code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() lowercase : List[str] = logging.get_logger(__name__) lowercase : List[Any] = [ ['attention', 'attn'], ['encoder_attention', 'encoder_attn'], ['q_lin', 'q_proj'], ['k_lin', 'k_proj'], ['v_lin', 'v_proj'], ['out_lin', 'out_proj'], ['norm_embeddings', 'layernorm_embedding'], ['position_embeddings', 'embed_positions'], ['embeddings', 'embed_tokens'], ['ffn.lin', 'fc'], ] def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: A : Union[str, Any] = k.replace(snake_case__ , snake_case__ ) if k.startswith('''encoder''' ): A : List[Any] = k.replace('''.attn''' , '''.self_attn''' ) A : Any = k.replace('''norm1''' , '''self_attn_layer_norm''' ) A : str = k.replace('''norm2''' , '''final_layer_norm''' ) elif k.startswith('''decoder''' ): A : str = k.replace('''norm1''' , '''self_attn_layer_norm''' ) A : Tuple = k.replace('''norm2''' , '''encoder_attn_layer_norm''' ) A : Any = k.replace('''norm3''' , '''final_layer_norm''' ) return k def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : Optional[int] = [ '''model.encoder.layernorm_embedding.weight''', '''model.encoder.layernorm_embedding.bias''', '''model.decoder.layernorm_embedding.weight''', '''model.decoder.layernorm_embedding.bias''', ] for k in keys: A : Optional[Any] = sd.pop(snake_case__ ) A : Tuple = k.replace('''layernorm_embedding''' , '''layer_norm''' ) assert new_k not in sd A : List[str] = v lowercase : Any = ['START'] @torch.no_grad() def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' A : Union[str, Any] = torch.load(snake_case__ , map_location='''cpu''' ) A : Any = model['''model'''] A : Dict = BlenderbotConfig.from_json_file(snake_case__ ) A : List[Any] = BlenderbotForConditionalGeneration(snake_case__ ) A : Optional[int] = m.model.state_dict().keys() A : Optional[Any] = [] A : List[Any] = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue A : List[Any] = rename_state_dict_key(snake_case__ ) if new_k not in valid_keys: failures.append([k, new_k] ) else: A : List[str] = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(snake_case__ ) m.model.load_state_dict(snake_case__ , strict=snake_case__ ) m.half() m.save_pretrained(snake_case__ ) if __name__ == "__main__": lowercase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument('--src_path', type=str, help='like blenderbot-model.bin') parser.add_argument('--save_dir', default='hf_blenderbot', type=str, help='Where to save converted model.') parser.add_argument( '--hf_config_json', default='blenderbot-3b-config.json', type=str, help='Path to config to use' ) lowercase : int = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
3
'''simple docstring''' import requests from bsa import BeautifulSoup def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A : str = BeautifulSoup(requests.get(snake_case__ , params=snake_case__ ).content , '''html.parser''' ) A : Dict = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} ) A : Optional[int] = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' ) return anchors[2].get_text() if __name__ == "__main__": lowercase : str = { 'title': ( 'Precisely geometry controlled microsupercapacitors for ultrahigh areal ' 'capacitance, volumetric capacitance, and energy density' ), 'journal': 'Chem. Mater.', 'volume': 30, 'pages': '3979-3990', 'year': 20_18, 'hl': 'en', } print(get_citation('https://scholar.google.com/scholar_lookup', params=params))
3
1
from __future__ import annotations lowerCAmelCase__ = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } class a_ : '''simple docstring''' def __init__( self : Dict , lowercase__ : dict[str, list[str]] , lowercase__ : str): '''simple docstring''' lowerCAmelCase__ = graph # mapping node to its parent in resulting breadth first tree lowerCAmelCase__ = {} lowerCAmelCase__ = source_vertex def __snake_case ( self : int): '''simple docstring''' lowerCAmelCase__ = {self.source_vertex} lowerCAmelCase__ = None lowerCAmelCase__ = [self.source_vertex] # first in first out queue while queue: lowerCAmelCase__ = queue.pop(0) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(lowercase__) lowerCAmelCase__ = vertex queue.append(lowercase__) def __snake_case ( self : List[str] , lowercase__ : str): '''simple docstring''' if target_vertex == self.source_vertex: return self.source_vertex lowerCAmelCase__ = self.parent.get(lowercase__) if target_vertex_parent is None: lowerCAmelCase__ = ( F"""No path from vertex: {self.source_vertex} to vertex: {target_vertex}""" ) raise ValueError(lowercase__) return self.shortest_path(lowercase__) + F"""->{target_vertex}""" if __name__ == "__main__": lowerCAmelCase__ = Graph(graph, 'G') g.breath_first_search() print(g.shortest_path('D')) print(g.shortest_path('G')) print(g.shortest_path('Foo'))
351
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ = { 'configuration_x_clip': [ 'XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XCLIPConfig', 'XCLIPTextConfig', 'XCLIPVisionConfig', ], 'processing_x_clip': ['XCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'XCLIPModel', 'XCLIPPreTrainedModel', 'XCLIPTextModel', 'XCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
119
0
"""simple docstring""" import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE__ ): UpperCAmelCase_ :Tuple = (PNDMScheduler,) UpperCAmelCase_ :Optional[Any] = (("num_inference_steps", 50),) def __lowerCAmelCase ( self , **__A ) -> int: lowerCAmelCase_ :Optional[int] = { """num_train_timesteps""": 1000, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", } config.update(**lowerCamelCase__ ) return config def __lowerCAmelCase ( self , __A=0 , **__A ) -> Tuple: lowerCAmelCase_ :Optional[Any] = dict(self.forward_default_kwargs ) lowerCAmelCase_ :str = kwargs.pop("""num_inference_steps""" , lowerCamelCase__ ) lowerCAmelCase_ :int = self.dummy_sample lowerCAmelCase_ :int = 0.1 * sample lowerCAmelCase_ :int = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: lowerCAmelCase_ :Tuple = self.get_scheduler_config(**lowerCamelCase__ ) lowerCAmelCase_ :Optional[Any] = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(lowerCamelCase__ ) # copy over dummy past residuals lowerCAmelCase_ :List[Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase__ ) lowerCAmelCase_ :Optional[Any] = scheduler_class.from_pretrained(lowerCamelCase__ ) new_scheduler.set_timesteps(lowerCamelCase__ ) # copy over dummy past residuals lowerCAmelCase_ :int = dummy_past_residuals[:] lowerCAmelCase_ :Dict = scheduler.step_prk(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample lowerCAmelCase_ :Tuple = new_scheduler.step_prk(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowerCAmelCase_ :Union[str, Any] = scheduler.step_plms(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample lowerCAmelCase_ :List[str] = new_scheduler.step_plms(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __lowerCAmelCase ( self ) -> List[str]: pass def __lowerCAmelCase ( self , __A=0 , **__A ) -> Optional[int]: lowerCAmelCase_ :int = dict(self.forward_default_kwargs ) lowerCAmelCase_ :Tuple = kwargs.pop("""num_inference_steps""" , lowerCamelCase__ ) lowerCAmelCase_ :List[str] = self.dummy_sample lowerCAmelCase_ :Any = 0.1 * sample lowerCAmelCase_ :List[str] = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: lowerCAmelCase_ :Optional[int] = self.get_scheduler_config() lowerCAmelCase_ :Any = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(lowerCamelCase__ ) # copy over dummy past residuals (must be after setting timesteps) lowerCAmelCase_ :Optional[int] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase__ ) lowerCAmelCase_ :Dict = scheduler_class.from_pretrained(lowerCamelCase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCamelCase__ ) # copy over dummy past residual (must be after setting timesteps) lowerCAmelCase_ :int = dummy_past_residuals[:] lowerCAmelCase_ :Any = scheduler.step_prk(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample lowerCAmelCase_ :Dict = new_scheduler.step_prk(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowerCAmelCase_ :Optional[int] = scheduler.step_plms(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample lowerCAmelCase_ :Any = new_scheduler.step_plms(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __lowerCAmelCase ( self , **__A ) -> Dict: lowerCAmelCase_ :List[str] = self.scheduler_classes[0] lowerCAmelCase_ :str = self.get_scheduler_config(**lowerCamelCase__ ) lowerCAmelCase_ :List[Any] = scheduler_class(**lowerCamelCase__ ) lowerCAmelCase_ :Optional[Any] = 10 lowerCAmelCase_ :Union[str, Any] = self.dummy_model() lowerCAmelCase_ :Any = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase__ ) for i, t in enumerate(scheduler.prk_timesteps ): lowerCAmelCase_ :str = model(lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase_ :Optional[int] = scheduler.step_prk(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): lowerCAmelCase_ :str = model(lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase_ :List[Any] = scheduler.step_plms(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ).prev_sample return sample def __lowerCAmelCase ( self ) -> Optional[Any]: lowerCAmelCase_ :Optional[Any] = dict(self.forward_default_kwargs ) lowerCAmelCase_ :List[Any] = kwargs.pop("""num_inference_steps""" , lowerCamelCase__ ) for scheduler_class in self.scheduler_classes: lowerCAmelCase_ :List[str] = self.get_scheduler_config() lowerCAmelCase_ :Any = scheduler_class(**lowerCamelCase__ ) lowerCAmelCase_ :Optional[int] = self.dummy_sample lowerCAmelCase_ :List[str] = 0.1 * sample if num_inference_steps is not None and hasattr(lowerCamelCase__ , """set_timesteps""" ): scheduler.set_timesteps(lowerCamelCase__ ) elif num_inference_steps is not None and not hasattr(lowerCamelCase__ , """set_timesteps""" ): lowerCAmelCase_ :Optional[int] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowerCAmelCase_ :Dict = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] lowerCAmelCase_ :Any = dummy_past_residuals[:] lowerCAmelCase_ :Optional[Any] = scheduler.step_prk(lowerCamelCase__ , 0 , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample lowerCAmelCase_ :List[Any] = scheduler.step_prk(lowerCamelCase__ , 1 , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) lowerCAmelCase_ :List[str] = scheduler.step_plms(lowerCamelCase__ , 0 , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample lowerCAmelCase_ :int = scheduler.step_plms(lowerCamelCase__ , 1 , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __lowerCAmelCase ( self ) -> Union[str, Any]: for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=lowerCamelCase__ ) def __lowerCAmelCase ( self ) -> Any: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowerCamelCase__ ) lowerCAmelCase_ :Optional[Any] = self.scheduler_classes[0] lowerCAmelCase_ :str = self.get_scheduler_config(steps_offset=1 ) lowerCAmelCase_ :Any = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def __lowerCAmelCase ( self ) -> Union[str, Any]: for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1] , [0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=lowerCamelCase__ , beta_end=lowerCamelCase__ ) def __lowerCAmelCase ( self ) -> Any: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCamelCase__ ) def __lowerCAmelCase ( self ) -> Dict: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase__ ) def __lowerCAmelCase ( self ) -> Optional[Any]: for t in [1, 5, 10]: self.check_over_forward(time_step=lowerCamelCase__ ) def __lowerCAmelCase ( self ) -> int: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=lowerCamelCase__ ) def __lowerCAmelCase ( self ) -> Any: # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 lowerCAmelCase_ :Optional[Any] = 27 for scheduler_class in self.scheduler_classes: lowerCAmelCase_ :str = self.dummy_sample lowerCAmelCase_ :str = 0.1 * sample lowerCAmelCase_ :List[str] = self.get_scheduler_config() lowerCAmelCase_ :Dict = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(lowerCamelCase__ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): lowerCAmelCase_ :Optional[int] = scheduler.step_prk(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ).prev_sample def __lowerCAmelCase ( self ) -> Optional[Any]: with self.assertRaises(lowerCamelCase__ ): lowerCAmelCase_ :Tuple = self.scheduler_classes[0] lowerCAmelCase_ :Any = self.get_scheduler_config() lowerCAmelCase_ :Optional[Any] = scheduler_class(**lowerCamelCase__ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def __lowerCAmelCase ( self ) -> Optional[Any]: lowerCAmelCase_ :List[str] = self.full_loop() lowerCAmelCase_ :Union[str, Any] = torch.sum(torch.abs(lowerCamelCase__ ) ) lowerCAmelCase_ :Tuple = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_sum.item() - 1_9_8.1_3_1_8 ) < 1E-2 assert abs(result_mean.item() - 0.2_5_8_0 ) < 1E-3 def __lowerCAmelCase ( self ) -> Optional[int]: lowerCAmelCase_ :Any = self.full_loop(prediction_type="""v_prediction""" ) lowerCAmelCase_ :int = torch.sum(torch.abs(lowerCamelCase__ ) ) lowerCAmelCase_ :Union[str, Any] = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_sum.item() - 6_7.3_9_8_6 ) < 1E-2 assert abs(result_mean.item() - 0.0_8_7_8 ) < 1E-3 def __lowerCAmelCase ( self ) -> Union[str, Any]: # We specify different beta, so that the first alpha is 0.99 lowerCAmelCase_ :Any = self.full_loop(set_alpha_to_one=lowerCamelCase__ , beta_start=0.0_1 ) lowerCAmelCase_ :List[Any] = torch.sum(torch.abs(lowerCamelCase__ ) ) lowerCAmelCase_ :Dict = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_sum.item() - 2_3_0.0_3_9_9 ) < 1E-2 assert abs(result_mean.item() - 0.2_9_9_5 ) < 1E-3 def __lowerCAmelCase ( self ) -> Dict: # We specify different beta, so that the first alpha is 0.99 lowerCAmelCase_ :Union[str, Any] = self.full_loop(set_alpha_to_one=lowerCamelCase__ , beta_start=0.0_1 ) lowerCAmelCase_ :List[str] = torch.sum(torch.abs(lowerCamelCase__ ) ) lowerCAmelCase_ :Any = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_sum.item() - 1_8_6.9_4_8_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_4_3_4 ) < 1E-3
84
def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> int: """simple docstring""" while second != 0: A : int = first & second first ^= second A : Tuple = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE_:int = int(input("""Enter the first number: """).strip()) SCREAMING_SNAKE_CASE_:Optional[int] = int(input("""Enter the second number: """).strip()) print(F"""{add(first, second) = }""")
116
0
import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer _snake_case : List[str] = logging.getLogger(__name__) def a_ ( ): __lowerCAmelCase = argparse.ArgumentParser( description='Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.' ) parser.add_argument( '--dataset_name', type=lowerCAmelCase_, default='wikitext', help='Name of the training. Explore datasets at: hf.co/datasets.', ) parser.add_argument( '--dataset_config', type=lowerCAmelCase_, default='wikitext-103-raw-v1', help='Configuration name of the dataset.' ) parser.add_argument( '--tokenizer_name_or_path', type=lowerCAmelCase_, default='sayakpaul/unigram-tokenizer-wikitext', help='Tokenizer identifier. Can be a local filepath or a Hub identifier.', ) parser.add_argument( '--shard_size', type=lowerCAmelCase_, default=1000, help='Number of entries to go in a single shard.', ) parser.add_argument('--split', type=lowerCAmelCase_, default='train', choices=['train', 'test', 'validation'] ) parser.add_argument( '--limit', default=lowerCAmelCase_, type=lowerCAmelCase_, help='Limit the number of shards (used for debugging).', ) parser.add_argument( '--max_length', type=lowerCAmelCase_, default=512, help='Maximum sequence length. For training on TPUs, it helps to have a maximum' ' sequence length that is a multiple of 8.', ) parser.add_argument( '--output_dir', default='tf-tpu', type=lowerCAmelCase_, help='Output directory where the TFRecord shards will be saved. If the' ' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord' ' shards will be directly saved to a Google Cloud Storage bucket.', ) __lowerCAmelCase = parser.parse_args() return args def a_ ( lowerCAmelCase_ : Any ): def fn(lowerCAmelCase_ : List[str] ): return tokenizer(examples['text'] ) return fn def a_ ( lowerCAmelCase_ : Any ): __lowerCAmelCase = [] for i in range(len(tokenized_data['input_ids'] ) ): __lowerCAmelCase = { 'input_ids': tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['input_ids'][i] ) ), 'attention_mask': tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data['attention_mask'][i] ) ), } __lowerCAmelCase = tf.train.Features(feature=lowerCAmelCase_ ) __lowerCAmelCase = tf.train.Example(features=lowerCAmelCase_ ) __lowerCAmelCase = example.SerializeToString() records.append(lowerCAmelCase_ ) return records def a_ ( lowerCAmelCase_ : List[str] ): __lowerCAmelCase = datasets.load_dataset(args.dataset_name, args.dataset_config, split=args.split ) if args.limit is not None: __lowerCAmelCase = min(len(lowerCAmelCase_ ), args.limit ) __lowerCAmelCase = dataset.select(range(lowerCAmelCase_ ) ) print(F"""Limiting the dataset to {args.limit} entries.""" ) __lowerCAmelCase = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) __lowerCAmelCase = os.path.join(args.output_dir, args.split ) if not os.path.exists(lowerCAmelCase_ ): os.makedirs(lowerCAmelCase_ ) else: __lowerCAmelCase = os.path.join(args.output_dir, args.split ) # Tokenize the whole dataset at once. __lowerCAmelCase = tokenize_function(lowerCAmelCase_ ) __lowerCAmelCase = dataset.map(lowerCAmelCase_, batched=lowerCAmelCase_, num_proc=4, remove_columns=['text'] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(lowerCAmelCase_ : Dict ): # Concatenate all texts. __lowerCAmelCase = {k: sum(examples[k], [] ) for k in examples.keys()} __lowerCAmelCase = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 __lowerCAmelCase = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. __lowerCAmelCase = { k: [t[i : i + args.max_length] for i in range(0, lowerCAmelCase_, args.max_length )] for k, t in concatenated_examples.items() } return result __lowerCAmelCase = dataset_tokenized.map(lowerCAmelCase_, batched=lowerCAmelCase_, batch_size=1000, num_proc=4 ) __lowerCAmelCase = 0 __lowerCAmelCase = 0 for shard in range(0, len(lowerCAmelCase_ ), args.shard_size ): __lowerCAmelCase = grouped_dataset[shard : shard + args.shard_size] __lowerCAmelCase = len(dataset_snapshot['input_ids'] ) __lowerCAmelCase = os.path.join(lowerCAmelCase_, F"""dataset-{shard_count}-{records_containing}.tfrecord""" ) __lowerCAmelCase = get_serialized_examples(lowerCAmelCase_ ) with tf.io.TFRecordWriter(lowerCAmelCase_ ) as out_file: for i in range(len(lowerCAmelCase_ ) ): __lowerCAmelCase = serialized_examples[i] out_file.write(lowerCAmelCase_ ) print('Wrote file {} containing {} records'.format(lowerCAmelCase_, lowerCAmelCase_ ) ) shard_count += 1 total_records += records_containing with open(F"""split-{args.split}-records-count.txt""", 'w' ) as f: print(F"""Total {args.split} records: {total_records}""", file=lowerCAmelCase_ ) if __name__ == "__main__": _snake_case : Dict = parse_args() main(args)
357
import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def a_ ( lowerCAmelCase_ : Optional[Any] ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4e00 and cp <= 0X9fff) or (cp >= 0X3400 and cp <= 0X4dbf) # or (cp >= 0X20000 and cp <= 0X2a6df) # or (cp >= 0X2a700 and cp <= 0X2b73f) # or (cp >= 0X2b740 and cp <= 0X2b81f) # or (cp >= 0X2b820 and cp <= 0X2ceaf) # or (cp >= 0Xf900 and cp <= 0Xfaff) or (cp >= 0X2f800 and cp <= 0X2fa1f) # ): # return True return False def a_ ( lowerCAmelCase_ : str ): # word like '180' or '身高' or '神' for char in word: __lowerCAmelCase = ord(lowerCAmelCase_ ) if not _is_chinese_char(lowerCAmelCase_ ): return 0 return 1 def a_ ( lowerCAmelCase_ : List[str] ): __lowerCAmelCase = set() for token in tokens: __lowerCAmelCase = len(lowerCAmelCase_ ) > 1 and is_chinese(lowerCAmelCase_ ) if chinese_word: word_set.add(lowerCAmelCase_ ) __lowerCAmelCase = list(lowerCAmelCase_ ) return word_list def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : set() ): if not chinese_word_set: return bert_tokens __lowerCAmelCase = max([len(lowerCAmelCase_ ) for w in chinese_word_set] ) __lowerCAmelCase = bert_tokens __lowerCAmelCase , __lowerCAmelCase = 0, len(lowerCAmelCase_ ) while start < end: __lowerCAmelCase = True if is_chinese(bert_word[start] ): __lowerCAmelCase = min(end - start, lowerCAmelCase_ ) for i in range(lowerCAmelCase_, 1, -1 ): __lowerCAmelCase = ''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1, start + i ): __lowerCAmelCase = '##' + bert_word[j] __lowerCAmelCase = start + i __lowerCAmelCase = False break if single_word: start += 1 return bert_word def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : LTP, lowerCAmelCase_ : BertTokenizer ): __lowerCAmelCase = [] for i in range(0, len(lowerCAmelCase_ ), 100 ): __lowerCAmelCase = ltp_tokenizer.pipeline(lines[i : i + 100], tasks=['cws'] ).cws __lowerCAmelCase = [get_chinese_word(lowerCAmelCase_ ) for r in res] ltp_res.extend(lowerCAmelCase_ ) assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) __lowerCAmelCase = [] for i in range(0, len(lowerCAmelCase_ ), 100 ): __lowerCAmelCase = bert_tokenizer(lines[i : i + 100], add_special_tokens=lowerCAmelCase_, truncation=lowerCAmelCase_, max_length=512 ) bert_res.extend(res['input_ids'] ) assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) __lowerCAmelCase = [] for input_ids, chinese_word in zip(lowerCAmelCase_, lowerCAmelCase_ ): __lowerCAmelCase = [] for id in input_ids: __lowerCAmelCase = bert_tokenizer._convert_id_to_token(lowerCAmelCase_ ) input_tokens.append(lowerCAmelCase_ ) __lowerCAmelCase = add_sub_symbol(lowerCAmelCase_, lowerCAmelCase_ ) __lowerCAmelCase = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(lowerCAmelCase_ ): if token[:2] == "##": __lowerCAmelCase = token[2:] # save chinese tokens' pos if len(lowerCAmelCase_ ) == 1 and _is_chinese_char(ord(lowerCAmelCase_ ) ): ref_id.append(lowerCAmelCase_ ) ref_ids.append(lowerCAmelCase_ ) assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) return ref_ids def a_ ( lowerCAmelCase_ : int ): # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name, 'r', encoding='utf-8' ) as f: __lowerCAmelCase = f.readlines() __lowerCAmelCase = [line.strip() for line in data if len(lowerCAmelCase_ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' __lowerCAmelCase = LTP(args.ltp ) # faster in GPU device __lowerCAmelCase = BertTokenizer.from_pretrained(args.bert ) __lowerCAmelCase = prepare_ref(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) with open(args.save_path, 'w', encoding='utf-8' ) as f: __lowerCAmelCase = [json.dumps(lowerCAmelCase_ ) + '\n' for ref in ref_ids] f.writelines(lowerCAmelCase_ ) if __name__ == "__main__": _snake_case : int = argparse.ArgumentParser(description='prepare_chinese_ref') parser.add_argument( '--file_name', required=False, type=str, default='./resources/chinese-demo.txt', help='file need process, same as training data in lm', ) parser.add_argument( '--ltp', required=False, type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path', ) parser.add_argument( '--bert', required=False, type=str, default='./resources/robert', help='resources for Bert tokenizer', ) parser.add_argument( '--save_path', required=False, type=str, default='./resources/ref.txt', help='path to save res', ) _snake_case : List[str] = parser.parse_args() main(args)
207
0
'''simple docstring''' import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed a_ : Dict = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(f'''{bindir}/../../examples/pytorch/translation'''): from run_translation import main # noqa set_seed(42) a_ : int = """sshleifer/student_marian_en_ro_6_1""" a_ : str = """sshleifer/tiny-mbart""" @require_torch class snake_case ( lowercase ): """simple docstring""" def snake_case ( self , UpperCamelCase=False , UpperCamelCase=None , UpperCamelCase=True , UpperCamelCase=True , UpperCamelCase=True , UpperCamelCase=True , ): """simple docstring""" lowerCamelCase_ = self.run_trainer( eval_steps=1 , max_len=12 , model_name=UpperCamelCase , num_train_epochs=1 , distributed=UpperCamelCase , extra_args_str=UpperCamelCase , predict_with_generate=UpperCamelCase , do_train=UpperCamelCase , do_eval=UpperCamelCase , do_predict=UpperCamelCase , ) lowerCamelCase_ = TrainerState.load_from_json(os.path.join(UpperCamelCase , "trainer_state.json" ) ).log_history if not do_eval: return lowerCamelCase_ = [log for log in logs if "eval_loss" in log.keys()] lowerCamelCase_ = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats lowerCamelCase_ = eval_metrics[-1] assert isinstance(last_step_stats["eval_bleu"] , UpperCamelCase ) assert not math.isnan(float(last_step_stats["eval_loss"] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def snake_case ( self ): """simple docstring""" self.run_seqaseq_quick() @require_torch_multi_gpu def snake_case ( self ): """simple docstring""" self.run_seqaseq_quick(distributed=UpperCamelCase ) @require_torch_multi_gpu def snake_case ( self ): """simple docstring""" self.run_seqaseq_quick(distributed=UpperCamelCase ) @unittest.skip("Requires an update of the env running those tests" ) @require_torch_multi_gpu @require_fairscale def snake_case ( self ): """simple docstring""" self.run_seqaseq_quick(distributed=UpperCamelCase , extra_args_str="--sharded_ddp simple" ) @unittest.skip("Requires an update of the env running those tests" ) @require_torch_multi_gpu @require_fairscale def snake_case ( self ): """simple docstring""" self.run_seqaseq_quick(distributed=UpperCamelCase , extra_args_str="--sharded_ddp simple --fp16" ) @unittest.skip("Requires an update of the env running those tests" ) @require_torch_multi_gpu @require_fairscale def snake_case ( self ): """simple docstring""" self.run_seqaseq_quick(distributed=UpperCamelCase , extra_args_str="--sharded_ddp zero_dp_2" , predict_with_generate=UpperCamelCase ) @unittest.skip("Requires an update of the env running those tests" ) @require_torch_multi_gpu @require_fairscale def snake_case ( self ): """simple docstring""" self.run_seqaseq_quick( distributed=UpperCamelCase , extra_args_str="--sharded_ddp zero_dp_2 --fp16" , predict_with_generate=UpperCamelCase ) @require_apex @require_torch_gpu def snake_case ( self ): """simple docstring""" # XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same # program and it breaks other tests that run from the same pytest worker, therefore until this is # sorted out it must be run only in an external program, that is distributed=True in this # test and only under one or more gpus - if we want cpu will need to make a special test # # specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via # 2nd main() call it botches the future eval. # self.run_seqaseq_quick(distributed=UpperCamelCase , extra_args_str="--fp16 --fp16_backend=apex" ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=UpperCamelCase , extra_args_str="--fp16 --fp16_backend=apex" ) @parameterized.expand(["base", "low", "high", "mixed"] ) @require_torch_multi_gpu def snake_case ( self , UpperCamelCase ): """simple docstring""" # as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout lowerCamelCase_ = { # test with the default log_level - should be info and thus log info once "base": {"extra_args_str": "", "n_matches": 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes "low": {"extra_args_str": "--log_level debug --log_level_replica debug", "n_matches": 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica "high": {"extra_args_str": "--log_level error --log_level_replica debug", "n_matches": 1}, # test with high log_level and log_level_replica - should be quiet on all processes "mixed": {"extra_args_str": "--log_level error --log_level_replica error", "n_matches": 0}, } lowerCamelCase_ = experiments[experiment_id] lowerCamelCase_ = {"distributed": True, "predict_with_generate": False, "do_eval": False, "do_predict": False} lowerCamelCase_ = "Running training" with CaptureStderr() as cl: self.run_seqaseq_quick(**UpperCamelCase , extra_args_str=data["extra_args_str"] ) lowerCamelCase_ = len(re.findall(UpperCamelCase , cl.err ) ) self.assertEqual(UpperCamelCase , data["n_matches"] ) @slow def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.run_trainer( eval_steps=2 , max_len=128 , model_name=UpperCamelCase , learning_rate=3e-4 , num_train_epochs=10 , distributed=UpperCamelCase , ) # Check metrics lowerCamelCase_ = TrainerState.load_from_json(os.path.join(UpperCamelCase , "trainer_state.json" ) ).log_history lowerCamelCase_ = [log for log in logs if "eval_loss" in log.keys()] lowerCamelCase_ = eval_metrics[0] lowerCamelCase_ = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats["eval_bleu"] , UpperCamelCase ) # test if do_predict saves generations and metrics lowerCamelCase_ = os.listdir(UpperCamelCase ) lowerCamelCase_ = {os.path.basename(UpperCamelCase ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def snake_case ( self ): """simple docstring""" from transformers.training_args import OptimizerNames def train_and_return_metrics(UpperCamelCase ) -> Tuple[int, float]: lowerCamelCase_ = "--skip_memory_metrics 0" lowerCamelCase_ = self.run_trainer( max_len=128 , model_name=UpperCamelCase , learning_rate=3e-4 , num_train_epochs=1 , optim=UpperCamelCase , distributed=UpperCamelCase , extra_args_str=UpperCamelCase , do_eval=UpperCamelCase , do_predict=UpperCamelCase , n_gpus_to_use=1 , ) # Check metrics lowerCamelCase_ = TrainerState.load_from_json(Path(UpperCamelCase , "trainer_state.json" ) ).log_history lowerCamelCase_ = int(logs[0]["train_mem_gpu_peaked_delta"] / 2**20 ) lowerCamelCase_ = int(logs[0]["train_mem_gpu_alloc_delta"] / 2**20 ) lowerCamelCase_ = logs[0]["train_loss"] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) lowerCamelCase_ = gpu_alloc_mem_orig - gpu_alloc_mem_bnb lowerCamelCase_ = gpu_peak_mem_orig + gpu_alloc_mem_orig lowerCamelCase_ = gpu_peak_mem_bnb + gpu_alloc_mem_bnb lowerCamelCase_ = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings lowerCamelCase_ = 120 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( UpperCamelCase , UpperCamelCase , "should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got" f''' a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and''' f''' gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB''' , ) self.assertGreater( UpperCamelCase , UpperCamelCase , "should use ~150MB less total gpu memory with BNB, compared to without it for this model but got" f''' a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and''' f''' gpu_total_mem_bnb={gpu_total_mem_bnb}MB''' , ) self.assertEqual( UpperCamelCase , UpperCamelCase , f'''loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}''' ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = 3e-3 , UpperCamelCase = "adafactor" , UpperCamelCase = False , UpperCamelCase = None , UpperCamelCase = 0 , UpperCamelCase = True , UpperCamelCase = True , UpperCamelCase = True , UpperCamelCase = True , UpperCamelCase = None , ): """simple docstring""" lowerCamelCase_ = self.test_file_dir / "../fixtures/tests_samples/wmt_en_ro" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f''' --model_name_or_path {model_name} --train_file {data_dir}/train.json --validation_file {data_dir}/val.json --test_file {data_dir}/test.json --output_dir {output_dir} --overwrite_output_dir --max_train_samples 8 --max_source_length {max_len} --max_target_length {max_len} --do_train --num_train_epochs {str(UpperCamelCase )} --per_device_train_batch_size 4 --learning_rate {learning_rate} --warmup_steps 8 --logging_steps 0 --logging_strategy no --save_steps {str(UpperCamelCase )} --group_by_length --label_smoothing_factor 0.1 --target_lang ro_RO --source_lang en_XX '''.split() lowerCamelCase_ = f''' --do_eval --per_device_eval_batch_size 4 --max_eval_samples 8 --val_max_target_length {max_len} --evaluation_strategy steps --eval_steps {str(UpperCamelCase )} '''.split() lowerCamelCase_ = "\n --do_predict\n ".split() lowerCamelCase_ = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += f'''--optim {optim}'''.split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: lowerCamelCase_ = get_gpu_count() lowerCamelCase_ = get_torch_dist_unique_port() lowerCamelCase_ = f''' -m torch.distributed.run --nproc_per_node={n_gpus_to_use} --master_port={master_port} {self.examples_dir_str}/pytorch/translation/run_translation.py '''.split() lowerCamelCase_ = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(UpperCamelCase , env=self.get_env() ) else: lowerCamelCase_ = ["run_translation.py"] + args with patch.object(UpperCamelCase , "argv" , UpperCamelCase ): main() return output_dir
55
"""simple docstring""" from bisect import bisect from itertools import accumulate def lowercase ( A_ , A_ , A_ , A_ )-> Union[str, Any]: '''simple docstring''' a : Any = sorted(zip(A_ , A_ ) , key=lambda A_ : x[0] / x[1] , reverse=A_ ) a , a : int = [i[0] for i in r], [i[1] for i in r] a : Union[str, Any] = list(accumulate(A_ ) ) a : Optional[Any] = bisect(A_ , A_ ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
40
0
'''simple docstring''' from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 __A : List[str] = { # 1536-bit 5: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 2048-bit 14: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AACAA68FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 3072-bit 15: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 4096-bit 16: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199' + 'FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 6144-bit 17: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08' + '8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B' + '302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9' + 'A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6' + '49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8' + 'FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C' + '180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718' + '3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D' + '04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D' + 'B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226' + '1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC' + 'E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26' + '99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB' + '04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2' + '233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127' + 'D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406' + 'AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918' + 'DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151' + '2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03' + 'F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F' + 'BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B' + 'B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632' + '387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E' + '6DCC4024FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 8192-bit 18: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD' + 'F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831' + '179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B' + 'DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF' + '5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6' + 'D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3' + '23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328' + '06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C' + 'DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE' + '12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4' + '38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300' + '741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568' + '3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9' + '22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B' + '4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A' + '062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36' + '4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1' + 'B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92' + '4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47' + '9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71' + '60C980DD98EDD3DFFFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, } class __UpperCamelCase : def __init__( self :List[Any] ,_UpperCamelCase :int = 1_4 ): if group not in primes: raise ValueError("""Unsupported Group""" ) snake_case_ : Optional[int] = primes[group]["""prime"""] snake_case_ : Union[str, Any] = primes[group]["""generator"""] snake_case_ : str = int(hexlify(urandom(3_2 ) ) ,base=1_6 ) def a__ ( self :Dict ): return hex(self.__private_key )[2:] def a__ ( self :Dict ): snake_case_ : Union[str, Any] = pow(self.generator ,self.__private_key ,self.prime ) return hex(_UpperCamelCase )[2:] def a__ ( self :Any ,_UpperCamelCase :int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(_UpperCamelCase ,(self.prime - 1) // 2 ,self.prime ) == 1 ) def a__ ( self :Optional[Any] ,_UpperCamelCase :str ): snake_case_ : Union[str, Any] = int(_UpperCamelCase ,base=1_6 ) if not self.is_valid_public_key(_UpperCamelCase ): raise ValueError("""Invalid public key""" ) snake_case_ : str = pow(_UpperCamelCase ,self.__private_key ,self.prime ) return shaaaa(str(_UpperCamelCase ).encode() ).hexdigest() @staticmethod def a__ ( _UpperCamelCase :int ,_UpperCamelCase :int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(_UpperCamelCase ,(prime - 1) // 2 ,_UpperCamelCase ) == 1 ) @staticmethod def a__ ( _UpperCamelCase :str ,_UpperCamelCase :str ,_UpperCamelCase :int = 1_4 ): snake_case_ : str = int(_UpperCamelCase ,base=1_6 ) snake_case_ : str = int(_UpperCamelCase ,base=1_6 ) snake_case_ : Dict = primes[group]["""prime"""] if not DiffieHellman.is_valid_public_key_static(_UpperCamelCase ,_UpperCamelCase ): raise ValueError("""Invalid public key""" ) snake_case_ : Any = pow(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) return shaaaa(str(_UpperCamelCase ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
370
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __UpperCamelCase ( unittest.TestCase ): def __init__( self :List[Any] ,_UpperCamelCase :List[str] ,_UpperCamelCase :Optional[Any]=7 ,_UpperCamelCase :Union[str, Any]=3 ,_UpperCamelCase :Any=1_8 ,_UpperCamelCase :Optional[Any]=3_0 ,_UpperCamelCase :List[str]=4_0_0 ,_UpperCamelCase :Optional[Any]=True ,_UpperCamelCase :Union[str, Any]=None ,_UpperCamelCase :List[Any]=True ,): snake_case_ : List[str] = size if size is not None else {"""height""": 1_8, """width""": 1_8} snake_case_ : Union[str, Any] = parent snake_case_ : str = batch_size snake_case_ : List[Any] = num_channels snake_case_ : Tuple = image_size snake_case_ : int = min_resolution snake_case_ : int = max_resolution snake_case_ : Union[str, Any] = do_resize snake_case_ : Optional[Any] = size snake_case_ : Any = apply_ocr def a__ ( self :Union[str, Any] ): return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class __UpperCamelCase ( lowercase__ , unittest.TestCase ): lowercase : Tuple = LayoutLMvaImageProcessor if is_pytesseract_available() else None def a__ ( self :List[Any] ): snake_case_ : Union[str, Any] = LayoutLMvaImageProcessingTester(self ) @property def a__ ( self :int ): return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self :Any ): snake_case_ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCamelCase ,"""do_resize""" ) ) self.assertTrue(hasattr(_UpperCamelCase ,"""size""" ) ) self.assertTrue(hasattr(_UpperCamelCase ,"""apply_ocr""" ) ) def a__ ( self :int ): snake_case_ : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"""height""": 1_8, """width""": 1_8} ) snake_case_ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ,size=4_2 ) self.assertEqual(image_processor.size ,{"""height""": 4_2, """width""": 4_2} ) def a__ ( self :Optional[Any] ): pass def a__ ( self :Union[str, Any] ): # Initialize image_processing snake_case_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ : List[str] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase ,Image.Image ) # Test not batched input snake_case_ : List[str] = image_processing(image_inputs[0] ,return_tensors="""pt""" ) self.assertEqual( encoding.pixel_values.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) self.assertIsInstance(encoding.words ,_UpperCamelCase ) self.assertIsInstance(encoding.boxes ,_UpperCamelCase ) # Test batched snake_case_ : List[Any] = image_processing(_UpperCamelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) def a__ ( self :Tuple ): # Initialize image_processing snake_case_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_UpperCamelCase ,numpify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase ,np.ndarray ) # Test not batched input snake_case_ : Optional[int] = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) # Test batched snake_case_ : Any = image_processing(_UpperCamelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) def a__ ( self :Optional[Any] ): # Initialize image_processing snake_case_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ : Optional[int] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_UpperCamelCase ,torchify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase ,torch.Tensor ) # Test not batched input snake_case_ : Tuple = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) # Test batched snake_case_ : Union[str, Any] = image_processing(_UpperCamelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) def a__ ( self :List[Any] ): # with apply_OCR = True snake_case_ : Any = LayoutLMvaImageProcessor() from datasets import load_dataset snake_case_ : List[Any] = load_dataset("""hf-internal-testing/fixtures_docvqa""" ,split="""test""" ) snake_case_ : str = Image.open(ds[0]["""file"""] ).convert("""RGB""" ) snake_case_ : Dict = image_processing(_UpperCamelCase ,return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape ,(1, 3, 2_2_4, 2_2_4) ) self.assertEqual(len(encoding.words ) ,len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 snake_case_ : Tuple = [["""11:14""", """to""", """11:39""", """a.m""", """11:39""", """to""", """11:44""", """a.m.""", """11:44""", """a.m.""", """to""", """12:25""", """p.m.""", """12:25""", """to""", """12:58""", """p.m.""", """12:58""", """to""", """4:00""", """p.m.""", """2:00""", """to""", """5:00""", """p.m.""", """Coffee""", """Break""", """Coffee""", """will""", """be""", """served""", """for""", """men""", """and""", """women""", """in""", """the""", """lobby""", """adjacent""", """to""", """exhibit""", """area.""", """Please""", """move""", """into""", """exhibit""", """area.""", """(Exhibits""", """Open)""", """TRRF""", """GENERAL""", """SESSION""", """(PART""", """|)""", """Presiding:""", """Lee""", """A.""", """Waller""", """TRRF""", """Vice""", """President""", """“Introductory""", """Remarks”""", """Lee""", """A.""", """Waller,""", """TRRF""", """Vice""", """Presi-""", """dent""", """Individual""", """Interviews""", """with""", """TRRF""", """Public""", """Board""", """Members""", """and""", """Sci-""", """entific""", """Advisory""", """Council""", """Mem-""", """bers""", """Conducted""", """by""", """TRRF""", """Treasurer""", """Philip""", """G.""", """Kuehn""", """to""", """get""", """answers""", """which""", """the""", """public""", """refrigerated""", """warehousing""", """industry""", """is""", """looking""", """for.""", """Plus""", """questions""", """from""", """the""", """floor.""", """Dr.""", """Emil""", """M.""", """Mrak,""", """University""", """of""", """Cal-""", """ifornia,""", """Chairman,""", """TRRF""", """Board;""", """Sam""", """R.""", """Cecil,""", """University""", """of""", """Georgia""", """College""", """of""", """Agriculture;""", """Dr.""", """Stanley""", """Charm,""", """Tufts""", """University""", """School""", """of""", """Medicine;""", """Dr.""", """Robert""", """H.""", """Cotton,""", """ITT""", """Continental""", """Baking""", """Company;""", """Dr.""", """Owen""", """Fennema,""", """University""", """of""", """Wis-""", """consin;""", """Dr.""", """Robert""", """E.""", """Hardenburg,""", """USDA.""", """Questions""", """and""", """Answers""", """Exhibits""", """Open""", """Capt.""", """Jack""", """Stoney""", """Room""", """TRRF""", """Scientific""", """Advisory""", """Council""", """Meeting""", """Ballroom""", """Foyer"""]] # noqa: E231 snake_case_ : Any = [[[1_4_1, 5_7, 2_1_4, 6_9], [2_2_8, 5_8, 2_5_2, 6_9], [1_4_1, 7_5, 2_1_6, 8_8], [2_3_0, 7_9, 2_8_0, 8_8], [1_4_2, 2_6_0, 2_1_8, 2_7_3], [2_3_0, 2_6_1, 2_5_5, 2_7_3], [1_4_3, 2_7_9, 2_1_8, 2_9_0], [2_3_1, 2_8_2, 2_9_0, 2_9_1], [1_4_3, 3_4_2, 2_1_8, 3_5_4], [2_3_1, 3_4_5, 2_8_9, 3_5_5], [2_0_2, 3_6_2, 2_2_7, 3_7_3], [1_4_3, 3_7_9, 2_2_0, 3_9_2], [2_3_1, 3_8_2, 2_9_1, 3_9_4], [1_4_4, 7_1_4, 2_2_0, 7_2_6], [2_3_1, 7_1_5, 2_5_6, 7_2_6], [1_4_4, 7_3_2, 2_2_0, 7_4_5], [2_3_2, 7_3_6, 2_9_1, 7_4_7], [1_4_4, 7_6_9, 2_1_8, 7_8_2], [2_3_1, 7_7_0, 2_5_6, 7_8_2], [1_4_1, 7_8_8, 2_0_2, 8_0_1], [2_1_5, 7_9_1, 2_7_4, 8_0_4], [1_4_3, 8_2_6, 2_0_4, 8_3_8], [2_1_5, 8_2_6, 2_4_0, 8_3_8], [1_4_2, 8_4_4, 2_0_2, 8_5_7], [2_1_5, 8_4_7, 2_7_4, 8_5_9], [3_3_4, 5_7, 4_2_7, 6_9], [4_4_0, 5_7, 5_2_2, 6_9], [3_6_9, 7_5, 4_6_1, 8_8], [4_6_9, 7_5, 5_1_6, 8_8], [5_2_8, 7_6, 5_6_2, 8_8], [5_7_0, 7_6, 6_6_7, 8_8], [6_7_5, 7_5, 7_1_1, 8_7], [7_2_1, 7_9, 7_7_8, 8_8], [7_8_9, 7_5, 8_4_0, 8_8], [3_6_9, 9_7, 4_7_0, 1_0_7], [4_8_4, 9_4, 5_0_7, 1_0_6], [5_1_8, 9_4, 5_6_2, 1_0_7], [5_7_6, 9_4, 6_5_5, 1_1_0], [6_6_8, 9_4, 7_9_2, 1_0_9], [8_0_4, 9_5, 8_2_9, 1_0_7], [3_6_9, 1_1_3, 4_6_5, 1_2_5], [4_7_7, 1_1_6, 5_4_7, 1_2_5], [5_6_2, 1_1_3, 6_5_8, 1_2_5], [6_7_1, 1_1_6, 7_4_8, 1_2_5], [7_6_1, 1_1_3, 8_1_1, 1_2_5], [3_6_9, 1_3_1, 4_6_5, 1_4_3], [4_7_7, 1_3_3, 5_4_8, 1_4_3], [5_6_3, 1_3_0, 6_9_8, 1_4_5], [7_1_0, 1_3_0, 8_0_2, 1_4_6], [3_3_6, 1_7_1, 4_1_2, 1_8_3], [4_2_3, 1_7_1, 5_7_2, 1_8_3], [5_8_2, 1_7_0, 7_1_6, 1_8_4], [7_2_8, 1_7_1, 8_1_7, 1_8_7], [8_2_9, 1_7_1, 8_4_4, 1_8_6], [3_3_8, 1_9_7, 4_8_2, 2_1_2], [5_0_7, 1_9_6, 5_5_7, 2_0_9], [5_6_9, 1_9_6, 5_9_5, 2_0_8], [6_1_0, 1_9_6, 7_0_2, 2_0_9], [5_0_5, 2_1_4, 5_8_3, 2_2_6], [5_9_5, 2_1_4, 6_5_6, 2_2_7], [6_7_0, 2_1_5, 8_0_7, 2_2_7], [3_3_5, 2_5_9, 5_4_3, 2_7_4], [5_5_6, 2_5_9, 7_0_8, 2_7_2], [3_7_2, 2_7_9, 4_2_2, 2_9_1], [4_3_5, 2_7_9, 4_6_0, 2_9_1], [4_7_4, 2_7_9, 5_7_4, 2_9_2], [5_8_7, 2_7_8, 6_6_4, 2_9_1], [6_7_6, 2_7_8, 7_3_8, 2_9_1], [7_5_1, 2_7_9, 8_3_4, 2_9_1], [3_7_2, 2_9_8, 4_3_4, 3_1_0], [3_3_5, 3_4_1, 4_8_3, 3_5_4], [4_9_7, 3_4_1, 6_5_5, 3_5_4], [6_6_7, 3_4_1, 7_2_8, 3_5_4], [7_4_0, 3_4_1, 8_2_5, 3_5_4], [3_3_5, 3_6_0, 4_3_0, 3_7_2], [4_4_2, 3_6_0, 5_3_4, 3_7_2], [5_4_5, 3_5_9, 6_8_7, 3_7_2], [6_9_7, 3_6_0, 7_5_4, 3_7_2], [7_6_5, 3_6_0, 8_2_3, 3_7_3], [3_3_4, 3_7_8, 4_2_8, 3_9_1], [4_4_0, 3_7_8, 5_7_7, 3_9_4], [5_9_0, 3_7_8, 7_0_5, 3_9_1], [7_2_0, 3_7_8, 8_0_1, 3_9_1], [3_3_4, 3_9_7, 4_0_0, 4_0_9], [3_7_0, 4_1_6, 5_2_9, 4_2_9], [5_4_4, 4_1_6, 5_7_6, 4_3_2], [5_8_7, 4_1_6, 6_6_5, 4_2_8], [6_7_7, 4_1_6, 8_1_4, 4_2_9], [3_7_2, 4_3_5, 4_5_2, 4_5_0], [4_6_5, 4_3_4, 4_9_5, 4_4_7], [5_1_1, 4_3_4, 6_0_0, 4_4_7], [6_1_1, 4_3_6, 6_3_7, 4_4_7], [6_4_9, 4_3_6, 6_9_4, 4_5_1], [7_0_5, 4_3_8, 8_2_4, 4_4_7], [3_6_9, 4_5_3, 4_5_2, 4_6_6], [4_6_4, 4_5_4, 5_0_9, 4_6_6], [5_2_2, 4_5_3, 6_1_1, 4_6_9], [6_2_5, 4_5_3, 7_9_2, 4_6_9], [3_7_0, 4_7_2, 5_5_6, 4_8_8], [5_7_0, 4_7_2, 6_8_4, 4_8_7], [6_9_7, 4_7_2, 7_1_8, 4_8_5], [7_3_2, 4_7_2, 8_3_5, 4_8_8], [3_6_9, 4_9_0, 4_1_1, 5_0_3], [4_2_5, 4_9_0, 4_8_4, 5_0_3], [4_9_6, 4_9_0, 6_3_5, 5_0_6], [6_4_5, 4_9_0, 7_0_7, 5_0_3], [7_1_8, 4_9_1, 7_6_1, 5_0_3], [7_7_1, 4_9_0, 8_4_0, 5_0_3], [3_3_6, 5_1_0, 3_7_4, 5_2_1], [3_8_8, 5_1_0, 4_4_7, 5_2_2], [4_6_0, 5_1_0, 4_8_9, 5_2_1], [5_0_3, 5_1_0, 5_8_0, 5_2_2], [5_9_2, 5_0_9, 7_3_6, 5_2_5], [7_4_5, 5_0_9, 7_7_0, 5_2_2], [7_8_1, 5_0_9, 8_4_0, 5_2_2], [3_3_8, 5_2_8, 4_3_4, 5_4_1], [4_4_8, 5_2_8, 5_9_6, 5_4_1], [6_0_9, 5_2_7, 6_8_7, 5_4_0], [7_0_0, 5_2_8, 7_9_2, 5_4_1], [3_3_6, 5_4_6, 3_9_7, 5_5_9], [4_0_7, 5_4_6, 4_3_1, 5_5_9], [4_4_3, 5_4_6, 5_2_5, 5_6_0], [5_3_7, 5_4_6, 6_8_0, 5_6_2], [6_8_8, 5_4_6, 7_1_4, 5_5_9], [7_2_2, 5_4_6, 8_3_7, 5_6_2], [3_3_6, 5_6_5, 4_4_9, 5_8_1], [4_6_1, 5_6_5, 4_8_5, 5_7_7], [4_9_7, 5_6_5, 6_6_5, 5_8_1], [6_8_1, 5_6_5, 7_1_8, 5_7_7], [7_3_2, 5_6_5, 8_3_7, 5_8_0], [3_3_7, 5_8_4, 4_3_8, 5_9_7], [4_5_2, 5_8_3, 5_2_1, 5_9_6], [5_3_5, 5_8_4, 6_7_7, 5_9_9], [6_9_0, 5_8_3, 7_8_7, 5_9_6], [8_0_1, 5_8_3, 8_2_5, 5_9_6], [3_3_8, 6_0_2, 4_7_8, 6_1_5], [4_9_2, 6_0_2, 5_3_0, 6_1_4], [5_4_3, 6_0_2, 6_3_8, 6_1_5], [6_5_0, 6_0_2, 6_7_6, 6_1_4], [6_8_8, 6_0_2, 7_8_8, 6_1_5], [8_0_2, 6_0_2, 8_4_3, 6_1_4], [3_3_7, 6_2_1, 5_0_2, 6_3_3], [5_1_6, 6_2_1, 6_1_5, 6_3_7], [6_2_9, 6_2_1, 7_7_4, 6_3_6], [7_8_9, 6_2_1, 8_2_7, 6_3_3], [3_3_7, 6_3_9, 4_1_8, 6_5_2], [4_3_2, 6_4_0, 5_7_1, 6_5_3], [5_8_7, 6_3_9, 7_3_1, 6_5_5], [7_4_3, 6_3_9, 7_6_9, 6_5_2], [7_8_0, 6_3_9, 8_4_1, 6_5_2], [3_3_8, 6_5_8, 4_4_0, 6_7_3], [4_5_5, 6_5_8, 4_9_1, 6_7_0], [5_0_8, 6_5_8, 6_0_2, 6_7_1], [6_1_6, 6_5_8, 6_3_8, 6_7_0], [6_5_4, 6_5_8, 8_3_5, 6_7_4], [3_3_7, 6_7_7, 4_2_9, 6_8_9], [3_3_7, 7_1_4, 4_8_2, 7_2_6], [4_9_5, 7_1_4, 5_4_8, 7_2_6], [5_6_1, 7_1_4, 6_8_3, 7_2_6], [3_3_8, 7_7_0, 4_6_1, 7_8_2], [4_7_4, 7_6_9, 5_5_4, 7_8_5], [4_8_9, 7_8_8, 5_6_2, 8_0_3], [5_7_6, 7_8_8, 6_4_3, 8_0_1], [6_5_6, 7_8_7, 7_5_1, 8_0_4], [7_6_4, 7_8_8, 8_4_4, 8_0_1], [3_3_4, 8_2_5, 4_2_1, 8_3_8], [4_3_0, 8_2_4, 5_7_4, 8_3_8], [5_8_4, 8_2_4, 7_2_3, 8_4_1], [3_3_5, 8_4_4, 4_5_0, 8_5_7], [4_6_4, 8_4_3, 5_8_3, 8_6_0], [6_2_8, 8_6_2, 7_5_5, 8_7_5], [7_6_9, 8_6_1, 8_4_8, 8_7_8]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words ,_UpperCamelCase ) self.assertListEqual(encoding.boxes ,_UpperCamelCase ) # with apply_OCR = False snake_case_ : Dict = LayoutLMvaImageProcessor(apply_ocr=_UpperCamelCase ) snake_case_ : Optional[int] = image_processing(_UpperCamelCase ,return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape ,(1, 3, 2_2_4, 2_2_4) )
8
0
from __future__ import annotations def a ( A__ : str , A__ : List[Any] , A__ : Any ) -> Optional[Any]: """simple docstring""" _lowercase =list(range(len(__lowerCamelCase ) ) ) _lowercase =[v / w for v, w in zip(__lowerCamelCase , __lowerCamelCase )] index.sort(key=lambda A__ : ratio[i] , reverse=__lowerCamelCase ) _lowercase =0 _lowercase =[0] * len(__lowerCamelCase ) for i in index: if weight[i] <= capacity: _lowercase =1 max_value += value[i] capacity -= weight[i] else: _lowercase =capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
205
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" @register_to_config def __init__( self , _A , _A , _A , _A , _A , _A , _A , _A , _A , _A = False , ) -> List[str]: super().__init__() SCREAMING_SNAKE_CASE_ = nn.Embedding(_A , _A ) SCREAMING_SNAKE_CASE_ = nn.Embedding(_A , _A ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = nn.Dropout(p=_A ) SCREAMING_SNAKE_CASE_ = TaConfig( vocab_size=_A , d_model=_A , num_heads=_A , d_kv=_A , d_ff=_A , dropout_rate=_A , feed_forward_proj=_A , is_decoder=_A , is_encoder_decoder=_A , ) SCREAMING_SNAKE_CASE_ = nn.ModuleList() for lyr_num in range(_A ): SCREAMING_SNAKE_CASE_ = TaBlock(_A ) self.encoders.append(_A ) SCREAMING_SNAKE_CASE_ = TaLayerNorm(_A ) SCREAMING_SNAKE_CASE_ = nn.Dropout(p=_A ) def _UpperCamelCase ( self , _A , _A ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = self.token_embedder(_A ) SCREAMING_SNAKE_CASE_ = encoder_input_tokens.shape[1] SCREAMING_SNAKE_CASE_ = torch.arange(_A , device=encoder_input_tokens.device ) x += self.position_encoding(_A ) SCREAMING_SNAKE_CASE_ = self.dropout_pre(_A ) # inverted the attention mask SCREAMING_SNAKE_CASE_ = encoder_input_tokens.size() SCREAMING_SNAKE_CASE_ = self.get_extended_attention_mask(_A , _A ) for lyr in self.encoders: SCREAMING_SNAKE_CASE_ = lyr(_A , _A )[0] SCREAMING_SNAKE_CASE_ = self.layer_norm(_A ) return self.dropout_post(_A ), encoder_inputs_mask
299
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer SCREAMING_SNAKE_CASE_ : Tuple = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ : Dict = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} SCREAMING_SNAKE_CASE_ : Union[str, Any] = { 'vocab_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt' ), 'squeezebert/squeezebert-mnli': 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt', 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli': ( 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json' ), }, } SCREAMING_SNAKE_CASE_ : Tuple = { 'squeezebert/squeezebert-uncased': 5_1_2, 'squeezebert/squeezebert-mnli': 5_1_2, 'squeezebert/squeezebert-mnli-headless': 5_1_2, } SCREAMING_SNAKE_CASE_ : Union[str, Any] = { 'squeezebert/squeezebert-uncased': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli-headless': {'do_lower_case': True}, } class a ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = VOCAB_FILES_NAMES UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase = SqueezeBertTokenizer def __init__( self: Optional[Any] , UpperCamelCase: Optional[Any]=None , UpperCamelCase: int=None , UpperCamelCase: Optional[int]=True , UpperCamelCase: Tuple="[UNK]" , UpperCamelCase: Any="[SEP]" , UpperCamelCase: Optional[Any]="[PAD]" , UpperCamelCase: Optional[int]="[CLS]" , UpperCamelCase: Union[str, Any]="[MASK]" , UpperCamelCase: List[str]=True , UpperCamelCase: List[Any]=None , **UpperCamelCase: Optional[Any] , ): """simple docstring""" super().__init__( lowercase_ , tokenizer_file=lowercase_ , do_lower_case=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , pad_token=lowercase_ , cls_token=lowercase_ , mask_token=lowercase_ , tokenize_chinese_chars=lowercase_ , strip_accents=lowercase_ , **lowercase_ , ) A__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , lowercase_ ) != do_lower_case or normalizer_state.get("""strip_accents""" , lowercase_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , lowercase_ ) != tokenize_chinese_chars ): A__ = getattr(lowercase_ , normalizer_state.pop("""type""" ) ) A__ = do_lower_case A__ = strip_accents A__ = tokenize_chinese_chars A__ = normalizer_class(**lowercase_ ) A__ = do_lower_case def UpperCamelCase ( self: List[Any] , UpperCamelCase: Optional[Any] , UpperCamelCase: Tuple=None ): """simple docstring""" A__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase ( self: List[Any] , UpperCamelCase: List[int] , UpperCamelCase: Optional[List[int]] = None ): """simple docstring""" A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase ( self: Optional[Any] , UpperCamelCase: str , UpperCamelCase: Optional[str] = None ): """simple docstring""" A__ = self._tokenizer.model.save(lowercase_ , name=lowercase_ ) return tuple(lowercase_ )
355
"""simple docstring""" def _snake_case ( UpperCAmelCase_ : int = 50 ): A__ = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(f"""{solution() = }""")
69
0
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): if not all(char in """01""" for char in bin_string ): raise ValueError("""Non-binary value was passed to the function""" ) if not bin_string: raise ValueError("""Empty string was passed to the function""" ) _snake_case = """""" while len(_SCREAMING_SNAKE_CASE ) % 3 != 0: _snake_case = """0""" + bin_string _snake_case = [ bin_string[index : index + 3] for index in range(len(_SCREAMING_SNAKE_CASE ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: _snake_case = 0 for index, val in enumerate(_SCREAMING_SNAKE_CASE ): oct_val += int(2 ** (2 - index) * int(_SCREAMING_SNAKE_CASE ) ) oct_string += str(_SCREAMING_SNAKE_CASE ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
341
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=32 , UpperCAmelCase=3 , UpperCAmelCase=4 , UpperCAmelCase=[10, 20, 30, 40] , UpperCAmelCase=[2, 2, 3, 2] , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=37 , UpperCAmelCase="gelu" , UpperCAmelCase=10 , UpperCAmelCase=0.02 , UpperCAmelCase=["stage2", "stage3", "stage4"] , UpperCAmelCase=3 , UpperCAmelCase=None , ) -> List[Any]: _snake_case = parent _snake_case = batch_size _snake_case = image_size _snake_case = num_channels _snake_case = num_stages _snake_case = hidden_sizes _snake_case = depths _snake_case = is_training _snake_case = use_labels _snake_case = intermediate_size _snake_case = hidden_act _snake_case = type_sequence_label_size _snake_case = initializer_range _snake_case = out_features _snake_case = num_labels _snake_case = scope _snake_case = num_stages def lowercase (self ) -> List[Any]: _snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case = self.get_config() return config, pixel_values, labels def lowercase (self ) -> Tuple: return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def lowercase (self ) -> Any: return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=UpperCAmelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=UpperCAmelCase , loss_ignore_index=255 , num_labels=self.num_labels , ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> str: _snake_case = UperNetForSemanticSegmentation(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _snake_case = model(UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def lowercase (self ) -> Tuple: _snake_case = self.prepare_config_and_inputs() ( ( _snake_case ), ( _snake_case ), ( _snake_case ), ) = config_and_inputs _snake_case = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = (UperNetForSemanticSegmentation,) if is_torch_available() else () lowerCAmelCase_ = {"image-segmentation": UperNetForSemanticSegmentation} if is_torch_available() else {} lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowercase (self ) -> Optional[Any]: _snake_case = UperNetModelTester(self ) _snake_case = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 ) def lowercase (self ) -> str: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase (self ) -> Union[str, Any]: return def lowercase (self ) -> Union[str, Any]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(UpperCAmelCase ) _snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def lowercase (self ) -> int: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*UpperCAmelCase ) @unittest.skip(reason="""UperNet does not use inputs_embeds""" ) def lowercase (self ) -> int: pass @unittest.skip(reason="""UperNet does not support input and output embeddings""" ) def lowercase (self ) -> List[str]: pass @unittest.skip(reason="""UperNet does not have a base model""" ) def lowercase (self ) -> Union[str, Any]: pass @unittest.skip(reason="""UperNet does not have a base model""" ) def lowercase (self ) -> Union[str, Any]: pass @require_torch_multi_gpu @unittest.skip(reason="""UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def lowercase (self ) -> str: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowercase (self ) -> int: pass def lowercase (self ) -> List[str]: def check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): _snake_case = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) _snake_case = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _snake_case = self.model_tester.num_stages self.assertEqual(len(UpperCAmelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def lowercase (self ) -> List[str]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = _config_zero_init(UpperCAmelCase ) _snake_case = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: _snake_case = model_class(config=UpperCAmelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip(reason="""UperNet does not have tied weights""" ) def lowercase (self ) -> Optional[Any]: pass @slow def lowercase (self ) -> Tuple: for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = UperNetForSemanticSegmentation.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( ): _snake_case = hf_hub_download( repo_id="""hf-internal-testing/fixtures_ade20k""" , repo_type="""dataset""" , filename="""ADE_val_00000001.jpg""" ) _snake_case = Image.open(_SCREAMING_SNAKE_CASE ).convert("""RGB""" ) return image @require_torch @require_vision @slow class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowercase (self ) -> Any: _snake_case = AutoImageProcessor.from_pretrained("""openmmlab/upernet-swin-tiny""" ) _snake_case = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-swin-tiny""" ).to(UpperCAmelCase ) _snake_case = prepare_img() _snake_case = processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) _snake_case = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) _snake_case = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , UpperCAmelCase , atol=1e-4 ) ) def lowercase (self ) -> Any: _snake_case = AutoImageProcessor.from_pretrained("""openmmlab/upernet-convnext-tiny""" ) _snake_case = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-convnext-tiny""" ).to(UpperCAmelCase ) _snake_case = prepare_img() _snake_case = processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) _snake_case = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) _snake_case = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , UpperCAmelCase , atol=1e-4 ) )
