring""" A__ = position[index] while index != 0: A__ = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: A__ = heap[parent] A__ = position[parent] self.set_position(position[parent] , UpperCamelCase ) else: A__ = val A__ = temp self.set_position(UpperCamelCase , UpperCamelCase ) break A__ = parent else: A__ = val A__ = temp self.set_position(UpperCamelCase , 0 ) def UpperCamelCase ( self: Union[str, Any] , UpperCamelCase: List[str] , UpperCamelCase: Optional[int] ): """simple docstring""" A__ = len(UpperCamelCase ) // 2 - 1 for i in range(UpperCamelCase , -1 , -1 ): self.top_to_bottom(UpperCamelCase , UpperCamelCase , len(UpperCamelCase ) , UpperCamelCase ) def UpperCamelCase ( self: Optional[int] , UpperCamelCase: str , UpperCamelCase: List[str] ): """simple docstring""" A__ = positions[0] A__ = sys.maxsize self.top_to_bottom(UpperCamelCase , 0 , len(UpperCamelCase ) , UpperCamelCase ) return temp def _snake_case ( UpperCAmelCase_ : Union[str, Any] ): A__ = Heap() A__ = [0] * len(UpperCAmelCase_ ) A__ = [-1] * len(UpperCAmelCase_ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph A__ = [] # Heap of Distance of vertices from their neighboring vertex A__ = [] for vertex in range(len(UpperCAmelCase_ ) ): distance_tv.append(sys.maxsize ) positions.append(UpperCAmelCase_ ) heap.node_position.append(UpperCAmelCase_ ) A__ = [] A__ = 1 A__ = sys.maxsize for neighbor, distance in adjacency_list[0]: A__ = 0 A__ = distance heap.heapify(UpperCAmelCase_ , UpperCAmelCase_ ) for _ in range(1 , len(UpperCAmelCase_ ) ): A__ = heap.delete_minimum(UpperCAmelCase_ , UpperCAmelCase_ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) A__ = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(UpperCAmelCase_ )] ): A__ = distance heap.bottom_to_top( UpperCAmelCase_ , heap.get_position(UpperCAmelCase_ ) , UpperCAmelCase_ , UpperCAmelCase_ ) A__ = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > SCREAMING_SNAKE_CASE_ : int = int(input('Enter number of edges: ').strip()) SCREAMING_SNAKE_CASE_ : str = defaultdict(list) for _ in range(edges_number): SCREAMING_SNAKE_CASE_ : Optional[int] = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
69
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=a ) class __snake_case ( a ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization UpperCAmelCase__ : str = field(default='''text-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) UpperCAmelCase__ : ClassVar[Features] = Features({'''text''': Value('''string''' )} ) UpperCAmelCase__ : ClassVar[Features] = Features({'''labels''': ClassLabel} ) UpperCAmelCase__ : str = "text" UpperCAmelCase__ : str = "labels" def lowerCamelCase ( self : Optional[int] , _snake_case : List[str]): """simple docstring""" if self.label_column not in features: raise ValueError(F"""Column {self.label_column} is not present in features.""") if not isinstance(features[self.label_column] , _snake_case): raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""") UpperCAmelCase_ = copy.deepcopy(self) UpperCAmelCase_ = self.label_schema.copy() UpperCAmelCase_ = features[self.label_column] UpperCAmelCase_ = label_schema return task_template @property def lowerCamelCase ( self : Dict): """simple docstring""" return { self.text_column: "text", self.label_column: "labels", }
51
from typing import Any import numpy as np def UpperCamelCase ( __lowercase : np.ndarray ): '''simple docstring''' return np.array_equal(__lowercase ,matrix.conjugate().T ) def UpperCamelCase ( __lowercase : np.ndarray ,__lowercase : np.ndarray ): '''simple docstring''' A_ : Union[str, Any] = v.conjugate().T A_ : Dict = v_star.dot(__lowercase ) assert isinstance(__lowercase ,np.ndarray ) return (v_star_dot.dot(__lowercase )) / (v_star.dot(__lowercase )) def UpperCamelCase ( ): '''simple docstring''' A_ : Dict = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) A_ : List[Any] = np.array([[1], [2], [3]] ) assert is_hermitian(__lowercase ), f'''{a} is not hermitian.''' print(rayleigh_quotient(__lowercase ,__lowercase ) ) A_ : List[str] = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(__lowercase ), f'''{a} is not hermitian.''' assert rayleigh_quotient(__lowercase ,__lowercase ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
140
0
from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def lowerCamelCase__ ( a , a , a , a , a ) -> np.ndarray: _A: Dict = cva.getAffineTransform(a , a ) return cva.warpAffine(a , a , (rows, cols) ) if __name__ == "__main__": # read original image UpperCAmelCase__ : Dict = cva.imread( str(Path(__file__).resolve().parent.parent / 'image_data' / 'lena.jpg') ) # turn image in gray scale value UpperCAmelCase__ : List[str] = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape UpperCAmelCase__ ,UpperCAmelCase__ : Any = gray_img.shape # set different points to rotate image UpperCAmelCase__ : List[str] = np.array([[50, 50], [200, 50], [50, 200]], np.floataa) UpperCAmelCase__ : int = np.array([[10, 100], [200, 50], [100, 250]], np.floataa) UpperCAmelCase__ : Optional[Any] = np.array([[50, 50], [150, 50], [120, 200]], np.floataa) UpperCAmelCase__ : Union[str, Any] = np.array([[10, 100], [80, 50], [180, 250]], np.floataa) # add all rotated images in a list UpperCAmelCase__ : Union[str, Any] = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations UpperCAmelCase__ : Optional[int] = plt.figure(1) UpperCAmelCase__ : Optional[Any] = ['Original', 'Rotation 1', 'Rotation 2', 'Rotation 3'] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, 'gray') plt.title(titles[i]) plt.axis('off') plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
301
def lowerCamelCase__ ( a = 10 ) -> str: if not isinstance(a , a ) or n < 0: raise ValueError('''Invalid input''' ) _A: int = 10**n _A: List[Any] = 2_84_33 * (pow(2 , 7_83_04_57 , a )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F"""{solution(10) = }""")
301
1
from __future__ import annotations def __lowerCAmelCase ( a__ , a__ ) -> list[int]: __a = 0 __a = len(a__ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: __a = i + 1 else: __a = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F"{two_pointer([2, 7, 1_1, 1_5], 9) = }")
6
def _A ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): UpperCamelCase :Any = len(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :str = len(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :int = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] UpperCamelCase :List[str] = True for i in range(SCREAMING_SNAKE_CASE__ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: UpperCamelCase :List[Any] = True if a[i].islower(): UpperCamelCase :List[Any] = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
259
0
"""simple docstring""" import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() a_ = logging.get_logger('transformers.models.speecht5') def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Dict: hf_model.apply_weight_norm() a__: int = checkpoint['input_conv.weight_g'] a__: Optional[Any] = checkpoint['input_conv.weight_v'] a__: str = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): a__: Dict = checkpoint[F'upsamples.{i}.1.weight_g'] a__: List[str] = checkpoint[F'upsamples.{i}.1.weight_v'] a__: Union[str, Any] = checkpoint[F'upsamples.{i}.1.bias'] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): a__: List[Any] = checkpoint[F'blocks.{i}.convs1.{j}.1.weight_g'] a__: Tuple = checkpoint[F'blocks.{i}.convs1.{j}.1.weight_v'] a__: Optional[Any] = checkpoint[F'blocks.{i}.convs1.{j}.1.bias'] a__: Optional[Any] = checkpoint[F'blocks.{i}.convs2.{j}.1.weight_g'] a__: Optional[Any] = checkpoint[F'blocks.{i}.convs2.{j}.1.weight_v'] a__: Optional[Any] = checkpoint[F'blocks.{i}.convs2.{j}.1.bias'] a__: Any = checkpoint['output_conv.1.weight_g'] a__: Tuple = checkpoint['output_conv.1.weight_v'] a__: Optional[int] = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , ) ->Dict: if config_path is not None: a__: Dict = SpeechTaHifiGanConfig.from_pretrained(a__ ) else: a__: Union[str, Any] = SpeechTaHifiGanConfig() a__: Tuple = SpeechTaHifiGan(a__ ) a__: int = torch.load(a__ ) load_weights(orig_checkpoint['model']['generator'] , a__ , a__ ) a__: Any = np.load(a__ ) a__: int = stats[0].reshape(-1 ) a__: Dict = stats[1].reshape(-1 ) a__: List[str] = torch.from_numpy(a__ ).float() a__: Optional[Any] = torch.from_numpy(a__ ).float() model.save_pretrained(a__ ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(a__ ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) a_ = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
369
"""simple docstring""" import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class __snake_case : def __init__( self , lowercase , lowercase=13 , lowercase=10 , lowercase=3 , lowercase=2 , lowercase=2 , lowercase=2 , lowercase=True , lowercase=True , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=10 , lowercase=0.02 , lowercase=0.9 , lowercase=None , ) -> Optional[Any]: '''simple docstring''' a__: int = parent a__: int = batch_size a__: int = image_size a__: Optional[int] = num_channels a__: List[str] = patch_size a__: List[str] = tubelet_size a__: Any = num_frames a__: Any = is_training a__: Dict = use_labels a__: Optional[Any] = hidden_size a__: Optional[int] = num_hidden_layers a__: Optional[Any] = num_attention_heads a__: Optional[Any] = intermediate_size a__: Any = hidden_act a__: Dict = hidden_dropout_prob a__: Union[str, Any] = attention_probs_dropout_prob a__: List[Any] = type_sequence_label_size a__: Optional[Any] = initializer_range a__: List[str] = mask_ratio a__: Union[str, Any] = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame a__: Dict = (image_size // patch_size) ** 2 a__: Tuple = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos a__: Tuple = int(mask_ratio * self.seq_length) def lowerCamelCase_ ( self) -> Optional[Any]: '''simple docstring''' a__: List[Any] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size]) a__: Any = None if self.use_labels: a__: Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size) a__: Optional[int] = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self) -> Union[str, Any]: '''simple docstring''' return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase , initializer_range=self.initializer_range , ) def lowerCamelCase_ ( self , lowercase , lowercase , lowercase) -> str: '''simple docstring''' a__: Any = VideoMAEModel(config=lowercase) model.to(lowercase) model.eval() a__: Optional[Any] = model(lowercase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def lowerCamelCase_ ( self , lowercase , lowercase , lowercase) -> int: '''simple docstring''' a__: List[str] = VideoMAEForPreTraining(lowercase) model.to(lowercase) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch a__: int = torch.ones((self.num_masks,)) a__: Any = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0))]) a__: int = mask.expand(self.batch_size , -1).bool() a__: Union[str, Any] = model(lowercase , lowercase) # model only returns predictions for masked patches a__: List[str] = mask.sum().item() a__: str = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels)) def lowerCamelCase_ ( self) -> int: '''simple docstring''' a__: Dict = self.prepare_config_and_inputs() a__ , a__ , a__: Dict = config_and_inputs a__: Any = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __snake_case ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): a__ = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) a__ = ( {"""feature-extraction""": VideoMAEModel, """video-classification""": VideoMAEForVideoClassification} if is_torch_available() else {} ) a__ = False a__ = False a__ = False a__ = False def lowerCamelCase_ ( self) -> Tuple: '''simple docstring''' a__: List[str] = VideoMAEModelTester(self) a__: str = ConfigTester(self , config_class=lowercase , has_text_modality=lowercase , hidden_size=37) def lowerCamelCase_ ( self , lowercase , lowercase , lowercase=False) -> Any: '''simple docstring''' a__: Optional[int] = copy.deepcopy(lowercase) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch a__: List[Any] = torch.ones((self.model_tester.num_masks,)) a__: List[Any] = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0))]) a__: Optional[int] = mask.expand(self.model_tester.batch_size , -1).bool() a__: Union[str, Any] = bool_masked_pos.to(lowercase) if return_labels: if model_class in [ *get_values(lowercase), ]: a__: str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase) return inputs_dict def lowerCamelCase_ ( self) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='VideoMAE does not use inputs_embeds') def lowerCamelCase_ ( self) -> Optional[Any]: '''simple docstring''' pass def lowerCamelCase_ ( self) -> int: '''simple docstring''' a__ , a__: Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__: Union[str, Any] = model_class(lowercase) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) a__: str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase , nn.Linear)) def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' a__ , a__: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__: Any = model_class(lowercase) a__: int = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__: Optional[Any] = [*signature.parameters.keys()] a__: Tuple = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase) def lowerCamelCase_ ( self) -> Union[str, Any]: '''simple docstring''' a__: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase) def lowerCamelCase_ ( self) -> List[str]: '''simple docstring''' a__: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase) @slow def lowerCamelCase_ ( self) -> Union[str, Any]: '''simple docstring''' for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__: int = VideoMAEModel.from_pretrained(lowercase) self.assertIsNotNone(lowercase) def lowerCamelCase_ ( self) -> Union[str, Any]: '''simple docstring''' if not self.has_attentions: pass else: a__ , a__: Any = self.model_tester.prepare_config_and_inputs_for_common() a__: str = True for model_class in self.all_model_classes: a__: Optional[int] = self.model_tester.seq_length - self.model_tester.num_masks a__: List[str] = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) a__: Tuple = True a__: str = False a__: Dict = True a__: List[Any] = model_class(lowercase) model.to(lowercase) model.eval() with torch.no_grad(): a__: int = model(**self._prepare_for_class(lowercase , lowercase)) a__: Any = outputs.attentions self.assertEqual(len(lowercase) , self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] a__: Tuple = True a__: List[Any] = model_class(lowercase) model.to(lowercase) model.eval() with torch.no_grad(): a__: str = model(**self._prepare_for_class(lowercase , lowercase)) a__: int = outputs.attentions self.assertEqual(len(lowercase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) a__: Optional[Any] = len(lowercase) # Check attention is always last and order is fine a__: str = True a__: Dict = True a__: Tuple = model_class(lowercase) model.to(lowercase) model.eval() with torch.no_grad(): a__: Optional[Any] = model(**self._prepare_for_class(lowercase , lowercase)) self.assertEqual(out_len + 1 , len(lowercase)) a__: int = outputs.attentions self.assertEqual(len(lowercase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' def check_hidden_states_output(lowercase , lowercase , lowercase): a__: Union[str, Any] = model_class(lowercase) model.to(lowercase) model.eval() with torch.no_grad(): a__: Tuple = model(**self._prepare_for_class(lowercase , lowercase)) a__: Dict = outputs.hidden_states a__: Union[str, Any] = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowercase) , lowercase) a__: Union[str, Any] = self.model_tester.seq_length - self.model_tester.num_masks a__: Optional[Any] = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , ) a__ , a__: List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__: Dict = True check_hidden_states_output(lowercase , lowercase , lowercase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a__: List[Any] = True check_hidden_states_output(lowercase , lowercase , lowercase) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def lowerCamelCase_ ( self) -> int: '''simple docstring''' pass def __a ( ) ->List[Any]: a__: List[str] = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' ) a__: Dict = np.load(_SCREAMING_SNAKE_CASE ) return list(_SCREAMING_SNAKE_CASE ) @require_torch @require_vision class __snake_case ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self) -> str: '''simple docstring''' return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5]) if is_vision_available() else None ) @slow def lowerCamelCase_ ( self) -> Union[str, Any]: '''simple docstring''' a__: Dict = VideoMAEForVideoClassification.from_pretrained('MCG-NJU/videomae-base-finetuned-kinetics').to( lowercase) a__: Dict = self.default_image_processor a__: str = prepare_video() a__: Tuple = image_processor(lowercase , return_tensors='pt').to(lowercase) # forward pass with torch.no_grad(): a__: List[Any] = model(**lowercase) # verify the logits a__: str = torch.Size((1, 4_00)) self.assertEqual(outputs.logits.shape , lowercase) a__: Optional[Any] = torch.tensor([0.3669, -0.0688, -0.2421]).to(lowercase) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase , atol=1e-4)) @slow def lowerCamelCase_ ( self) -> Dict: '''simple docstring''' a__: Tuple = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short').to(lowercase) a__: Optional[Any] = self.default_image_processor a__: List[Any] = prepare_video() a__: Union[str, Any] = image_processor(lowercase , return_tensors='pt').to(lowercase) # add boolean mask, indicating which patches to mask a__: Optional[Any] = hf_hub_download(repo_id='hf-internal-testing/bool-masked-pos' , filename='bool_masked_pos.pt') a__: Any = torch.load(lowercase) # forward pass with torch.no_grad(): a__: Any = model(**lowercase) # verify the logits a__: Union[str, Any] = torch.Size([1, 14_08, 15_36]) a__: Union[str, Any] = torch.tensor( [[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] , device=lowercase) self.assertEqual(outputs.logits.shape , lowercase) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , lowercase , atol=1e-4)) # verify the loss (`config.norm_pix_loss` = `True`) a__: Optional[int] = torch.tensor([0.5142] , device=lowercase) self.assertTrue(torch.allclose(outputs.loss , lowercase , atol=1e-4)) # verify the loss (`config.norm_pix_loss` = `False`) a__: int = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' , norm_pix_loss=lowercase).to( lowercase) with torch.no_grad(): a__: Union[str, Any] = model(**lowercase) a__: Optional[int] = torch.tensor(torch.tensor([0.6469]) , device=lowercase) self.assertTrue(torch.allclose(outputs.loss , lowercase , atol=1e-4))
203
0
"""simple docstring""" def _A (__a = 1_00 ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0 SCREAMING_SNAKE_CASE_ : Optional[int] = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(f'''{solution() = }''')
91
'''simple docstring''' lowerCAmelCase__ = '''Input must be a string of 8 numbers plus letter''' lowerCAmelCase__ = '''TRWAGMYFPDXBNJZSQVHLCKE''' def _A ( A__ ): """simple docstring""" if not isinstance(A__ , A__ ): __lowercase = F"Expected string as input, found {type(A__ ).__name__}" raise TypeError(A__ ) __lowercase = spanish_id.replace('''-''' , '''''' ).upper() if len(A__ ) != 9: raise ValueError(A__ ) try: __lowercase = int(spanish_id_clean[0:8] ) __lowercase = spanish_id_clean[8] except ValueError as ex: raise ValueError(A__ ) from ex if letter.isdigit(): raise ValueError(A__ ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
104
0
'''simple docstring''' import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any=13 , UpperCAmelCase_ : Optional[int]=32 , UpperCAmelCase_ : Optional[Any]=2 , UpperCAmelCase_ : Union[str, Any]=3 , UpperCAmelCase_ : Optional[int]=16 , UpperCAmelCase_ : Dict=[1, 2, 1] , UpperCAmelCase_ : str=[2, 2, 4] , UpperCAmelCase_ : Optional[int]=2 , UpperCAmelCase_ : List[Any]=2.0 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : List[str]=0.0 , UpperCAmelCase_ : Union[str, Any]=0.0 , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : List[str]="gelu" , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Optional[Any]=1e-5 , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : List[str]=10 , UpperCAmelCase_ : List[Any]=8 , ): """simple docstring""" __UpperCAmelCase : Optional[int] = parent __UpperCAmelCase : Union[str, Any] = batch_size __UpperCAmelCase : Dict = image_size __UpperCAmelCase : int = patch_size __UpperCAmelCase : int = num_channels __UpperCAmelCase : int = embed_dim __UpperCAmelCase : Dict = depths __UpperCAmelCase : int = num_heads __UpperCAmelCase : List[str] = window_size __UpperCAmelCase : List[str] = mlp_ratio __UpperCAmelCase : List[Any] = qkv_bias __UpperCAmelCase : List[Any] = hidden_dropout_prob __UpperCAmelCase : Dict = attention_probs_dropout_prob __UpperCAmelCase : Optional[int] = drop_path_rate __UpperCAmelCase : int = hidden_act __UpperCAmelCase : Optional[Any] = use_absolute_embeddings __UpperCAmelCase : List[str] = patch_norm __UpperCAmelCase : Optional[int] = layer_norm_eps __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : str = is_training __UpperCAmelCase : Optional[int] = scope __UpperCAmelCase : int = use_labels __UpperCAmelCase : Union[str, Any] = type_sequence_label_size __UpperCAmelCase : int = encoder_stride def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" __UpperCAmelCase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : List[str] = None if self.use_labels: __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : Dict = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def lowerCamelCase_ ( self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any] ): """simple docstring""" __UpperCAmelCase : List[str] = SwinvaModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() __UpperCAmelCase : Union[str, Any] = model(UpperCAmelCase_ ) __UpperCAmelCase : Dict = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __UpperCAmelCase : str = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def lowerCamelCase_ ( self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] ): """simple docstring""" __UpperCAmelCase : Dict = SwinvaForMaskedImageModeling(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() __UpperCAmelCase : Tuple = model(UpperCAmelCase_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __UpperCAmelCase : Dict = 1 __UpperCAmelCase : List[str] = SwinvaForMaskedImageModeling(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() __UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCAmelCase : Dict = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowerCamelCase_ ( self : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = self.type_sequence_label_size __UpperCAmelCase : Dict = SwinvaForImageClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() __UpperCAmelCase : Dict = model(UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" __UpperCAmelCase : Dict = self.prepare_config_and_inputs() __UpperCAmelCase : List[str] = config_and_inputs __UpperCAmelCase : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( snake_case__ ,snake_case__ ,unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) SCREAMING_SNAKE_CASE = ( {'''feature-extraction''': SwinvaModel, '''image-classification''': SwinvaForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" __UpperCAmelCase : List[Any] = SwinvaModelTester(self ) __UpperCAmelCase : Union[str, Any] = ConfigTester(self , config_class=UpperCAmelCase_ , embed_dim=37 ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self : Tuple ): """simple docstring""" __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) @unittest.skip(reason="Got `CUDA error: misaligned address` with PyTorch 2.0.0." ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" pass @unittest.skip(reason="Swinv2 does not use inputs_embeds" ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" pass def lowerCamelCase_ ( self : Any ): """simple docstring""" __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Optional[Any] = model_class(UpperCAmelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCAmelCase : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase_ , nn.Linear ) ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : str = model_class(UpperCAmelCase_ ) __UpperCAmelCase : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : Dict = [*signature.parameters.keys()] __UpperCAmelCase : int = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCAmelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[int] = True for model_class in self.all_model_classes: __UpperCAmelCase : Optional[Any] = True __UpperCAmelCase : Any = False __UpperCAmelCase : Tuple = True __UpperCAmelCase : str = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() with torch.no_grad(): __UpperCAmelCase : Dict = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) ) __UpperCAmelCase : Union[str, Any] = outputs.attentions __UpperCAmelCase : Optional[int] = len(self.model_tester.depths ) self.assertEqual(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __UpperCAmelCase : Tuple = True __UpperCAmelCase : List[str] = config.window_size**2 __UpperCAmelCase : Union[str, Any] = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() with torch.no_grad(): __UpperCAmelCase : Optional[Any] = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) ) __UpperCAmelCase : Dict = outputs.attentions self.assertEqual(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) __UpperCAmelCase : List[str] = len(UpperCAmelCase_ ) # Check attention is always last and order is fine __UpperCAmelCase : Tuple = True __UpperCAmelCase : Dict = True __UpperCAmelCase : Dict = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() with torch.no_grad(): __UpperCAmelCase : Optional[int] = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) ) if hasattr(self.model_tester , "num_hidden_states_types" ): __UpperCAmelCase : int = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states __UpperCAmelCase : Optional[Any] = 2 self.assertEqual(out_len + added_hidden_states , len(UpperCAmelCase_ ) ) __UpperCAmelCase : List[str] = outputs.attentions self.assertEqual(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def lowerCamelCase_ ( self : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int ): """simple docstring""" __UpperCAmelCase : Optional[int] = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() with torch.no_grad(): __UpperCAmelCase : Optional[int] = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) ) __UpperCAmelCase : Dict = outputs.hidden_states __UpperCAmelCase : Dict = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) # Swinv2 has a different seq_length __UpperCAmelCase : str = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __UpperCAmelCase : Dict = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __UpperCAmelCase : str = outputs.reshaped_hidden_states self.assertEqual(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) __UpperCAmelCase : int = reshaped_hidden_states[0].shape __UpperCAmelCase : Dict = ( reshaped_hidden_states[0].view(UpperCAmelCase_ , UpperCAmelCase_ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Any = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __UpperCAmelCase : List[str] = True self.check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Union[str, Any] = True self.check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : str = 3 __UpperCAmelCase : Optional[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __UpperCAmelCase : int = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __UpperCAmelCase : List[str] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __UpperCAmelCase : str = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __UpperCAmelCase : Dict = True self.check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : List[Any] = True self.check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , (padded_height, padded_width) ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase_ ) def lowerCamelCase_ ( self : str ): """simple docstring""" __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_ ) @slow def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : int = SwinvaModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Any = _config_zero_init(UpperCAmelCase_ ) for model_class in self.all_model_classes: __UpperCAmelCase : str = model_class(config=UpperCAmelCase_ ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) @require_vision @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" return ( AutoImageProcessor.from_pretrained("microsoft/swinv2-tiny-patch4-window8-256" ) if is_vision_available() else None ) @slow def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = SwinvaForImageClassification.from_pretrained("microsoft/swinv2-tiny-patch4-window8-256" ).to( UpperCAmelCase_ ) __UpperCAmelCase : List[str] = self.default_image_processor __UpperCAmelCase : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) __UpperCAmelCase : Any = image_processor(images=UpperCAmelCase_ , return_tensors="pt" ).to(UpperCAmelCase_ ) # forward pass with torch.no_grad(): __UpperCAmelCase : Dict = model(**UpperCAmelCase_ ) # verify the logits __UpperCAmelCase : Any = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase_ ) __UpperCAmelCase : str = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(UpperCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1e-4 ) )
354
'''simple docstring''' from __future__ import annotations import collections import pprint from pathlib import Path def __UpperCamelCase ( _UpperCAmelCase ): return "".join(sorted(_UpperCAmelCase ) ) def __UpperCamelCase ( _UpperCAmelCase ): return word_by_signature[signature(_UpperCAmelCase )] lowerCAmelCase__ : str = Path(__file__).parent.joinpath("words.txt").read_text(encoding="utf-8") lowerCAmelCase__ : Optional[int] = sorted({word.strip().lower() for word in data.splitlines()}) lowerCAmelCase__ : Tuple = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": lowerCAmelCase__ : int = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open("anagrams.txt", "w") as file: file.write("all_anagrams = \n ") file.write(pprint.pformat(all_anagrams))
37
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _A = { '''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ['''BloomTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ '''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BloomForCausalLM''', '''BloomModel''', '''BloomPreTrainedModel''', '''BloomForSequenceClassification''', '''BloomForTokenClassification''', '''BloomForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
122
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class lowercase_ ( unittest.TestCase ): def __init__( self , __UpperCamelCase , __UpperCamelCase=7 , __UpperCamelCase=3 , __UpperCamelCase=3_0 , __UpperCamelCase=4_0_0 , __UpperCamelCase=True , __UpperCamelCase=None , __UpperCamelCase=True , __UpperCamelCase=[0.5, 0.5, 0.5] , __UpperCamelCase=[0.5, 0.5, 0.5] , __UpperCamelCase=True , __UpperCamelCase=1 / 2_5_5 , __UpperCamelCase=True , ): """simple docstring""" UpperCamelCase_ = size if size is not None else {"""shortest_edge""": 1_8, """longest_edge""": 1_3_3_3} UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = num_channels UpperCamelCase_ = min_resolution UpperCamelCase_ = max_resolution UpperCamelCase_ = do_resize UpperCamelCase_ = size UpperCamelCase_ = do_normalize UpperCamelCase_ = image_mean UpperCamelCase_ = image_std UpperCamelCase_ = do_rescale UpperCamelCase_ = rescale_factor UpperCamelCase_ = do_pad def lowerCamelCase_ ( self ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase=False ): """simple docstring""" if not batched: UpperCamelCase_ = image_inputs[0] if isinstance(__UpperCamelCase , Image.Image ): UpperCamelCase_ , UpperCamelCase_ = image.size else: UpperCamelCase_ , UpperCamelCase_ = image.shape[1], image.shape[2] if w < h: UpperCamelCase_ = int(self.size["""shortest_edge"""] * h / w ) UpperCamelCase_ = self.size["""shortest_edge"""] elif w > h: UpperCamelCase_ = self.size["""shortest_edge"""] UpperCamelCase_ = int(self.size["""shortest_edge"""] * w / h ) else: UpperCamelCase_ = self.size["""shortest_edge"""] UpperCamelCase_ = self.size["""shortest_edge"""] else: UpperCamelCase_ = [] for image in image_inputs: UpperCamelCase_ , UpperCamelCase_ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCamelCase_ = max(__UpperCamelCase , key=lambda __UpperCamelCase : item[0] )[0] UpperCamelCase_ = max(__UpperCamelCase , key=lambda __UpperCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowercase_ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): A__ : str = YolosImageProcessor if is_vision_available() else None def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = YolosImageProcessingTester(self ) @property def lowerCamelCase_ ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """image_std""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """size""" ) ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 1_8, """longest_edge""": 1_3_3_3} ) self.assertEqual(image_processor.do_pad , __UpperCamelCase ) UpperCamelCase_ = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=__UpperCamelCase ) self.assertEqual(image_processor.size , {"""shortest_edge""": 4_2, """longest_edge""": 8_4} ) self.assertEqual(image_processor.do_pad , __UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" pass def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , Image.Image ) # Test not batched input UpperCamelCase_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCamelCase_ , UpperCamelCase_ = self.image_processor_tester.get_expected_values(__UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase_ , UpperCamelCase_ = self.image_processor_tester.get_expected_values(__UpperCamelCase , batched=__UpperCamelCase ) UpperCamelCase_ = image_processing(__UpperCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , numpify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , np.ndarray ) # Test not batched input UpperCamelCase_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCamelCase_ , UpperCamelCase_ = self.image_processor_tester.get_expected_values(__UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase_ = image_processing(__UpperCamelCase , return_tensors="""pt""" ).pixel_values UpperCamelCase_ , UpperCamelCase_ = self.image_processor_tester.get_expected_values(__UpperCamelCase , batched=__UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , torchify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , torch.Tensor ) # Test not batched input UpperCamelCase_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCamelCase_ , UpperCamelCase_ = self.image_processor_tester.get_expected_values(__UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase_ = image_processing(__UpperCamelCase , return_tensors="""pt""" ).pixel_values UpperCamelCase_ , UpperCamelCase_ = self.image_processor_tester.get_expected_values(__UpperCamelCase , batched=__UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) UpperCamelCase_ = self.image_processing_class(do_resize=__UpperCamelCase , do_normalize=__UpperCamelCase , do_rescale=__UpperCamelCase ) # create random PyTorch tensors UpperCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , torchify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors UpperCamelCase_ = image_processing_a.pad(__UpperCamelCase , return_tensors="""pt""" ) UpperCamelCase_ = image_processing_a(__UpperCamelCase , return_tensors="""pt""" ) self.assertTrue( torch.allclose(encoded_images_with_method["""pixel_values"""] , encoded_images["""pixel_values"""] , atol=1e-4 ) ) @slow def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: UpperCamelCase_ = json.loads(f.read() ) UpperCamelCase_ = {"""image_id""": 3_9_7_6_9, """annotations""": target} # encode them UpperCamelCase_ = YolosImageProcessor.from_pretrained("""hustvl/yolos-small""" ) UpperCamelCase_ = image_processing(images=__UpperCamelCase , annotations=__UpperCamelCase , return_tensors="""pt""" ) # verify pixel values UpperCamelCase_ = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["""pixel_values"""].shape , __UpperCamelCase ) UpperCamelCase_ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __UpperCamelCase , atol=1e-4 ) ) # verify area UpperCamelCase_ = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __UpperCamelCase ) ) # verify boxes UpperCamelCase_ = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __UpperCamelCase ) UpperCamelCase_ = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __UpperCamelCase , atol=1e-3 ) ) # verify image_id UpperCamelCase_ = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __UpperCamelCase ) ) # verify is_crowd UpperCamelCase_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __UpperCamelCase ) ) # verify class_labels UpperCamelCase_ = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __UpperCamelCase ) ) # verify orig_size UpperCamelCase_ = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __UpperCamelCase ) ) # verify size UpperCamelCase_ = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __UpperCamelCase ) ) @slow def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: UpperCamelCase_ = json.loads(f.read() ) UpperCamelCase_ = {"""file_name""": """000000039769.png""", """image_id""": 3_9_7_6_9, """segments_info""": target} UpperCamelCase_ = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them UpperCamelCase_ = YolosImageProcessor(format="""coco_panoptic""" ) UpperCamelCase_ = image_processing(images=__UpperCamelCase , annotations=__UpperCamelCase , masks_path=__UpperCamelCase , return_tensors="""pt""" ) # verify pixel values UpperCamelCase_ = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["""pixel_values"""].shape , __UpperCamelCase ) UpperCamelCase_ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __UpperCamelCase , atol=1e-4 ) ) # verify area UpperCamelCase_ = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __UpperCamelCase ) ) # verify boxes UpperCamelCase_ = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __UpperCamelCase ) UpperCamelCase_ = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __UpperCamelCase , atol=1e-3 ) ) # verify image_id UpperCamelCase_ = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __UpperCamelCase ) ) # verify is_crowd UpperCamelCase_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __UpperCamelCase ) ) # verify class_labels UpperCamelCase_ = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __UpperCamelCase ) ) # verify masks UpperCamelCase_ = 8_2_2_8_7_3 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , __UpperCamelCase ) # verify orig_size UpperCamelCase_ = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __UpperCamelCase ) ) # verify size UpperCamelCase_ = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __UpperCamelCase ) )
122
1
def __magic_name__ ( __a : str , __a : bool = False ): '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): UpperCamelCase__ = f"Expected string as input, found {type(SCREAMING_SNAKE_CASE__ )}" raise ValueError(SCREAMING_SNAKE_CASE__ ) if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): UpperCamelCase__ = f"Expected boolean as use_pascal parameter, found {type(SCREAMING_SNAKE_CASE__ )}" raise ValueError(SCREAMING_SNAKE_CASE__ ) UpperCamelCase__ = input_str.split("""_""" ) UpperCamelCase__ = 0 if use_pascal else 1 UpperCamelCase__ = words[start_index:] UpperCamelCase__ = [word[0].upper() + word[1:] for word in words_to_capitalize] UpperCamelCase__ = """""" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
367
def __magic_name__ ( __a : int , __a : int ): '''simple docstring''' while a != 0: UpperCamelCase__ , UpperCamelCase__ = b % a, a return b def __magic_name__ ( __a : int , __a : int ): '''simple docstring''' if gcd(__a , __a ) != 1: UpperCamelCase__ = f"mod inverse of {a!r} and {m!r} does not exist" raise ValueError(__a ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 1, 0, a UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 0, 1, m while va != 0: UpperCamelCase__ = ua // va UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
178
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class A_ (metaclass=lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = ["""transformers""", """torch""", """note_seq"""] def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(self , ["transformers", "torch", "note_seq"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["transformers", "torch", "note_seq"] ) @classmethod def UpperCamelCase__ ( cls , *lowercase_ , **lowercase_ ): """simple docstring""" requires_backends(cls , ["transformers", "torch", "note_seq"] )
61
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __init__( self,__lowerCamelCase,__lowerCamelCase=3,__lowerCamelCase=32,__lowerCamelCase=3,__lowerCamelCase=10,__lowerCamelCase=[10, 20, 30, 40],__lowerCamelCase=[1, 1, 2, 1],__lowerCamelCase=True,__lowerCamelCase=True,__lowerCamelCase="relu",__lowerCamelCase=3,__lowerCamelCase=None,): A__ = parent A__ = batch_size A__ = image_size A__ = num_channels A__ = embeddings_size A__ = hidden_sizes A__ = depths A__ = is_training A__ = use_labels A__ = hidden_act A__ = num_labels A__ = scope A__ = len(__lowerCamelCase ) def UpperCamelCase ( self ): A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A__ = self.get_config() return config, pixel_values def UpperCamelCase ( self ): return RegNetConfig( num_channels=self.num_channels,embeddings_size=self.embeddings_size,hidden_sizes=self.hidden_sizes,depths=self.depths,hidden_act=self.hidden_act,num_labels=self.num_labels,image_size=self.image_size,) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase ): A__ = FlaxRegNetModel(config=__lowerCamelCase ) A__ = model(__lowerCamelCase ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32),) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase ): A__ = self.num_labels A__ = FlaxRegNetForImageClassification(config=__lowerCamelCase ) A__ = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_labels) ) def UpperCamelCase ( self ): A__ = self.prepare_config_and_inputs() A__ , A__ = config_and_inputs A__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def UpperCamelCase ( self ): A__ = FlaxRegNetModelTester(self ) A__ = ConfigTester(self,config_class=__lowerCamelCase,has_text_modality=__lowerCamelCase ) def UpperCamelCase ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase ( self ): return def UpperCamelCase ( self ): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def UpperCamelCase ( self ): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def UpperCamelCase ( self ): pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def UpperCamelCase ( self ): pass def UpperCamelCase ( self ): A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(__lowerCamelCase ) A__ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1],__lowerCamelCase ) def UpperCamelCase ( self ): def check_hidden_states_output(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ): A__ = model_class(__lowerCamelCase ) A__ = model(**self._prepare_for_class(__lowerCamelCase,__lowerCamelCase ) ) A__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A__ = self.model_tester.num_stages self.assertEqual(len(__lowerCamelCase ),expected_num_stages + 1 ) A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = True check_hidden_states_output(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ = True check_hidden_states_output(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ) def UpperCamelCase ( self ): A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): A__ = self._prepare_for_class(__lowerCamelCase,__lowerCamelCase ) A__ = model_class(__lowerCamelCase ) @jax.jit def model_jitted(__lowerCamelCase,**__lowerCamelCase ): return model(pixel_values=__lowerCamelCase,**__lowerCamelCase ) with self.subTest('''JIT Enabled''' ): A__ = model_jitted(**__lowerCamelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): A__ = model_jitted(**__lowerCamelCase ).to_tuple() self.assertEqual(len(__lowerCamelCase ),len(__lowerCamelCase ) ) for jitted_output, output in zip(__lowerCamelCase,__lowerCamelCase ): self.assertEqual(jitted_output.shape,output.shape ) def UpperCamelCase__( )->Optional[int]: A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @cached_property def UpperCamelCase ( self ): return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def UpperCamelCase ( self ): A__ = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=__lowerCamelCase,return_tensors='''np''' ) A__ = model(**__lowerCamelCase ) # verify the logits A__ = (1, 1000) self.assertEqual(outputs.logits.shape,__lowerCamelCase ) A__ = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3],__lowerCamelCase,atol=1E-4 ) )