341
1
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel a__: str = { 'text_branch': 'text_model', 'audio_branch': 'audio_model.audio_encoder', 'attn': 'attention.self', 'self.proj': 'output.dense', 'attention.self_mask': 'attn_mask', 'mlp.fc1': 'intermediate.dense', 'mlp.fc2': 'output.dense', 'norm1': 'layernorm_before', 'norm2': 'layernorm_after', 'bn0': 'batch_norm', } a__: Tuple = AutoFeatureExtractor.from_pretrained('laion/clap-htsat-unfused', truncation='rand_trunc') def UpperCamelCase__( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple=False )->Optional[int]: A__ , A__ = create_model( '''HTSAT-tiny''' , '''roberta''' , UpperCamelCase__ , precision='''fp32''' , device='''cuda:0''' if torch.cuda.is_available() else '''cpu''' , enable_fusion=UpperCamelCase__ , fusion_type='''aff_2d''' if enable_fusion else None , ) return model, model_cfg def UpperCamelCase__( UpperCamelCase__ : Optional[Any] )->Optional[int]: A__ = {} A__ = r'''.*sequential.(\d+).*''' A__ = r'''.*_projection.(\d+).*''' for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: A__ = key.replace(UpperCamelCase__ , UpperCamelCase__ ) if re.match(UpperCamelCase__ , UpperCamelCase__ ): # replace sequential layers with list A__ = re.match(UpperCamelCase__ , UpperCamelCase__ ).group(1 ) A__ = key.replace(f"sequential.{sequential_layer}." , f"layers.{int(UpperCamelCase__ )//3}.linear." ) elif re.match(UpperCamelCase__ , UpperCamelCase__ ): A__ = int(re.match(UpperCamelCase__ , UpperCamelCase__ ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... A__ = 1 if projecton_layer == 0 else 2 A__ = key.replace(f"_projection.{projecton_layer}." , f"_projection.linear{transformers_projection_layer}." ) if "audio" and "qkv" in key: # split qkv into query key and value A__ = value A__ = mixed_qkv.size(0 ) // 3 A__ = mixed_qkv[:qkv_dim] A__ = mixed_qkv[qkv_dim : qkv_dim * 2] A__ = mixed_qkv[qkv_dim * 2 :] A__ = query_layer A__ = key_layer A__ = value_layer else: A__ = value return model_state_dict def UpperCamelCase__( UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any]=False )->Optional[int]: A__ , A__ = init_clap(UpperCamelCase__ , enable_fusion=UpperCamelCase__ ) clap_model.eval() A__ = clap_model.state_dict() A__ = rename_state_dict(UpperCamelCase__ ) A__ = ClapConfig() A__ = enable_fusion A__ = ClapModel(UpperCamelCase__ ) # ignore the spectrogram embedding layer model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) transformers_config.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": a__: Optional[int] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument('--enable_fusion', action='store_true', help='Whether to enable fusion or not') a__: Optional[Any] = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
39
def UpperCamelCase__( UpperCamelCase__ : int , UpperCamelCase__ : int )->float: return base * power(UpperCamelCase__ , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print('Raise base to the power of exponent using recursion...') a__: List[str] = int(input('Enter the base: ').strip()) a__: Dict = int(input('Enter the exponent: ').strip()) a__: Optional[Any] = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents a__: Any = 1 / result print(F"{base} to the power of {exponent} is {result}")
39
1
import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def UpperCAmelCase_ ( __UpperCAmelCase : Union[str, Any] ) -> List[str]: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x2_0000 and cp <= 0x2_A6DF) # or (cp >= 0x2_A700 and cp <= 0x2_B73F) # or (cp >= 0x2_B740 and cp <= 0x2_B81F) # or (cp >= 0x2_B820 and cp <= 0x2_CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2_F800 and cp <= 0x2_FA1F) # ): # return True return False def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> List[str]: # word like '180' or '身高' or '神' for char in word: SCREAMING_SNAKE_CASE_ = ord(a_ ) if not _is_chinese_char(a_ ): return 0 return 1 def UpperCAmelCase_ ( __UpperCAmelCase : List[str] ) -> Any: SCREAMING_SNAKE_CASE_ = set() for token in tokens: SCREAMING_SNAKE_CASE_ = len(a_ ) > 1 and is_chinese(a_ ) if chinese_word: word_set.add(a_ ) SCREAMING_SNAKE_CASE_ = list(a_ ) return word_list def UpperCAmelCase_ ( __UpperCAmelCase : List[str] , __UpperCAmelCase : set() ) -> Any: if not chinese_word_set: return bert_tokens SCREAMING_SNAKE_CASE_ = max([len(a_ ) for w in chinese_word_set] ) SCREAMING_SNAKE_CASE_ = bert_tokens SCREAMING_SNAKE_CASE_ = 0, len(a_ ) while start < end: SCREAMING_SNAKE_CASE_ = True if is_chinese(bert_word[start] ): SCREAMING_SNAKE_CASE_ = min(end - start , a_ ) for i in range(a_ , 1 , -1 ): SCREAMING_SNAKE_CASE_ = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): SCREAMING_SNAKE_CASE_ = '''##''' + bert_word[j] SCREAMING_SNAKE_CASE_ = start + i SCREAMING_SNAKE_CASE_ = False break if single_word: start += 1 return bert_word def UpperCAmelCase_ ( __UpperCAmelCase : List[str] , __UpperCAmelCase : LTP , __UpperCAmelCase : BertTokenizer ) -> Dict: SCREAMING_SNAKE_CASE_ = [] for i in range(0 , len(a_ ) , 1_00 ): SCREAMING_SNAKE_CASE_ = ltp_tokenizer.pipeline(lines[i : i + 1_00] , tasks=['cws'] ).cws SCREAMING_SNAKE_CASE_ = [get_chinese_word(a_ ) for r in res] ltp_res.extend(a_ ) assert len(a_ ) == len(a_ ) SCREAMING_SNAKE_CASE_ = [] for i in range(0 , len(a_ ) , 1_00 ): SCREAMING_SNAKE_CASE_ = bert_tokenizer(lines[i : i + 1_00] , add_special_tokens=a_ , truncation=a_ , max_length=5_12 ) bert_res.extend(res['input_ids'] ) assert len(a_ ) == len(a_ ) SCREAMING_SNAKE_CASE_ = [] for input_ids, chinese_word in zip(a_ , a_ ): SCREAMING_SNAKE_CASE_ = [] for id in input_ids: SCREAMING_SNAKE_CASE_ = bert_tokenizer._convert_id_to_token(a_ ) input_tokens.append(a_ ) SCREAMING_SNAKE_CASE_ = add_sub_symbol(a_ , a_ ) SCREAMING_SNAKE_CASE_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(a_ ): if token[:2] == "##": SCREAMING_SNAKE_CASE_ = token[2:] # save chinese tokens' pos if len(a_ ) == 1 and _is_chinese_char(ord(a_ ) ): ref_id.append(a_ ) ref_ids.append(a_ ) assert len(a_ ) == len(a_ ) return ref_ids def UpperCAmelCase_ ( __UpperCAmelCase : Any ) -> Tuple: # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ = f.readlines() SCREAMING_SNAKE_CASE_ = [line.strip() for line in data if len(a_ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' SCREAMING_SNAKE_CASE_ = LTP(args.ltp ) # faster in GPU device SCREAMING_SNAKE_CASE_ = BertTokenizer.from_pretrained(args.bert ) SCREAMING_SNAKE_CASE_ = prepare_ref(a_ , a_ , a_ ) with open(args.save_path , 'w' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ = [json.dumps(a_ ) + '''\n''' for ref in ref_ids] f.writelines(a_ ) if __name__ == "__main__": lowerCamelCase__ : int = argparse.ArgumentParser(description='prepare_chinese_ref') parser.add_argument( '--file_name', required=False, type=str, default='./resources/chinese-demo.txt', help='file need process, same as training data in lm', ) parser.add_argument( '--ltp', required=False, type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path', ) parser.add_argument( '--bert', required=False, type=str, default='./resources/robert', help='resources for Bert tokenizer', ) parser.add_argument( '--save_path', required=False, type=str, default='./resources/ref.txt', help='path to save res', ) lowerCamelCase__ : Union[str, Any] = parser.parse_args() main(args)
225
"""simple docstring""" from statistics import mean import numpy as np def __A ( a_ :list , a_ :list , a_ :list , a_ :int) -> list: __a : Any = 0 # Number of processes finished __a : Union[str, Any] = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. __a : Any = [0] * no_of_process # List to include calculation results __a : str = [0] * no_of_process # Sort by arrival time. __a : List[Any] = [burst_time[i] for i in np.argsort(a_)] __a : Tuple = [process_name[i] for i in np.argsort(a_)] arrival_time.sort() while no_of_process > finished_process_count: __a : Optional[Any] = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: __a : Dict = arrival_time[i] __a : Dict = 0 # Index showing the location of the process being performed __a : Tuple = 0 # Saves the current response ratio. __a : List[str] = 0 for i in range(0 , a_): if finished_process[i] == 0 and arrival_time[i] <= current_time: __a : Tuple = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: __a : Tuple = temp __a : Optional[Any] = i # Calculate the turn around time __a : Optional[int] = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. __a : int = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def __A ( a_ :list , a_ :list , a_ :list , a_ :int) -> list: __a : Dict = [0] * no_of_process for i in range(0 , a_): __a : Optional[Any] = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": A = 5 A = ['''A''', '''B''', '''C''', '''D''', '''E'''] A = [1, 2, 3, 4, 5] A = [1, 2, 3, 4, 5] A = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) A = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print('''Process name \tArrival time \tBurst time \tTurn around time \tWaiting time''') for i in range(0, no_of_process): print( F'{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t' F'{turn_around_time[i]}\t\t\t{waiting_time[i]}' ) print(F'average waiting time : {mean(waiting_time):.5f}') print(F'average turn around time : {mean(turn_around_time):.5f}')
160
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer _UpperCAmelCase : str = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _UpperCAmelCase : Dict = { """vocab_file""": { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt""", }, """tokenizer_file""": { """unc-nlp/lxmert-base-uncased""": ( """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json""" ), }, } _UpperCAmelCase : Tuple = { """unc-nlp/lxmert-base-uncased""": 5_1_2, } _UpperCAmelCase : Optional[Any] = { """unc-nlp/lxmert-base-uncased""": {"""do_lower_case""": True}, } class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict = VOCAB_FILES_NAMES __UpperCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Tuple = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : str = LxmertTokenizer def __init__(self , __lowercase=None , __lowercase=None , __lowercase=True , __lowercase="[UNK]" , __lowercase="[SEP]" , __lowercase="[PAD]" , __lowercase="[CLS]" , __lowercase="[MASK]" , __lowercase=True , __lowercase=None , **__lowercase , ): super().__init__( __lowercase , tokenizer_file=__lowercase , do_lower_case=__lowercase , unk_token=__lowercase , sep_token=__lowercase , pad_token=__lowercase , cls_token=__lowercase , mask_token=__lowercase , tokenize_chinese_chars=__lowercase , strip_accents=__lowercase , **__lowercase , ) __lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , __lowercase ) != do_lower_case or normalizer_state.get('''strip_accents''' , __lowercase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , __lowercase ) != tokenize_chinese_chars ): __lowerCAmelCase = getattr(__lowercase , normalizer_state.pop('''type''' ) ) __lowerCAmelCase = do_lower_case __lowerCAmelCase = strip_accents __lowerCAmelCase = tokenize_chinese_chars __lowerCAmelCase = normalizer_class(**__lowercase ) __lowerCAmelCase = do_lower_case def _snake_case (self , __lowercase , __lowercase=None ): __lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _snake_case (self , __lowercase , __lowercase = None ): __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _snake_case (self , __lowercase , __lowercase = None ): __lowerCAmelCase = self._tokenizer.model.save(__lowercase , name=__lowercase ) return tuple(__lowercase )
369
'''simple docstring''' from math import sqrt def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number >= 0 ), "'number' must been an int and positive" __lowerCAmelCase = True # 0 and 1 are none primes. if number <= 1: __lowerCAmelCase = False for divisor in range(2, int(round(sqrt(lowerCamelCase))) + 1): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __lowerCAmelCase = False break # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'status' must been from type bool" return status def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __lowerCAmelCase = list(range(2, n + 1)) __lowerCAmelCase = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(lowerCamelCase)): for j in range(i + 1, len(lowerCamelCase)): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __lowerCAmelCase = 0 # filters actual prime numbers. __lowerCAmelCase = [x for x in begin_list if x != 0] # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n > 2), "'N' must been an int and > 2" __lowerCAmelCase = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2, n + 1): if is_prime(lowerCamelCase): ans.append(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and number >= 0, "'number' must been an int and >= 0" __lowerCAmelCase = [] # this list will be returns of the function. # potential prime number factors. __lowerCAmelCase = 2 __lowerCAmelCase = number if number == 0 or number == 1: ans.append(lowerCamelCase) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(lowerCamelCase): while quotient != 1: if is_prime(lowerCamelCase) and (quotient % factor == 0): ans.append(lowerCamelCase) quotient /= factor else: factor += 1 else: ans.append(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowerCAmelCase = 0 # prime factorization of 'number' __lowerCAmelCase = prime_factorization(lowerCamelCase) __lowerCAmelCase = max(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type int" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowerCAmelCase = 0 # prime factorization of 'number' __lowerCAmelCase = prime_factorization(lowerCamelCase) __lowerCAmelCase = min(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type int" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase), "'number' must been an int" assert isinstance(number % 2 == 0, lowerCamelCase), "compare bust been from type bool" return number % 2 == 0 def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase), "'number' must been an int" assert isinstance(number % 2 != 0, lowerCamelCase), "compare bust been from type bool" return number % 2 != 0 def __magic_name__( lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and (number > 2) and is_even(lowerCamelCase) ), "'number' must been an int, even and > 2" __lowerCAmelCase = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __lowerCAmelCase = get_prime_numbers(lowerCamelCase) __lowerCAmelCase = len(lowerCamelCase) # run variable for while-loops. __lowerCAmelCase = 0 __lowerCAmelCase = None # exit variable. for break up the loops __lowerCAmelCase = True while i < len_pn and loop: __lowerCAmelCase = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __lowerCAmelCase = False ans.append(prime_numbers[i]) ans.append(prime_numbers[j]) j += 1 i += 1 # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and (len(lowerCamelCase) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0]) and is_prime(ans[1]) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __lowerCAmelCase = 0 while numbera != 0: __lowerCAmelCase = numbera % numbera __lowerCAmelCase = numbera __lowerCAmelCase = rest # precondition assert isinstance(lowerCamelCase, lowerCamelCase) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __lowerCAmelCase = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __lowerCAmelCase = prime_factorization(lowerCamelCase) __lowerCAmelCase = prime_factorization(lowerCamelCase) elif numbera == 1 or numbera == 1: __lowerCAmelCase = [] __lowerCAmelCase = [] __lowerCAmelCase = max(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) for _ in range(max(lowerCamelCase, lowerCamelCase)): ans *= n else: __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) for _ in range(lowerCamelCase): ans *= n done.append(lowerCamelCase) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) for _ in range(lowerCamelCase): ans *= n done.append(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'number' must been a positive int" __lowerCAmelCase = 0 __lowerCAmelCase = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(lowerCamelCase): ans += 1 # precondition assert isinstance(lowerCamelCase, lowerCamelCase) and is_prime( lowerCamelCase), "'ans' must been a prime number and from type int" return ans def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( is_prime(lowerCamelCase) and is_prime(lowerCamelCase) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __lowerCAmelCase = p_number_a + 1 # jump to the next number __lowerCAmelCase = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(lowerCamelCase): number += 1 while number < p_number_a: ans.append(lowerCamelCase) number += 1 # fetch the next prime number. while not is_prime(lowerCamelCase): number += 1 # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and ans[0] != p_number_a and ans[len(lowerCamelCase) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 1), "'n' must been int and >= 1" __lowerCAmelCase = [] # will be returned. for divisor in range(1, n + 1): if n % divisor == 0: ans.append(lowerCamelCase) # precondition assert ans[0] == 1 and ans[len(lowerCamelCase) - 1] == n, "Error in function getDivisiors(...)" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number > 1 ), "'number' must been an int and >= 1" __lowerCAmelCase = get_divisors(lowerCamelCase) # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and (divisors[0] == 1) and (divisors[len(lowerCamelCase) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1]) == number def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __lowerCAmelCase = gcd(abs(lowerCamelCase), abs(lowerCamelCase)) # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'n' must been a int and >= 0" __lowerCAmelCase = 1 # this will be return. for factor in range(1, n + 1): ans *= factor return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'n' must been an int and >= 0" __lowerCAmelCase = 0 __lowerCAmelCase = 1 __lowerCAmelCase = 1 # this will be return for _ in range(n - 1): __lowerCAmelCase = ans ans += fiba __lowerCAmelCase = tmp return ans
9
0
"""simple docstring""" import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class UpperCamelCase_ (__A ): def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: UpperCAmelCase_ : str = pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type , pa.intaa() ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> str: with self.assertRaises(lowerCAmelCase_ ): UpperCAmelCase_ : List[Any] = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: with self.assertRaises(lowerCAmelCase_ ): UpperCAmelCase_ : List[str] = pa.array(TypedSequence([1, 2, 3] , try_type=Value("bool" ) , type=Value("int64" ) ) ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = pa.array(TypedSequence([1, 2, 3] , type=Value("int32" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): UpperCAmelCase_ : Dict = pa.array(TypedSequence(["foo", "bar"] , type=Value("int64" ) ) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: UpperCAmelCase_ : Dict = pa.array(TypedSequence([1, 2, 3] , try_type=Value("int32" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: UpperCAmelCase_ : Any = pa.array(TypedSequence(["foo", "bar"] , try_type=Value("int64" ) ) ) self.assertEqual(arr.type , pa.string() ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: UpperCAmelCase_ : Union[str, Any] = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , "int64" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , "int64" ) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): UpperCAmelCase_ : int = pa.array(TypedSequence(["foo", "bar"] , type=ArrayaD((1, 3) , "int64" ) ) ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: UpperCAmelCase_ : Dict = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , "int64" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , "int64" ) ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: UpperCAmelCase_ : Optional[Any] = pa.array(TypedSequence(["foo", "bar"] , try_type=ArrayaD((1, 3) , "int64" ) ) ) self.assertEqual(arr.type , pa.string() ) @require_pil def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: import PIL.Image UpperCAmelCase_ : Union[str, Any] = PIL.Image.fromarray(np.arange(10 , dtype=np.uinta ).reshape(2 , 5 ) ) with patch( "datasets.arrow_writer.cast_to_python_objects" , side_effect=lowerCAmelCase_ ) as mock_cast_to_python_objects: UpperCAmelCase_ : Any = pa.array(TypedSequence([{"path": None, "bytes": b"image_bytes"}, pil_image] , type=Image() ) ) UpperCAmelCase_ , UpperCAmelCase_ : List[str] = mock_cast_to_python_objects.call_args_list[-1] self.assertIn("optimize_list_casting" , lowerCAmelCase_ ) self.assertFalse(kwargs["optimize_list_casting"] ) def snake_case ( A__ ,A__ ): UpperCAmelCase_ : List[str] = pa.BufferReader(A__ ) if isinstance(A__ ,pa.Buffer ) else pa.memory_map(A__ ) UpperCAmelCase_ : Optional[Any] = pa.ipc.open_stream(A__ ) UpperCAmelCase_ : pa.Table = f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize("writer_batch_size" ,[None, 1, 10] ) @pytest.mark.parametrize( "fields" ,[None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def snake_case ( A__ ,A__ ): UpperCAmelCase_ : Dict = pa.BufferOutputStream() UpperCAmelCase_ : List[Any] = pa.schema(A__ ) if fields else None with ArrowWriter(stream=A__ ,schema=A__ ,writer_batch_size=A__ ) as writer: writer.write({"col_1": "foo", "col_2": 1} ) writer.write({"col_1": "bar", "col_2": 2} ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: UpperCAmelCase_ : List[str] = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(A__ ,metadata=writer._schema.metadata ) _check_output(output.getvalue() ,expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def snake_case ( ): UpperCAmelCase_ : List[str] = pa.BufferOutputStream() UpperCAmelCase_ : int = Features({"labels": ClassLabel(names=["neg", "pos"] )} ) with ArrowWriter(stream=A__ ,features=A__ ) as writer: writer.write({"labels": 0} ) writer.write({"labels": 1} ) UpperCAmelCase_ , UpperCAmelCase_ : List[str] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata UpperCAmelCase_ : Optional[int] = pa.BufferReader(output.getvalue() ) UpperCAmelCase_ : Any = pa.ipc.open_stream(A__ ) UpperCAmelCase_ : pa.Table = f.read_all() UpperCAmelCase_ : str = pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(A__ ) @pytest.mark.parametrize("writer_batch_size" ,[None, 1, 10] ) def snake_case ( A__ ): UpperCAmelCase_ : int = pa.BufferOutputStream() with ArrowWriter( stream=A__ ,writer_batch_size=A__ ,hash_salt="split_name" ,check_duplicates=A__ ,) as writer: with pytest.raises(A__ ): writer.write({"col_1": "foo", "col_2": 1} ,key=[1, 2] ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = writer.finalize() @pytest.mark.parametrize("writer_batch_size" ,[None, 2, 10] ) def snake_case ( A__ ): UpperCAmelCase_ : Any = pa.BufferOutputStream() with ArrowWriter( stream=A__ ,writer_batch_size=A__ ,hash_salt="split_name" ,check_duplicates=A__ ,) as writer: with pytest.raises(A__ ): writer.write({"col_1": "foo", "col_2": 1} ,key=10 ) writer.write({"col_1": "bar", "col_2": 2} ,key=10 ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = writer.finalize() @pytest.mark.parametrize("writer_batch_size" ,[None, 2, 10] ) def snake_case ( A__ ): UpperCAmelCase_ : List[str] = pa.BufferOutputStream() with ArrowWriter( stream=A__ ,writer_batch_size=A__ ,hash_salt="split_name" ,check_duplicates=A__ ,) as writer: writer.write({"col_1": "foo", "col_2": 1} ,key=1 ) writer.write({"col_1": "bar", "col_2": 2} ,key=2 ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue() ,expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("writer_batch_size" ,[None, 1, 10] ) @pytest.mark.parametrize( "fields" ,[None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def snake_case ( A__ ,A__ ): UpperCAmelCase_ : Union[str, Any] = pa.BufferOutputStream() UpperCAmelCase_ : List[Any] = pa.schema(A__ ) if fields else None with ArrowWriter(stream=A__ ,schema=A__ ,writer_batch_size=A__ ) as writer: writer.write_batch({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) writer.write_batch({"col_1": [], "col_2": []} ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: UpperCAmelCase_ : Dict = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(A__ ,metadata=writer._schema.metadata ) _check_output(output.getvalue() ,expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("writer_batch_size" ,[None, 1, 10] ) @pytest.mark.parametrize( "fields" ,[None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def snake_case ( A__ ,A__ ): UpperCAmelCase_ : Tuple = pa.BufferOutputStream() UpperCAmelCase_ : Union[str, Any] = pa.schema(A__ ) if fields else None with ArrowWriter(stream=A__ ,schema=A__ ,writer_batch_size=A__ ) as writer: writer.write_table(pa.Table.from_pydict({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: UpperCAmelCase_ : List[Any] = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(A__ ,metadata=writer._schema.metadata ) _check_output(output.getvalue() ,expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("writer_batch_size" ,[None, 1, 10] ) @pytest.mark.parametrize( "fields" ,[None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def snake_case ( A__ ,A__ ): UpperCAmelCase_ : int = pa.BufferOutputStream() UpperCAmelCase_ : Optional[Any] = pa.schema(A__ ) if fields else None with ArrowWriter(stream=A__ ,schema=A__ ,writer_batch_size=A__ ) as writer: writer.write_row(pa.Table.from_pydict({"col_1": ["foo"], "col_2": [1]} ) ) writer.write_row(pa.Table.from_pydict({"col_1": ["bar"], "col_2": [2]} ) ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: UpperCAmelCase_ : List[str] = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(A__ ,metadata=writer._schema.metadata ) _check_output(output.getvalue() ,expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def snake_case ( ): with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : Dict = {"col_1": pa.string(), "col_2": pa.intaa()} UpperCAmelCase_ : Any = os.path.join(A__ ,"test.arrow" ) with ArrowWriter(path=A__ ,schema=pa.schema(A__ ) ) as writer: writer.write_batch({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(A__ ,metadata=writer._schema.metadata ) _check_output(A__ ,1 ) def snake_case ( A__ ): if pa.types.is_list(A__ ): return get_base_dtype(arr_type.value_type ) else: return arr_type def snake_case ( A__ ,A__ ): if isinstance(lst[0] ,A__ ): change_first_primitive_element_in_list(lst[0] ,A__ ) else: UpperCAmelCase_ : Dict = value @pytest.mark.parametrize("optimized_int_type, expected_dtype" ,[(None, pa.intaa()), (Value("int32" ), pa.intaa())] ) @pytest.mark.parametrize("sequence" ,[[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def snake_case ( A__ ,A__ ,A__ ): UpperCAmelCase_ : Union[str, Any] = pa.array(TypedSequence(A__ ,optimized_int_type=A__ ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( "col, expected_dtype" ,[ ("attention_mask", pa.inta()), ("special_tokens_mask", pa.inta()), ("token_type_ids", pa.inta()), ("input_ids", pa.intaa()), ("other", pa.intaa()), ] ,) @pytest.mark.parametrize("sequence" ,[[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def snake_case ( A__ ,A__ ,A__ ): # in range UpperCAmelCase_ : List[str] = pa.array(OptimizedTypedSequence(A__ ,col=A__ ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications UpperCAmelCase_ : Tuple = copy.deepcopy(A__ ) UpperCAmelCase_ : Optional[Any] = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(A__ ,A__ ) UpperCAmelCase_ : List[Any] = pa.array(OptimizedTypedSequence(A__ ,col=A__ ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize("raise_exception" ,[False, True] ) def snake_case ( A__ ,A__ ): UpperCAmelCase_ : int = str(tmp_path / "dataset-train.arrow" ) try: with ArrowWriter(path=A__ ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def snake_case ( A__ ): UpperCAmelCase_ : Optional[Any] = "mock://dataset-train.arrow" with ArrowWriter(path=A__ ,storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs ,type(A__ ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({"col_1": "foo", "col_2": 1} ) writer.write({"col_1": "bar", "col_2": 2} ) UpperCAmelCase_ , UpperCAmelCase_ : int = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(A__ ) def snake_case ( ): UpperCAmelCase_ : Union[str, Any] = pa.BufferOutputStream() with ParquetWriter(stream=A__ ) as writer: writer.write({"col_1": "foo", "col_2": 1} ) writer.write({"col_1": "bar", "col_2": 2} ) UpperCAmelCase_ , UpperCAmelCase_ : List[str] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 UpperCAmelCase_ : Tuple = pa.BufferReader(output.getvalue() ) UpperCAmelCase_ : pa.Table = pq.read_table(A__ ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize("embed_local_files" ,[False, True] ) def snake_case ( A__ ,A__ ): import PIL.Image UpperCAmelCase_ : Dict = str(tmp_path / "test_image_rgb.jpg" ) PIL.Image.fromarray(np.zeros((5, 5) ,dtype=np.uinta ) ).save(A__ ,format="png" ) UpperCAmelCase_ : Tuple = pa.BufferOutputStream() with ParquetWriter( stream=A__ ,features=Features({"image": Image()} ) ,embed_local_files=A__ ) as writer: writer.write({"image": image_path} ) writer.finalize() UpperCAmelCase_ : List[str] = pa.BufferReader(output.getvalue() ) UpperCAmelCase_ : pa.Table = pq.read_table(A__ ) UpperCAmelCase_ : Tuple = pa_table.to_pydict() if embed_local_files: assert isinstance(out["image"][0]["path"] ,A__ ) with open(A__ ,"rb" ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def snake_case ( ): UpperCAmelCase_ : Tuple = pa.schema([pa.field("col_1" ,pa.string() ,nullable=A__ )] ) UpperCAmelCase_ : List[Any] = pa.BufferOutputStream() with ArrowWriter(stream=A__ ) as writer: writer._build_writer(inferred_schema=A__ ) assert writer._schema == pa.schema([pa.field("col_1" ,pa.string() )] )
268
"""simple docstring""" from torch import nn def snake_case ( A__ ): if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(F"""Unsupported activation function: {act_fn}""" )
268
1
'''simple docstring''' from collections.abc import Sequence def __lowerCAmelCase (__lowerCAmelCase = None ): if nums is None or not nums: raise ValueError("Input sequence should not be empty" ) _UpperCAmelCase : str = nums[0] for i in range(1 , len(snake_case__ ) ): _UpperCAmelCase : Dict = nums[i] _UpperCAmelCase : Dict = max(snake_case__ , ans + num , snake_case__ ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user lowerCamelCase__ = int(input('Enter number of elements : ').strip()) lowerCamelCase__ = list(map(int, input('\nEnter the numbers : ').strip().split()))[:n] print(max_subsequence_sum(array))
365
'''simple docstring''' from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor lowerCamelCase__ = transforms.Compose( [ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def __lowerCAmelCase (__lowerCAmelCase ): if isinstance(__lowerCAmelCase , torch.Tensor ): return image elif isinstance(__lowerCAmelCase , PIL.Image.Image ): _UpperCAmelCase : int = [image] _UpperCAmelCase : str = [trans(img.convert("RGB" ) ) for img in image] _UpperCAmelCase : Optional[Any] = torch.stack(__lowerCAmelCase ) return image class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Tuple , lowerCamelCase__ : int , lowerCamelCase__ : int ) ->int: '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM _UpperCAmelCase : Tuple = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : str ) ->Union[str, Any]: '''simple docstring''' if strength < 0 or strength > 1: raise ValueError(F"""The value of strength should in [0.0, 1.0] but is {strength}""" ) def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : Dict , lowerCamelCase__ : List[str] , lowerCamelCase__ : int ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : str = min(int(num_inference_steps * strength ) , lowerCamelCase__ ) _UpperCAmelCase : str = max(num_inference_steps - init_timestep , 0 ) _UpperCAmelCase : List[str] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Any , lowerCamelCase__ : str , lowerCamelCase__ : str , lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[Any]=None ) ->str: '''simple docstring''' if not isinstance(lowerCamelCase__ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowerCamelCase__ )}""" ) _UpperCAmelCase : Union[str, Any] = image.to(device=lowerCamelCase__ , dtype=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and len(lowerCamelCase__ ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(lowerCamelCase__ )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) _UpperCAmelCase : List[str] = init_latents.shape _UpperCAmelCase : Optional[int] = randn_tensor(lowerCamelCase__ , generator=lowerCamelCase__ , device=lowerCamelCase__ , dtype=lowerCamelCase__ ) # get latents print("add noise to latents at timestep" , lowerCamelCase__ ) _UpperCAmelCase : List[Any] = self.scheduler.add_noise(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : List[Any] = init_latents return latents @torch.no_grad() def __call__( self : Any , lowerCamelCase__ : Union[torch.FloatTensor, PIL.Image.Image] = None , lowerCamelCase__ : float = 0.8 , lowerCamelCase__ : int = 1 , lowerCamelCase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase__ : float = 0.0 , lowerCamelCase__ : int = 50 , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[str] = "pil" , lowerCamelCase__ : bool = True , ) ->Union[ImagePipelineOutput, Tuple]: '''simple docstring''' self.check_inputs(lowerCamelCase__ ) # 2. Preprocess image _UpperCAmelCase : Dict = preprocess(lowerCamelCase__ ) # 3. set timesteps self.scheduler.set_timesteps(lowerCamelCase__ , device=self.device ) _UpperCAmelCase , _UpperCAmelCase : Any = self.get_timesteps(lowerCamelCase__ , lowerCamelCase__ , self.device ) _UpperCAmelCase : List[Any] = timesteps[:1].repeat(lowerCamelCase__ ) # 4. Prepare latent variables _UpperCAmelCase : Optional[int] = self.prepare_latents(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , self.unet.dtype , self.device , lowerCamelCase__ ) _UpperCAmelCase : Any = latents # 5. Denoising loop for t in self.progress_bar(lowerCamelCase__ ): # 1. predict noise model_output _UpperCAmelCase : Union[str, Any] = self.unet(lowerCamelCase__ , lowerCamelCase__ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _UpperCAmelCase : int = self.scheduler.step( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , eta=lowerCamelCase__ , use_clipped_model_output=lowerCamelCase__ , generator=lowerCamelCase__ , ).prev_sample _UpperCAmelCase : Dict = (image / 2 + 0.5).clamp(0 , 1 ) _UpperCAmelCase : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _UpperCAmelCase : str = self.numpy_to_pil(lowerCamelCase__ ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=lowerCamelCase__ )
322
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a : str = { """configuration_jukebox""": [ """JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP""", """JukeboxConfig""", """JukeboxPriorConfig""", """JukeboxVQVAEConfig""", ], """tokenization_jukebox""": ["""JukeboxTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = [ """JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST""", """JukeboxModel""", """JukeboxPreTrainedModel""", """JukeboxVQVAE""", """JukeboxPrior""", ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
265
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a : Optional[int] = { """configuration_git""": ["""GIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GitConfig""", """GitVisionConfig"""], """processing_git""": ["""GitProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Tuple = [ """GIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GitForCausalLM""", """GitModel""", """GitPreTrainedModel""", """GitVisionModel""", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys a : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
265
1
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin lowercase : Union[str, Any] = get_tests_dir("""fixtures/test_sentencepiece_bpe.model""") class __snake_case ( lowerCAmelCase , unittest.TestCase ): _a : Any= BartphoTokenizer _a : Optional[Any]= False _a : Any= True def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' super().setUp() lowercase : Union[str, Any] = ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] lowercase : Dict = dict(zip(snake_case ,range(len(snake_case ) ) ) ) lowercase : Tuple = {"""unk_token""": """<unk>"""} lowercase : Dict = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""monolingual_vocab_file"""] ) with open(self.monolingual_vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: for token in vocab_tokens: fp.write(f"{token} {vocab_tokens[token]}\n" ) lowercase : Any = BartphoTokenizer(snake_case ,self.monolingual_vocab_file ,**self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def _SCREAMING_SNAKE_CASE ( self ,**snake_case ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname ,**snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : List[Any] = """This is a là test""" lowercase : Optional[int] = """This is a<unk><unk> test""" return input_text, output_text def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Tuple = BartphoTokenizer(snake_case ,self.monolingual_vocab_file ,**self.special_tokens_map ) lowercase : Optional[int] = """This is a là test""" lowercase : Union[str, Any] = """▁This ▁is ▁a ▁l à ▁t est""".split() lowercase : Optional[Any] = tokenizer.tokenize(snake_case ) self.assertListEqual(snake_case ,snake_case ) lowercase : int = tokens + [tokenizer.unk_token] lowercase : Optional[int] = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case ) ,snake_case )
350
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging lowercase : List[str] = logging.get_logger(__name__) lowercase : Tuple = { """google/umt5-small""": """https://huggingface.co/google/umt5-small/resolve/main/config.json""", # See all umt5 models at https://huggingface.co/models?filter=umt5 } class __snake_case ( lowerCAmelCase ): _a : List[str]= "umt5" _a : Optional[Any]= ["past_key_values"] def __init__( self ,snake_case=250112 ,snake_case=512 ,snake_case=64 ,snake_case=1024 ,snake_case=8 ,snake_case=None ,snake_case=6 ,snake_case=32 ,snake_case=128 ,snake_case=0.1 ,snake_case=1e-6 ,snake_case=1.0 ,snake_case="gated-gelu" ,snake_case=True ,snake_case=True ,snake_case="T5Tokenizer" ,snake_case=True ,snake_case=0 ,snake_case=1 ,snake_case=0 ,**snake_case ,): '''simple docstring''' super().__init__( is_encoder_decoder=snake_case ,tokenizer_class=snake_case ,tie_word_embeddings=snake_case ,pad_token_id=snake_case ,eos_token_id=snake_case ,decoder_start_token_id=snake_case ,**snake_case ,) lowercase : List[str] = vocab_size lowercase : Optional[Any] = d_model lowercase : int = d_kv lowercase : List[Any] = d_ff lowercase : Dict = num_layers lowercase : int = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry lowercase : List[Any] = num_heads lowercase : Optional[Any] = relative_attention_num_buckets lowercase : Dict = relative_attention_max_distance lowercase : Dict = dropout_rate lowercase : Any = layer_norm_epsilon lowercase : Any = initializer_factor lowercase : Union[str, Any] = feed_forward_proj lowercase : Optional[Any] = use_cache lowercase : Dict = self.feed_forward_proj.split("""-""" ) lowercase : List[Any] = act_info[-1] lowercase : Any = act_info[0] == """gated""" if len(snake_case ) > 1 and act_info[0] != "gated" or len(snake_case ) > 2: raise ValueError( f"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer." """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """'gated-gelu' or 'relu'""" ) if feed_forward_proj == "gated-gelu": lowercase : int = """gelu_new""" @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self.d_model @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self.num_heads @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self.num_layers class __snake_case ( lowerCAmelCase ): @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : int = { """input_ids""": {0: """batch""", 1: """encoder_sequence"""}, """attention_mask""": {0: """batch""", 1: """encoder_sequence"""}, } if self.use_past: lowercase : List[Any] = """past_encoder_sequence + sequence""" lowercase : Dict = {0: """batch"""} lowercase : Union[str, Any] = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: lowercase : Optional[Any] = {0: """batch""", 1: """decoder_sequence"""} lowercase : List[Any] = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(snake_case ,direction="""inputs""" ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return 13 @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return 5e-4
285
0
lowerCamelCase__ : Tuple = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' lowerCamelCase__ : List[Any] = [{'type': 'code', 'content': INSTALL_CONTENT}] lowerCamelCase__ : str = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
225
from math import sqrt def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(__UpperCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase_ ( __UpperCAmelCase : int = 1_00_01 ) -> int: SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 1 while count != nth and number < 3: number += 1 if is_prime(__UpperCAmelCase ): count += 1 while count != nth: number += 2 if is_prime(__UpperCAmelCase ): count += 1 return number if __name__ == "__main__": print(f'''{solution() = }''')
225
1
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _UpperCamelCase ( _A , _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : List[Any] = IFInpaintingPipeline __UpperCamelCase : Dict = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} __UpperCamelCase : int = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __UpperCamelCase : Optional[Any] = PipelineTesterMixin.required_optional_params - {"""latents"""} def lowerCAmelCase__ ( self : Dict ): return self._get_dummy_components() def lowerCAmelCase__ ( self : str , snake_case_ : List[str] , snake_case_ : Tuple=0 ): if str(snake_case_ ).startswith("""mps""" ): UpperCamelCase_: Optional[Any] = torch.manual_seed(snake_case_ ) else: UpperCamelCase_: int = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) UpperCamelCase_: str = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case_ ) ).to(snake_case_ ) UpperCamelCase_: List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case_ ) ).to(snake_case_ ) UpperCamelCase_: Any = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCAmelCase__ ( self : Optional[int] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def lowerCAmelCase__ ( self : Optional[Any] ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def lowerCAmelCase__ ( self : str ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def lowerCAmelCase__ ( self : Union[str, Any] ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def lowerCAmelCase__ ( self : str ): self._test_save_load_local() def lowerCAmelCase__ ( self : Union[str, Any] ): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
223
def A__ ( lowerCamelCase , lowerCamelCase ) -> float: if mass < 0: raise ValueError("""The mass of a body cannot be negative""" ) return 0.5 * mass * abs(lowerCamelCase ) * abs(lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
223
1
from collections.abc import Sequence def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase = False ) -> Any: """simple docstring""" if not arr: return 0 snake_case__ : List[str] = 0 if allow_empty_subarrays else float('''-inf''' ) snake_case__ : str = 0.0 for num in arr: snake_case__ : str = max(0 if allow_empty_subarrays else num , curr_sum + num ) snake_case__ : Any = max(lowerCamelCase_ , lowerCamelCase_ ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() A__ = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(f"""{max_subarray_sum(nums) = }""")
230
import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class _UpperCAmelCase : """simple docstring""" def __init__( self : str, lowerCamelCase : Dict, lowerCamelCase : List[str]=2, lowerCamelCase : List[str]=32, lowerCamelCase : Tuple=16, lowerCamelCase : List[Any]=3, lowerCamelCase : List[Any]=True, lowerCamelCase : str=True, lowerCamelCase : Tuple=32, lowerCamelCase : Dict=4, lowerCamelCase : Dict=[0, 1, 2, 3], lowerCamelCase : Union[str, Any]=4, lowerCamelCase : Optional[int]=37, lowerCamelCase : Optional[Any]="gelu", lowerCamelCase : List[Any]=0.1, lowerCamelCase : Optional[Any]=0.1, lowerCamelCase : Optional[int]=0.02, lowerCamelCase : str=3, lowerCamelCase : str=[1, 384, 24, 24], lowerCamelCase : Optional[int]=True, lowerCamelCase : List[str]=None, ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = is_training lowercase__ = use_labels lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = backbone_out_indices lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = num_labels lowercase__ = backbone_featmap_shape lowercase__ = scope lowercase__ = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) lowercase__ = (image_size // patch_size) ** 2 lowercase__ = num_patches + 1 def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels ) lowercase__ = self.get_config() return config, pixel_values, labels def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [96, 192, 384, 768], '''num_groups''': 2, } return DPTConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, backbone_out_indices=self.backbone_out_indices, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=lowerCamelCase, initializer_range=self.initializer_range, is_hybrid=self.is_hybrid, backbone_config=lowerCamelCase, backbone_featmap_shape=self.backbone_featmap_shape, ) def lowercase__ ( self : str, lowerCamelCase : Optional[Any], lowerCamelCase : Optional[int], lowerCamelCase : Union[str, Any] ): '''simple docstring''' lowercase__ = DPTModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : List[Any], lowerCamelCase : Union[str, Any], lowerCamelCase : List[str], lowerCamelCase : int ): '''simple docstring''' lowercase__ = self.num_labels lowercase__ = DPTForDepthEstimation(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = model(lowerCamelCase ) self.parent.assertEqual(result.predicted_depth.shape, (self.batch_size, self.image_size, self.image_size) ) def lowercase__ ( self : int, lowerCamelCase : Any, lowerCamelCase : Optional[int], lowerCamelCase : int ): '''simple docstring''' lowercase__ = self.num_labels lowercase__ = DPTForSemanticSegmentation(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = model(lowerCamelCase, labels=lowerCamelCase ) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( A__ ,A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () lowercase__ = ( { """depth-estimation""": DPTForDepthEstimation, """feature-extraction""": DPTModel, """image-segmentation""": DPTForSemanticSegmentation, } if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = DPTModelTester(self ) lowercase__ = ConfigTester(self, config_class=lowerCamelCase, has_text_modality=lowerCamelCase, hidden_size=37 ) def lowercase__ ( self : int ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''DPT does not use inputs_embeds''' ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' pass def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) lowercase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase, nn.Linear ) ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(lowerCamelCase ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1], lowerCamelCase ) def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*lowerCamelCase ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCamelCase ) def lowercase__ ( self : List[str] ): '''simple docstring''' for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = True if model_class in get_values(lowerCamelCase ): continue lowercase__ = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.train() lowercase__ = self._prepare_for_class(lowerCamelCase, lowerCamelCase, return_labels=lowerCamelCase ) lowercase__ = model(**lowerCamelCase ).loss loss.backward() def lowercase__ ( self : List[str] ): '''simple docstring''' for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = False lowercase__ = True if model_class in get_values(lowerCamelCase ) or not model_class.supports_gradient_checkpointing: continue lowercase__ = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.gradient_checkpointing_enable() model.train() lowercase__ = self._prepare_for_class(lowerCamelCase, lowerCamelCase, return_labels=lowerCamelCase ) lowercase__ = model(**lowerCamelCase ).loss loss.backward() def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = _config_zero_init(lowerCamelCase ) for model_class in self.all_model_classes: lowercase__ = model_class(config=lowerCamelCase ) # Skip the check for the backbone lowercase__ = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": lowercase__ = [F"""{name}.{key}""" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=F"""Parameter {name} of model {model_class} seems not properly initialized""", ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowercase__ ( self : int ): '''simple docstring''' pass @slow def lowercase__ ( self : Dict ): '''simple docstring''' for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: lowercase__ = DPTModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = '''add''' with self.assertRaises(lowerCamelCase ): lowercase__ = DPTForDepthEstimation(lowerCamelCase ) def a ( ): '''simple docstring''' lowercase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision @slow class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = DPTImageProcessor.from_pretrained('''Intel/dpt-hybrid-midas''' ) lowercase__ = DPTForDepthEstimation.from_pretrained('''Intel/dpt-hybrid-midas''' ).to(lowerCamelCase ) lowercase__ = prepare_img() lowercase__ = image_processor(images=lowerCamelCase, return_tensors='''pt''' ).to(lowerCamelCase ) # forward pass with torch.no_grad(): lowercase__ = model(**lowerCamelCase ) lowercase__ = outputs.predicted_depth # verify the predicted depth lowercase__ = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape, lowerCamelCase ) lowercase__ = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100, lowerCamelCase, atol=1E-4 ) )
207
0
"""simple docstring""" from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging __UpperCamelCase = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class UpperCamelCase ( lowerCAmelCase__ ): def __init__( self, lowerCAmelCase__ = 101) -> int: snake_case_ = length def __len__( self) -> Optional[Any]: return self.length def __getitem__( self, lowerCAmelCase__) -> int: return i class UpperCamelCase : def __call__( self, lowerCAmelCase__) -> Optional[Any]: return {"input_ids": torch.tensor(lowerCAmelCase__), "labels": torch.tensor(lowerCAmelCase__)} class UpperCamelCase ( nn.Module ): def __init__( self) -> Optional[Any]: super().__init__() # Add some (unused) params otherwise DDP will complain. snake_case_ = nn.Linear(120, 80) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__=None) -> Tuple: if labels is not None: return torch.tensor(0.0, device=input_ids.device), input_ids else: return input_ids class UpperCamelCase ( lowerCAmelCase__ ): @require_torch_neuroncore def a_ ( self) -> Any: snake_case_ = f'--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() snake_case_ = self.get_auto_remove_tmp_dir() snake_case_ = f'--output_dir {output_dir}'.split() snake_case_ = ['torchrun'] + distributed_args + args execute_subprocess_async(lowerCAmelCase__, env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call class UpperCamelCase ( lowerCAmelCase__ ): @require_torch_multi_gpu def a_ ( self) -> Any: snake_case_ = f'--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() snake_case_ = self.get_auto_remove_tmp_dir() snake_case_ = f'--output_dir {output_dir}'.split() snake_case_ = ['torchrun'] + distributed_args + args execute_subprocess_async(lowerCAmelCase__, env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py __UpperCamelCase = HfArgumentParser((TrainingArguments,)) __UpperCamelCase = parser.parse_args_into_dataclasses()[0] logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, """ F"""distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}""" ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: __UpperCamelCase = DummyDataset(dataset_length) def UpperCAmelCase ( UpperCAmelCase ) -> Dict: snake_case_ = list(range(len(UpperCAmelCase ) ) ) snake_case_ = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( 'Predictions and/or labels do not match expected results:\n - predictions: ' f'{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}' ) return {"success": success} __UpperCamelCase = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) __UpperCamelCase = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) __UpperCamelCase = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) __UpperCamelCase = 2 __UpperCamelCase = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) __UpperCamelCase = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) __UpperCamelCase = None
365
"""simple docstring""" from __future__ import annotations def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> list[str]: if partitions <= 0: raise ValueError('partitions must be a positive number!' ) if partitions > number_of_bytes: raise ValueError('partitions can not > number_of_bytes!' ) snake_case_ = number_of_bytes // partitions snake_case_ = [] for i in range(UpperCAmelCase ): snake_case_ = i * bytes_per_partition + 1 snake_case_ = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'{start_bytes}-{end_bytes}' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
312
0
def UpperCamelCase ( snake_case__ : Tuple ) -> str: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise ValueError('check_bouncy() accepts only integer arguments' ) UpperCamelCase : Any = str(SCREAMING_SNAKE_CASE__ ) UpperCamelCase : List[str] = ''.join(sorted(SCREAMING_SNAKE_CASE__ ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def UpperCamelCase ( snake_case__ : Tuple = 99 ) -> Optional[Any]: if not 0 < percent < 100: raise ValueError('solution() only accepts values from 0 to 100' ) UpperCamelCase : Union[str, Any] = 0 UpperCamelCase : Optional[Any] = 1 while True: if check_bouncy(SCREAMING_SNAKE_CASE__ ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(F"""{solution(99)}""")
119
from collections import deque from .hash_table import HashTable class snake_case_ ( __A ): '''simple docstring''' def __init__( self : int , *_UpperCamelCase : int , **_UpperCamelCase : Tuple ) ->Tuple: super().__init__(*_UpperCamelCase , **_UpperCamelCase ) def snake_case__( self : Dict , _UpperCamelCase : List[str] , _UpperCamelCase : Dict ) ->Tuple: snake_case_ = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(_UpperCamelCase ) snake_case_ = self.values[key] def snake_case__( self : List[Any] ) ->str: return ( sum(self.charge_factor - len(_UpperCamelCase ) for slot in self.values ) / self.size_table * self.charge_factor ) def snake_case__( self : Dict , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[int]=None ) ->str: if not ( len(self.values[key] ) == self.charge_factor and self.values.count(_UpperCamelCase ) == 0 ): return key return super()._collision_resolution(_UpperCamelCase , _UpperCamelCase )
8
0
"""simple docstring""" lowerCAmelCase : int = frozenset( [ """prompt""", """height""", """width""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", """cross_attention_kwargs""", ] ) lowerCAmelCase : Optional[int] = frozenset(["""prompt""", """negative_prompt"""]) lowerCAmelCase : Optional[int] = frozenset([]) lowerCAmelCase : int = frozenset(["""image"""]) lowerCAmelCase : Dict = frozenset( [ """image""", """height""", """width""", """guidance_scale""", ] ) lowerCAmelCase : Optional[int] = frozenset(["""image"""]) lowerCAmelCase : List[Any] = frozenset( [ """prompt""", """image""", """height""", """width""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", ] ) lowerCAmelCase : List[Any] = frozenset(["""prompt""", """image""", """negative_prompt"""]) lowerCAmelCase : List[str] = frozenset( [ # Text guided image variation with an image mask """prompt""", """image""", """mask_image""", """height""", """width""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", ] ) lowerCAmelCase : Dict = frozenset(["""prompt""", """image""", """mask_image""", """negative_prompt"""]) lowerCAmelCase : List[str] = frozenset( [ # image variation with an image mask """image""", """mask_image""", """height""", """width""", """guidance_scale""", ] ) lowerCAmelCase : Any = frozenset(["""image""", """mask_image"""]) lowerCAmelCase : Any = frozenset( [ """example_image""", """image""", """mask_image""", """height""", """width""", """guidance_scale""", ] ) lowerCAmelCase : str = frozenset(["""example_image""", """image""", """mask_image"""]) lowerCAmelCase : Dict = frozenset(["""class_labels"""]) lowerCAmelCase : Any = frozenset(["""class_labels"""]) lowerCAmelCase : str = frozenset(["""batch_size"""]) lowerCAmelCase : Dict = frozenset([]) lowerCAmelCase : str = frozenset(["""batch_size"""]) lowerCAmelCase : Any = frozenset([]) lowerCAmelCase : int = frozenset( [ """prompt""", """audio_length_in_s""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", """cross_attention_kwargs""", ] ) lowerCAmelCase : List[Any] = frozenset(["""prompt""", """negative_prompt"""]) lowerCAmelCase : Dict = frozenset(["""input_tokens"""]) lowerCAmelCase : str = frozenset(["""input_tokens"""])
353
"""simple docstring""" import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , *_a , _a=None , _a=None , **_a ): """simple docstring""" super().__init__(*_a , **_a ) lowerCamelCase = eval_examples lowerCamelCase = post_process_function def _lowerCAmelCase ( self , _a=None , _a=None , _a=None , _a = "eval" ): """simple docstring""" lowerCamelCase = self.eval_dataset if eval_dataset is None else eval_dataset lowerCamelCase = self.get_eval_dataloader(_a ) lowerCamelCase = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowerCamelCase = self.compute_metrics lowerCamelCase = None lowerCamelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop lowerCamelCase = time.time() try: lowerCamelCase = eval_loop( _a , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_a , metric_key_prefix=_a , ) finally: lowerCamelCase = compute_metrics lowerCamelCase = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( _a , _a , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default lowerCamelCase = self.post_process_function(_a , _a , output.predictions ) lowerCamelCase = self.compute_metrics(_a ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): lowerCamelCase = metrics.pop(_a ) metrics.update(output.metrics ) else: lowerCamelCase = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_a ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) lowerCamelCase = self.callback_handler.on_evaluate(self.args , self.state , self.control , _a ) return metrics def _lowerCAmelCase ( self , _a , _a , _a=None , _a = "test" ): """simple docstring""" lowerCamelCase = self.get_test_dataloader(_a ) # Temporarily disable metric computation, we will do it in the loop here. lowerCamelCase = self.compute_metrics lowerCamelCase = None lowerCamelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop lowerCamelCase = time.time() try: lowerCamelCase = eval_loop( _a , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_a , metric_key_prefix=_a , ) finally: lowerCamelCase = compute_metrics lowerCamelCase = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( _a , _a , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output lowerCamelCase = self.post_process_function(_a , _a , output.predictions , """predict""" ) lowerCamelCase = self.compute_metrics(_a ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): lowerCamelCase = metrics.pop(_a ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_a )
168
0
'''simple docstring''' import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters _lowercase : Any = (7_2_0, 1_2_8_0) # Height, Width _lowercase : List[Any] = (0.4, 0.6) # if height or width lower than this scale, drop it. _lowercase : str = 1 / 1_0_0 _lowercase : Any = "" _lowercase : Union[str, Any] = "" _lowercase : Optional[int] = "" _lowercase : List[Any] = 2_5_0 def snake_case_ ( ): """simple docstring""" lowercase_ , lowercase_ : Any = get_dataset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for index in range(__SCREAMING_SNAKE_CASE ): lowercase_ : str = random.sample(range(len(__SCREAMING_SNAKE_CASE ) ) , 4 ) lowercase_ , lowercase_ , lowercase_ : Any = update_image_and_anno( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , filter_scale=__SCREAMING_SNAKE_CASE , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' lowercase_ : int = random_chars(32 ) lowercase_ : str = path.split(os.sep )[-1].rsplit('''.''' , 1 )[0] lowercase_ : int = F'''{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}''' cva.imwrite(F'''{file_root}.jpg''' , __SCREAMING_SNAKE_CASE , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F'''Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}''' ) lowercase_ : List[Any] = [] for anno in new_annos: lowercase_ : List[Any] = anno[3] - anno[1] lowercase_ : List[str] = anno[4] - anno[2] lowercase_ : Dict = anno[1] + width / 2 lowercase_ : Dict = anno[2] + height / 2 lowercase_ : int = F'''{anno[0]} {x_center} {y_center} {width} {height}''' annos_list.append(__SCREAMING_SNAKE_CASE ) with open(F'''{file_root}.txt''' , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def snake_case_ ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ): """simple docstring""" lowercase_ : Optional[Any] = [] lowercase_ : Optional[Any] = [] for label_file in glob.glob(os.path.join(__SCREAMING_SNAKE_CASE , '''*.txt''' ) ): lowercase_ : int = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(__SCREAMING_SNAKE_CASE ) as in_file: lowercase_ : List[str] = in_file.readlines() lowercase_ : Optional[Any] = os.path.join(__SCREAMING_SNAKE_CASE , F'''{label_name}.jpg''' ) lowercase_ : Optional[int] = [] for obj_list in obj_lists: lowercase_ : List[str] = obj_list.rstrip('''\n''' ).split(''' ''' ) lowercase_ : Optional[int] = float(obj[1] ) - float(obj[3] ) / 2 lowercase_ : Any = float(obj[2] ) - float(obj[4] ) / 2 lowercase_ : str = float(obj[1] ) + float(obj[3] ) / 2 lowercase_ : List[str] = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(__SCREAMING_SNAKE_CASE ) labels.append(__SCREAMING_SNAKE_CASE ) return img_paths, labels def snake_case_ ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : tuple[int, int] , __SCREAMING_SNAKE_CASE : tuple[float, float] , __SCREAMING_SNAKE_CASE : float = 0.0 , ): """simple docstring""" lowercase_ : List[Any] = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) lowercase_ : Tuple = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) lowercase_ : List[Any] = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) lowercase_ : Optional[int] = int(scale_x * output_size[1] ) lowercase_ : Dict = int(scale_y * output_size[0] ) lowercase_ : Union[str, Any] = [] lowercase_ : List[Any] = [] for i, index in enumerate(__SCREAMING_SNAKE_CASE ): lowercase_ : Union[str, Any] = all_img_list[index] path_list.append(__SCREAMING_SNAKE_CASE ) lowercase_ : int = all_annos[index] lowercase_ : Dict = cva.imread(__SCREAMING_SNAKE_CASE ) if i == 0: # top-left lowercase_ : Optional[Any] = cva.resize(__SCREAMING_SNAKE_CASE , (divid_point_x, divid_point_y) ) lowercase_ : Tuple = img for bbox in img_annos: lowercase_ : Optional[int] = bbox[1] * scale_x lowercase_ : Optional[Any] = bbox[2] * scale_y lowercase_ : str = bbox[3] * scale_x lowercase_ : Tuple = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right lowercase_ : Dict = cva.resize(__SCREAMING_SNAKE_CASE , (output_size[1] - divid_point_x, divid_point_y) ) lowercase_ : Dict = img for bbox in img_annos: lowercase_ : int = scale_x + bbox[1] * (1 - scale_x) lowercase_ : Dict = bbox[2] * scale_y lowercase_ : Optional[int] = scale_x + bbox[3] * (1 - scale_x) lowercase_ : int = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left lowercase_ : List[Any] = cva.resize(__SCREAMING_SNAKE_CASE , (divid_point_x, output_size[0] - divid_point_y) ) lowercase_ : List[str] = img for bbox in img_annos: lowercase_ : Any = bbox[1] * scale_x lowercase_ : Optional[int] = scale_y + bbox[2] * (1 - scale_y) lowercase_ : str = bbox[3] * scale_x lowercase_ : Optional[int] = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right lowercase_ : int = cva.resize( __SCREAMING_SNAKE_CASE , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) lowercase_ : List[str] = img for bbox in img_annos: lowercase_ : int = scale_x + bbox[1] * (1 - scale_x) lowercase_ : Any = scale_y + bbox[2] * (1 - scale_y) lowercase_ : Optional[Any] = scale_x + bbox[3] * (1 - scale_x) lowercase_ : int = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: lowercase_ : Optional[Any] = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def snake_case_ ( __SCREAMING_SNAKE_CASE : int ): """simple docstring""" assert number_char > 1, "The number of character should greater than 1" lowercase_ : Any = ascii_lowercase + digits return "".join(random.choice(__SCREAMING_SNAKE_CASE ) for _ in range(__SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": main() print("DONE ✅")
93
"""simple docstring""" from __future__ import annotations def UpperCAmelCase ( UpperCAmelCase ) -> None: create_state_space_tree(UpperCAmelCase , [] , 0 , [0 for i in range(len(UpperCAmelCase ) )] ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> None: if index == len(UpperCAmelCase ): print(UpperCAmelCase ) return for i in range(len(UpperCAmelCase ) ): if not index_used[i]: current_sequence.append(sequence[i] ) snake_case_ = True create_state_space_tree(UpperCAmelCase , UpperCAmelCase , index + 1 , UpperCAmelCase ) current_sequence.pop() snake_case_ = False __UpperCamelCase = [3, 1, 2, 4] generate_all_permutations(sequence) __UpperCamelCase = ["A", "B", "C"] generate_all_permutations(sequence_a)
69
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class A_ ( __UpperCamelCase ): '''simple docstring''' __snake_case = """falcon""" __snake_case = ["""past_key_values"""] def __init__( self: Dict , a: List[Any]=6_5024 , a: Union[str, Any]=4544 , a: Union[str, Any]=32 , a: Tuple=71 , a: Optional[int]=1e-5 , a: Tuple=0.0_2 , a: Union[str, Any]=True , a: Any=0.0 , a: str=0.0 , a: List[Any]=None , a: Optional[int]=False , a: str=False , a: Dict=True , a: Tuple=True , a: Optional[Any]=False , a: Any=11 , a: List[str]=11 , **a: List[Any] , ): __lowerCamelCase : Any = vocab_size # Backward compatibility with n_embed kwarg __lowerCamelCase : Optional[int] = kwargs.pop('n_embed' , a ) __lowerCamelCase : int = hidden_size if n_embed is None else n_embed __lowerCamelCase : Optional[Any] = num_hidden_layers __lowerCamelCase : Optional[Any] = num_attention_heads __lowerCamelCase : List[Any] = layer_norm_epsilon __lowerCamelCase : Dict = initializer_range __lowerCamelCase : Tuple = use_cache __lowerCamelCase : Tuple = hidden_dropout __lowerCamelCase : List[Any] = attention_dropout __lowerCamelCase : str = bos_token_id __lowerCamelCase : Any = eos_token_id __lowerCamelCase : Any = num_attention_heads if num_kv_heads is None else num_kv_heads __lowerCamelCase : Optional[Any] = alibi __lowerCamelCase : List[Any] = new_decoder_architecture __lowerCamelCase : Dict = multi_query # Ignored when new_decoder_architecture is True __lowerCamelCase : List[Any] = parallel_attn __lowerCamelCase : Any = bias super().__init__(bos_token_id=a , eos_token_id=a , **a ) @property def _snake_case ( self: Optional[Any] ): return self.hidden_size // self.num_attention_heads @property def _snake_case ( self: int ): return not self.alibi
194
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration lowercase_ = 5_0_0_0_0_0 lowercase_ ,lowercase_ = os.path.split(__file__) lowercase_ = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : Optional[int] = dataset.map(**SCREAMING_SNAKE_CASE__ ) @get_duration def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : Tuple = dataset.filter(**SCREAMING_SNAKE_CASE__ ) def UpperCamelCase__ ( ): __lowerCamelCase : str = {'num examples': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: __lowerCamelCase : Any = datasets.Features({'text': datasets.Value('string' ), 'numbers': datasets.Value('float32' )} ) __lowerCamelCase : Any = generate_example_dataset( os.path.join(SCREAMING_SNAKE_CASE__ , 'dataset.arrow' ) , SCREAMING_SNAKE_CASE__ , num_examples=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : List[Any] = transformers.AutoTokenizer.from_pretrained('bert-base-cased' , use_fast=SCREAMING_SNAKE_CASE__ ) def tokenize(SCREAMING_SNAKE_CASE__ ): return tokenizer(examples['text'] ) __lowerCamelCase : str = map(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : int = map(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : Optional[int] = map(SCREAMING_SNAKE_CASE__ , function=lambda SCREAMING_SNAKE_CASE__ : None , batched=SCREAMING_SNAKE_CASE__ ) with dataset.formatted_as(type='numpy' ): __lowerCamelCase : Union[str, Any] = map(SCREAMING_SNAKE_CASE__ , function=lambda SCREAMING_SNAKE_CASE__ : None , batched=SCREAMING_SNAKE_CASE__ ) with dataset.formatted_as(type='pandas' ): __lowerCamelCase : Any = map(SCREAMING_SNAKE_CASE__ , function=lambda SCREAMING_SNAKE_CASE__ : None , batched=SCREAMING_SNAKE_CASE__ ) with dataset.formatted_as(type='torch' , columns='numbers' ): __lowerCamelCase : List[str] = map(SCREAMING_SNAKE_CASE__ , function=lambda SCREAMING_SNAKE_CASE__ : None , batched=SCREAMING_SNAKE_CASE__ ) with dataset.formatted_as(type='tensorflow' , columns='numbers' ): __lowerCamelCase : List[Any] = map(SCREAMING_SNAKE_CASE__ , function=lambda SCREAMING_SNAKE_CASE__ : None , batched=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : Optional[Any] = map(SCREAMING_SNAKE_CASE__ , function=SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : Optional[int] = filter(SCREAMING_SNAKE_CASE__ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(SCREAMING_SNAKE_CASE__ , 'wb' ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE__ ).encode('utf-8' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
194
1
from typing import TYPE_CHECKING from ....utils import _LazyModule _a = {'''tokenization_tapex''': ['''TapexTokenizer''']} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys _a = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
39
import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class __lowerCamelCase ( unittest.TestCase): """simple docstring""" def UpperCamelCase ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights _UpperCAmelCase = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=UpperCAmelCase , cache_dir=UpperCAmelCase ) _UpperCAmelCase = [t[-1] for t in os.walk(os.path.join(UpperCAmelCase , os.listdir(UpperCAmelCase )[0] , 'snapshots' ) )] _UpperCAmelCase = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin' ) for f in files ) @slow @require_flax class __lowerCamelCase ( unittest.TestCase): """simple docstring""" def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=UpperCAmelCase ) _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 4 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(UpperCAmelCase ) # shard inputs and rng _UpperCAmelCase = replicate(UpperCAmelCase ) _UpperCAmelCase = jax.random.split(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = shard(UpperCAmelCase ) _UpperCAmelCase = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_51_47_45 ) < 1e-3 assert np.abs(np.abs(UpperCAmelCase , dtype=np.floataa ).sum() - 4_99_47.8_75 ) < 5e-1 _UpperCAmelCase = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(UpperCAmelCase ) == num_samples def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='flax' , safety_checker=UpperCAmelCase ) _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 50 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(UpperCAmelCase ) # shard inputs and rng _UpperCAmelCase = replicate(UpperCAmelCase ) _UpperCAmelCase = jax.random.split(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = shard(UpperCAmelCase ) _UpperCAmelCase = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05_65_24_01) ) < 1e-3 assert np.abs((np.abs(UpperCAmelCase , dtype=np.floataa ).sum() - 2_38_38_08.2) ) < 5e-1 def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=UpperCAmelCase ) _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 50 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(UpperCAmelCase ) # shard inputs and rng _UpperCAmelCase = replicate(UpperCAmelCase ) _UpperCAmelCase = jax.random.split(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = shard(UpperCAmelCase ) _UpperCAmelCase = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1e-3 assert np.abs((np.abs(UpperCAmelCase , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5e-1 def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa ) _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 50 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(UpperCAmelCase ) # shard inputs and rng _UpperCAmelCase = replicate(UpperCAmelCase ) _UpperCAmelCase = jax.random.split(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = shard(UpperCAmelCase ) _UpperCAmelCase = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1e-3 assert np.abs((np.abs(UpperCAmelCase , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5e-1 def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = FlaxDDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , set_alpha_to_one=UpperCAmelCase , steps_offset=1 , ) _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , scheduler=UpperCAmelCase , safety_checker=UpperCAmelCase , ) _UpperCAmelCase = scheduler.create_state() _UpperCAmelCase = scheduler_state _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 50 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(UpperCAmelCase ) # shard inputs and rng _UpperCAmelCase = replicate(UpperCAmelCase ) _UpperCAmelCase = jax.random.split(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = shard(UpperCAmelCase ) _UpperCAmelCase = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_45_04_39_45) ) < 1e-3 assert np.abs((np.abs(UpperCAmelCase , dtype=np.floataa ).sum() - 2_34_76_93.5) ) < 5e-1 def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = jax.random.split(jax.random.PRNGKey(0 ) , UpperCAmelCase ) _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=UpperCAmelCase , ) _UpperCAmelCase = replicate(UpperCAmelCase ) _UpperCAmelCase = pipeline.prepare_inputs(UpperCAmelCase ) _UpperCAmelCase = shard(UpperCAmelCase ) _UpperCAmelCase = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) _UpperCAmelCase = images[2, 0, 256, 10:17, 1] # With memory efficient attention _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=UpperCAmelCase , use_memory_efficient_attention=UpperCAmelCase , ) _UpperCAmelCase = replicate(UpperCAmelCase ) _UpperCAmelCase = pipeline.prepare_inputs(UpperCAmelCase ) _UpperCAmelCase = shard(UpperCAmelCase ) _UpperCAmelCase = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) _UpperCAmelCase = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
39
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class lowercase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : Any ) -> Optional[int]: _snake_case = tempfile.mkdtemp() _snake_case = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''的''', '''价''', '''格''', '''是''', '''15''', '''便''', '''alex''', '''##andra''', ''',''', '''。''', '''-''', '''t''', '''shirt''', ] _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) _snake_case = { '''do_resize''': True, '''size''': {'''height''': 224, '''width''': 224}, '''do_center_crop''': True, '''crop_size''': {'''height''': 18, '''width''': 18}, '''do_normalize''': True, '''image_mean''': [0.4814_5466, 0.457_8275, 0.4082_1073], '''image_std''': [0.2686_2954, 0.2613_0258, 0.2757_7711], '''do_convert_rgb''': True, } _snake_case = os.path.join(self.tmpdirname , A__ ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(A__ , A__ ) def UpperCamelCase_ ( self : Any , **A__ : str ) -> str: return BertTokenizer.from_pretrained(self.tmpdirname , **A__ ) def UpperCamelCase_ ( self : Any , **A__ : List[str] ) -> Tuple: return BertTokenizerFast.from_pretrained(self.tmpdirname , **A__ ) def UpperCamelCase_ ( self : int , **A__ : Optional[Any] ) -> str: return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **A__ ) def UpperCamelCase_ ( self : str ) -> Union[str, Any]: shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self : str ) -> Dict: _snake_case = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _snake_case = [Image.fromarray(np.moveaxis(A__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase_ ( self : Dict ) -> List[Any]: _snake_case = self.get_tokenizer() _snake_case = self.get_rust_tokenizer() _snake_case = self.get_image_processor() _snake_case = ChineseCLIPProcessor(tokenizer=A__ , image_processor=A__ ) processor_slow.save_pretrained(self.tmpdirname ) _snake_case = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=A__ ) _snake_case = ChineseCLIPProcessor(tokenizer=A__ , image_processor=A__ ) processor_fast.save_pretrained(self.tmpdirname ) _snake_case = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , A__ ) self.assertIsInstance(processor_fast.tokenizer , A__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , A__ ) self.assertIsInstance(processor_fast.image_processor , A__ ) def UpperCamelCase_ ( self : Optional[int] ) -> List[Any]: _snake_case = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _snake_case = self.get_tokenizer(cls_token='''(CLS)''' , sep_token='''(SEP)''' ) _snake_case = self.get_image_processor(do_normalize=A__ ) _snake_case = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token='''(CLS)''' , sep_token='''(SEP)''' , do_normalize=A__ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A__ ) def UpperCamelCase_ ( self : str ) -> Dict: _snake_case = self.get_image_processor() _snake_case = self.get_tokenizer() _snake_case = ChineseCLIPProcessor(tokenizer=A__ , image_processor=A__ ) _snake_case = self.prepare_image_inputs() _snake_case = image_processor(A__ , return_tensors='''np''' ) _snake_case = processor(images=A__ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCamelCase_ ( self : List[Any] ) -> Any: _snake_case = self.get_image_processor() _snake_case = self.get_tokenizer() _snake_case = ChineseCLIPProcessor(tokenizer=A__ , image_processor=A__ ) _snake_case = '''Alexandra,T-shirt的价格是15便士。''' _snake_case = processor(text=A__ ) _snake_case = tokenizer(A__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCamelCase_ ( self : List[Any] ) -> Tuple: _snake_case = self.get_image_processor() _snake_case = self.get_tokenizer() _snake_case = ChineseCLIPProcessor(tokenizer=A__ , image_processor=A__ ) _snake_case = '''Alexandra,T-shirt的价格是15便士。''' _snake_case = self.prepare_image_inputs() _snake_case = processor(text=A__ , images=A__ ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(A__ ): processor() def UpperCamelCase_ ( self : int ) -> Union[str, Any]: _snake_case = self.get_image_processor() _snake_case = self.get_tokenizer() _snake_case = ChineseCLIPProcessor(tokenizer=A__ , image_processor=A__ ) _snake_case = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _snake_case = processor.batch_decode(A__ ) _snake_case = tokenizer.batch_decode(A__ ) self.assertListEqual(A__ , A__ ) def UpperCamelCase_ ( self : int ) -> Optional[Any]: _snake_case = self.get_image_processor() _snake_case = self.get_tokenizer() _snake_case = ChineseCLIPProcessor(tokenizer=A__ , image_processor=A__ ) _snake_case = '''Alexandra,T-shirt的价格是15便士。''' _snake_case = self.prepare_image_inputs() _snake_case = processor(text=A__ , images=A__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
278
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class lowercase_ ( unittest.TestCase ): def __init__( self : Union[str, Any] , A__ : int , A__ : List[str]=7 , A__ : Tuple=3 , A__ : List[str]=10 , A__ : Optional[int]=18 , A__ : int=30 , A__ : Tuple=400 , A__ : Dict=True , A__ : str=None , A__ : str=True , A__ : List[str]=[0.5, 0.5, 0.5] , A__ : int=[0.5, 0.5, 0.5] , A__ : List[Any]=None , ) -> int: _snake_case = size if size is not None else {'''shortest_edge''': 18} _snake_case = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} _snake_case = parent _snake_case = batch_size _snake_case = num_channels _snake_case = num_frames _snake_case = image_size _snake_case = min_resolution _snake_case = max_resolution _snake_case = do_resize _snake_case = size _snake_case = do_normalize _snake_case = image_mean _snake_case = image_std _snake_case = crop_size def UpperCamelCase_ ( self : List[str] ) -> Union[str, Any]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class lowercase_ ( __lowercase , unittest.TestCase ): UpperCamelCase_ : Tuple = VivitImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : Union[str, Any] ) -> List[str]: _snake_case = VivitImageProcessingTester(self ) @property def UpperCamelCase_ ( self : Union[str, Any] ) -> Optional[Any]: return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : Optional[int] ) -> Optional[Any]: _snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A__ , '''image_mean''' ) ) self.assertTrue(hasattr(A__ , '''image_std''' ) ) self.assertTrue(hasattr(A__ , '''do_normalize''' ) ) self.assertTrue(hasattr(A__ , '''do_resize''' ) ) self.assertTrue(hasattr(A__ , '''do_center_crop''' ) ) self.assertTrue(hasattr(A__ , '''size''' ) ) def UpperCamelCase_ ( self : int ) -> List[Any]: _snake_case = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) _snake_case = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def UpperCamelCase_ ( self : List[Any] ) -> Optional[Any]: # Initialize image_processing _snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos _snake_case = prepare_video_inputs(self.image_processor_tester , equal_resolution=A__ ) for video in video_inputs: self.assertIsInstance(A__ , A__ ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input _snake_case = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _snake_case = image_processing(A__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def UpperCamelCase_ ( self : Any ) -> List[str]: # Initialize image_processing _snake_case = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _snake_case = prepare_video_inputs(self.image_processor_tester , equal_resolution=A__ , numpify=A__ ) for video in video_inputs: self.assertIsInstance(A__ , A__ ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input _snake_case = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _snake_case = image_processing(A__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def UpperCamelCase_ ( self : Optional[Any] ) -> int: # Initialize image_processing _snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _snake_case = prepare_video_inputs(self.image_processor_tester , equal_resolution=A__ , torchify=A__ ) for video in video_inputs: self.assertIsInstance(A__ , A__ ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input _snake_case = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _snake_case = image_processing(A__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
278
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { 'facebook/xmod-base': 'https://huggingface.co/facebook/xmod-base/resolve/main/config.json', 'facebook/xmod-large-prenorm': 'https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json', 'facebook/xmod-base-13-125k': 'https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json', 'facebook/xmod-base-30-125k': 'https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json', 'facebook/xmod-base-30-195k': 'https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json', 'facebook/xmod-base-60-125k': 'https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json', 'facebook/xmod-base-60-265k': 'https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json', 'facebook/xmod-base-75-125k': 'https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json', 'facebook/xmod-base-75-269k': 'https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json', } class __A ( A__ ): '''simple docstring''' __lowerCamelCase : List[str] = '''xmod''' def __init__(self , A=30_522 , A=768 , A=12 , A=12 , A=3_072 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=2 , A=0.02 , A=1E-12 , A=1 , A=0 , A=2 , A="absolute" , A=True , A=None , A=False , A=2 , A=False , A=True , A=True , A=("en_XX",) , A=None , **A , ) -> Union[str, Any]: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = hidden_act _a = intermediate_size _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = initializer_range _a = layer_norm_eps _a = position_embedding_type _a = use_cache _a = classifier_dropout _a = pre_norm _a = adapter_reduction_factor _a = adapter_layer_norm _a = adapter_reuse_layer_norm _a = ln_before_adapter _a = list(lowerCAmelCase__ ) _a = default_language class __A ( A__ ): '''simple docstring''' @property def a__ (self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _a = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _a = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
211
import importlib.metadata import operator import re import sys from typing import Optional from packaging import version __lowerCAmelCase : Union[str, Any] ={ '<': operator.lt, '<=': operator.le, '==': operator.eq, '!=': operator.ne, '>=': operator.ge, '>': operator.gt, } def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): if got_ver is None or want_ver is None: raise ValueError( F'''Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider''' F''' reinstalling {pkg}.''' ) if not ops[op](version.parse(lowercase__ ) , version.parse(lowercase__ ) ): raise ImportError( F'''{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}''' ) def _UpperCamelCase ( lowercase__ , lowercase__ = None ): __SCREAMING_SNAKE_CASE : Union[str, Any] = F'''\n{hint}''' if hint is not None else '''''' # non-versioned check if re.match(R'''^[\w_\-\d]+$''' , lowercase__ ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str = requirement, None, None else: __SCREAMING_SNAKE_CASE : List[Any] = re.findall(R'''^([^!=<>\s]+)([\s!=<>]{1,2}.+)''' , lowercase__ ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but''' F''' got {requirement}''' ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = match[0] __SCREAMING_SNAKE_CASE : Optional[int] = want_full.split(''',''' ) # there could be multiple requirements __SCREAMING_SNAKE_CASE : Optional[Any] = {} for w in want_range: __SCREAMING_SNAKE_CASE : Any = re.findall(R'''^([\s!=<>]{1,2})(.+)''' , lowercase__ ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,''' F''' but got {requirement}''' ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = match[0] __SCREAMING_SNAKE_CASE : List[Any] = want_ver if op not in ops: raise ValueError(F'''{requirement}: need one of {list(ops.keys() )}, but got {op}''' ) # special case if pkg == "python": __SCREAMING_SNAKE_CASE : Optional[Any] = '''.'''.join([str(lowercase__ ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) return # check if any version is installed try: __SCREAMING_SNAKE_CASE : Optional[int] = importlib.metadata.version(lowercase__ ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( F'''The \'{requirement}\' distribution was not found and is required by this application. {hint}''' ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = '''Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main''' return require_version(lowercase__ , lowercase__ )
9
0
"""simple docstring""" import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : Union[str, Any] = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } __UpperCamelCase : Any = { '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } __UpperCamelCase : List[str] = {'''facebook/blenderbot-3B''': 1_2_8} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __SCREAMING_SNAKE_CASE ( ): lowerCAmelCase__ : Union[str, Any] = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) lowerCAmelCase__ : List[str] = bs[:] lowerCAmelCase__ : Any = 0 for b in range(2**8 ): if b not in bs: bs.append(A_ ) cs.append(2**8 + n ) n += 1 lowerCAmelCase__ : Tuple = [chr(A_ ) for n in cs] return dict(zip(A_ , A_ ) ) def __SCREAMING_SNAKE_CASE ( A_ ): lowerCAmelCase__ : Any = set() lowerCAmelCase__ : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCAmelCase__ : str = char return pairs class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = ["input_ids", "attention_mask"] def __init__( self : str ,lowercase_ : List[Any] ,lowercase_ : int ,lowercase_ : List[str]="replace" ,lowercase_ : Dict="<s>" ,lowercase_ : Any="</s>" ,lowercase_ : Dict="</s>" ,lowercase_ : List[Any]="<s>" ,lowercase_ : Any="<unk>" ,lowercase_ : Dict="<pad>" ,lowercase_ : Union[str, Any]="<mask>" ,lowercase_ : Optional[Any]=False ,**lowercase_ : List[Any] ,): lowerCAmelCase__ : Optional[Any] = AddedToken(lowercase_ ,lstrip=lowercase_ ,rstrip=lowercase_ ) if isinstance(lowercase_ ,lowercase_ ) else bos_token lowerCAmelCase__ : List[Any] = AddedToken(lowercase_ ,lstrip=lowercase_ ,rstrip=lowercase_ ) if isinstance(lowercase_ ,lowercase_ ) else eos_token lowerCAmelCase__ : Optional[int] = AddedToken(lowercase_ ,lstrip=lowercase_ ,rstrip=lowercase_ ) if isinstance(lowercase_ ,lowercase_ ) else sep_token lowerCAmelCase__ : Optional[int] = AddedToken(lowercase_ ,lstrip=lowercase_ ,rstrip=lowercase_ ) if isinstance(lowercase_ ,lowercase_ ) else cls_token lowerCAmelCase__ : List[str] = AddedToken(lowercase_ ,lstrip=lowercase_ ,rstrip=lowercase_ ) if isinstance(lowercase_ ,lowercase_ ) else unk_token lowerCAmelCase__ : Tuple = AddedToken(lowercase_ ,lstrip=lowercase_ ,rstrip=lowercase_ ) if isinstance(lowercase_ ,lowercase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase__ : Dict = AddedToken(lowercase_ ,lstrip=lowercase_ ,rstrip=lowercase_ ) if isinstance(lowercase_ ,lowercase_ ) else mask_token super().__init__( errors=lowercase_ ,bos_token=lowercase_ ,eos_token=lowercase_ ,unk_token=lowercase_ ,sep_token=lowercase_ ,cls_token=lowercase_ ,pad_token=lowercase_ ,mask_token=lowercase_ ,add_prefix_space=lowercase_ ,**lowercase_ ,) with open(lowercase_ ,encoding='''utf-8''' ) as vocab_handle: lowerCAmelCase__ : Optional[int] = json.load(lowercase_ ) lowerCAmelCase__ : Union[str, Any] = {v: k for k, v in self.encoder.items()} lowerCAmelCase__ : str = errors # how to handle errors in decoding lowerCAmelCase__ : Tuple = bytes_to_unicode() lowerCAmelCase__ : Any = {v: k for k, v in self.byte_encoder.items()} with open(lowercase_ ,encoding='''utf-8''' ) as merges_handle: lowerCAmelCase__ : List[str] = merges_handle.read().split('''\n''' )[1:-1] lowerCAmelCase__ : Union[str, Any] = [tuple(merge.split() ) for merge in bpe_merges] lowerCAmelCase__ : Dict = dict(zip(lowercase_ ,range(len(lowercase_ ) ) ) ) lowerCAmelCase__ : str = {} lowerCAmelCase__ : str = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCAmelCase__ : str = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def __lowerCAmelCase ( self : Optional[int] ): return len(self.encoder ) def __lowerCAmelCase ( self : Optional[Any] ): return dict(self.encoder ,**self.added_tokens_encoder ) def __lowerCAmelCase ( self : Optional[Any] ,lowercase_ : str ): if token in self.cache: return self.cache[token] lowerCAmelCase__ : Optional[Any] = tuple(lowercase_ ) lowerCAmelCase__ : Optional[Any] = get_pairs(lowercase_ ) if not pairs: return token while True: lowerCAmelCase__ : Any = min(lowercase_ ,key=lambda lowercase_ : self.bpe_ranks.get(lowercase_ ,float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowerCAmelCase__ : Optional[int] = bigram lowerCAmelCase__ : Union[str, Any] = [] lowerCAmelCase__ : Dict = 0 while i < len(lowercase_ ): try: lowerCAmelCase__ : List[str] = word.index(lowercase_ ,lowercase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCAmelCase__ : List[str] = j if word[i] == first and i < len(lowercase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCAmelCase__ : str = tuple(lowercase_ ) lowerCAmelCase__ : int = new_word if len(lowercase_ ) == 1: break else: lowerCAmelCase__ : Any = get_pairs(lowercase_ ) lowerCAmelCase__ : Optional[Any] = ''' '''.join(lowercase_ ) lowerCAmelCase__ : List[Any] = word return word def __lowerCAmelCase ( self : List[Any] ,lowercase_ : Any ): lowerCAmelCase__ : Union[str, Any] = [] for token in re.findall(self.pat ,lowercase_ ): lowerCAmelCase__ : Optional[Any] = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowercase_ ).split(''' ''' ) ) return bpe_tokens def __lowerCAmelCase ( self : Optional[int] ,lowercase_ : Union[str, Any] ): return self.encoder.get(lowercase_ ,self.encoder.get(self.unk_token ) ) def __lowerCAmelCase ( self : Union[str, Any] ,lowercase_ : Dict ): return self.decoder.get(lowercase_ ) def __lowerCAmelCase ( self : Union[str, Any] ,lowercase_ : Optional[int] ): lowerCAmelCase__ : Tuple = ''''''.join(lowercase_ ) lowerCAmelCase__ : List[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' ,errors=self.errors ) return text def __lowerCAmelCase ( self : Tuple ,lowercase_ : str ,lowercase_ : Optional[str] = None ): if not os.path.isdir(lowercase_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowerCAmelCase__ : str = os.path.join( lowercase_ ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCAmelCase__ : List[Any] = os.path.join( lowercase_ ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(lowercase_ ,'''w''' ,encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=lowercase_ ,ensure_ascii=lowercase_ ) + '''\n''' ) lowerCAmelCase__ : str = 0 with open(lowercase_ ,'''w''' ,encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda lowercase_ : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ''' Please check that the tokenizer is not corrupted!''' ) lowerCAmelCase__ : Optional[Any] = token_index writer.write(''' '''.join(lowercase_ ) + '''\n''' ) index += 1 return vocab_file, merge_file def __lowerCAmelCase ( self : List[Any] ,lowercase_ : List[int] ,lowercase_ : Optional[List[int]] = None ,lowercase_ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase_ ,token_ids_a=lowercase_ ,already_has_special_tokens=lowercase_ ) if token_ids_a is None: return [1] + ([0] * len(lowercase_ )) + [1] return [1] + ([0] * len(lowercase_ )) + [1, 1] + ([0] * len(lowercase_ )) + [1] def __lowerCAmelCase ( self : Optional[int] ,lowercase_ : List[int] ,lowercase_ : Optional[List[int]] = None ): lowerCAmelCase__ : Optional[Any] = [self.sep_token_id] lowerCAmelCase__ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCAmelCase ( self : int ,lowercase_ : List[Any] ,lowercase_ : str=False ,**lowercase_ : int ): lowerCAmelCase__ : Union[str, Any] = kwargs.pop('''add_prefix_space''' ,self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowercase_ ) > 0 and not text[0].isspace()): lowerCAmelCase__ : List[str] = ''' ''' + text return (text, kwargs) def __lowerCAmelCase ( self : List[Any] ,lowercase_ : List[int] ,lowercase_ : Optional[List[int]] = None ): return token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self : Optional[Any] ,lowercase_ : "Conversation" ): lowerCAmelCase__ : List[Any] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(''' ''' + text ) else: # Generated responses should contain them already. inputs.append(lowercase_ ) lowerCAmelCase__ : Optional[Any] = ''' '''.join(lowercase_ ) lowerCAmelCase__ : List[Any] = self.encode(lowercase_ ) if len(lowercase_ ) > self.model_max_length: lowerCAmelCase__ : List[Any] = input_ids[-self.model_max_length :] logger.warning(F'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.' ) return input_ids
353
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( A_ ): lowerCAmelCase__ : int = 0 for ch in input_str: lowerCAmelCase__ : Any = ord(A_ ) lowerCAmelCase__ : Any = pow(2 , A_ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
74
0
import functools def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> int: # Validation if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or not all(isinstance(lowerCamelCase_ , lowerCamelCase_ ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(lowerCamelCase_ ) != 3 or not all(isinstance(lowerCamelCase_ , lowerCamelCase_ ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(lowerCamelCase_ ) == 0: return 0 if min(lowerCamelCase_ ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(lowerCamelCase_ ) >= 366: raise ValueError('All days elements should be less than 366' ) _lowercase : Optional[int] = set(lowerCamelCase_ ) @functools.cache def dynamic_programming(lowerCamelCase_ ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
21
from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class __UpperCAmelCase : # setable values UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None # sigma(t_i) @classmethod def __magic_name__ ( cls : Any ): return cls() @dataclass class __UpperCAmelCase ( lowerCamelCase__ ): UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): @property def __magic_name__ ( self : Optional[int] ): return True @register_to_config def __init__( self : Optional[int], __A : float = 0.0_2, __A : float = 1_0_0, __A : float = 1.0_0_7, __A : float = 8_0, __A : float = 0.0_5, __A : float = 5_0, ): pass def __magic_name__ ( self : Optional[Any] ): return KarrasVeSchedulerState.create() def __magic_name__ ( self : int, __A : KarrasVeSchedulerState, __A : int, __A : Tuple = () ): UpperCAmelCase : Optional[Any] = jnp.arange(0, __A )[::-1].copy() UpperCAmelCase : Union[str, Any] = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=__A, schedule=jnp.array(__A, dtype=jnp.floataa ), timesteps=__A, ) def __magic_name__ ( self : List[Any], __A : KarrasVeSchedulerState, __A : jnp.ndarray, __A : float, __A : random.KeyArray, ): if self.config.s_min <= sigma <= self.config.s_max: UpperCAmelCase : int = min(self.config.s_churn / state.num_inference_steps, 2**0.5 - 1 ) else: UpperCAmelCase : Optional[int] = 0 # sample eps ~ N(0, S_noise^2 * I) UpperCAmelCase : Union[str, Any] = random.split(__A, num=1 ) UpperCAmelCase : List[str] = self.config.s_noise * random.normal(key=__A, shape=sample.shape ) UpperCAmelCase : Tuple = sigma + gamma * sigma UpperCAmelCase : List[str] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def __magic_name__ ( self : Tuple, __A : KarrasVeSchedulerState, __A : jnp.ndarray, __A : float, __A : float, __A : jnp.ndarray, __A : bool = True, ): UpperCAmelCase : int = sample_hat + sigma_hat * model_output UpperCAmelCase : Dict = (sample_hat - pred_original_sample) / sigma_hat UpperCAmelCase : int = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=__A, derivative=__A, state=__A ) def __magic_name__ ( self : Tuple, __A : KarrasVeSchedulerState, __A : jnp.ndarray, __A : float, __A : float, __A : jnp.ndarray, __A : jnp.ndarray, __A : jnp.ndarray, __A : bool = True, ): UpperCAmelCase : Tuple = sample_prev + sigma_prev * model_output UpperCAmelCase : List[str] = (sample_prev - pred_original_sample) / sigma_prev UpperCAmelCase : Union[str, Any] = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=__A, derivative=__A, state=__A ) def __magic_name__ ( self : Optional[Any], __A : KarrasVeSchedulerState, __A : Optional[int], __A : int, __A : Union[str, Any] ): raise NotImplementedError()
336
0
"""simple docstring""" import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py _lowerCAmelCase : Dict = '''.''' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) _lowerCAmelCase : List[Any] = [ '''Assert''', '''AssignVariableOp''', '''EmptyTensorList''', '''MergeV2Checkpoints''', '''ReadVariableOp''', '''ResourceGather''', '''RestoreV2''', '''SaveV2''', '''ShardedFilename''', '''StatefulPartitionedCall''', '''StaticRegexFullMatch''', '''VarHandleOp''', ] def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Any = SavedModel() _lowerCamelCase : Optional[int] = [] with open(os.path.join(_lowerCamelCase , "utils" , "tf_ops" , "onnx.json" ) ) as f: _lowerCamelCase : List[Any] = json.load(_lowerCamelCase )["opsets"] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(_lowerCamelCase )] ) with open(_lowerCamelCase , "rb" ) as f: saved_model.ParseFromString(f.read() ) _lowerCamelCase : List[Any] = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want _lowerCamelCase : Optional[Any] = sorted(_lowerCamelCase ) _lowerCamelCase : Optional[int] = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(_lowerCamelCase ) if strict and len(_lowerCamelCase ) > 0: raise Exception(F"""Found the following incompatible ops for the opset {opset}:\n""" + incompatible_ops ) elif len(_lowerCamelCase ) > 0: print(F"""Found the following incompatible ops for the opset {opset}:""" ) print(*_lowerCamelCase , sep="\n" ) else: print(F"""The saved model {saved_model_path} can properly be converted with ONNX.""" ) if __name__ == "__main__": _lowerCAmelCase : str = argparse.ArgumentParser() parser.add_argument('''--saved_model_path''', help='''Path of the saved model to check (the .pb file).''') parser.add_argument( '''--opset''', default=12, type=int, help='''The ONNX opset against which the model has to be tested.''' ) parser.add_argument( '''--framework''', choices=['''onnx'''], default='''onnx''', help='''Frameworks against which to test the saved model.''' ) parser.add_argument( '''--strict''', action='''store_true''', help='''Whether make the checking strict (raise errors) or not (raise warnings)''' ) _lowerCAmelCase : str = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
340
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> float: '''simple docstring''' _validate_point(_lowerCamelCase ) _validate_point(_lowerCamelCase ) if len(_lowerCamelCase ) != len(_lowerCamelCase ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(a - b ) for a, b in zip(_lowerCamelCase , _lowerCamelCase ) ) ) def lowerCamelCase_( _lowerCamelCase ) -> None: '''simple docstring''' if point: if isinstance(_lowerCamelCase , _lowerCamelCase ): for item in point: if not isinstance(_lowerCamelCase , (int, float) ): _lowerCamelCase : Dict = ( "Expected a list of numbers as input, found " F"""{type(_lowerCamelCase ).__name__}""" ) raise TypeError(_lowerCamelCase ) else: _lowerCamelCase : Optional[int] = F"""Expected a list of numbers as input, found {type(_lowerCamelCase ).__name__}""" raise TypeError(_lowerCamelCase ) else: raise ValueError("Missing an input" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> float: '''simple docstring''' _validate_point(_lowerCamelCase ) _validate_point(_lowerCamelCase ) if len(_lowerCamelCase ) != len(_lowerCamelCase ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(x - y ) for x, y in zip(_lowerCamelCase , _lowerCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
340
1
'''simple docstring''' from __future__ import annotations from math import pow, sqrt def _UpperCamelCase ( __A , __A , __A ) -> dict[str, float]: '''simple docstring''' if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if resistance == 0: return {"resistance": sqrt(pow(__A , 2 ) - pow(__A , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(__A , 2 ) - pow(__A , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(__A , 2 ) + pow(__A , 2 ) )} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
80
'''simple docstring''' from __future__ import annotations import math def _UpperCamelCase ( __A , __A , __A , __A , __A ) -> int: '''simple docstring''' if depth < 0: raise ValueError("Depth cannot be less than 0" ) if not scores: raise ValueError("Scores cannot be empty" ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , __A , __A , __A ) , minimax(depth + 1 , node_index * 2 + 1 , __A , __A , __A ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , __A , __A , __A ) , minimax(depth + 1 , node_index * 2 + 1 , __A , __A , __A ) , ) ) def _UpperCamelCase ( ) -> None: '''simple docstring''' UpperCamelCase__ = [90, 23, 6, 33, 21, 65, 123, 34423] UpperCamelCase__ = math.log(len(__A ) , 2 ) print(F'''Optimal value : {minimax(0 , 0 , __A , __A , __A )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
80
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase_ = { 'configuration_timesformer': ['TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimesformerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ 'TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TimesformerModel', 'TimesformerForVideoClassification', 'TimesformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
364
from typing import TYPE_CHECKING from ...utils import _LazyModule lowerCamelCase_ = {'''processing_wav2vec2_with_lm''': ['''Wav2Vec2ProcessorWithLM''']} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
178
0
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class A_ : def __init__( self , _A , _A=9_9 , _A=1_3 , _A=1_6 , _A=7 , _A=True , _A=True , _A=True , _A=False , _A=True , _A=2 , _A=3_2 , _A=4 , _A=4 , _A=3_0 , _A=0 , _A=1 , _A=2 , _A=None , ): '''simple docstring''' UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = decoder_seq_length # For common tests UpperCAmelCase = self.decoder_seq_length UpperCAmelCase = is_training UpperCAmelCase = use_attention_mask UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = d_model UpperCAmelCase = d_model UpperCAmelCase = decoder_layers UpperCAmelCase = decoder_layers UpperCAmelCase = decoder_ffn_dim UpperCAmelCase = decoder_attention_heads UpperCAmelCase = decoder_attention_heads UpperCAmelCase = eos_token_id UpperCAmelCase = bos_token_id UpperCAmelCase = pad_token_id UpperCAmelCase = decoder_start_token_id UpperCAmelCase = use_cache UpperCAmelCase = max_position_embeddings UpperCAmelCase = None UpperCAmelCase = decoder_seq_length UpperCAmelCase = 2 UpperCAmelCase = 1 def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) UpperCAmelCase = None if self.use_attention_mask: UpperCAmelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) UpperCAmelCase = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def _lowercase ( self , _A , _A , _A , _A , ): '''simple docstring''' UpperCAmelCase = True UpperCAmelCase = TrOCRDecoder(config=_A ).to(_A ).eval() UpperCAmelCase = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass UpperCAmelCase = model(_A , use_cache=_A ) UpperCAmelCase = model(_A ) UpperCAmelCase = model(_A , use_cache=_A ) self.parent.assertTrue(len(_A ) == len(_A ) ) self.parent.assertTrue(len(_A ) == len(_A ) + 1 ) UpperCAmelCase = outputs['''past_key_values'''] # create hypothetical next token and extent to next_input_ids UpperCAmelCase = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and UpperCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase = model(_A )['''last_hidden_state'''] UpperCAmelCase = model(_A , past_key_values=_A )['''last_hidden_state'''] # select random slice UpperCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() UpperCAmelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(_A , _A , atol=1E-3 ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_torch class A_ (a_ , a_ , a_ , unittest.TestCase ): UpperCAmelCase__ = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () UpperCAmelCase__ = (TrOCRForCausalLM,) if is_torch_available() else () UpperCAmelCase__ = {'''text-generation''': TrOCRForCausalLM} if is_torch_available() else {} UpperCAmelCase__ = True UpperCAmelCase__ = False def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = TrOCRStandaloneDecoderModelTester(self , is_training=_A ) UpperCAmelCase = ConfigTester(self , config_class=_A ) def _lowercase ( self ): '''simple docstring''' pass def _lowercase ( self ): '''simple docstring''' pass def _lowercase ( self ): '''simple docstring''' pass def _lowercase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*_A ) def _lowercase ( self ): '''simple docstring''' return @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def _lowercase ( self ): '''simple docstring''' pass
273
import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' if "model" in orig_key: UpperCAmelCase = orig_key.replace('''model.''' , '''''' ) if "norm1" in orig_key: UpperCAmelCase = orig_key.replace('''norm1''' , '''attention.output.LayerNorm''' ) if "norm2" in orig_key: UpperCAmelCase = orig_key.replace('''norm2''' , '''output.LayerNorm''' ) if "norm" in orig_key: UpperCAmelCase = orig_key.replace('''norm''' , '''LayerNorm''' ) if "transformer" in orig_key: UpperCAmelCase = orig_key.split('''.''' )[0].split('''_''' )[-1] UpperCAmelCase = orig_key.replace(F"""transformer_{layer_num}""" , F"""encoder.layer.{layer_num}""" ) if "mha.attn" in orig_key: UpperCAmelCase = orig_key.replace('''mha.attn''' , '''attention.self''' ) if "mha" in orig_key: UpperCAmelCase = orig_key.replace('''mha''' , '''attention''' ) if "W_q" in orig_key: UpperCAmelCase = orig_key.replace('''W_q''' , '''self.query''' ) if "W_k" in orig_key: UpperCAmelCase = orig_key.replace('''W_k''' , '''self.key''' ) if "W_v" in orig_key: UpperCAmelCase = orig_key.replace('''W_v''' , '''self.value''' ) if "ff1" in orig_key: UpperCAmelCase = orig_key.replace('''ff1''' , '''intermediate.dense''' ) if "ff2" in orig_key: UpperCAmelCase = orig_key.replace('''ff2''' , '''output.dense''' ) if "ff" in orig_key: UpperCAmelCase = orig_key.replace('''ff''' , '''output.dense''' ) if "mlm_class" in orig_key: UpperCAmelCase = orig_key.replace('''mlm.mlm_class''' , '''cls.predictions.decoder''' ) if "mlm" in orig_key: UpperCAmelCase = orig_key.replace('''mlm''' , '''cls.predictions.transform''' ) if "cls" not in orig_key: UpperCAmelCase = '''yoso.''' + orig_key return orig_key def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ ) -> Dict: '''simple docstring''' for key in orig_state_dict.copy().keys(): UpperCAmelCase = orig_state_dict.pop(UpperCamelCase__ ) if ("pooler" in key) or ("sen_class" in key): continue else: UpperCAmelCase = val UpperCAmelCase = orig_state_dict['''cls.predictions.decoder.bias'''] UpperCAmelCase = torch.arange(UpperCamelCase__ ).expand((1, -1) ) + 2 return orig_state_dict def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> int: '''simple docstring''' UpperCAmelCase = torch.load(UpperCamelCase__ , map_location='''cpu''' )['''model_state_dict'''] UpperCAmelCase = YosoConfig.from_json_file(UpperCamelCase__ ) UpperCAmelCase = YosoForMaskedLM(UpperCamelCase__ ) UpperCAmelCase = convert_checkpoint_helper(config.max_position_embeddings , UpperCamelCase__ ) print(model.load_state_dict(UpperCamelCase__ ) ) model.eval() model.save_pretrained(UpperCamelCase__ ) print(F"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) if __name__ == "__main__": __A : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pytorch_model_path", default=None, type=str, required=True, help="Path to YOSO pytorch checkpoint." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The json file for YOSO model config.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __A : List[str] = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
273
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCamelCase : List[Any] = logging.get_logger(__name__) _UpperCamelCase : Optional[int] = { 'facebook/xlm-roberta-xl': 'https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json', 'facebook/xlm-roberta-xxl': 'https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json', # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class snake_case ( a__ ): __magic_name__ = "xlm-roberta-xl" def __init__( self : List[Any] , A : Dict=2_5_0_8_8_0 , A : Dict=2_5_6_0 , A : Dict=3_6 , A : Optional[int]=3_2 , A : str=1_0_2_4_0 , A : int="gelu" , A : Optional[int]=0.1 , A : Dict=0.1 , A : Dict=5_1_4 , A : Tuple=1 , A : Dict=0.02 , A : int=1E-05 , A : Tuple=1 , A : Any=0 , A : Union[str, Any]=2 , A : Any="absolute" , A : Dict=True , A : int=None , **A : List[str] , ): '''simple docstring''' super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) a : str = vocab_size a : List[Any] = hidden_size a : Tuple = num_hidden_layers a : Tuple = num_attention_heads a : str = hidden_act a : str = intermediate_size a : Dict = hidden_dropout_prob a : str = attention_probs_dropout_prob a : Tuple = max_position_embeddings a : List[str] = type_vocab_size a : Union[str, Any] = initializer_range a : Any = layer_norm_eps a : Tuple = position_embedding_type a : Any = use_cache a : Optional[int] = classifier_dropout class snake_case ( a__ ): @property def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' if self.task == "multiple-choice": a : List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: a : str = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
365
"""simple docstring""" def snake_case (A_ :int ): '''simple docstring''' if isinstance(A_ , A_ ): raise TypeError('\'float\' object cannot be interpreted as an integer' ) if isinstance(A_ , A_ ): raise TypeError('\'str\' object cannot be interpreted as an integer' ) if num == 0: return "0b0" a : List[Any] = False if num < 0: a : Optional[int] = True a : Dict = -num a : list[int] = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(A_ ) for e in binary ) return "0b" + "".join(str(A_ ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
186
0
"""simple docstring""" import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class snake_case : '''simple docstring''' def __init__( self : Dict, _lowerCamelCase : str = "cpu", _lowerCamelCase : str = "openai/clip-vit-large-patch14" ): '''simple docstring''' __A = device __A = CLIPTokenizerFast.from_pretrained(_lowerCamelCase ) __A = [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] __A = [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] __A = torchvision.transforms.Normalize(self.image_mean, self.image_std ) __A = torchvision.transforms.Resize(2_24 ) __A = torchvision.transforms.CenterCrop(2_24 ) def _SCREAMING_SNAKE_CASE ( self : Dict, _lowerCamelCase : Tuple ): '''simple docstring''' __A = self.resize(_lowerCamelCase ) __A = self.center_crop(_lowerCamelCase ) __A = self.normalize(_lowerCamelCase ) return images def __call__( self : List[str], _lowerCamelCase : Optional[Any]=None, _lowerCamelCase : Dict=None, **_lowerCamelCase : Optional[int] ): '''simple docstring''' __A = self.tokenizer(text=_lowerCamelCase, **_lowerCamelCase ) __A = self.preprocess_img(_lowerCamelCase ) __A = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any], _lowerCamelCase : int=10, _lowerCamelCase : List[str]=0.01, _lowerCamelCase : str=None, _lowerCamelCase : List[str]=None, _lowerCamelCase : Optional[Any]=None, _lowerCamelCase : Union[str, Any]=None, _lowerCamelCase : Tuple=None, _lowerCamelCase : Dict=None, _lowerCamelCase : Any=False, _lowerCamelCase : Optional[Any]=True, _lowerCamelCase : Tuple="image", _lowerCamelCase : Dict=True, _lowerCamelCase : Optional[int]=False, _lowerCamelCase : List[Any]=False, _lowerCamelCase : Union[str, Any]=False, ): '''simple docstring''' super().__init__() __A = None __A = device if device else get_device() if vqgan: __A = vqgan else: __A = load_vqgan(self.device, conf_path=_lowerCamelCase, ckpt_path=_lowerCamelCase ) self.vqgan.eval() if clip: __A = clip else: __A = CLIPModel.from_pretrained('''openai/clip-vit-base-patch32''' ) self.clip.to(self.device ) __A = ProcessorGradientFlow(device=self.device ) __A = iterations __A = lr __A = log __A = make_grid __A = return_val __A = quantize __A = self.vqgan.decoder.z_shape def _SCREAMING_SNAKE_CASE ( self : str, _lowerCamelCase : List[Any]=None, _lowerCamelCase : int=None, _lowerCamelCase : List[Any]=5, _lowerCamelCase : Optional[Any]=True ): '''simple docstring''' __A = [] if output_path is None: __A = '''./animation.gif''' if input_path is None: __A = self.save_path __A = sorted(glob(input_path + '''/*''' ) ) if not len(_lowerCamelCase ): raise ValueError( '''No images found in save path, aborting (did you pass save_intermediate=True to the generate''' ''' function?)''' ) if len(_lowerCamelCase ) == 1: print('''Only one image found in save path, (did you pass save_intermediate=True to the generate function?)''' ) __A = total_duration / len(_lowerCamelCase ) __A = [frame_duration] * len(_lowerCamelCase ) if extend_frames: __A = 1.5 __A = 3 for file_name in paths: if file_name.endswith('''.png''' ): images.append(imageio.imread(_lowerCamelCase ) ) imageio.mimsave(_lowerCamelCase, _lowerCamelCase, duration=_lowerCamelCase ) print(f'gif saved to {output_path}' ) def _SCREAMING_SNAKE_CASE ( self : str, _lowerCamelCase : Optional[Any]=None, _lowerCamelCase : List[Any]=None ): '''simple docstring''' if not (path or img): raise ValueError('''Input either path or tensor''' ) if img is not None: raise NotImplementedError __A = preprocess(Image.open(_lowerCamelCase ), target_image_size=2_56 ).to(self.device ) __A = preprocess_vqgan(_lowerCamelCase ) __A , *__A = self.vqgan.encode(_lowerCamelCase ) return z def _SCREAMING_SNAKE_CASE ( self : Tuple, _lowerCamelCase : str ): '''simple docstring''' __A = self.latent.detach().requires_grad_() __A = base_latent + transform_vector if self.quantize: __A , *__A = self.vqgan.quantize(_lowerCamelCase ) else: __A = trans_latent return self.vqgan.decode(_lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( self : Dict, _lowerCamelCase : Tuple, _lowerCamelCase : Tuple, _lowerCamelCase : Optional[int]=None ): '''simple docstring''' __A = self.clip_preprocessor(text=_lowerCamelCase, images=_lowerCamelCase, return_tensors='''pt''', padding=_lowerCamelCase ) __A = self.clip(**_lowerCamelCase ) __A = clip_outputs.logits_per_image if weights is not None: __A = similarity_logits * weights return similarity_logits.sum() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any], _lowerCamelCase : Dict, _lowerCamelCase : int, _lowerCamelCase : List[str] ): '''simple docstring''' __A = self._get_clip_similarity(pos_prompts['''prompts'''], _lowerCamelCase, weights=(1 / pos_prompts['''weights''']) ) if neg_prompts: __A = self._get_clip_similarity(neg_prompts['''prompts'''], _lowerCamelCase, weights=neg_prompts['''weights'''] ) else: __A = torch.tensor([1], device=self.device ) __A = -torch.log(_lowerCamelCase ) + torch.log(_lowerCamelCase ) return loss def _SCREAMING_SNAKE_CASE ( self : Any, _lowerCamelCase : Tuple, _lowerCamelCase : Union[str, Any], _lowerCamelCase : Optional[int] ): '''simple docstring''' __A = torch.randn_like(self.latent, requires_grad=_lowerCamelCase, device=self.device ) __A = torch.optim.Adam([vector], lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() __A = self._add_vector(_lowerCamelCase ) __A = loop_post_process(_lowerCamelCase ) __A = self._get_CLIP_loss(_lowerCamelCase, _lowerCamelCase, _lowerCamelCase ) print('''CLIP loss''', _lowerCamelCase ) if self.log: wandb.log({'''CLIP Loss''': clip_loss} ) clip_loss.backward(retain_graph=_lowerCamelCase ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def _SCREAMING_SNAKE_CASE ( self : List[str], _lowerCamelCase : Optional[int], _lowerCamelCase : Any, _lowerCamelCase : Union[str, Any] ): '''simple docstring''' wandb.init(reinit=_lowerCamelCase, project='''face-editor''' ) wandb.config.update({'''Positive Prompts''': positive_prompts} ) wandb.config.update({'''Negative Prompts''': negative_prompts} ) wandb.config.update({'''lr''': self.lr, '''iterations''': self.iterations} ) if image_path: __A = Image.open(_lowerCamelCase ) __A = image.resize((2_56, 2_56) ) wandb.log('''Original Image''', wandb.Image(_lowerCamelCase ) ) def _SCREAMING_SNAKE_CASE ( self : List[str], _lowerCamelCase : Any ): '''simple docstring''' if not prompts: return [] __A = [] __A = [] if isinstance(_lowerCamelCase, _lowerCamelCase ): __A = [prompt.strip() for prompt in prompts.split('''|''' )] for prompt in prompts: if isinstance(_lowerCamelCase, (tuple, list) ): __A = prompt[0] __A = float(prompt[1] ) elif ":" in prompt: __A , __A = prompt.split(''':''' ) __A = float(_lowerCamelCase ) else: __A = prompt __A = 1.0 processed_prompts.append(_lowerCamelCase ) weights.append(_lowerCamelCase ) return { "prompts": processed_prompts, "weights": torch.tensor(_lowerCamelCase, device=self.device ), } def _SCREAMING_SNAKE_CASE ( self : Tuple, _lowerCamelCase : str, _lowerCamelCase : Union[str, Any]=None, _lowerCamelCase : Optional[Any]=None, _lowerCamelCase : Union[str, Any]=True, _lowerCamelCase : str=False, _lowerCamelCase : List[str]=True, _lowerCamelCase : Union[str, Any]=True, _lowerCamelCase : str=None, ): '''simple docstring''' if image_path: __A = self._get_latent(_lowerCamelCase ) else: __A = torch.randn(self.latent_dim, device=self.device ) if self.log: self._init_logging(_lowerCamelCase, _lowerCamelCase, _lowerCamelCase ) assert pos_prompts, "You must provide at least one positive prompt." __A = self.process_prompts(_lowerCamelCase ) __A = self.process_prompts(_lowerCamelCase ) if save_final and save_path is None: __A = os.path.join('''./outputs/''', '''_'''.join(pos_prompts['''prompts'''] ) ) if not os.path.exists(_lowerCamelCase ): os.makedirs(_lowerCamelCase ) else: __A = save_path + '''_''' + get_timestamp() os.makedirs(_lowerCamelCase ) __A = save_path __A = self.vqgan.decode(self.latent )[0] if show_intermediate: print('''Original Image''' ) show_pil(custom_to_pil(_lowerCamelCase ) ) __A = loop_post_process(_lowerCamelCase ) for iter, transformed_img in enumerate(self._optimize_CLIP(_lowerCamelCase, _lowerCamelCase, _lowerCamelCase ) ): if show_intermediate: show_pil(_lowerCamelCase ) if save_intermediate: transformed_img.save(os.path.join(self.save_path, f'iter_{iter:03d}.png' ) ) if self.log: wandb.log({'''Image''': wandb.Image(_lowerCamelCase )} ) if show_final: show_pil(_lowerCamelCase ) if save_final: transformed_img.save(os.path.join(self.save_path, f'iter_{iter:03d}_final.png' ) )