193
0
a__ = '''ABCDEFGHIJKLMNOPQRSTUVWXYZ''' def __UpperCAmelCase ( ) -> None: """simple docstring""" _a : str = input('''Enter message: ''' ) _a : int = input('''Enter key [alphanumeric]: ''' ) _a : List[Any] = input('''Encrypt/Decrypt [e/d]: ''' ) if mode.lower().startswith('''e''' ): _a : List[str] = '''encrypt''' _a : Optional[Any] = encrypt_message(__a ,__a ) elif mode.lower().startswith('''d''' ): _a : Dict = '''decrypt''' _a : Tuple = decrypt_message(__a ,__a ) print(F"""\n{mode.title()}ed message:""" ) print(__a ) def __UpperCAmelCase ( __a : str ,__a : str ) -> str: """simple docstring""" return translate_message(__a ,__a ,'''encrypt''' ) def __UpperCAmelCase ( __a : str ,__a : str ) -> str: """simple docstring""" return translate_message(__a ,__a ,'''decrypt''' ) def __UpperCAmelCase ( __a : str ,__a : str ,__a : str ) -> str: """simple docstring""" _a : Dict = [] _a : Optional[Any] = 0 _a : Any = key.upper() for symbol in message: _a : List[str] = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(__a ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(__a ): _a : int = 0 else: translated.append(__a ) return "".join(__a ) if __name__ == "__main__": main()
15
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset a__ = random.Random() def __UpperCAmelCase ( __a : Tuple ,__a : str=1.0 ,__a : Optional[int]=None ,__a : List[Any]=None ) -> Any: """simple docstring""" if rng is None: _a : Dict = global_rng _a : Optional[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self , _a , _a=7 , _a=4_0_0 , _a=2_0_0_0 , _a=2_0_4_8 , _a=1_2_8 , _a=1 , _a=5_1_2 , _a=3_0 , _a=4_4_1_0_0 , ) -> List[Any]: _a : Optional[Any] = parent _a : str = batch_size _a : List[str] = min_seq_length _a : str = max_seq_length _a : Dict = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _a : List[Any] = spectrogram_length _a : List[str] = feature_size _a : List[Any] = num_audio_channels _a : Tuple = hop_length _a : Optional[int] = chunk_length _a : int = sampling_rate def __lowercase ( self ) -> Union[str, Any]: return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def __lowercase ( self , _a=False , _a=False ) -> List[Any]: def _flatten(_a ): return list(itertools.chain(*_a ) ) if equal_length: _a : List[Any] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _a : List[Any] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _a : str = [np.asarray(_a ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = TvltFeatureExtractor def __lowercase ( self ) -> Dict: _a : List[str] = TvltFeatureExtractionTester(self ) def __lowercase ( self ) -> Any: _a : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_a , '''spectrogram_length''' ) ) self.assertTrue(hasattr(_a , '''feature_size''' ) ) self.assertTrue(hasattr(_a , '''num_audio_channels''' ) ) self.assertTrue(hasattr(_a , '''hop_length''' ) ) self.assertTrue(hasattr(_a , '''chunk_length''' ) ) self.assertTrue(hasattr(_a , '''sampling_rate''' ) ) def __lowercase ( self ) -> Optional[int]: _a : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _a : int = feat_extract_first.save_pretrained(_a )[0] check_json_file_has_correct_format(_a ) _a : Dict = self.feature_extraction_class.from_pretrained(_a ) _a : List[Any] = feat_extract_first.to_dict() _a : Union[str, Any] = feat_extract_second.to_dict() _a : Any = dict_first.pop('''mel_filters''' ) _a : int = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def __lowercase ( self ) -> Optional[int]: _a : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _a : Optional[int] = os.path.join(_a , '''feat_extract.json''' ) feat_extract_first.to_json_file(_a ) _a : List[str] = self.feature_extraction_class.from_json_file(_a ) _a : List[Any] = feat_extract_first.to_dict() _a : Dict = feat_extract_second.to_dict() _a : str = dict_first.pop('''mel_filters''' ) _a : str = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def __lowercase ( self ) -> Union[str, Any]: # Initialize feature_extractor _a : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 _a : Any = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _a : List[str] = [np.asarray(_a ) for speech_input in speech_inputs] # Test not batched input _a : Tuple = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched _a : Dict = feature_extractor(_a , return_tensors='''np''' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking _a : Union[str, Any] = feature_extractor( _a , return_tensors='''np''' , sampling_rate=4_4_1_0_0 , mask_audio=_a ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. _a : Optional[Any] = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] _a : int = np.asarray(_a ) _a : Tuple = feature_extractor(_a , return_tensors='''np''' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def __lowercase ( self , _a ) -> Optional[Any]: _a : List[Any] = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech _a : Optional[int] = ds.sort('''id''' ).select(range(_a ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def __lowercase ( self ) -> int: _a : Union[str, Any] = self._load_datasamples(1 ) _a : int = TvltFeatureExtractor() _a : Union[str, Any] = feature_extractor(_a , return_tensors='''pt''' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 1_9_2, 1_2_8) ) _a : Union[str, Any] = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , _a , atol=1e-4 ) )
15
1
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class A: '''simple docstring''' UpperCamelCase = LEDConfig UpperCamelCase = {} UpperCamelCase = '''gelu''' def __init__( self : str , A_ : Union[str, Any] , A_ : str=13 , A_ : List[str]=7 , A_ : List[Any]=True , A_ : Tuple=False , A_ : str=99 , A_ : Tuple=32 , A_ : Dict=2 , A_ : List[Any]=4 , A_ : Tuple=37 , A_ : List[str]=0.1 , A_ : Any=0.1 , A_ : Union[str, Any]=20 , A_ : List[Any]=2 , A_ : Tuple=1 , A_ : Optional[int]=0 , A_ : List[str]=4 , ) -> str: """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = seq_length lowerCamelCase_ = is_training lowerCamelCase_ = use_labels lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = eos_token_id lowerCamelCase_ = pad_token_id lowerCamelCase_ = bos_token_id lowerCamelCase_ = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after lowerCamelCase_ = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests lowerCamelCase_ = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def a__ ( self : List[str] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowerCamelCase_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowerCamelCase_ = tf.concat([input_ids, eos_tensor] , axis=1 ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) lowerCamelCase_ = prepare_led_inputs_dict(A_ , A_ , A_ ) lowerCamelCase_ = tf.concat( [tf.zeros_like(A_ )[:, :-1], tf.ones_like(A_ )[:, -1:]] , axis=-1 , ) lowerCamelCase_ = global_attention_mask return config, inputs_dict def a__ ( self : Tuple , A_ : Optional[int] , A_ : Any ) -> Any: """simple docstring""" lowerCamelCase_ = TFLEDModel(config=A_ ).get_decoder() lowerCamelCase_ = inputs_dict['input_ids'] lowerCamelCase_ = input_ids[:1, :] lowerCamelCase_ = inputs_dict['attention_mask'][:1, :] lowerCamelCase_ = 1 # first forward pass lowerCamelCase_ = model(A_ , attention_mask=A_ , use_cache=A_ ) lowerCamelCase_ , lowerCamelCase_ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCamelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCamelCase_ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and lowerCamelCase_ = tf.concat([input_ids, next_tokens] , axis=-1 ) lowerCamelCase_ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) lowerCamelCase_ = model(A_ , attention_mask=A_ )[0] lowerCamelCase_ = model(A_ , attention_mask=A_ , past_key_values=A_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice lowerCamelCase_ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) lowerCamelCase_ = output_from_no_past[:, -3:, random_slice_idx] lowerCamelCase_ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(A_ , A_ , rtol=1E-3 ) def _SCREAMING_SNAKE_CASE ( lowercase : Any , lowercase : Any , lowercase : List[str] , lowercase : Tuple=None , lowercase : Dict=None , lowercase : str=None , lowercase : Any=None , ): '''simple docstring''' if attention_mask is None: lowerCamelCase_ = tf.cast(tf.math.not_equal(lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: lowerCamelCase_ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: lowerCamelCase_ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCamelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class A( UpperCamelCase , UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () UpperCamelCase = (TFLEDForConditionalGeneration,) if is_tf_available() else () UpperCamelCase = ( { '''conversational''': TFLEDForConditionalGeneration, '''feature-extraction''': TFLEDModel, '''summarization''': TFLEDForConditionalGeneration, '''text2text-generation''': TFLEDForConditionalGeneration, '''translation''': TFLEDForConditionalGeneration, } if is_tf_available() else {} ) UpperCamelCase = True UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def a__ ( self : List[str] ) -> str: """simple docstring""" lowerCamelCase_ = TFLEDModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=A_ ) def a__ ( self : Tuple ) -> str: """simple docstring""" self.config_tester.run_common_tests() def a__ ( self : int ) -> Tuple: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*A_ ) def a__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = tf.zeros_like(inputs_dict['attention_mask'] ) lowerCamelCase_ = 2 lowerCamelCase_ = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['global_attention_mask'] , ) lowerCamelCase_ = True lowerCamelCase_ = self.model_tester.seq_length lowerCamelCase_ = self.model_tester.encoder_seq_length def check_decoder_attentions_output(A_ : Any ): lowerCamelCase_ = outputs.decoder_attentions self.assertEqual(len(A_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(A_ : Optional[Any] ): lowerCamelCase_ = [t.numpy() for t in outputs.encoder_attentions] lowerCamelCase_ = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(A_ ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(A_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: lowerCamelCase_ = True lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = model_class(A_ ) lowerCamelCase_ = model(self._prepare_for_class(A_ , A_ ) ) lowerCamelCase_ = len(A_ ) self.assertEqual(config.output_hidden_states , A_ ) check_encoder_attentions_output(A_ ) if self.is_encoder_decoder: lowerCamelCase_ = model_class(A_ ) lowerCamelCase_ = model(self._prepare_for_class(A_ , A_ ) ) self.assertEqual(config.output_hidden_states , A_ ) check_decoder_attentions_output(A_ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] lowerCamelCase_ = True lowerCamelCase_ = model_class(A_ ) lowerCamelCase_ = model(self._prepare_for_class(A_ , A_ ) ) self.assertEqual(config.output_hidden_states , A_ ) check_encoder_attentions_output(A_ ) # Check attention is always last and order is fine lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = model_class(A_ ) lowerCamelCase_ = model(self._prepare_for_class(A_ , A_ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(A_ ) ) self.assertEqual(model.config.output_hidden_states , A_ ) check_encoder_attentions_output(A_ ) @unittest.skip('LED keeps using potentially symbolic tensors in conditionals and breaks tracing.' ) def a__ ( self : Tuple ) -> Any: """simple docstring""" pass def a__ ( self : Optional[Any] ) -> str: """simple docstring""" pass def _SCREAMING_SNAKE_CASE ( lowercase : Dict ): '''simple docstring''' return tf.constant(lowercase , dtype=tf.intaa ) lowerCamelCase : Dict = 1e-4 @slow @require_tf class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : Any ) -> int: """simple docstring""" lowerCamelCase_ = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ).led # change to intended input here lowerCamelCase_ = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) lowerCamelCase_ = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) lowerCamelCase_ = prepare_led_inputs_dict(model.config , A_ , A_ ) lowerCamelCase_ = model(**A_ )[0] lowerCamelCase_ = (1, 1024, 768) self.assertEqual(output.shape , A_ ) # change to expected output here lowerCamelCase_ = tf.convert_to_tensor( [[2.3050, 2.8279, 0.6531], [-1.8457, -0.1455, -3.5661], [-1.0186, 0.4586, -2.2043]] , ) tf.debugging.assert_near(output[:, :3, :3] , A_ , atol=1E-3 ) def a__ ( self : List[str] ) -> Any: """simple docstring""" lowerCamelCase_ = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ) # change to intended input here lowerCamelCase_ = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) lowerCamelCase_ = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) lowerCamelCase_ = prepare_led_inputs_dict(model.config , A_ , A_ ) lowerCamelCase_ = model(**A_ )[0] lowerCamelCase_ = (1, 1024, model.config.vocab_size) self.assertEqual(output.shape , A_ ) # change to expected output here lowerCamelCase_ = tf.convert_to_tensor( [[33.6507, 6.4572, 16.8089], [5.8739, -2.4238, 11.2902], [-3.2139, -4.3149, 4.2783]] , ) tf.debugging.assert_near(output[:, :3, :3] , A_ , atol=1E-3 , rtol=1E-3 )
204
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) class A( UpperCamelCase ): '''simple docstring''' def __init__( self : int , *A_ : str , **A_ : Optional[int] ) -> None: """simple docstring""" warnings.warn( 'The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use GLPNImageProcessor instead.' , A_ , ) super().__init__(*A_ , **A_ )
204
1
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a_ ( a_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Tuple = DiTPipeline lowerCamelCase__ : str = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS lowerCamelCase__ : Optional[Any] = PipelineTesterMixin.required_optional_params - { '''latents''', '''num_images_per_prompt''', '''callback''', '''callback_steps''', } lowerCamelCase__ : Optional[int] = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS lowerCamelCase__ : Optional[int] = False def a__ (self ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__ : List[str] = TransformeraDModel( sample_size=1_6, num_layers=2, patch_size=4, attention_head_dim=8, num_attention_heads=2, in_channels=4, out_channels=8, attention_bias=lowercase_, activation_fn='gelu-approximate', num_embeds_ada_norm=1_0_0_0, norm_type='ada_norm_zero', norm_elementwise_affine=lowercase_, ) lowerCamelCase__ : List[Any] = AutoencoderKL() lowerCamelCase__ : Union[str, Any] = DDIMScheduler() lowerCamelCase__ : Tuple = {'transformer': transformer.eval(), 'vae': vae.eval(), 'scheduler': scheduler} return components def a__ (self, lowerCamelCase_, lowerCamelCase_=0 ): '''simple docstring''' if str(lowercase_ ).startswith('mps' ): lowerCamelCase__ : Tuple = torch.manual_seed(lowercase_ ) else: lowerCamelCase__ : List[Any] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowerCamelCase__ : int = { 'class_labels': [1], 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = 'cpu' lowerCamelCase__ : Any = self.get_dummy_components() lowerCamelCase__ : Optional[int] = self.pipeline_class(**lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) lowerCamelCase__ : Dict = self.get_dummy_inputs(lowercase_ ) lowerCamelCase__ : Dict = pipe(**lowercase_ ).images lowerCamelCase__ : Optional[Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape, (1, 1_6, 1_6, 3) ) lowerCamelCase__ : Tuple = np.array([0.2_946, 0.6_601, 0.4_329, 0.3_296, 0.4_144, 0.5_319, 0.7_273, 0.5_013, 0.4_457] ) lowerCamelCase__ : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowercase_, 1e-3 ) def a__ (self ): '''simple docstring''' self._test_inference_batch_single_identical(relax_max_difference=lowercase_, expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available(), reason='XFormers attention is only available with CUDA and `xformers` installed', ) def a__ (self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = torch.manual_seed(0 ) lowerCamelCase__ : Tuple = DiTPipeline.from_pretrained('facebook/DiT-XL-2-256' ) pipe.to('cuda' ) lowerCamelCase__ : Optional[int] = ['vase', 'umbrella', 'white shark', 'white wolf'] lowerCamelCase__ : int = pipe.get_label_ids(lowercase_ ) lowerCamelCase__ : Dict = pipe(lowercase_, generator=lowercase_, num_inference_steps=4_0, output_type='np' ).images for word, image in zip(lowercase_, lowercase_ ): lowerCamelCase__ : str = load_numpy( f'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-2 def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = DiTPipeline.from_pretrained('facebook/DiT-XL-2-512' ) lowerCamelCase__ : Optional[int] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('cuda' ) lowerCamelCase__ : List[Any] = ['vase', 'umbrella'] lowerCamelCase__ : Optional[Any] = pipe.get_label_ids(lowercase_ ) lowerCamelCase__ : Any = torch.manual_seed(0 ) lowerCamelCase__ : str = pipe(lowercase_, generator=lowercase_, num_inference_steps=2_5, output_type='np' ).images for word, image in zip(lowercase_, lowercase_ ): lowerCamelCase__ : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' f'''/dit/{word}_512.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-1
364
"""simple docstring""" # Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() A_ : Optional[Any] = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model A_ : List[Any] = { # fairseq: "wmt19-ru-en": {"length_penalty": 1.1}, "wmt19-en-ru": {"length_penalty": 1.15}, "wmt19-en-de": {"length_penalty": 1.0}, "wmt19-de-en": {"length_penalty": 1.1}, # allenai: "wmt16-en-de-dist-12-1": {"length_penalty": 0.6}, "wmt16-en-de-dist-6-1": {"length_penalty": 0.6}, "wmt16-en-de-12-1": {"length_penalty": 0.8}, "wmt19-de-en-6-6-base": {"length_penalty": 0.6}, "wmt19-de-en-6-6-big": {"length_penalty": 0.6}, } # this remaps the different models to their organization names A_ : str = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: A_ : str = "facebook" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: A_ : Optional[Any] = "allenai" def lowerCamelCase_ ( _lowerCamelCase ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} lowerCamelCase__ : List[Any] = dict((re.sub(r'@@$' , '' , _lowerCamelCase ), v) if k.endswith('@@' ) else (re.sub(r'$' , '</w>' , _lowerCamelCase ), v) for k, v in d.items() ) lowerCamelCase__ : int = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[f'''{k}</w>'''] lowerCamelCase__ : List[str] = d[k] # restore return da def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): # prep assert os.path.exists(_lowerCamelCase ) os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) print(f'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models lowerCamelCase__ : Optional[int] = basename(_lowerCamelCase ) lowerCamelCase__ : str = dirname(_lowerCamelCase ) lowerCamelCase__ : Any = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel lowerCamelCase__ : int = cls.hub_models() lowerCamelCase__ : str = {'bpe': 'fastbpe', 'tokenizer': 'moses'} lowerCamelCase__ : Optional[Any] = '.' # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f'''using checkpoint {checkpoint_file}''' ) lowerCamelCase__ : Any = hub_utils.from_pretrained( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , archive_map=_lowerCamelCase , **_lowerCamelCase ) lowerCamelCase__ : List[str] = vars(chkpt['args']['model'] ) lowerCamelCase__ : Optional[Any] = args['source_lang'] lowerCamelCase__ : List[str] = args['target_lang'] lowerCamelCase__ : List[str] = dirname(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = basename(_lowerCamelCase ) # dicts lowerCamelCase__ : Optional[Any] = os.path.join(_lowerCamelCase , f'''dict.{src_lang}.txt''' ) lowerCamelCase__ : Optional[Any] = os.path.join(_lowerCamelCase , f'''dict.{tgt_lang}.txt''' ) lowerCamelCase__ : Dict = Dictionary.load(_lowerCamelCase ) lowerCamelCase__ : List[Any] = rewrite_dict_keys(src_dict.indices ) lowerCamelCase__ : int = len(_lowerCamelCase ) lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , 'vocab-src.json' ) print(f'''Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab lowerCamelCase__ : Optional[int] = True for k in src_vocab.keys(): if not k.islower(): lowerCamelCase__ : int = False break lowerCamelCase__ : str = Dictionary.load(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = rewrite_dict_keys(tgt_dict.indices ) lowerCamelCase__ : Optional[Any] = len(_lowerCamelCase ) lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , 'vocab-tgt.json' ) print(f'''Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # merges_file (bpecodes) lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , VOCAB_FILES_NAMES['merges_file'] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" lowerCamelCase__ : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase ) if os.path.exists(_lowerCamelCase ): break with open(_lowerCamelCase , encoding='utf-8' ) as fin: lowerCamelCase__ : Union[str, Any] = fin.read() lowerCamelCase__ : Any = re.sub(r' \d+$' , '' , _lowerCamelCase , 0 , re.M ) # remove frequency number print(f'''Generating {merges_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as fout: fout.write(_lowerCamelCase ) # model config lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , 'config.json' ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f'''need to extend tokenizer to support bpe={args['bpe']}''' assert args["tokenizer"] == "moses", f'''need to extend tokenizer to support bpe={args['tokenizer']}''' lowerCamelCase__ : Optional[int] = { 'architectures': ['FSMTForConditionalGeneration'], 'model_type': 'fsmt', 'activation_dropout': args['activation_dropout'], 'activation_function': 'relu', 'attention_dropout': args['attention_dropout'], 'd_model': args['decoder_embed_dim'], 'dropout': args['dropout'], 'init_std': 0.02, 'max_position_embeddings': args['max_source_positions'], 'num_hidden_layers': args['encoder_layers'], 'src_vocab_size': src_vocab_size, 'tgt_vocab_size': tgt_vocab_size, 'langs': [src_lang, tgt_lang], 'encoder_attention_heads': args['encoder_attention_heads'], 'encoder_ffn_dim': args['encoder_ffn_embed_dim'], 'encoder_layerdrop': args['encoder_layerdrop'], 'encoder_layers': args['encoder_layers'], 'decoder_attention_heads': args['decoder_attention_heads'], 'decoder_ffn_dim': args['decoder_ffn_embed_dim'], 'decoder_layerdrop': args['decoder_layerdrop'], 'decoder_layers': args['decoder_layers'], 'bos_token_id': 0, 'pad_token_id': 1, 'eos_token_id': 2, 'is_encoder_decoder': True, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_all_embeddings'], } # good hparam defaults to start with lowerCamelCase__ : str = 5 lowerCamelCase__ : Tuple = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: lowerCamelCase__ : List[str] = best_score_hparams[model_dir]['length_penalty'] else: lowerCamelCase__ : List[Any] = 1.0 print(f'''Generating {fsmt_model_config_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # tokenizer config lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : int = { 'langs': [src_lang, tgt_lang], 'model_max_length': 1024, 'do_lower_case': do_lower_case, } print(f'''Generating {fsmt_tokenizer_config_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # model lowerCamelCase__ : List[str] = chkpt['models'][0] lowerCamelCase__ : Optional[Any] = model.state_dict() # rename keys to start with 'model.' lowerCamelCase__ : str = OrderedDict(('model.' + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys lowerCamelCase__ : int = [ 'model.model', 'model.encoder.version', 'model.decoder.version', 'model.encoder_embed_tokens.weight', 'model.decoder_embed_tokens.weight', 'model.encoder.embed_positions._float_tensor', 'model.decoder.embed_positions._float_tensor', ] for k in ignore_keys: model_state_dict.pop(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : Any = FSMTConfig.from_pretrained(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = FSMTForConditionalGeneration(_lowerCamelCase ) # check that it loads ok model_new.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) # save lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , _lowerCamelCase ) print(f'''Generating {pytorch_weights_dump_path}''' ) torch.save(_lowerCamelCase , _lowerCamelCase ) print('Conversion is done!' ) print('\nLast step is to upload the files to s3' ) print(f'''cd {data_root}''' ) print(f'''transformers-cli upload {model_dir}''' ) if __name__ == "__main__": A_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fsmt_checkpoint_path", default=None, type=str, required=True, help=( "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," " bpecodes, etc." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) A_ : Dict = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
316
0
"""simple docstring""" import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": a__ : int = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( '''--original_config_file''', default=None, type=str, help='''The YAML config file corresponding to the original architecture.''', ) parser.add_argument( '''--num_in_channels''', default=None, type=int, help='''The number of input channels. If `None` number of input channels will be automatically inferred.''', ) parser.add_argument( '''--scheduler_type''', default='''pndm''', type=str, help='''Type of scheduler to use. Should be one of [\'pndm\', \'lms\', \'ddim\', \'euler\', \'euler-ancestral\', \'dpm\']''', ) parser.add_argument( '''--pipeline_type''', default=None, type=str, help=( '''The pipeline type. One of \'FrozenOpenCLIPEmbedder\', \'FrozenCLIPEmbedder\', \'PaintByExample\'''' '''. If `None` pipeline will be automatically inferred.''' ), ) parser.add_argument( '''--image_size''', default=None, type=int, help=( '''The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2''' ''' Base. Use 768 for Stable Diffusion v2.''' ), ) parser.add_argument( '''--prediction_type''', default=None, type=str, help=( '''The prediction type that the model was trained on. Use \'epsilon\' for Stable Diffusion v1.X and Stable''' ''' Diffusion v2 Base. Use \'v_prediction\' for Stable Diffusion v2.''' ), ) parser.add_argument( '''--extract_ema''', action='''store_true''', help=( '''Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights''' ''' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield''' ''' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.''' ), ) parser.add_argument( '''--upcast_attention''', action='''store_true''', help=( '''Whether the attention computation should always be upcasted. This is necessary when running stable''' ''' diffusion 2.1.''' ), ) parser.add_argument( '''--from_safetensors''', action='''store_true''', help='''If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.''', ) parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') parser.add_argument( '''--stable_unclip''', type=str, default=None, required=False, help='''Set if this is a stable unCLIP model. One of \'txt2img\' or \'img2img\'.''', ) parser.add_argument( '''--stable_unclip_prior''', type=str, default=None, required=False, help='''Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.''', ) parser.add_argument( '''--clip_stats_path''', type=str, help='''Path to the clip stats file. Only required if the stable unclip model\'s config specifies `model.params.noise_aug_config.params.clip_stats_path`.''', required=False, ) parser.add_argument( '''--controlnet''', action='''store_true''', default=None, help='''Set flag if this is a controlnet checkpoint.''' ) parser.add_argument('''--half''', action='''store_true''', help='''Save weights in half precision.''') parser.add_argument( '''--vae_path''', type=str, default=None, required=False, help='''Set to a path, hub id to an already converted vae to not convert it again.''', ) a__ : Optional[int] = parser.parse_args() a__ : Union[str, Any] = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
54
def A ( lowercase ) -> str: '''simple docstring''' return " ".join( ''.join(word[::-1] ) if len(lowercase ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words("Hey wollef sroirraw"))
222
0
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def A ( ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase = 'https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg' UpperCamelCase = Image.open(requests.get(lowercase , stream=lowercase ).raw ).convert('RGB' ) return image def A ( lowercase ) -> List[Any]: '''simple docstring''' UpperCamelCase = [] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') ) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') ) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') ) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') ) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') ) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.weight''', f'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.bias''', f'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.weight''', f'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.bias''', f'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.qkv.weight''', f'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.weight''', f'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.bias''', f'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.embeddings.layernorm.weight') ) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.embeddings.layernorm.bias') ) # fmt: on return rename_keys def A ( lowercase , lowercase , lowercase ) -> Tuple: '''simple docstring''' UpperCamelCase = dct.pop(lowercase ) UpperCamelCase = val def A ( lowercase , lowercase ) -> Tuple: '''simple docstring''' for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases UpperCamelCase = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.q_bias''' ) UpperCamelCase = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict UpperCamelCase = torch.cat((q_bias, torch.zeros_like(lowercase , requires_grad=lowercase ), v_bias) ) UpperCamelCase = qkv_bias def A ( lowercase ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase = 364 if 'coco' in model_name else 224 UpperCamelCase = InstructBlipVisionConfig(image_size=lowercase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: UpperCamelCase = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: UpperCamelCase = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "vicuna-7b" in model_name: UpperCamelCase = LlamaConfig.from_pretrained('decapoda-research/llama-7b-hf' , vocab_size=32_001 ).to_dict() elif "vicuna-13b" in model_name: UpperCamelCase = LlamaConfig.from_pretrained('decapoda-research/llama-13b-hf' , vocab_size=32_001 ).to_dict() else: raise ValueError('Model name not supported' ) # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 UpperCamelCase = InstructBlipQFormerConfig(vocab_size=30_523 ).to_dict() UpperCamelCase = InstructBlipConfig(vision_config=lowercase , text_config=lowercase , qformer_config=lowercase ) return config, image_size @torch.no_grad() def A ( lowercase , lowercase=None , lowercase=False ) -> Any: '''simple docstring''' UpperCamelCase = AutoTokenizer.from_pretrained('bert-base-uncased' , truncation_side='left' ) qformer_tokenizer.add_special_tokens({'bos_token': '[DEC]'} ) if "t5" in model_name: UpperCamelCase = TaTokenizerFast.from_pretrained('google/flan-t5-xl' , truncation_side='left' ) elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) UpperCamelCase = LlamaTokenizerFast.from_pretrained( 'huggyllama/llama-7b' , truncation_side='left' , bos_token='</s>' , unk_token='</s>' ) tokenizer.add_special_tokens({'pad_token': '[PAD]'} ) UpperCamelCase , UpperCamelCase = get_blipa_config(lowercase ) UpperCamelCase = InstructBlipForConditionalGeneration(lowercase ).eval() UpperCamelCase = { 'instructblip-vicuna-7b': ('blip2_vicuna_instruct', 'vicuna7b'), 'instructblip-vicuna-13b': ('blip2_vicuna_instruct', 'vicuna13b'), 'instructblip-flan-t5-xl': ('blip2_t5_instruct', 'flant5xl'), 'instructblip-flan-t5-xxl': ('blip2_t5_instruct', 'flant5xxl'), } UpperCamelCase , UpperCamelCase = model_name_to_original[model_name] # load original model print('Loading original model...' ) UpperCamelCase = 'cuda:1' if torch.cuda.is_available() else 'cpu' UpperCamelCase = 'cuda:2' if torch.cuda.is_available() else 'cpu' UpperCamelCase , UpperCamelCase , UpperCamelCase = load_model_and_preprocess( name=lowercase , model_type=lowercase , is_eval=lowercase , device=lowercase ) original_model.eval() print('Done!' ) # update state dict keys UpperCamelCase = original_model.state_dict() UpperCamelCase = create_rename_keys(lowercase ) for src, dest in rename_keys: rename_key(lowercase , lowercase , lowercase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): UpperCamelCase = state_dict.pop(lowercase ) if key.startswith('Qformer.bert' ): UpperCamelCase = key.replace('Qformer.bert' , 'qformer' ) if "attention.self" in key: UpperCamelCase = key.replace('self' , 'attention' ) if "llm_proj" in key: UpperCamelCase = key.replace('llm_proj' , 'language_projection' ) if "t5_proj" in key: UpperCamelCase = key.replace('t5_proj' , 'language_projection' ) if key.startswith('llm_model' ): UpperCamelCase = key.replace('llm_model' , 'language_model' ) if key.startswith('t5' ): UpperCamelCase = key.replace('t5' , 'language' ) UpperCamelCase = val # read in qv biases read_in_q_v_bias(lowercase , lowercase ) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(lowercase , strict=lowercase ) UpperCamelCase = load_demo_image() UpperCamelCase = 'What is unusual about this image?' # create processor UpperCamelCase = BlipImageProcessor( size={'height': image_size, 'width': image_size} , image_mean=lowercase , image_std=lowercase ) UpperCamelCase = InstructBlipProcessor( image_processor=lowercase , tokenizer=lowercase , qformer_tokenizer=lowercase , ) UpperCamelCase = processor(images=lowercase , text=lowercase , return_tensors='pt' ).to(lowercase ) # make sure processor creates exact same pixel values UpperCamelCase = vis_processors['eval'](lowercase ).unsqueeze(0 ).to(lowercase ) UpperCamelCase = inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device ) , lowercase ) original_model.to(lowercase ) hf_model.to(lowercase ) with torch.no_grad(): if "vicuna" in model_name: UpperCamelCase = original_model({'image': original_pixel_values, 'text_input': [prompt]} ).logits UpperCamelCase = hf_model(**lowercase ).logits else: UpperCamelCase = original_model( {'image': original_pixel_values, 'text_input': [prompt], 'text_output': ['\n']} ).logits UpperCamelCase = tokenizer('\n' , return_tensors='pt' ).input_ids.to(lowercase ) UpperCamelCase = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -100 ) UpperCamelCase = hf_model(**lowercase , labels=lowercase ).logits print('First values of original logits:' , original_logits[0, :3, :3] ) print('First values of HF logits:' , logits[0, :3, :3] ) # assert values assert original_logits.shape == logits.shape UpperCamelCase = 1e-4 if 'vicuna' in model_name else 1e-5 assert torch.allclose(original_logits.to(logits.device ) , lowercase , atol=lowercase ) print('Looks ok!' ) print('Generating with original model...' ) UpperCamelCase = original_model.generate({'image': original_pixel_values, 'prompt': prompt} , num_beams=5 ) # important: we need to cast the weights of the HF model to the appropriate type print('Generating with HF model...' ) UpperCamelCase = hf_model.generate( **lowercase , do_sample=lowercase , num_beams=5 , max_length=256 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , ) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? UpperCamelCase = 2 print('Original generation:' , lowercase ) UpperCamelCase = processor.batch_decode(lowercase , skip_special_tokens=lowercase ) UpperCamelCase = [text.strip() for text in output_text] print('HF generation:' , lowercase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(lowercase ) hf_model.save_pretrained(lowercase ) if push_to_hub: processor.push_to_hub(f'''Salesforce/{model_name}''' ) hf_model.push_to_hub(f'''Salesforce/{model_name}''' ) if __name__ == "__main__": _UpperCAmelCase : List[Any] = argparse.ArgumentParser() _UpperCAmelCase : Optional[int] = [ "instructblip-vicuna-7b", "instructblip-vicuna-13b", "instructblip-flan-t5-xl", "instructblip-flan-t5-xxl", ] parser.add_argument( "--model_name", default="instructblip-flan-t5-xl", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) _UpperCAmelCase : List[Any] = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
110
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class lowercase ( _SCREAMING_SNAKE_CASE ): def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(A_ , 'tf_padding' ) ) self.parent.assertTrue(hasattr(A_ , 'depth_multiplier' ) ) class lowercase : def __init__( self , A_ , A_=13 , A_=3 , A_=32 , A_=0.25 , A_=8 , A_=8 , A_=6 , A_=32 , A_=True , A_=True , A_=True , A_="relu6" , A_=1_280 , A_=0.1 , A_=0.02 , A_=True , A_=True , A_=10 , A_=None , ) -> List[Any]: """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = num_channels UpperCamelCase = image_size UpperCamelCase = depth_multiplier UpperCamelCase = depth_divisible_by UpperCamelCase = min_depth UpperCamelCase = expand_ratio UpperCamelCase = tf_padding UpperCamelCase = output_stride UpperCamelCase = first_layer_is_expansion UpperCamelCase = finegrained_output UpperCamelCase = hidden_act UpperCamelCase = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) UpperCamelCase = classifier_dropout_prob UpperCamelCase = use_labels UpperCamelCase = is_training UpperCamelCase = num_labels UpperCamelCase = initializer_range UpperCamelCase = scope def __UpperCamelCase ( self ) -> int: """simple docstring""" UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCamelCase = self.get_config() return config, pixel_values, labels, pixel_labels def __UpperCamelCase ( self ) -> Dict: """simple docstring""" return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self , A_ , A_ , A_ , A_ ) -> Optional[int]: """simple docstring""" UpperCamelCase = MobileNetVaModel(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def __UpperCamelCase ( self , A_ , A_ , A_ , A_ ) -> int: """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = MobileNetVaForImageClassification(A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self , A_ , A_ , A_ , A_ ) -> List[str]: """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = MobileNetVaForSemanticSegmentation(A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) UpperCamelCase = model(A_ , labels=A_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): __lowercase : Optional[Any] = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) __lowercase : Optional[int] = ( { "feature-extraction": MobileNetVaModel, "image-classification": MobileNetVaForImageClassification, "image-segmentation": MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) __lowercase : Optional[int] = False __lowercase : List[str] = False __lowercase : List[str] = False __lowercase : Dict = False def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = MobileNetVaModelTester(self ) UpperCamelCase = MobileNetVaConfigTester(self , config_class=A_ , has_text_modality=A_ ) def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='MobileNetV2 does not use inputs_embeds' ) def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" pass @unittest.skip(reason='MobileNetV2 does not support input and output embeddings' ) def __UpperCamelCase ( self ) -> Dict: """simple docstring""" pass @unittest.skip(reason='MobileNetV2 does not output attentions' ) def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" pass def __UpperCamelCase ( self ) -> Dict: """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(A_ ) UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , A_ ) def __UpperCamelCase ( self ) -> Any: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def __UpperCamelCase ( self ) -> int: """simple docstring""" def check_hidden_states_output(A_ , A_ , A_ ): UpperCamelCase = model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): UpperCamelCase = model(**self._prepare_for_class(A_ , A_ ) ) UpperCamelCase = outputs.hidden_states UpperCamelCase = 16 self.assertEqual(len(A_ ) , A_ ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = True check_hidden_states_output(A_ , A_ , A_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase = True check_hidden_states_output(A_ , A_ , A_ ) def __UpperCamelCase ( self ) -> int: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*A_ ) @slow def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = MobileNetVaModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def A ( ) -> Optional[int]: '''simple docstring''' UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): @cached_property def __UpperCamelCase ( self ) -> Dict: """simple docstring""" return ( MobileNetVaImageProcessor.from_pretrained('google/mobilenet_v2_1.0_224' ) if is_vision_available() else None ) @slow def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = MobileNetVaForImageClassification.from_pretrained('google/mobilenet_v2_1.0_224' ).to(A_ ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**A_ ) # verify the logits UpperCamelCase = torch.Size((1, 1_001) ) self.assertEqual(outputs.logits.shape , A_ ) UpperCamelCase = torch.tensor([0.2445, -1.1993, 0.1905] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A_ , atol=1e-4 ) ) @slow def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = MobileNetVaForSemanticSegmentation.from_pretrained('google/deeplabv3_mobilenet_v2_1.0_513' ) UpperCamelCase = model.to(A_ ) UpperCamelCase = MobileNetVaImageProcessor.from_pretrained('google/deeplabv3_mobilenet_v2_1.0_513' ) UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**A_ ) UpperCamelCase = outputs.logits # verify the logits UpperCamelCase = torch.Size((1, 21, 65, 65) ) self.assertEqual(logits.shape , A_ ) UpperCamelCase = torch.tensor( [ [[17.5790, 17.7581, 18.3355], [18.3257, 18.4230, 18.8973], [18.6169, 18.8650, 19.2187]], [[-2.1595, -2.0977, -2.3741], [-2.4226, -2.3028, -2.6835], [-2.7819, -2.5991, -2.7706]], [[4.2058, 4.8317, 4.7638], [4.4136, 5.0361, 4.9383], [4.5028, 4.9644, 4.8734]], ] , device=A_ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , A_ , atol=1e-4 ) )
110
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/config.json''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/config.json''', '''funnel-transformer/medium-base''': '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json''', '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/config.json''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json''', '''funnel-transformer/xlarge-base''': '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json''', } class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = "funnel" SCREAMING_SNAKE_CASE_ = { "hidden_size": "d_model", "num_attention_heads": "n_head", } def __init__( self, lowerCAmelCase__=3_0522, lowerCAmelCase__=[4, 4, 4], lowerCAmelCase__=None, lowerCAmelCase__=2, lowerCAmelCase__=768, lowerCAmelCase__=12, lowerCAmelCase__=64, lowerCAmelCase__=3072, lowerCAmelCase__="gelu_new", lowerCAmelCase__=0.1, lowerCAmelCase__=0.1, lowerCAmelCase__=0.0, lowerCAmelCase__=0.1, lowerCAmelCase__=None, lowerCAmelCase__=1e-9, lowerCAmelCase__="mean", lowerCAmelCase__="relative_shift", lowerCAmelCase__=True, lowerCAmelCase__=True, lowerCAmelCase__=True, **lowerCAmelCase__, ) -> Union[str, Any]: snake_case_ = vocab_size snake_case_ = block_sizes snake_case_ = [1] * len(lowerCAmelCase__) if block_repeats is None else block_repeats assert len(lowerCAmelCase__) == len( self.block_repeats), "`block_sizes` and `block_repeats` should have the same length." snake_case_ = num_decoder_layers snake_case_ = d_model snake_case_ = n_head snake_case_ = d_head snake_case_ = d_inner snake_case_ = hidden_act snake_case_ = hidden_dropout snake_case_ = attention_dropout snake_case_ = activation_dropout snake_case_ = initializer_range snake_case_ = initializer_std snake_case_ = layer_norm_eps assert pooling_type in [ "mean", "max", ], f'Got {pooling_type} for `pooling_type` but only \'mean\' and \'max\' are supported.' snake_case_ = pooling_type assert attention_type in [ "relative_shift", "factorized", ], f'Got {attention_type} for `attention_type` but only \'relative_shift\' and \'factorized\' are supported.' snake_case_ = attention_type snake_case_ = separate_cls snake_case_ = truncate_seq snake_case_ = pool_q_only super().__init__(**lowerCAmelCase__) @property def a_ ( self) -> Optional[Any]: return sum(self.block_sizes) @num_hidden_layers.setter def a_ ( self, lowerCAmelCase__) -> Tuple: raise NotImplementedError( 'This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.') @property def a_ ( self) -> Optional[int]: return len(self.block_sizes) @num_blocks.setter def a_ ( self, lowerCAmelCase__) -> List[Any]: raise NotImplementedError('This model does not support the setting of `num_blocks`. Please set `block_sizes`.')