266
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class _a ( snake_case_ , snake_case_ ): """simple docstring""" @register_to_config def __init__( self : Dict , UpperCAmelCase : int = 768 , ): super().__init__() A_ = nn.Parameter(torch.zeros(1 , UpperCAmelCase ) ) A_ = nn.Parameter(torch.ones(1 , UpperCAmelCase ) ) def __A ( self : str , UpperCAmelCase : Optional[Union[str, torch.device]] = None , UpperCAmelCase : Optional[torch.dtype] = None , ): A_ = nn.Parameter(self.mean.to(UpperCAmelCase ).to(UpperCAmelCase ) ) A_ = nn.Parameter(self.std.to(UpperCAmelCase ).to(UpperCAmelCase ) ) return self def __A ( self : Dict , UpperCAmelCase : List[Any] ): A_ = (embeds - self.mean) * 1.0 / self.std return embeds def __A ( self : int , UpperCAmelCase : int ): A_ = (embeds * self.std) + self.mean return embeds
312
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer snake_case : List[Any] = logging.get_logger(__name__) snake_case : str = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} snake_case : Optional[int] = { "vocab_file": { "squeezebert/squeezebert-uncased": ( "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt" ), "squeezebert/squeezebert-mnli": "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt", "squeezebert/squeezebert-mnli-headless": ( "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt" ), }, "tokenizer_file": { "squeezebert/squeezebert-uncased": ( "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json" ), "squeezebert/squeezebert-mnli": ( "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json" ), "squeezebert/squeezebert-mnli-headless": ( "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json" ), }, } snake_case : Tuple = { "squeezebert/squeezebert-uncased": 512, "squeezebert/squeezebert-mnli": 512, "squeezebert/squeezebert-mnli-headless": 512, } snake_case : Any = { "squeezebert/squeezebert-uncased": {"do_lower_case": True}, "squeezebert/squeezebert-mnli": {"do_lower_case": True}, "squeezebert/squeezebert-mnli-headless": {"do_lower_case": True}, } class _snake_case ( A__ ): UpperCamelCase__ = VOCAB_FILES_NAMES UpperCamelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ = PRETRAINED_INIT_CONFIGURATION UpperCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ = SqueezeBertTokenizer def __init__( self , _a=None , _a=None , _a=True , _a="[UNK]" , _a="[SEP]" , _a="[PAD]" , _a="[CLS]" , _a="[MASK]" , _a=True , _a=None , **_a , ): super().__init__( __snake_case , tokenizer_file=__snake_case , do_lower_case=__snake_case , unk_token=__snake_case , sep_token=__snake_case , pad_token=__snake_case , cls_token=__snake_case , mask_token=__snake_case , tokenize_chinese_chars=__snake_case , strip_accents=__snake_case , **__snake_case , ) __magic_name__ : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , __snake_case ) != do_lower_case or normalizer_state.get("strip_accents" , __snake_case ) != strip_accents or normalizer_state.get("handle_chinese_chars" , __snake_case ) != tokenize_chinese_chars ): __magic_name__ : List[str] = getattr(__snake_case , normalizer_state.pop("type" ) ) __magic_name__ : List[str] = do_lower_case __magic_name__ : List[Any] = strip_accents __magic_name__ : List[str] = tokenize_chinese_chars __magic_name__ : Any = normalizer_class(**__snake_case ) __magic_name__ : Optional[Any] = do_lower_case def SCREAMING_SNAKE_CASE ( self , _a , _a=None ): __magic_name__ : int = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def SCREAMING_SNAKE_CASE ( self , _a , _a = None ): __magic_name__ : Dict = [self.sep_token_id] __magic_name__ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def SCREAMING_SNAKE_CASE ( self , _a , _a = None ): __magic_name__ : List[Any] = self._tokenizer.model.save(__snake_case , name=__snake_case ) return tuple(__snake_case )
353
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _snake_case ( snake_case ): UpperCamelCase__ = ['image_processor', 'tokenizer'] UpperCamelCase__ = 'BridgeTowerImageProcessor' UpperCamelCase__ = ('RobertaTokenizer', 'RobertaTokenizerFast') def __init__( self , _a , _a ): super().__init__(_a , _a ) def __call__( self , _a , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ): __magic_name__ : Dict = self.tokenizer( text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_token_type_ids=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) # add pixel_values + pixel_mask __magic_name__ : List[str] = self.image_processor( _a , return_tensors=_a , do_normalize=_a , do_center_crop=_a , **_a ) encoding.update(_a ) return encoding def SCREAMING_SNAKE_CASE ( self , *_a , **_a ): return self.tokenizer.batch_decode(*_a , **_a ) def SCREAMING_SNAKE_CASE ( self , *_a , **_a ): return self.tokenizer.decode(*_a , **_a ) @property def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Dict = self.tokenizer.model_input_names __magic_name__ : Any = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
41
0
'''simple docstring''' import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets __a = "\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" __a = "\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n" __a = "\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=[\"About 95 species are currently accepted .\"]\n >>> predictions=[\"About 95 you now get in .\"]\n >>> references=[[\"About 95 species are currently known .\"]]\n >>> wiki_split = datasets.load_metric(\"wiki_split\")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0}\n" def __snake_case( _lowerCAmelCase ) -> List[str]: def remove_articles(_lowerCAmelCase ): snake_case__ : int = re.compile(r"""\b(a|an|the)\b""" , re.UNICODE ) return re.sub(_lowerCAmelCase , """ """ , _lowerCAmelCase ) def white_space_fix(_lowerCAmelCase ): return " ".join(text.split() ) def remove_punc(_lowerCAmelCase ): snake_case__ : Union[str, Any] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowerCAmelCase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowerCAmelCase ) ) ) ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Dict: return int(normalize_answer(_lowerCAmelCase ) == normalize_answer(_lowerCAmelCase ) ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Any: snake_case__ : Union[str, Any] = [any(compute_exact(_lowerCAmelCase , _lowerCAmelCase ) for ref in refs ) for pred, refs in zip(_lowerCAmelCase , _lowerCAmelCase )] return (sum(_lowerCAmelCase ) / len(_lowerCAmelCase )) * 100 def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Any: snake_case__ : Dict = [rgram for rgrams in rgramslist for rgram in rgrams] snake_case__ : Optional[int] = Counter(_lowerCAmelCase ) snake_case__ : Tuple = Counter(_lowerCAmelCase ) snake_case__ : Any = Counter() for sgram, scount in sgramcounter.items(): snake_case__ : str = scount * numref snake_case__ : Tuple = Counter(_lowerCAmelCase ) snake_case__ : str = Counter() for cgram, ccount in cgramcounter.items(): snake_case__ : Union[str, Any] = ccount * numref # KEEP snake_case__ : str = sgramcounter_rep & cgramcounter_rep snake_case__ : Any = keepgramcounter_rep & rgramcounter snake_case__ : List[str] = sgramcounter_rep & rgramcounter snake_case__ : Any = 0 snake_case__ : List[Any] = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. snake_case__ : int = 1 snake_case__ : List[str] = 1 if len(_lowerCAmelCase ) > 0: snake_case__ : Any = keeptmpscorea / len(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) snake_case__ : Dict = keeptmpscorea / sum(keepgramcounterall_rep.values() ) snake_case__ : Tuple = 0 if keepscore_precision > 0 or keepscore_recall > 0: snake_case__ : Dict = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION snake_case__ : Any = sgramcounter_rep - cgramcounter_rep snake_case__ : Any = delgramcounter_rep - rgramcounter snake_case__ : Optional[int] = sgramcounter_rep - rgramcounter snake_case__ : Tuple = 0 snake_case__ : Dict = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. snake_case__ : Any = 1 if len(_lowerCAmelCase ) > 0: snake_case__ : Tuple = deltmpscorea / len(_lowerCAmelCase ) # ADDITION snake_case__ : List[str] = set(_lowerCAmelCase ) - set(_lowerCAmelCase ) snake_case__ : Optional[Any] = set(_lowerCAmelCase ) & set(_lowerCAmelCase ) snake_case__ : Tuple = set(_lowerCAmelCase ) - set(_lowerCAmelCase ) snake_case__ : Any = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. snake_case__ : Optional[Any] = 1 snake_case__ : int = 1 if len(_lowerCAmelCase ) > 0: snake_case__ : Optional[Any] = addtmpscore / len(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: snake_case__ : Union[str, Any] = addtmpscore / len(_lowerCAmelCase ) snake_case__ : Any = 0 if addscore_precision > 0 or addscore_recall > 0: snake_case__ : Dict = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: snake_case__ : Tuple = len(_lowerCAmelCase ) snake_case__ : Union[str, Any] = ssent.split(""" """ ) snake_case__ : Tuple = csent.split(""" """ ) snake_case__ : Dict = [] snake_case__ : int = [] snake_case__ : Union[str, Any] = [] snake_case__ : Dict = [] snake_case__ : Union[str, Any] = [] snake_case__ : Any = [] snake_case__ : Optional[int] = [] snake_case__ : Any = [] snake_case__ : Dict = [] snake_case__ : Tuple = [] for rsent in rsents: snake_case__ : Dict = rsent.split(""" """ ) snake_case__ : str = [] snake_case__ : int = [] snake_case__ : int = [] ragramslist.append(_lowerCAmelCase ) for i in range(0 , len(_lowerCAmelCase ) - 1 ): if i < len(_lowerCAmelCase ) - 1: snake_case__ : Dict = ragrams[i] + """ """ + ragrams[i + 1] ragrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 2: snake_case__ : str = ragrams[i] + """ """ + ragrams[i + 1] + """ """ + ragrams[i + 2] ragrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 3: snake_case__ : Union[str, Any] = ragrams[i] + """ """ + ragrams[i + 1] + """ """ + ragrams[i + 2] + """ """ + ragrams[i + 3] ragrams.append(_lowerCAmelCase ) ragramslist.append(_lowerCAmelCase ) ragramslist.append(_lowerCAmelCase ) ragramslist.append(_lowerCAmelCase ) for i in range(0 , len(_lowerCAmelCase ) - 1 ): if i < len(_lowerCAmelCase ) - 1: snake_case__ : str = sagrams[i] + """ """ + sagrams[i + 1] sagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 2: snake_case__ : Dict = sagrams[i] + """ """ + sagrams[i + 1] + """ """ + sagrams[i + 2] sagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 3: snake_case__ : List[str] = sagrams[i] + """ """ + sagrams[i + 1] + """ """ + sagrams[i + 2] + """ """ + sagrams[i + 3] sagrams.append(_lowerCAmelCase ) for i in range(0 , len(_lowerCAmelCase ) - 1 ): if i < len(_lowerCAmelCase ) - 1: snake_case__ : int = cagrams[i] + """ """ + cagrams[i + 1] cagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 2: snake_case__ : Optional[Any] = cagrams[i] + """ """ + cagrams[i + 1] + """ """ + cagrams[i + 2] cagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 3: snake_case__ : str = cagrams[i] + """ """ + cagrams[i + 1] + """ """ + cagrams[i + 2] + """ """ + cagrams[i + 3] cagrams.append(_lowerCAmelCase ) ((snake_case__) , (snake_case__) , (snake_case__)) : Any = SARIngram(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) ((snake_case__) , (snake_case__) , (snake_case__)) : Dict = SARIngram(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) ((snake_case__) , (snake_case__) , (snake_case__)) : Optional[Any] = SARIngram(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) ((snake_case__) , (snake_case__) , (snake_case__)) : Optional[Any] = SARIngram(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) snake_case__ : List[Any] = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 snake_case__ : Optional[Any] = sum([delascore, delascore, delascore, delascore] ) / 4 snake_case__ : Dict = sum([addascore, addascore, addascore, addascore] ) / 4 snake_case__ : Any = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def __snake_case( _lowerCAmelCase , _lowerCAmelCase = True , _lowerCAmelCase = "13a" , _lowerCAmelCase = True ) -> Dict: # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: snake_case__ : int = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: snake_case__ : Union[str, Any] = sacrebleu.metrics.bleu._get_tokenizer(_lowerCAmelCase )()(_lowerCAmelCase ) else: snake_case__ : Tuple = sacrebleu.TOKENIZERS[tokenizer]()(_lowerCAmelCase ) elif tokenizer == "moses": snake_case__ : Any = sacremoses.MosesTokenizer().tokenize(_lowerCAmelCase , return_str=_lowerCAmelCase , escape=_lowerCAmelCase ) elif tokenizer == "penn": snake_case__ : Tuple = sacremoses.MosesTokenizer().penn_tokenize(_lowerCAmelCase , return_str=_lowerCAmelCase ) else: snake_case__ : Union[str, Any] = sentence if not return_str: snake_case__ : str = normalized_sent.split() return normalized_sent def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[int]: if not (len(_lowerCAmelCase ) == len(_lowerCAmelCase ) == len(_lowerCAmelCase )): raise ValueError("""Sources length must match predictions and references lengths.""" ) snake_case__ : Optional[Any] = 0 for src, pred, refs in zip(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): sari_score += SARIsent(normalize(_lowerCAmelCase ) , normalize(_lowerCAmelCase ) , [normalize(_lowerCAmelCase ) for sent in refs] ) snake_case__ : int = sari_score / len(_lowerCAmelCase ) return 100 * sari_score def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase="exp" , _lowerCAmelCase=None , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=False , ) -> Any: snake_case__ : Optional[int] = len(references[0] ) if any(len(_lowerCAmelCase ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) snake_case__ : Tuple = [[refs[i] for refs in references] for i in range(_lowerCAmelCase )] snake_case__ : List[str] = sacrebleu.corpus_bleu( _lowerCAmelCase , _lowerCAmelCase , smooth_method=_lowerCAmelCase , smooth_value=_lowerCAmelCase , force=_lowerCAmelCase , lowercase=_lowerCAmelCase , use_effective_order=_lowerCAmelCase , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): """simple docstring""" def lowerCamelCase ( self : List[Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=[ """https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py""", """https://github.com/cocoxu/simplification/blob/master/SARI.py""", """https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py""", """https://github.com/mjpost/sacreBLEU""", ] , reference_urls=[ """https://www.aclweb.org/anthology/Q16-1029.pdf""", """https://github.com/mjpost/sacreBLEU""", """https://en.wikipedia.org/wiki/BLEU""", """https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""", ] , ) def lowerCamelCase ( self : Optional[Any] , snake_case_ : Optional[Any] , snake_case_ : Dict , snake_case_ : str ): snake_case__ : List[str] = {} result.update({"""sari""": compute_sari(sources=snake_case_ , predictions=snake_case_ , references=snake_case_ )} ) result.update({"""sacrebleu""": compute_sacrebleu(predictions=snake_case_ , references=snake_case_ )} ) result.update({"""exact""": compute_em(predictions=snake_case_ , references=snake_case_ )} ) return result
35
'''simple docstring''' def _A (lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :int ) -> float: '''simple docstring''' _a = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def _A () -> Tuple: '''simple docstring''' print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
168
0
"""simple docstring""" import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def _UpperCAmelCase ( __lowerCamelCase : str ) -> List[str]: _snake_case = model.config _snake_case = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=1_28 , ) _snake_case = MBartConfig( is_decoder=__lowerCamelCase , is_encoder_decoder=__lowerCamelCase , add_cross_attention=__lowerCamelCase , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=__lowerCamelCase , add_final_layer_norm=__lowerCamelCase , ) return encoder_config, decoder_config def _UpperCAmelCase ( __lowerCamelCase : Optional[Any] ) -> Tuple: if "encoder.model" in name: _snake_case = name.replace('''encoder.model''' , '''encoder''' ) if "decoder.model" in name: _snake_case = name.replace('''decoder.model''' , '''decoder''' ) if "patch_embed.proj" in name: _snake_case = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: _snake_case = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if name.startswith('''encoder''' ): if "layers" in name: _snake_case = '''encoder.''' + name if "attn.proj" in name: _snake_case = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name and "mask" not in name: _snake_case = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: _snake_case = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: _snake_case = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: _snake_case = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: _snake_case = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": _snake_case = '''encoder.layernorm.weight''' if name == "encoder.norm.bias": _snake_case = '''encoder.layernorm.bias''' return name def _UpperCAmelCase ( __lowerCamelCase : int , __lowerCamelCase : Dict ) -> Dict: for key in orig_state_dict.copy().keys(): _snake_case = orig_state_dict.pop(__lowerCamelCase ) if "qkv" in key: _snake_case = key.split('''.''' ) _snake_case = int(key_split[3] ) _snake_case = int(key_split[5] ) _snake_case = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _snake_case = val[:dim, :] _snake_case = val[dim : dim * 2, :] _snake_case = val[-dim:, :] else: _snake_case = val[:dim] _snake_case = val[dim : dim * 2] _snake_case = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: _snake_case = val return orig_state_dict def _UpperCAmelCase ( __lowerCamelCase : int , __lowerCamelCase : str=None , __lowerCamelCase : Tuple=False ) -> Any: # load original model _snake_case = DonutModel.from_pretrained(__lowerCamelCase ).eval() # load HuggingFace model _snake_case , _snake_case = get_configs(__lowerCamelCase ) _snake_case = DonutSwinModel(__lowerCamelCase ) _snake_case = MBartForCausalLM(__lowerCamelCase ) _snake_case = VisionEncoderDecoderModel(encoder=__lowerCamelCase , decoder=__lowerCamelCase ) model.eval() _snake_case = original_model.state_dict() _snake_case = convert_state_dict(__lowerCamelCase , __lowerCamelCase ) model.load_state_dict(__lowerCamelCase ) # verify results on scanned document _snake_case = load_dataset('''hf-internal-testing/example-documents''' ) _snake_case = dataset['''test'''][0]['''image'''].convert('''RGB''' ) _snake_case = XLMRobertaTokenizerFast.from_pretrained(__lowerCamelCase , from_slow=__lowerCamelCase ) _snake_case = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) _snake_case = DonutProcessor(__lowerCamelCase , __lowerCamelCase ) _snake_case = processor(__lowerCamelCase , return_tensors='''pt''' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": _snake_case = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' _snake_case = '''When is the coffee break?''' _snake_case = task_prompt.replace('''{user_input}''' , __lowerCamelCase ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": _snake_case = '''<s_rvlcdip>''' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: _snake_case = '''<s_cord>''' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": _snake_case = '''s_cord-v2>''' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": _snake_case = '''<s_zhtrainticket>''' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt _snake_case = '''hello world''' else: raise ValueError('''Model name not supported''' ) _snake_case = original_model.decoder.tokenizer(__lowerCamelCase , add_special_tokens=__lowerCamelCase , return_tensors='''pt''' )[ '''input_ids''' ] _snake_case = original_model.encoder.model.patch_embed(__lowerCamelCase ) _snake_case , _snake_case = model.encoder.embeddings(__lowerCamelCase ) assert torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1E-3 ) # verify encoder hidden states _snake_case = original_model.encoder(__lowerCamelCase ) _snake_case = model.encoder(__lowerCamelCase ).last_hidden_state assert torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1E-2 ) # verify decoder hidden states _snake_case = original_model(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ).logits _snake_case = model(__lowerCamelCase , decoder_input_ids=__lowerCamelCase ).logits assert torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) if push_to_hub: model.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) processor.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='naver-clova-ix/donut-base-finetuned-docvqa', required=False, type=str, help='Name of the original model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, required=False, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub.', ) UpperCAmelCase__ = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
40
"""simple docstring""" import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class lowerCAmelCase__ : def __init__( self : List[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[Any]=2 , _lowerCamelCase : List[str]=True , _lowerCamelCase : Optional[Any]=False , _lowerCamelCase : Optional[Any]=10 , _lowerCamelCase : Dict=3 , _lowerCamelCase : Optional[int]=32 * 8 , _lowerCamelCase : Optional[int]=32 * 8 , _lowerCamelCase : Dict=4 , _lowerCamelCase : Optional[int]=64 , ): _snake_case = parent _snake_case = batch_size _snake_case = is_training _snake_case = use_auxiliary_loss _snake_case = num_queries _snake_case = num_channels _snake_case = min_size _snake_case = max_size _snake_case = num_labels _snake_case = hidden_dim _snake_case = hidden_dim def lowercase ( self : List[str] ): _snake_case = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _lowerCamelCase ) _snake_case = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_lowerCamelCase ) _snake_case = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_lowerCamelCase ) > 0.5 ).float() _snake_case = (torch.rand((self.batch_size, self.num_labels) , device=_lowerCamelCase ) > 0.5).long() _snake_case = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowercase ( self : Optional[Any] ): _snake_case = MaskaFormerConfig( hidden_size=self.hidden_dim , ) _snake_case = self.num_queries _snake_case = self.num_labels _snake_case = [1, 1, 1, 1] _snake_case = self.num_channels _snake_case = 64 _snake_case = 128 _snake_case = self.hidden_dim _snake_case = self.hidden_dim _snake_case = self.hidden_dim return config def lowercase ( self : Any ): _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = self.prepare_config_and_inputs() _snake_case = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def lowercase ( self : Union[str, Any] , _lowerCamelCase : List[Any] , _lowerCamelCase : int ): _snake_case = output.encoder_hidden_states _snake_case = output.pixel_decoder_hidden_states _snake_case = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_lowerCamelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowerCamelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowerCamelCase ) , config.decoder_layers ) def lowercase ( self : List[Any] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Any , _lowerCamelCase : List[Any] , _lowerCamelCase : Dict=False ): with torch.no_grad(): _snake_case = MaskaFormerModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() _snake_case = model(pixel_values=_lowerCamelCase , pixel_mask=_lowerCamelCase ) _snake_case = model(_lowerCamelCase , output_hidden_states=_lowerCamelCase ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_lowerCamelCase , _lowerCamelCase ) def lowercase ( self : int , _lowerCamelCase : Dict , _lowerCamelCase : List[Any] , _lowerCamelCase : Any , _lowerCamelCase : str , _lowerCamelCase : Union[str, Any] ): _snake_case = MaskaFormerForUniversalSegmentation(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() def comm_check_on_output(_lowerCamelCase : List[str] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): _snake_case = model(pixel_values=_lowerCamelCase , pixel_mask=_lowerCamelCase ) _snake_case = model(_lowerCamelCase ) comm_check_on_output(_lowerCamelCase ) _snake_case = model( pixel_values=_lowerCamelCase , pixel_mask=_lowerCamelCase , mask_labels=_lowerCamelCase , class_labels=_lowerCamelCase ) comm_check_on_output(_lowerCamelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class lowerCAmelCase__ ( A_ , A_ , unittest.TestCase ): __a = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () __a = {"""feature-extraction""": MaskaFormerModel} if is_torch_available() else {} __a = False __a = False __a = False __a = False def lowercase ( self : int ): _snake_case = MaskaFormerModelTester(self ) _snake_case = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase ) def lowercase ( self : Dict ): self.config_tester.run_common_tests() def lowercase ( self : Tuple ): _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_lowerCamelCase , **_lowerCamelCase , output_hidden_states=_lowerCamelCase ) def lowercase ( self : Any ): _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_lowerCamelCase ) @unittest.skip(reason='''Mask2Former does not use inputs_embeds''' ) def lowercase ( self : Optional[int] ): pass @unittest.skip(reason='''Mask2Former does not have a get_input_embeddings method''' ) def lowercase ( self : Dict ): pass @unittest.skip(reason='''Mask2Former is not a generative model''' ) def lowercase ( self : int ): pass @unittest.skip(reason='''Mask2Former does not use token embeddings''' ) def lowercase ( self : List[str] ): pass @require_torch_multi_gpu @unittest.skip( reason='''Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def lowercase ( self : Optional[int] ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowercase ( self : str ): pass def lowercase ( self : Optional[int] ): _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(_lowerCamelCase ) _snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) @slow def lowercase ( self : Optional[int] ): for model_name in ["facebook/mask2former-swin-small-coco-instance"]: _snake_case = MaskaFormerModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def lowercase ( self : List[Any] ): _snake_case = (self.model_tester.min_size,) * 2 _snake_case = { '''pixel_values''': torch.randn((2, 3, *size) , device=_lowerCamelCase ), '''mask_labels''': torch.randn((2, 10, *size) , device=_lowerCamelCase ), '''class_labels''': torch.zeros(2 , 10 , device=_lowerCamelCase ).long(), } _snake_case = self.model_tester.get_config() _snake_case = MaskaFormerForUniversalSegmentation(_lowerCamelCase ).to(_lowerCamelCase ) _snake_case = model(**_lowerCamelCase ) self.assertTrue(outputs.loss is not None ) def lowercase ( self : Union[str, Any] ): _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_lowerCamelCase , **_lowerCamelCase , output_hidden_states=_lowerCamelCase ) def lowercase ( self : str ): _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(_lowerCamelCase ).to(_lowerCamelCase ) _snake_case = model(**_lowerCamelCase , output_attentions=_lowerCamelCase ) self.assertTrue(outputs.attentions is not None ) def lowercase ( self : str ): if not self.model_tester.is_training: return _snake_case = self.all_model_classes[1] _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs() _snake_case = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.train() _snake_case = model(_lowerCamelCase , mask_labels=_lowerCamelCase , class_labels=_lowerCamelCase ).loss loss.backward() def lowercase ( self : Optional[int] ): _snake_case = self.all_model_classes[1] _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs() _snake_case = True _snake_case = True _snake_case = model_class(_lowerCamelCase ).to(_lowerCamelCase ) model.train() _snake_case = model(_lowerCamelCase , mask_labels=_lowerCamelCase , class_labels=_lowerCamelCase ) _snake_case = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _snake_case = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() _snake_case = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _snake_case = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_lowerCamelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) UpperCAmelCase__ = 1e-4 def _UpperCAmelCase ( ) -> Tuple: _snake_case = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class lowerCAmelCase__ ( unittest.TestCase ): @cached_property def lowercase ( self : Optional[Any] ): return "facebook/mask2former-swin-small-coco-instance" @cached_property def lowercase ( self : int ): return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def lowercase ( self : Any ): _snake_case = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_lowerCamelCase ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) _snake_case = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_lowerCamelCase , (1, 3, 384, 384) ) with torch.no_grad(): _snake_case = model(**_lowerCamelCase ) _snake_case = torch.tensor( [[-0.2_7_9_0, -1.0_7_1_7, -1.1_6_6_8], [-0.5_1_2_8, -0.3_1_2_8, -0.4_9_8_7], [-0.5_8_3_2, 0.1_9_7_1, -0.0_1_9_7]] ).to(_lowerCamelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) _snake_case = torch.tensor( [[0.8_9_7_3, 1.1_8_4_7, 1.1_7_7_6], [1.1_9_3_4, 1.5_0_4_0, 1.5_1_2_8], [1.1_1_5_3, 1.4_4_8_6, 1.4_9_5_1]] ).to(_lowerCamelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) _snake_case = torch.tensor( [[2.1_1_5_2, 1.7_0_0_0, -0.8_6_0_3], [1.5_8_0_8, 1.8_0_0_4, -0.9_3_5_3], [1.6_0_4_3, 1.7_4_9_5, -0.5_9_9_9]] ).to(_lowerCamelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) def lowercase ( self : str ): _snake_case = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_lowerCamelCase ).eval() _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) _snake_case = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_lowerCamelCase , (1, 3, 384, 384) ) with torch.no_grad(): _snake_case = model(**_lowerCamelCase ) # masks_queries_logits _snake_case = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) _snake_case = [ [-8.7_8_3_9, -9.0_0_5_6, -8.8_1_2_1], [-7.4_1_0_4, -7.0_3_1_3, -6.5_4_0_1], [-6.6_1_0_5, -6.3_4_2_7, -6.4_6_7_5], ] _snake_case = torch.tensor(_lowerCamelCase ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) # class_queries_logits _snake_case = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) _snake_case = torch.tensor( [ [1.8_3_2_4, -8.0_8_3_5, -4.1_9_2_2], [0.8_4_5_0, -9.0_0_5_0, -3.6_0_5_3], [0.3_0_4_5, -7.7_2_9_3, -3.0_2_7_5], ] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) def lowercase ( self : Optional[int] ): _snake_case = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_lowerCamelCase ).eval() _snake_case = self.default_image_processor _snake_case = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='''pt''' , ) _snake_case = inputs['''pixel_values'''].to(_lowerCamelCase ) _snake_case = [el.to(_lowerCamelCase ) for el in inputs['''mask_labels''']] _snake_case = [el.to(_lowerCamelCase ) for el in inputs['''class_labels''']] with torch.no_grad(): _snake_case = model(**_lowerCamelCase ) self.assertTrue(outputs.loss is not None )
40
1
'''simple docstring''' import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def A_ ( self , snake_case ): '''simple docstring''' UpperCAmelCase : Dict = 3 UpperCAmelCase : Tuple = 2_5_0 UpperCAmelCase : Union[str, Any] = ids_tensor((batch_size, length) , snake_case ) UpperCAmelCase : int = torch.ones((batch_size, length) , device=snake_case , dtype=torch.float ) / length return input_ids, scores def A_ ( self ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase : Tuple = self._get_tensors(5 ) UpperCAmelCase : str = StoppingCriteriaList( [ MaxLengthCriteria(max_length=1_0 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(snake_case , snake_case ) ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = self._get_tensors(9 ) self.assertFalse(criteria(snake_case , snake_case ) ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = self._get_tensors(1_0 ) self.assertTrue(criteria(snake_case , snake_case ) ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Optional[Any] = MaxLengthCriteria(max_length=1_0 ) UpperCAmelCase , UpperCAmelCase : Dict = self._get_tensors(5 ) self.assertFalse(criteria(snake_case , snake_case ) ) UpperCAmelCase , UpperCAmelCase : int = self._get_tensors(9 ) self.assertFalse(criteria(snake_case , snake_case ) ) UpperCAmelCase , UpperCAmelCase : List[Any] = self._get_tensors(1_0 ) self.assertTrue(criteria(snake_case , snake_case ) ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : List[str] = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) UpperCAmelCase , UpperCAmelCase : str = self._get_tensors(5 ) self.assertFalse(criteria(snake_case , snake_case ) ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = self._get_tensors(9 ) self.assertFalse(criteria(snake_case , snake_case ) ) UpperCAmelCase , UpperCAmelCase : str = self._get_tensors(1_0 ) self.assertTrue(criteria(snake_case , snake_case ) ) UpperCAmelCase : str = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 1_0 ) def A_ ( self ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase : str = self._get_tensors(5 ) UpperCAmelCase : Optional[int] = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(snake_case , snake_case ) ) UpperCAmelCase : Any = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(snake_case , snake_case ) ) def A_ ( self ): '''simple docstring''' validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(1_0 )] ) , 1_0 ) with self.assertWarns(snake_case ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(1_0 )] ) , 1_1 ) UpperCAmelCase : List[Any] = validate_stopping_criteria(StoppingCriteriaList() , 1_1 ) self.assertEqual(len(snake_case ) , 1 )
311
'''simple docstring''' import argparse from collections import defaultdict import yaml a : str = "docs/source/en/_toctree.yml" def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : Dict = defaultdict(__magic_name__ ) for doc in model_doc: counts[doc["local"]] += 1 UpperCAmelCase : List[Any] = [key for key, value in counts.items() if value > 1] UpperCAmelCase : Dict = [] for duplicate_key in duplicates: UpperCAmelCase : Union[str, Any] = list({doc["title"] for doc in model_doc if doc["local"] == duplicate_key} ) if len(__magic_name__ ) > 1: raise ValueError( F"{duplicate_key} is present several times in the documentation table of content at " "`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the " "others." ) # Only add this once new_doc.append({"local": duplicate_key, "title": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc["local"]] == 1] ) # Sort return sorted(__magic_name__ , key=lambda __magic_name__ : s["title"].lower() ) def lowercase ( __magic_name__=False ): '''simple docstring''' with open(__magic_name__ , encoding="utf-8" ) as f: UpperCAmelCase : Any = yaml.safe_load(f.read() ) # Get to the API doc UpperCAmelCase : Optional[int] = 0 while content[api_idx]["title"] != "API": api_idx += 1 UpperCAmelCase : Union[str, Any] = content[api_idx]["sections"] # Then to the model doc UpperCAmelCase : Any = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 UpperCAmelCase : str = api_doc[model_idx]["sections"] UpperCAmelCase : Any = [(idx, section) for idx, section in enumerate(__magic_name__ ) if "sections" in section] UpperCAmelCase : Optional[int] = False for idx, modality_doc in modalities_docs: UpperCAmelCase : int = modality_doc["sections"] UpperCAmelCase : int = clean_model_doc_toc(__magic_name__ ) if old_modality_doc != new_modality_doc: UpperCAmelCase : int = True if overwrite: UpperCAmelCase : Dict = new_modality_doc if diff: if overwrite: UpperCAmelCase : Any = model_doc UpperCAmelCase : Any = api_doc with open(__magic_name__ , "w" , encoding="utf-8" ) as f: f.write(yaml.dump(__magic_name__ , allow_unicode=__magic_name__ ) ) else: raise ValueError( "The model doc part of the table of content is not properly sorted, run `make style` to fix this." ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") a : Optional[Any] = parser.parse_args() check_model_doc(args.fix_and_overwrite)
311
1
"""simple docstring""" import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch _SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) @dataclass class __a : """simple docstring""" def __init__( self : List[str] , lowercase_ : Tuple=False , lowercase_ : List[Any]=False , lowercase_ : Dict=6.0 , lowercase_ : Any=None , lowercase_ : Union[str, Any]=False , lowercase_ : Any=False , lowercase_ : Union[str, Any]=None , lowercase_ : List[str]="fp4" , lowercase_ : Optional[int]=False , **lowercase_ : str , ): UpperCamelCase__ : List[str] =load_in_abit UpperCamelCase__ : Optional[int] =load_in_abit UpperCamelCase__ : Tuple =llm_inta_threshold UpperCamelCase__ : int =llm_inta_skip_modules UpperCamelCase__ : Union[str, Any] =llm_inta_enable_fpaa_cpu_offload UpperCamelCase__ : str =llm_inta_has_fpaa_weight UpperCamelCase__ : Tuple =bnb_abit_quant_type UpperCamelCase__ : Optional[int] =bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: UpperCamelCase__ : Union[str, Any] =torch.floataa elif isinstance(lowercase_ , lowercase_ ): UpperCamelCase__ : str =getattr(lowercase_ , lowercase_ ) elif isinstance(lowercase_ , torch.dtype ): UpperCamelCase__ : Union[str, Any] =bnb_abit_compute_dtype else: raise ValueError('''bnb_4bit_compute_dtype must be a string or a torch.dtype''' ) self.post_init() def _lowerCAmelCase ( self : Tuple ): if not isinstance(self.llm_inta_threshold , lowercase_ ): raise ValueError('''llm_int8_threshold must be a float''' ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , lowercase_ ): raise ValueError('''llm_int8_skip_modules must be a list of strings''' ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , lowercase_ ): raise ValueError('''llm_int8_enable_fp32_cpu_offload must be a boolean''' ) if not isinstance(self.llm_inta_has_fpaa_weight , lowercase_ ): raise ValueError('''llm_int8_has_fp16_weight must be a boolean''' ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ): raise ValueError('''bnb_4bit_compute_dtype must be torch.dtype''' ) if not isinstance(self.bnb_abit_quant_type , lowercase_ ): raise ValueError('''bnb_4bit_quant_type must be a string''' ) if not isinstance(self.bnb_abit_use_double_quant , lowercase_ ): raise ValueError('''bnb_4bit_use_double_quant must be a boolean''' ) if self.load_in_abit and not version.parse(importlib.metadata.version('''bitsandbytes''' ) ) >= version.parse( '''0.39.0''' ): raise ValueError( '''4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version''' ) def _lowerCAmelCase ( self : int ): return self.load_in_abit or self.load_in_abit def _lowerCAmelCase ( self : List[Any] ): if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def _lowerCAmelCase ( cls : Tuple , lowercase_ : Any , lowercase_ : List[Any] , **lowercase_ : int ): UpperCamelCase__ : str =cls(**lowercase_ ) UpperCamelCase__ : int =[] for key, value in kwargs.items(): if hasattr(lowercase_ , lowercase_ ): setattr(lowercase_ , lowercase_ , lowercase_ ) to_remove.append(lowercase_ ) for key in to_remove: kwargs.pop(lowercase_ , lowercase_ ) if return_unused_kwargs: return config, kwargs else: return config def _lowerCAmelCase ( self : List[str] , lowercase_ : Union[str, os.PathLike] ): with open(lowercase_ , '''w''' , encoding='''utf-8''' ) as writer: UpperCamelCase__ : Union[str, Any] =self.to_dict() UpperCamelCase__ : Dict =json.dumps(lowercase_ , indent=2 , sort_keys=lowercase_ ) + '''\n''' writer.write(lowercase_ ) def _lowerCAmelCase ( self : Optional[Any] ): UpperCamelCase__ : List[str] =copy.deepcopy(self.__dict__ ) UpperCamelCase__ : Tuple =str(output['''bnb_4bit_compute_dtype'''] ).split('''.''' )[1] return output def __repr__( self : Optional[int] ): return f'''{self.__class__.__name__} {self.to_json_string()}''' def _lowerCAmelCase ( self : int , lowercase_ : bool = True ): if use_diff is True: UpperCamelCase__ : Dict =self.to_diff_dict() else: UpperCamelCase__ : List[str] =self.to_dict() return json.dumps(lowercase_ , indent=2 , sort_keys=lowercase_ ) + "\n" def _lowerCAmelCase ( self : Optional[Any] ): UpperCamelCase__ : Any =self.to_dict() # get the default config dict UpperCamelCase__ : List[Any] =BitsAndBytesConfig().to_dict() UpperCamelCase__ : Dict ={} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: UpperCamelCase__ : List[str] =value return serializable_config_dict
359
"""simple docstring""" import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml _SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) def _lowerCAmelCase ( UpperCAmelCase : bool , UpperCAmelCase : bool ): '''simple docstring''' def run_func(UpperCAmelCase : List[str] ): @wraps(UpperCAmelCase ) def run_in_eager_mode(*UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Dict ): return func(*UpperCAmelCase , **UpperCAmelCase ) @wraps(UpperCAmelCase ) @tf.function(experimental_compile=UpperCAmelCase ) def run_in_graph_mode(*UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Tuple ): return func(*UpperCAmelCase , **UpperCAmelCase ) if do_eager_mode is True: if use_xla is not False: raise ValueError( '''Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.''' ) return run_in_eager_mode else: return run_in_graph_mode return run_func def _lowerCAmelCase ( UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int ): '''simple docstring''' UpperCamelCase__ : Tuple =random.Random() UpperCamelCase__ : List[str] =[rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(UpperCAmelCase , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class __a ( snake_case__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = "TensorFlow" @property def _lowerCAmelCase ( self : int ): return tf.__version__ def _lowerCAmelCase ( self : List[str] , lowercase_ : str , lowercase_ : int , lowercase_ : int ): # initialize GPU on separate process UpperCamelCase__ : Optional[int] =self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) UpperCamelCase__ : str =self._prepare_inference_func(lowercase_ , lowercase_ , lowercase_ ) return self._measure_speed(_inference ) def _lowerCAmelCase ( self : str , lowercase_ : str , lowercase_ : int , lowercase_ : int ): UpperCamelCase__ : List[str] =self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) UpperCamelCase__ : int =self._prepare_train_func(lowercase_ , lowercase_ , lowercase_ ) return self._measure_speed(_train ) def _lowerCAmelCase ( self : Any , lowercase_ : str , lowercase_ : int , lowercase_ : int ): # initialize GPU on separate process if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , lowercase_ ) UpperCamelCase__ : Union[str, Any] =self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) UpperCamelCase__ : Optional[Any] =self._prepare_inference_func(lowercase_ , lowercase_ , lowercase_ ) return self._measure_memory(_inference ) def _lowerCAmelCase ( self : Dict , lowercase_ : str , lowercase_ : int , lowercase_ : int ): if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , lowercase_ ) UpperCamelCase__ : Tuple =self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) UpperCamelCase__ : List[Any] =self._prepare_train_func(lowercase_ , lowercase_ , lowercase_ ) return self._measure_memory(_train ) def _lowerCAmelCase ( self : Union[str, Any] , lowercase_ : str , lowercase_ : int , lowercase_ : int ): UpperCamelCase__ : Optional[Any] =self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError('''Mixed precision is currently not supported.''' ) UpperCamelCase__ : Dict =( hasattr(lowercase_ , '''architectures''' ) and isinstance(config.architectures , lowercase_ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: UpperCamelCase__ : Dict ='''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model UpperCamelCase__ : List[str] =__import__('''transformers''' , fromlist=[model_class] ) UpperCamelCase__ : Optional[int] =getattr(lowercase_ , lowercase_ ) UpperCamelCase__ : Optional[int] =model_cls(lowercase_ ) except ImportError: raise ImportError( f'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' ''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' ) else: UpperCamelCase__ : Any =TF_MODEL_MAPPING[config.__class__](lowercase_ ) # encoder-decoder has vocab size saved differently UpperCamelCase__ : Optional[int] =config.vocab_size if hasattr(lowercase_ , '''vocab_size''' ) else config.encoder.vocab_size UpperCamelCase__ : List[Any] =random_input_ids(lowercase_ , lowercase_ , lowercase_ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(lowercase_ , decoder_input_ids=lowercase_ , training=lowercase_ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(lowercase_ , training=lowercase_ ) UpperCamelCase__ : Dict =encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def _lowerCAmelCase ( self : Dict , lowercase_ : str , lowercase_ : int , lowercase_ : int ): UpperCamelCase__ : List[str] =self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError('''Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.''' ) if self.args.fpaa: raise NotImplementedError('''Mixed precision is currently not supported.''' ) UpperCamelCase__ : Optional[Any] =( hasattr(lowercase_ , '''architectures''' ) and isinstance(config.architectures , lowercase_ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: UpperCamelCase__ : Tuple ='''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model UpperCamelCase__ : List[Any] =__import__('''transformers''' , fromlist=[model_class] ) UpperCamelCase__ : Dict =getattr(lowercase_ , lowercase_ ) UpperCamelCase__ : Tuple =model_cls(lowercase_ ) except ImportError: raise ImportError( f'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' ''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' ) else: UpperCamelCase__ : Optional[int] =TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](lowercase_ ) # encoder-decoder has vocab size saved differently UpperCamelCase__ : str =config.vocab_size if hasattr(lowercase_ , '''vocab_size''' ) else config.encoder.vocab_size UpperCamelCase__ : Union[str, Any] =random_input_ids(lowercase_ , lowercase_ , lowercase_ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): UpperCamelCase__ : Optional[Any] =model(lowercase_ , decoder_input_ids=lowercase_ , labels=lowercase_ , training=lowercase_ )[0] UpperCamelCase__ : Dict =tf.gradients(lowercase_ , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): UpperCamelCase__ : Dict =model(lowercase_ , labels=lowercase_ , training=lowercase_ )[0] UpperCamelCase__ : List[str] =tf.gradients(lowercase_ , model.trainable_variables ) return gradients UpperCamelCase__ : List[Any] =encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def _lowerCAmelCase ( self : Tuple , lowercase_ : Union[str, Any] ): with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info('''Do inference on TPU. Running model 5 times to stabilize compilation''' ) timeit.repeat(lowercase_ , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average UpperCamelCase__ : int =timeit.repeat( lowercase_ , repeat=self.args.repeat , number=10 , ) return min(lowercase_ ) / 1_0.0 except ResourceExhaustedError as e: self.print_fn(f'''Doesn\'t fit on GPU. {e}''' ) def _lowerCAmelCase ( self : Dict , lowercase_ : Callable[[], None] ): logger.info( '''Note that TensorFlow allocates more memory than ''' '''it might need to speed up computation. ''' '''The memory reported here corresponds to the memory ''' '''reported by `nvidia-smi`, which can vary depending ''' '''on total available memory on the GPU that is used.''' ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( '''`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory''' ''' consumption line by line.''' ) UpperCamelCase__ : Tuple =start_memory_tracing('''transformers''' ) if self.args.is_tpu: # tpu raise NotImplementedError( '''Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking''' ''' with `args.memory=False`''' ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( '''py3nvml not installed, we won\'t log GPU memory usage. ''' '''Install py3nvml (pip install py3nvml) to log information about GPU.''' ) UpperCamelCase__ : List[str] ='''N/A''' else: logger.info( '''Measuring total GPU usage on GPU device. Make sure to not have additional processes''' ''' running on the same GPU.''' ) # init nvml nvml.nvmlInit() func() UpperCamelCase__ : Optional[Any] =nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) UpperCamelCase__ : Dict =nvml.nvmlDeviceGetMemoryInfo(lowercase_ ) UpperCamelCase__ : str =meminfo.used UpperCamelCase__ : int =Memory(lowercase_ ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( '''When enabling line by line tracing, the max peak memory for CPU is inaccurate in''' ''' TensorFlow.''' ) UpperCamelCase__ : Union[str, Any] =None else: UpperCamelCase__ : Optional[int] =measure_peak_memory_cpu(lowercase_ ) UpperCamelCase__ : Dict =Memory(lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else memory_bytes if self.args.trace_memory_line_by_line: UpperCamelCase__ : Tuple =stop_memory_tracing(lowercase_ ) if memory is None: UpperCamelCase__ : List[Any] =summary.total else: UpperCamelCase__ : List[Any] =None return memory, summary except ResourceExhaustedError as e: self.print_fn(f'''Doesn\'t fit on GPU. {e}''' ) return "N/A", None
157
0
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node _A = 4 _A = 3 class A ( __UpperCAmelCase ): pass def __UpperCamelCase ( _A ): for shard in shards: for i in range(_A ): yield {"i": i, "shard": shard} def __UpperCamelCase ( ): lowerCAmelCase_ = int(os.environ['''RANK'''] ) lowerCAmelCase_ = int(os.environ['''WORLD_SIZE'''] ) lowerCAmelCase_ = ArgumentParser() parser.add_argument('''--streaming''' , type=_A ) parser.add_argument('''--local_rank''' , type=_A ) parser.add_argument('''--num_workers''' , type=_A , default=0 ) lowerCAmelCase_ = parser.parse_args() lowerCAmelCase_ = args.streaming lowerCAmelCase_ = args.num_workers lowerCAmelCase_ = {'''shards''': [f"shard_{shard_idx}" for shard_idx in range(_A )]} lowerCAmelCase_ = IterableDataset.from_generator(_A , gen_kwargs=_A ) if not streaming: lowerCAmelCase_ = Dataset.from_list(list(_A ) ) lowerCAmelCase_ = split_dataset_by_node(_A , rank=_A , world_size=_A ) lowerCAmelCase_ = torch.utils.data.DataLoader(_A , num_workers=_A ) lowerCAmelCase_ = NUM_SHARDS * NUM_ITEMS_PER_SHARD lowerCAmelCase_ = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) lowerCAmelCase_ = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f"local_size {local_size} != expected_local_size {expected_local_size}" ) if __name__ == "__main__": main()
278
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __UpperCamelCase ( _A ): lowerCAmelCase_ = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2] lowerCAmelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False lowerCAmelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False lowerCAmelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: lowerCAmelCase_ = [3, 3, 3, 3] lowerCAmelCase_ = [5, 5, 5, 5] elif "fl4" in model_name: lowerCAmelCase_ = [4, 4, 4, 4] lowerCAmelCase_ = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: lowerCAmelCase_ = [3, 3, 3, 3] if "lrf" in model_name: lowerCAmelCase_ = [3, 3, 3, 3] else: lowerCAmelCase_ = [2, 2, 2, 2] if "tiny" in model_name: lowerCAmelCase_ = 96 elif "small" in model_name: lowerCAmelCase_ = 96 elif "base" in model_name: lowerCAmelCase_ = 128 elif "large" in model_name: lowerCAmelCase_ = 192 elif "xlarge" in model_name: lowerCAmelCase_ = 256 elif "huge" in model_name: lowerCAmelCase_ = 352 # set label information lowerCAmelCase_ = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: lowerCAmelCase_ = '''imagenet-22k-id2label.json''' else: lowerCAmelCase_ = '''imagenet-1k-id2label.json''' lowerCAmelCase_ = json.load(open(hf_hub_download(_A , _A , repo_type='''dataset''' ) , '''r''' ) ) lowerCAmelCase_ = {int(_A ): v for k, v in idalabel.items()} lowerCAmelCase_ = {v: k for k, v in idalabel.items()} lowerCAmelCase_ = FocalNetConfig( embed_dim=_A , depths=_A , focal_levels=_A , focal_windows=_A , use_conv_embed=_A , idalabel=_A , labelaid=_A , use_post_layernorm=_A , use_layerscale=_A , ) return config def __UpperCamelCase ( _A ): if "patch_embed.proj" in name: lowerCAmelCase_ = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowerCAmelCase_ = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: lowerCAmelCase_ = '''encoder.''' + name if "encoder.layers" in name: lowerCAmelCase_ = name.replace('''encoder.layers''' , '''encoder.stages''' ) if "downsample.proj" in name: lowerCAmelCase_ = name.replace('''downsample.proj''' , '''downsample.projection''' ) if "blocks" in name: lowerCAmelCase_ = name.replace('''blocks''' , '''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: lowerCAmelCase_ = name.replace('''modulation.f''' , '''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: lowerCAmelCase_ = name.replace('''modulation.h''' , '''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: lowerCAmelCase_ = name.replace('''modulation.proj''' , '''modulation.projection_out''' ) if name == "norm.weight": lowerCAmelCase_ = '''layernorm.weight''' if name == "norm.bias": lowerCAmelCase_ = '''layernorm.bias''' if "head" in name: lowerCAmelCase_ = name.replace('''head''' , '''classifier''' ) else: lowerCAmelCase_ = '''focalnet.''' + name return name def __UpperCamelCase ( _A , _A , _A=False ): # fmt: off lowerCAmelCase_ = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on lowerCAmelCase_ = model_name_to_url[model_name] print('''Checkpoint URL: ''' , _A ) lowerCAmelCase_ = torch.hub.load_state_dict_from_url(_A , map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): lowerCAmelCase_ = state_dict.pop(_A ) lowerCAmelCase_ = val lowerCAmelCase_ = get_focalnet_config(_A ) lowerCAmelCase_ = FocalNetForImageClassification(_A ) model.eval() # load state dict model.load_state_dict(_A ) # verify conversion lowerCAmelCase_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase_ = BitImageProcessor( do_resize=_A , size={'''shortest_edge''': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=_A , crop_size=224 , do_normalize=_A , image_mean=_A , image_std=_A , ) lowerCAmelCase_ = Image.open(requests.get(_A , stream=_A ).raw ) lowerCAmelCase_ = processor(images=_A , return_tensors='''pt''' ) lowerCAmelCase_ = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ), ] ) lowerCAmelCase_ = image_transforms(_A ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , _A , atol=1E-4 ) lowerCAmelCase_ = model(**_A ) lowerCAmelCase_ = outputs.logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": lowerCAmelCase_ = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ) elif model_name == "focalnet-tiny-lrf": lowerCAmelCase_ = torch.tensor([1.1_6_6_9, 0.0_1_2_5, -0.1_6_9_5] ) elif model_name == "focalnet-small": lowerCAmelCase_ = torch.tensor([0.4_9_1_7, -0.0_4_3_0, 0.1_3_4_1] ) elif model_name == "focalnet-small-lrf": lowerCAmelCase_ = torch.tensor([-0.2_5_8_8, -0.5_3_4_2, -0.2_3_3_1] ) elif model_name == "focalnet-base": lowerCAmelCase_ = torch.tensor([-0.1_6_5_5, -0.4_0_9_0, -0.1_7_3_0] ) elif model_name == "focalnet-base-lrf": lowerCAmelCase_ = torch.tensor([0.5_3_0_6, -0.0_4_8_3, -0.3_9_2_8] ) assert torch.allclose(outputs.logits[0, :3] , _A , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"Saving model and processor of {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_A ) processor.save_pretrained(_A ) if push_to_hub: print(f"Pushing model and processor of {model_name} to the hub..." ) model.push_to_hub(f"{model_name}" ) processor.push_to_hub(f"{model_name}" ) if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''focalnet-tiny''', type=str, help='''Name of the FocalNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub.''', ) _A = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
278
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCAmelCase : Dict = { 'configuration_funnel': ['FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FunnelConfig'], 'convert_funnel_original_tf_checkpoint_to_pytorch': [], 'tokenization_funnel': ['FunnelTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : str = ['FunnelTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[Any] = [ 'FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST', 'FunnelBaseModel', 'FunnelForMaskedLM', 'FunnelForMultipleChoice', 'FunnelForPreTraining', 'FunnelForQuestionAnswering', 'FunnelForSequenceClassification', 'FunnelForTokenClassification', 'FunnelModel', 'FunnelPreTrainedModel', 'load_tf_weights_in_funnel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[Any] = [ 'TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFFunnelBaseModel', 'TFFunnelForMaskedLM', 'TFFunnelForMultipleChoice', 'TFFunnelForPreTraining', 'TFFunnelForQuestionAnswering', 'TFFunnelForSequenceClassification', 'TFFunnelForTokenClassification', 'TFFunnelModel', 'TFFunnelPreTrainedModel', ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys _lowerCAmelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