69
"""simple docstring""" import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> int: snake_case_ = nn.functional.normalize(UpperCAmelCase ) snake_case_ = nn.functional.normalize(UpperCAmelCase ) return torch.mm(UpperCAmelCase , normalized_text_embeds.t() ) class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = CLIPConfig SCREAMING_SNAKE_CASE_ = ["CLIPEncoderLayer"] def __init__( self, lowerCAmelCase__) -> Optional[int]: super().__init__(lowerCAmelCase__) snake_case_ = CLIPVisionModel(config.vision_config) snake_case_ = nn.Linear(config.vision_config.hidden_size, config.projection_dim, bias=lowerCAmelCase__) snake_case_ = nn.Parameter(torch.ones(17, config.projection_dim), requires_grad=lowerCAmelCase__) snake_case_ = nn.Parameter(torch.ones(3, config.projection_dim), requires_grad=lowerCAmelCase__) snake_case_ = nn.Parameter(torch.ones(17), requires_grad=lowerCAmelCase__) snake_case_ = nn.Parameter(torch.ones(3), requires_grad=lowerCAmelCase__) @torch.no_grad() def a_ ( self, lowerCAmelCase__, lowerCAmelCase__) -> Tuple: snake_case_ = self.vision_model(lowerCAmelCase__)[1] # pooled_output snake_case_ = self.visual_projection(lowerCAmelCase__) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 snake_case_ = cosine_distance(lowerCAmelCase__, self.special_care_embeds).cpu().float().numpy() snake_case_ = cosine_distance(lowerCAmelCase__, self.concept_embeds).cpu().float().numpy() snake_case_ = [] snake_case_ = image_embeds.shape[0] for i in range(lowerCAmelCase__): snake_case_ = {'special_scores': {}, 'special_care': [], 'concept_scores': {}, 'bad_concepts': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images snake_case_ = 0.0 for concept_idx in range(len(special_cos_dist[0])): snake_case_ = special_cos_dist[i][concept_idx] snake_case_ = self.special_care_embeds_weights[concept_idx].item() snake_case_ = round(concept_cos - concept_threshold + adjustment, 3) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['special_scores'][concept_idx]}) snake_case_ = 0.01 for concept_idx in range(len(cos_dist[0])): snake_case_ = cos_dist[i][concept_idx] snake_case_ = self.concept_embeds_weights[concept_idx].item() snake_case_ = round(concept_cos - concept_threshold + adjustment, 3) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(lowerCAmelCase__) result.append(lowerCAmelCase__) snake_case_ = [len(res['bad_concepts']) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def a_ ( self, lowerCAmelCase__, lowerCAmelCase__) -> Optional[int]: snake_case_ = self.vision_model(lowerCAmelCase__)[1] # pooled_output snake_case_ = self.visual_projection(lowerCAmelCase__) snake_case_ = cosine_distance(lowerCAmelCase__, self.special_care_embeds) snake_case_ = cosine_distance(lowerCAmelCase__, self.concept_embeds) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images snake_case_ = 0.0 snake_case_ = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) snake_case_ = torch.any(special_scores > 0, dim=1) snake_case_ = special_care * 0.01 snake_case_ = special_adjustment.unsqueeze(1).expand(-1, cos_dist.shape[1]) snake_case_ = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) snake_case_ = torch.any(concept_scores > 0, dim=1) return images, has_nsfw_concepts
69
1
'''simple docstring''' import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": _a : List[str] = """%20""".join(argv[1:]) if len(argv) > 1 else quote(str(input("""Search: """))) print("""Googling.....""") _a : str = f'https://www.google.com/search?q={query}&num=100' _a : List[str] = requests.get( url, headers={"""User-Agent""": str(UserAgent().random)}, ) try: _a : List[Any] = ( BeautifulSoup(res.text, """html.parser""") .find("""div""", attrs={"""class""": """yuRUbf"""}) .find("""a""") .get("""href""") ) except AttributeError: _a : int = parse_qs( BeautifulSoup(res.text, """html.parser""") .find("""div""", attrs={"""class""": """kCrYT"""}) .find("""a""") .get("""href""") )["""url"""][0] webbrowser.open(link)
46
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _a : Union[str, Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = ["""BartphoTokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys _a : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
46
1
def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" if collection == []: return [] # get some information about the collection lowercase__ : Any = len(lowerCamelCase__ ) lowercase__ : str = max(lowerCamelCase__ ) lowercase__ : List[str] = min(lowerCamelCase__ ) # create the counting array lowercase__ : str = coll_max + 1 - coll_min lowercase__ : Optional[int] = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , lowerCamelCase__ ): lowercase__ : Optional[int] = counting_arr[i] + counting_arr[i - 1] # create the output collection lowercase__ : Optional[int] = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , lowerCamelCase__ ) ): lowercase__ : Union[str, Any] = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" return "".join([chr(lowerCamelCase__ ) for i in counting_sort([ord(lowerCamelCase__ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string('''thisisthestring''') == "eghhiiinrsssttt" lowerCAmelCase__ = input('''Enter numbers separated by a comma:\n''').strip() lowerCAmelCase__ = [int(item) for item in user_input.split(''',''')] print(counting_sort(unsorted))
130
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase__ = { '''configuration_biogpt''': ['''BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BioGptConfig'''], '''tokenization_biogpt''': ['''BioGptTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BioGptForCausalLM''', '''BioGptForTokenClassification''', '''BioGptForSequenceClassification''', '''BioGptModel''', '''BioGptPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
130
1
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Tuple = "M-CLIP" def __init__( self , A_=1024 , A_=768 , **A_ ) -> Any: __UpperCamelCase =transformerDimSize __UpperCamelCase =imageDimSize super().__init__(**A_ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Tuple = MCLIPConfig def __init__( self , A_ , *A_ , **A_ ) -> Tuple: super().__init__(A_ , *A_ , **A_ ) __UpperCamelCase =XLMRobertaModel(A_ ) __UpperCamelCase =torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def _a ( self , A_ , A_ ) -> Optional[int]: __UpperCamelCase =self.transformer(input_ids=A_ , attention_mask=A_ )[0] __UpperCamelCase =(embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(A_ ), embs
368
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer _A = logging.get_logger(__name__) _A = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _A = { 'vocab_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/vocab.txt', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/vocab.txt', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt' ), 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt' ), 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt', 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json' ), 'bert-base-multilingual-cased': ( 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json' ), 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-cased': ( 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json' ), }, } _A = { 'bert-base-uncased': 512, 'bert-large-uncased': 512, 'bert-base-cased': 512, 'bert-large-cased': 512, 'bert-base-multilingual-uncased': 512, 'bert-base-multilingual-cased': 512, 'bert-base-chinese': 512, 'bert-base-german-cased': 512, 'bert-large-uncased-whole-word-masking': 512, 'bert-large-cased-whole-word-masking': 512, 'bert-large-uncased-whole-word-masking-finetuned-squad': 512, 'bert-large-cased-whole-word-masking-finetuned-squad': 512, 'bert-base-cased-finetuned-mrpc': 512, 'bert-base-german-dbmdz-cased': 512, 'bert-base-german-dbmdz-uncased': 512, 'TurkuNLP/bert-base-finnish-cased-v1': 512, 'TurkuNLP/bert-base-finnish-uncased-v1': 512, 'wietsedv/bert-base-dutch-cased': 512, } _A = { 'bert-base-uncased': {'do_lower_case': True}, 'bert-large-uncased': {'do_lower_case': True}, 'bert-base-cased': {'do_lower_case': False}, 'bert-large-cased': {'do_lower_case': False}, 'bert-base-multilingual-uncased': {'do_lower_case': True}, 'bert-base-multilingual-cased': {'do_lower_case': False}, 'bert-base-chinese': {'do_lower_case': False}, 'bert-base-german-cased': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking-finetuned-squad': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking-finetuned-squad': {'do_lower_case': False}, 'bert-base-cased-finetuned-mrpc': {'do_lower_case': False}, 'bert-base-german-dbmdz-cased': {'do_lower_case': False}, 'bert-base-german-dbmdz-uncased': {'do_lower_case': True}, 'TurkuNLP/bert-base-finnish-cased-v1': {'do_lower_case': False}, 'TurkuNLP/bert-base-finnish-uncased-v1': {'do_lower_case': True}, 'wietsedv/bert-base-dutch-cased': {'do_lower_case': False}, } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Any = VOCAB_FILES_NAMES UpperCAmelCase__ : List[str] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Optional[int] = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : Dict = BertTokenizer def __init__( self , A_=None , A_=None , A_=True , A_="[UNK]" , A_="[SEP]" , A_="[PAD]" , A_="[CLS]" , A_="[MASK]" , A_=True , A_=None , **A_ , ) -> Any: super().__init__( A_ , tokenizer_file=A_ , do_lower_case=A_ , unk_token=A_ , sep_token=A_ , pad_token=A_ , cls_token=A_ , mask_token=A_ , tokenize_chinese_chars=A_ , strip_accents=A_ , **A_ , ) __UpperCamelCase =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , A_ ) != do_lower_case or normalizer_state.get('strip_accents' , A_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , A_ ) != tokenize_chinese_chars ): __UpperCamelCase =getattr(A_ , normalizer_state.pop('type' ) ) __UpperCamelCase =do_lower_case __UpperCamelCase =strip_accents __UpperCamelCase =tokenize_chinese_chars __UpperCamelCase =normalizer_class(**A_ ) __UpperCamelCase =do_lower_case def _a ( self , A_ , A_=None ) -> List[str]: __UpperCamelCase =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _a ( self , A_ , A_ = None ) -> List[int]: __UpperCamelCase =[self.sep_token_id] __UpperCamelCase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _a ( self , A_ , A_ = None ) -> Tuple[str]: __UpperCamelCase =self._tokenizer.model.save(A_ , name=A_ ) return tuple(A_ )
117
0
"""simple docstring""" import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def __A (_SCREAMING_SNAKE_CASE ) ->Optional[int]: """simple docstring""" return EnvironmentCommand() class _lowerCAmelCase ( a ): """simple docstring""" @staticmethod def snake_case ( __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Tuple = parser.add_parser('env' ) download_parser.set_defaults(func=__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = huggingface_hub.__version__ lowerCAmelCase__ :Any = 'not installed' lowerCAmelCase__ :Optional[int] = 'NA' if is_torch_available(): import torch lowerCAmelCase__ :List[str] = torch.__version__ lowerCAmelCase__ :Union[str, Any] = torch.cuda.is_available() lowerCAmelCase__ :Optional[int] = 'not installed' if is_transformers_available(): import transformers lowerCAmelCase__ :str = transformers.__version__ lowerCAmelCase__ :str = 'not installed' if is_accelerate_available(): import accelerate lowerCAmelCase__ :Optional[int] = accelerate.__version__ lowerCAmelCase__ :Dict = 'not installed' if is_xformers_available(): import xformers lowerCAmelCase__ :Any = xformers.__version__ lowerCAmelCase__ :Union[str, Any] = { '`diffusers` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'PyTorch version (GPU?)': F"{pt_version} ({pt_cuda_available})", 'Huggingface_hub version': hub_version, 'Transformers version': transformers_version, 'Accelerate version': accelerate_version, 'xFormers version': xformers_version, 'Using GPU in script?': '<fill in>', 'Using distributed or parallel set-up in script?': '<fill in>', } print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' ) print(self.format_dict(__UpperCAmelCase ) ) return info @staticmethod def snake_case ( __UpperCAmelCase ): '''simple docstring''' return "\n".join([F"- {prop}: {val}" for prop, val in d.items()] ) + "\n"
293
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __A = { """configuration_data2vec_audio""": ["""DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecAudioConfig"""], """configuration_data2vec_text""": [ """DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecTextConfig""", """Data2VecTextOnnxConfig""", ], """configuration_data2vec_vision""": [ """DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecVisionConfig""", """Data2VecVisionOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ """DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecAudioForAudioFrameClassification""", """Data2VecAudioForCTC""", """Data2VecAudioForSequenceClassification""", """Data2VecAudioForXVector""", """Data2VecAudioModel""", """Data2VecAudioPreTrainedModel""", ] __A = [ """DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecTextForCausalLM""", """Data2VecTextForMaskedLM""", """Data2VecTextForMultipleChoice""", """Data2VecTextForQuestionAnswering""", """Data2VecTextForSequenceClassification""", """Data2VecTextForTokenClassification""", """Data2VecTextModel""", """Data2VecTextPreTrainedModel""", ] __A = [ """DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecVisionForImageClassification""", """Data2VecVisionForMaskedImageModeling""", """Data2VecVisionForSemanticSegmentation""", """Data2VecVisionModel""", """Data2VecVisionPreTrainedModel""", ] if is_tf_available(): __A = [ """TFData2VecVisionForImageClassification""", """TFData2VecVisionForSemanticSegmentation""", """TFData2VecVisionModel""", """TFData2VecVisionPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
293
1
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( __A : List[Any] ) -> List[Any]: _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = [], [] while len(__A ) > 1: _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = min(__A ), max(__A ) start.append(__A ) end.append(__A ) collection.remove(__A ) collection.remove(__A ) end.reverse() return start + collection + end if __name__ == "__main__": lowerCamelCase_ = input('Enter numbers separated by a comma:\n').strip() lowerCamelCase_ = [int(item) for item in user_input.split(',')] print(*merge_sort(unsorted), sep=',')
111
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( __A : list ) -> list: if len(__A ) <= 1: return lst _SCREAMING_SNAKE_CASE = 1 while i < len(__A ): if lst[i - 1] <= lst[i]: i += 1 else: _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = lst[i], lst[i - 1] i -= 1 if i == 0: _SCREAMING_SNAKE_CASE = 1 return lst if __name__ == "__main__": lowerCamelCase_ = input('Enter numbers separated by a comma:\n').strip() lowerCamelCase_ = [int(item) for item in user_input.split(',')] print(gnome_sort(unsorted))
111
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { "google/pix2struct-textcaps-base": ( "https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json" ), } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" UpperCAmelCase_ ='''pix2struct_text_model''' UpperCAmelCase_ =['''past_key_values'''] UpperCAmelCase_ ={ '''hidden_size''': '''hidden_size''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , _A=50244 , _A=768 , _A=64 , _A=2048 , _A=12 , _A=12 , _A=32 , _A=128 , _A=0.1 , _A=1E-6 , _A=1.0 , _A="gelu_new" , _A=0 , _A=False , _A=0 , _A=1 , _A=False , _A=True , **_A , ) -> Tuple: SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = d_kv SCREAMING_SNAKE_CASE_ = d_ff SCREAMING_SNAKE_CASE_ = num_layers SCREAMING_SNAKE_CASE_ = num_heads SCREAMING_SNAKE_CASE_ = relative_attention_num_buckets SCREAMING_SNAKE_CASE_ = relative_attention_max_distance SCREAMING_SNAKE_CASE_ = dropout_rate SCREAMING_SNAKE_CASE_ = layer_norm_epsilon SCREAMING_SNAKE_CASE_ = initializer_factor SCREAMING_SNAKE_CASE_ = use_cache SCREAMING_SNAKE_CASE_ = eos_token_id SCREAMING_SNAKE_CASE_ = decoder_start_token_id # for backwards compatibility SCREAMING_SNAKE_CASE_ = dense_act_fn super().__init__( pad_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , decoder_start_token_id=__UpperCAmelCase , tie_word_embeddings=__UpperCAmelCase , is_decoder=__UpperCAmelCase , **__UpperCAmelCase , ) @classmethod def _UpperCamelCase ( cls , _A , **_A ) -> "PretrainedConfig": cls._set_token_in_kwargs(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = cls.get_config_dict(__UpperCAmelCase , **__UpperCAmelCase ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''' ) == "pix2struct": SCREAMING_SNAKE_CASE_ = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" UpperCAmelCase_ ='''pix2struct_vision_model''' def __init__( self , _A=768 , _A=768 , _A=2048 , _A=64 , _A=12 , _A=12 , _A="gelu_new" , _A=1E-6 , _A=0.0 , _A=0.0 , _A=1E-10 , _A=1.0 , _A=4096 , _A=32 , _A=128 , **_A , ) -> Union[str, Any]: super().__init__(**__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = patch_embed_hidden_size SCREAMING_SNAKE_CASE_ = d_ff SCREAMING_SNAKE_CASE_ = dropout_rate SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = initializer_factor SCREAMING_SNAKE_CASE_ = attention_dropout SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = dense_act_fn SCREAMING_SNAKE_CASE_ = seq_len SCREAMING_SNAKE_CASE_ = relative_attention_num_buckets SCREAMING_SNAKE_CASE_ = relative_attention_max_distance SCREAMING_SNAKE_CASE_ = d_kv @classmethod def _UpperCamelCase ( cls , _A , **_A ) -> "PretrainedConfig": cls._set_token_in_kwargs(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = cls.get_config_dict(__UpperCAmelCase , **__UpperCAmelCase ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''' ) == "pix2struct": SCREAMING_SNAKE_CASE_ = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" UpperCAmelCase_ ='''pix2struct''' UpperCAmelCase_ =True def __init__( self , _A=None , _A=None , _A=1.0 , _A=0.02 , _A=False , _A=False , _A=True , **_A , ) -> Tuple: super().__init__(tie_word_embeddings=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , **__UpperCAmelCase ) if text_config is None: SCREAMING_SNAKE_CASE_ = {} logger.info('''text_config is None. Initializing the Pix2StructTextConfig with default values.''' ) if vision_config is None: SCREAMING_SNAKE_CASE_ = {} logger.info('''vision_config is None. Initializing the Pix2StructVisionConfig with default values.''' ) SCREAMING_SNAKE_CASE_ = PixaStructTextConfig(**__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = PixaStructVisionConfig(**__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = self.text_config.decoder_start_token_id SCREAMING_SNAKE_CASE_ = self.text_config.pad_token_id SCREAMING_SNAKE_CASE_ = self.text_config.eos_token_id SCREAMING_SNAKE_CASE_ = initializer_factor SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = self.initializer_range SCREAMING_SNAKE_CASE_ = self.initializer_range SCREAMING_SNAKE_CASE_ = is_vqa @classmethod def _UpperCamelCase ( cls , _A , _A , **_A ) -> Optional[int]: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__UpperCAmelCase ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE_ = self.text_config.to_dict() SCREAMING_SNAKE_CASE_ = self.vision_config.to_dict() SCREAMING_SNAKE_CASE_ = self.__class__.model_type return output
299
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Tuple = abs(UpperCamelCase ) lowerCAmelCase__ : List[Any] = 0 while n > 0: res += n % 10 n //= 10 return res def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = abs(UpperCamelCase ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" return sum(int(UpperCamelCase ) for c in str(abs(UpperCamelCase ) ) ) def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" from collections.abc import Callable from timeit import timeit def benchmark_a_function(UpperCamelCase , UpperCamelCase ) -> None: lowerCAmelCase__ : str = f"""{func.__name__}({value})""" lowerCAmelCase__ : str = timeit(f"""__main__.{call}""" , setup="""import __main__""" ) print(f"""{call:56} = {func(UpperCamelCase )} -- {timing:.4f} seconds""" ) for value in (262144, 1125899906842624, 1267650600228229401496703205376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(UpperCamelCase , UpperCamelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
37
0
import numpy as np import datasets lowercase_ = """ Compute the Mahalanobis Distance Mahalonobis distance is the distance between a point and a distribution. And not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance. It was introduced by Prof. P. C. Mahalanobis in 1936 and has been used in various statistical applications ever since [source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/] """ lowercase_ = """\ @article{de2000mahalanobis, title={The mahalanobis distance}, author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L}, journal={Chemometrics and intelligent laboratory systems}, volume={50}, number={1}, pages={1--18}, year={2000}, publisher={Elsevier} } """ lowercase_ = """ Args: X: List of datapoints to be compared with the `reference_distribution`. reference_distribution: List of datapoints from the reference distribution we want to compare to. Returns: mahalanobis: The Mahalonobis distance for each datapoint in `X`. Examples: >>> mahalanobis_metric = datasets.load_metric(\"mahalanobis\") >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]]) >>> print(results) {'mahalanobis': array([0.5])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE (datasets.Metric ): def SCREAMING_SNAKE_CASE_ ( self : List[Any] )-> int: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'X': datasets.Sequence(datasets.Value('float' , id='sequence' ) , id='X' ), } ) , ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , a : Tuple , a : Optional[Any] )-> List[str]: """simple docstring""" lowercase__ = np.array(a ) lowercase__ = np.array(a ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError('Expected `X` to be a 2D vector' ) if len(reference_distribution.shape ) != 2: raise ValueError('Expected `reference_distribution` to be a 2D vector' ) if reference_distribution.shape[0] < 2: raise ValueError( 'Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension' ) # Get mahalanobis distance for each prediction lowercase__ = X - np.mean(a ) lowercase__ = np.cov(reference_distribution.T ) try: lowercase__ = np.linalg.inv(a ) except np.linalg.LinAlgError: lowercase__ = np.linalg.pinv(a ) lowercase__ = np.dot(a , a ) lowercase__ = np.dot(a , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
269
import sys lowercase_ = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE = N ) -> int: lowercase__ = -sys.maxsize - 1 for i in range(len(_SCREAMING_SNAKE_CASE ) - 12 ): lowercase__ = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: lowercase__ = product return largest_product if __name__ == "__main__": print(f'''{solution() = }''')
269
1
"""simple docstring""" import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class __snake_case ( _lowercase): snake_case__ : Optional[Any] = (CMStochasticIterativeScheduler,) snake_case__ : Tuple = 1_0 def SCREAMING_SNAKE_CASE ( self : str , **__lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : List[str] = { '''num_train_timesteps''': 2_0_1, '''sigma_min''': 0.0_02, '''sigma_max''': 80.0, } config.update(**__lowerCAmelCase ) return config def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" _lowerCamelCase : Optional[int] = 1_0 _lowerCamelCase : List[str] = self.get_scheduler_config() _lowerCamelCase : Union[str, Any] = self.scheduler_classes[0](**__lowerCAmelCase ) scheduler.set_timesteps(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = scheduler.timesteps[0] _lowerCamelCase : str = scheduler.timesteps[1] _lowerCamelCase : List[Any] = self.dummy_sample _lowerCamelCase : str = 0.1 * sample _lowerCamelCase : str = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ).prev_sample _lowerCamelCase : Tuple = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" _lowerCamelCase : List[Any] = self.scheduler_classes[0] _lowerCamelCase : Optional[Any] = self.get_scheduler_config() _lowerCamelCase : int = scheduler_class(**__lowerCAmelCase ) _lowerCamelCase : str = 1 scheduler.set_timesteps(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = scheduler.timesteps _lowerCamelCase : Tuple = torch.manual_seed(0 ) _lowerCamelCase : int = self.dummy_model() _lowerCamelCase : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(__lowerCAmelCase ): # 1. scale model input _lowerCamelCase : Dict = scheduler.scale_model_input(__lowerCAmelCase , __lowerCAmelCase ) # 2. predict noise residual _lowerCamelCase : Optional[int] = model(__lowerCAmelCase , __lowerCAmelCase ) # 3. predict previous sample x_t-1 _lowerCamelCase : Any = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , generator=__lowerCAmelCase ).prev_sample _lowerCamelCase : List[str] = pred_prev_sample _lowerCamelCase : int = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : str = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 1_92.76_14 ) < 1E-2 assert abs(result_mean.item() - 0.25_10 ) < 1E-3 def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Optional[int] = self.scheduler_classes[0] _lowerCamelCase : List[str] = self.get_scheduler_config() _lowerCamelCase : str = scheduler_class(**__lowerCAmelCase ) _lowerCamelCase : int = [1_0_6, 0] scheduler.set_timesteps(timesteps=__lowerCAmelCase ) _lowerCamelCase : str = scheduler.timesteps _lowerCamelCase : str = torch.manual_seed(0 ) _lowerCamelCase : Optional[int] = self.dummy_model() _lowerCamelCase : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input _lowerCamelCase : Optional[Any] = scheduler.scale_model_input(__lowerCAmelCase , __lowerCAmelCase ) # 2. predict noise residual _lowerCamelCase : Optional[Any] = model(__lowerCAmelCase , __lowerCAmelCase ) # 3. predict previous sample x_t-1 _lowerCamelCase : Union[str, Any] = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , generator=__lowerCAmelCase ).prev_sample _lowerCamelCase : List[str] = pred_prev_sample _lowerCamelCase : Optional[int] = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : Tuple = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 3_47.63_57 ) < 1E-2 assert abs(result_mean.item() - 0.45_27 ) < 1E-3 def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" _lowerCamelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCamelCase : str = self.get_scheduler_config() _lowerCamelCase : List[Any] = scheduler_class(**__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = [3_9, 3_0, 1_2, 1_5, 0] with self.assertRaises(__lowerCAmelCase , msg='''`timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" _lowerCamelCase : int = self.scheduler_classes[0] _lowerCamelCase : Any = self.get_scheduler_config() _lowerCamelCase : List[Any] = scheduler_class(**__lowerCAmelCase ) _lowerCamelCase : List[Any] = [3_9, 3_0, 1_2, 1, 0] _lowerCamelCase : Optional[Any] = len(__lowerCAmelCase ) with self.assertRaises(__lowerCAmelCase , msg='''Can only pass one of `num_inference_steps` or `timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=__lowerCAmelCase , timesteps=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" _lowerCamelCase : List[Any] = self.scheduler_classes[0] _lowerCamelCase : Dict = self.get_scheduler_config() _lowerCamelCase : Dict = scheduler_class(**__lowerCAmelCase ) _lowerCamelCase : Dict = [scheduler.config.num_train_timesteps] with self.assertRaises( __lowerCAmelCase , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=__lowerCAmelCase )
72
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer lowercase = logging.get_logger(__name__) lowercase = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} lowercase = { "vocab_file": { "squeezebert/squeezebert-uncased": ( "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt" ), "squeezebert/squeezebert-mnli": "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt", "squeezebert/squeezebert-mnli-headless": ( "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt" ), }, "tokenizer_file": { "squeezebert/squeezebert-uncased": ( "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json" ), "squeezebert/squeezebert-mnli": ( "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json" ), "squeezebert/squeezebert-mnli-headless": ( "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json" ), }, } lowercase = { "squeezebert/squeezebert-uncased": 512, "squeezebert/squeezebert-mnli": 512, "squeezebert/squeezebert-mnli-headless": 512, } lowercase = { "squeezebert/squeezebert-uncased": {"do_lower_case": True}, "squeezebert/squeezebert-mnli": {"do_lower_case": True}, "squeezebert/squeezebert-mnli-headless": {"do_lower_case": True}, } class UpperCamelCase_ ( snake_case_ ): '''simple docstring''' lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = SqueezeBertTokenizer def __init__( self , a=None , a=None , a=True , a="[UNK]" , a="[SEP]" , a="[PAD]" , a="[CLS]" , a="[MASK]" , a=True , a=None , **a , ) -> Tuple: super().__init__( a , tokenizer_file=a , do_lower_case=a , unk_token=a , sep_token=a , pad_token=a , cls_token=a , mask_token=a , tokenize_chinese_chars=a , strip_accents=a , **a , ) snake_case_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , a ) != do_lower_case or normalizer_state.get('strip_accents' , a ) != strip_accents or normalizer_state.get('handle_chinese_chars' , a ) != tokenize_chinese_chars ): snake_case_ = getattr(a , normalizer_state.pop('type' ) ) snake_case_ = do_lower_case snake_case_ = strip_accents snake_case_ = tokenize_chinese_chars snake_case_ = normalizer_class(**a ) snake_case_ = do_lower_case def _UpperCamelCase ( self , a , a=None ) -> Tuple: snake_case_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _UpperCamelCase ( self , a , a = None ) -> List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCamelCase ( self , a , a = None ) -> Tuple[str]: snake_case_ = self._tokenizer.model.save(a , name=a ) return tuple(a )
178
0
"""simple docstring""" def __lowerCamelCase ( __UpperCamelCase = 4000000 ) -> Optional[Any]: """simple docstring""" lowerCAmelCase_ : Dict = [] lowerCAmelCase_ : List[str] = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(_UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = b, a + b return sum(_UpperCAmelCase ) if __name__ == "__main__": print(F"""{solution() = }""")
365
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { """EleutherAI/gpt-neo-1.3B""": """https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json""", # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class __lowerCamelCase ( A__ ): '''simple docstring''' a_ : Union[str, Any] = """gpt_neo""" a_ : List[Any] = ["""past_key_values"""] a_ : Optional[Any] = {"""num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""} def __init__( self : Optional[int] , a_ : List[str]=5_02_57 , a_ : List[str]=20_48 , a_ : Union[str, Any]=20_48 , a_ : Union[str, Any]=24 , a_ : Optional[int]=[[["global", "local"], 12]] , a_ : str=16 , a_ : Optional[Any]=None , a_ : str=2_56 , a_ : Union[str, Any]="gelu_new" , a_ : Optional[int]=0.0 , a_ : Optional[Any]=0.0 , a_ : List[Any]=0.0 , a_ : List[Any]=0.1 , a_ : Optional[Any]=1e-5 , a_ : Optional[Any]=0.02 , a_ : int=True , a_ : Optional[Any]=5_02_56 , a_ : Tuple=5_02_56 , **a_ : str , ): lowerCAmelCase_ : Optional[Any] = vocab_size lowerCAmelCase_ : str = max_position_embeddings lowerCAmelCase_ : Tuple = hidden_size lowerCAmelCase_ : Union[str, Any] = num_layers lowerCAmelCase_ : str = num_heads lowerCAmelCase_ : List[str] = intermediate_size lowerCAmelCase_ : Union[str, Any] = window_size lowerCAmelCase_ : Any = activation_function lowerCAmelCase_ : str = resid_dropout lowerCAmelCase_ : Union[str, Any] = embed_dropout lowerCAmelCase_ : Optional[Any] = attention_dropout lowerCAmelCase_ : Dict = classifier_dropout lowerCAmelCase_ : int = layer_norm_epsilon lowerCAmelCase_ : Dict = initializer_range lowerCAmelCase_ : List[Any] = use_cache lowerCAmelCase_ : Optional[int] = bos_token_id lowerCAmelCase_ : str = eos_token_id lowerCAmelCase_ : Optional[Any] = attention_types lowerCAmelCase_ : Optional[Any] = self.expand_attention_types_params(a_ ) if len(self.attention_layers ) != self.num_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.attention_layers)` == `config.num_layers` " f'''but is `len(config.attention_layers) = {len(self.attention_layers )}`, ''' f'''`config.num_layers = {self.num_layers}`. ''' "`config.attention_layers` is prepared using `config.attention_types`. " "Please verify the value of `config.attention_types` argument." ) super().__init__(bos_token_id=a_ , eos_token_id=a_ , **a_ ) @staticmethod def lowerCamelCase ( a_ : Optional[Any] ): lowerCAmelCase_ : int = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int: """simple docstring""" import torch lowerCAmelCase_ : str = input.size() lowerCAmelCase_ : List[Any] = len(__UpperCamelCase ) lowerCAmelCase_ : Tuple = shape[dimension] lowerCAmelCase_ : Tuple = torch.arange(0 , __UpperCamelCase , __UpperCamelCase ) lowerCAmelCase_ : List[Any] = torch.div(sizedim - size , __UpperCamelCase , rounding_mode="floor" ) + 1 lowerCAmelCase_ : Dict = torch.arange(__UpperCamelCase ) + low_indices[:min_length][:, None] lowerCAmelCase_ : Tuple = [slice(__UpperCamelCase )] * rank lowerCAmelCase_ : List[str] = indices lowerCAmelCase_ : Dict = input[s] lowerCAmelCase_ : Tuple = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(__UpperCamelCase ) def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase ) -> Any: """simple docstring""" import torch lowerCAmelCase_ : Optional[int] = torch.arange(1 , __UpperCamelCase ) lowerCAmelCase_ : Tuple = torch.remainder(__UpperCamelCase , __UpperCamelCase ) lowerCAmelCase_ : Tuple = remainders == 0 lowerCAmelCase_ : List[Any] = candidates[divisor_indices] lowerCAmelCase_ : List[str] = torch.max(__UpperCamelCase ) return largest_divisor, torch.div(__UpperCamelCase , __UpperCamelCase , rounding_mode="floor" ) class __lowerCamelCase ( A__ ): '''simple docstring''' @property def lowerCamelCase ( self : List[str] ): lowerCAmelCase_ : Any = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(a_ , direction="inputs" ) lowerCAmelCase_ : int = {0: "batch", 1: "past_sequence + sequence"} else: lowerCAmelCase_ : str = {0: "batch", 1: "sequence"} return common_inputs @property def lowerCamelCase ( self : int ): return self._config.num_heads def lowerCamelCase ( self : Optional[Any] , a_ : PreTrainedTokenizer , a_ : int = -1 , a_ : int = -1 , a_ : bool = False , a_ : Optional[TensorType] = None , ): lowerCAmelCase_ : int = super(a_ , self ).generate_dummy_inputs( a_ , batch_size=a_ , seq_length=a_ , is_pair=a_ , framework=a_ ) # We need to order the input in the way they appears in the forward() lowerCAmelCase_ : str = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = common_inputs["input_ids"].shape # Not using the same length for past_key_values lowerCAmelCase_ : str = seqlen + 2 lowerCAmelCase_ : Tuple = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowerCAmelCase_ : Optional[int] = [ (torch.zeros(a_ ), torch.zeros(a_ )) for _ in range(self.num_layers ) ] lowerCAmelCase_ : Tuple = common_inputs["attention_mask"] if self.use_past: lowerCAmelCase_ : List[str] = ordered_inputs["attention_mask"].dtype lowerCAmelCase_ : Optional[Any] = torch.cat( [ordered_inputs["attention_mask"], torch.ones(a_ , a_ , dtype=a_ )] , dim=1 ) return ordered_inputs @property def lowerCamelCase ( self : Union[str, Any] ): return 13
161
0
SCREAMING_SNAKE_CASE :int = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def UpperCAmelCase ( ) -> None: """simple docstring""" __A = input("Enter message: " ) __A = input("Enter key [alphanumeric]: " ) __A = input("Encrypt/Decrypt [e/d]: " ) if mode.lower().startswith("e" ): __A = "encrypt" __A = encrypt_message(a_ , a_ ) elif mode.lower().startswith("d" ): __A = "decrypt" __A = decrypt_message(a_ , a_ ) print(F'''\n{mode.title()}ed message:''' ) print(a_ ) def UpperCAmelCase ( a_ , a_ ) -> str: """simple docstring""" return translate_message(a_ , a_ , "encrypt" ) def UpperCAmelCase ( a_ , a_ ) -> str: """simple docstring""" return translate_message(a_ , a_ , "decrypt" ) def UpperCAmelCase ( a_ , a_ , a_ ) -> str: """simple docstring""" __A = [] __A = 0 __A = key.upper() for symbol in message: __A = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(a_ ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(a_ ): __A = 0 else: translated.append(a_ ) return "".join(a_ ) if __name__ == "__main__": main()
15
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE :Optional[int] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :Optional[int] = {'vocab_file': 'sentencepiece.bpe.model'} SCREAMING_SNAKE_CASE :Tuple = { 'vocab_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model', } } SCREAMING_SNAKE_CASE :List[Any] = { 'camembert-base': 512, } SCREAMING_SNAKE_CASE :List[str] = '▁' class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ["input_ids", "attention_mask"] def __init__( self : Optional[Any] ,A : List[str] ,A : List[Any]="<s>" ,A : Tuple="</s>" ,A : Any="</s>" ,A : Optional[Any]="<s>" ,A : Tuple="<unk>" ,A : str="<pad>" ,A : int="<mask>" ,A : Optional[int]=["<s>NOTUSED", "</s>NOTUSED"] ,A : Optional[Dict[str, Any]] = None ,**A : Optional[Any] ,): # Mask token behave like a normal word, i.e. include the space before it __A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else mask_token __A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A ,eos_token=A ,unk_token=A ,sep_token=A ,cls_token=A ,pad_token=A ,mask_token=A ,additional_special_tokens=A ,sp_model_kwargs=self.sp_model_kwargs ,**A ,) __A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(A ) ) __A = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> __A = {"<s>NOTUSED": 0, "<pad>": 1, "</s>NOTUSED": 2, "<unk>": 3} __A = len(self.fairseq_tokens_to_ids ) __A = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) __A = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def UpperCamelCase_ ( self : int ,A : List[int] ,A : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __A = [self.cls_token_id] __A = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase_ ( self : Dict ,A : List[int] ,A : Optional[List[int]] = None ,A : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A ,token_ids_a=A ,already_has_special_tokens=A ) if token_ids_a is None: return [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1, 1] + ([0] * len(A )) + [1] def UpperCamelCase_ ( self : Union[str, Any] ,A : List[int] ,A : Optional[List[int]] = None ): __A = [self.sep_token_id] __A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCamelCase_ ( self : Dict ): return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def UpperCamelCase_ ( self : int ): __A = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase_ ( self : Any ,A : str ): return self.sp_model.encode(A ,out_type=A ) def UpperCamelCase_ ( self : List[str] ,A : Dict ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(A ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(A ) def UpperCamelCase_ ( self : Dict ,A : Tuple ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCamelCase_ ( self : Optional[Any] ,A : Dict ): __A = [] __A = "" __A = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(A ) + token __A = True __A = [] else: current_sub_tokens.append(A ) __A = False out_string += self.sp_model.decode(A ) return out_string.strip() def __getstate__( self : Dict ): __A = self.__dict__.copy() __A = None return state def __setstate__( self : Union[str, Any] ,A : Any ): __A = d # for backward compatibility if not hasattr(self ,"sp_model_kwargs" ): __A = {} __A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase_ ( self : Any ,A : str ,A : Optional[str] = None ): if not os.path.isdir(A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __A = os.path.join( A ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,A ) elif not os.path.isfile(self.vocab_file ): with open(A ,"wb" ) as fi: __A = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,)