367
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : Union[str, Any] = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : str = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys _lowerCAmelCase : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
70
0
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase = 200 ) -> int: '''simple docstring''' snake_case_ = [1, 2, 5, 10, 20, 50, 100, 200] snake_case_ = [0] * (pence + 1) snake_case_ = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(__UpperCAmelCase, pence + 1, 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 7_3682
56
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor A_ = logging.get_logger(__name__) class _snake_case ( _a ): def __init__( self : Optional[int] ,*SCREAMING_SNAKE_CASE__ : Union[str, Any] ,**SCREAMING_SNAKE_CASE__ : str ): warnings.warn( "The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DonutImageProcessor instead." ,SCREAMING_SNAKE_CASE__ ,) super().__init__(*SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ )
139
0
def lowercase_ ( A__ ) -> "list[int]": """simple docstring""" if upper_limit < 0: raise ValueError("Limit for the Catalan sequence must be ≥ 0" ) snake_case = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 snake_case = 1 if upper_limit > 0: snake_case = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(A__ ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print("\n********* Catalan Numbers Using Dynamic Programming ************\n") print("\n*** Enter -1 at any time to quit ***") print("\nEnter the upper limit (≥ 0) for the Catalan number sequence: ", end="") try: while True: _A = int(input().strip()) if N < 0: print("\n********* Goodbye!! ************") break else: print(f"The Catalan numbers from 0 through {N} are:") print(catalan_numbers(N)) print("Try another upper limit for the sequence: ", end="") except (NameError, ValueError): print("\n********* Invalid input, goodbye! ************\n") import doctest doctest.testmod()
360
def lowercase_ ( A__ = 1000 ) -> int: """simple docstring""" return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
137
0
from ..utils import DummyObject, requires_backends class A_ ( metaclass=lowerCamelCase__ ): '''simple docstring''' _UpperCamelCase : Dict = ["""sentencepiece"""] def __init__( self , *snake_case , **snake_case ): requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=lowerCamelCase__ ): '''simple docstring''' _UpperCamelCase : List[Any] = ["""sentencepiece"""] def __init__( self , *snake_case , **snake_case ): requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=lowerCamelCase__ ): '''simple docstring''' _UpperCamelCase : Optional[Any] = ["""sentencepiece"""] def __init__( self , *snake_case , **snake_case ): requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=lowerCamelCase__ ): '''simple docstring''' _UpperCamelCase : Tuple = ["""sentencepiece"""] def __init__( self , *snake_case , **snake_case ): requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=lowerCamelCase__ ): '''simple docstring''' _UpperCamelCase : int = ["""sentencepiece"""] def __init__( self , *snake_case , **snake_case ): requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=lowerCamelCase__ ): '''simple docstring''' _UpperCamelCase : Tuple = ["""sentencepiece"""] def __init__( self , *snake_case , **snake_case ): requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=lowerCamelCase__ ): '''simple docstring''' _UpperCamelCase : List[Any] = ["""sentencepiece"""] def __init__( self , *snake_case , **snake_case ): requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=lowerCamelCase__ ): '''simple docstring''' _UpperCamelCase : int = ["""sentencepiece"""] def __init__( self , *snake_case , **snake_case ): requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=lowerCamelCase__ ): '''simple docstring''' _UpperCamelCase : Optional[int] = ["""sentencepiece"""] def __init__( self , *snake_case , **snake_case ): requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=lowerCamelCase__ ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = ["""sentencepiece"""] def __init__( self , *snake_case , **snake_case ): requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=lowerCamelCase__ ): '''simple docstring''' _UpperCamelCase : Optional[int] = ["""sentencepiece"""] def __init__( self , *snake_case , **snake_case ): requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=lowerCamelCase__ ): '''simple docstring''' _UpperCamelCase : Tuple = ["""sentencepiece"""] def __init__( self , *snake_case , **snake_case ): requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=lowerCamelCase__ ): '''simple docstring''' _UpperCamelCase : List[Any] = ["""sentencepiece"""] def __init__( self , *snake_case , **snake_case ): requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=lowerCamelCase__ ): '''simple docstring''' _UpperCamelCase : List[str] = ["""sentencepiece"""] def __init__( self , *snake_case , **snake_case ): requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=lowerCamelCase__ ): '''simple docstring''' _UpperCamelCase : str = ["""sentencepiece"""] def __init__( self , *snake_case , **snake_case ): requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=lowerCamelCase__ ): '''simple docstring''' _UpperCamelCase : Dict = ["""sentencepiece"""] def __init__( self , *snake_case , **snake_case ): requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=lowerCamelCase__ ): '''simple docstring''' _UpperCamelCase : Any = ["""sentencepiece"""] def __init__( self , *snake_case , **snake_case ): requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=lowerCamelCase__ ): '''simple docstring''' _UpperCamelCase : Dict = ["""sentencepiece"""] def __init__( self , *snake_case , **snake_case ): requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=lowerCamelCase__ ): '''simple docstring''' _UpperCamelCase : Any = ["""sentencepiece"""] def __init__( self , *snake_case , **snake_case ): requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=lowerCamelCase__ ): '''simple docstring''' _UpperCamelCase : Optional[Any] = ["""sentencepiece"""] def __init__( self , *snake_case , **snake_case ): requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=lowerCamelCase__ ): '''simple docstring''' _UpperCamelCase : List[str] = ["""sentencepiece"""] def __init__( self , *snake_case , **snake_case ): requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=lowerCamelCase__ ): '''simple docstring''' _UpperCamelCase : Any = ["""sentencepiece"""] def __init__( self , *snake_case , **snake_case ): requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=lowerCamelCase__ ): '''simple docstring''' _UpperCamelCase : List[str] = ["""sentencepiece"""] def __init__( self , *snake_case , **snake_case ): requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=lowerCamelCase__ ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = ["""sentencepiece"""] def __init__( self , *snake_case , **snake_case ): requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=lowerCamelCase__ ): '''simple docstring''' _UpperCamelCase : Any = ["""sentencepiece"""] def __init__( self , *snake_case , **snake_case ): requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=lowerCamelCase__ ): '''simple docstring''' _UpperCamelCase : Optional[int] = ["""sentencepiece"""] def __init__( self , *snake_case , **snake_case ): requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=lowerCamelCase__ ): '''simple docstring''' _UpperCamelCase : List[Any] = ["""sentencepiece"""] def __init__( self , *snake_case , **snake_case ): requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=lowerCamelCase__ ): '''simple docstring''' _UpperCamelCase : str = ["""sentencepiece"""] def __init__( self , *snake_case , **snake_case ): requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=lowerCamelCase__ ): '''simple docstring''' _UpperCamelCase : int = ["""sentencepiece"""] def __init__( self , *snake_case , **snake_case ): requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=lowerCamelCase__ ): '''simple docstring''' _UpperCamelCase : Tuple = ["""sentencepiece"""] def __init__( self , *snake_case , **snake_case ): requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=lowerCamelCase__ ): '''simple docstring''' _UpperCamelCase : Tuple = ["""sentencepiece"""] def __init__( self , *snake_case , **snake_case ): requires_backends(self , ['sentencepiece'] )
195
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __snake_case ( unittest.TestCase ): @property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase : Any =UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Tuple =self.dummy_uncond_unet UpperCAmelCase : Optional[int] =KarrasVeScheduler() UpperCAmelCase : List[Any] =KarrasVePipeline(unet=snake_case__ , scheduler=snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase : List[str] =torch.manual_seed(0 ) UpperCAmelCase : List[str] =pipe(num_inference_steps=2 , generator=snake_case__ , output_type='''numpy''' ).images UpperCAmelCase : str =torch.manual_seed(0 ) UpperCAmelCase : str =pipe(num_inference_steps=2 , generator=snake_case__ , output_type='''numpy''' , return_dict=snake_case__ )[0] UpperCAmelCase : Any =image[0, -3:, -3:, -1] UpperCAmelCase : List[str] =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase : int =np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class __snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Tuple ='''google/ncsnpp-celebahq-256''' UpperCAmelCase : int =UNetaDModel.from_pretrained(snake_case__ ) UpperCAmelCase : Dict =KarrasVeScheduler() UpperCAmelCase : Union[str, Any] =KarrasVePipeline(unet=snake_case__ , scheduler=snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase : Any =torch.manual_seed(0 ) UpperCAmelCase : Tuple =pipe(num_inference_steps=20 , generator=snake_case__ , output_type='''numpy''' ).images UpperCAmelCase : Optional[int] =image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase : Tuple =np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
348
0
"""simple docstring""" from pathlib import Path import fire def _lowerCAmelCase ( UpperCAmelCase__ : str, UpperCAmelCase__ : str, UpperCAmelCase__ : int ) ->Optional[Any]: A__ : Optional[int] = Path(UpperCAmelCase__ ) A__ : Optional[Any] = Path(UpperCAmelCase__ ) dest_dir.mkdir(exist_ok=UpperCAmelCase__ ) for path in src_dir.iterdir(): A__ : Any = [x.rstrip() for x in list(path.open().readlines() )][:n] A__ : List[Any] = dest_dir.joinpath(path.name ) print(UpperCAmelCase__ ) dest_path.open("""w""" ).write("""\n""".join(UpperCAmelCase__ ) ) if __name__ == "__main__": fire.Fire(minify)
371
"""simple docstring""" from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def _lowerCAmelCase ( UpperCAmelCase__ : Sequence[float], UpperCAmelCase__ : int, UpperCAmelCase__ : int ) ->tuple[int | None, int | None, float]: if not arr: return None, None, 0 if low == high: return low, high, arr[low] A__ : Optional[int] = (low + high) // 2 A__ , A__ , A__ : List[Any] = max_subarray(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) A__ , A__ , A__ : Union[str, Any] = max_subarray(UpperCAmelCase__, mid + 1, UpperCAmelCase__ ) A__ , A__ , A__ : Union[str, Any] = max_cross_sum(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def _lowerCAmelCase ( UpperCAmelCase__ : Sequence[float], UpperCAmelCase__ : int, UpperCAmelCase__ : int, UpperCAmelCase__ : int ) ->tuple[int, int, float]: A__ , A__ : Dict = float("""-inf""" ), -1 A__ , A__ : Optional[Any] = float("""-inf""" ), -1 A__ : int | float = 0 for i in range(UpperCAmelCase__, low - 1, -1 ): summ += arr[i] if summ > left_sum: A__ : Optional[int] = summ A__ : Union[str, Any] = i A__ : Optional[Any] = 0 for i in range(mid + 1, high + 1 ): summ += arr[i] if summ > right_sum: A__ : int = summ A__ : Union[str, Any] = i return max_left, max_right, (left_sum + right_sum) def _lowerCAmelCase ( UpperCAmelCase__ : int ) ->float: A__ : Union[str, Any] = [randint(1, UpperCAmelCase__ ) for _ in range(UpperCAmelCase__ )] A__ : Any = time.time() max_subarray(UpperCAmelCase__, 0, input_size - 1 ) A__ : List[Any] = time.time() return end - start def _lowerCAmelCase ( ) ->None: A__ : List[Any] = [1_0, 1_0_0, 1_0_0_0, 1_0_0_0_0, 5_0_0_0_0, 1_0_0_0_0_0, 2_0_0_0_0_0, 3_0_0_0_0_0, 4_0_0_0_0_0, 5_0_0_0_0_0] A__ : Any = [time_max_subarray(UpperCAmelCase__ ) for input_size in input_sizes] print("""No of Inputs\t\tTime Taken""" ) for input_size, runtime in zip(UpperCAmelCase__, UpperCAmelCase__ ): print(UpperCAmelCase__, """\t\t""", UpperCAmelCase__ ) plt.plot(UpperCAmelCase__, UpperCAmelCase__ ) plt.xlabel("""Number of Inputs""" ) plt.ylabel("""Time taken in seconds""" ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
296
0
import numpy as np import torch from torch.utils.data import Dataset from utils import logger class __UpperCAmelCase ( lowerCamelCase__ ): def __init__( self : Dict, __A : Union[str, Any], __A : List[str] ): UpperCAmelCase : int = params UpperCAmelCase : Dict = np.array(__A ) UpperCAmelCase : Optional[Any] = np.array([len(__A ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self : int, __A : Dict ): return (self.token_ids[index], self.lengths[index]) def __len__( self : Union[str, Any] ): return len(self.lengths ) def __magic_name__ ( self : int ): assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def __magic_name__ ( self : Dict ): UpperCAmelCase : List[Any] = self.params.max_model_input_size UpperCAmelCase : Dict = self.lengths > max_len logger.info(F'''Splitting {sum(__A )} too long sequences.''' ) def divide_chunks(__A : Union[str, Any], __A : int ): return [l[i : i + n] for i in range(0, len(__A ), __A )] UpperCAmelCase : Optional[int] = [] UpperCAmelCase : Optional[int] = [] if self.params.mlm: UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.params.special_tok_ids['''cls_token'''], self.params.special_tok_ids['''sep_token'''] else: UpperCAmelCase , UpperCAmelCase : Optional[int] = self.params.special_tok_ids['''bos_token'''], self.params.special_tok_ids['''eos_token'''] for seq_, len_ in zip(self.token_ids, self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: UpperCAmelCase : Dict = [] for sub_s in divide_chunks(seq_, max_len - 2 ): if sub_s[0] != cls_id: UpperCAmelCase : int = np.insert(__A, 0, __A ) if sub_s[-1] != sep_id: UpperCAmelCase : Union[str, Any] = np.insert(__A, len(__A ), __A ) assert len(__A ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(__A ) new_tok_ids.extend(__A ) new_lengths.extend([len(__A ) for l in sub_seqs] ) UpperCAmelCase : str = np.array(__A ) UpperCAmelCase : Optional[int] = np.array(__A ) def __magic_name__ ( self : List[str] ): UpperCAmelCase : Dict = len(self ) UpperCAmelCase : Optional[int] = self.lengths > 1_1 UpperCAmelCase : int = self.token_ids[indices] UpperCAmelCase : Optional[Any] = self.lengths[indices] UpperCAmelCase : str = len(self ) logger.info(F'''Remove {init_size - new_size} too short (<=11 tokens) sequences.''' ) def __magic_name__ ( self : Optional[Any] ): if "unk_token" not in self.params.special_tok_ids: return else: UpperCAmelCase : Dict = self.params.special_tok_ids['''unk_token'''] UpperCAmelCase : Union[str, Any] = len(self ) UpperCAmelCase : List[Any] = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) UpperCAmelCase : Tuple = (unk_occs / self.lengths) < 0.5 UpperCAmelCase : Union[str, Any] = self.token_ids[indices] UpperCAmelCase : str = self.lengths[indices] UpperCAmelCase : Union[str, Any] = len(self ) logger.info(F'''Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).''' ) def __magic_name__ ( self : int ): if not self.params.is_master: return logger.info(F'''{len(self )} sequences''' ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def __magic_name__ ( self : str, __A : Union[str, Any] ): UpperCAmelCase : Dict = [t[0] for t in batch] UpperCAmelCase : Any = [t[1] for t in batch] assert len(__A ) == len(__A ) # Max for paddings UpperCAmelCase : List[str] = max(__A ) # Pad token ids if self.params.mlm: UpperCAmelCase : Tuple = self.params.special_tok_ids['''pad_token'''] else: UpperCAmelCase : Optional[int] = self.params.special_tok_ids['''unk_token'''] UpperCAmelCase : Any = [list(t.astype(__A ) ) + [pad_idx] * (max_seq_len_ - len(__A )) for t in token_ids] assert len(tk_ ) == len(__A ) assert all(len(__A ) == max_seq_len_ for t in tk_ ) UpperCAmelCase : Optional[Any] = torch.tensor(tk_ ) # (bs, max_seq_len_) UpperCAmelCase : int = torch.tensor(__A ) # (bs) return tk_t, lg_t
336
import numpy # List of input, output pairs _lowerCamelCase : Dict = ( ((5, 2, 3), 1_5), ((6, 5, 9), 2_5), ((1_1, 1_2, 1_3), 4_1), ((1, 1, 1), 8), ((1_1, 1_2, 1_3), 4_1), ) _lowerCamelCase : str = (((5_1_5, 2_2, 1_3), 5_5_5), ((6_1, 3_5, 4_9), 1_5_0)) _lowerCamelCase : Dict = [2, 4, 1, 5] _lowerCamelCase : Dict = len(train_data) _lowerCamelCase : int = 0.0_0_9 def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : Optional[int]="train" ) -> Dict: return calculate_hypothesis_value(UpperCAmelCase , UpperCAmelCase ) - output( UpperCAmelCase , UpperCAmelCase ) def a__ ( UpperCAmelCase : int ) -> Any: UpperCAmelCase : str = 0 for i in range(len(UpperCAmelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def a__ ( UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] ) -> Optional[int]: if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def a__ ( UpperCAmelCase : int , UpperCAmelCase : Optional[Any] ) -> List[str]: if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : str=m ) -> Dict: UpperCAmelCase : Optional[int] = 0 for i in range(UpperCAmelCase ): if index == -1: summation_value += _error(UpperCAmelCase ) else: summation_value += _error(UpperCAmelCase ) * train_data[i][0][index] return summation_value def a__ ( UpperCAmelCase : Dict ) -> Dict: UpperCAmelCase : Dict = summation_of_cost_derivative(UpperCAmelCase , UpperCAmelCase ) / m return cost_derivative_value def a__ ( ) -> List[Any]: global parameter_vector # Tune these values to set a tolerance value for predicted output UpperCAmelCase : List[str] = 0.000002 UpperCAmelCase : Any = 0 UpperCAmelCase : Dict = 0 while True: j += 1 UpperCAmelCase : List[Any] = [0, 0, 0, 0] for i in range(0 , len(UpperCAmelCase ) ): UpperCAmelCase : List[str] = get_cost_derivative(i - 1 ) UpperCAmelCase : Tuple = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( UpperCAmelCase , UpperCAmelCase , atol=UpperCAmelCase , rtol=UpperCAmelCase , ): break UpperCAmelCase : int = temp_parameter_vector print(('''Number of iterations:''', j) ) def a__ ( ) -> List[Any]: for i in range(len(UpperCAmelCase ) ): print(('''Actual output value:''', output(UpperCAmelCase , '''test''' )) ) print(('''Hypothesis output:''', calculate_hypothesis_value(UpperCAmelCase , '''test''' )) ) if __name__ == "__main__": run_gradient_descent() print("\nTesting gradient descent for a linear hypothesis function.\n") test_gradient_descent()
336
1
import numpy as np from PIL import Image def UpperCamelCase ( __lowercase : np.ndarray ,__lowercase : int ,__lowercase : int ): '''simple docstring''' A_ : Tuple = np.array(__lowercase ) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix' ) A_ : Dict = 0 A_ : Tuple = 0 A_ : Any = 0 A_ : Dict = 0 # compute the shape of the output matrix A_ : Tuple = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape A_ : Any = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix A_ : Optional[Any] = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 A_ : List[Any] = 0 A_ : List[str] = 0 return updated_arr def UpperCamelCase ( __lowercase : np.ndarray ,__lowercase : int ,__lowercase : int ): '''simple docstring''' A_ : str = np.array(__lowercase ) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix' ) A_ : Dict = 0 A_ : List[str] = 0 A_ : Optional[int] = 0 A_ : str = 0 # compute the shape of the output matrix A_ : List[Any] = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape A_ : Union[str, Any] = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix A_ : int = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 A_ : Optional[int] = 0 A_ : Optional[int] = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name="""avgpooling""", verbose=True) # Loading the image _UpperCAmelCase = Image.open("""path_to_image""") # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
369
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} _UpperCAmelCase = { """vocab_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), }, """merges_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), }, } _UpperCAmelCase = { """allenai/longformer-base-4096""": 4096, """allenai/longformer-large-4096""": 4096, """allenai/longformer-large-4096-finetuned-triviaqa""": 4096, """allenai/longformer-base-4096-extra.pos.embd.only""": 4096, """allenai/longformer-large-4096-extra.pos.embd.only""": 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def UpperCamelCase ( ): '''simple docstring''' A_ : Optional[int] = ( list(range(ord('!' ) ,ord('~' ) + 1 ) ) + list(range(ord('¡' ) ,ord('¬' ) + 1 ) ) + list(range(ord('®' ) ,ord('ÿ' ) + 1 ) ) ) A_ : Any = bs[:] A_ : Optional[Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(__lowercase ) cs.append(2**8 + n ) n += 1 A_ : str = [chr(__lowercase ) for n in cs] return dict(zip(__lowercase ,__lowercase ) ) def UpperCamelCase ( __lowercase : Dict ): '''simple docstring''' A_ : List[str] = set() A_ : List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) A_ : Union[str, Any] = char return pairs class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = VOCAB_FILES_NAMES lowerCamelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ = ['''input_ids''', '''attention_mask'''] def __init__( self , lowercase , lowercase , lowercase="replace" , lowercase="<s>" , lowercase="</s>" , lowercase="</s>" , lowercase="<s>" , lowercase="<unk>" , lowercase="<pad>" , lowercase="<mask>" , lowercase=False , **lowercase , ): """simple docstring""" A_ : Union[str, Any] = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else bos_token A_ : str = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else eos_token A_ : str = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else sep_token A_ : Tuple = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else cls_token A_ : List[str] = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else unk_token A_ : Optional[int] = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it A_ : int = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else mask_token super().__init__( errors=lowercase , bos_token=lowercase , eos_token=lowercase , unk_token=lowercase , sep_token=lowercase , cls_token=lowercase , pad_token=lowercase , mask_token=lowercase , add_prefix_space=lowercase , **lowercase , ) with open(lowercase , encoding='utf-8' ) as vocab_handle: A_ : int = json.load(lowercase ) A_ : Union[str, Any] = {v: k for k, v in self.encoder.items()} A_ : Union[str, Any] = errors # how to handle errors in decoding A_ : Tuple = bytes_to_unicode() A_ : str = {v: k for k, v in self.byte_encoder.items()} with open(lowercase , encoding='utf-8' ) as merges_handle: A_ : str = merges_handle.read().split('\n' )[1:-1] A_ : Optional[Any] = [tuple(merge.split() ) for merge in bpe_merges] A_ : Any = dict(zip(lowercase , range(len(lowercase ) ) ) ) A_ : str = {} A_ : List[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions A_ : Optional[Any] = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property def lowerCAmelCase_ ( self ): """simple docstring""" return len(self.encoder ) def lowerCAmelCase_ ( self ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" if token in self.cache: return self.cache[token] A_ : List[Any] = tuple(lowercase ) A_ : List[Any] = get_pairs(lowercase ) if not pairs: return token while True: A_ : List[str] = min(lowercase , key=lambda lowercase : self.bpe_ranks.get(lowercase , float('inf' ) ) ) if bigram not in self.bpe_ranks: break A_ , A_ : Optional[Any] = bigram A_ : List[Any] = [] A_ : Tuple = 0 while i < len(lowercase ): try: A_ : Optional[Any] = word.index(lowercase , lowercase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A_ : int = j if word[i] == first and i < len(lowercase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A_ : Union[str, Any] = tuple(lowercase ) A_ : Tuple = new_word if len(lowercase ) == 1: break else: A_ : Optional[int] = get_pairs(lowercase ) A_ : Optional[Any] = ' '.join(lowercase ) A_ : str = word return word def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : Optional[int] = [] for token in re.findall(self.pat , lowercase ): A_ : Optional[Any] = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowercase ).split(' ' ) ) return bpe_tokens def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" return self.encoder.get(lowercase , self.encoder.get(self.unk_token ) ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" return self.decoder.get(lowercase ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : Union[str, Any] = ''.join(lowercase ) A_ : List[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def lowerCAmelCase_ ( self , lowercase , lowercase = None ): """simple docstring""" if not os.path.isdir(lowercase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return A_ : Optional[int] = os.path.join( lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) A_ : Dict = os.path.join( lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(lowercase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowercase , ensure_ascii=lowercase ) + '\n' ) A_ : Dict = 0 with open(lowercase , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowercase : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!' ) A_ : int = token_index writer.write(' '.join(lowercase ) + '\n' ) index += 1 return vocab_file, merge_file def lowerCAmelCase_ ( self , lowercase , lowercase = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A_ : Tuple = [self.cls_token_id] A_ : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase_ ( self , lowercase , lowercase = None , lowercase = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase , token_ids_a=lowercase , already_has_special_tokens=lowercase ) if token_ids_a is None: return [1] + ([0] * len(lowercase )) + [1] return [1] + ([0] * len(lowercase )) + [1, 1] + ([0] * len(lowercase )) + [1] def lowerCAmelCase_ ( self , lowercase , lowercase = None ): """simple docstring""" A_ : Optional[int] = [self.sep_token_id] A_ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase_ ( self , lowercase , lowercase=False , **lowercase ): """simple docstring""" A_ : Tuple = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowercase ) > 0 and not text[0].isspace()): A_ : int = ' ' + text return (text, kwargs)
192
0
import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) A__ = logging.getLogger(__name__) A__ = tf.data.AUTOTUNE def _lowerCAmelCase ( ) -> List[Any]: """simple docstring""" snake_case__ : Tuple = argparse.ArgumentParser(description='''Train a masked language model on TPU.''' ) parser.add_argument( '''--pretrained_model_config''' , type=__lowerCAmelCase , default='''roberta-base''' , help='''The model config to use. Note that we don\'t copy the model\'s weights, only the config!''' , ) parser.add_argument( '''--tokenizer''' , type=__lowerCAmelCase , default='''unigram-tokenizer-wikitext''' , help='''The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model\'s vocab size.''' , ) parser.add_argument( '''--per_replica_batch_size''' , type=__lowerCAmelCase , default=8 , help='''Batch size per TPU core.''' , ) parser.add_argument( '''--no_tpu''' , action='''store_true''' , help='''If set, run on CPU and don\'t try to initialize a TPU. Useful for debugging on non-TPU instances.''' , ) parser.add_argument( '''--tpu_name''' , type=__lowerCAmelCase , help='''Name of TPU resource to initialize. Should be blank on Colab, and \'local\' on TPU VMs.''' , default='''local''' , ) parser.add_argument( '''--tpu_zone''' , type=__lowerCAmelCase , help='''Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.''' , ) parser.add_argument( '''--gcp_project''' , type=__lowerCAmelCase , help='''Google cloud project name. Only used for non-Colab TPU nodes.''' ) parser.add_argument( '''--bfloat16''' , action='''store_true''' , help='''Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.''' , ) parser.add_argument( '''--train_dataset''' , type=__lowerCAmelCase , help='''Path to training dataset to load. If the path begins with `gs://`''' ''' then the dataset will be loaded from a Google Cloud Storage bucket.''' , ) parser.add_argument( '''--shuffle_buffer_size''' , type=__lowerCAmelCase , default=2**18 , help='''Size of the shuffle buffer (in samples)''' , ) parser.add_argument( '''--eval_dataset''' , type=__lowerCAmelCase , help='''Path to evaluation dataset to load. If the path begins with `gs://`''' ''' then the dataset will be loaded from a Google Cloud Storage bucket.''' , ) parser.add_argument( '''--num_epochs''' , type=__lowerCAmelCase , default=1 , help='''Number of epochs to train for.''' , ) parser.add_argument( '''--learning_rate''' , type=__lowerCAmelCase , default=1E-4 , help='''Learning rate to use for training.''' , ) parser.add_argument( '''--weight_decay_rate''' , type=__lowerCAmelCase , default=1E-3 , help='''Weight decay rate to use for training.''' , ) parser.add_argument( '''--max_length''' , type=__lowerCAmelCase , default=512 , help='''Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py''' , ) parser.add_argument( '''--mlm_probability''' , type=__lowerCAmelCase , default=0.15 , help='''Fraction of tokens to mask during training.''' , ) parser.add_argument('''--output_dir''' , type=__lowerCAmelCase , required=__lowerCAmelCase , help='''Path to save model checkpoints to.''' ) parser.add_argument('''--hub_model_id''' , type=__lowerCAmelCase , help='''Model ID to upload to on the Hugging Face Hub.''' ) snake_case__ : List[str] = parser.parse_args() return args def _lowerCAmelCase ( __lowerCAmelCase ) -> Dict: """simple docstring""" try: if args.tpu_name: snake_case__ : Optional[int] = tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: snake_case__ : List[Any] = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( '''Couldn\'t connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or ''' '''--gcp_project. When running on a TPU VM, use --tpu_name local.''' ) tf.config.experimental_connect_to_cluster(__lowerCAmelCase ) tf.tpu.experimental.initialize_tpu_system(__lowerCAmelCase ) return tpu def _lowerCAmelCase ( __lowerCAmelCase ) -> str: """simple docstring""" snake_case__ : Dict = 0 for file in file_list: snake_case__ : Tuple = file.split('''/''' )[-1] snake_case__ : Dict = re.search(r'''-\d+-(\d+)\.tfrecord''' , __lowerCAmelCase ).group(1 ) snake_case__ : int = int(__lowerCAmelCase ) num_samples += sample_count return num_samples def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None ) -> Any: """simple docstring""" snake_case__ : List[Any] = count_samples(__lowerCAmelCase ) snake_case__ : List[str] = tf.data.Dataset.from_tensor_slices(__lowerCAmelCase ) if shuffle: snake_case__ : Dict = dataset.shuffle(len(__lowerCAmelCase ) ) snake_case__ : Union[str, Any] = tf.data.TFRecordDataset(__lowerCAmelCase , num_parallel_reads=__lowerCAmelCase ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here snake_case__ : Dict = dataset.apply(tf.data.experimental.assert_cardinality(__lowerCAmelCase ) ) snake_case__ : Optional[Any] = dataset.map(__lowerCAmelCase , num_parallel_calls=__lowerCAmelCase ) if shuffle: assert shuffle_buffer_size is not None snake_case__ : Dict = dataset.shuffle(args.shuffle_buffer_size ) snake_case__ : Optional[int] = dataset.batch(__lowerCAmelCase , drop_remainder=__lowerCAmelCase ) snake_case__ : Optional[Any] = dataset.map(__lowerCAmelCase , num_parallel_calls=__lowerCAmelCase ) snake_case__ : List[str] = dataset.prefetch(__lowerCAmelCase ) return dataset def _lowerCAmelCase ( __lowerCAmelCase ) -> Optional[Any]: """simple docstring""" if not args.no_tpu: snake_case__ : str = initialize_tpu(__lowerCAmelCase ) snake_case__ : List[str] = tf.distribute.TPUStrategy(__lowerCAmelCase ) else: snake_case__ : List[str] = tf.distribute.OneDeviceStrategy(device='''/gpu:0''' ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy('''mixed_bfloat16''' ) snake_case__ : List[str] = AutoTokenizer.from_pretrained(args.tokenizer ) snake_case__ : Union[str, Any] = AutoConfig.from_pretrained(args.pretrained_model_config ) snake_case__ : Union[str, Any] = tokenizer.vocab_size snake_case__ : Union[str, Any] = tf.io.gfile.glob(os.path.join(args.train_dataset , '''*.tfrecord''' ) ) if not training_records: raise ValueError(f"""No .tfrecord files found in {args.train_dataset}.""" ) snake_case__ : List[str] = tf.io.gfile.glob(os.path.join(args.eval_dataset , '''*.tfrecord''' ) ) if not eval_records: raise ValueError(f"""No .tfrecord files found in {args.eval_dataset}.""" ) snake_case__ : Union[str, Any] = count_samples(__lowerCAmelCase ) snake_case__ : List[Any] = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) snake_case__ : str = steps_per_epoch * args.num_epochs with strategy.scope(): snake_case__ : str = TFAutoModelForMaskedLM.from_config(__lowerCAmelCase ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built snake_case__ , snake_case__ : List[Any] = create_optimizer( num_train_steps=__lowerCAmelCase , num_warmup_steps=total_train_steps // 20 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=__lowerCAmelCase , metrics=['''accuracy'''] ) def decode_fn(__lowerCAmelCase ): snake_case__ : Optional[Any] = { '''input_ids''': tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), '''attention_mask''': tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(__lowerCAmelCase , __lowerCAmelCase ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. snake_case__ : Tuple = DataCollatorForLanguageModeling( tokenizer=__lowerCAmelCase , mlm_probability=args.mlm_probability , mlm=__lowerCAmelCase , return_tensors='''tf''' ) def mask_with_collator(__lowerCAmelCase ): # TF really needs an isin() function snake_case__ : Optional[Any] = ( ~tf.cast(batch['''attention_mask'''] , tf.bool ) | (batch['''input_ids'''] == tokenizer.cls_token_id) | (batch['''input_ids'''] == tokenizer.sep_token_id) ) snake_case__ , snake_case__ : int = data_collator.tf_mask_tokens( batch['''input_ids'''] , vocab_size=len(__lowerCAmelCase ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=__lowerCAmelCase , ) return batch snake_case__ : Optional[int] = args.per_replica_batch_size * strategy.num_replicas_in_sync snake_case__ : str = prepare_dataset( __lowerCAmelCase , decode_fn=__lowerCAmelCase , mask_fn=__lowerCAmelCase , batch_size=__lowerCAmelCase , shuffle=__lowerCAmelCase , shuffle_buffer_size=args.shuffle_buffer_size , ) snake_case__ : int = prepare_dataset( __lowerCAmelCase , decode_fn=__lowerCAmelCase , mask_fn=__lowerCAmelCase , batch_size=__lowerCAmelCase , shuffle=__lowerCAmelCase , ) snake_case__ : Union[str, Any] = [] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=__lowerCAmelCase ) ) model.fit( __lowerCAmelCase , validation_data=__lowerCAmelCase , epochs=args.num_epochs , callbacks=__lowerCAmelCase , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": A__ = parse_args() main(args)
230
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: """simple docstring""" snake_case__ : Union[str, Any] = [] for part_id in partition_order: snake_case__ : Any = df.where(f"""SPARK_PARTITION_ID() = {part_id}""" ).collect() for row_idx, row in enumerate(__lowerCAmelCase ): expected_row_ids_and_row_dicts.append((f"""{part_id}_{row_idx}""", row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def _lowerCAmelCase ( ) -> Tuple: """simple docstring""" snake_case__ : Any = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() snake_case__ : Optional[Any] = spark.range(100 ).repartition(1 ) snake_case__ : Optional[int] = Spark(__lowerCAmelCase ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def _lowerCAmelCase ( ) -> Optional[int]: """simple docstring""" snake_case__ : Any = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() snake_case__ : Dict = spark.range(10 ).repartition(2 ) snake_case__ : Any = [1, 0] snake_case__ : Tuple = _generate_iterable_examples(__lowerCAmelCase , __lowerCAmelCase ) # Reverse the partitions. snake_case__ : Any = _get_expected_row_ids_and_row_dicts_for_partition_order(__lowerCAmelCase , __lowerCAmelCase ) for i, (row_id, row_dict) in enumerate(generate_fn() ): snake_case__ , snake_case__ : Union[str, Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _lowerCAmelCase ( ) -> Any: """simple docstring""" snake_case__ : Any = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() snake_case__ : List[Any] = spark.range(10 ).repartition(1 ) snake_case__ : int = SparkExamplesIterable(__lowerCAmelCase ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(__lowerCAmelCase ): assert row_id == f"""0_{i}""" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def _lowerCAmelCase ( ) -> Dict: """simple docstring""" snake_case__ : List[str] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() snake_case__ : Tuple = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('''numpy.random.Generator''' ) as generator_mock: snake_case__ : Union[str, Any] = lambda __lowerCAmelCase : x.reverse() snake_case__ : List[str] = _get_expected_row_ids_and_row_dicts_for_partition_order(__lowerCAmelCase , [2, 1, 0] ) snake_case__ : List[str] = SparkExamplesIterable(__lowerCAmelCase ).shuffle_data_sources(__lowerCAmelCase ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(__lowerCAmelCase ): snake_case__ , snake_case__ : Optional[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _lowerCAmelCase ( ) -> List[Any]: """simple docstring""" snake_case__ : Union[str, Any] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() snake_case__ : Dict = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 snake_case__ : List[Any] = SparkExamplesIterable(__lowerCAmelCase ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 snake_case__ : int = _get_expected_row_ids_and_row_dicts_for_partition_order(__lowerCAmelCase , [0, 2] ) for i, (row_id, row_dict) in enumerate(__lowerCAmelCase ): snake_case__ , snake_case__ : Dict = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 snake_case__ : List[str] = SparkExamplesIterable(__lowerCAmelCase ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 snake_case__ : List[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(__lowerCAmelCase , [1, 3] ) for i, (row_id, row_dict) in enumerate(__lowerCAmelCase ): snake_case__ , snake_case__ : Optional[int] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _lowerCAmelCase ( ) -> Dict: """simple docstring""" snake_case__ : int = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() snake_case__ : Dict = spark.range(100 ).repartition(1 ) snake_case__ : Tuple = Spark(__lowerCAmelCase ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
230
1
'''simple docstring''' import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class a__ ( ctypes.Structure ): # _fields is a specific attr expected by ctypes _SCREAMING_SNAKE_CASE : Dict = [('size', ctypes.c_int), ('visible', ctypes.c_byte)] def _A ( ) -> Tuple: if os.name == "nt": _lowercase : Optional[int] = CursorInfo() _lowercase : str = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(snake_case , ctypes.byref(snake_case ) ) _lowercase : Optional[Any] = False ctypes.windll.kernelaa.SetConsoleCursorInfo(snake_case , ctypes.byref(snake_case ) ) elif os.name == "posix": sys.stdout.write("\033[?25l" ) sys.stdout.flush() def _A ( ) -> Tuple: if os.name == "nt": _lowercase : str = CursorInfo() _lowercase : int = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(snake_case , ctypes.byref(snake_case ) ) _lowercase : int = True ctypes.windll.kernelaa.SetConsoleCursorInfo(snake_case , ctypes.byref(snake_case ) ) elif os.name == "posix": sys.stdout.write("\033[?25h" ) sys.stdout.flush() @contextmanager def _A ( ) -> int: try: hide_cursor() yield finally: show_cursor()
199
'''simple docstring''' from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
199
1
'''simple docstring''' lowerCamelCase : Union[str, Any] = '\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' lowerCamelCase : Any = [{'type': 'code', 'content': INSTALL_CONTENT}] lowerCamelCase : Dict = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
2
'''simple docstring''' def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> int: return abs(UpperCamelCase ) if a == 0 else greatest_common_divisor(b % a , UpperCamelCase ) def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> int: while y: # --> when y=0 then loop will terminate and return x as final GCD. lowerCamelCase__ , lowerCamelCase__ : Tuple = y, x % y return abs(UpperCamelCase ) def SCREAMING_SNAKE_CASE_ () -> Tuple: try: lowerCamelCase__ : Dict = input("""Enter two integers separated by comma (,): """ ).split(""",""" ) lowerCamelCase__ : Any = int(nums[0] ) lowerCamelCase__ : Optional[Any] = int(nums[1] ) print( f'''greatest_common_divisor({num_a}, {num_a}) = ''' f'''{greatest_common_divisor(UpperCamelCase , UpperCamelCase )}''' ) print(f'''By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(UpperCamelCase , UpperCamelCase )}''' ) except (IndexError, UnboundLocalError, ValueError): print("""Wrong input""" ) if __name__ == "__main__": main()
41
0
"""simple docstring""" SCREAMING_SNAKE_CASE : Dict = [ (1000, """M"""), (900, """CM"""), (500, """D"""), (400, """CD"""), (100, """C"""), (90, """XC"""), (50, """L"""), (40, """XL"""), (10, """X"""), (9, """IX"""), (5, """V"""), (4, """IV"""), (1, """I"""), ] def lowercase ( _snake_case : str ) ->int: """simple docstring""" __snake_case : Optional[int] = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 100, '''D''': 500, '''M''': 1_000} __snake_case : Optional[Any] = 0 __snake_case : List[Any] = 0 while place < len(_snake_case ): if (place + 1 < len(_snake_case )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def lowercase ( _snake_case : int ) ->str: """simple docstring""" __snake_case : Union[str, Any] = [] for arabic, roman in ROMAN: ((__snake_case) , (__snake_case)) : List[str] = divmod(_snake_case , _snake_case ) result.append(roman * factor ) if number == 0: break return "".join(_snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
24
"""simple docstring""" import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_=13 , a_=7 , a_=True , a_=True , a_=True , a_=True , a_=99 , a_=24 , a_=2 , a_=6 , a_=37 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=16 , a_=2 , a_=0.02 , a_=3 , a_=None , a_=10_00 , ): '''simple docstring''' __snake_case : Any = parent __snake_case : int = batch_size __snake_case : Dict = seq_length __snake_case : List[str] = is_training __snake_case : List[Any] = use_input_mask __snake_case : int = use_token_type_ids __snake_case : Union[str, Any] = use_labels __snake_case : str = vocab_size __snake_case : int = hidden_size __snake_case : Optional[int] = num_hidden_layers __snake_case : int = num_attention_heads __snake_case : str = intermediate_size __snake_case : Union[str, Any] = hidden_act __snake_case : int = hidden_dropout_prob __snake_case : Union[str, Any] = attention_probs_dropout_prob __snake_case : List[Any] = max_position_embeddings __snake_case : Any = type_vocab_size __snake_case : Dict = type_sequence_label_size __snake_case : Optional[Any] = initializer_range __snake_case : Union[str, Any] = num_labels __snake_case : Any = scope __snake_case : Any = range_bbox def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : int = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __snake_case : List[str] = bbox[i, j, 3] __snake_case : Any = bbox[i, j, 1] __snake_case : Tuple = t if bbox[i, j, 2] < bbox[i, j, 0]: __snake_case : List[str] = bbox[i, j, 2] __snake_case : Union[str, Any] = bbox[i, j, 0] __snake_case : Dict = t __snake_case : Optional[int] = None if self.use_input_mask: __snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __snake_case : Dict = None if self.use_token_type_ids: __snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : List[str] = None __snake_case : Union[str, Any] = None if self.use_labels: __snake_case : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : List[Any] = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ): '''simple docstring''' __snake_case : Union[str, Any] = LiltModel(config=a_ ) model.to(a_ ) model.eval() __snake_case : Any = model(a_ , bbox=a_ , attention_mask=a_ , token_type_ids=a_ ) __snake_case : str = model(a_ , bbox=a_ , token_type_ids=a_ ) __snake_case : List[str] = model(a_ , bbox=a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ): '''simple docstring''' __snake_case : Optional[int] = self.num_labels __snake_case : List[str] = LiltForTokenClassification(config=a_ ) model.to(a_ ) model.eval() __snake_case : Tuple = model( a_ , bbox=a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ): '''simple docstring''' __snake_case : Optional[Any] = LiltForQuestionAnswering(config=a_ ) model.to(a_ ) model.eval() __snake_case : int = model( a_ , bbox=a_ , attention_mask=a_ , token_type_ids=a_ , start_positions=a_ , end_positions=a_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : Dict = config_and_inputs __snake_case : Any = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class _UpperCAmelCase ( __snake_case, __snake_case, __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase__ =( { 'feature-extraction': LiltModel, 'question-answering': LiltForQuestionAnswering, 'text-classification': LiltForSequenceClassification, 'token-classification': LiltForTokenClassification, 'zero-shot': LiltForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ =False lowerCamelCase__ =False def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' return True def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = LiltModelTester(self ) __snake_case : Optional[Any] = ConfigTester(self , config_class=a_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case : Dict = type self.model_tester.create_and_check_model(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a_ ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Any = LiltModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @require_torch @slow class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(a_ ) __snake_case : Dict = torch.tensor([[1, 2]] , device=a_ ) __snake_case : str = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=a_ ) # forward pass with torch.no_grad(): __snake_case : Union[str, Any] = model(input_ids=a_ , bbox=a_ ) __snake_case : Union[str, Any] = torch.Size([1, 2, 7_68] ) __snake_case : str = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=a_ , ) self.assertTrue(outputs.last_hidden_state.shape , a_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , a_ , atol=1E-3 ) )
24
1
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin __lowercase = get_tests_dir("""fixtures/test_sentencepiece_bpe_char.model""") @require_sentencepiece @require_tokenizers class _A ( _a ,unittest.TestCase ): """simple docstring""" UpperCAmelCase : str = SpeechTaTokenizer UpperCAmelCase : List[Any] = False UpperCAmelCase : Any = True def __snake_case ( self : Optional[Any]): super().setUp() # We have a SentencePiece fixture for testing a : Optional[int] = SpeechTaTokenizer(__UpperCAmelCase) a : List[str] = AddedToken("<mask>" , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase) a : List[Any] = mask_token tokenizer.add_special_tokens({"mask_token": mask_token}) tokenizer.add_tokens(["<ctc_blank>"]) tokenizer.save_pretrained(self.tmpdirname) def __snake_case ( self : Optional[Any] , __UpperCAmelCase : str): a : Dict = "this is a test" a : Tuple = "this is a test" return input_text, output_text def __snake_case ( self : str , __UpperCAmelCase : Dict , __UpperCAmelCase : List[str]=False , __UpperCAmelCase : str=20 , __UpperCAmelCase : Tuple=5): a , a : List[Any] = self.get_input_output_texts(__UpperCAmelCase) a : Optional[Any] = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase) a : List[str] = tokenizer.decode(__UpperCAmelCase , clean_up_tokenization_spaces=__UpperCAmelCase) return text, ids def __snake_case ( self : Optional[Any]): a : Dict = "<pad>" a : str = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase) , __UpperCAmelCase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase) , __UpperCAmelCase) def __snake_case ( self : List[Any]): a : Tuple = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , "<s>") self.assertEqual(vocab_keys[1] , "<pad>") self.assertEqual(vocab_keys[-4] , "œ") self.assertEqual(vocab_keys[-2] , "<mask>") self.assertEqual(vocab_keys[-1] , "<ctc_blank>") self.assertEqual(len(__UpperCAmelCase) , 81) def __snake_case ( self : Optional[int]): self.assertEqual(self.get_tokenizer().vocab_size , 79) def __snake_case ( self : int): a : Any = self.get_tokenizers(do_lower_case=__UpperCAmelCase) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}'''): a : int = tokenizer.vocab_size a : Optional[Any] = len(__UpperCAmelCase) self.assertNotEqual(__UpperCAmelCase , 0) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) a : List[str] = ["aaaaa bbbbbb", "cccccccccdddddddd"] a : Tuple = tokenizer.add_tokens(__UpperCAmelCase) a : Optional[int] = tokenizer.vocab_size a : Any = len(__UpperCAmelCase) self.assertNotEqual(__UpperCAmelCase , 0) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase) self.assertEqual(__UpperCAmelCase , len(__UpperCAmelCase)) self.assertEqual(__UpperCAmelCase , all_size + len(__UpperCAmelCase)) a : Union[str, Any] = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l" , add_special_tokens=__UpperCAmelCase) self.assertGreaterEqual(len(__UpperCAmelCase) , 4) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1) a : List[Any] = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"} a : Any = tokenizer.add_special_tokens(__UpperCAmelCase) a : List[str] = tokenizer.vocab_size a : List[str] = len(__UpperCAmelCase) self.assertNotEqual(__UpperCAmelCase , 0) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase) self.assertEqual(__UpperCAmelCase , len(__UpperCAmelCase)) self.assertEqual(__UpperCAmelCase , all_size_a + len(__UpperCAmelCase)) a : Union[str, Any] = tokenizer.encode( ">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l" , add_special_tokens=__UpperCAmelCase) self.assertGreaterEqual(len(__UpperCAmelCase) , 6) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1) self.assertGreater(tokens[0] , tokens[1]) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1) self.assertGreater(tokens[-3] , tokens[-4]) self.assertEqual(tokens[0] , tokenizer.eos_token_id) self.assertEqual(tokens[-3] , tokenizer.pad_token_id) def __snake_case ( self : Dict): pass def __snake_case ( self : str): pass def __snake_case ( self : Union[str, Any]): a : Union[str, Any] = self.get_tokenizer() a : List[str] = tokenizer.tokenize("This is a test") # fmt: off self.assertListEqual(__UpperCAmelCase , [SPIECE_UNDERLINE, "T", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "a", SPIECE_UNDERLINE, "t", "e", "s", "t"]) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCAmelCase) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , ) a : Any = tokenizer.tokenize("I was born in 92000, and this is falsé.") self.assertListEqual( __UpperCAmelCase , [SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "92000", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."]) a : Tuple = tokenizer.convert_tokens_to_ids(__UpperCAmelCase) # fmt: off self.assertListEqual(__UpperCAmelCase , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26]) # fmt: on a : Optional[int] = tokenizer.convert_ids_to_tokens(__UpperCAmelCase) self.assertListEqual( __UpperCAmelCase , [SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "<unk>", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."]) @slow def __snake_case ( self : Any): # Use custom sequence because this tokenizer does not handle numbers. a : Union[str, Any] = [ "Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides " "general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural " "Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained " "models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.", "BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly " "conditioning on both left and right context in all layers.", "The quick brown fox jumps over the lazy dog.", ] # fmt: off a : str = { "input_ids": [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], "attention_mask": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCAmelCase , model_name="microsoft/speecht5_asr" , revision="c5ef64c71905caeccde0e4462ef3f9077224c524" , sequences=__UpperCAmelCase , )
40
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class _A ( _a ): """simple docstring""" UpperCAmelCase : str = """naver-clova-ix/donut-base-finetuned-docvqa""" UpperCAmelCase : Tuple = ( """This is a tool that answers a question about an document (pdf). It takes an input named `document` which """ """should be the document containing the information, as well as a `question` that is the question about the """ """document. It returns a text that contains the answer to the question.""" ) UpperCAmelCase : List[str] = """document_qa""" UpperCAmelCase : str = AutoProcessor UpperCAmelCase : Optional[int] = VisionEncoderDecoderModel UpperCAmelCase : int = ["""image""", """text"""] UpperCAmelCase : int = ["""text"""] def __init__( self : Tuple , *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : Any): if not is_vision_available(): raise ValueError("Pillow must be installed to use the DocumentQuestionAnsweringTool.") super().__init__(*__UpperCAmelCase , **__UpperCAmelCase) def __snake_case ( self : Tuple , __UpperCAmelCase : "Image" , __UpperCAmelCase : str): a : Any = "<s_docvqa><s_question>{user_input}</s_question><s_answer>" a : Union[str, Any] = task_prompt.replace("{user_input}" , __UpperCAmelCase) a : Optional[Any] = self.pre_processor.tokenizer( __UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_tensors="pt").input_ids a : Any = self.pre_processor(__UpperCAmelCase , return_tensors="pt").pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def __snake_case ( self : int , __UpperCAmelCase : int): return self.model.generate( inputs["pixel_values"].to(self.device) , decoder_input_ids=inputs["decoder_input_ids"].to(self.device) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__UpperCAmelCase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__UpperCAmelCase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__UpperCAmelCase , ).sequences def __snake_case ( self : str , __UpperCAmelCase : List[Any]): a : Union[str, Any] = self.pre_processor.batch_decode(__UpperCAmelCase)[0] a : Optional[Any] = sequence.replace(self.pre_processor.tokenizer.eos_token , "") a : Any = sequence.replace(self.pre_processor.tokenizer.pad_token , "") a : Optional[Any] = re.sub(r"<.*?>" , "" , __UpperCAmelCase , count=1).strip() # remove first task start token a : List[str] = self.pre_processor.tokenajson(__UpperCAmelCase) return sequence["answer"]
40
1
from __future__ import annotations def snake_case_ ( snake_case ) -> list[int]: lowercase__: Any = [True] * limit lowercase__: int = False lowercase__: str = False lowercase__: Dict = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): lowercase__: str = i * 2 while index < limit: lowercase__: int = False lowercase__: List[str] = index + i lowercase__: Dict = [2] for i in range(3 , _lowerCamelCase , 2 ): if is_prime[i]: primes.append(_lowerCamelCase ) return primes def snake_case_ ( snake_case = 1_00_00_00 ) -> int: lowercase__: Union[str, Any] = prime_sieve(_lowerCamelCase ) lowercase__: Dict = 0 lowercase__: Union[str, Any] = 0 for i in range(len(_lowerCamelCase ) ): for j in range(i + length , len(_lowerCamelCase ) ): lowercase__: Optional[Any] = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: lowercase__: Optional[int] = j - i lowercase__: int = sol return largest if __name__ == "__main__": print(F'''{solution() = }''')
363
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 __lowerCAmelCase = { '''return_dict''': False, '''output_hidden_states''': True, '''output_attentions''': True, '''torchscript''': True, '''torch_dtype''': '''float16''', '''use_bfloat16''': True, '''tf_legacy_loss''': True, '''pruned_heads''': {'''a''': 1}, '''tie_word_embeddings''': False, '''is_decoder''': True, '''cross_attention_hidden_size''': 1_28, '''add_cross_attention''': True, '''tie_encoder_decoder''': True, '''max_length''': 50, '''min_length''': 3, '''do_sample''': True, '''early_stopping''': True, '''num_beams''': 3, '''num_beam_groups''': 3, '''diversity_penalty''': 0.5, '''temperature''': 2.0, '''top_k''': 10, '''top_p''': 0.7, '''typical_p''': 0.2, '''repetition_penalty''': 0.8, '''length_penalty''': 0.8, '''no_repeat_ngram_size''': 5, '''encoder_no_repeat_ngram_size''': 5, '''bad_words_ids''': [1, 2, 3], '''num_return_sequences''': 3, '''chunk_size_feed_forward''': 5, '''output_scores''': True, '''return_dict_in_generate''': True, '''forced_bos_token_id''': 2, '''forced_eos_token_id''': 3, '''remove_invalid_values''': True, '''architectures''': ['''BertModel'''], '''finetuning_task''': '''translation''', '''id2label''': {0: '''label'''}, '''label2id''': {'''label''': '''0'''}, '''tokenizer_class''': '''BertTokenizerFast''', '''prefix''': '''prefix''', '''bos_token_id''': 6, '''pad_token_id''': 7, '''eos_token_id''': 8, '''sep_token_id''': 9, '''decoder_start_token_id''': 10, '''exponential_decay_length_penalty''': (5, 1.01), '''suppress_tokens''': [0, 1], '''begin_suppress_tokens''': 2, '''task_specific_params''': {'''translation''': '''some_params'''}, '''problem_type''': '''regression''', } @is_staging_test class __a ( unittest.TestCase ): @classmethod def SCREAMING_SNAKE_CASE__ ( cls ) -> Any: '''simple docstring''' lowercase__: List[Any] = TOKEN HfFolder.save_token(lowerCAmelCase__ ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls ) -> str: '''simple docstring''' try: delete_repo(token=cls._token , repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-config' ) except HTTPError: pass def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' lowercase__: List[str] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('test-config' , use_auth_token=self._token ) lowercase__: str = BertConfig.from_pretrained(F'{USER}/test-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCAmelCase__ , repo_id='test-config' , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token ) lowercase__: Dict = BertConfig.from_pretrained(F'{USER}/test-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' lowercase__: List[Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('valid_org/test-config-org' , use_auth_token=self._token ) lowercase__: Tuple = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCAmelCase__ , repo_id='valid_org/test-config-org' , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token ) lowercase__: Union[str, Any] = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' CustomConfig.register_for_auto_class() lowercase__: Tuple = CustomConfig(attribute=42 ) config.push_to_hub('test-dynamic-config' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'AutoConfig': 'custom_configuration.CustomConfig'} ) lowercase__: int = AutoConfig.from_pretrained(F'{USER}/test-dynamic-config' , trust_remote_code=lowerCAmelCase__ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , 'CustomConfig' ) self.assertEqual(new_config.attribute , 42 ) class __a ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' lowercase__: Any = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated lowercase__: List[Any] = c.n_embd + 1 # int lowercase__: Any = c.resid_pdrop + 1.0 # float lowercase__: Any = not c.scale_attn_weights # bool lowercase__: List[str] = c.summary_type + 'foo' # str c.update_from_string( F'n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}' ) self.assertEqual(lowerCAmelCase__ , c.n_embd , 'mismatch for key: n_embd' ) self.assertEqual(lowerCAmelCase__ , c.resid_pdrop , 'mismatch for key: resid_pdrop' ) self.assertEqual(lowerCAmelCase__ , c.scale_attn_weights , 'mismatch for key: scale_attn_weights' ) self.assertEqual(lowerCAmelCase__ , c.summary_type , 'mismatch for key: summary_type' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase__: Any = PretrainedConfig() lowercase__: Optional[int] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCAmelCase__ , ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) lowercase__: List[str] = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCAmelCase__ , lowerCAmelCase__ )] if len(lowerCAmelCase__ ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' F' {", ".join(lowerCAmelCase__ )}.' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' with self.assertRaises(lowerCAmelCase__ ): # config is in subfolder, the following should not work without specifying the subfolder lowercase__: str = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) lowercase__: str = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' , subfolder='bert' ) self.assertIsNotNone(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' # A mock response for an HTTP head request to emulate server down lowercase__: Optional[Any] = mock.Mock() lowercase__: Tuple = 500 lowercase__: Any = {} lowercase__: Dict = HTTPError lowercase__: Optional[Any] = {} # Download this model to make sure it's in the cache. lowercase__: Optional[int] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=lowerCAmelCase__ ) as mock_head: lowercase__: List[Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' # This test is for deprecated behavior and can be removed in v5 lowercase__: Tuple = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase__: Tuple = AutoConfig.from_pretrained('bert-base-cased' ) lowercase__: Optional[Any] = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCAmelCase__ ) lowercase__: Optional[int] = 2 json.dump(configuration.to_dict() , open(os.path.join(lowerCAmelCase__ , 'config.4.0.0.json' ) , 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 lowercase__: str = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 lowercase__: Dict = ['config.42.0.0.json'] lowercase__: int = 768 configuration.save_pretrained(lowerCAmelCase__ ) shutil.move(os.path.join(lowerCAmelCase__ , 'config.4.0.0.json' ) , os.path.join(lowerCAmelCase__ , 'config.42.0.0.json' ) ) lowercase__: Dict = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertEqual(new_configuration.hidden_size , 768 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. lowercase__: Optional[int] = 'hf-internal-testing/test-two-configs' import transformers as new_transformers lowercase__: Tuple = 'v4.0.0' lowercase__ , lowercase__: List[str] = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCAmelCase__ , return_unused_kwargs=lowerCAmelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCAmelCase__ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers lowercase__: Union[str, Any] = 'v3.0.0' lowercase__: Optional[Any] = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertEqual(old_configuration.hidden_size , 768 )
288
0
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def lowerCamelCase_ ( _a : int ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(_a , _a ) def lowerCamelCase_ ( _a : Optional[int] ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : Dict = emb.weight.shape UpperCAmelCase_ : List[Any] = nn.Linear(_a , _a , bias=_a ) UpperCAmelCase_ : Optional[int] = emb.weight.data return lin_layer def lowerCamelCase_ ( _a : Union[str, Any] , _a : Dict=None ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = {} for old_key in state_dict.keys(): UpperCAmelCase_ : Union[str, Any] = old_key if "moe_layer.experts." in key: if expert_idx is not None: UpperCAmelCase_ : Any = key.replace("""moe_layer.experts.0""" , F'''ffn.experts.expert_{expert_idx}''' ) else: UpperCAmelCase_ : List[str] = key.replace("""moe_layer.experts.""" , """ffn.experts.expert_""" ) if "gate" in key: UpperCAmelCase_ : List[str] = key.replace(""".moe_layer.gate.wg""" , """.ffn.router.classifier""" ) if "fc2" and "experts" not in key: UpperCAmelCase_ : List[Any] = key.replace(""".fc2.""" , """.ffn.fc2.""" ) if "fc1" and "experts" not in key: UpperCAmelCase_ : Optional[int] = key.replace(""".fc1.""" , """.ffn.fc1.""" ) if ".encoder_attn." in key: UpperCAmelCase_ : Union[str, Any] = key.replace(""".encoder_attn.""" , """.cross_attention.""" ) if "encoder_attn_layer_norm" in key: UpperCAmelCase_ : List[str] = key.replace("""encoder_attn_layer_norm""" , """cross_attention_layer_norm""" ) if "final_layer_norm" in key: UpperCAmelCase_ : Optional[int] = key.replace("""final_layer_norm""" , """ff_layer_norm""" ) UpperCAmelCase_ : Dict = state_dict[old_key] return new_dict def lowerCamelCase_ ( _a : Any , _a : str , _a : Dict , _a : Any , _a : str = WEIGHTS_NAME ): '''simple docstring''' UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : Optional[Any] = 0 os.makedirs(_a , exist_ok=_a ) for expert in range(_a ): UpperCAmelCase_ : List[Any] = switch_checkpoint_path + F'''-rank-{expert}.pt''' if os.path.isfile(_a ): UpperCAmelCase_ : Union[str, Any] = torch.load(_a )["""model"""] remove_ignore_keys_(_a ) UpperCAmelCase_ : Any = rename_fairseq_keys(_a , _a ) UpperCAmelCase_ : int = os.path.join( _a , weights_name.replace(""".bin""" , F'''-{len(_a )+1:05d}-of-???.bin''' ) ) torch.save(_a , _a ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(_a )[0]].dtype ) # Add the last block UpperCAmelCase_ : Any = os.path.join(_a , weights_name.replace(""".bin""" , F'''-{len(_a )+1:05d}-of-???.bin''' ) ) UpperCAmelCase_ : Any = torch.load(switch_checkpoint_path + """-shared.pt""" )["""model"""] remove_ignore_keys_(_a ) UpperCAmelCase_ : str = rename_fairseq_keys(_a , _a ) UpperCAmelCase_ : Optional[int] = shared_weights["""decoder.embed_tokens.weight"""] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(_a ) == 1: UpperCAmelCase_ : Optional[int] = os.path.join(_a , _a ) torch.save(_a , _a ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(_a , _a ) # Otherwise, let's build the index UpperCAmelCase_ : Union[str, Any] = {} for idx, shard in enumerate(_a ): UpperCAmelCase_ : int = weights_name.replace(""".bin""" , F'''-{idx+1:05d}-of-{len(_a ):05d}.bin''' ) UpperCAmelCase_ : Optional[int] = os.path.join(_a , weights_name.replace(""".bin""" , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(_a , os.path.join(_a , _a ) ) for key in shard: UpperCAmelCase_ : Dict = shard_file # Add the metadata UpperCAmelCase_ : Optional[int] = {"""total_size""": total_size} UpperCAmelCase_ : List[str] = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(_a , _a ) , """w""" , encoding="""utf-8""" ) as f: UpperCAmelCase_ : Any = json.dumps(_a , indent=2 , sort_keys=_a ) + """\n""" f.write(_a ) return metadata, index if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--nllb_moe_checkpoint_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000''', type=str, required=False, help='''Path to a directory containing a folder per layer. Follows the original Google format.''', ) parser.add_argument('''--dtype''', default='''float32''', type=str, required=False, help='''dtype of the saved model''') parser.add_argument( '''--pytorch_dump_folder_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b''', type=str, required=False, help='''Path to the output pytorch model.''', ) UpperCamelCase_ = parser.parse_args() UpperCamelCase_ ,UpperCamelCase_ = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) UpperCamelCase_ = NllbMoeConfig.from_pretrained( '''facebook/nllb-200-3.3B''', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) UpperCamelCase_ = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('''Done''') model.save_pretrained(args.pytorch_dump_folder_path)
345
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class _snake_case ( nn.Module ): '''simple docstring''' A__ : int A__ : int A__ : float = 0.0 A__ : int = 1 A__ : int = 1 A__ : bool = True A__ : bool = False A__ : bool = False A__ : bool = False A__ : jnp.dtype = jnp.floataa def A__ ( self: Dict ) -> List[str]: UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : Optional[int] = [] for i in range(self.num_layers ): UpperCAmelCase_ : List[Any] = self.in_channels if i == 0 else self.out_channels UpperCAmelCase_ : List[Any] = FlaxResnetBlockaD( in_channels=lowerCamelCase_ ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = FlaxTransformeraDModel( in_channels=self.out_channels ,n_heads=self.num_attention_heads ,d_head=self.out_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,only_cross_attention=self.only_cross_attention ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(lowerCamelCase_ ) UpperCAmelCase_ : int = resnets UpperCAmelCase_ : Tuple = attentions if self.add_downsample: UpperCAmelCase_ : List[Any] = FlaxDownsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self: Optional[Any] ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: str ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: int=True ) -> int: UpperCAmelCase_ : List[Any] = () for resnet, attn in zip(self.resnets ,self.attentions ): UpperCAmelCase_ : str = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = attn(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) output_states += (hidden_states,) if self.add_downsample: UpperCAmelCase_ : List[Any] = self.downsamplers_a(lowerCamelCase_ ) output_states += (hidden_states,) return hidden_states, output_states class _snake_case ( nn.Module ): '''simple docstring''' A__ : int A__ : int A__ : float = 0.0 A__ : int = 1 A__ : bool = True A__ : jnp.dtype = jnp.floataa def A__ ( self: Dict ) -> int: UpperCAmelCase_ : List[str] = [] for i in range(self.num_layers ): UpperCAmelCase_ : int = self.in_channels if i == 0 else self.out_channels UpperCAmelCase_ : Dict = FlaxResnetBlockaD( in_channels=lowerCamelCase_ ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = resnets if self.add_downsample: UpperCAmelCase_ : List[str] = FlaxDownsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self: Any ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Any ,lowerCamelCase_: List[Any]=True ) -> Any: UpperCAmelCase_ : Union[str, Any] = () for resnet in self.resnets: UpperCAmelCase_ : Tuple = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) output_states += (hidden_states,) if self.add_downsample: UpperCAmelCase_ : List[str] = self.downsamplers_a(lowerCamelCase_ ) output_states += (hidden_states,) return hidden_states, output_states class _snake_case ( nn.Module ): '''simple docstring''' A__ : int A__ : int A__ : int A__ : float = 0.0 A__ : int = 1 A__ : int = 1 A__ : bool = True A__ : bool = False A__ : bool = False A__ : bool = False A__ : jnp.dtype = jnp.floataa def A__ ( self: str ) -> Any: UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : List[str] = [] for i in range(self.num_layers ): UpperCAmelCase_ : int = self.in_channels if (i == self.num_layers - 1) else self.out_channels UpperCAmelCase_ : int = self.prev_output_channel if i == 0 else self.out_channels UpperCAmelCase_ : Optional[Any] = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(lowerCamelCase_ ) UpperCAmelCase_ : int = FlaxTransformeraDModel( in_channels=self.out_channels ,n_heads=self.num_attention_heads ,d_head=self.out_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,only_cross_attention=self.only_cross_attention ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(lowerCamelCase_ ) UpperCAmelCase_ : List[str] = resnets UpperCAmelCase_ : Dict = attentions if self.add_upsample: UpperCAmelCase_ : Optional[Any] = FlaxUpsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self: Optional[int] ,lowerCamelCase_: List[Any] ,lowerCamelCase_: int ,lowerCamelCase_: Any ,lowerCamelCase_: str ,lowerCamelCase_: List[str]=True ) -> List[str]: for resnet, attn in zip(self.resnets ,self.attentions ): # pop res hidden states UpperCAmelCase_ : List[str] = res_hidden_states_tuple[-1] UpperCAmelCase_ : Union[str, Any] = res_hidden_states_tuple[:-1] UpperCAmelCase_ : Optional[Any] = jnp.concatenate((hidden_states, res_hidden_states) ,axis=-1 ) UpperCAmelCase_ : Tuple = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = attn(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) if self.add_upsample: UpperCAmelCase_ : Dict = self.upsamplers_a(lowerCamelCase_ ) return hidden_states class _snake_case ( nn.Module ): '''simple docstring''' A__ : int A__ : int A__ : int A__ : float = 0.0 A__ : int = 1 A__ : bool = True A__ : jnp.dtype = jnp.floataa def A__ ( self: Dict ) -> Dict: UpperCAmelCase_ : Any = [] for i in range(self.num_layers ): UpperCAmelCase_ : str = self.in_channels if (i == self.num_layers - 1) else self.out_channels UpperCAmelCase_ : Optional[int] = self.prev_output_channel if i == 0 else self.out_channels UpperCAmelCase_ : Any = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(lowerCamelCase_ ) UpperCAmelCase_ : str = resnets if self.add_upsample: UpperCAmelCase_ : Union[str, Any] = FlaxUpsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self: Dict ,lowerCamelCase_: Dict ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Any=True ) -> List[str]: for resnet in self.resnets: # pop res hidden states UpperCAmelCase_ : Dict = res_hidden_states_tuple[-1] UpperCAmelCase_ : str = res_hidden_states_tuple[:-1] UpperCAmelCase_ : List[Any] = jnp.concatenate((hidden_states, res_hidden_states) ,axis=-1 ) UpperCAmelCase_ : List[str] = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) if self.add_upsample: UpperCAmelCase_ : Optional[Any] = self.upsamplers_a(lowerCamelCase_ ) return hidden_states class _snake_case ( nn.Module ): '''simple docstring''' A__ : int A__ : float = 0.0 A__ : int = 1 A__ : int = 1 A__ : bool = False A__ : bool = False A__ : jnp.dtype = jnp.floataa def A__ ( self: Dict ) -> List[str]: # there is always at least one resnet UpperCAmelCase_ : List[Any] = [ FlaxResnetBlockaD( in_channels=self.in_channels ,out_channels=self.in_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) ] UpperCAmelCase_ : Any = [] for _ in range(self.num_layers ): UpperCAmelCase_ : Optional[Any] = FlaxTransformeraDModel( in_channels=self.in_channels ,n_heads=self.num_attention_heads ,d_head=self.in_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(lowerCamelCase_ ) UpperCAmelCase_ : Any = FlaxResnetBlockaD( in_channels=self.in_channels ,out_channels=self.in_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(lowerCamelCase_ ) UpperCAmelCase_ : Dict = resnets UpperCAmelCase_ : Any = attentions def __call__( self: str ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: str ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Union[str, Any]=True ) -> List[Any]: UpperCAmelCase_ : List[Any] = self.resnets[0](lowerCamelCase_ ,lowerCamelCase_ ) for attn, resnet in zip(self.attentions ,self.resnets[1:] ): UpperCAmelCase_ : Optional[Any] = attn(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) return hidden_states
345
1
from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
26
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer UpperCAmelCase__ = "bart" UpperCAmelCase__ = True @st.cache(allow_output_mutation=a ) def _a ( ) -> Tuple: if LOAD_DENSE_INDEX: a = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) a = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) a = qar_model.eval() else: a , a = (None, None) if MODEL_TYPE == "bart": a = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) a = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) a = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) a = sas_model.eval() else: a , a = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=a ) def _a ( ) -> Dict: if LOAD_DENSE_INDEX: a = faiss.StandardGpuResources() a = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] a = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 128) , ) a = faiss.IndexFlatIP(128 ) a = faiss.index_cpu_to_gpu(a , 1 , a ) wikiaab_gpu_index_flat.add(a ) # TODO fix for larger GPU else: a , a = (None, None) a = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=a ) def _a ( ) -> Optional[int]: a = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) a = elia['''train_eli5'''] a = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 128) ) a = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(a ) return (elia_train, eli5_train_q_index) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = load_indexes() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = load_models() UpperCAmelCase__ , UpperCAmelCase__ = load_train_data() def _a ( a :str , a :Tuple=10 ) -> List[str]: a = embed_questions_for_retrieval([question] , a , a ) a , a = eli5_train_q_index.search(a , a ) a = [elia_train[int(a )] for i in I[0]] return nn_examples def _a ( a :str , a :Any="wiki40b" , a :int="dense" , a :Union[str, Any]=10 ) -> List[str]: if source == "none": a , a = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": a , a = query_qa_dense_index( a , a , a , a , a , a ) else: a , a = query_es_index( a , a , index_name='''english_wiki40b_snippets_100w''' , n_results=a , ) a = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] a = '''question: {} context: {}'''.format(a , a ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda a : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda a : None), } ) def _a ( a :Tuple , a :int , a :int , a :Dict=64 , a :List[Any]=256 , a :List[Any]=False , a :List[Any]=2 , a :Tuple=0.95 , a :Optional[Any]=0.8 ) -> int: with torch.no_grad(): a = qa_sas_generate( a , a , a , num_answers=1 , num_beams=a , min_len=a , max_len=a , do_sample=a , temp=a , top_p=a , top_k=a , max_input_length=1_024 , device='''cuda:0''' , )[0] return (answer, support_list) st.title("Long Form Question Answering with ELI5") # Start sidebar UpperCAmelCase__ = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>" UpperCAmelCase__ = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia UpperCAmelCase__ = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n" st.sidebar.markdown(description, unsafe_allow_html=True) UpperCAmelCase__ = [ "Answer the question", "View the retrieved document only", "View the most similar ELI5 question and answer", "Show me everything, please!", ] UpperCAmelCase__ = st.sidebar.checkbox("Demo options") if demo_options: UpperCAmelCase__ = st.sidebar.selectbox( "", action_list, index=3, ) UpperCAmelCase__ = action_list.index(action_st) UpperCAmelCase__ = st.sidebar.selectbox( "", ["Show full text of passages", "Show passage section titles"], index=0, ) UpperCAmelCase__ = show_type == "Show full text of passages" else: UpperCAmelCase__ = 3 UpperCAmelCase__ = True UpperCAmelCase__ = st.sidebar.checkbox("Retrieval options") if retrieval_options: UpperCAmelCase__ = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n " st.sidebar.markdown(retriever_info) UpperCAmelCase__ = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"]) UpperCAmelCase__ = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"]) else: UpperCAmelCase__ = "wiki40b" UpperCAmelCase__ = "dense" UpperCAmelCase__ = "beam" UpperCAmelCase__ = 2 UpperCAmelCase__ = 64 UpperCAmelCase__ = 256 UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = st.sidebar.checkbox("Generation options") if generate_options: UpperCAmelCase__ = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n " st.sidebar.markdown(generate_info) UpperCAmelCase__ = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"]) UpperCAmelCase__ = st.sidebar.slider( "Minimum generation length", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) UpperCAmelCase__ = st.sidebar.slider( "Maximum generation length", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": UpperCAmelCase__ = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: UpperCAmelCase__ = st.sidebar.slider( "Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) UpperCAmelCase__ = st.sidebar.slider( "Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) UpperCAmelCase__ = None # start main text UpperCAmelCase__ = [ "<MY QUESTION>", "How do people make chocolate?", "Why do we get a fever when we are sick?", "How can different animals perceive different colors?", "What is natural language processing?", "What's the best way to treat a sunburn?", "What exactly are vitamins ?", "How does nuclear energy provide electricity?", "What's the difference between viruses and bacteria?", "Why are flutes classified as woodwinds when most of them are made out of metal ?", "Why do people like drinking coffee even though it tastes so bad?", "What happens when wine ages? How does it make the wine taste better?", "If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?", "How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?", "How does New Zealand have so many large bird predators?", ] UpperCAmelCase__ = st.selectbox( "What would you like to ask? ---- select <MY QUESTION> to enter a new query", questions_list, index=1, ) if question_s == "<MY QUESTION>": UpperCAmelCase__ = st.text_input("Enter your question here:", "") else: UpperCAmelCase__ = question_s if st.button("Show me!"): if action in [0, 1, 3]: if index_type == "mixed": UpperCAmelCase__ , UpperCAmelCase__ = make_support(question, source=wiki_source, method="dense", n_results=10) UpperCAmelCase__ , UpperCAmelCase__ = make_support(question, source=wiki_source, method="sparse", n_results=10) UpperCAmelCase__ = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] UpperCAmelCase__ = support_list[:10] UpperCAmelCase__ = "<P> " + " <P> ".join([res[-1] for res in support_list]) else: UpperCAmelCase__ , UpperCAmelCase__ = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: UpperCAmelCase__ , UpperCAmelCase__ = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == "sampled"), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("### The model generated answer is:") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:") for i, res in enumerate(support_list): UpperCAmelCase__ = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_")) UpperCAmelCase__ = res[1].strip() if sec_titles == "": UpperCAmelCase__ = "[{}]({})".format(res[0], wiki_url) else: UpperCAmelCase__ = sec_titles.split(" & ") UpperCAmelCase__ = " & ".join( ["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list] ) st.markdown( "{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( "> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True ) if action in [2, 3]: UpperCAmelCase__ = find_nearest_training(question) UpperCAmelCase__ = nn_train_list[0] st.markdown( "--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"]) ) UpperCAmelCase__ = [ "{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""])) for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"])) if i == 0 or sc > 2 ] st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st))) UpperCAmelCase__ = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n" st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
26
1
'''simple docstring''' import json import sys def _A ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" with open(_lowerCAmelCase , encoding='utf-8' ) as f: __lowercase =json.load(_lowerCAmelCase ) __lowercase =['<details>', '<summary>Show updated benchmarks!</summary>', ' '] for benchmark_name in sorted(_lowerCAmelCase ): __lowercase =results[benchmark_name] __lowercase =benchmark_name.split('/' )[-1] output_md.append(f"""### Benchmark: {benchmark_file_name}""" ) __lowercase ='| metric |' __lowercase ='|--------|' __lowercase ='| new / old (diff) |' for metric_name in sorted(_lowerCAmelCase ): __lowercase =benchmark_res[metric_name] __lowercase =metric_vals['new'] __lowercase =metric_vals.get('old' , _lowerCAmelCase ) __lowercase =metric_vals.get('diff' , _lowerCAmelCase ) __lowercase =f""" {new_val:f}""" if isinstance(_lowerCAmelCase , (int, float) ) else 'None' if old_val is not None: val_str += f""" / {old_val:f}""" if isinstance(_lowerCAmelCase , (int, float) ) else "None" if dif_val is not None: val_str += f""" ({dif_val:f})""" if isinstance(_lowerCAmelCase , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append('</details>' ) with open(_lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.writelines('\n'.join(_lowerCAmelCase ) ) if __name__ == "__main__": lowerCamelCase = sys.argv[1] lowerCamelCase = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
166
'''simple docstring''' # HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers lowerCamelCase = float("""nan""") class _UpperCamelCase : '''simple docstring''' def __init__( self : Tuple , _lowerCAmelCase : Optional[int]): '''simple docstring''' __lowercase =sys.stdout __lowercase =open(_lowerCAmelCase , 'a') def __getattr__( self : Any , _lowerCAmelCase : Union[str, Any]): '''simple docstring''' return getattr(self.stdout , _lowerCAmelCase) def __lowerCamelCase ( self : str , _lowerCAmelCase : int): '''simple docstring''' self.stdout.write(_lowerCAmelCase) # strip tqdm codes self.file.write(re.sub(R'^.*\r' , '' , _lowerCAmelCase , 0 , re.M)) def _A ( _lowerCAmelCase=80 , _lowerCAmelCase=False ): """simple docstring""" __lowercase =[] # deal with critical env vars __lowercase =['CUDA_VISIBLE_DEVICES'] for key in env_keys: __lowercase =os.environ.get(_lowerCAmelCase , _lowerCAmelCase ) if val is not None: cmd.append(f"""{key}={val}""" ) # python executable (not always needed if the script is executable) __lowercase =sys.executable if full_python_path else sys.executable.split('/' )[-1] cmd.append(_lowerCAmelCase ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes __lowercase =[] __lowercase ='' while len(_lowerCAmelCase ) > 0: current_line += f"""{cmd.pop(0 )} """ if len(_lowerCAmelCase ) == 0 or len(_lowerCAmelCase ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(_lowerCAmelCase ) __lowercase ='' return "\\\n".join(_lowerCAmelCase ) def _A ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __lowercase =re.sub(r'[\\\n]+' , ' ' , args.base_cmd ) # remove --output_dir if any and set our own __lowercase =re.sub('--output_dir\s+[^\s]+' , '' , args.base_cmd ) args.base_cmd += f""" --output_dir {output_dir}""" # ensure we have --overwrite_output_dir __lowercase =re.sub('--overwrite_output_dir\s+' , '' , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 100 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 1_00.2, 55.66_66, 2_22.22_22_22_22] )} , ) __lowercase =subprocess.run(_lowerCAmelCase , capture_output=_lowerCAmelCase , text=_lowerCAmelCase ) if verbose: print('STDOUT' , result.stdout ) print('STDERR' , result.stderr ) # save the streams __lowercase =variation.replace(' ' , '-' ) with open(Path(_lowerCAmelCase ) / f"""log.{prefix}.stdout.txt""" , 'w' ) as f: f.write(result.stdout ) with open(Path(_lowerCAmelCase ) / f"""log.{prefix}.stderr.txt""" , 'w' ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print('failed' ) return {target_metric_key: nan} with io.open(f"""{output_dir}/all_results.json""" , 'r' , encoding='utf-8' ) as f: __lowercase =json.load(_lowerCAmelCase ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): """simple docstring""" __lowercase =[] __lowercase =[] __lowercase =f"""{id}: {variation:<{longest_variation_len}}""" __lowercase =f"""{preamble}: """ __lowercase =set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(_lowerCAmelCase ) , desc=_lowerCAmelCase , leave=_lowerCAmelCase ): __lowercase =process_run_single( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __lowercase =single_run_metrics[target_metric_key] if not math.isnan(_lowerCAmelCase ): metrics.append(_lowerCAmelCase ) results.append(_lowerCAmelCase ) outcome += "✓" else: outcome += "✘" __lowercase =f"""\33[2K\r{outcome}""" if len(_lowerCAmelCase ) > 0: __lowercase ={k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} __lowercase =round(mean_metrics[target_metric_key] , 2 ) __lowercase =f"""{outcome} {mean_target}""" if len(_lowerCAmelCase ) > 1: results_str += f""" {tuple(round(_lowerCAmelCase , 2 ) for x in results )}""" print(_lowerCAmelCase ) __lowercase =variation return mean_metrics else: print(_lowerCAmelCase ) return {variation_key: variation, target_metric_key: nan} def _A ( ): """simple docstring""" __lowercase =torch.cuda.get_device_properties(torch.device('cuda' ) ) return f""" Datetime : {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' )} Software: transformers: {transformers.__version__} torch : {torch.__version__} cuda : {torch.version.cuda} python : {platform.python_version()} Hardware: {torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB """ def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __lowercase =pd.DataFrame(_lowerCAmelCase ) __lowercase ='variation' __lowercase ='diff_%' __lowercase =nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan __lowercase =df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(_lowerCAmelCase ): # as a fallback, use the minimal value as the sentinel __lowercase =df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(_lowerCAmelCase ): __lowercase =df.apply( lambda _lowerCAmelCase : round(100 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis='columns' , ) # re-order columns __lowercase =[variation_key, target_metric_key, diff_key, *report_metric_keys] __lowercase =df.reindex(_lowerCAmelCase , axis='columns' ) # reorder cols # capitalize __lowercase =df.rename(str.capitalize , axis='columns' ) # make the cols as narrow as possible __lowercase =df.rename(lambda _lowerCAmelCase : c.replace('_' , '<br>' ) , axis='columns' ) __lowercase =df.rename(lambda _lowerCAmelCase : c.replace('_' , '\n' ) , axis='columns' ) __lowercase =['', 'Copy between the cut-here-lines and paste as is to github or a forum'] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=_lowerCAmelCase , floatfmt='.2f' )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=_lowerCAmelCase , floatfmt='.2f' )] print('\n\n'.join(_lowerCAmelCase ) ) def _A ( ): """simple docstring""" __lowercase =argparse.ArgumentParser() parser.add_argument( '--base-cmd' , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help='Base cmd' , ) parser.add_argument( '--variations' , default=_lowerCAmelCase , type=_lowerCAmelCase , nargs='+' , required=_lowerCAmelCase , help='Multi-dimensional variations, example: \'|--fp16|--bf16\' \'|--tf32\'' , ) parser.add_argument( '--base-variation' , default=_lowerCAmelCase , type=_lowerCAmelCase , help='Baseline variation to compare to. if None the minimal target value will be used to compare against' , ) parser.add_argument( '--target-metric-key' , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help='Target metric key in output_dir/all_results.json, e.g., train_samples_per_second' , ) parser.add_argument( '--report-metric-keys' , default='' , type=_lowerCAmelCase , help='Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., \'train_loss train_samples' , ) parser.add_argument( '--repeat-times' , default=1 , type=_lowerCAmelCase , help='How many times to re-run each variation - an average will be reported' , ) parser.add_argument( '--output_dir' , default='output_benchmark' , type=_lowerCAmelCase , help='The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked' , ) parser.add_argument( '--verbose' , default=_lowerCAmelCase , action='store_true' , help='Whether to show the outputs of each run or just the benchmark progress' , ) __lowercase =parser.parse_args() __lowercase =args.output_dir Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) __lowercase =get_base_command(_lowerCAmelCase , _lowerCAmelCase ) # split each dimension into its --foo variations __lowercase =[list(map(str.strip , re.split(r'\|' , _lowerCAmelCase ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty __lowercase =list(map(str.strip , map(' '.join , itertools.product(*_lowerCAmelCase ) ) ) ) __lowercase =max(len(_lowerCAmelCase ) for x in variations ) # split wanted keys __lowercase =args.report_metric_keys.split() # capture prints into a log file for convenience __lowercase =f"""benchmark-report-{datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S' )}.txt""" print(f"""\nNote: each run's output is also logged under {output_dir}/log.*.std*.txt""" ) print(f"""and this script's output is also piped into {report_fn}""" ) __lowercase =Tee(_lowerCAmelCase ) print(f"""\n*** Running {len(_lowerCAmelCase )} benchmarks:""" ) print(f"""Base command: {' '.join(_lowerCAmelCase )}""" ) __lowercase ='variation' __lowercase =[] for id, variation in enumerate(tqdm(_lowerCAmelCase , desc='Total completion: ' , leave=_lowerCAmelCase ) ): __lowercase =base_cmd + variation.split() results.append( process_run( id + 1 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , args.target_metric_key , _lowerCAmelCase , args.repeat_times , _lowerCAmelCase , args.verbose , ) ) process_results(_lowerCAmelCase , args.target_metric_key , _lowerCAmelCase , args.base_variation , _lowerCAmelCase ) if __name__ == "__main__": main()
166
1
def lowercase_ ( A__ = 100 ) -> int: """simple docstring""" snake_case = 0 snake_case = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(f"{solution() = }")
362
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer _A = logging.get_logger(__name__) _A = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} _A = { "vocab_file": { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/vocab.txt", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/vocab.txt", "bert-base-multilingual-uncased": ( "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt" ), "bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt", "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt" ), "bert-base-cased-finetuned-mrpc": ( "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt" ), "bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt", "bert-base-german-dbmdz-uncased": ( "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt" ), "wietsedv/bert-base-dutch-cased": ( "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json", "bert-base-multilingual-uncased": ( "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json" ), "bert-base-multilingual-cased": ( "https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json" ), "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json" ), "bert-base-cased-finetuned-mrpc": ( "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json" ), "bert-base-german-dbmdz-cased": ( "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json" ), "bert-base-german-dbmdz-uncased": ( "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json" ), "wietsedv/bert-base-dutch-cased": ( "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json" ), }, } _A = { "bert-base-uncased": 5_12, "bert-large-uncased": 5_12, "bert-base-cased": 5_12, "bert-large-cased": 5_12, "bert-base-multilingual-uncased": 5_12, "bert-base-multilingual-cased": 5_12, "bert-base-chinese": 5_12, "bert-base-german-cased": 5_12, "bert-large-uncased-whole-word-masking": 5_12, "bert-large-cased-whole-word-masking": 5_12, "bert-large-uncased-whole-word-masking-finetuned-squad": 5_12, "bert-large-cased-whole-word-masking-finetuned-squad": 5_12, "bert-base-cased-finetuned-mrpc": 5_12, "bert-base-german-dbmdz-cased": 5_12, "bert-base-german-dbmdz-uncased": 5_12, "TurkuNLP/bert-base-finnish-cased-v1": 5_12, "TurkuNLP/bert-base-finnish-uncased-v1": 5_12, "wietsedv/bert-base-dutch-cased": 5_12, } _A = { "bert-base-uncased": {"do_lower_case": True}, "bert-large-uncased": {"do_lower_case": True}, "bert-base-cased": {"do_lower_case": False}, "bert-large-cased": {"do_lower_case": False}, "bert-base-multilingual-uncased": {"do_lower_case": True}, "bert-base-multilingual-cased": {"do_lower_case": False}, "bert-base-chinese": {"do_lower_case": False}, "bert-base-german-cased": {"do_lower_case": False}, "bert-large-uncased-whole-word-masking": {"do_lower_case": True}, "bert-large-cased-whole-word-masking": {"do_lower_case": False}, "bert-large-uncased-whole-word-masking-finetuned-squad": {"do_lower_case": True}, "bert-large-cased-whole-word-masking-finetuned-squad": {"do_lower_case": False}, "bert-base-cased-finetuned-mrpc": {"do_lower_case": False}, "bert-base-german-dbmdz-cased": {"do_lower_case": False}, "bert-base-german-dbmdz-uncased": {"do_lower_case": True}, "TurkuNLP/bert-base-finnish-cased-v1": {"do_lower_case": False}, "TurkuNLP/bert-base-finnish-uncased-v1": {"do_lower_case": True}, "wietsedv/bert-base-dutch-cased": {"do_lower_case": False}, } class lowerCamelCase ( A_ ): UpperCAmelCase__ : Optional[Any] = VOCAB_FILES_NAMES UpperCAmelCase__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : int = BertTokenizer def __init__(self : Union[str, Any] , _A : Union[str, Any]=None , _A : Optional[int]=None , _A : List[str]=True , _A : List[Any]="[UNK]" , _A : Union[str, Any]="[SEP]" , _A : List[Any]="[PAD]" , _A : List[Any]="[CLS]" , _A : Union[str, Any]="[MASK]" , _A : int=True , _A : Tuple=None , **_A : Optional[int] , ) -> int: super().__init__( _A , tokenizer_file=_A , do_lower_case=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , tokenize_chinese_chars=_A , strip_accents=_A , **_A , ) snake_case = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , _A ) != do_lower_case or normalizer_state.get("strip_accents" , _A ) != strip_accents or normalizer_state.get("handle_chinese_chars" , _A ) != tokenize_chinese_chars ): snake_case = getattr(_A , normalizer_state.pop("type" ) ) snake_case = do_lower_case snake_case = strip_accents snake_case = tokenize_chinese_chars snake_case = normalizer_class(**_A ) snake_case = do_lower_case def UpperCAmelCase(self : str , _A : Union[str, Any] , _A : int=None ) -> Any: snake_case = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase(self : Optional[Any] , _A : List[int] , _A : Optional[List[int]] = None ) -> List[int]: snake_case = [self.sep_token_id] snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase(self : Union[str, Any] , _A : str , _A : Optional[str] = None ) -> Tuple[str]: snake_case = self._tokenizer.model.save(_A , name=_A ) return tuple(_A )
137
0
'''simple docstring''' import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : Any = ['image_processor', 'tokenizer'] lowerCamelCase : List[str] = 'AutoImageProcessor' lowerCamelCase : Tuple = 'AutoTokenizer' def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: __lowerCamelCase : Dict = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase : Optional[Any] = kwargs.pop('feature_extractor' ) __lowerCamelCase : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = self.image_processor __lowerCamelCase : Tuple = False def __call__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> List[str]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = kwargs.pop('images' , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[str] = kwargs.pop('text' , SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) > 0: __lowerCamelCase : Tuple = args[0] __lowerCamelCase : List[Any] = args[1:] if images is None and text is None: raise ValueError('You need to specify either an `images` or `text` input to process.' ) if images is not None: __lowerCamelCase : List[Any] = self.image_processor(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if text is not None: __lowerCamelCase : Any = self.tokenizer(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if text is None: return inputs elif images is None: return encodings else: __lowerCamelCase : Any = encodings['input_ids'] return inputs def lowercase_ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> List[Any]: return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Any: return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @contextmanager def lowercase_ ( self ) -> Dict: warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your images inputs, or in a separate call.' ) __lowerCamelCase : Tuple = True __lowerCamelCase : List[str] = self.tokenizer yield __lowerCamelCase : Dict = self.image_processor __lowerCamelCase : Tuple = False def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=None ) -> Optional[Any]: if added_vocab is None: __lowerCamelCase : List[str] = self.tokenizer.get_added_vocab() __lowerCamelCase : int = {} while tokens: __lowerCamelCase : Optional[Any] = re.search(r'<s_(.*?)>' , SCREAMING_SNAKE_CASE_ , re.IGNORECASE ) if start_token is None: break __lowerCamelCase : List[str] = start_token.group(1 ) __lowerCamelCase : str = re.search(rf'</s_{key}>' , SCREAMING_SNAKE_CASE_ , re.IGNORECASE ) __lowerCamelCase : str = start_token.group() if end_token is None: __lowerCamelCase : Tuple = tokens.replace(SCREAMING_SNAKE_CASE_ , '' ) else: __lowerCamelCase : Dict = end_token.group() __lowerCamelCase : Dict = re.escape(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = re.escape(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = re.search(f'{start_token_escaped}(.*?){end_token_escaped}' , SCREAMING_SNAKE_CASE_ , re.IGNORECASE ) if content is not None: __lowerCamelCase : List[str] = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node __lowerCamelCase : Optional[int] = self.tokenajson(SCREAMING_SNAKE_CASE_ , is_inner_value=SCREAMING_SNAKE_CASE_ , added_vocab=SCREAMING_SNAKE_CASE_ ) if value: if len(SCREAMING_SNAKE_CASE_ ) == 1: __lowerCamelCase : List[Any] = value[0] __lowerCamelCase : List[str] = value else: # leaf nodes __lowerCamelCase : List[str] = [] for leaf in content.split(r'<sep/>' ): __lowerCamelCase : List[str] = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": __lowerCamelCase : Optional[int] = leaf[1:-2] # for categorical special tokens output[key].append(SCREAMING_SNAKE_CASE_ ) if len(output[key] ) == 1: __lowerCamelCase : Dict = output[key][0] __lowerCamelCase : Dict = tokens[tokens.find(SCREAMING_SNAKE_CASE_ ) + len(SCREAMING_SNAKE_CASE_ ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=SCREAMING_SNAKE_CASE_ , added_vocab=SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def lowercase_ ( self ) -> str: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , SCREAMING_SNAKE_CASE_ , ) return self.image_processor_class @property def lowercase_ ( self ) -> Optional[Any]: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , SCREAMING_SNAKE_CASE_ , ) return self.image_processor
185
'''simple docstring''' import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" @slow def lowercase_ ( self ) -> List[str]: __lowerCamelCase : Any = AutoImageProcessor.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) __lowerCamelCase : Tuple = AutoModelForImageClassification.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) model.to(SCREAMING_SNAKE_CASE_ ) from datasets import load_dataset __lowerCamelCase : str = load_dataset('nielsr/rvlcdip-demo' ) __lowerCamelCase : List[Any] = dataset['train'][0]['image'].convert('RGB' ) __lowerCamelCase : str = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): __lowerCamelCase : str = model(**SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = outputs.logits __lowerCamelCase : List[Any] = torch.Size((1, 16) ) self.assertEqual(logits.shape , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[Any] = torch.tensor( [-0.4_1_5_8, -0.4_0_9_2, -0.4_3_4_7] , device=SCREAMING_SNAKE_CASE_ , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
185
1
"""simple docstring""" import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = TextToVideoSDPipeline a_ = TEXT_TO_IMAGE_PARAMS a_ = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. a_ = frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ] ) def lowercase ( self : Any ) -> int: torch.manual_seed(0 ) __lowerCAmelCase = UNetaDConditionModel( block_out_channels=(3_2, 6_4, 6_4, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D') , up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D') , cross_attention_dim=3_2 , attention_head_dim=4 , ) __lowerCAmelCase = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=lowerCAmelCase_ , set_alpha_to_one=lowerCAmelCase_ , ) torch.manual_seed(0 ) __lowerCAmelCase = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) __lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='gelu' , projection_dim=5_1_2 , ) __lowerCAmelCase = CLIPTextModel(lowerCAmelCase_ ) __lowerCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __lowerCAmelCase = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Any=0 ) -> Dict: if str(lowerCAmelCase_ ).startswith('mps' ): __lowerCAmelCase = torch.manual_seed(lowerCAmelCase_ ) else: __lowerCAmelCase = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) __lowerCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'pt', } return inputs def lowercase ( self : List[Any] ) -> str: __lowerCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = TextToVideoSDPipeline(**lowerCAmelCase_ ) __lowerCAmelCase = sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) __lowerCAmelCase = self.get_dummy_inputs(lowerCAmelCase_ ) __lowerCAmelCase = 'np' __lowerCAmelCase = sd_pipe(**lowerCAmelCase_ ).frames __lowerCAmelCase = frames[0][-3:, -3:, -1] assert frames[0].shape == (6_4, 6_4, 3) __lowerCAmelCase = np.array([1_5_8.0, 1_6_0.0, 1_5_3.0, 1_2_5.0, 1_0_0.0, 1_2_1.0, 1_1_1.0, 93.0, 1_1_3.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase ( self : Union[str, Any] ) -> Optional[Any]: self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowerCAmelCase_ , expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def lowercase ( self : Union[str, Any] ) -> Any: self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowerCAmelCase_ , expected_max_diff=1e-2 ) @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def lowercase ( self : Tuple ) -> Any: pass @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def lowercase ( self : Optional[int] ) -> List[str]: pass @unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.' ) def lowercase ( self : Union[str, Any] ) -> Union[str, Any]: pass def lowercase ( self : List[Any] ) -> Dict: return super().test_progress_bar() @slow @skip_mps class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : Union[str, Any] ) -> Dict: __lowerCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy' ) __lowerCAmelCase = TextToVideoSDPipeline.from_pretrained('damo-vilab/text-to-video-ms-1.7b' ) __lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __lowerCAmelCase = pipe.to('cuda' ) __lowerCAmelCase = 'Spiderman is surfing' __lowerCAmelCase = torch.Generator(device='cpu' ).manual_seed(0 ) __lowerCAmelCase = pipe(lowerCAmelCase_ , generator=lowerCAmelCase_ , num_inference_steps=2_5 , output_type='pt' ).frames __lowerCAmelCase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def lowercase ( self : Optional[int] ) -> List[Any]: __lowerCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy' ) __lowerCAmelCase = TextToVideoSDPipeline.from_pretrained('damo-vilab/text-to-video-ms-1.7b' ) __lowerCAmelCase = pipe.to('cuda' ) __lowerCAmelCase = 'Spiderman is surfing' __lowerCAmelCase = torch.Generator(device='cpu' ).manual_seed(0 ) __lowerCAmelCase = pipe(lowerCAmelCase_ , generator=lowerCAmelCase_ , num_inference_steps=2 , output_type='pt' ).frames __lowerCAmelCase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
365
from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean _snake_case : Dict = 0 _snake_case : Dict = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _snake_case : List[str] = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right _snake_case : Tuple = tuple[int, int] class _UpperCAmelCase : """simple docstring""" def __init__( self : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Node | None , ) -> None: __lowerCAmelCase = pos_x __lowerCAmelCase = pos_y __lowerCAmelCase = (pos_y, pos_x) __lowerCAmelCase = goal_x __lowerCAmelCase = goal_y __lowerCAmelCase = g_cost __lowerCAmelCase = parent __lowerCAmelCase = self.calculate_heuristic() __lowerCAmelCase = self.g_cost + self.h_cost def lowercase ( self : Any ) -> float: __lowerCAmelCase = self.pos_x - self.goal_x __lowerCAmelCase = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(lowerCAmelCase_ ) + abs(lowerCAmelCase_ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self : Union[str, Any] , lowerCAmelCase_ : Node ) -> bool: return self.f_cost < other.f_cost class _UpperCAmelCase : """simple docstring""" def __init__( self : List[str] , lowerCAmelCase_ : TPosition , lowerCAmelCase_ : TPosition ) -> Tuple: __lowerCAmelCase = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , lowerCAmelCase_ ) __lowerCAmelCase = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9_9_9_9 , lowerCAmelCase_ ) __lowerCAmelCase = [self.start] __lowerCAmelCase = [] __lowerCAmelCase = False def lowercase ( self : str ) -> list[TPosition]: while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __lowerCAmelCase = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(lowerCAmelCase_ ) self.closed_nodes.append(lowerCAmelCase_ ) __lowerCAmelCase = self.get_successors(lowerCAmelCase_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(lowerCAmelCase_ ) else: # retrieve the best current path __lowerCAmelCase = self.open_nodes.pop(self.open_nodes.index(lowerCAmelCase_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(lowerCAmelCase_ ) else: self.open_nodes.append(lowerCAmelCase_ ) return [self.start.pos] def lowercase ( self : Optional[Any] , lowerCAmelCase_ : Node ) -> list[Node]: __lowerCAmelCase = [] for action in delta: __lowerCAmelCase = parent.pos_x + action[1] __lowerCAmelCase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowerCAmelCase_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( lowerCAmelCase_ , lowerCAmelCase_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , lowerCAmelCase_ , ) ) return successors def lowercase ( self : Tuple , lowerCAmelCase_ : Node | None ) -> list[TPosition]: __lowerCAmelCase = node __lowerCAmelCase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __lowerCAmelCase = current_node.parent path.reverse() return path class _UpperCAmelCase : """simple docstring""" def __init__( self : int , lowerCAmelCase_ : TPosition , lowerCAmelCase_ : TPosition ) -> None: __lowerCAmelCase = AStar(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = AStar(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = False def lowercase ( self : Dict ) -> list[TPosition]: while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() __lowerCAmelCase = self.fwd_astar.open_nodes.pop(0 ) __lowerCAmelCase = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( lowerCAmelCase_ , lowerCAmelCase_ ) self.fwd_astar.closed_nodes.append(lowerCAmelCase_ ) self.bwd_astar.closed_nodes.append(lowerCAmelCase_ ) __lowerCAmelCase = current_bwd_node __lowerCAmelCase = current_fwd_node __lowerCAmelCase = { self.fwd_astar: self.fwd_astar.get_successors(lowerCAmelCase_ ), self.bwd_astar: self.bwd_astar.get_successors(lowerCAmelCase_ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(lowerCAmelCase_ ) else: # retrieve the best current path __lowerCAmelCase = astar.open_nodes.pop( astar.open_nodes.index(lowerCAmelCase_ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(lowerCAmelCase_ ) else: astar.open_nodes.append(lowerCAmelCase_ ) return [self.fwd_astar.start.pos] def lowercase ( self : Dict , lowerCAmelCase_ : Node , lowerCAmelCase_ : Node ) -> list[TPosition]: __lowerCAmelCase = self.fwd_astar.retrace_path(lowerCAmelCase_ ) __lowerCAmelCase = self.bwd_astar.retrace_path(lowerCAmelCase_ ) bwd_path.pop() bwd_path.reverse() __lowerCAmelCase = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] _snake_case : List[Any] = (0, 0) _snake_case : Union[str, Any] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _snake_case : int = time.time() _snake_case : Optional[int] = AStar(init, goal) _snake_case : int = a_star.search() _snake_case : Union[str, Any] = time.time() - start_time print(F"""AStar execution time = {end_time:f} seconds""") _snake_case : Any = time.time() _snake_case : Dict = BidirectionalAStar(init, goal) _snake_case : Optional[int] = time.time() - bd_start_time print(F"""BidirectionalAStar execution time = {bd_end_time:f} seconds""")
207
0
'''simple docstring''' def snake_case_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : Union[str, Any] ) -> int: if index == number_of_items: return 0 UpperCAmelCase : int = 0 UpperCAmelCase : Tuple = 0 UpperCAmelCase : Any = knapsack(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , index + 1 ) if weights[index] <= max_weight: UpperCAmelCase : List[str] = values[index] + knapsack( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , max_weight - weights[index] , index + 1 ) return max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
23
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def __lowercase ( _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> List[str]: '''simple docstring''' return field(default_factory=lambda: default , metadata=_SCREAMING_SNAKE_CASE ) @dataclass class UpperCamelCase__ : '''simple docstring''' __snake_case : List[str] = list_field( default=[] , metadata={ "help": ( "Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version" " of all available models" ) } , ) __snake_case : List[int] = list_field( default=[8] , metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"} ) __snake_case : List[int] = list_field( default=[8, 32, 128, 512] , metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"} , ) __snake_case : bool = field( default=lowerCAmelCase_ , metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."} , ) __snake_case : bool = field( default=lowerCAmelCase_ , metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."} , ) __snake_case : bool = field( default=lowerCAmelCase_ , metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."} ) __snake_case : bool = field(default=lowerCAmelCase_ , metadata={"help": "Use FP16 to accelerate inference."} ) __snake_case : bool = field(default=lowerCAmelCase_ , metadata={"help": "Benchmark training of model"} ) __snake_case : bool = field(default=lowerCAmelCase_ , metadata={"help": "Verbose memory tracing"} ) __snake_case : bool = field( default=lowerCAmelCase_ , metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."} , ) __snake_case : bool = field( default=lowerCAmelCase_ , metadata={ "help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory" } , ) __snake_case : bool = field(default=lowerCAmelCase_ , metadata={"help": "Trace memory line by line"} ) __snake_case : bool = field(default=lowerCAmelCase_ , metadata={"help": "Save result to a CSV file"} ) __snake_case : bool = field(default=lowerCAmelCase_ , metadata={"help": "Save all print statements in a log file"} ) __snake_case : bool = field(default=lowerCAmelCase_ , metadata={"help": "Whether to print environment information"} ) __snake_case : bool = field( default=lowerCAmelCase_ , metadata={ "help": ( "Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use" " multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled" " for debugging / testing and on TPU." ) } , ) __snake_case : str = field( default=F"inference_time_{round(time() )}.csv" , metadata={"help": "CSV filename used if saving time results to csv."} , ) __snake_case : str = field( default=F"inference_memory_{round(time() )}.csv" , metadata={"help": "CSV filename used if saving memory results to csv."} , ) __snake_case : str = field( default=F"train_time_{round(time() )}.csv" , metadata={"help": "CSV filename used if saving time results to csv for training."} , ) __snake_case : str = field( default=F"train_memory_{round(time() )}.csv" , metadata={"help": "CSV filename used if saving memory results to csv for training."} , ) __snake_case : str = field( default=F"env_info_{round(time() )}.csv" , metadata={"help": "CSV filename used if saving environment information."} , ) __snake_case : str = field( default=F"log_{round(time() )}.csv" , metadata={"help": "Log filename used if print statements are saved in log."} , ) __snake_case : int = field(default=3 , metadata={"help": "Times an experiment will be run."} ) __snake_case : bool = field( default=lowerCAmelCase_ , metadata={ "help": ( "Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain" " model weights." ) } , ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' warnings.warn( F"""The class {self.__class__} is deprecated. Hugging Face Benchmarking utils""" """ are deprecated in general and it is advised to use external Benchmarking libraries """ """ to benchmark Transformer models.""" ,lowerCamelCase__ ,) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Any: '''simple docstring''' return json.dumps(dataclasses.asdict(self ) ,indent=2 ) @property def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' if len(self.models ) <= 0: raise ValueError( """Please make sure you provide at least one model name / model identifier, *e.g.* `--models""" """ bert-base-cased` or `args.models = ['bert-base-cased'].""" ) return self.models @property def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> int: '''simple docstring''' if not self.multi_process: return False elif self.is_tpu: logger.info("""Multiprocessing is currently not possible on TPU.""" ) return False else: return True
296
0
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : Dict = "ClapFeatureExtractor" __lowerCamelCase : Any = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self, lowerCamelCase__, lowerCamelCase__ ): super().__init__(lowerCamelCase__, lowerCamelCase__ ) def __call__( self, lowerCamelCase__=None, lowerCamelCase__=None, lowerCamelCase__=None, **lowerCamelCase__ ): A : Optional[int] = kwargs.pop("""sampling_rate""", lowerCamelCase__ ) if text is None and audios is None: raise ValueError("""You have to specify either text or audios. Both cannot be none.""" ) if text is not None: A : Any = self.tokenizer(lowerCamelCase__, return_tensors=lowerCamelCase__, **lowerCamelCase__ ) if audios is not None: A : Dict = self.feature_extractor( lowerCamelCase__, sampling_rate=lowerCamelCase__, return_tensors=lowerCamelCase__, **lowerCamelCase__ ) if text is not None and audios is not None: A : List[Any] = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCamelCase__ ), tensor_type=lowerCamelCase__ ) def _lowerCAmelCase ( self, *lowerCamelCase__, **lowerCamelCase__ ): return self.tokenizer.batch_decode(*lowerCamelCase__, **lowerCamelCase__ ) def _lowerCAmelCase ( self, *lowerCamelCase__, **lowerCamelCase__ ): return self.tokenizer.decode(*lowerCamelCase__, **lowerCamelCase__ ) @property def _lowerCAmelCase ( self ): A : List[Any] = self.tokenizer.model_input_names A : Dict = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
115
from __future__ import annotations def __UpperCamelCase ( _lowerCAmelCase ) -> list[int]: """simple docstring""" A : Tuple = 2 A : List[Any] = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(_lowerCAmelCase ) if n > 1: factors.append(_lowerCAmelCase ) return factors if __name__ == "__main__": import doctest doctest.testmod()
115
1
def lowercase__ ( __snake_case : dict ): '''simple docstring''' UpperCAmelCase_ : set[int] = set() # To detect a back edge, keep track of vertices currently in the recursion stack UpperCAmelCase_ : set[int] = set() return any( node not in visited and depth_first_search(__snake_case , __snake_case , __snake_case , __snake_case ) for node in graph ) def lowercase__ ( __snake_case : dict , __snake_case : int , __snake_case : set , __snake_case : set ): '''simple docstring''' visited.add(__snake_case ) rec_stk.add(__snake_case ) for node in graph[vertex]: if node not in visited: if depth_first_search(__snake_case , __snake_case , __snake_case , __snake_case ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(__snake_case ) return False if __name__ == "__main__": from doctest import testmod testmod()