15
1
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict=2_8123 ) -> str: UpperCAmelCase_ = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i UpperCAmelCase_ = set() UpperCAmelCase_ = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(__UpperCamelCase ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
370
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> Dict: # initialize config if "resnet-50" in model_name: UpperCAmelCase_ = ResNetConfig.from_pretrained('''microsoft/resnet-50''' ) elif "resnet-101" in model_name: UpperCAmelCase_ = ResNetConfig.from_pretrained('''microsoft/resnet-101''' ) else: raise ValueError('''Model name should include either resnet50 or resnet101''' ) UpperCAmelCase_ = DetrConfig(use_timm_backbone=__UpperCamelCase , backbone_config=__UpperCamelCase ) # set label attributes UpperCAmelCase_ = '''panoptic''' in model_name if is_panoptic: UpperCAmelCase_ = 250 else: UpperCAmelCase_ = 91 UpperCAmelCase_ = '''huggingface/label-files''' UpperCAmelCase_ = '''coco-detection-id2label.json''' UpperCAmelCase_ = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase_ = {int(__UpperCamelCase ): v for k, v in idalabel.items()} UpperCAmelCase_ = idalabel UpperCAmelCase_ = {v: k for k, v in idalabel.items()} return config, is_panoptic def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] ) -> Union[str, Any]: # here we list all keys to be renamed (original name on the left, our name on the right) UpperCAmelCase_ = [] # stem # fmt: off rename_keys.append(('''backbone.0.body.conv1.weight''', '''backbone.conv_encoder.model.embedder.embedder.convolution.weight''') ) rename_keys.append(('''backbone.0.body.bn1.weight''', '''backbone.conv_encoder.model.embedder.embedder.normalization.weight''') ) rename_keys.append(('''backbone.0.body.bn1.bias''', '''backbone.conv_encoder.model.embedder.embedder.normalization.bias''') ) rename_keys.append(('''backbone.0.body.bn1.running_mean''', '''backbone.conv_encoder.model.embedder.embedder.normalization.running_mean''') ) rename_keys.append(('''backbone.0.body.bn1.running_var''', '''backbone.conv_encoder.model.embedder.embedder.normalization.running_var''') ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var', ) ) # 3 convs for i in range(3 ): rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var', ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( f'transformer.encoder.layers.{i}.self_attn.out_proj.weight', f'encoder.layers.{i}.self_attn.out_proj.weight', ) ) rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.bias', f'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'encoder.layers.{i}.fc1.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'encoder.layers.{i}.fc1.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'encoder.layers.{i}.fc2.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'encoder.layers.{i}.fc2.bias') ) rename_keys.append( (f'transformer.encoder.layers.{i}.norm1.weight', f'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.encoder.layers.{i}.norm1.bias', f'encoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append( (f'transformer.encoder.layers.{i}.norm2.weight', f'encoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'encoder.layers.{i}.final_layer_norm.bias') ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'decoder.layers.{i}.self_attn.out_proj.weight', ) ) rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( f'transformer.decoder.layers.{i}.multihead_attn.out_proj.weight', f'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( f'transformer.decoder.layers.{i}.multihead_attn.out_proj.bias', f'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'decoder.layers.{i}.fc1.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'decoder.layers.{i}.fc1.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'decoder.layers.{i}.fc2.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'decoder.layers.{i}.fc2.bias') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm1.weight', f'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm1.bias', f'decoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.weight', f'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.bias', f'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm3.weight', f'decoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'decoder.layers.{i}.final_layer_norm.bias') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ] ) return rename_keys def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Optional[int] ) -> Union[str, Any]: UpperCAmelCase_ = state_dict.pop(__UpperCamelCase ) UpperCAmelCase_ = val def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : List[Any]=False ) -> Dict: UpperCAmelCase_ = '''''' if is_panoptic: UpperCAmelCase_ = '''detr.''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) UpperCAmelCase_ = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[:256, :] UpperCAmelCase_ = in_proj_bias[:256] UpperCAmelCase_ = in_proj_weight[256:512, :] UpperCAmelCase_ = in_proj_bias[256:512] UpperCAmelCase_ = in_proj_weight[-256:, :] UpperCAmelCase_ = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention UpperCAmelCase_ = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) UpperCAmelCase_ = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[:256, :] UpperCAmelCase_ = in_proj_bias[:256] UpperCAmelCase_ = in_proj_weight[256:512, :] UpperCAmelCase_ = in_proj_bias[256:512] UpperCAmelCase_ = in_proj_weight[-256:, :] UpperCAmelCase_ = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention UpperCAmelCase_ = state_dict.pop( f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight' ) UpperCAmelCase_ = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) of cross-attention to the state dict UpperCAmelCase_ = in_proj_weight_cross_attn[:256, :] UpperCAmelCase_ = in_proj_bias_cross_attn[:256] UpperCAmelCase_ = in_proj_weight_cross_attn[256:512, :] UpperCAmelCase_ = in_proj_bias_cross_attn[256:512] UpperCAmelCase_ = in_proj_weight_cross_attn[-256:, :] UpperCAmelCase_ = in_proj_bias_cross_attn[-256:] def SCREAMING_SNAKE_CASE ( ) -> int: UpperCAmelCase_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase_ = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple , __UpperCamelCase : Any=None , __UpperCamelCase : Optional[Any]=False ) -> Optional[Any]: UpperCAmelCase_ , UpperCAmelCase_ = get_detr_config(__UpperCamelCase ) # load original model from torch hub UpperCAmelCase_ = { '''detr-resnet-50''': '''detr_resnet50''', '''detr-resnet-101''': '''detr_resnet101''', } logger.info(f'Converting model {model_name}...' ) UpperCAmelCase_ = torch.hub.load('''facebookresearch/detr''' , model_name_to_original_name[model_name] , pretrained=__UpperCamelCase ).eval() UpperCAmelCase_ = detr.state_dict() # rename keys for src, dest in create_rename_keys(__UpperCamelCase ): if is_panoptic: UpperCAmelCase_ = '''detr.''' + src rename_key(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # query, key and value matrices need special treatment read_in_q_k_v(__UpperCamelCase , is_panoptic=__UpperCamelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCAmelCase_ = '''detr.model.''' if is_panoptic else '''model.''' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('''detr''' ) and not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ) ): UpperCAmelCase_ = state_dict.pop(__UpperCamelCase ) UpperCAmelCase_ = val elif "class_labels_classifier" in key or "bbox_predictor" in key: UpperCAmelCase_ = state_dict.pop(__UpperCamelCase ) UpperCAmelCase_ = val elif key.startswith('''bbox_attention''' ) or key.startswith('''mask_head''' ): continue else: UpperCAmelCase_ = state_dict.pop(__UpperCamelCase ) UpperCAmelCase_ = val else: if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): UpperCAmelCase_ = state_dict.pop(__UpperCamelCase ) UpperCAmelCase_ = val # finally, create HuggingFace model and load state dict UpperCAmelCase_ = DetrForSegmentation(__UpperCamelCase ) if is_panoptic else DetrForObjectDetection(__UpperCamelCase ) model.load_state_dict(__UpperCamelCase ) model.eval() # verify our conversion on an image UpperCAmelCase_ = '''coco_panoptic''' if is_panoptic else '''coco_detection''' UpperCAmelCase_ = DetrImageProcessor(format=__UpperCamelCase ) UpperCAmelCase_ = processor(images=prepare_img() , return_tensors='''pt''' ) UpperCAmelCase_ = encoding['''pixel_values'''] UpperCAmelCase_ = detr(__UpperCamelCase ) UpperCAmelCase_ = model(__UpperCamelCase ) assert torch.allclose(outputs.logits , original_outputs['''pred_logits'''] , atol=1e-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs['''pred_boxes'''] , atol=1e-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['''pred_masks'''] , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) processor.save_pretrained(__UpperCamelCase ) if push_to_hub: # Upload model and image processor to the hub logger.info('''Uploading PyTorch model and image processor to the hub...''' ) model.push_to_hub(f'nielsr/{model_name}' ) processor.push_to_hub(f'nielsr/{model_name}' ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() parser.add_argument( '--model_name', default='detr-resnet-50', type=str, choices=['detr-resnet-50', 'detr-resnet-101'], help='Name of the DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument('--push_to_hub', action='store_true', help='Whether to push the model to the hub or not.') _lowerCamelCase = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
177
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __lowerCAmelCase : List[str] = { 'configuration_longt5': ['LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LongT5Config', 'LongT5OnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : int = [ 'LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'LongT5EncoderModel', 'LongT5ForConditionalGeneration', 'LongT5Model', 'LongT5PreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Tuple = [ 'FlaxLongT5ForConditionalGeneration', 'FlaxLongT5Model', 'FlaxLongT5PreTrainedModel', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys __lowerCAmelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
107
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a : List[str] = { 'configuration_vision_encoder_decoder': ['VisionEncoderDecoderConfig', 'VisionEncoderDecoderOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = ['VisionEncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = ['TFVisionEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Tuple = ['FlaxVisionEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys a : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
147
0
import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin UpperCAmelCase = random.Random() if is_torch_available(): import torch def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None )-> Optional[int]: """simple docstring""" if rng is None: snake_case_ = global_rng snake_case_ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=7 , _UpperCAmelCase=4_00 , _UpperCAmelCase=20_00 , _UpperCAmelCase=1 , _UpperCAmelCase=0.0 , _UpperCAmelCase=1_60_00 , _UpperCAmelCase=True , _UpperCAmelCase=True , ): snake_case_ = parent snake_case_ = batch_size snake_case_ = min_seq_length snake_case_ = max_seq_length snake_case_ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) snake_case_ = feature_size snake_case_ = padding_value snake_case_ = sampling_rate snake_case_ = return_attention_mask snake_case_ = do_normalize def UpperCamelCase__ ( self ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def UpperCamelCase__ ( self , _UpperCAmelCase=False , _UpperCAmelCase=False ): def _flatten(_UpperCAmelCase ): return list(itertools.chain(*_UpperCAmelCase ) ) if equal_length: snake_case_ = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size snake_case_ = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: snake_case_ = [np.asarray(_UpperCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowerCAmelCase_ ( lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' __snake_case = ASTFeatureExtractor def UpperCamelCase__ ( self ): snake_case_ = ASTFeatureExtractionTester(self ) def UpperCamelCase__ ( self ): # Tests that all call wrap to encode_plus and batch_encode_plus snake_case_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 snake_case_ = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] snake_case_ = [np.asarray(_UpperCAmelCase ) for speech_input in speech_inputs] # Test not batched input snake_case_ = feat_extract(speech_inputs[0] , return_tensors='''np''' ).input_values snake_case_ = feat_extract(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-3 ) ) # Test batched snake_case_ = feat_extract(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors='''np''' ).input_values snake_case_ = feat_extract(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. snake_case_ = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] snake_case_ = np.asarray(_UpperCAmelCase ) snake_case_ = feat_extract(_UpperCAmelCase , return_tensors='''np''' ).input_values snake_case_ = feat_extract(_UpperCAmelCase , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-3 ) ) @require_torch def UpperCamelCase__ ( self ): import torch snake_case_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case_ = np.random.rand(1_00 ).astype(np.floataa ) snake_case_ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: snake_case_ = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) snake_case_ = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def UpperCamelCase__ ( self , _UpperCAmelCase ): from datasets import load_dataset snake_case_ = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech snake_case_ = ds.sort('''id''' ).select(range(_UpperCAmelCase ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] @require_torch def UpperCamelCase__ ( self ): # fmt: off snake_case_ = torch.tensor( [-0.9_894, -1.2_776, -0.9_066, -1.2_776, -0.9_349, -1.2_609, -1.0_386, -1.2_776, -1.1_561, -1.2_776, -1.2_052, -1.2_723, -1.2_190, -1.2_132, -1.2_776, -1.1_133, -1.1_953, -1.1_343, -1.1_584, -1.2_203, -1.1_770, -1.2_474, -1.2_381, -1.1_936, -0.9_270, -0.8_317, -0.8_049, -0.7_706, -0.7_565, -0.7_869] ) # fmt: on snake_case_ = self._load_datasamples(1 ) snake_case_ = ASTFeatureExtractor() snake_case_ = feature_extractor(_UpperCAmelCase , return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape , (1, 10_24, 1_28) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , _UpperCAmelCase , atol=1E-4 ) )
267
import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> Tuple: """simple docstring""" if ( (cp >= 0X4E00 and cp <= 0X9FFF) or (cp >= 0X3400 and cp <= 0X4DBF) # or (cp >= 0X2_0000 and cp <= 0X2_A6DF) # or (cp >= 0X2_A700 and cp <= 0X2_B73F) # or (cp >= 0X2_B740 and cp <= 0X2_B81F) # or (cp >= 0X2_B820 and cp <= 0X2_CEAF) # or (cp >= 0XF900 and cp <= 0XFAFF) or (cp >= 0X2_F800 and cp <= 0X2_FA1F) # ): # return True return False def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> List[Any]: """simple docstring""" for char in word: snake_case_ = ord(SCREAMING_SNAKE_CASE ) if not _is_chinese_char(SCREAMING_SNAKE_CASE ): return 0 return 1 def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> str: """simple docstring""" snake_case_ = set() for token in tokens: snake_case_ = len(SCREAMING_SNAKE_CASE ) > 1 and is_chinese(SCREAMING_SNAKE_CASE ) if chinese_word: word_set.add(SCREAMING_SNAKE_CASE ) snake_case_ = list(SCREAMING_SNAKE_CASE ) return word_list def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> List[str]: """simple docstring""" if not chinese_word_set: return bert_tokens snake_case_ = max([len(SCREAMING_SNAKE_CASE ) for w in chinese_word_set] ) snake_case_ = bert_tokens snake_case_ , snake_case_ = 0, len(SCREAMING_SNAKE_CASE ) while start < end: snake_case_ = True if is_chinese(bert_word[start] ): snake_case_ = min(end - start , SCREAMING_SNAKE_CASE ) for i in range(SCREAMING_SNAKE_CASE , 1 , -1 ): snake_case_ = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): snake_case_ = '''##''' + bert_word[j] snake_case_ = start + i snake_case_ = False break if single_word: start += 1 return bert_word def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> Any: """simple docstring""" snake_case_ = [] for i in range(0 , len(SCREAMING_SNAKE_CASE ) , 100 ): snake_case_ = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=['''cws'''] ).cws snake_case_ = [get_chinese_word(SCREAMING_SNAKE_CASE ) for r in res] ltp_res.extend(SCREAMING_SNAKE_CASE ) assert len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE ) snake_case_ = [] for i in range(0 , len(SCREAMING_SNAKE_CASE ) , 100 ): snake_case_ = bert_tokenizer(lines[i : i + 100] , add_special_tokens=SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE , max_length=512 ) bert_res.extend(res['''input_ids'''] ) assert len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE ) snake_case_ = [] for input_ids, chinese_word in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): snake_case_ = [] for id in input_ids: snake_case_ = bert_tokenizer._convert_id_to_token(SCREAMING_SNAKE_CASE ) input_tokens.append(SCREAMING_SNAKE_CASE ) snake_case_ = add_sub_symbol(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) snake_case_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(SCREAMING_SNAKE_CASE ): if token[:2] == "##": snake_case_ = token[2:] # save chinese tokens' pos if len(SCREAMING_SNAKE_CASE ) == 1 and _is_chinese_char(ord(SCREAMING_SNAKE_CASE ) ): ref_id.append(SCREAMING_SNAKE_CASE ) ref_ids.append(SCREAMING_SNAKE_CASE ) assert len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE ) return ref_ids def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> Tuple: """simple docstring""" with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f: snake_case_ = f.readlines() snake_case_ = [line.strip() for line in data if len(SCREAMING_SNAKE_CASE ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' snake_case_ = LTP(args.ltp ) # faster in GPU device snake_case_ = BertTokenizer.from_pretrained(args.bert ) snake_case_ = prepare_ref(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f: snake_case_ = [json.dumps(SCREAMING_SNAKE_CASE ) + '''\n''' for ref in ref_ids] f.writelines(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", required=False, type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", required=False, type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""", ) parser.add_argument( """--bert""", required=False, type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""", ) parser.add_argument( """--save_path""", required=False, type=str, default="""./resources/ref.txt""", help="""path to save res""", ) UpperCAmelCase = parser.parse_args() main(args)
267
1
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class lowercase : def __init__( self , snake_case , snake_case=13 , snake_case=7 , snake_case=True , snake_case=True , snake_case=True , snake_case=True , snake_case=99 , snake_case=32 , snake_case=2 , snake_case=4 , snake_case=37 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=512 , snake_case=16 , snake_case=2 , snake_case=0.02 , snake_case=3 , snake_case=4 , snake_case=None , ): snake_case_ = parent snake_case_ = 13 snake_case_ = 7 snake_case_ = True snake_case_ = True snake_case_ = True snake_case_ = True snake_case_ = 99 snake_case_ = 32 snake_case_ = 2 snake_case_ = 4 snake_case_ = 37 snake_case_ = 'gelu' snake_case_ = 0.1 snake_case_ = 0.1 snake_case_ = 512 snake_case_ = 16 snake_case_ = 2 snake_case_ = 0.02 snake_case_ = 3 snake_case_ = 4 snake_case_ = None def a ( self ): snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ = None snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=snake_case , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ): snake_case_ = TFRoFormerModel(config=snake_case ) snake_case_ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} snake_case_ = [input_ids, input_mask] snake_case_ = model(snake_case ) snake_case_ = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ): snake_case_ = True snake_case_ = TFRoFormerForCausalLM(config=snake_case ) snake_case_ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } snake_case_ = model(snake_case )['logits'] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ): snake_case_ = TFRoFormerForMaskedLM(config=snake_case ) snake_case_ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } snake_case_ = model(snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ): snake_case_ = self.num_labels snake_case_ = TFRoFormerForSequenceClassification(config=snake_case ) snake_case_ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } snake_case_ = model(snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ): snake_case_ = self.num_choices snake_case_ = TFRoFormerForMultipleChoice(config=snake_case ) snake_case_ = tf.tile(tf.expand_dims(snake_case , 1 ) , (1, self.num_choices, 1) ) snake_case_ = tf.tile(tf.expand_dims(snake_case , 1 ) , (1, self.num_choices, 1) ) snake_case_ = tf.tile(tf.expand_dims(snake_case , 1 ) , (1, self.num_choices, 1) ) snake_case_ = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } snake_case_ = model(snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ): snake_case_ = self.num_labels snake_case_ = TFRoFormerForTokenClassification(config=snake_case ) snake_case_ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } snake_case_ = model(snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ): snake_case_ = TFRoFormerForQuestionAnswering(config=snake_case ) snake_case_ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } snake_case_ = model(snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a ( self ): snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) = config_and_inputs snake_case_ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowercase ( lowercase_ , lowercase_ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Union[str, Any] = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) __SCREAMING_SNAKE_CASE : Any = ( { '''feature-extraction''': TFRoFormerModel, '''fill-mask''': TFRoFormerForMaskedLM, '''question-answering''': TFRoFormerForQuestionAnswering, '''text-classification''': TFRoFormerForSequenceClassification, '''text-generation''': TFRoFormerForCausalLM, '''token-classification''': TFRoFormerForTokenClassification, '''zero-shot''': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) __SCREAMING_SNAKE_CASE : Optional[Any] = False __SCREAMING_SNAKE_CASE : int = False def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case ): if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def a ( self ): snake_case_ = TFRoFormerModelTester(self ) snake_case_ = ConfigTester(self , config_class=snake_case , hidden_size=37 ) def a ( self ): self.config_tester.run_common_tests() def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case ) def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*snake_case ) def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case ) def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case ) def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case ) def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case ) @slow def a ( self ): snake_case_ = TFRoFormerModel.from_pretrained('junnyu/roformer_chinese_base' ) self.assertIsNotNone(snake_case ) @require_tf class lowercase ( unittest.TestCase ): @slow def a ( self ): snake_case_ = TFRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) snake_case_ = tf.constant([[0, 1, 2, 3, 4, 5]] ) snake_case_ = model(snake_case )[0] # TODO Replace vocab size snake_case_ = 5_0000 snake_case_ = [1, 6, vocab_size] self.assertEqual(output.shape , snake_case ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. snake_case_ = tf.constant( [ [ [-0.12_05_33_41, -1.0_26_49_01, 0.29_22_19_46], [-1.5_13_37_83, 0.19_74_33, 0.15_19_06_07], [-5.0_13_54_03, -3.90_02_56, -0.84_03_87_64], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , snake_case , atol=1e-4 ) @require_tf class lowercase ( unittest.TestCase ): __SCREAMING_SNAKE_CASE : Dict = 1e-4 def a ( self ): snake_case_ = tf.constant([[4, 10]] ) snake_case_ = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) snake_case_ = emba(input_ids.shape ) snake_case_ = tf.constant( [[0.00_00, 0.00_00, 0.00_00, 1.00_00, 1.00_00, 1.00_00], [0.84_15, 0.04_64, 0.00_22, 0.54_03, 0.99_89, 1.00_00]] ) tf.debugging.assert_near(snake_case , snake_case , atol=self.tolerance ) def a ( self ): snake_case_ = tf.constant( [ [0.00_00, 0.00_00, 0.00_00, 0.00_00, 0.00_00], [0.84_15, 0.82_19, 0.80_20, 0.78_19, 0.76_17], [0.90_93, 0.93_64, 0.95_81, 0.97_49, 0.98_70], ] ) snake_case_ = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) snake_case_ = emba.weight[:3, :5] tf.debugging.assert_near(snake_case , snake_case , atol=self.tolerance ) @require_tf class lowercase ( unittest.TestCase ): __SCREAMING_SNAKE_CASE : str = 1e-4 def a ( self ): # 2,12,16,64 snake_case_ = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 snake_case_ = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 snake_case_ = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) snake_case_ = embed_positions([2, 16, 768] )[None, None, :, :] snake_case_ , snake_case_ = TFRoFormerSelfAttention.apply_rotary_position_embeddings( snake_case , snake_case , snake_case ) snake_case_ = tf.constant( [ [0.00_00, 0.01_00, 0.02_00, 0.03_00, 0.04_00, 0.05_00, 0.06_00, 0.07_00], [-0.20_12, 0.88_97, 0.02_63, 0.94_01, 0.20_74, 0.94_63, 0.34_81, 0.93_43], [-1.70_57, 0.62_71, -1.21_45, 1.38_97, -0.63_03, 1.76_47, -0.11_73, 1.89_85], [-2.17_31, -1.63_97, -2.73_58, 0.28_54, -2.18_40, 1.71_83, -1.30_18, 2.48_71], [0.27_17, -3.61_73, -2.92_06, -2.19_88, -3.66_38, 0.38_58, -2.91_55, 2.29_80], [3.98_59, -2.15_80, -0.79_84, -4.49_04, -4.11_81, -2.02_52, -4.47_82, 1.12_53], ] ) snake_case_ = tf.constant( [ [0.00_00, -0.01_00, -0.02_00, -0.03_00, -0.04_00, -0.05_00, -0.06_00, -0.07_00], [0.20_12, -0.88_97, -0.02_63, -0.94_01, -0.20_74, -0.94_63, -0.34_81, -0.93_43], [1.70_57, -0.62_71, 1.21_45, -1.38_97, 0.63_03, -1.76_47, 0.11_73, -1.89_85], [2.17_31, 1.63_97, 2.73_58, -0.28_54, 2.18_40, -1.71_83, 1.30_18, -2.48_71], [-0.27_17, 3.61_73, 2.92_06, 2.19_88, 3.66_38, -0.38_58, 2.91_55, -2.29_80], [-3.98_59, 2.15_80, 0.79_84, 4.49_04, 4.11_81, 2.02_52, 4.47_82, -1.12_53], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , snake_case , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , snake_case , atol=self.tolerance )
285
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _UpperCAmelCase : Tuple = logging.get_logger(__name__) class lowercase ( lowercase_ ): __SCREAMING_SNAKE_CASE : Optional[Any] = ['''input_features''', '''is_longer'''] def __init__( self , snake_case=64 , snake_case=4_8000 , snake_case=480 , snake_case=10 , snake_case=1024 , snake_case=0.0 , snake_case=False , snake_case = 0 , snake_case = 1_4000 , snake_case = None , snake_case = "fusion" , snake_case = "repeatpad" , **snake_case , ): super().__init__( feature_size=snake_case , sampling_rate=snake_case , padding_value=snake_case , return_attention_mask=snake_case , **snake_case , ) snake_case_ = top_db snake_case_ = truncation snake_case_ = padding snake_case_ = fft_window_size snake_case_ = (fft_window_size >> 1) + 1 snake_case_ = hop_length snake_case_ = max_length_s snake_case_ = max_length_s * sampling_rate snake_case_ = sampling_rate snake_case_ = frequency_min snake_case_ = frequency_max snake_case_ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=snake_case , min_frequency=snake_case , max_frequency=snake_case , sampling_rate=snake_case , norm=snake_case , mel_scale='htk' , ) snake_case_ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=snake_case , min_frequency=snake_case , max_frequency=snake_case , sampling_rate=snake_case , norm='slaney' , mel_scale='slaney' , ) def a ( self ): snake_case_ = copy.deepcopy(self.__dict__ ) snake_case_ = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def a ( self , snake_case , snake_case = None ): snake_case_ = spectrogram( snake_case , window_function(self.fft_window_size , 'hann' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=snake_case , log_mel='dB' , ) return log_mel_spectrogram.T def a ( self , snake_case , snake_case , snake_case ): snake_case_ = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk snake_case_ = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk snake_case_ = [0] # randomly choose index for each part snake_case_ = np.random.choice(ranges[0] ) snake_case_ = np.random.choice(ranges[1] ) snake_case_ = np.random.choice(ranges[2] ) snake_case_ = mel[idx_front : idx_front + chunk_frames, :] snake_case_ = mel[idx_middle : idx_middle + chunk_frames, :] snake_case_ = mel[idx_back : idx_back + chunk_frames, :] snake_case_ = torch.tensor(mel[None, None, :] ) snake_case_ = torch.nn.functional.interpolate( snake_case , size=[chunk_frames, 64] , mode='bilinear' , align_corners=snake_case ) snake_case_ = mel_shrink[0][0].numpy() snake_case_ = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def a ( self , snake_case , snake_case , snake_case , snake_case ): if waveform.shape[0] > max_length: if truncation == "rand_trunc": snake_case_ = True # random crop to max_length (for compatibility) -> this should be handled by self.pad snake_case_ = len(snake_case ) - max_length snake_case_ = np.random.randint(0 , overflow + 1 ) snake_case_ = waveform[idx : idx + max_length] snake_case_ = self._np_extract_fbank_features(snake_case , self.mel_filters_slaney )[None, :] elif truncation == "fusion": snake_case_ = self._np_extract_fbank_features(snake_case , self.mel_filters ) snake_case_ = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed snake_case_ = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. snake_case_ = np.stack([mel, mel, mel, mel] , axis=0 ) snake_case_ = False else: snake_case_ = self._random_mel_fusion(snake_case , snake_case , snake_case ) snake_case_ = True else: raise NotImplementedError(F'''data_truncating {truncation} not implemented''' ) else: snake_case_ = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": snake_case_ = int(max_length / len(snake_case ) ) snake_case_ = np.stack(np.tile(snake_case , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": snake_case_ = int(max_length / len(snake_case ) ) snake_case_ = np.stack(np.tile(snake_case , snake_case ) ) snake_case_ = np.pad(snake_case , (0, max_length - waveform.shape[0]) , mode='constant' , constant_values=0 ) if truncation == "fusion": snake_case_ = self._np_extract_fbank_features(snake_case , self.mel_filters ) snake_case_ = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: snake_case_ = self._np_extract_fbank_features(snake_case , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self , snake_case , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , **snake_case , ): snake_case_ = truncation if truncation is not None else self.truncation snake_case_ = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) snake_case_ = isinstance(snake_case , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) snake_case_ = is_batched_numpy or ( isinstance(snake_case , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: snake_case_ = [np.asarray(snake_case , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(snake_case , np.ndarray ): snake_case_ = np.asarray(snake_case , dtype=np.floataa ) elif isinstance(snake_case , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): snake_case_ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: snake_case_ = [np.asarray(snake_case )] # convert to mel spectrogram, truncate and pad if needed. snake_case_ = [ self._get_input_mel(snake_case , max_length if max_length else self.nb_max_samples , snake_case , snake_case ) for waveform in raw_speech ] snake_case_ = [] snake_case_ = [] for mel, longer in padded_inputs: input_mel.append(snake_case ) is_longer.append(snake_case ) if truncation == "fusion" and sum(snake_case ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer snake_case_ = np.random.randint(0 , len(snake_case ) ) snake_case_ = True if isinstance(input_mel[0] , snake_case ): snake_case_ = [np.asarray(snake_case , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool snake_case_ = [[longer] for longer in is_longer] snake_case_ = {'input_features': input_mel, 'is_longer': is_longer} snake_case_ = BatchFeature(snake_case ) if return_tensors is not None: snake_case_ = input_features.convert_to_tensors(snake_case ) return input_features
285
1
import re import string import numpy as np import datasets lowerCamelCase__ = """ Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list. """ lowerCamelCase__ = """ Args: predictions: List of predicted texts. references: List of reference texts. regexes_to_ignore: List, defaults to None. Regex expressions of characters to ignore when calculating the exact matches. Note: these regexes are removed from the input data before the changes based on the options below (e.g. ignore_case, ignore_punctuation, ignore_numbers) are applied. ignore_case: Boolean, defaults to False. If true, turns everything to lowercase so that capitalization differences are ignored. ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. Returns: exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive. Examples: >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results[\"exact_match\"], 1)) 25.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True) >>> print(round(results[\"exact_match\"], 1)) 50.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True) >>> print(round(results[\"exact_match\"], 1)) 75.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True) >>> print(round(results[\"exact_match\"], 1)) 100.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"] >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results[\"exact_match\"], 1)) 33.3 """ lowerCamelCase__ = """ """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__ ( datasets.Metric ): def _lowerCamelCase ( self : str ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , reference_urls=[] , ) def _lowerCamelCase ( self : Optional[Any] , a : Tuple , a : Any , a : Tuple=None , a : Any=False , a : Optional[Any]=False , a : List[Any]=False , ): '''simple docstring''' if regexes_to_ignore is not None: for s in regexes_to_ignore: lowerCAmelCase__ : int = np.array([re.sub(a , '' , a ) for x in predictions] ) lowerCAmelCase__ : List[Any] = np.array([re.sub(a , '' , a ) for x in references] ) else: lowerCAmelCase__ : int = np.asarray(a ) lowerCAmelCase__ : Tuple = np.asarray(a ) if ignore_case: lowerCAmelCase__ : List[str] = np.char.lower(a ) lowerCAmelCase__ : Optional[int] = np.char.lower(a ) if ignore_punctuation: lowerCAmelCase__ : Optional[int] = string.punctuation.maketrans('' , '' , string.punctuation ) lowerCAmelCase__ : Optional[int] = np.char.translate(a , table=a ) lowerCAmelCase__ : Dict = np.char.translate(a , table=a ) if ignore_numbers: lowerCAmelCase__ : int = string.digits.maketrans('' , '' , string.digits ) lowerCAmelCase__ : Union[str, Any] = np.char.translate(a , table=a ) lowerCAmelCase__ : List[str] = np.char.translate(a , table=a ) lowerCAmelCase__ : Union[str, Any] = predictions == references return {"exact_match": np.mean(a ) * 100}
307
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position lowerCamelCase__ = """2.13.1""" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("""3.7"""): raise ImportWarning( """To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition.""" ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( """To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n""" """If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.""" ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip lowerCamelCase__ = concatenate_datasets lowerCamelCase__ = DownloadConfig lowerCamelCase__ = DownloadManager lowerCamelCase__ = DownloadMode lowerCamelCase__ = DownloadConfig lowerCamelCase__ = DownloadMode lowerCamelCase__ = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
307
1
"""simple docstring""" import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = ['image_processor', 'tokenizer'] _SCREAMING_SNAKE_CASE = 'FlavaImageProcessor' _SCREAMING_SNAKE_CASE = ('BertTokenizer', 'BertTokenizerFast') def __init__( self , lowercase=None , lowercase=None , **lowercase ) -> str: lowerCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , lowercase , ) lowerCAmelCase = kwargs.pop("""feature_extractor""" ) lowerCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(lowercase , lowercase ) lowerCAmelCase = self.image_processor def __call__( self , lowercase = None , lowercase = None , lowercase = True , lowercase = False , lowercase = False , lowercase = None , lowercase = 0 , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = False , lowercase = False , lowercase = False , lowercase = False , lowercase = True , lowercase = None , **lowercase , ) -> Dict: if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: lowerCAmelCase = self.tokenizer( text=lowercase , add_special_tokens=lowercase , padding=lowercase , truncation=lowercase , max_length=lowercase , stride=lowercase , pad_to_multiple_of=lowercase , return_token_type_ids=lowercase , return_attention_mask=lowercase , return_overflowing_tokens=lowercase , return_special_tokens_mask=lowercase , return_offsets_mapping=lowercase , return_length=lowercase , verbose=lowercase , return_tensors=lowercase , **lowercase , ) if images is not None: lowerCAmelCase = self.image_processor( lowercase , return_image_mask=lowercase , return_codebook_pixels=lowercase , return_tensors=lowercase , **lowercase , ) if text is not None and images is not None: encoding.update(lowercase ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase ) , tensor_type=lowercase ) def _snake_case ( self , *lowercase , **lowercase ) -> Dict: return self.tokenizer.batch_decode(*lowercase , **lowercase ) def _snake_case ( self , *lowercase , **lowercase ) -> List[Any]: return self.tokenizer.decode(*lowercase , **lowercase ) @property def _snake_case ( self ) -> Any: lowerCAmelCase = self.tokenizer.model_input_names lowerCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _snake_case ( self ) -> List[Any]: warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , lowercase , ) return self.image_processor_class @property def _snake_case ( self ) -> int: warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , lowercase , ) return self.image_processor