29
'''simple docstring''' from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig lowercase__ : Union[str, Any] = logging.get_logger(__name__) # General docstring lowercase__ : Dict = 'ResNetConfig' # Base docstring lowercase__ : str = 'microsoft/resnet-50' lowercase__ : Tuple = [1, 20_48, 7, 7] # Image classification docstring lowercase__ : Optional[Any] = 'microsoft/resnet-50' lowercase__ : List[str] = 'tiger cat' lowercase__ : List[Any] = [ 'microsoft/resnet-50', # See all resnet models at https://huggingface.co/models?filter=resnet ] class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 3 , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : str = "relu" ) -> Union[str, Any]: '''simple docstring''' super().__init__() _UpperCamelCase = nn.Convad( lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=lowerCAmelCase__ , stride=lowerCAmelCase__ , padding=kernel_size // 2 , bias=lowerCAmelCase__ ) _UpperCamelCase = nn.BatchNormad(lowerCAmelCase__ ) _UpperCamelCase = ACTaFN[activation] if activation is not None else nn.Identity() def snake_case__ ( self : Any , lowerCAmelCase__ : Tensor ) -> Tensor: '''simple docstring''' _UpperCamelCase = self.convolution(lowerCAmelCase__ ) _UpperCamelCase = self.normalization(lowerCAmelCase__ ) _UpperCamelCase = self.activation(lowerCAmelCase__ ) return hidden_state class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : List[str] , lowerCAmelCase__ : ResNetConfig ) -> Tuple: '''simple docstring''' super().__init__() _UpperCamelCase = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) _UpperCamelCase = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) _UpperCamelCase = config.num_channels def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : Tensor ) -> Tensor: '''simple docstring''' _UpperCamelCase = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) _UpperCamelCase = self.embedder(lowerCAmelCase__ ) _UpperCamelCase = self.pooler(lowerCAmelCase__ ) return embedding class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 2 ) -> Optional[Any]: '''simple docstring''' super().__init__() _UpperCamelCase = nn.Convad(lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=1 , stride=lowerCAmelCase__ , bias=lowerCAmelCase__ ) _UpperCamelCase = nn.BatchNormad(lowerCAmelCase__ ) def snake_case__ ( self : Any , lowerCAmelCase__ : Tensor ) -> Tensor: '''simple docstring''' _UpperCamelCase = self.convolution(lowerCAmelCase__ ) _UpperCamelCase = self.normalization(lowerCAmelCase__ ) return hidden_state class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : str = "relu" ) -> str: '''simple docstring''' super().__init__() _UpperCamelCase = in_channels != out_channels or stride != 1 _UpperCamelCase = ( ResNetShortCut(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ ) if should_apply_shortcut else nn.Identity() ) _UpperCamelCase = nn.Sequential( ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ ) , ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , activation=lowerCAmelCase__ ) , ) _UpperCamelCase = ACTaFN[activation] def snake_case__ ( self : Tuple , lowerCAmelCase__ : Tuple ) -> List[str]: '''simple docstring''' _UpperCamelCase = hidden_state _UpperCamelCase = self.layer(lowerCAmelCase__ ) _UpperCamelCase = self.shortcut(lowerCAmelCase__ ) hidden_state += residual _UpperCamelCase = self.activation(lowerCAmelCase__ ) return hidden_state class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : str = "relu" , lowerCAmelCase__ : int = 4 ) -> Optional[Any]: '''simple docstring''' super().__init__() _UpperCamelCase = in_channels != out_channels or stride != 1 _UpperCamelCase = out_channels // reduction _UpperCamelCase = ( ResNetShortCut(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ ) if should_apply_shortcut else nn.Identity() ) _UpperCamelCase = nn.Sequential( ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=1 ) , ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ ) , ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=1 , activation=lowerCAmelCase__ ) , ) _UpperCamelCase = ACTaFN[activation] def snake_case__ ( self : int , lowerCAmelCase__ : List[Any] ) -> List[str]: '''simple docstring''' _UpperCamelCase = hidden_state _UpperCamelCase = self.layer(lowerCAmelCase__ ) _UpperCamelCase = self.shortcut(lowerCAmelCase__ ) hidden_state += residual _UpperCamelCase = self.activation(lowerCAmelCase__ ) return hidden_state class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : Union[str, Any] , lowerCAmelCase__ : ResNetConfig , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , ) -> int: '''simple docstring''' super().__init__() _UpperCamelCase = ResNetBottleNeckLayer if config.layer_type == '''bottleneck''' else ResNetBasicLayer _UpperCamelCase = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ , activation=config.hidden_act ) , *[layer(lowerCAmelCase__ , lowerCAmelCase__ , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def snake_case__ ( self : List[Any] , lowerCAmelCase__ : Tensor ) -> Tensor: '''simple docstring''' _UpperCamelCase = input for layer in self.layers: _UpperCamelCase = layer(lowerCAmelCase__ ) return hidden_state class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : ResNetConfig ) -> List[Any]: '''simple docstring''' super().__init__() _UpperCamelCase = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( lowerCAmelCase__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) _UpperCamelCase = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(lowerCAmelCase__ , config.depths[1:] ): self.stages.append(ResNetStage(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , depth=lowerCAmelCase__ ) ) def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Tensor , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = True ) -> BaseModelOutputWithNoAttention: '''simple docstring''' _UpperCamelCase = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _UpperCamelCase = hidden_states + (hidden_state,) _UpperCamelCase = stage_module(lowerCAmelCase__ ) if output_hidden_states: _UpperCamelCase = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=lowerCAmelCase__ , hidden_states=lowerCAmelCase__ , ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : Optional[int] = ResNetConfig _snake_case : Union[str, Any] = 'resnet' _snake_case : Optional[int] = 'pixel_values' _snake_case : int = True def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : List[str] ) -> Union[str, Any]: '''simple docstring''' if isinstance(lowerCAmelCase__ , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='''fan_out''' , nonlinearity='''relu''' ) elif isinstance(lowerCAmelCase__ , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def snake_case__ ( self : str , lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple=False ) -> List[str]: '''simple docstring''' if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCamelCase = value lowercase__ : Optional[int] = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' lowercase__ : Any = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( 'The bare ResNet model outputting raw features without any specific head on top.' , __magic_name__ , ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : Union[str, Any] ) -> str: '''simple docstring''' super().__init__(lowerCAmelCase__ ) _UpperCamelCase = config _UpperCamelCase = ResNetEmbeddings(lowerCAmelCase__ ) _UpperCamelCase = ResNetEncoder(lowerCAmelCase__ ) _UpperCamelCase = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Tensor , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention: '''simple docstring''' _UpperCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict _UpperCamelCase = self.embedder(lowerCAmelCase__ ) _UpperCamelCase = self.encoder( lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__ ) _UpperCamelCase = encoder_outputs[0] _UpperCamelCase = self.pooler(lowerCAmelCase__ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase__ , pooler_output=lowerCAmelCase__ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( '\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , __magic_name__ , ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase__ : Optional[int] ) -> Any: '''simple docstring''' super().__init__(lowerCAmelCase__ ) _UpperCamelCase = config.num_labels _UpperCamelCase = ResNetModel(lowerCAmelCase__ ) # classification head _UpperCamelCase = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def snake_case__ ( self : int , lowerCAmelCase__ : Optional[torch.FloatTensor] = None , lowerCAmelCase__ : Optional[torch.LongTensor] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention: '''simple docstring''' _UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict _UpperCamelCase = self.resnet(lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__ ) _UpperCamelCase = outputs.pooler_output if return_dict else outputs[1] _UpperCamelCase = self.classifier(lowerCAmelCase__ ) _UpperCamelCase = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _UpperCamelCase = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _UpperCamelCase = '''single_label_classification''' else: _UpperCamelCase = '''multi_label_classification''' if self.config.problem_type == "regression": _UpperCamelCase = MSELoss() if self.num_labels == 1: _UpperCamelCase = loss_fct(logits.squeeze() , labels.squeeze() ) else: _UpperCamelCase = loss_fct(lowerCAmelCase__ , lowerCAmelCase__ ) elif self.config.problem_type == "single_label_classification": _UpperCamelCase = CrossEntropyLoss() _UpperCamelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _UpperCamelCase = BCEWithLogitsLoss() _UpperCamelCase = loss_fct(lowerCAmelCase__ , lowerCAmelCase__ ) if not return_dict: _UpperCamelCase = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowerCAmelCase__ , logits=lowerCAmelCase__ , hidden_states=outputs.hidden_states ) @add_start_docstrings( '\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n ' , __magic_name__ , ) class __lowerCAmelCase ( __magic_name__ , __magic_name__ ): """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : Any ) -> Dict: '''simple docstring''' super().__init__(lowerCAmelCase__ ) super()._init_backbone(lowerCAmelCase__ ) _UpperCamelCase = [config.embedding_size] + config.hidden_sizes _UpperCamelCase = ResNetEmbeddings(lowerCAmelCase__ ) _UpperCamelCase = ResNetEncoder(lowerCAmelCase__ ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase__ ) @replace_return_docstrings(output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC ) def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Tensor , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None ) -> BackboneOutput: '''simple docstring''' _UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict _UpperCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCamelCase = self.embedder(lowerCAmelCase__ ) _UpperCamelCase = self.encoder(lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__ ) _UpperCamelCase = outputs.hidden_states _UpperCamelCase = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: _UpperCamelCase = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=lowerCAmelCase__ , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=lowerCAmelCase__ , )
324
0
"""simple docstring""" from pathlib import Path import numpy as np from PIL import Image def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.29_89 * r + 0.58_70 * g + 0.11_40 * b def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' return (gray > 127) & (gray <= 255) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = np.zeros_like(_UpperCamelCase ) __lowerCAmelCase = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image __lowerCAmelCase = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): __lowerCAmelCase = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() __lowerCAmelCase = int(summation > 0 ) return output if __name__ == "__main__": # read original image A : str = Path(__file__).resolve().parent / "image_data" / "lena.jpg" A : Union[str, Any] = np.array(Image.open(lena_path)) # kernel to be applied A : Union[str, Any] = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) A : Tuple = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image A : Any = Image.fromarray(output).convert("RGB") pil_img.save("result_dilation.png")
259
"""simple docstring""" import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = BertConfig.from_json_file(_UpperCamelCase ) print(f"Building PyTorch model from configuration: {config}" ) __lowerCAmelCase = BertForPreTraining(_UpperCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_bert(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , _UpperCamelCase ) if __name__ == "__main__": A : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--bert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) A : Optional[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
259
1
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class _lowercase ( lowercase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = '''char''' SCREAMING_SNAKE_CASE__ : Optional[int] = '''bpe''' SCREAMING_SNAKE_CASE__ : Optional[Any] = '''wp''' __lowerCAmelCase : Dict =(DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class _lowercase ( lowercase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = ['''image_processor''', '''char_tokenizer'''] SCREAMING_SNAKE_CASE__ : Any = '''ViTImageProcessor''' SCREAMING_SNAKE_CASE__ : Tuple = '''MgpstrTokenizer''' def __init__( self :str , lowerCAmelCase__ :Dict=None , lowerCAmelCase__ :List[str]=None , **lowerCAmelCase__ :List[Any] ) -> List[Any]: __SCREAMING_SNAKE_CASE : Optional[int] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowerCAmelCase_ , ) __SCREAMING_SNAKE_CASE : Tuple = kwargs.pop('''feature_extractor''' ) __SCREAMING_SNAKE_CASE : List[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) __SCREAMING_SNAKE_CASE : Tuple = tokenizer __SCREAMING_SNAKE_CASE : Optional[Any] = AutoTokenizer.from_pretrained('''gpt2''' ) __SCREAMING_SNAKE_CASE : Tuple = AutoTokenizer.from_pretrained('''bert-base-uncased''' ) super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) def __call__( self :str , lowerCAmelCase__ :List[Any]=None , lowerCAmelCase__ :Tuple=None , lowerCAmelCase__ :str=None , **lowerCAmelCase__ :List[str] ) -> str: if images is None and text is None: raise ValueError('''You need to specify either an `images` or `text` input to process.''' ) if images is not None: __SCREAMING_SNAKE_CASE : Dict = self.image_processor(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ) if text is not None: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.char_tokenizer(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ) if text is None: return inputs elif images is None: return encodings else: __SCREAMING_SNAKE_CASE : Optional[Any] = encodings["""input_ids"""] return inputs def __magic_name__( self :Optional[int] , lowerCAmelCase__ :int ) -> Tuple: __SCREAMING_SNAKE_CASE : List[str] = sequences __SCREAMING_SNAKE_CASE : Union[str, Any] = char_preds.size(0 ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self._decode_helper(lowerCAmelCase_ , '''char''' ) __SCREAMING_SNAKE_CASE : Any = self._decode_helper(lowerCAmelCase_ , '''bpe''' ) __SCREAMING_SNAKE_CASE : Dict = self._decode_helper(lowerCAmelCase_ , '''wp''' ) __SCREAMING_SNAKE_CASE : List[str] = [] __SCREAMING_SNAKE_CASE : Dict = [] for i in range(lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE : Tuple = [char_scores[i], bpe_scores[i], wp_scores[i]] __SCREAMING_SNAKE_CASE : str = [char_strs[i], bpe_strs[i], wp_strs[i]] __SCREAMING_SNAKE_CASE : int = scores.index(max(lowerCAmelCase_ ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) __SCREAMING_SNAKE_CASE : List[Any] = {} __SCREAMING_SNAKE_CASE : str = final_strs __SCREAMING_SNAKE_CASE : List[Any] = final_scores __SCREAMING_SNAKE_CASE : Union[str, Any] = char_strs __SCREAMING_SNAKE_CASE : Dict = bpe_strs __SCREAMING_SNAKE_CASE : Any = wp_strs return out def __magic_name__( self :Any , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Optional[int] ) -> List[Any]: if format == DecodeType.CHARACTER: __SCREAMING_SNAKE_CASE : Dict = self.char_decode __SCREAMING_SNAKE_CASE : List[str] = 1 __SCREAMING_SNAKE_CASE : Optional[Any] = """[s]""" elif format == DecodeType.BPE: __SCREAMING_SNAKE_CASE : Optional[Any] = self.bpe_decode __SCREAMING_SNAKE_CASE : int = 2 __SCREAMING_SNAKE_CASE : Optional[int] = """#""" elif format == DecodeType.WORDPIECE: __SCREAMING_SNAKE_CASE : Tuple = self.wp_decode __SCREAMING_SNAKE_CASE : Union[str, Any] = 102 __SCREAMING_SNAKE_CASE : int = """[SEP]""" else: raise ValueError(f'''Format {format} is not supported.''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = [], [] __SCREAMING_SNAKE_CASE : Tuple = pred_logits.size(0 ) __SCREAMING_SNAKE_CASE : List[Any] = pred_logits.size(1 ) __SCREAMING_SNAKE_CASE : Optional[Any] = pred_logits.topk(1 , dim=-1 , largest=lowerCAmelCase_ , sorted=lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE : List[Any] = preds_index.view(-1 , lowerCAmelCase_ )[:, 1:] __SCREAMING_SNAKE_CASE : Tuple = decoder(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE : int = torch.nn.functional.softmax(lowerCAmelCase_ , dim=2 ).max(dim=2 ) __SCREAMING_SNAKE_CASE : Optional[int] = preds_max_prob[:, 1:] for index in range(lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE : List[Any] = preds_str[index].find(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE : Optional[int] = preds_str[index][:pred_eos] __SCREAMING_SNAKE_CASE : int = preds_index[index].cpu().tolist() __SCREAMING_SNAKE_CASE : List[Any] = pred_index.index(lowerCAmelCase_ ) if eos_token in pred_index else -1 __SCREAMING_SNAKE_CASE : Any = preds_max_prob[index][: pred_eos_index + 1] __SCREAMING_SNAKE_CASE : List[Any] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(lowerCAmelCase_ ) conf_scores.append(lowerCAmelCase_ ) return dec_strs, conf_scores def __magic_name__( self :Tuple , lowerCAmelCase__ :Optional[int] ) -> List[str]: __SCREAMING_SNAKE_CASE : List[str] = [seq.replace(''' ''' , '''''' ) for seq in self.char_tokenizer.batch_decode(lowerCAmelCase_ )] return decode_strs def __magic_name__( self :List[Any] , lowerCAmelCase__ :List[str] ) -> Tuple: return self.bpe_tokenizer.batch_decode(lowerCAmelCase_ ) def __magic_name__( self :Any , lowerCAmelCase__ :str ) -> List[Any]: __SCREAMING_SNAKE_CASE : Dict = [seq.replace(''' ''' , '''''' ) for seq in self.wp_tokenizer.batch_decode(lowerCAmelCase_ )] return decode_strs
9
'''simple docstring''' import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class lowerCamelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : int , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int = None , lowerCAmelCase_ : int = None ) -> str: '''simple docstring''' super().__init__() A__ : Optional[Any] =pad_token_id A__ : int =max_length A__ : Optional[int] =vocab A__ : Any =merges A__ : Optional[Any] =BytePairTokenizer(lowerCAmelCase_ , lowerCAmelCase_ , sequence_length=lowerCAmelCase_ ) @classmethod def lowercase__ ( cls : Optional[int] , lowerCAmelCase_ : GPTaTokenizer , *lowerCAmelCase_ : str , **lowerCAmelCase_ : Dict ) -> List[Any]: '''simple docstring''' A__ : Any =[""" """.join(lowerCAmelCase_ ) for m in tokenizer.bpe_ranks.keys()] A__ : List[str] =tokenizer.get_vocab() return cls(lowerCAmelCase_ , lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) @classmethod def lowercase__ ( cls : Tuple , lowerCAmelCase_ : Union[str, os.PathLike] , *lowerCAmelCase_ : Any , **lowerCAmelCase_ : List[Any] ) -> List[str]: '''simple docstring''' A__ : Any =GPTaTokenizer.from_pretrained(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) return cls.from_tokenizer(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) @classmethod def lowercase__ ( cls : str , lowerCAmelCase_ : Union[str, Any] ) -> Tuple: '''simple docstring''' return cls(**lowerCAmelCase_ ) def lowercase__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def lowercase__ ( self : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : int = None ) -> Tuple: '''simple docstring''' A__ : Optional[int] =self.tf_tokenizer(lowerCAmelCase_ ) A__ : List[Any] =tf.ones_like(lowerCAmelCase_ ) if self.pad_token_id is not None: # pad the tokens up to max length A__ : Union[str, Any] =max_length if max_length is not None else self.max_length if max_length is not None: A__ , A__ : Any =pad_model_inputs( lowerCAmelCase_ , max_seq_length=lowerCAmelCase_ , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
134
0
import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin lowercase = random.Random() if is_torch_available(): import torch def lowerCamelCase_ ( UpperCamelCase__ : Tuple, UpperCamelCase__ : Optional[Any]=1.0, UpperCamelCase__ : int=None, UpperCamelCase__ : Tuple=None ): '''simple docstring''' if rng is None: UpperCamelCase__ = global_rng UpperCamelCase__ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class __lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self : int , _a : List[Any] , _a : Optional[int]=7 , _a : str=400 , _a : Union[str, Any]=2_000 , _a : Tuple=1 , _a : List[str]=0.0 , _a : str=16_000 , _a : str=True , _a : Any=True , ): UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = min_seq_length UpperCamelCase__ = max_seq_length UpperCamelCase__ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCamelCase__ = feature_size UpperCamelCase__ = padding_value UpperCamelCase__ = sampling_rate UpperCamelCase__ = return_attention_mask UpperCamelCase__ = do_normalize def A_ ( self : List[Any] ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def A_ ( self : int , _a : Optional[Any]=False , _a : str=False ): def _flatten(_a : List[Any] ): return list(itertools.chain(*UpperCamelCase__ ) ) if equal_length: UpperCamelCase__ = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size UpperCamelCase__ = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCamelCase__ = [np.asarray(UpperCamelCase__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __lowercase ( __a, unittest.TestCase ): '''simple docstring''' _A : Union[str, Any] = ASTFeatureExtractor def A_ ( self : Union[str, Any] ): UpperCamelCase__ = ASTFeatureExtractionTester(self ) def A_ ( self : int ): UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] UpperCamelCase__ = [np.asarray(UpperCamelCase__ ) for speech_input in speech_inputs] # Test not batched input UpperCamelCase__ = feat_extract(speech_inputs[0] , return_tensors='''np''' ).input_values UpperCamelCase__ = feat_extract(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1E-3 ) ) # Test batched UpperCamelCase__ = feat_extract(UpperCamelCase__ , padding=UpperCamelCase__ , return_tensors='''np''' ).input_values UpperCamelCase__ = feat_extract(UpperCamelCase__ , padding=UpperCamelCase__ , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(UpperCamelCase__ , UpperCamelCase__ ): self.assertTrue(np.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. UpperCamelCase__ = [floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCamelCase__ = np.asarray(UpperCamelCase__ ) UpperCamelCase__ = feat_extract(UpperCamelCase__ , return_tensors='''np''' ).input_values UpperCamelCase__ = feat_extract(UpperCamelCase__ , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(UpperCamelCase__ , UpperCamelCase__ ): self.assertTrue(np.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1E-3 ) ) @require_torch def A_ ( self : Optional[int] ): import torch UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = np.random.rand(100 ).astype(np.floataa ) UpperCamelCase__ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCamelCase__ = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) UpperCamelCase__ = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def A_ ( self : Optional[int] , _a : int ): from datasets import load_dataset UpperCamelCase__ = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech UpperCamelCase__ = ds.sort('''id''' ).select(range(UpperCamelCase__ ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] @require_torch def A_ ( self : Any ): UpperCamelCase__ = torch.tensor( [-0.9894, -1.2776, -0.9066, -1.2776, -0.9349, -1.2609, -1.0386, -1.2776, -1.1561, -1.2776, -1.2052, -1.2723, -1.2190, -1.2132, -1.2776, -1.1133, -1.1953, -1.1343, -1.1584, -1.2203, -1.1770, -1.2474, -1.2381, -1.1936, -0.9270, -0.8317, -0.8049, -0.7706, -0.7565, -0.7869] ) # fmt: on UpperCamelCase__ = self._load_datasamples(1 ) UpperCamelCase__ = ASTFeatureExtractor() UpperCamelCase__ = feature_extractor(UpperCamelCase__ , return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape , (1, 1_024, 128) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , UpperCamelCase__ , atol=1E-4 ) )
368
import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowercase = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. lowercase = direct_transformers_import(PATH_TO_TRANSFORMERS) lowercase = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` lowercase = re.compile(R"""\[(.+?)\]\((https://huggingface\.co/.+?)\)""") lowercase = { """DecisionTransformerConfig""", """EncoderDecoderConfig""", """MusicgenConfig""", """RagConfig""", """SpeechEncoderDecoderConfig""", """TimmBackboneConfig""", """VisionEncoderDecoderConfig""", """VisionTextDualEncoderConfig""", """LlamaConfig""", } def lowerCamelCase_ ( UpperCamelCase__ : str ): '''simple docstring''' UpperCamelCase__ = None # source code of `config_class` UpperCamelCase__ = inspect.getsource(UpperCamelCase__ ) UpperCamelCase__ = _re_checkpoint.findall(UpperCamelCase__ ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith('''/''' ): UpperCamelCase__ = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link UpperCamelCase__ = F"""https://huggingface.co/{ckpt_name}""" if ckpt_link == ckpt_link_from_name: UpperCamelCase__ = ckpt_name break return checkpoint def lowerCamelCase_ ( ): '''simple docstring''' UpperCamelCase__ = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue UpperCamelCase__ = get_checkpoint_from_config_class(UpperCamelCase__ ) UpperCamelCase__ = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: UpperCamelCase__ = '''\n'''.join(sorted(UpperCamelCase__ ) ) raise ValueError(F"""The following configurations don't contain any valid checkpoint:\n{message}""" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
35
0
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def a (self : List[Any] , a__ : Union[str, Any] ): """simple docstring""" for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ): __snake_case = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(a__ ) def a (self : Union[str, Any] ): """simple docstring""" __snake_case = '''sshleifer/tiny-gpt2''' __snake_case = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a__ , inference=a__ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a__ , multi_process=a__ , ) __snake_case = TensorFlowBenchmark(a__ ) __snake_case = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a (self : Optional[Any] ): """simple docstring""" __snake_case = '''sgugger/tiny-distilbert-classification''' __snake_case = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a__ , inference=a__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a__ , only_pretrain_model=a__ , ) __snake_case = TensorFlowBenchmark(a__ ) __snake_case = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a (self : Tuple ): """simple docstring""" __snake_case = '''sshleifer/tiny-gpt2''' __snake_case = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a__ , inference=a__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a__ , ) __snake_case = TensorFlowBenchmark(a__ ) __snake_case = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a (self : Dict ): """simple docstring""" __snake_case = '''sshleifer/tiny-gpt2''' __snake_case = AutoConfig.from_pretrained(a__ ) __snake_case = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a__ , inference=a__ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a__ , multi_process=a__ , ) __snake_case = TensorFlowBenchmark(a__ , [config] ) __snake_case = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a (self : str ): """simple docstring""" __snake_case = '''sshleifer/tiny-gpt2''' __snake_case = AutoConfig.from_pretrained(a__ ) __snake_case = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a__ , inference=a__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a__ , ) __snake_case = TensorFlowBenchmark(a__ , [config] ) __snake_case = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a (self : Dict ): """simple docstring""" __snake_case = '''sshleifer/tiny-gpt2''' __snake_case = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a__ , inference=a__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a__ , ) __snake_case = TensorFlowBenchmark(a__ ) __snake_case = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def a (self : Tuple ): """simple docstring""" __snake_case = '''sshleifer/tiny-gpt2''' __snake_case = AutoConfig.from_pretrained(a__ ) __snake_case = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a__ , inference=a__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a__ , ) __snake_case = TensorFlowBenchmark(a__ , [config] ) __snake_case = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def a (self : Union[str, Any] ): """simple docstring""" __snake_case = '''patrickvonplaten/t5-tiny-random''' __snake_case = AutoConfig.from_pretrained(a__ ) __snake_case = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a__ , inference=a__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a__ , ) __snake_case = TensorFlowBenchmark(a__ , configs=[config] ) __snake_case = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , '''Cannot do xla on CPU.''' ) def a (self : Any ): """simple docstring""" __snake_case = '''sshleifer/tiny-gpt2''' __snake_case = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a__ , inference=a__ , sequence_lengths=[8] , batch_sizes=[1] , use_xla=a__ , multi_process=a__ , ) __snake_case = TensorFlowBenchmark(a__ ) __snake_case = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a (self : Optional[int] ): """simple docstring""" __snake_case = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: __snake_case = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=a__ , save_to_csv=a__ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(a__ , '''inf_time.csv''' ) , inference_memory_csv_file=os.path.join(a__ , '''inf_mem.csv''' ) , env_info_csv_file=os.path.join(a__ , '''env.csv''' ) , multi_process=a__ , ) __snake_case = TensorFlowBenchmark(a__ ) benchmark.run() self.assertTrue(Path(os.path.join(a__ , '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(a__ , '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(a__ , '''env.csv''' ) ).exists() ) def a (self : Any ): """simple docstring""" __snake_case = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(a__ : List[str] ): self.assertTrue(hasattr(a__ , '''sequential''' ) ) self.assertTrue(hasattr(a__ , '''cumulative''' ) ) self.assertTrue(hasattr(a__ , '''current''' ) ) self.assertTrue(hasattr(a__ , '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: __snake_case = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=a__ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(a__ , '''log.txt''' ) , log_print=a__ , trace_memory_line_by_line=a__ , eager_mode=a__ , multi_process=a__ , ) __snake_case = TensorFlowBenchmark(a__ ) __snake_case = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(a__ , '''log.txt''' ) ).exists() )
24
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin snake_case_ = get_tests_dir('fixtures/test_sentencepiece_bpe.model') class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , unittest.TestCase ): A_ : List[Any] = BartphoTokenizer A_ : List[str] = False A_ : Optional[Any] = True def a (self : Tuple ): """simple docstring""" super().setUp() __snake_case = ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] __snake_case = dict(zip(a__ , range(len(a__ ) ) ) ) __snake_case = {'''unk_token''': '''<unk>'''} __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''monolingual_vocab_file'''] ) with open(self.monolingual_vocab_file , '''w''' , encoding='''utf-8''' ) as fp: for token in vocab_tokens: fp.write(f"""{token} {vocab_tokens[token]}\n""" ) __snake_case = BartphoTokenizer(a__ , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def a (self : str , **a__ : str ): """simple docstring""" kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **a__ ) def a (self : str , a__ : Any ): """simple docstring""" __snake_case = '''This is a là test''' __snake_case = '''This is a<unk><unk> test''' return input_text, output_text def a (self : Dict ): """simple docstring""" __snake_case = BartphoTokenizer(a__ , self.monolingual_vocab_file , **self.special_tokens_map ) __snake_case = '''This is a là test''' __snake_case = '''▁This ▁is ▁a ▁l à ▁t est'''.split() __snake_case = tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) __snake_case = tokens + [tokenizer.unk_token] __snake_case = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ )
24
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _snake_case : Optional[int] = { 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Optional[Any] = ['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : int = [ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys _snake_case : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
362
from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = 42 class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" @register_to_config def __init__( self : Optional[int] , lowerCAmelCase_ : int = 1_6 , lowerCAmelCase_ : int = 8_8 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : float = 0.0 , lowerCAmelCase_ : int = 3_2 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : str = "geglu" , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : bool = True , ) -> Dict: super().__init__() __lowerCAmelCase = num_attention_heads __lowerCAmelCase = attention_head_dim __lowerCAmelCase = num_attention_heads * attention_head_dim __lowerCAmelCase = in_channels __lowerCAmelCase = torch.nn.GroupNorm(num_groups=lowerCAmelCase_ , num_channels=lowerCAmelCase_ , eps=1e-6 , affine=lowerCAmelCase_ ) __lowerCAmelCase = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ ) # 3. Define transformers blocks __lowerCAmelCase = nn.ModuleList( [ BasicTransformerBlock( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , dropout=lowerCAmelCase_ , cross_attention_dim=lowerCAmelCase_ , activation_fn=lowerCAmelCase_ , attention_bias=lowerCAmelCase_ , double_self_attention=lowerCAmelCase_ , norm_elementwise_affine=lowerCAmelCase_ , ) for d in range(lowerCAmelCase_ ) ] ) __lowerCAmelCase = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Optional[int]=1 , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : bool = True , ) -> str: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = hidden_states.shape __lowerCAmelCase = batch_frames // num_frames __lowerCAmelCase = hidden_states __lowerCAmelCase = hidden_states[None, :].reshape(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) __lowerCAmelCase = self.norm(lowerCAmelCase_ ) __lowerCAmelCase = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = self.proj_in(lowerCAmelCase_ ) # 2. Blocks for block in self.transformer_blocks: __lowerCAmelCase = block( lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , timestep=lowerCAmelCase_ , cross_attention_kwargs=lowerCAmelCase_ , class_labels=lowerCAmelCase_ , ) # 3. Output __lowerCAmelCase = self.proj_out(lowerCAmelCase_ ) __lowerCAmelCase = ( hidden_states[None, None, :] .reshape(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) __lowerCAmelCase = hidden_states.reshape(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=lowerCAmelCase_ )
207
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : Optional[int] = logging.get_logger(__name__) __snake_case : int = { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/config.json', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/config.json' # See all FNet models at https://huggingface.co/models?filter=fnet } class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = 'fnet' def __init__( self: List[str] , _SCREAMING_SNAKE_CASE: Any=3_2000 , _SCREAMING_SNAKE_CASE: Optional[int]=768 , _SCREAMING_SNAKE_CASE: Optional[Any]=12 , _SCREAMING_SNAKE_CASE: Optional[Any]=3072 , _SCREAMING_SNAKE_CASE: List[str]="gelu_new" , _SCREAMING_SNAKE_CASE: int=0.1 , _SCREAMING_SNAKE_CASE: Any=512 , _SCREAMING_SNAKE_CASE: List[str]=4 , _SCREAMING_SNAKE_CASE: List[str]=0.02 , _SCREAMING_SNAKE_CASE: str=1e-12 , _SCREAMING_SNAKE_CASE: Union[str, Any]=False , _SCREAMING_SNAKE_CASE: List[str]=512 , _SCREAMING_SNAKE_CASE: Tuple=3 , _SCREAMING_SNAKE_CASE: str=1 , _SCREAMING_SNAKE_CASE: Tuple=2 , **_SCREAMING_SNAKE_CASE: str , ) -> str: """simple docstring""" super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[Any] = vocab_size __lowerCAmelCase : Union[str, Any] = max_position_embeddings __lowerCAmelCase : Tuple = hidden_size __lowerCAmelCase : Optional[Any] = num_hidden_layers __lowerCAmelCase : Union[str, Any] = intermediate_size __lowerCAmelCase : List[Any] = hidden_act __lowerCAmelCase : str = hidden_dropout_prob __lowerCAmelCase : Optional[int] = initializer_range __lowerCAmelCase : List[Any] = type_vocab_size __lowerCAmelCase : List[Any] = layer_norm_eps __lowerCAmelCase : int = use_tpu_fourier_optimizations __lowerCAmelCase : int = tpu_short_seq_length
269
"""simple docstring""" import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def _lowercase ( __snake_case ) -> List[str]: if isinstance(__snake_case ,collections.abc.Iterable ): return x return (x, x) @require_flax class A__ : '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: Optional[Any]) -> str: """simple docstring""" pass def _SCREAMING_SNAKE_CASE ( self: str) -> int: """simple docstring""" pass def _SCREAMING_SNAKE_CASE ( self: List[str]) -> Tuple: """simple docstring""" pass def _SCREAMING_SNAKE_CASE ( self: Any , _SCREAMING_SNAKE_CASE: np.ndarray , _SCREAMING_SNAKE_CASE: np.ndarray , _SCREAMING_SNAKE_CASE: float) -> List[Any]: """simple docstring""" __lowerCAmelCase : str = np.abs((a - b)).max() self.assertLessEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , F"""Difference between torch and flax is {diff} (>= {tol}).""") def _SCREAMING_SNAKE_CASE ( self: str , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: Any=None , **_SCREAMING_SNAKE_CASE: Tuple) -> List[str]: """simple docstring""" __lowerCAmelCase : Tuple = VisionTextDualEncoderConfig.from_vision_text_configs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[str] = FlaxVisionTextDualEncoderModel(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[int] = model(input_ids=_SCREAMING_SNAKE_CASE , pixel_values=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], config.projection_dim)) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], config.projection_dim)) def _SCREAMING_SNAKE_CASE ( self: List[Any] , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: Optional[Any]=None , **_SCREAMING_SNAKE_CASE: List[str]) -> Dict: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase : List[Any] = self.get_vision_text_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Union[str, Any] = {"vision_model": vision_model, "text_model": text_model} __lowerCAmelCase : Optional[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Union[str, Any] = model(input_ids=_SCREAMING_SNAKE_CASE , pixel_values=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], model.config.projection_dim)) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], model.config.projection_dim)) def _SCREAMING_SNAKE_CASE ( self: Dict , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: List[Any]=None , **_SCREAMING_SNAKE_CASE: Tuple) -> str: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase : Optional[Any] = self.get_vision_text_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = {"vision_model": vision_model, "text_model": text_model} __lowerCAmelCase : Any = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = model(input_ids=_SCREAMING_SNAKE_CASE , pixel_values=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Any = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Union[str, Any] = FlaxVisionTextDualEncoderModel.from_pretrained(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : int = model(input_ids=_SCREAMING_SNAKE_CASE , pixel_values=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Union[str, Any] = after_output[0] __lowerCAmelCase : Any = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1e-3) def _SCREAMING_SNAKE_CASE ( self: Tuple , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: Any=None , **_SCREAMING_SNAKE_CASE: List[str]) -> Optional[int]: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase : Any = self.get_vision_text_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Union[str, Any] = {"vision_model": vision_model, "text_model": text_model} __lowerCAmelCase : Optional[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = model( input_ids=_SCREAMING_SNAKE_CASE , pixel_values=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , output_attentions=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = output.vision_model_output.attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE) , vision_config.num_hidden_layers) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __lowerCAmelCase : List[str] = to_atuple(vision_model.config.image_size) __lowerCAmelCase : Any = to_atuple(vision_model.config.patch_size) __lowerCAmelCase : Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowerCAmelCase : Tuple = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len)) __lowerCAmelCase : Union[str, Any] = output.text_model_output.attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE) , text_config.num_hidden_layers) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _SCREAMING_SNAKE_CASE ( self: List[str] , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: int) -> str: """simple docstring""" pt_model.to(_SCREAMING_SNAKE_CASE) pt_model.eval() # prepare inputs __lowerCAmelCase : Union[str, Any] = inputs_dict __lowerCAmelCase : Union[str, Any] = {k: torch.tensor(v.tolist()) for k, v in flax_inputs.items()} with torch.no_grad(): __lowerCAmelCase : Any = pt_model(**_SCREAMING_SNAKE_CASE).to_tuple() __lowerCAmelCase : List[Any] = fx_model(**_SCREAMING_SNAKE_CASE).to_tuple() self.assertEqual(len(_SCREAMING_SNAKE_CASE) , len(_SCREAMING_SNAKE_CASE) , "Output lengths differ between Flax and PyTorch") for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4]): self.assert_almost_equals(_SCREAMING_SNAKE_CASE , pt_output.numpy() , 4e-2) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = FlaxVisionTextDualEncoderModel.from_pretrained(_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : int = fx_model_loaded(**_SCREAMING_SNAKE_CASE).to_tuple() self.assertEqual(len(_SCREAMING_SNAKE_CASE) , len(_SCREAMING_SNAKE_CASE) , "Output lengths differ between Flax and PyTorch") for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4]): self.assert_almost_equals(_SCREAMING_SNAKE_CASE , pt_output.numpy() , 4e-2) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Union[str, Any] = VisionTextDualEncoderModel.from_pretrained(_SCREAMING_SNAKE_CASE , from_flax=_SCREAMING_SNAKE_CASE) pt_model_loaded.to(_SCREAMING_SNAKE_CASE) pt_model_loaded.eval() with torch.no_grad(): __lowerCAmelCase : Optional[Any] = pt_model_loaded(**_SCREAMING_SNAKE_CASE).to_tuple() self.assertEqual(len(_SCREAMING_SNAKE_CASE) , len(_SCREAMING_SNAKE_CASE) , "Output lengths differ between Flax and PyTorch") for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4]): self.assert_almost_equals(_SCREAMING_SNAKE_CASE , pt_output_loaded.numpy() , 4e-2) def _SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: Dict) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = VisionTextDualEncoderConfig.from_vision_text_configs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = VisionTextDualEncoderModel(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = FlaxVisionTextDualEncoderModel(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = fx_state self.check_pt_flax_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: List[Any] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Dict) -> str: """simple docstring""" __lowerCAmelCase : Optional[int] = VisionTextDualEncoderConfig.from_vision_text_configs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = VisionTextDualEncoderModel(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Tuple = FlaxVisionTextDualEncoderModel(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : int = load_flax_weights_in_pytorch_model(_SCREAMING_SNAKE_CASE , fx_model.params) self.check_pt_flax_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> str: """simple docstring""" __lowerCAmelCase : List[str] = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Dict) -> int: """simple docstring""" __lowerCAmelCase : List[Any] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> List[Any]: """simple docstring""" __lowerCAmelCase : Dict = self.prepare_config_and_inputs() self.check_save_load(**_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: int) -> Dict: """simple docstring""" __lowerCAmelCase : List[str] = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_SCREAMING_SNAKE_CASE) @is_pt_flax_cross_test def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> Any: """simple docstring""" __lowerCAmelCase : Dict = self.prepare_config_and_inputs() __lowerCAmelCase : List[Any] = config_inputs_dict.pop("vision_config") __lowerCAmelCase : str = config_inputs_dict.pop("text_config") __lowerCAmelCase : Union[str, Any] = config_inputs_dict self.check_equivalence_pt_to_flax(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) self.check_equivalence_flax_to_pt(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) @slow def _SCREAMING_SNAKE_CASE ( self: str) -> Dict: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase : Dict = self.get_pretrained_model_and_inputs() __lowerCAmelCase : Union[str, Any] = model_a(**_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[str] = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[Any] = FlaxVisionTextDualEncoderModel.from_pretrained(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Union[str, Any] = model_a(**_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[str] = after_outputs[0] __lowerCAmelCase : List[Any] = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1e-5) @require_flax class A__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self: List[str]) -> List[Any]: """simple docstring""" __lowerCAmelCase : Any = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-vit" , "hf-internal-testing/tiny-bert" , vision_from_pt=_SCREAMING_SNAKE_CASE , text_from_pt=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Union[str, Any] = 13 __lowerCAmelCase : Optional[int] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ]) __lowerCAmelCase : List[Any] = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size) __lowerCAmelCase : List[Any] = random_attention_mask([batch_size, 4]) __lowerCAmelCase : str = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def _SCREAMING_SNAKE_CASE ( self: int , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: Union[str, Any]) -> Optional[int]: """simple docstring""" __lowerCAmelCase : List[str] = FlaxViTModel(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Union[str, Any] = FlaxBertModel(_SCREAMING_SNAKE_CASE) return vision_model, text_model def _SCREAMING_SNAKE_CASE ( self: Optional[int]) -> int: """simple docstring""" __lowerCAmelCase : List[Any] = FlaxViTModelTester(self) __lowerCAmelCase : Optional[Any] = FlaxBertModelTester(self) __lowerCAmelCase : int = vit_model_tester.prepare_config_and_inputs() __lowerCAmelCase : List[str] = bert_model_tester.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase : Tuple = vision_config_and_inputs __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Union[str, Any] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class A__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self: Dict) -> List[str]: """simple docstring""" __lowerCAmelCase : Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-clip" , "hf-internal-testing/tiny-bert" , vision_from_pt=_SCREAMING_SNAKE_CASE , text_from_pt=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Optional[int] = 13 __lowerCAmelCase : List[str] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ]) __lowerCAmelCase : Any = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size) __lowerCAmelCase : str = random_attention_mask([batch_size, 4]) __lowerCAmelCase : Optional[int] = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def _SCREAMING_SNAKE_CASE ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Union[str, Any]) -> int: """simple docstring""" __lowerCAmelCase : int = FlaxCLIPVisionModel(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[str] = FlaxBertModel(_SCREAMING_SNAKE_CASE) return vision_model, text_model def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : List[Any] = FlaxCLIPVisionModelTester(self) __lowerCAmelCase : str = FlaxBertModelTester(self) __lowerCAmelCase : Optional[Any] = clip_model_tester.prepare_config_and_inputs() __lowerCAmelCase : Dict = bert_model_tester.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase : Any = vision_config_and_inputs __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : List[Any] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class A__ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self: List[str]) -> List[str]: """simple docstring""" __lowerCAmelCase : Dict = FlaxVisionTextDualEncoderModel.from_pretrained("clip-italian/clip-italian" , logit_scale_init_value=1.0) __lowerCAmelCase : str = VisionTextDualEncoderProcessor.from_pretrained("clip-italian/clip-italian") __lowerCAmelCase : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") __lowerCAmelCase : Optional[int] = processor( text=["una foto di un gatto", "una foto di un cane"] , images=_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , return_tensors="np") __lowerCAmelCase : List[str] = model(**_SCREAMING_SNAKE_CASE) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0])) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) __lowerCAmelCase : List[str] = np.array([[1.228_4727, 0.310_4122]]) self.assertTrue(np.allclose(outputs.logits_per_image , _SCREAMING_SNAKE_CASE , atol=1e-3))
269
1
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : Union[str, Any] = logging.get_logger(__name__) snake_case_ : Dict = { "microsoft/biogpt": "https://huggingface.co/microsoft/biogpt/resolve/main/config.json", # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class lowercase__ ( lowercase ): lowercase__ = """biogpt""" def __init__( self : Optional[Any] ,lowerCamelCase__ : Optional[int]=42384 ,lowerCamelCase__ : List[Any]=1024 ,lowerCamelCase__ : List[str]=24 ,lowerCamelCase__ : Any=16 ,lowerCamelCase__ : List[Any]=4096 ,lowerCamelCase__ : Tuple="gelu" ,lowerCamelCase__ : Optional[int]=0.1 ,lowerCamelCase__ : Dict=0.1 ,lowerCamelCase__ : Union[str, Any]=1024 ,lowerCamelCase__ : Optional[Any]=0.0_2 ,lowerCamelCase__ : Dict=1E-12 ,lowerCamelCase__ : str=True ,lowerCamelCase__ : Dict=True ,lowerCamelCase__ : Union[str, Any]=0.0 ,lowerCamelCase__ : Optional[Any]=0.0 ,lowerCamelCase__ : Optional[int]=1 ,lowerCamelCase__ : int=0 ,lowerCamelCase__ : Dict=2 ,**lowerCamelCase__ : Tuple ,): '''simple docstring''' _UpperCamelCase : List[str] = vocab_size _UpperCamelCase : List[Any] = max_position_embeddings _UpperCamelCase : Dict = hidden_size _UpperCamelCase : Optional[Any] = num_hidden_layers _UpperCamelCase : Optional[Any] = num_attention_heads _UpperCamelCase : List[str] = intermediate_size _UpperCamelCase : str = hidden_act _UpperCamelCase : Union[str, Any] = hidden_dropout_prob _UpperCamelCase : Optional[Any] = attention_probs_dropout_prob _UpperCamelCase : str = initializer_range _UpperCamelCase : int = layer_norm_eps _UpperCamelCase : Any = scale_embedding _UpperCamelCase : List[str] = use_cache _UpperCamelCase : int = layerdrop _UpperCamelCase : List[str] = activation_dropout super().__init__(pad_token_id=_a ,bos_token_id=_a ,eos_token_id=_a ,**_a )
369
'''simple docstring''' from __future__ import annotations def A__ ( UpperCAmelCase_ ): if not nums: return 0 _UpperCamelCase : Any = nums[0] _UpperCamelCase : Optional[int] = 0 for num in nums[1:]: _UpperCamelCase , _UpperCamelCase : Optional[Any] = ( max_excluding + num, max(UpperCAmelCase_ , UpperCAmelCase_ ), ) return max(UpperCAmelCase_ , UpperCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
236
0
from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig _snake_case = { "susnato/ernie-m-base_pytorch": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json", "susnato/ernie-m-large_pytorch": "https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json", } class lowercase ( UpperCamelCase__ ): _a = "ernie_m" _a = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self , _a = 25_0002 , _a = 768 , _a = 12 , _a = 12 , _a = 3072 , _a = "gelu" , _a = 0.1 , _a = 0.1 , _a = 514 , _a = 0.02 , _a = 1 , _a = 1e-05 , _a=None , _a=False , _a=0.0 , **_a , ) -> str: super().__init__(pad_token_id=_a , **_a ) _A : Union[str, Any] = vocab_size _A : Any = hidden_size _A : Union[str, Any] = num_hidden_layers _A : Optional[Any] = num_attention_heads _A : Dict = intermediate_size _A : Dict = hidden_act _A : Optional[Any] = hidden_dropout_prob _A : int = attention_probs_dropout_prob _A : Tuple = max_position_embeddings _A : Union[str, Any] = initializer_range _A : List[Any] = layer_norm_eps _A : Tuple = classifier_dropout _A : Union[str, Any] = is_decoder _A : List[Any] = act_dropout
26
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: _snake_case = None _snake_case = logging.get_logger(__name__) _snake_case = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} _snake_case = { "vocab_file": { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/spiece.model", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/spiece.model", }, "tokenizer_file": { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json", }, } _snake_case = { "google/fnet-base": 512, "google/fnet-large": 512, } _snake_case = "▁" class lowercase ( UpperCamelCase__ ): _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = ["input_ids", "token_type_ids"] _a = FNetTokenizer def __init__( self , _a=None , _a=None , _a=False , _a=True , _a=True , _a="<unk>" , _a="[SEP]" , _a="<pad>" , _a="[CLS]" , _a="[MASK]" , **_a , ) -> Optional[int]: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _A : int = ( AddedToken(_a , lstrip=_a , rstrip=_a , normalized=_a ) if isinstance(_a , _a ) else mask_token ) super().__init__( _a , tokenizer_file=_a , do_lower_case=_a , remove_space=_a , keep_accents=_a , unk_token=_a , sep_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , **_a , ) _A : Optional[int] = do_lower_case _A : List[Any] = remove_space _A : str = keep_accents _A : int = vocab_file _A : int = False if not self.vocab_file else True def a__ ( self , _a , _a = None ) -> List[int]: _A : str = [self.sep_token_id] _A : Dict = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a__ ( self , _a , _a = None ) -> List[int]: _A : Any = [self.sep_token_id] _A : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a__ ( self , _a , _a = None ) -> Tuple[str]: if not os.path.isdir(_a ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _A : List[str] = os.path.join( _a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ): copyfile(self.vocab_file , _a ) return (out_vocab_file,)
26
1
def UpperCAmelCase__ (snake_case__ : int = 3 , snake_case__ : int = 7 , snake_case__ : int = 1_00_00_00 ): """simple docstring""" _snake_case : Optional[Any] = 0 _snake_case : Dict = 1 for current_denominator in range(1 , limit + 1 ): _snake_case : Dict = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: _snake_case : Tuple = current_numerator _snake_case : Dict = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1_00_00_00))
367
"""simple docstring""" import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() A_ = logging.get_logger() @dataclass class lowercase: '''simple docstring''' lowercase__ = 42 lowercase__ = field(default_factory=__a ) lowercase__ = field(default_factory=__a ) def UpperCamelCase_ ( self: Optional[Any], a_: Union[str, Any], a_: Tensor, a_: Tensor ): '''simple docstring''' _snake_case : Optional[Any] = len(list(m.modules() ) ) == 1 or isinstance(a_, nn.Convad ) or isinstance(a_, nn.BatchNormad ) if has_not_submodules: self.traced.append(a_ ) def __call__( self: List[Any], a_: Tensor ): '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(a_ ) [x.remove() for x in self.handles] return self @property def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' return list(filter(lambda a_ : len(list(x.state_dict().keys() ) ) > 0, self.traced ) ) @dataclass class lowercase: '''simple docstring''' lowercase__ = 42 lowercase__ = 42 lowercase__ = 0 lowercase__ = field(default_factory=__a ) lowercase__ = field(default_factory=__a ) def __call__( self: Dict, a_: Tensor ): '''simple docstring''' _snake_case : Tuple = Tracker(self.dest )(a_ ).parametrized _snake_case : int = Tracker(self.src )(a_ ).parametrized _snake_case : Tuple = list(filter(lambda a_ : type(a_ ) not in self.src_skip, a_ ) ) _snake_case : Union[str, Any] = list(filter(lambda a_ : type(a_ ) not in self.dest_skip, a_ ) ) if len(a_ ) != len(a_ ): raise Exception( f"Numbers of operations are different. Source module has {len(a_ )} operations while" f" destination module has {len(a_ )}." ) for dest_m, src_m in zip(a_, a_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f"Transfered from={src_m} to={dest_m}" ) def UpperCAmelCase__ (snake_case__ : str , snake_case__ : ResNetConfig , snake_case__ : Path , snake_case__ : bool = True ): """simple docstring""" print(F"Converting {name}..." ) with torch.no_grad(): _snake_case : Dict = timm.create_model(snake_case__ , pretrained=snake_case__ ).eval() _snake_case : List[Any] = ResNetForImageClassification(snake_case__ ).eval() _snake_case : List[str] = ModuleTransfer(src=snake_case__ , dest=snake_case__ ) _snake_case : Optional[Any] = torch.randn((1, 3, 2_24, 2_24) ) module_transfer(snake_case__ ) assert torch.allclose(from_model(snake_case__ ) , our_model(snake_case__ ).logits ), "The model logits don't match the original one." _snake_case : Optional[int] = F"resnet{'-'.join(name.split('resnet' ) )}" print(snake_case__ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add model""" , use_temp_dir=snake_case__ , ) # we can use the convnext one _snake_case : Union[str, Any] = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add image processor""" , use_temp_dir=snake_case__ , ) print(F"Pushed {checkpoint_name}" ) def UpperCAmelCase__ (snake_case__ : Path , snake_case__ : str = None , snake_case__ : bool = True ): """simple docstring""" _snake_case : Optional[Any] = """imagenet-1k-id2label.json""" _snake_case : Optional[Any] = 10_00 _snake_case : str = (1, num_labels) _snake_case : List[Any] = """huggingface/label-files""" _snake_case : Union[str, Any] = num_labels _snake_case : Optional[int] = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type="""dataset""" ) , """r""" ) ) _snake_case : Union[str, Any] = {int(snake_case__ ): v for k, v in idalabel.items()} _snake_case : str = idalabel _snake_case : Union[str, Any] = {v: k for k, v in idalabel.items()} _snake_case : Tuple = partial(snake_case__ , num_labels=snake_case__ , idalabel=snake_case__ , labelaid=snake_case__ ) _snake_case : Optional[int] = { """resnet18""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 1_28, 2_56, 5_12] , layer_type="""basic""" ), """resnet26""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type="""bottleneck""" ), """resnet34""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 1_28, 2_56, 5_12] , layer_type="""basic""" ), """resnet50""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type="""bottleneck""" ), """resnet101""": ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type="""bottleneck""" ), """resnet152""": ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type="""bottleneck""" ), } if model_name: convert_weight_and_push(snake_case__ , names_to_config[model_name] , snake_case__ , snake_case__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) return config, expected_shape if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help=( '''The name of the model you wish to convert, it must be one of the supported resnet* architecture,''' ''' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=Path, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=True, type=bool, required=False, help='''If True, push model and image processor to the hub.''', ) A_ = parser.parse_args() A_ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