46
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__ = "▁" SCREAMING_SNAKE_CASE__ = {"vocab_file": "spiece.model"} SCREAMING_SNAKE_CASE__ = { "vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"} } SCREAMING_SNAKE_CASE__ = { "google/pegasus-xsum": 512, } SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE = ['input_ids', 'attention_mask'] def __init__( self , lowercase , lowercase="<pad>" , lowercase="</s>" , lowercase="<unk>" , lowercase="<mask_2>" , lowercase="<mask_1>" , lowercase=None , lowercase=103 , lowercase = None , **lowercase , ) -> None: lowerCAmelCase = offset if additional_special_tokens is not None: if not isinstance(lowercase , lowercase ): raise TypeError( f'additional_special_tokens should be of type {type(lowercase )}, but is' f' {type(lowercase )}' ) lowerCAmelCase = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'<unk_{i}>' for i in range(len(lowercase ) , self.offset - 1 ) ] if len(set(lowercase ) ) != len(lowercase ): raise ValueError( """Please make sure that the provided additional_special_tokens do not contain an incorrectly""" f' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.' ) lowerCAmelCase = additional_special_tokens_extended else: lowerCAmelCase = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'<unk_{i}>' for i in range(2 , self.offset )] lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=lowercase , unk_token=lowercase , mask_token=lowercase , pad_token=lowercase , mask_token_sent=lowercase , offset=lowercase , additional_special_tokens=lowercase , sp_model_kwargs=self.sp_model_kwargs , **lowercase , ) lowerCAmelCase = mask_token_sent lowerCAmelCase = vocab_file lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase ) # add special tokens to encoder dict lowerCAmelCase = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) lowerCAmelCase = {v: k for k, v in self.encoder.items()} @property def _snake_case ( self ) -> int: return len(self.sp_model ) + self.offset def _snake_case ( self ) -> Dict[str, int]: lowerCAmelCase = {self.convert_ids_to_tokens(lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Optional[int]: lowerCAmelCase = self.__dict__.copy() lowerCAmelCase = None return state def __setstate__( self , lowercase ) -> List[Any]: lowerCAmelCase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowerCAmelCase = {} lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _snake_case ( self , lowercase ) -> List[str]: return self.sp_model.encode(lowercase , out_type=lowercase ) def _snake_case ( self , lowercase ) -> int: if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] lowerCAmelCase = self.sp_model.piece_to_id(lowercase ) return sp_id + self.offset def _snake_case ( self , lowercase ) -> str: if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: lowerCAmelCase = self.sp_model.IdToPiece(index - self.offset ) return token def _snake_case ( self , lowercase ) -> Optional[int]: lowerCAmelCase = [] lowerCAmelCase = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowercase ) + token lowerCAmelCase = [] else: current_sub_tokens.append(lowercase ) out_string += self.sp_model.decode(lowercase ) return out_string.strip() def _snake_case ( self , lowercase=False ) -> Tuple: return 1 def _snake_case ( self , lowercase ) -> Tuple: lowerCAmelCase = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def _snake_case ( self , lowercase , lowercase = None , lowercase = False ) -> List[int]: if already_has_special_tokens: return self._special_token_mask(lowercase ) elif token_ids_a is None: return self._special_token_mask(lowercase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def _snake_case ( self , lowercase , lowercase=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _snake_case ( self , lowercase , lowercase = None ) -> Tuple[str]: if not os.path.isdir(lowercase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowerCAmelCase = os.path.join( lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase ) elif not os.path.isfile(self.vocab_file ): with open(lowercase , """wb""" ) as fi: lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(lowercase ) return (out_vocab_file,)
46
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available SCREAMING_SNAKE_CASE : List[Any] = { "configuration_transfo_xl": ["TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP", "TransfoXLConfig"], "tokenization_transfo_xl": ["TransfoXLCorpus", "TransfoXLTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Dict = [ "TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST", "AdaptiveEmbedding", "TransfoXLForSequenceClassification", "TransfoXLLMHeadModel", "TransfoXLModel", "TransfoXLPreTrainedModel", "load_tf_weights_in_transfo_xl", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : int = [ "TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFAdaptiveEmbedding", "TFTransfoXLForSequenceClassification", "TFTransfoXLLMHeadModel", "TFTransfoXLMainLayer", "TFTransfoXLModel", "TFTransfoXLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
368
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class UpperCamelCase ( lowercase__ ): '''simple docstring''' lowercase : Union[str, Any] ="""naver-clova-ix/donut-base-finetuned-docvqa""" lowercase : Optional[int] =( """This is a tool that answers a question about an document (pdf). It takes an input named `document` which """ """should be the document containing the information, as well as a `question` that is the question about the """ """document. It returns a text that contains the answer to the question.""" ) lowercase : Dict ="""document_qa""" lowercase : List[Any] =AutoProcessor lowercase : Tuple =VisionEncoderDecoderModel lowercase : Optional[int] =["""image""", """text"""] lowercase : Any =["""text"""] def __init__( self , *UpperCamelCase_ , **UpperCamelCase_ ): if not is_vision_available(): raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' ) super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ ): lowercase_ :str = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' lowercase_ :Optional[int] = task_prompt.replace('''{user_input}''' , UpperCamelCase_ ) lowercase_ :List[Any] = self.pre_processor.tokenizer( UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_tensors='''pt''' ).input_ids lowercase_ :Dict = self.pre_processor(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def UpperCamelCase ( self , UpperCamelCase_ ): return self.model.generate( inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=UpperCamelCase_ , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=UpperCamelCase_ , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=UpperCamelCase_ , ).sequences def UpperCamelCase ( self , UpperCamelCase_ ): lowercase_ :Any = self.pre_processor.batch_decode(UpperCamelCase_ )[0] lowercase_ :Any = sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' ) lowercase_ :int = sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' ) lowercase_ :Dict = re.sub(R'''<.*?>''' , '''''' , UpperCamelCase_ , count=1 ).strip() # remove first task start token lowercase_ :Dict = self.pre_processor.tokenajson(UpperCamelCase_ ) return sequence["answer"]
252
0
import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def A_ ( _lowerCAmelCase ) -> int: # picklable for multiprocessing return x.sum() def A_ ( _lowerCAmelCase ) -> str: # picklable for multiprocessing return i + 1 @dataclass class A__ : _UpperCAmelCase :int _UpperCAmelCase :str class A__ ( __snake_case ): def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Dict = {} UpperCamelCase : Any = [] UpperCamelCase : Dict = 1 UpperCamelCase : Optional[int] = [1, 2] UpperCamelCase : Union[str, Any] = {"a": 1, "b": 2} UpperCamelCase : Optional[Any] = {"a": [1, 2], "b": [3, 4]} UpperCamelCase : Optional[Any] = {"a": {"1": 1}, "b": 2} UpperCamelCase : Optional[int] = {"a": 1, "b": 2, "c": 3, "d": 4} UpperCamelCase : Dict = {} UpperCamelCase : List[str] = [] UpperCamelCase : Union[str, Any] = 2 UpperCamelCase : str = [2, 3] UpperCamelCase : str = {"a": 2, "b": 3} UpperCamelCase : Optional[Any] = {"a": [2, 3], "b": [4, 5]} UpperCamelCase : List[str] = {"a": {"1": 2}, "b": 3} UpperCamelCase : Dict = {"a": 2, "b": 3, "c": 4, "d": 5} self.assertEqual(map_nested(A_ , A_ ) , A_ ) self.assertEqual(map_nested(A_ , A_ ) , A_ ) self.assertEqual(map_nested(A_ , A_ ) , A_ ) self.assertEqual(map_nested(A_ , A_ ) , A_ ) self.assertEqual(map_nested(A_ , A_ ) , A_ ) self.assertEqual(map_nested(A_ , A_ ) , A_ ) self.assertEqual(map_nested(A_ , A_ ) , A_ ) self.assertEqual(map_nested(A_ , A_ ) , A_ ) UpperCamelCase : Any = 2 self.assertEqual(map_nested(A_ , A_ , num_proc=A_ ) , A_ ) self.assertEqual(map_nested(A_ , A_ , num_proc=A_ ) , A_ ) self.assertEqual(map_nested(A_ , A_ , num_proc=A_ ) , A_ ) self.assertEqual(map_nested(A_ , A_ , num_proc=A_ ) , A_ ) self.assertEqual(map_nested(A_ , A_ , num_proc=A_ ) , A_ ) self.assertEqual(map_nested(A_ , A_ , num_proc=A_ ) , A_ ) self.assertEqual(map_nested(A_ , A_ , num_proc=A_ ) , A_ ) self.assertEqual(map_nested(A_ , A_ , num_proc=A_ ) , A_ ) UpperCamelCase : Optional[int] = {"a": np.eye(2 ), "b": np.zeros(3 ), "c": np.ones(2 )} UpperCamelCase : Optional[Any] = {"a": 2, "b": 0, "c": 2} UpperCamelCase : Optional[Any] = { "a": np.eye(2 ).astype(A_ ), "b": np.zeros(3 ).astype(A_ ), "c": np.ones(2 ).astype(A_ ), } self.assertEqual(map_nested(A_ , A_ , map_numpy=A_ ) , A_ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(A_ , A_ , map_numpy=A_ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(A_ , A_ , map_numpy=A_ , num_proc=A_ ) , A_ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(A_ , A_ , map_numpy=A_ , num_proc=A_ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(A_ ): # can't pickle a local lambda map_nested(lambda A_ : x + 1 , A_ , num_proc=A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[Any] = {"a": 1, "b": 2} UpperCamelCase : Union[str, Any] = {"a": 3, "b": 4} UpperCamelCase : Optional[int] = {"a": 5, "b": 6} UpperCamelCase : Tuple = sorted([("a", (1, 3, 5)), ("b", (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(A_ , A_ , A_ ) ) , A_ ) def __UpperCamelCase( self ): '''simple docstring''' class A__ : _UpperCAmelCase :int = 'bar' UpperCamelCase : Dict = Foo() self.assertEqual(foo.my_attr , "bar" ) with temporary_assignment(A_ , "my_attr" , "BAR" ): self.assertEqual(foo.my_attr , "BAR" ) self.assertEqual(foo.my_attr , "bar" ) @pytest.mark.parametrize( "iterable_length, num_proc, expected_num_proc" , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] , ) def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[Any]: with patch("datasets.utils.py_utils._single_map_nested" ) as mock_single_map_nested, patch( "datasets.parallel.parallel.Pool" ) as mock_multiprocessing_pool: UpperCamelCase : int = {F"""{i}""": i for i in range(_lowerCAmelCase )} UpperCamelCase : Optional[int] = map_nested(lambda _lowerCAmelCase : x + 10 , _lowerCAmelCase , num_proc=_lowerCAmelCase , parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class A__ ( __snake_case ): @require_tf def __UpperCamelCase( self ): '''simple docstring''' import tensorflow as tf from tensorflow.keras import layers UpperCamelCase : Dict = layers.Dense(2 ) def gen_random_output(): UpperCamelCase : Optional[int] = tf.random.uniform((1, 3) ) return model(A_ ).numpy() with temp_seed(42 , set_tensorflow=A_ ): UpperCamelCase : Optional[Any] = gen_random_output() with temp_seed(42 , set_tensorflow=A_ ): UpperCamelCase : List[str] = gen_random_output() UpperCamelCase : Optional[int] = gen_random_output() np.testing.assert_equal(A_ , A_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def __UpperCamelCase( self ): '''simple docstring''' import torch def gen_random_output(): UpperCamelCase : Any = torch.nn.Linear(3 , 2 ) UpperCamelCase : Union[str, Any] = torch.rand(1 , 3 ) return model(A_ ).detach().numpy() with temp_seed(42 , set_pytorch=A_ ): UpperCamelCase : List[str] = gen_random_output() with temp_seed(42 , set_pytorch=A_ ): UpperCamelCase : Dict = gen_random_output() UpperCamelCase : str = gen_random_output() np.testing.assert_equal(A_ , A_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def __UpperCamelCase( self ): '''simple docstring''' def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(42 ): UpperCamelCase : Tuple = gen_random_output() with temp_seed(42 ): UpperCamelCase : int = gen_random_output() UpperCamelCase : Any = gen_random_output() np.testing.assert_equal(A_ , A_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize("input_data" , [{}] ) def A_ ( _lowerCAmelCase ) -> Dict: UpperCamelCase : Union[str, Any] = NestedDataStructure(_lowerCAmelCase ).data assert output_data == input_data @pytest.mark.parametrize( "data, expected_output" , [ ({}, []), ([], []), ("foo", ["foo"]), (["foo", "bar"], ["foo", "bar"]), ([["foo", "bar"]], ["foo", "bar"]), ([[["foo"], ["bar"]]], ["foo", "bar"]), ([[["foo"], "bar"]], ["foo", "bar"]), ({"a": 1, "b": 2}, [1, 2]), ({"a": [1, 2], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[[3], [4]]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, [4]]}, [1, 2, 3, 4]), ({"a": {"1": 1}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": [2]}, [1, 2]), ] , ) def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> Tuple: UpperCamelCase : Union[str, Any] = NestedDataStructure(_lowerCAmelCase ).flatten() assert output == expected_output def A_ ( ) -> List[Any]: UpperCamelCase : Dict = A(x=1 , y="foobar" ) UpperCamelCase : Optional[Any] = {"x": 1, "y": "foobar"} assert asdict(_lowerCAmelCase ) == expected_output UpperCamelCase : Tuple = {"a": {"b": A(x=10 , y="foo" )}, "c": [A(x=20 , y="bar" )]} UpperCamelCase : str = {"a": {"b": {"x": 10, "y": "foo"}}, "c": [{"x": 20, "y": "bar"}]} assert asdict(_lowerCAmelCase ) == expected_output with pytest.raises(_lowerCAmelCase ): asdict([1, A(x=10 , y="foo" )] ) def A_ ( _lowerCAmelCase ) -> Any: return text.split() def A_ ( _lowerCAmelCase ) -> Optional[int]: yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def A_ ( ) -> int: with Pool(2 ) as pool: UpperCamelCase : Optional[Any] = list(iflatmap_unordered(_lowerCAmelCase , _split_text , kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(_lowerCAmelCase ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: UpperCamelCase : Tuple = list(iflatmap_unordered(_lowerCAmelCase , _split_text , kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(_lowerCAmelCase ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: UpperCamelCase : List[str] = [] for yield_time, content in iflatmap_unordered( _lowerCAmelCase , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{"content": "a"}, {"content": "b"}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(_lowerCAmelCase ) assert out.count("a" ) == 2 assert out.count("b" ) == 2 assert len(_lowerCAmelCase ) == 4
52
import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def A ( _lowercase ): if "model" in orig_key: SCREAMING_SNAKE_CASE : int = orig_key.replace('''model.''' , '''''' ) if "norm1" in orig_key: SCREAMING_SNAKE_CASE : List[Any] = orig_key.replace('''norm1''' , '''attention.output.LayerNorm''' ) if "norm2" in orig_key: SCREAMING_SNAKE_CASE : str = orig_key.replace('''norm2''' , '''output.LayerNorm''' ) if "norm" in orig_key: SCREAMING_SNAKE_CASE : Tuple = orig_key.replace('''norm''' , '''LayerNorm''' ) if "transformer" in orig_key: SCREAMING_SNAKE_CASE : int = orig_key.split('''.''' )[0].split('''_''' )[-1] SCREAMING_SNAKE_CASE : List[str] = orig_key.replace(f"""transformer_{layer_num}""" , f"""encoder.layer.{layer_num}""" ) if "mha.attn" in orig_key: SCREAMING_SNAKE_CASE : Any = orig_key.replace('''mha.attn''' , '''attention.self''' ) if "mha" in orig_key: SCREAMING_SNAKE_CASE : Optional[int] = orig_key.replace('''mha''' , '''attention''' ) if "W_q" in orig_key: SCREAMING_SNAKE_CASE : List[Any] = orig_key.replace('''W_q''' , '''self.query''' ) if "W_k" in orig_key: SCREAMING_SNAKE_CASE : Optional[int] = orig_key.replace('''W_k''' , '''self.key''' ) if "W_v" in orig_key: SCREAMING_SNAKE_CASE : str = orig_key.replace('''W_v''' , '''self.value''' ) if "ff1" in orig_key: SCREAMING_SNAKE_CASE : Any = orig_key.replace('''ff1''' , '''intermediate.dense''' ) if "ff2" in orig_key: SCREAMING_SNAKE_CASE : List[Any] = orig_key.replace('''ff2''' , '''output.dense''' ) if "ff" in orig_key: SCREAMING_SNAKE_CASE : Dict = orig_key.replace('''ff''' , '''output.dense''' ) if "mlm_class" in orig_key: SCREAMING_SNAKE_CASE : Optional[int] = orig_key.replace('''mlm.mlm_class''' , '''cls.predictions.decoder''' ) if "mlm" in orig_key: SCREAMING_SNAKE_CASE : str = orig_key.replace('''mlm''' , '''cls.predictions.transform''' ) if "cls" not in orig_key: SCREAMING_SNAKE_CASE : List[str] = '''yoso.''' + orig_key return orig_key def A ( _lowercase , _lowercase ): for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE : Union[str, Any] = orig_state_dict.pop(_lowercase ) if ("pooler" in key) or ("sen_class" in key): continue else: SCREAMING_SNAKE_CASE : Union[str, Any] = val SCREAMING_SNAKE_CASE : List[str] = orig_state_dict['''cls.predictions.decoder.bias'''] SCREAMING_SNAKE_CASE : Dict = torch.arange(_lowercase ).expand((1, -1) ) + 2 return orig_state_dict def A ( _lowercase , _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : Tuple = torch.load(_lowercase , map_location='''cpu''' )['''model_state_dict'''] SCREAMING_SNAKE_CASE : List[Any] = YosoConfig.from_json_file(_lowercase ) SCREAMING_SNAKE_CASE : str = YosoForMaskedLM(_lowercase ) SCREAMING_SNAKE_CASE : Union[str, Any] = convert_checkpoint_helper(config.max_position_embeddings , _lowercase ) print(model.load_state_dict(_lowercase ) ) model.eval() model.save_pretrained(_lowercase ) print(f"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) if __name__ == "__main__": __UpperCamelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--pytorch_model_path', default=None, type=str, required=True, help='Path to YOSO pytorch checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The json file for YOSO model config.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __UpperCamelCase : Optional[Any] = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
182
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase__ = { "configuration_canine": ["CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP", "CanineConfig"], "tokenization_canine": ["CanineTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "CANINE_PRETRAINED_MODEL_ARCHIVE_LIST", "CanineForMultipleChoice", "CanineForQuestionAnswering", "CanineForSequenceClassification", "CanineForTokenClassification", "CanineLayer", "CanineModel", "CaninePreTrainedModel", "load_tf_weights_in_canine", ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
369
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = OrderedDict( [ ("audio-spectrogram-transformer", "ASTFeatureExtractor"), ("beit", "BeitFeatureExtractor"), ("chinese_clip", "ChineseCLIPFeatureExtractor"), ("clap", "ClapFeatureExtractor"), ("clip", "CLIPFeatureExtractor"), ("clipseg", "ViTFeatureExtractor"), ("conditional_detr", "ConditionalDetrFeatureExtractor"), ("convnext", "ConvNextFeatureExtractor"), ("cvt", "ConvNextFeatureExtractor"), ("data2vec-audio", "Wav2Vec2FeatureExtractor"), ("data2vec-vision", "BeitFeatureExtractor"), ("deformable_detr", "DeformableDetrFeatureExtractor"), ("deit", "DeiTFeatureExtractor"), ("detr", "DetrFeatureExtractor"), ("dinat", "ViTFeatureExtractor"), ("donut-swin", "DonutFeatureExtractor"), ("dpt", "DPTFeatureExtractor"), ("encodec", "EncodecFeatureExtractor"), ("flava", "FlavaFeatureExtractor"), ("glpn", "GLPNFeatureExtractor"), ("groupvit", "CLIPFeatureExtractor"), ("hubert", "Wav2Vec2FeatureExtractor"), ("imagegpt", "ImageGPTFeatureExtractor"), ("layoutlmv2", "LayoutLMv2FeatureExtractor"), ("layoutlmv3", "LayoutLMv3FeatureExtractor"), ("levit", "LevitFeatureExtractor"), ("maskformer", "MaskFormerFeatureExtractor"), ("mctct", "MCTCTFeatureExtractor"), ("mobilenet_v1", "MobileNetV1FeatureExtractor"), ("mobilenet_v2", "MobileNetV2FeatureExtractor"), ("mobilevit", "MobileViTFeatureExtractor"), ("nat", "ViTFeatureExtractor"), ("owlvit", "OwlViTFeatureExtractor"), ("perceiver", "PerceiverFeatureExtractor"), ("poolformer", "PoolFormerFeatureExtractor"), ("regnet", "ConvNextFeatureExtractor"), ("resnet", "ConvNextFeatureExtractor"), ("segformer", "SegformerFeatureExtractor"), ("sew", "Wav2Vec2FeatureExtractor"), ("sew-d", "Wav2Vec2FeatureExtractor"), ("speech_to_text", "Speech2TextFeatureExtractor"), ("speecht5", "SpeechT5FeatureExtractor"), ("swiftformer", "ViTFeatureExtractor"), ("swin", "ViTFeatureExtractor"), ("swinv2", "ViTFeatureExtractor"), ("table-transformer", "DetrFeatureExtractor"), ("timesformer", "VideoMAEFeatureExtractor"), ("tvlt", "TvltFeatureExtractor"), ("unispeech", "Wav2Vec2FeatureExtractor"), ("unispeech-sat", "Wav2Vec2FeatureExtractor"), ("van", "ConvNextFeatureExtractor"), ("videomae", "VideoMAEFeatureExtractor"), ("vilt", "ViltFeatureExtractor"), ("vit", "ViTFeatureExtractor"), ("vit_mae", "ViTFeatureExtractor"), ("vit_msn", "ViTFeatureExtractor"), ("wav2vec2", "Wav2Vec2FeatureExtractor"), ("wav2vec2-conformer", "Wav2Vec2FeatureExtractor"), ("wavlm", "Wav2Vec2FeatureExtractor"), ("whisper", "WhisperFeatureExtractor"), ("xclip", "CLIPFeatureExtractor"), ("yolos", "YolosFeatureExtractor"), ] ) UpperCAmelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def _a ( a :str ) -> Any: for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: a = model_type_to_module_name(a ) a = importlib.import_module(F""".{module_name}""" , '''transformers.models''' ) try: return getattr(a , a ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(a , '''__name__''' , a ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. a = importlib.import_module('''transformers''' ) if hasattr(a , a ): return getattr(a , a ) return None def _a ( a :Union[str, os.PathLike] , a :Optional[Union[str, os.PathLike]] = None , a :bool = False , a :bool = False , a :Optional[Dict[str, str]] = None , a :Optional[Union[bool, str]] = None , a :Optional[str] = None , a :bool = False , **a :int , ) -> Tuple: a = get_file_from_repo( a , a , cache_dir=a , force_download=a , resume_download=a , proxies=a , use_auth_token=a , revision=a , local_files_only=a , ) if resolved_config_file is None: logger.info( '''Could not locate the feature extractor configuration file, will try to use the model config instead.''' ) return {} with open(a , encoding='''utf-8''' ) as reader: return json.load(a ) class lowercase_ : '''simple docstring''' def __init__( self : Tuple ) ->int: """simple docstring""" raise EnvironmentError( '''AutoFeatureExtractor is designed to be instantiated ''' '''using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(__UpperCAmelCase ) def __lowerCAmelCase ( cls : int , __UpperCAmelCase : Optional[Any] , **__UpperCAmelCase : Dict ) ->List[Any]: """simple docstring""" a = kwargs.pop('''config''' , __UpperCAmelCase ) a = kwargs.pop('''trust_remote_code''' , __UpperCAmelCase ) a = True a , a = FeatureExtractionMixin.get_feature_extractor_dict(__UpperCAmelCase , **__UpperCAmelCase ) a = config_dict.get('''feature_extractor_type''' , __UpperCAmelCase ) a = None if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): a = config_dict['''auto_map''']['''AutoFeatureExtractor'''] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): a = AutoConfig.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) # It could be in `config.feature_extractor_type`` a = getattr(__UpperCAmelCase , '''feature_extractor_type''' , __UpperCAmelCase ) if hasattr(__UpperCAmelCase , '''auto_map''' ) and "AutoFeatureExtractor" in config.auto_map: a = config.auto_map['''AutoFeatureExtractor'''] if feature_extractor_class is not None: a = feature_extractor_class_from_name(__UpperCAmelCase ) a = feature_extractor_auto_map is not None a = feature_extractor_class is not None or type(__UpperCAmelCase ) in FEATURE_EXTRACTOR_MAPPING a = resolve_trust_remote_code( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if has_remote_code and trust_remote_code: a = get_class_from_dynamic_module( __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) a = kwargs.pop('''code_revision''' , __UpperCAmelCase ) if os.path.isdir(__UpperCAmelCase ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(__UpperCAmelCase ) in FEATURE_EXTRACTOR_MAPPING: a = FEATURE_EXTRACTOR_MAPPING[type(__UpperCAmelCase )] return feature_extractor_class.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) raise ValueError( F"""Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a """ F"""`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following """ F"""`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def __lowerCAmelCase ( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple ) ->Optional[int]: """simple docstring""" FEATURE_EXTRACTOR_MAPPING.register(__UpperCAmelCase , __UpperCAmelCase )
26
0
def A__ ( SCREAMING_SNAKE_CASE__) -> int: if not numbers: return 0 if not isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple)) or not all( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) for number in numbers): raise ValueError("""numbers must be an iterable of integers""") __snake_case: str = numbers[0] for i in range(1 , len(SCREAMING_SNAKE_CASE__)): # update the maximum and minimum subarray products __snake_case: int = numbers[i] if number < 0: __snake_case , __snake_case: Union[str, Any] = min_till_now, max_till_now __snake_case: Any = max(SCREAMING_SNAKE_CASE__ , max_till_now * number) __snake_case: Tuple = min(SCREAMING_SNAKE_CASE__ , min_till_now * number) # update the maximum product found till now __snake_case: str = max(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) return max_prod
111
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel __UpperCAmelCase : Any = { "text_branch": "text_model", "audio_branch": "audio_model.audio_encoder", "attn": "attention.self", "self.proj": "output.dense", "attention.self_mask": "attn_mask", "mlp.fc1": "intermediate.dense", "mlp.fc2": "output.dense", "norm1": "layernorm_before", "norm2": "layernorm_after", "bn0": "batch_norm", } __UpperCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused", truncation="rand_trunc") def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False) -> Union[str, Any]: __snake_case , __snake_case: int = create_model( """HTSAT-tiny""" , """roberta""" , SCREAMING_SNAKE_CASE__ , precision="""fp32""" , device="""cuda:0""" if torch.cuda.is_available() else """cpu""" , enable_fusion=SCREAMING_SNAKE_CASE__ , fusion_type="""aff_2d""" if enable_fusion else None , ) return model, model_cfg def A__ ( SCREAMING_SNAKE_CASE__) -> Any: __snake_case: Optional[Any] = {} __snake_case: int = r""".*sequential.(\d+).*""" __snake_case: List[str] = r""".*_projection.(\d+).*""" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: __snake_case: Tuple = key.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) if re.match(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__): # replace sequential layers with list __snake_case: Optional[int] = re.match(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__).group(1) __snake_case: str = key.replace(F'''sequential.{sequential_layer}.''' , F'''layers.{int(SCREAMING_SNAKE_CASE__)//3}.linear.''') elif re.match(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__): __snake_case: Any = int(re.match(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__).group(1)) # Because in CLAP they use `nn.Sequential`... __snake_case: Dict = 1 if projecton_layer == 0 else 2 __snake_case: Any = key.replace(F'''_projection.{projecton_layer}.''' , F'''_projection.linear{transformers_projection_layer}.''') if "audio" and "qkv" in key: # split qkv into query key and value __snake_case: List[str] = value __snake_case: Optional[Any] = mixed_qkv.size(0) // 3 __snake_case: Union[str, Any] = mixed_qkv[:qkv_dim] __snake_case: Dict = mixed_qkv[qkv_dim : qkv_dim * 2] __snake_case: int = mixed_qkv[qkv_dim * 2 :] __snake_case: Optional[Any] = query_layer __snake_case: str = key_layer __snake_case: int = value_layer else: __snake_case: Dict = value return model_state_dict def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False) -> Optional[Any]: __snake_case , __snake_case: List[str] = init_clap(SCREAMING_SNAKE_CASE__ , enable_fusion=SCREAMING_SNAKE_CASE__) clap_model.eval() __snake_case: List[str] = clap_model.state_dict() __snake_case: Optional[int] = rename_state_dict(SCREAMING_SNAKE_CASE__) __snake_case: Any = ClapConfig() __snake_case: Dict = enable_fusion __snake_case: List[str] = ClapModel(SCREAMING_SNAKE_CASE__) # ignore the spectrogram embedding layer model.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__) model.save_pretrained(SCREAMING_SNAKE_CASE__) transformers_config.save_pretrained(SCREAMING_SNAKE_CASE__) if __name__ == "__main__": __UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument("--enable_fusion", action="store_true", help="Whether to enable fusion or not") __UpperCAmelCase : Tuple = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
111
1
'''simple docstring''' from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : Any , lowerCAmelCase_ : float ) -> float: '''simple docstring''' return 0.0 def __lowerCamelCase ( __snake_case : np.ndarray, __snake_case : int ) -> tuple[int | float, int | float]: """simple docstring""" A__ : Tuple =min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) A__ : str =max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def __lowerCamelCase ( __snake_case : FilterType, __snake_case : int ) -> None: """simple docstring""" A__ : Any =512 A__ : int =[1] + [0] * (size - 1) A__ : int =[filter_type.process(__snake_case ) for item in inputs] A__ : Union[str, Any] =[0] * (samplerate - size) # zero-padding outputs += filler A__ : List[Any] =np.abs(np.fft.fft(__snake_case ) ) A__ : int =20 * np.logaa(__snake_case ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24, samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) # Display within reasonable bounds A__ : Union[str, Any] =get_bounds(__snake_case, __snake_case ) plt.ylim(max([-80, bounds[0]] ), min([80, bounds[1]] ) ) plt.ylabel("""Gain (dB)""" ) plt.plot(__snake_case ) plt.show() def __lowerCamelCase ( __snake_case : FilterType, __snake_case : int ) -> None: """simple docstring""" A__ : List[Any] =512 A__ : List[Any] =[1] + [0] * (size - 1) A__ : Dict =[filter_type.process(__snake_case ) for item in inputs] A__ : Union[str, Any] =[0] * (samplerate - size) # zero-padding outputs += filler A__ : str =np.angle(np.fft.fft(__snake_case ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24, samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) plt.ylim(-2 * pi, 2 * pi ) plt.ylabel("""Phase shift (Radians)""" ) plt.plot(np.unwrap(__snake_case, -2 * pi ) ) plt.show()
365
'''simple docstring''' from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def __lowerCamelCase ( __snake_case : int ) -> int: """simple docstring""" A__ : List[Any] =prime_factors(__snake_case ) if is_square_free(__snake_case ): return -1 if len(__snake_case ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
136
0
"""simple docstring""" from __future__ import annotations from math import pi def _lowercase ( __snake_case ,__snake_case ,__snake_case ) -> dict[str, float]: if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if inductance < 0: raise ValueError("Inductance cannot be negative" ) if frequency < 0: raise ValueError("Frequency cannot be negative" ) if reactance < 0: raise ValueError("Inductive reactance cannot be negative" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
269
"""simple docstring""" from __future__ import annotations def _lowercase ( __snake_case ,__snake_case ,__snake_case ,__snake_case ) -> list: __lowerCAmelCase : Dict = [] __lowerCAmelCase , __lowerCAmelCase : Any = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) __lowerCAmelCase : int = result + left + right return input_list def _lowercase ( __snake_case ) -> list: if len(__snake_case ) <= 1: return input_list __lowerCAmelCase : int = list(__snake_case ) # iteration for two-way merging __lowerCAmelCase : Optional[int] = 2 while p <= len(__snake_case ): # getting low, high and middle value for merge-sort of single list for i in range(0 ,len(__snake_case ) ,__snake_case ): __lowerCAmelCase : Union[str, Any] = i __lowerCAmelCase : Tuple = i + p - 1 __lowerCAmelCase : Optional[Any] = (low + high + 1) // 2 __lowerCAmelCase : Any = merge(__snake_case ,__snake_case ,__snake_case ,__snake_case ) # final merge of last two parts if p * 2 >= len(__snake_case ): __lowerCAmelCase : Optional[Any] = i __lowerCAmelCase : Union[str, Any] = merge(__snake_case ,0 ,__snake_case ,len(__snake_case ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": __snake_case : Union[str, Any] = input('Enter numbers separated by a comma:\n').strip() if user_input == "": __snake_case : Optional[int] = [] else: __snake_case : int = [int(item.strip()) for item in user_input.split(',')] print(iter_merge_sort(unsorted))
269
1
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : str = 0 def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : Optional[int] = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) self.assertIsInstance(a_ ,a_ ) def _snake_case ( self ) -> Dict: with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase : Optional[int] = Path(a_ ) / """preprocessor_config.json""" _UpperCAmelCase : int = Path(a_ ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} ,open(a_ ,"""w""" ) ,) json.dump({"""model_type""": """clip"""} ,open(a_ ,"""w""" ) ) _UpperCAmelCase : Dict = AutoImageProcessor.from_pretrained(a_ ) self.assertIsInstance(a_ ,a_ ) def _snake_case ( self ) -> Union[str, Any]: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase : List[str] = Path(a_ ) / """preprocessor_config.json""" _UpperCAmelCase : List[Any] = Path(a_ ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} ,open(a_ ,"""w""" ) ,) json.dump({"""model_type""": """clip"""} ,open(a_ ,"""w""" ) ) _UpperCAmelCase : int = AutoImageProcessor.from_pretrained(a_ ) self.assertIsInstance(a_ ,a_ ) def _snake_case ( self ) -> Any: with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase : Any = CLIPConfig() # Create a dummy config file with image_proceesor_type _UpperCAmelCase : str = Path(a_ ) / """preprocessor_config.json""" _UpperCAmelCase : Optional[int] = Path(a_ ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} ,open(a_ ,"""w""" ) ,) json.dump({"""model_type""": """clip"""} ,open(a_ ,"""w""" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally _UpperCAmelCase : List[str] = AutoImageProcessor.from_pretrained(a_ ).to_dict() config_dict.pop("""image_processor_type""" ) _UpperCAmelCase : List[str] = CLIPImageProcessor(**a_ ) # save in new folder model_config.save_pretrained(a_ ) config.save_pretrained(a_ ) _UpperCAmelCase : Dict = AutoImageProcessor.from_pretrained(a_ ) # make sure private variable is not incorrectly saved _UpperCAmelCase : Dict = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(a_ ,a_ ) def _snake_case ( self ) -> str: with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase : str = Path(a_ ) / """preprocessor_config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} ,open(a_ ,"""w""" ) ,) _UpperCAmelCase : Union[str, Any] = AutoImageProcessor.from_pretrained(a_ ) self.assertIsInstance(a_ ,a_ ) def _snake_case ( self ) -> List[Any]: with self.assertRaisesRegex( a_ ,"""clip-base is not a local folder and is not a valid model identifier""" ): _UpperCAmelCase : Optional[int] = AutoImageProcessor.from_pretrained("""clip-base""" ) def _snake_case ( self ) -> List[str]: with self.assertRaisesRegex( a_ ,r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): _UpperCAmelCase : Tuple = AutoImageProcessor.from_pretrained(a_ ,revision="""aaaaaa""" ) def _snake_case ( self ) -> Optional[Any]: with self.assertRaisesRegex( a_ ,"""hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" ,): _UpperCAmelCase : Union[str, Any] = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" ) def _snake_case ( self ) -> Optional[Any]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(a_ ): _UpperCAmelCase : Dict = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(a_ ): _UpperCAmelCase : List[str] = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" ,trust_remote_code=a_ ) _UpperCAmelCase : Optional[int] = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" ,trust_remote_code=a_ ) self.assertEqual(image_processor.__class__.__name__ ,"""NewImageProcessor""" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(a_ ) _UpperCAmelCase : Union[str, Any] = AutoImageProcessor.from_pretrained(a_ ,trust_remote_code=a_ ) self.assertEqual(reloaded_image_processor.__class__.__name__ ,"""NewImageProcessor""" ) def _snake_case ( self ) -> Any: try: AutoConfig.register("""custom""" ,a_ ) AutoImageProcessor.register(a_ ,a_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(a_ ): AutoImageProcessor.register(a_ ,a_ ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase : Optional[int] = Path(a_ ) / """preprocessor_config.json""" _UpperCAmelCase : Dict = Path(a_ ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} ,open(a_ ,"""w""" ) ,) json.dump({"""model_type""": """clip"""} ,open(a_ ,"""w""" ) ) _UpperCAmelCase : Union[str, Any] = CustomImageProcessor.from_pretrained(a_ ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(a_ ) _UpperCAmelCase : Union[str, Any] = AutoImageProcessor.from_pretrained(a_ ) self.assertIsInstance(a_ ,a_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def _snake_case ( self ) -> str: class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = True try: AutoConfig.register("""custom""" ,a_ ) AutoImageProcessor.register(a_ ,a_ ) # If remote code is not set, the default is to use local _UpperCAmelCase : Union[str, Any] = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) self.assertEqual(image_processor.__class__.__name__ ,"""NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. _UpperCAmelCase : Optional[int] = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" ,trust_remote_code=a_ ) self.assertEqual(image_processor.__class__.__name__ ,"""NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub _UpperCAmelCase : Tuple = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" ,trust_remote_code=a_ ) self.assertEqual(image_processor.__class__.__name__ ,"""NewImageProcessor""" ) self.assertTrue(not hasattr(a_ ,"""is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
349
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : List[str] = 1 _UpperCAmelCase : List[str] = 3 _UpperCAmelCase : Union[str, Any] = (32, 32) _UpperCAmelCase : str = floats_tensor((batch_size, num_channels) + sizes ,rng=random.Random(0 ) ).to(a_ ) return image @property def _snake_case ( self ) -> List[Any]: torch.manual_seed(0 ) _UpperCAmelCase : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") ,cross_attention_dim=32 ,) return model @property def _snake_case ( self ) -> Optional[int]: torch.manual_seed(0 ) _UpperCAmelCase : str = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,) return model @property def _snake_case ( self ) -> Dict: torch.manual_seed(0 ) _UpperCAmelCase : Any = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,) return CLIPTextModel(a_ ) @property def _snake_case ( self ) -> Union[str, Any]: def extract(*a_ ,**a_ ): class lowercase : """simple docstring""" def __init__( self ) -> Any: _UpperCAmelCase : str = torch.ones([0] ) def _snake_case ( self ,a_ ) -> Any: self.pixel_values.to(a_ ) return self return Out() return extract def _snake_case ( self ) -> List[str]: _UpperCAmelCase : List[str] = """cpu""" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Union[str, Any] = self.dummy_cond_unet _UpperCAmelCase : int = DDIMScheduler( beta_start=0.0_0085 ,beta_end=0.012 ,beta_schedule="""scaled_linear""" ,clip_sample=a_ ,set_alpha_to_one=a_ ,) _UpperCAmelCase : Optional[int] = self.dummy_vae _UpperCAmelCase : Optional[int] = self.dummy_text_encoder _UpperCAmelCase : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk _UpperCAmelCase : int = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : Optional[Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Union[str, Any] = """A painting of a squirrel eating a burger""" _UpperCAmelCase : Optional[int] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : str = sd_pipe([prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ) _UpperCAmelCase : int = output.images _UpperCAmelCase : Union[str, Any] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : str = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=a_ ,)[0] _UpperCAmelCase : str = image[0, -3:, -3:, -1] _UpperCAmelCase : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase : Optional[int] = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Any: _UpperCAmelCase : Any = """cpu""" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Tuple = self.dummy_cond_unet _UpperCAmelCase : Optional[int] = PNDMScheduler(skip_prk_steps=a_ ) _UpperCAmelCase : int = self.dummy_vae _UpperCAmelCase : int = self.dummy_text_encoder _UpperCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk _UpperCAmelCase : str = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : str = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : int = """A painting of a squirrel eating a burger""" _UpperCAmelCase : Any = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : List[Any] = sd_pipe([prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ) _UpperCAmelCase : Dict = output.images _UpperCAmelCase : List[Any] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : Any = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=a_ ,)[0] _UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase : Union[str, Any] = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : Optional[int] = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" ,safety_checker=a_ ) assert isinstance(a_ ,a_ ) assert isinstance(pipe.scheduler ,a_ ) assert pipe.safety_checker is None _UpperCAmelCase : Dict = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a_ ) _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained(a_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None _UpperCAmelCase : Union[str, Any] = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" ,"""This test requires a GPU""" ) def _snake_case ( self ) -> str: _UpperCAmelCase : Optional[int] = self.dummy_cond_unet _UpperCAmelCase : str = PNDMScheduler(skip_prk_steps=a_ ) _UpperCAmelCase : List[str] = self.dummy_vae _UpperCAmelCase : int = self.dummy_text_encoder _UpperCAmelCase : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 _UpperCAmelCase : str = unet.half() _UpperCAmelCase : List[str] = vae.half() _UpperCAmelCase : Dict = bert.half() # make sure here that pndm scheduler skips prk _UpperCAmelCase : Dict = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : List[str] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : str = """A painting of a squirrel eating a burger""" _UpperCAmelCase : int = sd_pipe([prompt] ,num_inference_steps=2 ,output_type="""np""" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ) -> str: _UpperCAmelCase : List[str] = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ,safety_checker=a_ ) _UpperCAmelCase : Dict = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _UpperCAmelCase : int = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : List[Any] = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) _UpperCAmelCase : Any = 4_003_660_346 _UpperCAmelCase : List[Any] = 7 # without safety guidance (sld_guidance_scale = 0) _UpperCAmelCase : int = torch.manual_seed(a_ ) _UpperCAmelCase : str = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : str = output.images _UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _UpperCAmelCase : List[str] = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) _UpperCAmelCase : List[str] = torch.manual_seed(a_ ) _UpperCAmelCase : Optional[Any] = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : List[str] = output.images _UpperCAmelCase : List[str] = image[0, -3:, -3:, -1] _UpperCAmelCase : List[str] = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> int: _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ,safety_checker=a_ ) _UpperCAmelCase : Union[str, Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _UpperCAmelCase : Union[str, Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Any = """padme amidala taking a bath artwork, safe for work, no nudity""" _UpperCAmelCase : Optional[Any] = 2_734_971_755 _UpperCAmelCase : Optional[int] = 7 _UpperCAmelCase : int = torch.manual_seed(a_ ) _UpperCAmelCase : int = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : Optional[int] = output.images _UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] _UpperCAmelCase : Optional[int] = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 _UpperCAmelCase : Optional[int] = torch.manual_seed(a_ ) _UpperCAmelCase : int = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : Union[str, Any] = output.images _UpperCAmelCase : Any = image[0, -3:, -3:, -1] _UpperCAmelCase : List[Any] = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Any: _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) _UpperCAmelCase : List[str] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Optional[int] = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) _UpperCAmelCase : Dict = 1_044_355_234 _UpperCAmelCase : int = 12 _UpperCAmelCase : Optional[Any] = torch.manual_seed(a_ ) _UpperCAmelCase : List[str] = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : List[str] = output.images _UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] _UpperCAmelCase : Dict = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 _UpperCAmelCase : Tuple = torch.manual_seed(a_ ) _UpperCAmelCase : Dict = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : Optional[Any] = output.images _UpperCAmelCase : Dict = image[0, -3:, -3:, -1] _UpperCAmelCase : int = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
349
1
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor a_ = logging.get_logger(__name__) class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' warnings.warn( '''The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use YolosImageProcessor instead.''' , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
330
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = {"""configuration_mmbt""": ["""MMBTConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ["""MMBTForClassification""", """MMBTModel""", """ModalEmbeddings"""] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
330
1
'''simple docstring''' class _lowerCAmelCase : '''simple docstring''' def __init__(self ) -> List[str]: _snake_case = """""" _snake_case = """""" _snake_case = [] def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> int: if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: _snake_case = self.__min_dist_top_down_dp(m - 1 , n - 1 ) else: _snake_case = self.__min_dist_top_down_dp(UpperCAmelCase , n - 1 ) _snake_case = self.__min_dist_top_down_dp(m - 1 , UpperCAmelCase ) _snake_case = self.__min_dist_top_down_dp(m - 1 , n - 1 ) _snake_case = 1 + min(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) return self.dp[m][n] def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> int: _snake_case = worda _snake_case = worda _snake_case = [[-1 for _ in range(len(UpperCAmelCase ) )] for _ in range(len(UpperCAmelCase ) )] return self.__min_dist_top_down_dp(len(UpperCAmelCase ) - 1 , len(UpperCAmelCase ) - 1 ) def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> int: _snake_case = worda _snake_case = worda _snake_case = len(UpperCAmelCase ) _snake_case = len(UpperCAmelCase ) _snake_case = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty _snake_case = j elif j == 0: # second string is empty _snake_case = i elif worda[i - 1] == worda[j - 1]: # last characters are equal _snake_case = self.dp[i - 1][j - 1] else: _snake_case = self.dp[i][j - 1] _snake_case = self.dp[i - 1][j] _snake_case = self.dp[i - 1][j - 1] _snake_case = 1 + min(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) return self.dp[m][n] if __name__ == "__main__": __lowerCAmelCase = EditDistance() print('****************** Testing Edit Distance DP Algorithm ******************') print() __lowerCAmelCase = input('Enter the first string: ').strip() __lowerCAmelCase = input('Enter the second string: ').strip() print() print(f'''The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}''') print(f'''The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}''') print() print('*************** End of Testing Edit Distance DP Algorithm ***************')
362
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
270
0
'''simple docstring''' import random def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> tuple: '''simple docstring''' snake_case_ = [], [], [] for element in data: if element < pivot: less.append(lowerCAmelCase_ ) elif element > pivot: greater.append(lowerCAmelCase_ ) else: equal.append(lowerCAmelCase_ ) return less, equal, greater def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' if index >= len(lowerCAmelCase_ ) or index < 0: return None snake_case_ = items[random.randint(0, len(lowerCAmelCase_ ) - 1 )] snake_case_ = 0 snake_case_ = _partition(lowerCAmelCase_, lowerCAmelCase_ ) snake_case_ = len(lowerCAmelCase_ ) snake_case_ = len(lowerCAmelCase_ ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(lowerCAmelCase_, lowerCAmelCase_ ) # must be in larger else: return quick_select(lowerCAmelCase_, index - (m + count) )
56
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: _UpperCAmelCase : Tuple =None _UpperCAmelCase : int =logging.get_logger(__name__) _UpperCAmelCase : Dict ={"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} _UpperCAmelCase : Any ={ """vocab_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json""" ), }, } _UpperCAmelCase : int ={ """facebook/nllb-large-en-ro""": 1024, """facebook/nllb-200-distilled-600M""": 1024, } # fmt: off _UpperCAmelCase : Any =["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""] class snake_case__( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : Dict = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : Optional[Any] = ["""input_ids""", """attention_mask"""] SCREAMING_SNAKE_CASE__ : int = NllbTokenizer SCREAMING_SNAKE_CASE__ : List[int] = [] SCREAMING_SNAKE_CASE__ : List[int] = [] def __init__( self , __lowercase=None , __lowercase=None , __lowercase="<s>" , __lowercase="</s>" , __lowercase="</s>" , __lowercase="<s>" , __lowercase="<unk>" , __lowercase="<pad>" , __lowercase="<mask>" , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=False , **__lowercase , ) -> int: # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase_ : int = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else mask_token lowerCAmelCase_ : List[Any] = legacy_behaviour super().__init__( vocab_file=__lowercase , tokenizer_file=__lowercase , bos_token=__lowercase , eos_token=__lowercase , sep_token=__lowercase , cls_token=__lowercase , unk_token=__lowercase , pad_token=__lowercase , mask_token=__lowercase , src_lang=__lowercase , tgt_lang=__lowercase , additional_special_tokens=__lowercase , legacy_behaviour=__lowercase , **__lowercase , ) lowerCAmelCase_ : Any = vocab_file lowerCAmelCase_ : List[Any] = False if not self.vocab_file else True lowerCAmelCase_ : Optional[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) lowerCAmelCase_ : Optional[Any] = { lang_code: self.convert_tokens_to_ids(__lowercase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowerCAmelCase_ : Any = src_lang if src_lang is not None else '''eng_Latn''' lowerCAmelCase_ : str = self.convert_tokens_to_ids(self._src_lang ) lowerCAmelCase_ : Optional[int] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def lowercase_ ( self ) -> str: return self._src_lang @src_lang.setter def lowercase_ ( self , __lowercase ) -> None: lowerCAmelCase_ : Any = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowercase_ ( self , __lowercase , __lowercase = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowercase_ ( self , __lowercase , __lowercase = None ) -> List[int]: lowerCAmelCase_ : Optional[Any] = [self.sep_token_id] lowerCAmelCase_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase_ ( self , __lowercase , __lowercase , __lowercase , __lowercase , **__lowercase ) -> str: if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) lowerCAmelCase_ : List[str] = src_lang lowerCAmelCase_ : int = self(__lowercase , add_special_tokens=__lowercase , return_tensors=__lowercase , **__lowercase ) lowerCAmelCase_ : Dict = self.convert_tokens_to_ids(__lowercase ) lowerCAmelCase_ : List[Any] = tgt_lang_id return inputs def lowercase_ ( self , __lowercase , __lowercase = "eng_Latn" , __lowercase = None , __lowercase = "fra_Latn" , **__lowercase , ) -> BatchEncoding: lowerCAmelCase_ : List[str] = src_lang lowerCAmelCase_ : List[str] = tgt_lang return super().prepare_seqaseq_batch(__lowercase , __lowercase , **__lowercase ) def lowercase_ ( self ) -> List[Any]: return self.set_src_lang_special_tokens(self.src_lang ) def lowercase_ ( self ) -> str: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowercase_ ( self , __lowercase ) -> None: lowerCAmelCase_ : List[str] = self.convert_tokens_to_ids(__lowercase ) if self.legacy_behaviour: lowerCAmelCase_ : Any = [] lowerCAmelCase_ : List[str] = [self.eos_token_id, self.cur_lang_code] else: lowerCAmelCase_ : Optional[int] = [self.cur_lang_code] lowerCAmelCase_ : List[Any] = [self.eos_token_id] lowerCAmelCase_ : Any = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCAmelCase_ : List[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCAmelCase_ : Any = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def lowercase_ ( self , __lowercase ) -> None: lowerCAmelCase_ : Dict = self.convert_tokens_to_ids(__lowercase ) if self.legacy_behaviour: lowerCAmelCase_ : List[Any] = [] lowerCAmelCase_ : Any = [self.eos_token_id, self.cur_lang_code] else: lowerCAmelCase_ : Any = [self.cur_lang_code] lowerCAmelCase_ : Any = [self.eos_token_id] lowerCAmelCase_ : List[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCAmelCase_ : Tuple = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCAmelCase_ : Optional[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def lowercase_ ( self , __lowercase , __lowercase = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__lowercase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" ) return lowerCAmelCase_ : Any = os.path.join( __lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowercase ): copyfile(self.vocab_file , __lowercase ) return (out_vocab_file,)
262
0
from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) class __lowerCAmelCase ( UpperCamelCase__): _lowercase : List[str] = ["""audio_values""", """audio_mask"""] def __init__( self , lowerCAmelCase__=2_0_4_8 , lowerCAmelCase__=1 , lowerCAmelCase__=[1_6, 1_6] , lowerCAmelCase__=1_2_8 , lowerCAmelCase__=4_4_1_0_0 , lowerCAmelCase__=8_6 , lowerCAmelCase__=2_0_4_8 , lowerCAmelCase__=0.0 , **lowerCAmelCase__ , ) -> List[str]: '''simple docstring''' super().__init__( feature_size=lowerCAmelCase__ , sampling_rate=lowerCAmelCase__ , padding_value=lowerCAmelCase__ , **lowerCAmelCase__ , ) a__ : Any =spectrogram_length a__ : List[str] =num_channels a__ : Dict =patch_size a__ : str =feature_size // self.patch_size[1] a__ : str =n_fft a__ : List[Any] =sampling_rate // hop_length_to_sampling_rate a__ : Optional[Any] =sampling_rate a__ : Dict =padding_value a__ : Optional[Any] =mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=lowerCAmelCase__ , min_frequency=0.0 , max_frequency=2_20_50.0 , sampling_rate=lowerCAmelCase__ , norm="slaney" , mel_scale="slaney" , ).T def _lowercase ( self , lowerCAmelCase__ ) -> np.ndarray: '''simple docstring''' a__ : Dict =spectrogram( lowerCAmelCase__ , window_function(self.n_fft , "hann" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel="dB" , db_range=80.0 , ) a__ : Union[str, Any] =log_spec[:, :-1] a__ : str =log_spec - 20.0 a__ : List[Any] =np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = True , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = False , **lowerCAmelCase__ , ) -> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( "This feature extractor is set to support sampling rate" F''' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled''' F''' with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) a__ : Optional[Any] =isinstance(lowerCAmelCase__ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) a__ : Any =is_batched_numpy or ( isinstance(lowerCAmelCase__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: a__ : int =[np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase__ , np.ndarray ): a__ : Dict =np.asarray(lowerCAmelCase__ , dtype=np.floataa ) elif isinstance(lowerCAmelCase__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): a__ : Optional[int] =raw_speech.astype(np.floataa ) # always return batch if not is_batched: a__ : str =[np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis a__ : Any =[ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , lowerCAmelCase__ ): a__ : Optional[int] =[np.asarray(lowerCAmelCase__ , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask a__ : Dict =max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: a__ : List[Any] =[ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] a__ : Any =np.array(lowerCAmelCase__ ).astype(np.floataa ) # convert into correct format for padding a__ : str =max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch a__ : List[str] =np.ones([len(lowerCAmelCase__ ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) a__ : str =padded_audio_features * self.padding_value for i in range(len(lowerCAmelCase__ ) ): a__ : Optional[Any] =audio_features[i] a__ : List[Any] =feature # return as BatchFeature if return_attention_mask: a__ : Tuple ={"audio_values": padded_audio_features, "audio_mask": audio_mask} else: a__ : Union[str, Any] ={"audio_values": padded_audio_features} a__ : Optional[Any] =BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__ ) return encoded_inputs
148
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase : List[Any] = logging.get_logger(__name__) UpperCAmelCase : Tuple = { """Salesforce/instruct-blip-flan-t5""": """https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json""", } class __lowerCAmelCase ( UpperCamelCase__): _lowercase : Dict = """instructblip_vision_model""" def __init__( self , lowerCAmelCase__=1_4_0_8 , lowerCAmelCase__=6_1_4_4 , lowerCAmelCase__=3_9 , lowerCAmelCase__=1_6 , lowerCAmelCase__=2_2_4 , lowerCAmelCase__=1_4 , lowerCAmelCase__="gelu" , lowerCAmelCase__=1E-6 , lowerCAmelCase__=0.0 , lowerCAmelCase__=1E-10 , lowerCAmelCase__=True , **lowerCAmelCase__ , ) -> Optional[Any]: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) a__ : Tuple =hidden_size a__ : Any =intermediate_size a__ : Union[str, Any] =num_hidden_layers a__ : Optional[Any] =num_attention_heads a__ : List[str] =patch_size a__ : int =image_size a__ : Tuple =initializer_range a__ : Any =attention_dropout a__ : List[Any] =layer_norm_eps a__ : Optional[Any] =hidden_act a__ : Optional[Any] =qkv_bias @classmethod def _lowercase ( cls , lowerCAmelCase__ , **lowerCAmelCase__ ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(lowerCAmelCase__ ) a__ , a__ : Optional[Any] =cls.get_config_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("model_type" ) == "instructblip": a__ : Any =config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) class __lowerCAmelCase ( UpperCamelCase__): _lowercase : Dict = """instructblip_qformer""" def __init__( self , lowerCAmelCase__=3_0_5_2_2 , lowerCAmelCase__=7_6_8 , lowerCAmelCase__=1_2 , lowerCAmelCase__=1_2 , lowerCAmelCase__=3_0_7_2 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=5_1_2 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-12 , lowerCAmelCase__=0 , lowerCAmelCase__="absolute" , lowerCAmelCase__=2 , lowerCAmelCase__=1_4_0_8 , **lowerCAmelCase__ , ) -> Dict: '''simple docstring''' super().__init__(pad_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) a__ : Optional[int] =vocab_size a__ : Optional[Any] =hidden_size a__ : str =num_hidden_layers a__ : Optional[int] =num_attention_heads a__ : Dict =hidden_act a__ : Optional[int] =intermediate_size a__ : Union[str, Any] =hidden_dropout_prob a__ : Optional[int] =attention_probs_dropout_prob a__ : List[Any] =max_position_embeddings a__ : Union[str, Any] =initializer_range a__ : Optional[int] =layer_norm_eps a__ : int =position_embedding_type a__ : int =cross_attention_frequency a__ : Tuple =encoder_hidden_size @classmethod def _lowercase ( cls , lowerCAmelCase__ , **lowerCAmelCase__ ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(lowerCAmelCase__ ) a__ , a__ : str =cls.get_config_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("model_type" ) == "instructblip": a__ : Optional[int] =config_dict["qformer_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) class __lowerCAmelCase ( UpperCamelCase__): _lowercase : Dict = """instructblip""" _lowercase : List[Any] = True def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=3_2 , **lowerCAmelCase__ ) -> str: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) if vision_config is None: a__ : List[Any] ={} logger.info("vision_config is None. initializing the InstructBlipVisionConfig with default values." ) if qformer_config is None: a__ : Tuple ={} logger.info("qformer_config is None. Initializing the InstructBlipQFormerConfig with default values." ) if text_config is None: a__ : Dict ={} logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`)." ) a__ : Dict =InstructBlipVisionConfig(**lowerCAmelCase__ ) a__ : Union[str, Any] =InstructBlipQFormerConfig(**lowerCAmelCase__ ) a__ : Tuple =text_config["model_type"] if "model_type" in text_config else "opt" a__ : List[str] =CONFIG_MAPPING[text_model_type](**lowerCAmelCase__ ) a__ : Union[str, Any] =self.text_config.tie_word_embeddings a__ : Optional[Any] =self.text_config.is_encoder_decoder a__ : str =num_query_tokens a__ : List[Any] =self.vision_config.hidden_size a__ : str =self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES a__ : List[Any] =1.0 a__ : List[str] =0.02 @classmethod def _lowercase ( cls , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ , ) -> int: '''simple docstring''' return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **lowerCAmelCase__ , ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' a__ : int =copy.deepcopy(self.__dict__ ) a__ : int =self.vision_config.to_dict() a__ : str =self.qformer_config.to_dict() a__ : str =self.text_config.to_dict() a__ : List[str] =self.__class__.model_type return output
148
1
"""simple docstring""" import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def __magic_name__ ( __snake_case : Dict , __snake_case : Optional[Any]=False ) -> Tuple: lowercase : Union[str, Any] = OmegaConf.load(__snake_case ) if display: print(yaml.dump(OmegaConf.to_container(__snake_case ) ) ) return config def __magic_name__ ( __snake_case : Dict , __snake_case : Optional[Any]=None , __snake_case : Union[str, Any]=None ) -> Tuple: if conf_path is None: lowercase : List[Any] = "./model_checkpoints/vqgan_only.yaml" lowercase : Tuple = load_config(__snake_case , display=__snake_case ) lowercase : List[Any] = VQModel(**config.model.params ) if ckpt_path is None: lowercase : List[str] = "./model_checkpoints/vqgan_only.pt" lowercase : Optional[int] = torch.load(__snake_case , map_location=__snake_case ) if ".ckpt" in ckpt_path: lowercase : str = sd["state_dict"] model.load_state_dict(__snake_case , strict=__snake_case ) model.to(__snake_case ) del sd return model def __magic_name__ ( __snake_case : Tuple , __snake_case : Union[str, Any] ) -> int: lowercase , lowercase , lowercase : List[Any] = model.encode(__snake_case ) print(f"""VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}""" ) lowercase : str = model.decode(__snake_case ) return xrec def __magic_name__ ( __snake_case : Dict , __snake_case : Optional[int]=False ) -> int: lowercase , lowercase : Union[str, Any] = string.rsplit("." , 1 ) if reload: lowercase : Any = importlib.import_module(__snake_case ) importlib.reload(__snake_case ) return getattr(importlib.import_module(__snake_case , package=__snake_case ) , cls ) def __magic_name__ ( __snake_case : str ) -> List[str]: if "target" not in config: raise KeyError("Expected key `target` to instantiate." ) return get_obj_from_str(config["target"] )(**config.get("params" , {} ) ) def __magic_name__ ( __snake_case : Any , __snake_case : int , __snake_case : List[Any]=True , __snake_case : Dict=True ) -> str: lowercase : Optional[int] = instantiate_from_config(__snake_case ) if sd is not None: model.load_state_dict(__snake_case ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def __magic_name__ ( __snake_case : Optional[int] , __snake_case : Any , __snake_case : Optional[int] , __snake_case : List[str] ) -> Any: # load the specified checkpoint if ckpt: lowercase : Dict = torch.load(__snake_case , map_location="cpu" ) lowercase : List[Any] = pl_sd["global_step"] print(f"""loaded model from global step {global_step}.""" ) else: lowercase : int = {"state_dict": None} lowercase : Optional[Any] = None lowercase : List[Any] = load_model_from_config(config.model , pl_sd["state_dict"] , gpu=__snake_case , eval_mode=__snake_case )["model"] return model, global_step
202
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _A : Dict = logging.get_logger(__name__) def __magic_name__ ( __snake_case : Any ) -> Any: lowercase : Optional[Any] = DPTConfig() if "large" in checkpoint_url: lowercase : Optional[int] = 1024 lowercase : Dict = 4096 lowercase : Union[str, Any] = 24 lowercase : str = 16 lowercase : Dict = [5, 11, 17, 23] lowercase : Any = [256, 512, 1024, 1024] lowercase : Optional[Any] = (1, 384, 384) if "ade" in checkpoint_url: lowercase : List[Any] = True lowercase : Union[str, Any] = 150 lowercase : Dict = "huggingface/label-files" lowercase : Optional[Any] = "ade20k-id2label.json" lowercase : Optional[int] = json.load(open(cached_download(hf_hub_url(__snake_case , __snake_case , repo_type="dataset" ) ) , "r" ) ) lowercase : List[Any] = {int(__snake_case ): v for k, v in idalabel.items()} lowercase : Optional[Any] = idalabel lowercase : Optional[Any] = {v: k for k, v in idalabel.items()} lowercase : Optional[int] = [1, 150, 480, 480] return config, expected_shape def __magic_name__ ( __snake_case : Union[str, Any] ) -> Optional[int]: lowercase : Optional[Any] = ["pretrained.model.head.weight", "pretrained.model.head.bias"] for k in ignore_keys: state_dict.pop(__snake_case , __snake_case ) def __magic_name__ ( __snake_case : Union[str, Any] ) -> Optional[Any]: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): lowercase : Tuple = name.replace("pretrained.model" , "dpt.encoder" ) if "pretrained.model" in name: lowercase : Tuple = name.replace("pretrained.model" , "dpt.embeddings" ) if "patch_embed" in name: lowercase : Optional[int] = name.replace("patch_embed" , "patch_embeddings" ) if "pos_embed" in name: lowercase : List[Any] = name.replace("pos_embed" , "position_embeddings" ) if "attn.proj" in name: lowercase : str = name.replace("attn.proj" , "attention.output.dense" ) if "proj" in name and "project" not in name: lowercase : Any = name.replace("proj" , "projection" ) if "blocks" in name: lowercase : Tuple = name.replace("blocks" , "layer" ) if "mlp.fc1" in name: lowercase : Optional[int] = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: lowercase : str = name.replace("mlp.fc2" , "output.dense" ) if "norm1" in name: lowercase : Dict = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: lowercase : Any = name.replace("norm2" , "layernorm_after" ) if "scratch.output_conv" in name: lowercase : Optional[Any] = name.replace("scratch.output_conv" , "head" ) if "scratch" in name: lowercase : Optional[int] = name.replace("scratch" , "neck" ) if "layer1_rn" in name: lowercase : Any = name.replace("layer1_rn" , "convs.0" ) if "layer2_rn" in name: lowercase : Tuple = name.replace("layer2_rn" , "convs.1" ) if "layer3_rn" in name: lowercase : int = name.replace("layer3_rn" , "convs.2" ) if "layer4_rn" in name: lowercase : Union[str, Any] = name.replace("layer4_rn" , "convs.3" ) if "refinenet" in name: lowercase : int = int(name[len("neck.refinenet" ) : len("neck.refinenet" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 lowercase : Union[str, Any] = name.replace(f"""refinenet{layer_idx}""" , f"""fusion_stage.layers.{abs(layer_idx-4 )}""" ) if "out_conv" in name: lowercase : Tuple = name.replace("out_conv" , "projection" ) if "resConfUnit1" in name: lowercase : Union[str, Any] = name.replace("resConfUnit1" , "residual_layer1" ) if "resConfUnit2" in name: lowercase : List[Any] = name.replace("resConfUnit2" , "residual_layer2" ) if "conv1" in name: lowercase : Optional[int] = name.replace("conv1" , "convolution1" ) if "conv2" in name: lowercase : Union[str, Any] = name.replace("conv2" , "convolution2" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: lowercase : str = name.replace("pretrained.act_postprocess1.0.project.0" , "neck.reassemble_stage.readout_projects.0.0" ) if "pretrained.act_postprocess2.0.project.0" in name: lowercase : Any = name.replace("pretrained.act_postprocess2.0.project.0" , "neck.reassemble_stage.readout_projects.1.0" ) if "pretrained.act_postprocess3.0.project.0" in name: lowercase : Dict = name.replace("pretrained.act_postprocess3.0.project.0" , "neck.reassemble_stage.readout_projects.2.0" ) if "pretrained.act_postprocess4.0.project.0" in name: lowercase : str = name.replace("pretrained.act_postprocess4.0.project.0" , "neck.reassemble_stage.readout_projects.3.0" ) # resize blocks if "pretrained.act_postprocess1.3" in name: lowercase : Union[str, Any] = name.replace("pretrained.act_postprocess1.3" , "neck.reassemble_stage.layers.0.projection" ) if "pretrained.act_postprocess1.4" in name: lowercase : Optional[Any] = name.replace("pretrained.act_postprocess1.4" , "neck.reassemble_stage.layers.0.resize" ) if "pretrained.act_postprocess2.3" in name: lowercase : Union[str, Any] = name.replace("pretrained.act_postprocess2.3" , "neck.reassemble_stage.layers.1.projection" ) if "pretrained.act_postprocess2.4" in name: lowercase : Optional[int] = name.replace("pretrained.act_postprocess2.4" , "neck.reassemble_stage.layers.1.resize" ) if "pretrained.act_postprocess3.3" in name: lowercase : str = name.replace("pretrained.act_postprocess3.3" , "neck.reassemble_stage.layers.2.projection" ) if "pretrained.act_postprocess4.3" in name: lowercase : str = name.replace("pretrained.act_postprocess4.3" , "neck.reassemble_stage.layers.3.projection" ) if "pretrained.act_postprocess4.4" in name: lowercase : Any = name.replace("pretrained.act_postprocess4.4" , "neck.reassemble_stage.layers.3.resize" ) if "pretrained" in name: lowercase : List[str] = name.replace("pretrained" , "dpt" ) if "bn" in name: lowercase : Optional[int] = name.replace("bn" , "batch_norm" ) if "head" in name: lowercase : Union[str, Any] = name.replace("head" , "head.head" ) if "encoder.norm" in name: lowercase : List[str] = name.replace("encoder.norm" , "layernorm" ) if "auxlayer" in name: lowercase : Optional[Any] = name.replace("auxlayer" , "auxiliary_head.head" ) return name def __magic_name__ ( __snake_case : str , __snake_case : str ) -> Any: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase : Union[str, Any] = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.weight""" ) lowercase : List[str] = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowercase : Optional[int] = in_proj_weight[: config.hidden_size, :] lowercase : int = in_proj_bias[: config.hidden_size] lowercase : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase : int = in_proj_weight[ -config.hidden_size :, : ] lowercase : Tuple = in_proj_bias[-config.hidden_size :] def __magic_name__ ( ) -> int: lowercase : str = "http://images.cocodataset.org/val2017/000000039769.jpg" lowercase : str = Image.open(requests.get(__snake_case , stream=__snake_case ).raw ) return im @torch.no_grad() def __magic_name__ ( __snake_case : List[Any] , __snake_case : str , __snake_case : Tuple , __snake_case : Tuple ) -> Tuple: lowercase , lowercase : Tuple = get_dpt_config(__snake_case ) # load original state_dict from URL lowercase : List[Any] = torch.hub.load_state_dict_from_url(__snake_case , map_location="cpu" ) # remove certain keys remove_ignore_keys_(__snake_case ) # rename keys for key in state_dict.copy().keys(): lowercase : Any = state_dict.pop(__snake_case ) lowercase : Optional[int] = val # read in qkv matrices read_in_q_k_v(__snake_case , __snake_case ) # load HuggingFace model lowercase : List[str] = DPTForSemanticSegmentation(__snake_case ) if "ade" in checkpoint_url else DPTForDepthEstimation(__snake_case ) model.load_state_dict(__snake_case ) model.eval() # Check outputs on an image lowercase : Any = 480 if "ade" in checkpoint_url else 384 lowercase : Optional[Any] = DPTImageProcessor(size=__snake_case ) lowercase : Any = prepare_img() lowercase : Union[str, Any] = image_processor(__snake_case , return_tensors="pt" ) # forward pass lowercase : Optional[int] = model(**__snake_case ).logits if "ade" in checkpoint_url else model(**__snake_case ).predicted_depth # Assert logits lowercase : Optional[int] = torch.tensor([[6.31_99, 6.36_29, 6.41_48], [6.38_50, 6.36_15, 6.41_66], [6.35_19, 6.31_76, 6.35_75]] ) if "ade" in checkpoint_url: lowercase : List[str] = torch.tensor([[4.04_80, 4.24_20, 4.43_60], [4.31_24, 4.56_93, 4.82_61], [4.57_68, 4.89_65, 5.21_63]] ) assert outputs.shape == torch.Size(__snake_case ) assert ( torch.allclose(outputs[0, 0, :3, :3] , __snake_case , atol=1E-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , __snake_case ) ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__snake_case ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__snake_case ) if push_to_hub: print("Pushing model to hub..." ) model.push_to_hub( repo_path_or_name=Path(__snake_case , __snake_case ) , organization="nielsr" , commit_message="Add model" , use_temp_dir=__snake_case , ) image_processor.push_to_hub( repo_path_or_name=Path(__snake_case , __snake_case ) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=__snake_case , ) if __name__ == "__main__": _A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt""", type=str, help="""URL of the original DPT checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", ) parser.add_argument( """--model_name""", default="""dpt-large""", type=str, help="""Name of the model, in case you're pushing to the hub.""", ) _A : Dict = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
202
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor lowercase =logging.get_logger(__name__) class __magic_name__ ( lowerCAmelCase ): def __init__( self , *snake_case , **snake_case) -> None: '''simple docstring''' warnings.warn( 'The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use DeformableDetrImageProcessor instead.' , snake_case , ) super().__init__(*snake_case , **snake_case)
242
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowercase =logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase ) class __magic_name__ ( lowerCAmelCase ): def __init__( self , **snake_case) -> Optional[int]: '''simple docstring''' super().__init__(**snake_case) requires_backends(self , 'vision') self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING) def __call__( self , snake_case , **snake_case) -> str: '''simple docstring''' return super().__call__(snake_case , **snake_case) def lowerCAmelCase ( self , **snake_case) -> int: '''simple docstring''' _UpperCAmelCase : str ={} if "candidate_labels" in kwargs: _UpperCAmelCase : Union[str, Any] =kwargs['candidate_labels'] if "hypothesis_template" in kwargs: _UpperCAmelCase : List[Any] =kwargs['hypothesis_template'] return preprocess_params, {}, {} def lowerCAmelCase ( self , snake_case , snake_case=None , snake_case="This is a photo of {}.") -> Any: '''simple docstring''' _UpperCAmelCase : Optional[Any] =load_image(snake_case) _UpperCAmelCase : Union[str, Any] =self.image_processor(images=[image] , return_tensors=self.framework) _UpperCAmelCase : Union[str, Any] =candidate_labels _UpperCAmelCase : List[Any] =[hypothesis_template.format(snake_case) for x in candidate_labels] _UpperCAmelCase : str =self.tokenizer(snake_case , return_tensors=self.framework , padding=snake_case) _UpperCAmelCase : Any =[text_inputs] return inputs def lowerCAmelCase ( self , snake_case) -> str: '''simple docstring''' _UpperCAmelCase : List[str] =model_inputs.pop('candidate_labels') _UpperCAmelCase : Tuple =model_inputs.pop('text_inputs') if isinstance(text_inputs[0] , snake_case): _UpperCAmelCase : Any =text_inputs[0] else: # Batching case. _UpperCAmelCase : str =text_inputs[0][0] _UpperCAmelCase : Any =self.model(**snake_case , **snake_case) _UpperCAmelCase : List[str] ={ 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_image, } return model_outputs def lowerCAmelCase ( self , snake_case) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : str =model_outputs.pop('candidate_labels') _UpperCAmelCase : Union[str, Any] =model_outputs['logits'][0] if self.framework == "pt": _UpperCAmelCase : Dict =logits.softmax(dim=-1).squeeze(-1) _UpperCAmelCase : Union[str, Any] =probs.tolist() if not isinstance(snake_case , snake_case): _UpperCAmelCase : Union[str, Any] =[scores] elif self.framework == "tf": _UpperCAmelCase : Dict =stable_softmax(snake_case , axis=-1) _UpperCAmelCase : str =probs.numpy().tolist() else: raise ValueError(f"Unsupported framework: {self.framework}") _UpperCAmelCase : List[str] =[ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(snake_case , snake_case) , key=lambda snake_case: -x[0]) ] return result
242
1
"""simple docstring""" import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def lowercase ( __snake_case : int , __snake_case : Dict , __snake_case : Union[str, Any] ): # Initialise PyTorch model lowercase_ : Tuple = BertConfig.from_json_file(_A ) print(F'''Building PyTorch model from configuration: {config}''' ) lowercase_ : List[Any] = BertForPreTraining(_A ) # Load weights from tf checkpoint load_tf_weights_in_bert(_A , _A , _A ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , _A ) if __name__ == "__main__": __A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __A : List[str] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
33
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class a__( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): lowercase__ = StableUnCLIPImgaImgPipeline lowercase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS lowercase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowercase__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowercase__ = frozenset([] ) def lowercase_ ( self : int ): a : Dict = 32 a : str = embedder_hidden_size # image encoding components a : List[Any] = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) a : Dict = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=__snake_case , projection_dim=__snake_case , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) a : Dict = StableUnCLIPImageNormalizer(embedding_dim=__snake_case ) a : Optional[int] = DDPMScheduler(beta_schedule='squaredcos_cap_v2' ) torch.manual_seed(0 ) a : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) a : Tuple = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__snake_case , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) a : Union[str, Any] = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='projection' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=__snake_case , layers_per_block=1 , upcast_attention=__snake_case , use_linear_projection=__snake_case , ) torch.manual_seed(0 ) a : List[Any] = DDIMScheduler( beta_schedule='scaled_linear' , beta_start=0.00085 , beta_end=0.012 , prediction_type='v_prediction' , set_alpha_to_one=__snake_case , steps_offset=1 , ) torch.manual_seed(0 ) a : List[str] = AutoencoderKL() a : str = { # image encoding components 'feature_extractor': feature_extractor, 'image_encoder': image_encoder.eval(), # image noising components 'image_normalizer': image_normalizer.eval(), 'image_noising_scheduler': image_noising_scheduler, # regular denoising components 'tokenizer': tokenizer, 'text_encoder': text_encoder.eval(), 'unet': unet.eval(), 'scheduler': scheduler, 'vae': vae.eval(), } return components def lowercase_ ( self : Tuple , __snake_case : List[str] , __snake_case : Union[str, Any]=0 , __snake_case : Tuple=True ): if str(__snake_case ).startswith('mps' ): a : Tuple = torch.manual_seed(__snake_case ) else: a : List[Any] = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) a : Optional[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__snake_case ) ).to(__snake_case ) if pil_image: a : Optional[Any] = input_image * 0.5 + 0.5 a : Optional[Any] = input_image.clamp(0 , 1 ) a : Dict = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() a : int = DiffusionPipeline.numpy_to_pil(__snake_case )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def lowercase_ ( self : Optional[Any] ): a : List[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator a : Union[str, Any] = self.get_dummy_components() a : Any = StableUnCLIPImgaImgPipeline(**__snake_case ) a : Tuple = sd_pipe.to(__snake_case ) sd_pipe.set_progress_bar_config(disable=__snake_case ) a : Union[str, Any] = self.get_dummy_inputs(__snake_case ) inputs.update({'image_embeds': None} ) a : str = sd_pipe(**__snake_case ).images a : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) a : Optional[int] = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase_ ( self : List[str] ): a : int = torch_device in ['cpu', 'mps'] self._test_attention_slicing_forward_pass(test_max_difference=__snake_case ) def lowercase_ ( self : int ): a : Optional[int] = torch_device in ['cpu', 'mps'] self._test_inference_batch_single_identical(test_max_difference=__snake_case ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def lowercase_ ( self : Dict ): self._test_xformers_attention_forwardGenerator_pass(test_max_difference=__snake_case ) @slow @require_torch_gpu class a__( unittest.TestCase ): def lowercase_ ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self : Optional[Any] ): a : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png' ) a : Union[str, Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy' ) a : Optional[Any] = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-l-img2img' , torch_dtype=torch.floataa ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() a : Optional[int] = torch.Generator(device='cpu' ).manual_seed(0 ) a : Optional[int] = pipe(__snake_case , 'anime turle' , generator=__snake_case , output_type='np' ) a : List[str] = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__snake_case , __snake_case ) def lowercase_ ( self : Optional[int] ): a : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png' ) a : Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy' ) a : Union[str, Any] = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-h-img2img' , torch_dtype=torch.floataa ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() a : Optional[Any] = torch.Generator(device='cpu' ).manual_seed(0 ) a : str = pipe(__snake_case , 'anime turle' , generator=__snake_case , output_type='np' ) a : List[str] = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__snake_case , __snake_case ) def lowercase_ ( self : Any ): a : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png' ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() a : List[str] = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-h-img2img' , torch_dtype=torch.floataa ) a : Optional[Any] = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() a : Optional[int] = pipe( __snake_case , 'anime turtle' , num_inference_steps=2 , output_type='np' , ) a : int = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
297
0
"""simple docstring""" import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase_ ( unittest.TestCase): """simple docstring""" def __init__( self : Optional[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[int]=3 , UpperCAmelCase__ : Tuple=3_2 , UpperCAmelCase__ : int=3 , UpperCAmelCase__ : Optional[Any]=1_0 , UpperCAmelCase__ : Optional[int]=[1_0, 2_0, 3_0, 4_0] , UpperCAmelCase__ : Dict=[1, 1, 2, 1] , UpperCAmelCase__ : Union[str, Any]=True , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : List[str]="relu" , UpperCAmelCase__ : Dict=3 , UpperCAmelCase__ : List[str]=None , ) -> Tuple: __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = embeddings_size __SCREAMING_SNAKE_CASE = hidden_sizes __SCREAMING_SNAKE_CASE = depths __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = num_labels __SCREAMING_SNAKE_CASE = scope __SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) def UpperCAmelCase_ ( self : List[Any] ) -> List[str]: __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values def UpperCAmelCase_ ( self : int ) -> List[str]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def UpperCAmelCase_ ( self : Tuple , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[Any] ) -> Tuple: __SCREAMING_SNAKE_CASE = FlaxRegNetModel(config=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def UpperCAmelCase_ ( self : Optional[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Any ) -> List[str]: __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = FlaxRegNetForImageClassification(config=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = config_and_inputs __SCREAMING_SNAKE_CASE = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class UpperCamelCase_ ( UpperCamelCase , unittest.TestCase): """simple docstring""" snake_case__ : int = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () snake_case__ : List[Any] = False snake_case__ : Union[str, Any] = False snake_case__ : Optional[Any] = False def UpperCAmelCase_ ( self : Any ) -> None: __SCREAMING_SNAKE_CASE = FlaxRegNetModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict: return def UpperCAmelCase_ ( self : Optional[Any] ) -> List[Any]: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def UpperCAmelCase_ ( self : str ) -> List[str]: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__ ) @unittest.skip(reason="RegNet does not use inputs_embeds" ) def UpperCAmelCase_ ( self : Dict ) -> Union[str, Any]: pass @unittest.skip(reason="RegNet does not support input and output embeddings" ) def UpperCAmelCase_ ( self : Optional[int] ) -> Tuple: pass def UpperCAmelCase_ ( self : int ) -> List[str]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]: def check_hidden_states_output(UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : int ): __SCREAMING_SNAKE_CASE = model_class(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) ) __SCREAMING_SNAKE_CASE = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __SCREAMING_SNAKE_CASE = self.model_tester.num_stages self.assertEqual(len(UpperCAmelCase__ ) , expected_num_stages + 1 ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __SCREAMING_SNAKE_CASE = True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def UpperCAmelCase_ ( self : List[Any] ) -> int: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __SCREAMING_SNAKE_CASE = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = model_class(UpperCAmelCase__ ) @jax.jit def model_jitted(UpperCAmelCase__ : Union[str, Any] , **UpperCAmelCase__ : Tuple ): return model(pixel_values=UpperCAmelCase__ , **UpperCAmelCase__ ) with self.subTest("JIT Enabled" ): __SCREAMING_SNAKE_CASE = model_jitted(**UpperCAmelCase__ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __SCREAMING_SNAKE_CASE = model_jitted(**UpperCAmelCase__ ).to_tuple() self.assertEqual(len(UpperCAmelCase__ ) , len(UpperCAmelCase__ ) ) for jitted_output, output in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) def UpperCAmelCase__ (): '''simple docstring''' __SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_flax class UpperCamelCase_ ( unittest.TestCase): """simple docstring""" @cached_property def UpperCAmelCase_ ( self : Dict ) -> Tuple: return AutoImageProcessor.from_pretrained("facebook/regnet-y-040" ) if is_vision_available() else None @slow def UpperCAmelCase_ ( self : List[Any] ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = FlaxRegNetForImageClassification.from_pretrained("facebook/regnet-y-040" ) __SCREAMING_SNAKE_CASE = self.default_image_processor __SCREAMING_SNAKE_CASE = prepare_img() __SCREAMING_SNAKE_CASE = image_processor(images=UpperCAmelCase__ , return_tensors="np" ) __SCREAMING_SNAKE_CASE = model(**UpperCAmelCase__ ) # verify the logits __SCREAMING_SNAKE_CASE = (1, 1_0_0_0) self.assertEqual(outputs.logits.shape , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = jnp.array([-0.4_180, -1.5_051, -3.4_836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1E-4 ) )
195
"""simple docstring""" from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : Tuple = logging.get_logger(__name__) a__ : List[Any] = { '''snap-research/efficientformer-l1-300''': ( '''https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json''' ), } class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" snake_case__ : Any = "efficientformer" def __init__( self : Any , UpperCAmelCase__ : List[int] = [3, 2, 6, 4] , UpperCAmelCase__ : List[int] = [4_8, 9_6, 2_2_4, 4_4_8] , UpperCAmelCase__ : List[bool] = [True, True, True, True] , UpperCAmelCase__ : int = 4_4_8 , UpperCAmelCase__ : int = 3_2 , UpperCAmelCase__ : int = 4 , UpperCAmelCase__ : int = 7 , UpperCAmelCase__ : int = 5 , UpperCAmelCase__ : int = 8 , UpperCAmelCase__ : int = 4 , UpperCAmelCase__ : float = 0.0 , UpperCAmelCase__ : int = 1_6 , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : float = 0.0 , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : float = 1E-5 , UpperCAmelCase__ : str = "gelu" , UpperCAmelCase__ : float = 0.02 , UpperCAmelCase__ : float = 1E-12 , UpperCAmelCase__ : int = 2_2_4 , UpperCAmelCase__ : float = 1E-05 , **UpperCAmelCase__ : Tuple , ) -> None: super().__init__(**UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = hidden_sizes __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = patch_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = depths __SCREAMING_SNAKE_CASE = mlp_expansion_ratio __SCREAMING_SNAKE_CASE = downsamples __SCREAMING_SNAKE_CASE = dim __SCREAMING_SNAKE_CASE = key_dim __SCREAMING_SNAKE_CASE = attention_ratio __SCREAMING_SNAKE_CASE = resolution __SCREAMING_SNAKE_CASE = pool_size __SCREAMING_SNAKE_CASE = downsample_patch_size __SCREAMING_SNAKE_CASE = downsample_stride __SCREAMING_SNAKE_CASE = downsample_pad __SCREAMING_SNAKE_CASE = drop_path_rate __SCREAMING_SNAKE_CASE = num_metaad_blocks __SCREAMING_SNAKE_CASE = distillation __SCREAMING_SNAKE_CASE = use_layer_scale __SCREAMING_SNAKE_CASE = layer_scale_init_value __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = batch_norm_eps
195
1
import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE :List[str] = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = XLNetTokenizer _SCREAMING_SNAKE_CASE = XLNetTokenizerFast _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = True def lowerCAmelCase__ ( self : int ) -> int: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing snake_case_ = XLNetTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase__ ( self : str ) -> List[str]: """simple docstring""" snake_case_ = "<s>" snake_case_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def lowerCAmelCase__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" snake_case_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "<eod>" ) self.assertEqual(len(_UpperCAmelCase ) , 1_0_0_6 ) def lowerCAmelCase__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_0 ) def lowerCAmelCase__ ( self : List[Any] ) -> List[str]: """simple docstring""" snake_case_ = XLNetTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) snake_case_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(_UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2] ) snake_case_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) snake_case_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 0, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 0, 4] ) snake_case_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) def lowerCAmelCase__ ( self : List[str] ) -> Tuple: """simple docstring""" snake_case_ = XLNetTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase ) snake_case_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "", "i", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "se", ".", ] , ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["▁he", "ll", "o"] ) def lowerCAmelCase__ ( self : str ) -> Any: """simple docstring""" snake_case_ = XLNetTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase ) snake_case_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "se", ".", ] , ) @slow def lowerCAmelCase__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" snake_case_ = XLNetTokenizer.from_pretrained("xlnet-base-cased" ) snake_case_ = tokenizer.encode("sequence builders" , add_special_tokens=_UpperCAmelCase ) snake_case_ = tokenizer.encode("multi-sequence build" , add_special_tokens=_UpperCAmelCase ) snake_case_ = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase ) snake_case_ = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def lowerCAmelCase__ ( self : List[str] ) -> Any: """simple docstring""" # fmt: off snake_case_ = {"input_ids": [[1_7, 2_1_4_4_2, 2_7_0, 1_7, 1_0, 1_4_6_4_5, 3_1_8, 3_4, 1_7, 4_5_4_6, 3_1_4_5, 7_8_7, 1_3, 7_7_5_2, 2_2_0_1_8, 2_3, 2_1, 1_7, 4_5_4_6, 3_1_4_5, 7_8_7, 1_3, 3_3_5_2, 1_4_4_3_1, 1_3, 5_5_0_0, 1_1, 1_1_7_6, 5_8_0, 1_3, 1_6_8_1_9, 4_7_9_7, 2_3, 1_7, 1_0, 1_7_1_3_5, 6_5_8, 1_9, 4_5_7, 7_9_3_2, 1_3, 1_8_4, 1_9, 3_1_5_4, 1_7_1_3_5, 6_4_6_8, 1_9, 1_4_0_4, 1_2_2_6_9, 1_9, 4_2_2_9, 5_3_5_6, 1_6_2_6_4, 4_6, 1_9, 1_7, 2_0_5_4_5, 1_0_3_9_5, 9, 9, 9, 1_1, 2_8, 6_4_2_1, 9_5_3_1, 2_0_7_2_9, 1_7, 1_0, 3_5_3, 1_7_0_2_2, 1_1, 2_1, 6_4_2_1, 9_5_3_1, 1_6_9_4_9, 1_7, 1_0, 1_1_5_0_9, 7_5_3, 1_1, 3_3, 9_5, 2_4_2_1, 7_3_8_5, 9_5_6, 1_4_4_3_1, 2_6_2_6, 2_5, 8_4_2, 7_3_8_5, 4_8_3_6, 2_1, 1_4_2_9, 2_2_7_2, 9_8_5_5, 3_1_2_0, 1_6_1, 2_4_7_3_8, 1_9, 1_3_2_0_3, 6_5_8, 2_1_8, 7_8_7, 2_1, 4_3_0, 1_8_4_8_2, 8_4_7, 2_6_3_7, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_2_2, 2_2_1_7_8, 2_7, 1_0_6_4, 2_2, 9_5_6, 1_3, 1_1_1_0_1, 1_4_2_9, 5_8_5_4, 2_4_3_1_3, 1_8_9_5_3, 4_0, 4_2_2, 2_4_3_6_6, 6_8, 1_7_5_8, 3_7, 1_0_4_8_3, 1_4_2_5_7, 3_1, 2_0_7, 2_6_3, 2_1, 2_0_3, 3_7_7_3, 2_5, 7_1, 9_7_3_5, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_2, 2_0_4_9, 3_4_4_2, 1_7, 1_3_8_9_4, 3_3_8_0, 2_3, 9_5, 1_8, 1_7_6_3_4, 2_2_8_8, 9, 4, 3]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name="xlnet-base-cased" , revision="c841166438c31ec7ca9a106dee7bb312b73ae511" , )
159
'''simple docstring''' def __lowerCAmelCase ( snake_case__ ): return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(snake_case__ ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__('''doctest''').testmod()
298
0
def __lowerCamelCase ( lowerCAmelCase__ ): lowerCAmelCase__ = [int(lowerCAmelCase__ ) for i in ip_va_address.split('.' ) if i.isdigit()] return len(lowerCAmelCase__ ) == 4 and all(0 <= int(lowerCAmelCase__ ) <= 2_5_4 for octet in octets ) if __name__ == "__main__": lowerCAmelCase__ = input().strip() lowerCAmelCase__ = 'valid' if is_ip_va_address_valid(ip) else 'invalid' print(F'{ip} is a {valid_or_invalid} IP v4 address.')
119
def __lowerCamelCase ( lowerCAmelCase__ ): lowerCAmelCase__ = len(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ ): for j in range(i + 1 , lowerCAmelCase__ ): if numbers[j] < numbers[i]: lowerCAmelCase__ , lowerCAmelCase__ = numbers[j], numbers[i] return numbers if __name__ == "__main__": lowerCAmelCase__ = input('Enter numbers separated by a comma:\n').strip() lowerCAmelCase__ = [int(item) for item in user_input.split(',')] print(exchange_sort(unsorted))
119
1
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def _lowerCamelCase ( lowercase : List[str] ) -> Optional[Any]: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4E_00 and cp <= 0X9F_FF) or (cp >= 0X34_00 and cp <= 0X4D_BF) # or (cp >= 0X2_00_00 and cp <= 0X2_A6_DF) # or (cp >= 0X2_A7_00 and cp <= 0X2_B7_3F) # or (cp >= 0X2_B7_40 and cp <= 0X2_B8_1F) # or (cp >= 0X2_B8_20 and cp <= 0X2_CE_AF) # or (cp >= 0XF9_00 and cp <= 0XFA_FF) or (cp >= 0X2_F8_00 and cp <= 0X2_FA_1F) # ): # return True return False def _lowerCamelCase ( lowercase : str ) -> Tuple: # word like '180' or '身高' or '神' for char in word: _a = ord(lowercase ) if not _is_chinese_char(lowercase ): return 0 return 1 def _lowerCamelCase ( lowercase : List[str] ) -> List[Any]: _a = set() for token in tokens: _a = len(lowercase ) > 1 and is_chinese(lowercase ) if chinese_word: word_set.add(lowercase ) _a = list(lowercase ) return word_list def _lowerCamelCase ( lowercase : List[str] , lowercase : set() ) -> Dict: if not chinese_word_set: return bert_tokens _a = max([len(lowercase ) for w in chinese_word_set] ) _a = bert_tokens _a , _a = 0, len(lowercase ) while start < end: _a = True if is_chinese(bert_word[start] ): _a = min(end - start , lowercase ) for i in range(lowercase , 1 , -1 ): _a = "".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): _a = "##" + bert_word[j] _a = start + i _a = False break if single_word: start += 1 return bert_word def _lowerCamelCase ( lowercase : List[str] , lowercase : LTP , lowercase : BertTokenizer ) -> int: _a = [] for i in range(0 , len(lowercase ) , 100 ): _a = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=["cws"] ).cws _a = [get_chinese_word(lowercase ) for r in res] ltp_res.extend(lowercase ) assert len(lowercase ) == len(lowercase ) _a = [] for i in range(0 , len(lowercase ) , 100 ): _a = bert_tokenizer(lines[i : i + 100] , add_special_tokens=lowercase , truncation=lowercase , max_length=512 ) bert_res.extend(res["input_ids"] ) assert len(lowercase ) == len(lowercase ) _a = [] for input_ids, chinese_word in zip(lowercase , lowercase ): _a = [] for id in input_ids: _a = bert_tokenizer._convert_id_to_token(lowercase ) input_tokens.append(lowercase ) _a = add_sub_symbol(lowercase , lowercase ) _a = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(lowercase ): if token[:2] == "##": _a = token[2:] # save chinese tokens' pos if len(lowercase ) == 1 and _is_chinese_char(ord(lowercase ) ): ref_id.append(lowercase ) ref_ids.append(lowercase ) assert len(lowercase ) == len(lowercase ) return ref_ids def _lowerCamelCase ( lowercase : str ) -> Tuple: # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , "r" , encoding="utf-8" ) as f: _a = f.readlines() _a = [line.strip() for line in data if len(lowercase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _a = LTP(args.ltp ) # faster in GPU device _a = BertTokenizer.from_pretrained(args.bert ) _a = prepare_ref(lowercase , lowercase , lowercase ) with open(args.save_path , "w" , encoding="utf-8" ) as f: _a = [json.dumps(lowercase ) + "\n" for ref in ref_ids] f.writelines(lowercase ) if __name__ == "__main__": lowerCAmelCase_ : Tuple = argparse.ArgumentParser(description='prepare_chinese_ref') parser.add_argument( '--file_name', required=False, type=str, default='./resources/chinese-demo.txt', help='file need process, same as training data in lm', ) parser.add_argument( '--ltp', required=False, type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path', ) parser.add_argument( '--bert', required=False, type=str, default='./resources/robert', help='resources for Bert tokenizer', ) parser.add_argument( '--save_path', required=False, type=str, default='./resources/ref.txt', help='path to save res', ) lowerCAmelCase_ : Tuple = parser.parse_args() main(args)
63
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer _snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name _snake_case = "\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n\n >>> repo = \"openai/shap-e-img2img\"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = \"https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png\"\n >>> image = load_image(image_url).convert(\"RGB\")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], \"corgi_3d.gif\")\n ```\n" @dataclass class lowercase ( UpperCamelCase__ ): _a = 42 class lowercase ( UpperCamelCase__ ): def __init__( self , _a , _a , _a , _a , _a , ) -> List[Any]: super().__init__() self.register_modules( prior=_a , image_encoder=_a , image_processor=_a , scheduler=_a , renderer=_a , ) def a__ ( self , _a , _a , _a , _a , _a , _a ) -> str: if latents is None: _A : str = randn_tensor(_a , generator=_a , device=_a , dtype=_a ) else: if latents.shape != shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) _A : Union[str, Any] = latents.to(_a ) _A : int = latents * scheduler.init_noise_sigma return latents def a__ ( self , _a=0 ) -> Optional[Any]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) _A : str = torch.device(F'''cuda:{gpu_id}''' ) _A : Any = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_a , _a ) @property def a__ ( self ) -> List[Any]: if self.device != torch.device("""meta""" ) or not hasattr(self.image_encoder , """_hf_hook""" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(_a , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def a__ ( self , _a , _a , _a , _a , ) -> Tuple: if isinstance(_a , _a ) and isinstance(image[0] , torch.Tensor ): _A : int = torch.cat(_a , axis=0 ) if image[0].ndim == 4 else torch.stack(_a , axis=0 ) if not isinstance(_a , torch.Tensor ): _A : Dict = self.image_processor(_a , return_tensors="""pt""" ).pixel_values[0].unsqueeze(0 ) _A : int = image.to(dtype=self.image_encoder.dtype , device=_a ) _A : List[Any] = self.image_encoder(_a )["""last_hidden_state"""] _A : List[Any] = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 _A : Dict = image_embeds.repeat_interleave(_a , dim=0 ) if do_classifier_free_guidance: _A : str = torch.zeros_like(_a ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _A : List[str] = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(_a ) def __call__( self , _a , _a = 1 , _a = 25 , _a = None , _a = None , _a = 4.0 , _a = 64 , _a = "pil" , _a = True , ) -> Union[str, Any]: if isinstance(_a , PIL.Image.Image ): _A : List[Any] = 1 elif isinstance(_a , torch.Tensor ): _A : Any = image.shape[0] elif isinstance(_a , _a ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): _A : Union[str, Any] = len(_a ) else: raise ValueError( F'''`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(_a )}''' ) _A : Optional[int] = self._execution_device _A : Tuple = batch_size * num_images_per_prompt _A : List[Any] = guidance_scale > 1.0 _A : Optional[Any] = self._encode_image(_a , _a , _a , _a ) # prior self.scheduler.set_timesteps(_a , device=_a ) _A : Optional[int] = self.scheduler.timesteps _A : List[str] = self.prior.config.num_embeddings _A : int = self.prior.config.embedding_dim _A : Optional[Any] = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , _a , _a , _a , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim _A : List[Any] = latents.reshape(latents.shape[0] , _a , _a ) for i, t in enumerate(self.progress_bar(_a ) ): # expand the latents if we are doing classifier free guidance _A : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _A : int = self.scheduler.scale_model_input(_a , _a ) _A : Tuple = self.prior( _a , timestep=_a , proj_embedding=_a , ).predicted_image_embedding # remove the variance _A , _A : Optional[Any] = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: _A , _A : Dict = noise_pred.chunk(2 ) _A : Tuple = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) _A : int = self.scheduler.step( _a , timestep=_a , sample=_a , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=_a ) _A : List[str] = [] for i, latent in enumerate(_a ): print() _A : List[str] = self.renderer.decode( latent[None, :] , _a , size=_a , ray_batch_size=4096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(_a ) _A : List[Any] = torch.stack(_a ) if output_type not in ["np", "pil"]: raise ValueError(F'''Only the output types `pil` and `np` are supported not output_type={output_type}''' ) _A : List[str] = images.cpu().numpy() if output_type == "pil": _A : List[Any] = [self.numpy_to_pil(_a ) for image in images] # Offload last model to CPU if hasattr(self , """final_offload_hook""" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=_a )
26
0
'''simple docstring''' import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class _A : def __init__( self : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple=13 , __magic_name__ : Optional[int]=32 , __magic_name__ : Union[str, Any]=2 , __magic_name__ : Union[str, Any]=3 , __magic_name__ : Any=16 , __magic_name__ : int=[1, 2, 1] , __magic_name__ : Dict=[2, 2, 4] , __magic_name__ : Optional[int]=2 , __magic_name__ : str=2.0 , __magic_name__ : str=True , __magic_name__ : Dict=0.0 , __magic_name__ : Optional[Any]=0.0 , __magic_name__ : List[str]=0.1 , __magic_name__ : int="gelu" , __magic_name__ : Optional[int]=False , __magic_name__ : Union[str, Any]=True , __magic_name__ : Tuple=0.02 , __magic_name__ : List[str]=1E-5 , __magic_name__ : int=True , __magic_name__ : Dict=None , __magic_name__ : Optional[Any]=True , __magic_name__ : int=10 , __magic_name__ : int=8 , __magic_name__ : str=["stage1", "stage2", "stage3"] , __magic_name__ : List[Any]=[1, 2, 3] , ) -> Dict: """simple docstring""" __snake_case : List[str] = parent __snake_case : Optional[int] = batch_size __snake_case : List[str] = image_size __snake_case : Any = patch_size __snake_case : str = num_channels __snake_case : List[str] = embed_dim __snake_case : Dict = depths __snake_case : str = num_heads __snake_case : str = window_size __snake_case : List[Any] = mlp_ratio __snake_case : Optional[int] = qkv_bias __snake_case : Tuple = hidden_dropout_prob __snake_case : str = attention_probs_dropout_prob __snake_case : List[str] = drop_path_rate __snake_case : Optional[Any] = hidden_act __snake_case : List[str] = use_absolute_embeddings __snake_case : List[str] = patch_norm __snake_case : int = layer_norm_eps __snake_case : int = initializer_range __snake_case : int = is_training __snake_case : Optional[Any] = scope __snake_case : int = use_labels __snake_case : Tuple = type_sequence_label_size __snake_case : Optional[int] = encoder_stride __snake_case : Union[str, Any] = out_features __snake_case : int = out_indices def lowercase__ ( self : Any ) -> List[str]: """simple docstring""" __snake_case : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : Any = None if self.use_labels: __snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : int = self.get_config() return config, pixel_values, labels def lowercase__ ( self : Any ) -> List[Any]: """simple docstring""" return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def lowercase__ ( self : Tuple , __magic_name__ : Any , __magic_name__ : Dict , __magic_name__ : Tuple ) -> Optional[Any]: """simple docstring""" __snake_case : Tuple = MaskFormerSwinModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : int = model(__magic_name__ ) __snake_case : Optional[int] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __snake_case : List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def lowercase__ ( self : Optional[int] , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Optional[int] ) -> List[Any]: """simple docstring""" __snake_case : int = MaskFormerSwinBackbone(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Any = model(__magic_name__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(__magic_name__ ): __snake_case : str = ["""stem"""] __snake_case : int = MaskFormerSwinBackbone(config=__magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __snake_case : Optional[int] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case : List[str] = config_and_inputs __snake_case : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _A ( __lowercase , __lowercase , unittest.TestCase ): lowercase__: str = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) lowercase__: Union[str, Any] = {'''feature-extraction''': MaskFormerSwinModel} if is_torch_available() else {} lowercase__: Any = False lowercase__: Any = False lowercase__: Dict = False lowercase__: int = False lowercase__: Any = False def lowercase__ ( self : Union[str, Any] ) -> str: """simple docstring""" __snake_case : List[Any] = MaskFormerSwinModelTester(self ) __snake_case : Dict = ConfigTester(self , config_class=__magic_name__ , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( """`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with""" """ `nn.DataParallel`""" ) ) def lowercase__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" pass def lowercase__ ( self : Optional[int] ) -> Tuple: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" return def lowercase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def lowercase__ ( self : Optional[Any] ) -> int: """simple docstring""" __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__magic_name__ ) @unittest.skip("""Swin does not use inputs_embeds""" ) def lowercase__ ( self : Tuple ) -> List[str]: """simple docstring""" pass @unittest.skip("""Swin does not support feedforward chunking""" ) def lowercase__ ( self : Dict ) -> Dict: """simple docstring""" pass def lowercase__ ( self : Union[str, Any] ) -> Any: """simple docstring""" __snake_case , __snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Dict = model_class(__magic_name__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __snake_case : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__magic_name__ , nn.Linear ) ) def lowercase__ ( self : Dict ) -> List[Any]: """simple docstring""" __snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Optional[Any] = model_class(__magic_name__ ) __snake_case : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : List[Any] = [*signature.parameters.keys()] __snake_case : Optional[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __magic_name__ ) @unittest.skip(reason="""MaskFormerSwin is only used as backbone and doesn't support output_attentions""" ) def lowercase__ ( self : List[str] ) -> Tuple: """simple docstring""" pass @unittest.skip(reason="""MaskFormerSwin is only used as an internal backbone""" ) def lowercase__ ( self : Optional[Any] ) -> Any: """simple docstring""" pass def lowercase__ ( self : List[str] , __magic_name__ : List[Any] , __magic_name__ : str , __magic_name__ : List[Any] , __magic_name__ : Any ) -> Optional[Any]: """simple docstring""" __snake_case : int = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : Any = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) __snake_case : Optional[Any] = outputs.hidden_states __snake_case : Tuple = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__magic_name__ ) , __magic_name__ ) # Swin has a different seq_length __snake_case : Optional[Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __snake_case : Any = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def lowercase__ ( self : Dict ) -> Optional[Any]: """simple docstring""" __snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __snake_case : Any = True self.check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : str = True self.check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : str ) -> List[str]: """simple docstring""" __snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Tuple = 3 __snake_case : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __snake_case : str = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __snake_case : Optional[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __snake_case : Optional[Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __snake_case : str = True self.check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : Tuple = True self.check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ , (padded_height, padded_width) ) @unittest.skip(reason="""MaskFormerSwin doesn't have pretrained checkpoints""" ) def lowercase__ ( self : List[Any] ) -> int: """simple docstring""" pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def lowercase__ ( self : Dict ) -> List[str]: """simple docstring""" pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def lowercase__ ( self : int ) -> Any: """simple docstring""" pass def lowercase__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" __snake_case , __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(__magic_name__ : Optional[Any] ): __snake_case : Any = 0 return t def check_equivalence(__magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : int={} ): with torch.no_grad(): __snake_case : Union[str, Any] = model(**__magic_name__ , return_dict=__magic_name__ , **__magic_name__ ) __snake_case : Tuple = model(**__magic_name__ , return_dict=__magic_name__ , **__magic_name__ ).to_tuple() def recursive_check(__magic_name__ : Dict , __magic_name__ : Tuple ): if isinstance(__magic_name__ , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(__magic_name__ , __magic_name__ ): recursive_check(__magic_name__ , __magic_name__ ) elif isinstance(__magic_name__ , __magic_name__ ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(__magic_name__ , __magic_name__ ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(__magic_name__ ) , set_nan_tensor_to_zero(__magic_name__ ) , atol=1E-5 ) , msg=( """Tuple and dict output are not equal. Difference:""" f''' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:''' f''' {torch.isnan(__magic_name__ ).any()} and `inf`: {torch.isinf(__magic_name__ )}. Dict has''' f''' `nan`: {torch.isnan(__magic_name__ ).any()} and `inf`: {torch.isinf(__magic_name__ )}.''' ) , ) recursive_check(__magic_name__ , __magic_name__ ) for model_class in self.all_model_classes: __snake_case : Union[str, Any] = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Union[str, Any] = self._prepare_for_class(__magic_name__ , __magic_name__ ) __snake_case : Tuple = self._prepare_for_class(__magic_name__ , __magic_name__ ) check_equivalence(__magic_name__ , __magic_name__ , __magic_name__ ) __snake_case : int = self._prepare_for_class(__magic_name__ , __magic_name__ , return_labels=__magic_name__ ) __snake_case : Tuple = self._prepare_for_class(__magic_name__ , __magic_name__ , return_labels=__magic_name__ ) check_equivalence(__magic_name__ , __magic_name__ , __magic_name__ ) __snake_case : Tuple = self._prepare_for_class(__magic_name__ , __magic_name__ ) __snake_case : Optional[Any] = self._prepare_for_class(__magic_name__ , __magic_name__ ) check_equivalence(__magic_name__ , __magic_name__ , __magic_name__ , {"""output_hidden_states""": True} ) __snake_case : Union[str, Any] = self._prepare_for_class(__magic_name__ , __magic_name__ , return_labels=__magic_name__ ) __snake_case : Optional[Any] = self._prepare_for_class(__magic_name__ , __magic_name__ , return_labels=__magic_name__ ) check_equivalence(__magic_name__ , __magic_name__ , __magic_name__ , {"""output_hidden_states""": True} ) @require_torch class _A ( unittest.TestCase , __lowercase ): lowercase__: Optional[int] = (MaskFormerSwinBackbone,) if is_torch_available() else () lowercase__: Optional[Any] = MaskFormerSwinConfig def lowercase__ ( self : List[str] ) -> List[Any]: """simple docstring""" __snake_case : List[Any] = MaskFormerSwinModelTester(self ) def lowercase__ ( self : Dict ) -> Any: """simple docstring""" __snake_case , __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : int = inputs_dict["""pixel_values"""].shape[0] for backbone_class in self.all_model_classes: __snake_case : Union[str, Any] = backbone_class(__magic_name__ ) backbone.to(__magic_name__ ) backbone.eval() __snake_case : int = backbone(**__magic_name__ ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , __magic_name__ ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True __snake_case : List[Any] = backbone(**__magic_name__ , output_hidden_states=__magic_name__ ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) __snake_case , __snake_case , __snake_case : str = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: __snake_case : Optional[int] = backbone(**__magic_name__ , output_attentions=__magic_name__ ) self.assertIsNotNone(outputs.attentions )
13
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer __UpperCamelCase = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast __UpperCamelCase = TaTokenizerFast __UpperCamelCase = {"configuration_mt5": ["MT5Config", "MT5OnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "MT5EncoderModel", "MT5ForConditionalGeneration", "MT5ForQuestionAnswering", "MT5Model", "MT5PreTrainedModel", "MT5Stack", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["TFMT5EncoderModel", "TFMT5ForConditionalGeneration", "TFMT5Model"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["FlaxMT5EncoderModel", "FlaxMT5ForConditionalGeneration", "FlaxMT5Model"] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys __UpperCamelCase = _LazyModule( __name__, globals()["__file__"], _import_structure, extra_objects={"MT5Tokenizer": MTaTokenizer, "MT5TokenizerFast": MTaTokenizerFast}, module_spec=__spec__, )
13
1
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class lowerCamelCase_ ( datasets.BeamBasedBuilder ): '''simple docstring''' def UpperCamelCase__ ( self) -> Union[str, Any]: return datasets.DatasetInfo( features=datasets.Features({'''content''': datasets.Value('''string''')}) , supervised_keys=__lowercase , ) def UpperCamelCase__ ( self , __lowercase , __lowercase) -> Optional[int]: return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''examples''': get_test_dummy_examples()})] def UpperCamelCase__ ( self , __lowercase , __lowercase) -> List[str]: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(__lowercase) class lowerCamelCase_ ( datasets.BeamBasedBuilder ): '''simple docstring''' def UpperCamelCase__ ( self) -> Dict: return datasets.DatasetInfo( features=datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''')})}) , supervised_keys=__lowercase , ) def UpperCamelCase__ ( self , __lowercase , __lowercase) -> Dict: return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''examples''': get_test_nested_examples()}) ] def UpperCamelCase__ ( self , __lowercase , __lowercase) -> Optional[int]: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(__lowercase) def lowerCamelCase ( ): '''simple docstring''' return [(i, {"content": content}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''] )] def lowerCamelCase ( ): '''simple docstring''' return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''] )] class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' @require_beam def UpperCamelCase__ ( self) -> List[Any]: __UpperCamelCase :Any = len(get_test_dummy_examples()) with tempfile.TemporaryDirectory() as tmp_cache_dir: __UpperCamelCase :Optional[int] = DummyBeamDataset(cache_dir=__lowercase , beam_runner='''DirectRunner''') builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(__lowercase , builder.name , '''default''' , '''0.0.0''' , f"""{builder.name}-train.arrow"""))) self.assertDictEqual(builder.info.features , datasets.Features({'''content''': datasets.Value('''string''')})) __UpperCamelCase :str = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , __lowercase) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , __lowercase) self.assertDictEqual(dset['''train'''][0] , get_test_dummy_examples()[0][1]) self.assertDictEqual( dset['''train'''][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1]) self.assertTrue( os.path.exists(os.path.join(__lowercase , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json'''))) del dset @require_beam def UpperCamelCase__ ( self) -> Any: import apache_beam as beam __UpperCamelCase :int = beam.io.parquetio.WriteToParquet __UpperCamelCase :Optional[int] = len(get_test_dummy_examples()) with tempfile.TemporaryDirectory() as tmp_cache_dir: __UpperCamelCase :Optional[int] = DummyBeamDataset(cache_dir=__lowercase , beam_runner='''DirectRunner''') with patch('''apache_beam.io.parquetio.WriteToParquet''') as write_parquet_mock: __UpperCamelCase :List[Any] = partial(__lowercase , num_shards=2) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( __lowercase , builder.name , '''default''' , '''0.0.0''' , f"""{builder.name}-train-00000-of-00002.arrow"""))) self.assertTrue( os.path.exists( os.path.join( __lowercase , builder.name , '''default''' , '''0.0.0''' , f"""{builder.name}-train-00000-of-00002.arrow"""))) self.assertDictEqual(builder.info.features , datasets.Features({'''content''': datasets.Value('''string''')})) __UpperCamelCase :Dict = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , __lowercase) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , __lowercase) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset['''train''']['''content''']) , sorted(['''foo''', '''bar''', '''foobar'''])) self.assertTrue( os.path.exists(os.path.join(__lowercase , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json'''))) del dset @require_beam def UpperCamelCase__ ( self) -> List[Any]: with tempfile.TemporaryDirectory() as tmp_cache_dir: __UpperCamelCase :Optional[int] = DummyBeamDataset(cache_dir=__lowercase) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare) @require_beam def UpperCamelCase__ ( self) -> Optional[int]: __UpperCamelCase :Dict = len(get_test_nested_examples()) with tempfile.TemporaryDirectory() as tmp_cache_dir: __UpperCamelCase :Tuple = NestedBeamDataset(cache_dir=__lowercase , beam_runner='''DirectRunner''') builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(__lowercase , builder.name , '''default''' , '''0.0.0''' , f"""{builder.name}-train.arrow"""))) self.assertDictEqual( builder.info.features , datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''')})})) __UpperCamelCase :Union[str, Any] = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , __lowercase) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , __lowercase) self.assertDictEqual(dset['''train'''][0] , get_test_nested_examples()[0][1]) self.assertDictEqual( dset['''train'''][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1]) self.assertTrue( os.path.exists(os.path.join(__lowercase , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json'''))) del dset
43
'''simple docstring''' import numpy as np def a__ ( a__ , a__ , a__ = 1E-1_2 , a__ = 1_00 , ): """simple docstring""" assert np.shape(a__ )[0] == np.shape(a__ )[1] # Ensure proper dimensionality. assert np.shape(a__ )[0] == np.shape(a__ )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(a__ ) == np.iscomplexobj(a__ ) __SCREAMING_SNAKE_CASE = np.iscomplexobj(a__ ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(a__ , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 1E1_2 while not convergence: # Multiple matrix by the vector. __SCREAMING_SNAKE_CASE = np.dot(a__ , a__ ) # Normalize the resulting output vector. __SCREAMING_SNAKE_CASE = w / np.linalg.norm(a__ ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) __SCREAMING_SNAKE_CASE = vector.conj().T if is_complex else vector.T __SCREAMING_SNAKE_CASE = np.dot(a__ , np.dot(a__ , a__ ) ) # Check convergence. __SCREAMING_SNAKE_CASE = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = lambda_ if is_complex: __SCREAMING_SNAKE_CASE = np.real(lambda_ ) return lambda_, vector def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) __SCREAMING_SNAKE_CASE = np.array([41, 4, 20] ) __SCREAMING_SNAKE_CASE = real_input_matrix.astype(np.complexaaa ) __SCREAMING_SNAKE_CASE = np.triu(1J * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T __SCREAMING_SNAKE_CASE = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": __SCREAMING_SNAKE_CASE = real_input_matrix __SCREAMING_SNAKE_CASE = real_vector elif problem_type == "complex": __SCREAMING_SNAKE_CASE = complex_input_matrix __SCREAMING_SNAKE_CASE = complex_vector # Our implementation. __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = power_iteration(a__ , a__ ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = np.linalg.eigh(a__ ) # Last eigenvalue is the maximum one. __SCREAMING_SNAKE_CASE = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. __SCREAMING_SNAKE_CASE = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(a__ ) - np.abs(a__ ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
267
0
import os from datetime import datetime as dt from github import Github UpperCAmelCase__ = [ "good first issue", "feature request", "wip", ] def _a ( ) -> List[Any]: a = Github(os.environ['''GITHUB_TOKEN'''] ) a = g.get_repo('''huggingface/accelerate''' ) a = repo.get_issues(state='''open''' ) for issue in open_issues: a = sorted([comment for comment in issue.get_comments()] , key=lambda a : i.created_at , reverse=a ) a = comments[0] if len(a ) > 0 else None a = dt.utcnow() a = (current_time - issue.updated_at).days a = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='''closed''' ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
26
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class lowercase_ ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : Optional[int] ) ->Tuple: """simple docstring""" a = tempfile.mkdtemp() a = BlipImageProcessor() a = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''' ) a = BertTokenizerFast.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) a = InstructBlipProcessor(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self : Optional[Any] , **__UpperCAmelCase : Tuple ) ->List[str]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ).tokenizer def __lowerCAmelCase ( self : int , **__UpperCAmelCase : str ) ->List[str]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ).image_processor def __lowerCAmelCase ( self : Optional[Any] , **__UpperCAmelCase : Any ) ->Optional[Any]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ).qformer_tokenizer def __lowerCAmelCase ( self : str ) ->Tuple: """simple docstring""" shutil.rmtree(self.tmpdirname ) def __lowerCAmelCase ( self : Optional[int] ) ->str: """simple docstring""" a = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] a = [Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowerCAmelCase ( self : Optional[Any] ) ->List[str]: """simple docstring""" a = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) a = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) a = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 ) a = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) self.assertIsInstance(processor.qformer_tokenizer , __UpperCAmelCase ) def __lowerCAmelCase ( self : Optional[Any] ) ->Any: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) a = self.prepare_image_inputs() a = image_processor(__UpperCAmelCase , return_tensors='''np''' ) a = processor(images=__UpperCAmelCase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowerCAmelCase ( self : List[str] ) ->List[Any]: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) a = '''lower newer''' a = processor(text=__UpperCAmelCase ) a = tokenizer(__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase ) a = qformer_tokenizer(__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['''qformer_''' + key] ) def __lowerCAmelCase ( self : Dict ) ->Optional[Any]: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) a = '''lower newer''' a = self.prepare_image_inputs() a = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual( list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def __lowerCAmelCase ( self : Dict ) ->List[Any]: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) a = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] a = processor.batch_decode(__UpperCAmelCase ) a = tokenizer.batch_decode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def __lowerCAmelCase ( self : Union[str, Any] ) ->str: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) a = '''lower newer''' a = self.prepare_image_inputs() a = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual( list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , )
26
1
from collections.abc import Iterable from typing import Any class __lowerCAmelCase : def __init__( self :List[str] , __magic_name__ :int | None = None ): '''simple docstring''' a = value a = None # Added in order to delete a node easier a = None a = None def __repr__( self :int ): '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({F'{self.value}': (self.left, self.right)} , indent=1 ) class __lowerCAmelCase : def __init__( self :int , __magic_name__ :Node | None = None ): '''simple docstring''' a = root def __str__( self :Any ): '''simple docstring''' return str(self.root ) def lowerCamelCase__ ( self :Any , __magic_name__ :Node , __magic_name__ :Node | None ): '''simple docstring''' if new_children is not None: # reset its kids a = node.parent if node.parent is not None: # reset its parent if self.is_right(__magic_name__ ): # If it is the right children a = new_children else: a = new_children else: a = new_children def lowerCamelCase__ ( self :Union[str, Any] , __magic_name__ :Node ): '''simple docstring''' if node.parent and node.parent.right: return node == node.parent.right return False def lowerCamelCase__ ( self :int ): '''simple docstring''' return self.root is None def lowerCamelCase__ ( self :int , __magic_name__ :Any ): '''simple docstring''' a = Node(__magic_name__ ) # create a new Node if self.empty(): # if Tree is empty a = new_node # set its root else: # Tree is not empty a = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: a = new_node # We insert the new node in a leaf break else: a = parent_node.left else: if parent_node.right is None: a = new_node break else: a = parent_node.right a = parent_node def lowerCamelCase__ ( self :Optional[Any] , *__magic_name__ :Dict ): '''simple docstring''' for value in values: self.__insert(__magic_name__ ) def lowerCamelCase__ ( self :List[Any] , __magic_name__ :int ): '''simple docstring''' if self.empty(): raise IndexError("""Warning: Tree is empty! please use another.""" ) else: a = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: a = node.left if value < node.value else node.right return node def lowerCamelCase__ ( self :Union[str, Any] , __magic_name__ :Node | None = None ): '''simple docstring''' if node is None: if self.root is None: return None a = self.root if not self.empty(): while node.right is not None: a = node.right return node def lowerCamelCase__ ( self :List[Any] , __magic_name__ :Node | None = None ): '''simple docstring''' if node is None: a = self.root if self.root is None: return None if not self.empty(): a = self.root while node.left is not None: a = node.left return node def lowerCamelCase__ ( self :Optional[Any] , __magic_name__ :int ): '''simple docstring''' a = self.search(__magic_name__ ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(__magic_name__ , __magic_name__ ) elif node.left is None: # Has only right children self.__reassign_nodes(__magic_name__ , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(__magic_name__ , node.left ) else: a = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore a = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :Node | None ): '''simple docstring''' if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def lowerCamelCase__ ( self :str , __magic_name__ :Tuple=None ): '''simple docstring''' if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :list , __magic_name__ :Node | None ): '''simple docstring''' if node: self.inorder(__magic_name__ , node.left ) arr.append(node.value ) self.inorder(__magic_name__ , node.right ) def lowerCamelCase__ ( self :List[str] , __magic_name__ :int , __magic_name__ :Node ): '''simple docstring''' a = [] self.inorder(__magic_name__ , __magic_name__ ) # append all values to list using inorder traversal return arr[k - 1] def __A ( __lowerCamelCase ) -> list[Node]: a = [] if curr_node is not None: a = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def __A ( ) -> None: a = (8, 3, 6, 1, 10, 14, 13, 4, 7) a = BinarySearchTree() for i in testlist: t.insert(__lowerCamelCase ) # Prints all the elements of the list in order traversal print(__lowerCamelCase ) if t.search(6 ) is not None: print("""The value 6 exists""" ) else: print("""The value 6 doesn't exist""" ) if t.search(-1 ) is not None: print("""The value -1 exists""" ) else: print("""The value -1 doesn't exist""" ) if not t.empty(): print("""Max Value: """ , t.get_max().value ) # type: ignore print("""Min Value: """ , t.get_min().value ) # type: ignore for i in testlist: t.remove(__lowerCamelCase ) print(__lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
228
from math import pi, sqrt def __A ( __lowerCamelCase ) -> float: if num <= 0: raise ValueError("""math domain error""" ) if num > 171.5: raise OverflowError("""math range error""" ) elif num - int(__lowerCamelCase ) not in (0, 0.5): raise NotImplementedError("""num must be an integer or a half-integer""" ) elif num == 0.5: return sqrt(__lowerCamelCase ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def __A ( ) -> None: assert gamma(0.5 ) == sqrt(__lowerCamelCase ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() __UpperCamelCase : str = 1.0 while num: __UpperCamelCase : Dict = float(input("Gamma of: ")) print(F'gamma({num}) = {gamma(num)}') print("\nEnter 0 to exit...")
228
1
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class UpperCAmelCase_ : @staticmethod def snake_case__ ( *__a, **__a): '''simple docstring''' pass @is_pipeline_test @require_vision class UpperCAmelCase_ ( unittest.TestCase): @require_torch def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification", ) _lowerCAmelCase : Any = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") _lowerCAmelCase : Optional[Any] = image_classifier(__a, candidate_labels=["a", "b", "c"]) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(__a), [ [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}], [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "c"}, {"score": 0.333, "label": "b"}], ], ) _lowerCAmelCase : Optional[Any] = image_classifier([image] * 5, candidate_labels=["A", "B", "C"], batch_size=2) self.assertEqual( nested_simplify(__a), [ [ {"score": 0.333, "label": ANY(__a)}, {"score": 0.333, "label": ANY(__a)}, {"score": 0.333, "label": ANY(__a)}, ], [ {"score": 0.333, "label": ANY(__a)}, {"score": 0.333, "label": ANY(__a)}, {"score": 0.333, "label": ANY(__a)}, ], [ {"score": 0.333, "label": ANY(__a)}, {"score": 0.333, "label": ANY(__a)}, {"score": 0.333, "label": ANY(__a)}, ], [ {"score": 0.333, "label": ANY(__a)}, {"score": 0.333, "label": ANY(__a)}, {"score": 0.333, "label": ANY(__a)}, ], [ {"score": 0.333, "label": ANY(__a)}, {"score": 0.333, "label": ANY(__a)}, {"score": 0.333, "label": ANY(__a)}, ], ], ) @require_tf def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification", framework="tf") _lowerCAmelCase : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") _lowerCAmelCase : Union[str, Any] = image_classifier(__a, candidate_labels=["a", "b", "c"]) self.assertEqual( nested_simplify(__a), [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}], ) _lowerCAmelCase : Dict = image_classifier([image] * 5, candidate_labels=["A", "B", "C"], batch_size=2) self.assertEqual( nested_simplify(__a), [ [ {"score": 0.333, "label": ANY(__a)}, {"score": 0.333, "label": ANY(__a)}, {"score": 0.333, "label": ANY(__a)}, ], [ {"score": 0.333, "label": ANY(__a)}, {"score": 0.333, "label": ANY(__a)}, {"score": 0.333, "label": ANY(__a)}, ], [ {"score": 0.333, "label": ANY(__a)}, {"score": 0.333, "label": ANY(__a)}, {"score": 0.333, "label": ANY(__a)}, ], [ {"score": 0.333, "label": ANY(__a)}, {"score": 0.333, "label": ANY(__a)}, {"score": 0.333, "label": ANY(__a)}, ], [ {"score": 0.333, "label": ANY(__a)}, {"score": 0.333, "label": ANY(__a)}, {"score": 0.333, "label": ANY(__a)}, ], ], ) @slow @require_torch def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = pipeline( task="zero-shot-image-classification", model="openai/clip-vit-base-patch32", ) # This is an image of 2 cats with remotes and no planes _lowerCAmelCase : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") _lowerCAmelCase : int = image_classifier(__a, candidate_labels=["cat", "plane", "remote"]) self.assertEqual( nested_simplify(__a), [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ) _lowerCAmelCase : Optional[int] = image_classifier([image] * 5, candidate_labels=["cat", "plane", "remote"], batch_size=2) self.assertEqual( nested_simplify(__a), [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5, ) @slow @require_tf def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = pipeline( task="zero-shot-image-classification", model="openai/clip-vit-base-patch32", framework="tf") # This is an image of 2 cats with remotes and no planes _lowerCAmelCase : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") _lowerCAmelCase : List[str] = image_classifier(__a, candidate_labels=["cat", "plane", "remote"]) self.assertEqual( nested_simplify(__a), [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ) _lowerCAmelCase : Optional[int] = image_classifier([image] * 5, candidate_labels=["cat", "plane", "remote"], batch_size=2) self.assertEqual( nested_simplify(__a), [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5, )
300
import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP _snake_case = False try: _snake_case = _is_package_available("google.colab") except ModuleNotFoundError: pass @input.register class UpperCAmelCase_ : def __init__( self, __a = None, __a = []): '''simple docstring''' _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : Optional[int] = choices _lowerCAmelCase : Tuple = prompt if sys.platform == "win32": _lowerCAmelCase : Optional[Any] = "*" else: _lowerCAmelCase : Dict = "➔ " def snake_case__ ( self, __a, __a = ""): '''simple docstring''' if sys.platform != "win32": writeColor(self.choices[index], 32, __a) else: forceWrite(self.choices[index], __a) def snake_case__ ( self, __a): '''simple docstring''' if index == self.position: forceWrite(f" {self.arrow_char} ") self.write_choice(__a) else: forceWrite(f" {self.choices[index]}") reset_cursor() def snake_case__ ( self, __a, __a = 1): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(__a) move_cursor(__a, direction.name) self.print_choice(self.position) @input.mark(KEYMAP["up"]) def snake_case__ ( self): '''simple docstring''' self.move_direction(Direction.UP) @input.mark(KEYMAP["down"]) def snake_case__ ( self): '''simple docstring''' self.move_direction(Direction.DOWN) @input.mark(KEYMAP["newline"]) def snake_case__ ( self): '''simple docstring''' move_cursor(len(self.choices) - self.position, "DOWN") return self.position @input.mark(KEYMAP["interrupt"]) def snake_case__ ( self): '''simple docstring''' move_cursor(len(self.choices) - self.position, "DOWN") raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(__a)] for number in range(10)]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = int(chr(self.current_selection)) _lowerCAmelCase : List[str] = index - self.position if index == self.position: return if index < len(self.choices): if self.position > index: self.move_direction(Direction.UP, -movement) elif self.position < index: self.move_direction(Direction.DOWN, __a) else: return else: return def snake_case__ ( self, __a = 0): '''simple docstring''' if self.prompt: linebreak() forceWrite(self.prompt, "\n") if in_colab: forceWrite("Please input a choice index (starting from 0), and press enter", "\n") else: forceWrite("Please select a choice using the arrow or number keys, and selecting with enter", "\n") _lowerCAmelCase : List[Any] = default_choice for i in range(len(self.choices)): self.print_choice(__a) forceWrite("\n") move_cursor(len(self.choices) - self.position, "UP") with cursor.hide(): while True: if in_colab: try: _lowerCAmelCase : str = int(builtins.input()) except ValueError: _lowerCAmelCase : List[Any] = default_choice else: _lowerCAmelCase : List[str] = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices) + 1): move_cursor(1, "UP") clear_line() self.write_choice(__a, "\n") return choice
300
1
'''simple docstring''' import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a__: def __init__( self : str , __snake_case : Optional[Any] , __snake_case : List[str]=13 , __snake_case : Tuple=32 , __snake_case : Optional[int]=2 , __snake_case : int=3 , __snake_case : Optional[int]=16 , __snake_case : int=[32, 64, 1_28] , __snake_case : Dict=[1, 2, 1] , __snake_case : Dict=[2, 2, 4] , __snake_case : Dict=2 , __snake_case : Union[str, Any]=2.0 , __snake_case : Tuple=True , __snake_case : Optional[int]=0.0 , __snake_case : List[Any]=0.0 , __snake_case : Dict=0.1 , __snake_case : Optional[int]="gelu" , __snake_case : List[str]=False , __snake_case : Union[str, Any]=True , __snake_case : Optional[Any]=0.02 , __snake_case : Dict=1e-5 , __snake_case : int=True , __snake_case : Dict=None , __snake_case : str=True , __snake_case : int=10 , __snake_case : List[Any]=8 , __snake_case : List[str]=["stage1", "stage2"] , __snake_case : int=[1, 2] , ): a : Any = parent a : Any = batch_size a : Any = image_size a : Dict = patch_size a : int = num_channels a : List[Any] = embed_dim a : Tuple = hidden_sizes a : Union[str, Any] = depths a : List[str] = num_heads a : Tuple = window_size a : Optional[int] = mlp_ratio a : str = qkv_bias a : Optional[Any] = hidden_dropout_prob a : int = attention_probs_dropout_prob a : List[str] = drop_path_rate a : int = hidden_act a : Optional[int] = use_absolute_embeddings a : List[Any] = patch_norm a : Tuple = layer_norm_eps a : Optional[int] = initializer_range a : int = is_training a : int = scope a : Tuple = use_labels a : Optional[int] = type_sequence_label_size a : List[Any] = encoder_stride a : Tuple = out_features a : str = out_indices def lowercase_ ( self : Any ): a : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a : Tuple = None if self.use_labels: a : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a : Dict = self.get_config() return config, pixel_values, labels def lowercase_ ( self : Union[str, Any] ): return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def lowercase_ ( self : Optional[Any] , __snake_case : Tuple , __snake_case : List[str] , __snake_case : List[str] ): a : Optional[Any] = FocalNetModel(config=__snake_case ) model.to(__snake_case ) model.eval() a : List[str] = model(__snake_case ) a : Optional[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) a : Any = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def lowercase_ ( self : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : str ): a : int = FocalNetBackbone(config=__snake_case ) model.to(__snake_case ) model.eval() a : Union[str, Any] = model(__snake_case ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None a : Any = None a : Union[str, Any] = FocalNetBackbone(config=__snake_case ) model.to(__snake_case ) model.eval() a : Optional[Any] = model(__snake_case ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowercase_ ( self : Union[str, Any] , __snake_case : str , __snake_case : Union[str, Any] , __snake_case : Optional[Any] ): a : Dict = FocalNetForMaskedImageModeling(config=__snake_case ) model.to(__snake_case ) model.eval() a : Union[str, Any] = model(__snake_case ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images a : int = 1 a : int = FocalNetForMaskedImageModeling(__snake_case ) model.to(__snake_case ) model.eval() a : Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) a : List[str] = model(__snake_case ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowercase_ ( self : List[str] , __snake_case : Union[str, Any] , __snake_case : List[Any] , __snake_case : Any ): a : List[str] = self.type_sequence_label_size a : List[str] = FocalNetForImageClassification(__snake_case ) model.to(__snake_case ) model.eval() a : Union[str, Any] = model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images a : Union[str, Any] = 1 a : List[Any] = FocalNetForImageClassification(__snake_case ) model.to(__snake_case ) model.eval() a : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) a : Optional[Any] = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase_ ( self : List[Any] ): a : List[str] = self.prepare_config_and_inputs() a , a , a : List[str] = config_and_inputs a : List[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class a__( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): lowercase__ = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowercase__ = ( {"""feature-extraction""": FocalNetModel, """image-classification""": FocalNetForImageClassification} if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def lowercase_ ( self : Optional[int] ): a : Any = FocalNetModelTester(self ) a : List[str] = ConfigTester(self , config_class=__snake_case , embed_dim=37 , has_text_modality=__snake_case ) def lowercase_ ( self : Optional[Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase_ ( self : int ): return def lowercase_ ( self : List[str] ): a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def lowercase_ ( self : str ): a : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__snake_case ) def lowercase_ ( self : str ): a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__snake_case ) def lowercase_ ( self : str ): a : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case ) @unittest.skip(reason='FocalNet does not use inputs_embeds' ) def lowercase_ ( self : List[str] ): pass @unittest.skip(reason='FocalNet does not use feedforward chunking' ) def lowercase_ ( self : List[str] ): pass def lowercase_ ( self : List[Any] ): a , a : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: a : Tuple = model_class(__snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) a : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__snake_case , nn.Linear ) ) def lowercase_ ( self : Tuple ): a , a : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: a : List[str] = model_class(__snake_case ) a : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a : Union[str, Any] = [*signature.parameters.keys()] a : Optional[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , __snake_case ) def lowercase_ ( self : Tuple , __snake_case : str , __snake_case : int , __snake_case : List[Any] , __snake_case : int ): a : str = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): a : List[str] = model(**self._prepare_for_class(__snake_case , __snake_case ) ) a : Union[str, Any] = outputs.hidden_states a : Union[str, Any] = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__snake_case ) , __snake_case ) # FocalNet has a different seq_length a : Optional[Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) a : Any = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) a : Optional[int] = outputs.reshaped_hidden_states self.assertEqual(len(__snake_case ) , __snake_case ) a , a , a , a : List[str] = reshaped_hidden_states[0].shape a : int = ( reshaped_hidden_states[0].view(__snake_case , __snake_case , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def lowercase_ ( self : Optional[Any] ): a , a : Tuple = self.model_tester.prepare_config_and_inputs_for_common() a : Optional[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: a : List[Any] = True self.check_hidden_states_output(__snake_case , __snake_case , __snake_case , __snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a : Dict = True self.check_hidden_states_output(__snake_case , __snake_case , __snake_case , __snake_case ) def lowercase_ ( self : int ): a , a : Any = self.model_tester.prepare_config_and_inputs_for_common() a : List[str] = 3 a : List[str] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) a : List[Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) a : List[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) a : Optional[int] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: a : Optional[Any] = True self.check_hidden_states_output(__snake_case , __snake_case , __snake_case , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a : Dict = True self.check_hidden_states_output(__snake_case , __snake_case , __snake_case , (padded_height, padded_width) ) @slow def lowercase_ ( self : Dict ): for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a : Dict = FocalNetModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def lowercase_ ( self : str ): a , a : Tuple = self.model_tester.prepare_config_and_inputs_for_common() a : Optional[int] = _config_zero_init(__snake_case ) for model_class in self.all_model_classes: a : Optional[Any] = model_class(config=__snake_case ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class a__( unittest.TestCase ): @cached_property def lowercase_ ( self : Tuple ): # TODO update organization return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None @slow def lowercase_ ( self : Tuple ): a : Optional[Any] = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(__snake_case ) a : List[str] = self.default_image_processor a : List[str] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) a : List[str] = image_processor(images=__snake_case , return_tensors='pt' ).to(__snake_case ) # forward pass with torch.no_grad(): a : List[str] = model(**__snake_case ) # verify the logits a : List[str] = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __snake_case ) a : Union[str, Any] = torch.tensor([0.2166, -0.4368, 0.2191] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __snake_case , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 2_81 ) @require_torch class a__( lowerCamelCase__ , unittest.TestCase ): lowercase__ = (FocalNetBackbone,) if is_torch_available() else () lowercase__ = FocalNetConfig lowercase__ = False def lowercase_ ( self : Any ): a : Union[str, Any] = FocalNetModelTester(self )
297
'''simple docstring''' import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList lowerCAmelCase: List[str] = ['\nclass', '\ndef', '\n#', '\n@', '\nprint', '\nif'] class a__( lowerCamelCase__ ): def __init__( self : Any , __snake_case : List[str] , __snake_case : Union[str, Any] , __snake_case : List[Any]=None , __snake_case : Optional[Any]=1 ): a : Union[str, Any] = tokenizer a : Union[str, Any] = dataset a : Any = len(__snake_case ) if n_tasks is None else n_tasks a : List[str] = n_copies def __iter__( self : str ): a : List[Any] = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['prompt'].strip() ) a : Dict = self.tokenizer(__snake_case , padding=__snake_case , return_tensors='pt' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class a__( lowerCamelCase__ ): def __init__( self : Union[str, Any] , __snake_case : int , __snake_case : Optional[Any] , __snake_case : str ): a : Dict = start_length a : Dict = eof_strings a : str = tokenizer def __call__( self : Optional[Any] , __snake_case : Optional[Any] , __snake_case : Any , **__snake_case : Union[str, Any] ): a : int = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) a : Optional[int] = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(__snake_case ) def lowerCamelCase__ ( _A ): a : Optional[Any] = re.split('(%s)' % '|'.join(_A ) , _A ) # last string should be "" return "".join(string_list[:-2] ) def lowerCamelCase__ ( _A , _A , _A , _A , _A , _A=20 , **_A ): a : Optional[Any] = defaultdict(_A ) # dict of list of generated tokens for step, batch in tqdm(enumerate(_A ) ): with torch.no_grad(): a : Optional[Any] = batch['ids'].shape[-1] a : Optional[Any] = accelerator.unwrap_model(_A ).generate( input_ids=batch['ids'][:, : batch['input_len']] , num_return_sequences=_A , **_A ) # each task is generated batch_size times a : Tuple = batch['task_id'].repeat(_A ) a : List[Any] = accelerator.pad_across_processes( _A , dim=1 , pad_index=tokenizer.pad_token_id ) a , a : Union[str, Any] = accelerator.gather((generated_tokens, generated_tasks) ) a : List[str] = generated_tokens.cpu().numpy() a : int = generated_tasks.cpu().numpy() for task, generated_tokens in zip(_A , _A ): gen_token_dict[task].append(_A ) a : Any = [[] for _ in range(_A )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: a : Optional[int] = tokenizer.decode(_A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A ) code_gens[task].append(remove_last_block(_A ) ) return code_gens def lowerCamelCase__ ( ): # Setup configuration a : Dict = HfArgumentParser(_A ) a : Any = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric a : List[Any] = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing a : int = 'false' if args.num_workers is None: a : Dict = multiprocessing.cpu_count() # Use dataset load to feed to accelerate a : List[Any] = Accelerator() set_seed(args.seed , device_specific=_A ) # Load model and tokenizer a : Dict = AutoTokenizer.from_pretrained(args.model_ckpt ) a : str = tokenizer.eos_token a : List[Any] = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings a : Optional[Any] = { 'do_sample': args.do_sample, 'temperature': args.temperature, 'max_new_tokens': args.max_new_tokens, 'top_p': args.top_p, 'top_k': args.top_k, 'stopping_criteria': StoppingCriteriaList([EndOfFunctionCriteria(0 , _A , _A )] ), } # Load evaluation dataset and metric a : Optional[int] = load_dataset('openai_humaneval' ) a : Optional[Any] = load_metric('code_eval' ) a : Optional[int] = args.num_tasks if args.num_tasks is not None else len(human_eval['test'] ) a : Optional[Any] = args.n_samples // args.batch_size a : Any = TokenizedDataset(_A , human_eval['test'] , n_copies=_A , n_tasks=_A ) # do not confuse args.batch_size, which is actually the num_return_sequences a : int = DataLoader(_A , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: a : int = code_eval_metric.compute(references=[''] , predictions=[['']] ) except ValueError as exception: print( 'Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`' ' flag to enable code evaluation.' ) raise exception a , a : int = accelerator.prepare(_A , _A ) a : int = complete_code( _A , _A , _A , _A , n_tasks=_A , batch_size=args.batch_size , **_A , ) if accelerator.is_main_process: a : List[str] = [] for task in tqdm(range(_A ) ): a : int = human_eval['test'][task]['test'] a : int = f"""check({human_eval["test"][task]["entry_point"]})""" references.append('\n' + test_func + '\n' + entry_point ) # Evaluate completions with "code_eval" metric a , a : Tuple = code_eval_metric.compute( references=_A , predictions=_A , num_workers=args.num_workers ) print(f"""Results: {pass_at_k}""" ) # Save results to json file with open(args.output_file , 'w' ) as fp: json.dump(_A , _A ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
297
1
"""simple docstring""" def snake_case_ ( A_ : int ): '''simple docstring''' assert isinstance(A_, A_ ), F'''The input value of [n={number}] is not an integer''' if number == 1: return 2 elif number < 1: _lowerCamelCase : Tuple = F'''The input value of [n={number}] has to be > 0''' raise ValueError(A_ ) else: _lowerCamelCase : Union[str, Any] = sylvester(number - 1 ) _lowerCamelCase : Optional[Any] = num - 1 _lowerCamelCase : List[Any] = num return lower * upper + 1 if __name__ == "__main__": print(F"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
175
"""simple docstring""" import argparse lowerCAmelCase__ = '''docs/source/_static/js/custom.js''' def snake_case_ ( A_ : List[str] ): '''simple docstring''' with open(A_, encoding='''utf-8''', newline='''\n''' ) as f: _lowerCamelCase : int = f.readlines() _lowerCamelCase : List[str] = 0 # First let's put the right version while not lines[index].startswith('''const stableVersion =''' ): index += 1 _lowerCamelCase : List[Any] = F'''const stableVersion = "v{version}"\n''' # Then update the dictionary while not lines[index].startswith('''const versionMapping = {''' ): index += 1 # We go until the end while not lines[index].startswith('''}''' ): index += 1 # We add the new version at the end lines[index - 1] += F''' "v{version}": "v{version}",\n''' with open(A_, '''w''', encoding='''utf-8''', newline='''\n''' ) as f: f.writelines(A_ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--version''', help='''Release version.''') lowerCAmelCase__ = parser.parse_args() update_custom_js(args.version)
175
1