132
0
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING _snake_case : Dict = logging.get_logger(__name__) _snake_case : Optional[Any] = Dict[str, Any] _snake_case : Any = List[Prediction] @add_end_docstrings(A__ ) class a (A__ ): """simple docstring""" def __init__( self : List[Any] , *lowerCamelCase : str , **lowerCamelCase : Optional[Any] ) -> str: super().__init__(*lowerCamelCase , **lowerCamelCase ) if self.framework == "tf": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) requires_backends(self , "vision" ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def __snake_case ( self : int , **lowerCamelCase : Union[str, Any] ) -> Dict: __snake_case : Dict = {} if "threshold" in kwargs: __snake_case : Any = kwargs["threshold"] return {}, {}, postprocess_kwargs def __call__( self : Optional[int] , *lowerCamelCase : Optional[int] , **lowerCamelCase : List[Any] ) -> Union[Predictions, List[Prediction]]: return super().__call__(*lowerCamelCase , **lowerCamelCase ) def __snake_case ( self : Dict , lowerCamelCase : Optional[int] ) -> List[Any]: __snake_case : Optional[int] = load_image(lowerCamelCase ) __snake_case : List[Any] = torch.IntTensor([[image.height, image.width]] ) __snake_case : str = self.image_processor(images=[image] , return_tensors="pt" ) if self.tokenizer is not None: __snake_case : Optional[Any] = self.tokenizer(text=inputs["words"] , boxes=inputs["boxes"] , return_tensors="pt" ) __snake_case : List[str] = target_size return inputs def __snake_case ( self : Optional[int] , lowerCamelCase : Optional[Any] ) -> Tuple: __snake_case : Optional[int] = model_inputs.pop("target_size" ) __snake_case : Union[str, Any] = self.model(**lowerCamelCase ) __snake_case : Tuple = outputs.__class__({"target_size": target_size, **outputs} ) if self.tokenizer is not None: __snake_case : int = model_inputs["bbox"] return model_outputs def __snake_case ( self : Any , lowerCamelCase : Optional[Any] , lowerCamelCase : List[str]=0.9 ) -> List[Any]: __snake_case : List[Any] = model_outputs["target_size"] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. __snake_case , __snake_case : str = target_size[0].tolist() def unnormalize(lowerCamelCase : Optional[int] ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1000), (height * bbox[1] / 1000), (width * bbox[2] / 1000), (height * bbox[3] / 1000), ] ) ) __snake_case , __snake_case : List[Any] = model_outputs["logits"].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) __snake_case : Tuple = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] __snake_case : Optional[Any] = [unnormalize(lowerCamelCase ) for bbox in model_outputs["bbox"].squeeze(0 )] __snake_case : Optional[int] = ["score", "label", "box"] __snake_case : Tuple = [dict(zip(lowerCamelCase , lowerCamelCase ) ) for vals in zip(scores.tolist() , lowerCamelCase , lowerCamelCase ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel __snake_case : Tuple = self.image_processor.post_process_object_detection(lowerCamelCase , lowerCamelCase , lowerCamelCase ) __snake_case : Any = raw_annotations[0] __snake_case : Optional[int] = raw_annotation["scores"] __snake_case : Optional[Any] = raw_annotation["labels"] __snake_case : Any = raw_annotation["boxes"] __snake_case : Any = scores.tolist() __snake_case : Any = [self.model.config.idalabel[label.item()] for label in labels] __snake_case : Any = [self._get_bounding_box(lowerCamelCase ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] __snake_case : Optional[int] = ["score", "label", "box"] __snake_case : Optional[int] = [ dict(zip(lowerCamelCase , lowerCamelCase ) ) for vals in zip(raw_annotation["scores"] , raw_annotation["labels"] , raw_annotation["boxes"] ) ] return annotation def __snake_case ( self : List[Any] , lowerCamelCase : Union[str, Any] ) -> Dict[str, int]: if self.framework != "pt": raise ValueError("The ObjectDetectionPipeline is only available in PyTorch." ) __snake_case , __snake_case , __snake_case , __snake_case : int = box.int().tolist() __snake_case : Tuple = { "xmin": xmin, "ymin": ymin, "xmax": xmax, "ymax": ymax, } return bbox
123
import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process a_ : int = logging.getLogger(__name__) a_ : List[str] = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) a_ : int = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _snake_case : _lowercase : Optional[str] = field( default=A__ , metadata={ '''help''': ( '''The model checkpoint for weights initialization. Leave None if you want to train a model from''' ''' scratch.''' ) } , ) _lowercase : Optional[str] = field( default=A__ , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(A__ )} , ) _lowercase : Optional[str] = field( default=A__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _lowercase : Optional[str] = field( default=A__ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) _lowercase : Optional[str] = field( default=A__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class _snake_case : _lowercase : Optional[str] = field( default=A__ , metadata={'''help''': '''The input training data file (a text file).'''} ) _lowercase : Optional[str] = field( default=A__ , metadata={ '''help''': ( '''The input training data files (multiple files in glob format). ''' '''Very often splitting large files to smaller files can prevent tokenizer going out of memory''' ) } , ) _lowercase : Optional[str] = field( default=A__ , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) _lowercase : Optional[str] = field( default=A__ , metadata={'''help''': '''An optional input train ref data file for whole word mask in Chinese.'''} , ) _lowercase : Optional[str] = field( default=A__ , metadata={'''help''': '''An optional input eval ref data file for whole word mask in Chinese.'''} , ) _lowercase : bool = field( default=A__ , metadata={'''help''': '''Whether distinct lines of text in the dataset are to be handled as distinct sequences.'''} , ) _lowercase : bool = field( default=A__ , metadata={'''help''': '''Train with masked-language modeling loss instead of language modeling.'''} ) _lowercase : bool = field(default=A__ , metadata={'''help''': '''Whether ot not to use whole word mask.'''} ) _lowercase : float = field( default=0.15 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) _lowercase : float = field( default=1 / 6 , metadata={ '''help''': ( '''Ratio of length of a span of masked tokens to surrounding context length for permutation language''' ''' modeling.''' ) } , ) _lowercase : int = field( default=5 , metadata={'''help''': '''Maximum length of a span of masked tokens for permutation language modeling.'''} ) _lowercase : int = field( default=-1 , metadata={ '''help''': ( '''Optional input sequence length after tokenization.''' '''The training dataset will be truncated in block of this size for training.''' '''Default to the model max input length for single sentence inputs (take into account special tokens).''' ) } , ) _lowercase : bool = field( default=A__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = False , _UpperCAmelCase = None , ): def _dataset(_UpperCAmelCase , _UpperCAmelCase=None): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('You need to set world whole masking and mlm to True for Chinese Whole Word Mask') return LineByLineWithRefDataset( tokenizer=_UpperCAmelCase , file_path=_UpperCAmelCase , block_size=args.block_size , ref_path=_UpperCAmelCase , ) return LineByLineTextDataset(tokenizer=_UpperCAmelCase , file_path=_UpperCAmelCase , block_size=args.block_size) else: return TextDataset( tokenizer=_UpperCAmelCase , file_path=_UpperCAmelCase , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=_UpperCAmelCase , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file) elif args.train_data_files: return ConcatDataset([_dataset(_UpperCAmelCase) for f in glob(args.train_data_files)]) else: return _dataset(args.train_data_file , args.train_ref_file) def lowerCamelCase__ (): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. SCREAMING_SNAKE_CASE = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( 'Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ' 'or remove the --do_eval argument.') if ( os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ' --overwrite_output_dir to overcome.') # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _UpperCAmelCase) # Set seed set_seed(training_args.seed) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir) elif model_args.model_name_or_path: SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir) else: SCREAMING_SNAKE_CASE = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.') if model_args.tokenizer_name: SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir) elif model_args.model_name_or_path: SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another' ' script, save it,and load it from here, using --tokenizer_name') if model_args.model_name_or_path: SCREAMING_SNAKE_CASE = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path) , config=_UpperCAmelCase , cache_dir=model_args.cache_dir , ) else: logger.info('Training new model from scratch') SCREAMING_SNAKE_CASE = AutoModelWithLMHead.from_config(_UpperCAmelCase) model.resize_token_embeddings(len(_UpperCAmelCase)) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( 'BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the' '--mlm flag (masked language modeling).') if data_args.block_size <= 0: SCREAMING_SNAKE_CASE = tokenizer.max_len # Our input block size will be the max possible for the model else: SCREAMING_SNAKE_CASE = min(data_args.block_size , tokenizer.max_len) # Get datasets SCREAMING_SNAKE_CASE = ( get_dataset(_UpperCAmelCase , tokenizer=_UpperCAmelCase , cache_dir=model_args.cache_dir) if training_args.do_train else None ) SCREAMING_SNAKE_CASE = ( get_dataset(_UpperCAmelCase , tokenizer=_UpperCAmelCase , evaluate=_UpperCAmelCase , cache_dir=model_args.cache_dir) if training_args.do_eval else None ) if config.model_type == "xlnet": SCREAMING_SNAKE_CASE = DataCollatorForPermutationLanguageModeling( tokenizer=_UpperCAmelCase , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: SCREAMING_SNAKE_CASE = DataCollatorForWholeWordMask( tokenizer=_UpperCAmelCase , mlm_probability=data_args.mlm_probability) else: SCREAMING_SNAKE_CASE = DataCollatorForLanguageModeling( tokenizer=_UpperCAmelCase , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability) # Initialize our Trainer SCREAMING_SNAKE_CASE = Trainer( model=_UpperCAmelCase , args=_UpperCAmelCase , data_collator=_UpperCAmelCase , train_dataset=_UpperCAmelCase , eval_dataset=_UpperCAmelCase , prediction_loss_only=_UpperCAmelCase , ) # Training if training_args.do_train: SCREAMING_SNAKE_CASE = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path) else None ) trainer.train(model_path=_UpperCAmelCase) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir) # Evaluation SCREAMING_SNAKE_CASE = {} if training_args.do_eval: logger.info('*** Evaluate ***') SCREAMING_SNAKE_CASE = trainer.evaluate() SCREAMING_SNAKE_CASE = math.exp(eval_output['eval_loss']) SCREAMING_SNAKE_CASE = {'perplexity': perplexity} SCREAMING_SNAKE_CASE = os.path.join(training_args.output_dir , 'eval_results_lm.txt') if trainer.is_world_master(): with open(_UpperCAmelCase , 'w') as writer: logger.info('***** Eval results *****') for key in sorted(result.keys()): logger.info(' %s = %s' , _UpperCAmelCase , str(result[key])) writer.write('%s = %s\n' % (key, str(result[key]))) results.update(_UpperCAmelCase) return results def lowerCamelCase__ (_UpperCAmelCase): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
137
0
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="%(message)s") def _snake_case ( UpperCamelCase : np.ndarray ): return input_array.reshape((input_array.size, 1) ) def _snake_case ( UpperCamelCase : np.ndarray , UpperCamelCase : np.ndarray , UpperCamelCase : int ): UpperCAmelCase : Optional[int] = np.nan for i in range(UpperCamelCase ): UpperCAmelCase : int = features[:, labels == i] UpperCAmelCase : List[Any] = data.mean(1 ) # Centralize the data of class i UpperCAmelCase : Dict = data - column_reshape(UpperCamelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(UpperCamelCase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) UpperCAmelCase : Optional[Any] = np.dot(UpperCamelCase , centered_data.T ) return covariance_sum / features.shape[1] def _snake_case ( UpperCamelCase : np.ndarray , UpperCamelCase : np.ndarray , UpperCamelCase : int ): UpperCAmelCase : Tuple = features.mean(1 ) UpperCAmelCase : Union[str, Any] = np.nan for i in range(UpperCamelCase ): UpperCAmelCase : int = features[:, labels == i] UpperCAmelCase : List[str] = data.shape[1] UpperCAmelCase : Optional[int] = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(UpperCamelCase ) - column_reshape(UpperCamelCase ) , (column_reshape(UpperCamelCase ) - column_reshape(UpperCamelCase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) UpperCAmelCase : Optional[Any] = device_data * np.dot( column_reshape(UpperCamelCase ) - column_reshape(UpperCamelCase ) , (column_reshape(UpperCamelCase ) - column_reshape(UpperCamelCase )).T , ) return covariance_sum / features.shape[1] def _snake_case ( UpperCamelCase : np.ndarray , UpperCamelCase : int ): # Check if the features have been loaded if features.any(): UpperCAmelCase : Tuple = features.mean(1 ) # Center the dataset UpperCAmelCase : List[str] = features - np.reshape(UpperCamelCase , (data_mean.size, 1) ) UpperCAmelCase : str = np.dot(UpperCamelCase , centered_data.T ) / features.shape[1] UpperCAmelCase : int = np.linalg.eigh(UpperCamelCase ) # Take all the columns in the reverse order (-1), and then takes only the first UpperCAmelCase : List[Any] = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space UpperCAmelCase : int = np.dot(filtered_eigenvectors.T , UpperCamelCase ) logging.info("""Principal Component Analysis computed""" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="""%(message)s""" , force=UpperCamelCase ) logging.error("""Dataset empty""" ) raise AssertionError def _snake_case ( UpperCamelCase : np.ndarray , UpperCamelCase : np.ndarray , UpperCamelCase : int , UpperCamelCase : int ): assert classes > dimensions # Check if features have been already loaded if features.any: UpperCAmelCase : Dict = eigh( covariance_between_classes(UpperCamelCase , UpperCamelCase , UpperCamelCase ) , covariance_within_classes(UpperCamelCase , UpperCamelCase , UpperCamelCase ) , ) UpperCAmelCase : Any = eigenvectors[:, ::-1][:, :dimensions] UpperCAmelCase : Tuple = np.linalg.svd(UpperCamelCase ) UpperCAmelCase : Tuple = svd_matrix[:, 0:dimensions] UpperCAmelCase : Tuple = np.dot(filtered_svd_matrix.T , UpperCamelCase ) logging.info("""Linear Discriminant Analysis computed""" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="""%(message)s""" , force=UpperCamelCase ) logging.error("""Dataset empty""" ) raise AssertionError def _snake_case ( ): # Create dummy dataset with 2 classes and 3 features UpperCAmelCase : Dict = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) UpperCAmelCase : List[Any] = np.array([0, 0, 0, 1, 1] ) UpperCAmelCase : List[str] = 2 UpperCAmelCase : int = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(UpperCamelCase ) as error_info: UpperCAmelCase : Union[str, Any] = linear_discriminant_analysis( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) if isinstance(UpperCamelCase , np.ndarray ): raise AssertionError( """Did not raise AssertionError for dimensions > classes""" ) assert error_info.type is AssertionError def _snake_case ( ): UpperCAmelCase : List[Any] = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) UpperCAmelCase : Optional[int] = 2 UpperCAmelCase : Any = np.array([[6.92820323, 8.66025404, 10.39230485], [3.0, 3.0, 3.0]] ) with pytest.raises(UpperCamelCase ) as error_info: UpperCAmelCase : Tuple = principal_component_analysis(UpperCamelCase , UpperCamelCase ) if not np.allclose(UpperCamelCase , UpperCamelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
358
"""simple docstring""" import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger A: List[Any] = get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( enum.Enum ): __lowerCAmelCase : Dict = 'all_checks' __lowerCAmelCase : int = 'basic_checks' __lowerCAmelCase : Optional[Any] = 'no_checks' class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): pass class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): pass class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): pass class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): pass def _snake_case ( UpperCamelCase : Optional[dict] , UpperCamelCase : dict , UpperCamelCase : int=None ): if expected_checksums is None: logger.info("""Unable to verify checksums.""" ) return if len(set(UpperCamelCase ) - set(UpperCamelCase ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(UpperCamelCase ) - set(UpperCamelCase ) ) ) if len(set(UpperCamelCase ) - set(UpperCamelCase ) ) > 0: raise UnexpectedDownloadedFile(str(set(UpperCamelCase ) - set(UpperCamelCase ) ) ) UpperCAmelCase : Tuple = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] UpperCAmelCase : Union[str, Any] = """ for """ + verification_name if verification_name is not None else """""" if len(UpperCamelCase ) > 0: raise NonMatchingChecksumError( F"Checksums didn't match{for_verification_name}:\n" F"{bad_urls}\n" """Set `verification_mode='no_checks'` to skip checksums verification and ignore this error""" ) logger.info("""All the checksums matched successfully""" + for_verification_name ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): pass class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): pass class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): pass class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): pass def _snake_case ( UpperCamelCase : Optional[dict] , UpperCamelCase : dict ): if expected_splits is None: logger.info("""Unable to verify splits sizes.""" ) return if len(set(UpperCamelCase ) - set(UpperCamelCase ) ) > 0: raise ExpectedMoreSplits(str(set(UpperCamelCase ) - set(UpperCamelCase ) ) ) if len(set(UpperCamelCase ) - set(UpperCamelCase ) ) > 0: raise UnexpectedSplits(str(set(UpperCamelCase ) - set(UpperCamelCase ) ) ) UpperCAmelCase : List[str] = [ {"""expected""": expected_splits[name], """recorded""": recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(UpperCamelCase ) > 0: raise NonMatchingSplitsSizesError(str(UpperCamelCase ) ) logger.info("""All the splits matched successfully.""" ) def _snake_case ( UpperCamelCase : str , UpperCamelCase : bool = True ): if record_checksum: UpperCAmelCase : Dict = shaaaa() with open(UpperCamelCase , """rb""" ) as f: for chunk in iter(lambda: f.read(1 << 20 ) , B"""""" ): m.update(UpperCamelCase ) UpperCAmelCase : Any = m.hexdigest() else: UpperCAmelCase : Dict = None return {"num_bytes": os.path.getsize(UpperCamelCase ), "checksum": checksum} def _snake_case ( UpperCamelCase : Union[str, Any] ): if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
76
0
"""simple docstring""" lowercase__ = { 'meter': 'm', 'kilometer': 'km', 'megametre': 'Mm', 'gigametre': 'Gm', 'terametre': 'Tm', 'petametre': 'Pm', 'exametre': 'Em', 'zettametre': 'Zm', 'yottametre': 'Ym', } # Exponent of the factor(meter) lowercase__ = { 'm': 0, 'km': 3, 'Mm': 6, 'Gm': 9, 'Tm': 12, 'Pm': 15, 'Em': 18, 'Zm': 21, 'Ym': 24, } def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : List[Any] = from_type.lower().strip('s' ) _lowerCamelCase : List[Any] = to_type.lower().strip('s' ) _lowerCamelCase : Dict = UNIT_SYMBOL.get(lowerCamelCase_ , lowerCamelCase_ ) _lowerCamelCase : Optional[int] = UNIT_SYMBOL.get(lowerCamelCase_ , lowerCamelCase_ ) if from_sanitized not in METRIC_CONVERSION: _lowerCamelCase : Any = ( f'''Invalid \'from_type\' value: {from_type!r}.\n''' f'''Conversion abbreviations are: {', '.join(lowerCamelCase_ )}''' ) raise ValueError(lowerCamelCase_ ) if to_sanitized not in METRIC_CONVERSION: _lowerCamelCase : Optional[int] = ( f'''Invalid \'to_type\' value: {to_type!r}.\n''' f'''Conversion abbreviations are: {', '.join(lowerCamelCase_ )}''' ) raise ValueError(lowerCamelCase_ ) _lowerCamelCase : List[str] = METRIC_CONVERSION[from_sanitized] _lowerCamelCase : Dict = METRIC_CONVERSION[to_sanitized] _lowerCamelCase : List[Any] = 1 if from_exponent > to_exponent: _lowerCamelCase : Tuple = from_exponent - to_exponent else: _lowerCamelCase : Tuple = -(to_exponent - from_exponent) return value * pow(10 , lowerCamelCase_ ) if __name__ == "__main__": from doctest import testmod testmod()
96
def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = [1] lowercase__ , lowercase__ , lowercase__ = 0, 0, 0 lowercase__ = ugly_nums[ia] * 2 lowercase__ = ugly_nums[ia] * 3 lowercase__ = ugly_nums[ia] * 5 for _ in range(1 , lowerCamelCase_ ): lowercase__ = min(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) ugly_nums.append(lowerCamelCase_ ) if next_num == next_a: ia += 1 lowercase__ = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 lowercase__ = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 lowercase__ = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(F"{ugly_numbers(2_00) = }")
207
0
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=__magic_name__ ) class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ =field(default='''image-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) SCREAMING_SNAKE_CASE_ =Features({'''image''': Image()} ) SCREAMING_SNAKE_CASE_ =Features({'''labels''': ClassLabel} ) SCREAMING_SNAKE_CASE_ ="image" SCREAMING_SNAKE_CASE_ ="labels" def __a ( self : int , snake_case__ : Optional[int] ): '''simple docstring''' if self.label_column not in features: raise ValueError(f'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] , snake_case__ ): raise ValueError(f'Column {self.label_column} is not a ClassLabel.' ) UpperCAmelCase__ : List[Any] = copy.deepcopy(self ) UpperCAmelCase__ : Optional[Any] = self.label_schema.copy() UpperCAmelCase__ : List[str] = features[self.label_column] UpperCAmelCase__ : int = label_schema return task_template @property def __a ( self : Optional[int] ): '''simple docstring''' return { self.image_column: "image", self.label_column: "labels", }
298
"""simple docstring""" import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class lowerCAmelCase__ ( datasets.BeamBasedBuilder ): def __a ( self : Dict ): '''simple docstring''' return datasets.DatasetInfo( features=datasets.Features({"content": datasets.Value("string" )} ) , supervised_keys=snake_case__ , ) def __a ( self : int , snake_case__ : str , snake_case__ : List[str] ): '''simple docstring''' return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_dummy_examples()} )] def __a ( self : Any , snake_case__ : str , snake_case__ : str ): '''simple docstring''' import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(snake_case__ ) class lowerCAmelCase__ ( datasets.BeamBasedBuilder ): def __a ( self : Any ): '''simple docstring''' return datasets.DatasetInfo( features=datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) , supervised_keys=snake_case__ , ) def __a ( self : Union[str, Any] , snake_case__ : int , snake_case__ : int ): '''simple docstring''' return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_nested_examples()} ) ] def __a ( self : Dict , snake_case__ : List[Any] , snake_case__ : Any ): '''simple docstring''' import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(snake_case__ ) def SCREAMING_SNAKE_CASE__ ( )-> Dict: '''simple docstring''' return [(i, {"content": content}) for i, content in enumerate(["foo", "bar", "foobar"] )] def SCREAMING_SNAKE_CASE__ ( )-> List[Any]: '''simple docstring''' return [(i, {"a": {"b": [content]}}) for i, content in enumerate(["foo", "bar", "foobar"] )] class lowerCAmelCase__ ( __magic_name__ ): @require_beam def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Any = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase__ : List[Any] = DummyBeamDataset(cache_dir=snake_case__ , beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , f'{builder.name}-train.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) ) UpperCAmelCase__ : Tuple = builder.as_dataset() self.assertEqual(dset["train"].num_rows , snake_case__ ) self.assertEqual(dset["train"].info.splits["train"].num_examples , snake_case__ ) self.assertDictEqual(dset["train"][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset @require_beam def __a ( self : Dict ): '''simple docstring''' import apache_beam as beam UpperCAmelCase__ : Dict = beam.io.parquetio.WriteToParquet UpperCAmelCase__ : List[str] = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase__ : Union[str, Any] = DummyBeamDataset(cache_dir=snake_case__ , beam_runner="DirectRunner" ) with patch("apache_beam.io.parquetio.WriteToParquet" ) as write_parquet_mock: UpperCAmelCase__ : List[Any] = partial(snake_case__ , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( snake_case__ , builder.name , "default" , "0.0.0" , f'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertTrue( os.path.exists( os.path.join( snake_case__ , builder.name , "default" , "0.0.0" , f'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) ) UpperCAmelCase__ : Dict = builder.as_dataset() self.assertEqual(dset["train"].num_rows , snake_case__ ) self.assertEqual(dset["train"].info.splits["train"].num_examples , snake_case__ ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset["train"]["content"] ) , sorted(["foo", "bar", "foobar"] ) ) self.assertTrue( os.path.exists(os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset @require_beam def __a ( self : str ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase__ : Optional[Any] = DummyBeamDataset(cache_dir=snake_case__ ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase__ : List[Any] = NestedBeamDataset(cache_dir=snake_case__ , beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , f'{builder.name}-train.arrow' ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) ) UpperCAmelCase__ : Tuple = builder.as_dataset() self.assertEqual(dset["train"].num_rows , snake_case__ ) self.assertEqual(dset["train"].info.splits["train"].num_examples , snake_case__ ) self.assertDictEqual(dset["train"][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset
298
1
"""simple docstring""" import os import jsonlines import numpy as np from tqdm import tqdm UpperCAmelCase = 2_048 UpperCAmelCase = 4_096 UpperCAmelCase = 42 UpperCAmelCase = os.environ.pop("""PROCESS_TRAIN""", """false""") UpperCAmelCase = {'null': 0, 'short': 1, 'long': 2, 'yes': 3, 'no': 4} def lowercase ( a__ : Optional[int] ) -> int: def choose_first(a__ : Dict , a__ : Any=False ): assert isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) if len(UpperCAmelCase_ ) == 1: _UpperCamelCase = answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: _UpperCamelCase = {k: [a[k]] for k in a} if len(a['''start_token'''] ) > 0: break return a _UpperCamelCase = {'id': example['id']} _UpperCamelCase = example['annotations'] _UpperCamelCase = annotation['yes_no_answer'] if 0 in yes_no_answer or 1 in yes_no_answer: _UpperCamelCase = ['yes'] if 1 in yes_no_answer else ['no'] _UpperCamelCase = [] _UpperCamelCase = [] _UpperCamelCase = ['<cls>'] else: _UpperCamelCase = ['short'] _UpperCamelCase = choose_first(annotation['''short_answers'''] ) if len(out['''start_token'''] ) == 0: # answer will be long if short is not available _UpperCamelCase = ['long'] _UpperCamelCase = choose_first(annotation['''long_answer'''] , is_long_answer=UpperCAmelCase_ ) _UpperCamelCase = [] answer.update(UpperCAmelCase_ ) # disregard some samples if len(answer['''start_token'''] ) > 1 or answer["start_token"] == answer["end_token"]: _UpperCamelCase = True else: _UpperCamelCase = False _UpperCamelCase = ['start_token', 'end_token', 'start_byte', 'end_byte', 'text'] if not all(isinstance(answer[k] , UpperCAmelCase_ ) for k in cols ): raise ValueError('''Issue in ID''' , example['''id'''] ) return answer def lowercase ( a__ : Optional[int] , a__ : List[str]=False ) -> str: _UpperCamelCase = _get_single_answer(UpperCAmelCase_ ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element _UpperCamelCase = example['document']['tokens'] _UpperCamelCase = [] for i in range(len(doc['''token'''] ) ): if not doc["is_html"][i]: context.append(doc['''token'''][i] ) return { "context": " ".join(UpperCAmelCase_ ), "answer": { "start_token": -100, # ignore index in cross-entropy "end_token": -100, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples _UpperCamelCase = ['start_token', 'end_token'] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 _UpperCamelCase = example['document']['tokens'] _UpperCamelCase = answer['start_token'] _UpperCamelCase = answer['end_token'] _UpperCamelCase = [] for i in range(len(doc['''token'''] ) ): if not doc["is_html"][i]: context.append(doc['''token'''][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 _UpperCamelCase = ' '.join(context[start_token:end_token] ) # checking above code if assertion: _UpperCamelCase = doc['is_html'][answer['start_token'] : answer['end_token']] _UpperCamelCase = doc['token'][answer['start_token'] : answer['end_token']] _UpperCamelCase = ' '.join([old[i] for i in range(len(UpperCAmelCase_ ) ) if not is_html[i]] ) if new != old: print('''ID:''' , example['''id'''] ) print('''New:''' , UpperCAmelCase_ , end='''\n''' ) print('''Old:''' , UpperCAmelCase_ , end='''\n\n''' ) return { "context": " ".join(UpperCAmelCase_ ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def lowercase ( a__ : List[Any] , a__ : Tuple , a__ : int=2048 , a__ : Tuple=4096 , a__ : str=True ) -> Optional[Any]: # overlap will be of doc_stride - q_len _UpperCamelCase = get_context_and_ans(UpperCAmelCase_ , assertion=UpperCAmelCase_ ) _UpperCamelCase = out['answer'] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } _UpperCamelCase = tokenizer(example['''question''']['''text'''] , out['''context'''] ).input_ids _UpperCamelCase = input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element _UpperCamelCase = [] _UpperCamelCase = [] _UpperCamelCase = input_ids[:q_len] _UpperCamelCase = range(UpperCAmelCase_ , len(UpperCAmelCase_ ) , max_length - doc_stride ) for i in doc_start_indices: _UpperCamelCase = i + max_length - q_len _UpperCamelCase = input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer['''category'''][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-100] * len(UpperCAmelCase_ ), "end_token": [-100] * len(UpperCAmelCase_ ), "category": category, }, } _UpperCamelCase = out['context'].split() _UpperCamelCase = splitted_context[answer['end_token']] _UpperCamelCase = len( tokenizer( ''' '''.join(splitted_context[: answer['''start_token''']] ) , add_special_tokens=UpperCAmelCase_ , ).input_ids ) _UpperCamelCase = len( tokenizer(''' '''.join(splitted_context[: answer['''end_token''']] ) , add_special_tokens=UpperCAmelCase_ ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token _UpperCamelCase = len(tokenizer(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 _UpperCamelCase = input_ids[answer['start_token'] : answer['end_token'] + 1] # right & left are inclusive _UpperCamelCase = answer['start_token'] _UpperCamelCase = answer['end_token'] if assertion: _UpperCamelCase = tokenizer.decode(UpperCAmelCase_ ) if answer["span"] != new: print('''ISSUE IN TOKENIZATION''' ) print('''OLD:''' , answer['''span'''] ) print('''NEW:''' , UpperCAmelCase_ , end='''\n\n''' ) if len(UpperCAmelCase_ ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } _UpperCamelCase = input_ids[:q_len] _UpperCamelCase = range(UpperCAmelCase_ , len(UpperCAmelCase_ ) , max_length - doc_stride ) _UpperCamelCase = [] _UpperCamelCase = [] _UpperCamelCase = [] _UpperCamelCase = [] # null, yes, no, long, short for i in doc_start_indices: _UpperCamelCase = i + max_length - q_len _UpperCamelCase = input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: _UpperCamelCase = start_token - i + q_len _UpperCamelCase = end_token - i + q_len answers_category.append(answer['''category'''][0] ) # ["short"] -> "short" else: _UpperCamelCase = -100 _UpperCamelCase = -100 answers_category.append('''null''' ) _UpperCamelCase = inputs[-1][start_token : end_token + 1] answers_start_token.append(UpperCAmelCase_ ) answers_end_token.append(UpperCAmelCase_ ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print('''ISSUE in strided for ID:''' , example['''id'''] ) print('''New:''' , tokenizer.decode(UpperCAmelCase_ ) ) print('''Old:''' , tokenizer.decode(UpperCAmelCase_ ) , end='''\n\n''' ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def lowercase ( a__ : Optional[Any] , a__ : Union[str, Any] , a__ : List[Any]=2048 , a__ : Optional[Any]=4096 , a__ : List[Any]=False ) -> Optional[int]: _UpperCamelCase = get_strided_contexts_and_ans( UpperCAmelCase_ , UpperCAmelCase_ , doc_stride=UpperCAmelCase_ , max_length=UpperCAmelCase_ , assertion=UpperCAmelCase_ , ) return example def lowercase ( a__ : Any , a__ : List[str] ) -> Dict: with jsonlines.open(UpperCAmelCase_ , '''a''' ) as writer: for example in tqdm(UpperCAmelCase_ , total=len(UpperCAmelCase_ ) , desc='''Saving samples ... ''' ): _UpperCamelCase = example['labels'] for ids, start, end, cat in zip( example['''input_ids'''] , labels['''start_token'''] , labels['''end_token'''] , labels['''category'''] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { '''input_ids''': ids, '''start_token''': start, '''end_token''': end, '''category''': CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer UpperCAmelCase = load_dataset("""natural_questions""") UpperCAmelCase = BigBirdTokenizer.from_pretrained("""google/bigbird-roberta-base""") UpperCAmelCase = data['train' if PROCESS_TRAIN == 'true' else 'validation'] UpperCAmelCase = { 'tokenizer': tokenizer, 'doc_stride': DOC_STRIDE, 'max_length': MAX_LENGTH, 'assertion': False, } UpperCAmelCase = data.map(prepare_inputs, fn_kwargs=fn_kwargs) UpperCAmelCase = data.remove_columns(["""annotations""", """document""", """id""", """question"""]) print(data) np.random.seed(SEED) UpperCAmelCase = 'nq-training.jsonl' if PROCESS_TRAIN == 'true' else 'nq-validation.jsonl' save_to_disk(data, file_name=cache_file_name)
256
'''simple docstring''' import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(lowercase ) , """Tatoeba directory does not exist.""" ) class lowercase__ ( unittest.TestCase ): @cached_property def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _UpperCamelCase : str = tempfile.mkdtemp() return TatoebaConverter(save_dir=lowerCamelCase__ ) @slow def UpperCamelCase_ ( self : Any ): '''simple docstring''' self.resolver.convert_models(['heb-eng'] ) @slow def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _UpperCamelCase , _UpperCamelCase : Dict = self.resolver.write_model_card('opus-mt-he-en' ,dry_run=lowerCamelCase__ ) assert mmeta["long_pair"] == "heb-eng"
83
0
import torch from torch import nn class lowerCamelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : List[str] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[str]=1 , _lowerCAmelCase : int=False ): super().__init__() SCREAMING_SNAKE_CASE_ = n_token SCREAMING_SNAKE_CASE_ = d_embed SCREAMING_SNAKE_CASE_ = d_proj SCREAMING_SNAKE_CASE_ = cutoffs + [n_token] SCREAMING_SNAKE_CASE_ = [0] + self.cutoffs SCREAMING_SNAKE_CASE_ = div_val SCREAMING_SNAKE_CASE_ = self.cutoffs[0] SCREAMING_SNAKE_CASE_ = len(self.cutoffs ) - 1 SCREAMING_SNAKE_CASE_ = self.shortlist_size + self.n_clusters if self.n_clusters > 0: SCREAMING_SNAKE_CASE_ = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) SCREAMING_SNAKE_CASE_ = nn.Parameter(torch.zeros(self.n_clusters ) ) SCREAMING_SNAKE_CASE_ = nn.ModuleList() SCREAMING_SNAKE_CASE_ = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(_lowerCAmelCase , _lowerCAmelCase ) ) ) else: self.out_projs.append(_lowerCAmelCase ) self.out_layers.append(nn.Linear(_lowerCAmelCase , _lowerCAmelCase ) ) else: for i in range(len(self.cutoffs ) ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] SCREAMING_SNAKE_CASE_ = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(_lowerCAmelCase , _lowerCAmelCase ) ) ) self.out_layers.append(nn.Linear(_lowerCAmelCase , r_idx - l_idx ) ) SCREAMING_SNAKE_CASE_ = keep_order def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict ): if proj is None: SCREAMING_SNAKE_CASE_ = nn.functional.linear(_lowerCAmelCase , _lowerCAmelCase , bias=_lowerCAmelCase ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: SCREAMING_SNAKE_CASE_ = nn.functional.linear(_lowerCAmelCase , proj.t().contiguous() ) SCREAMING_SNAKE_CASE_ = nn.functional.linear(_lowerCAmelCase , _lowerCAmelCase , bias=_lowerCAmelCase ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int]=None , _lowerCAmelCase : Tuple=False ): if labels is not None: # Shift so that tokens < n predict n SCREAMING_SNAKE_CASE_ = hidden[..., :-1, :].contiguous() SCREAMING_SNAKE_CASE_ = labels[..., 1:].contiguous() SCREAMING_SNAKE_CASE_ = hidden.view(-1 , hidden.size(-1 ) ) SCREAMING_SNAKE_CASE_ = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError('Input and labels should have the same size in the batch dimension.' ) else: SCREAMING_SNAKE_CASE_ = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: SCREAMING_SNAKE_CASE_ = self._compute_logit(_lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: SCREAMING_SNAKE_CASE_ = labels != -100 SCREAMING_SNAKE_CASE_ = torch.zeros_like(_lowerCAmelCase , dtype=hidden.dtype , device=hidden.device ) SCREAMING_SNAKE_CASE_ = ( -nn.functional.log_softmax(_lowerCAmelCase , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: SCREAMING_SNAKE_CASE_ = nn.functional.log_softmax(_lowerCAmelCase , dim=-1 ) else: # construct weights and biases SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] SCREAMING_SNAKE_CASE_ = self.out_layers[0].weight[l_idx:r_idx] SCREAMING_SNAKE_CASE_ = self.out_layers[0].bias[l_idx:r_idx] else: SCREAMING_SNAKE_CASE_ = self.out_layers[i].weight SCREAMING_SNAKE_CASE_ = self.out_layers[i].bias if i == 0: SCREAMING_SNAKE_CASE_ = torch.cat([weight_i, self.cluster_weight] , dim=0 ) SCREAMING_SNAKE_CASE_ = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(_lowerCAmelCase ) biases.append(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = weights[0], biases[0], self.out_projs[0] SCREAMING_SNAKE_CASE_ = self._compute_logit(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = nn.functional.log_softmax(_lowerCAmelCase , dim=1 ) if labels is None: SCREAMING_SNAKE_CASE_ = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: SCREAMING_SNAKE_CASE_ = torch.zeros_like(_lowerCAmelCase , dtype=hidden.dtype , device=hidden.device ) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = [0] + self.cutoffs for i in range(len(_lowerCAmelCase ) - 1 ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = cutoff_values[i], cutoff_values[i + 1] if labels is not None: SCREAMING_SNAKE_CASE_ = (labels >= l_idx) & (labels < r_idx) SCREAMING_SNAKE_CASE_ = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue SCREAMING_SNAKE_CASE_ = labels.index_select(0 , _lowerCAmelCase ) - l_idx SCREAMING_SNAKE_CASE_ = head_logprob.index_select(0 , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = hidden.index_select(0 , _lowerCAmelCase ) else: SCREAMING_SNAKE_CASE_ = hidden if i == 0: if labels is not None: SCREAMING_SNAKE_CASE_ = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: SCREAMING_SNAKE_CASE_ = head_logprob[:, : self.cutoffs[0]] else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = weights[i], biases[i], self.out_projs[i] SCREAMING_SNAKE_CASE_ = self._compute_logit(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = nn.functional.log_softmax(_lowerCAmelCase , dim=1 ) SCREAMING_SNAKE_CASE_ = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: SCREAMING_SNAKE_CASE_ = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: SCREAMING_SNAKE_CASE_ = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i SCREAMING_SNAKE_CASE_ = logprob_i if labels is not None: if (hasattr(self , 'keep_order' ) and self.keep_order) or keep_order: out.index_copy_(0 , _lowerCAmelCase , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : Optional[int] ): if self.n_clusters == 0: SCREAMING_SNAKE_CASE_ = self._compute_logit(_lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(_lowerCAmelCase , dim=-1 ) else: # construct weights and biases SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] SCREAMING_SNAKE_CASE_ = self.out_layers[0].weight[l_idx:r_idx] SCREAMING_SNAKE_CASE_ = self.out_layers[0].bias[l_idx:r_idx] else: SCREAMING_SNAKE_CASE_ = self.out_layers[i].weight SCREAMING_SNAKE_CASE_ = self.out_layers[i].bias if i == 0: SCREAMING_SNAKE_CASE_ = torch.cat([weight_i, self.cluster_weight] , dim=0 ) SCREAMING_SNAKE_CASE_ = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(_lowerCAmelCase ) biases.append(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = weights[0], biases[0], self.out_projs[0] SCREAMING_SNAKE_CASE_ = self._compute_logit(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = hidden.new_empty((head_logit.size(0 ), self.n_token) ) SCREAMING_SNAKE_CASE_ = nn.functional.log_softmax(_lowerCAmelCase , dim=1 ) SCREAMING_SNAKE_CASE_ = [0] + self.cutoffs for i in range(len(_lowerCAmelCase ) - 1 ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = cutoff_values[i], cutoff_values[i + 1] if i == 0: SCREAMING_SNAKE_CASE_ = head_logprob[:, : self.cutoffs[0]] else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = weights[i], biases[i], self.out_projs[i] SCREAMING_SNAKE_CASE_ = self._compute_logit(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = nn.functional.log_softmax(_lowerCAmelCase , dim=1 ) SCREAMING_SNAKE_CASE_ = head_logprob[:, -i] + tail_logprob_i SCREAMING_SNAKE_CASE_ = logprob_i return out
210
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html lowerCamelCase__ : Union[str, Any] = 'platform' import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : Any , __UpperCAmelCase : Dict=None , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : Optional[Any]=None , __UpperCAmelCase : Optional[Any]=None , __UpperCAmelCase : Any=None , __UpperCAmelCase : Union[str, Any]=None , ) -> List[Any]: if attention_mask is None: SCREAMING_SNAKE_CASE_ = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE_ = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: SCREAMING_SNAKE_CASE_ = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: SCREAMING_SNAKE_CASE_ = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: SCREAMING_SNAKE_CASE_ = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class lowerCamelCase_ : '''simple docstring''' def __init__( self : Tuple , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any]=13 , _lowerCAmelCase : List[Any]=7 , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : List[Any]=False , _lowerCAmelCase : Union[str, Any]=99 , _lowerCAmelCase : List[str]=16 , _lowerCAmelCase : List[str]=2 , _lowerCAmelCase : Union[str, Any]=4 , _lowerCAmelCase : str=4 , _lowerCAmelCase : List[str]="gelu" , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : List[str]=0.1 , _lowerCAmelCase : str=32 , _lowerCAmelCase : str=2 , _lowerCAmelCase : Union[str, Any]=1 , _lowerCAmelCase : Any=0 , _lowerCAmelCase : Union[str, Any]=0.02 , ): SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = seq_length SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = eos_token_id SCREAMING_SNAKE_CASE_ = pad_token_id SCREAMING_SNAKE_CASE_ = bos_token_id SCREAMING_SNAKE_CASE_ = initializer_range def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) SCREAMING_SNAKE_CASE_ = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) SCREAMING_SNAKE_CASE_ = shift_tokens_right(_lowerCAmelCase , 1 , 2 ) SCREAMING_SNAKE_CASE_ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = prepare_blenderbot_inputs_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return config, inputs_dict def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() return config, inputs_dict def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Tuple ): SCREAMING_SNAKE_CASE_ = 20 SCREAMING_SNAKE_CASE_ = model_class_name(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model.encode(inputs_dict['input_ids'] ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) SCREAMING_SNAKE_CASE_ = model.init_cache(decoder_input_ids.shape[0] , _lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' ) SCREAMING_SNAKE_CASE_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) SCREAMING_SNAKE_CASE_ = model.decode( decoder_input_ids[:, :-1] , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , decoder_position_ids=_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) SCREAMING_SNAKE_CASE_ = model.decode( decoder_input_ids[:, -1:] , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = model.decode(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"Max diff is {diff}" ) def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : Dict , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int ): SCREAMING_SNAKE_CASE_ = 20 SCREAMING_SNAKE_CASE_ = model_class_name(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model.encode(inputs_dict['input_ids'] ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) SCREAMING_SNAKE_CASE_ = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) SCREAMING_SNAKE_CASE_ = model.init_cache(decoder_input_ids.shape[0] , _lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) SCREAMING_SNAKE_CASE_ = model.decode( decoder_input_ids[:, :-1] , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , decoder_position_ids=_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) SCREAMING_SNAKE_CASE_ = model.decode( decoder_input_ids[:, -1:] , _lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_lowerCAmelCase , decoder_position_ids=_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = model.decode(_lowerCAmelCase , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"Max diff is {diff}" ) @require_flax class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' lowercase_ = 99 def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) SCREAMING_SNAKE_CASE_ = input_ids.shape[0] SCREAMING_SNAKE_CASE_ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self._get_config_and_data() SCREAMING_SNAKE_CASE_ = FlaxBlenderbotForConditionalGeneration(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = lm_model(input_ids=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['logits'].shape , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) SCREAMING_SNAKE_CASE_ = FlaxBlenderbotForConditionalGeneration(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) SCREAMING_SNAKE_CASE_ = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) SCREAMING_SNAKE_CASE_ = lm_model(input_ids=_lowerCAmelCase , decoder_input_ids=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = (*summary.shape, config.vocab_size) self.assertEqual(outputs['logits'].shape , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) SCREAMING_SNAKE_CASE_ = shift_tokens_right(_lowerCAmelCase , 1 , 2 ) SCREAMING_SNAKE_CASE_ = np.equal(_lowerCAmelCase , 1 ).astype(np.floataa ).sum() SCREAMING_SNAKE_CASE_ = np.equal(_lowerCAmelCase , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(_lowerCAmelCase , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase , _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = True lowercase_ = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) lowercase_ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = FlaxBlenderbotModelTester(self ) def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): SCREAMING_SNAKE_CASE_ = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model_class(_lowerCAmelCase ) @jax.jit def encode_jitted(_lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any]=None , **_lowerCAmelCase : Optional[Any] ): return model.encode(input_ids=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) with self.subTest('JIT Enabled' ): SCREAMING_SNAKE_CASE_ = encode_jitted(**_lowerCAmelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): SCREAMING_SNAKE_CASE_ = encode_jitted(**_lowerCAmelCase ).to_tuple() self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) ) for jitted_output, output in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): SCREAMING_SNAKE_CASE_ = model_class(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] ) SCREAMING_SNAKE_CASE_ = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(_lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : str ): return model.decode( decoder_input_ids=_lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , encoder_outputs=_lowerCAmelCase , ) with self.subTest('JIT Enabled' ): SCREAMING_SNAKE_CASE_ = decode_jitted(**_lowerCAmelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): SCREAMING_SNAKE_CASE_ = decode_jitted(**_lowerCAmelCase ).to_tuple() self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) ) for jitted_output, output in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowerCAmelCase_ ( self : str ): for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class_name.from_pretrained('facebook/blenderbot-400M-distill' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids SCREAMING_SNAKE_CASE_ = np.ones((1, 1) ) * model.config.eos_token_id SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @unittest.skipUnless(jax_device != 'cpu' , '3B test too slow on CPU.' ) @slow def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ = {'num_beams': 1, 'early_stopping': True, 'min_length': 15, 'max_length': 25} SCREAMING_SNAKE_CASE_ = {'skip_special_tokens': True, 'clean_up_tokenization_spaces': True} SCREAMING_SNAKE_CASE_ = FlaxBlenderbotForConditionalGeneration.from_pretrained('facebook/blenderbot-3B' , from_pt=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = BlenderbotTokenizer.from_pretrained('facebook/blenderbot-3B' ) SCREAMING_SNAKE_CASE_ = ['Sam'] SCREAMING_SNAKE_CASE_ = tokenizer(_lowerCAmelCase , return_tensors='jax' ) SCREAMING_SNAKE_CASE_ = model.generate(**_lowerCAmelCase , **_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = 'Sam is a great name. It means "sun" in Gaelic.' SCREAMING_SNAKE_CASE_ = tokenizer.batch_decode(_lowerCAmelCase , **_lowerCAmelCase ) assert generated_txt[0].strip() == tgt_text
210
1
"""simple docstring""" def a__ ( __SCREAMING_SNAKE_CASE ) -> Tuple: # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection __lowerCAmelCase: Optional[int] = len(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Dict = max(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Dict = min(__SCREAMING_SNAKE_CASE ) # create the counting array __lowerCAmelCase: Any = coll_max + 1 - coll_min __lowerCAmelCase: str = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , __SCREAMING_SNAKE_CASE ): __lowerCAmelCase: str = counting_arr[i] + counting_arr[i - 1] # create the output collection __lowerCAmelCase: Dict = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , __SCREAMING_SNAKE_CASE ) ): __lowerCAmelCase: List[str] = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def a__ ( __SCREAMING_SNAKE_CASE ) -> List[str]: return "".join([chr(__SCREAMING_SNAKE_CASE ) for i in counting_sort([ord(__SCREAMING_SNAKE_CASE ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("thisisthestring") == "eghhiiinrsssttt" __A = input("Enter numbers separated by a comma:\n").strip() __A = [int(item) for item in user_input.split(",")] print(counting_sort(unsorted))
217
"""simple docstring""" import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[int]: # Construct model if gpta_config_file == "": __lowerCAmelCase: Optional[int] = GPTaConfig() else: __lowerCAmelCase: List[str] = GPTaConfig.from_json_file(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Optional[int] = GPTaModel(__SCREAMING_SNAKE_CASE ) # Load weights from numpy load_tf_weights_in_gpta(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Save pytorch-model __lowerCAmelCase: str = pytorch_dump_folder_path + "/" + WEIGHTS_NAME __lowerCAmelCase: List[Any] = pytorch_dump_folder_path + "/" + CONFIG_NAME print(F"Save PyTorch model to {pytorch_weights_dump_path}" ) torch.save(model.state_dict() , __SCREAMING_SNAKE_CASE ) print(F"Save configuration file to {pytorch_config_dump_path}" ) with open(__SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--gpt2_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--gpt2_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained OpenAI model. \n" "This specifies the model architecture." ), ) __A = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
217
1
'''simple docstring''' print((lambda quine: quine % quine)('print((lambda quine: quine %% quine)(%r))'))
251
'''simple docstring''' import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset lowerCAmelCase : str = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class SCREAMING_SNAKE_CASE__ ( nn.Module): def __init__( self , A_ )-> int: '''simple docstring''' super().__init__() UpperCamelCase = torchvision.models.resnetaaa(pretrained=A_ ) UpperCamelCase = list(model.children() )[:-2] UpperCamelCase = nn.Sequential(*A_ ) UpperCamelCase = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def UpperCAmelCase_ ( self , A_ )-> List[Any]: '''simple docstring''' UpperCamelCase = self.pool(self.model(A_ ) ) UpperCamelCase = torch.flatten(A_ , start_dim=2 ) UpperCamelCase = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class SCREAMING_SNAKE_CASE__ ( snake_case_): def __init__( self , A_ , A_ , A_ , A_ , A_ )-> Dict: '''simple docstring''' UpperCamelCase = [json.loads(A_ ) for l in open(A_ )] UpperCamelCase = os.path.dirname(A_ ) UpperCamelCase = tokenizer UpperCamelCase = labels UpperCamelCase = len(A_ ) UpperCamelCase = max_seq_length UpperCamelCase = transforms def __len__( self )-> Union[str, Any]: '''simple docstring''' return len(self.data ) def __getitem__( self , A_ )-> Any: '''simple docstring''' UpperCamelCase = torch.LongTensor(self.tokenizer.encode(self.data[index]['text'] , add_special_tokens=A_ ) ) UpperCamelCase , UpperCamelCase , UpperCamelCase = sentence[0], sentence[1:-1], sentence[-1] UpperCamelCase = sentence[: self.max_seq_length] UpperCamelCase = torch.zeros(self.n_classes ) UpperCamelCase = 1 UpperCamelCase = Image.open(os.path.join(self.data_dir , self.data[index]['img'] ) ).convert('RGB' ) UpperCamelCase = self.transforms(A_ ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def UpperCAmelCase_ ( self )-> List[Any]: '''simple docstring''' UpperCamelCase = Counter() for row in self.data: label_freqs.update(row['label'] ) return label_freqs def A_( A : Union[str, Any]): UpperCamelCase = [len(row['sentence']) for row in batch] UpperCamelCase , UpperCamelCase = len(A), max(A) UpperCamelCase = torch.zeros(A , A , dtype=torch.long) UpperCamelCase = torch.zeros(A , A , dtype=torch.long) for i_batch, (input_row, length) in enumerate(zip(A , A)): UpperCamelCase = input_row['sentence'] UpperCamelCase = 1 UpperCamelCase = torch.stack([row['image'] for row in batch]) UpperCamelCase = torch.stack([row['label'] for row in batch]) UpperCamelCase = torch.stack([row['image_start_token'] for row in batch]) UpperCamelCase = torch.stack([row['image_end_token'] for row in batch]) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def A_( ): return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def A_( ): return transforms.Compose( [ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize( mean=[0.46_777_044, 0.44_531_429, 0.40_661_017] , std=[0.12_221_994, 0.12_145_835, 0.14_380_469] , ), ])
251
1
"""simple docstring""" def _snake_case ( lowercase__ : int = 5_0 ) -> int: '''simple docstring''' lowerCAmelCase_ :Any = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(F"""{solution() = }""")
84
'''simple docstring''' import argparse import os import re __a = "src/transformers" # Pattern that looks at the indentation in a line. __a = re.compile(R"^(\s*)\S") # Pattern that matches `"key":" and puts `key` in group 0. __a = re.compile(R"^\s*\"([^\"]+)\":") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. __a = re.compile(R"^\s*_import_structure\[\"([^\"]+)\"\]") # Pattern that matches `"key",` and puts `key` in group 0. __a = re.compile(R"^\s*\"([^\"]+)\",\s*$") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. __a = re.compile(R"\[([^\]]+)\]") def __snake_case( _lowerCAmelCase ) -> List[Any]: snake_case__ : int = _re_indent.search(_lowerCAmelCase ) return "" if search is None else search.groups()[0] def __snake_case( _lowerCAmelCase , _lowerCAmelCase="" , _lowerCAmelCase=None , _lowerCAmelCase=None ) -> List[str]: snake_case__ : str = 0 snake_case__ : Union[str, Any] = code.split("""\n""" ) if start_prompt is not None: while not lines[index].startswith(_lowerCAmelCase ): index += 1 snake_case__ : Tuple = ["""\n""".join(lines[:index] )] else: snake_case__ : List[str] = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). snake_case__ : Optional[int] = [lines[index]] index += 1 while index < len(_lowerCAmelCase ) and (end_prompt is None or not lines[index].startswith(_lowerCAmelCase )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_lowerCAmelCase ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ): current_block.append(lines[index] ) blocks.append("""\n""".join(_lowerCAmelCase ) ) if index < len(_lowerCAmelCase ) - 1: snake_case__ : str = [lines[index + 1]] index += 1 else: snake_case__ : int = [] else: blocks.append("""\n""".join(_lowerCAmelCase ) ) snake_case__ : Optional[Any] = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_lowerCAmelCase ) > 0: blocks.append("""\n""".join(_lowerCAmelCase ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_lowerCAmelCase ): blocks.append("""\n""".join(lines[index:] ) ) return blocks def __snake_case( _lowerCAmelCase ) -> Tuple: def _inner(_lowerCAmelCase ): return key(_lowerCAmelCase ).lower().replace("""_""" , """""" ) return _inner def __snake_case( _lowerCAmelCase , _lowerCAmelCase=None ) -> List[Any]: # If no key is provided, we use a noop. def noop(_lowerCAmelCase ): return x if key is None: snake_case__ : Optional[int] = noop # Constants are all uppercase, they go first. snake_case__ : Optional[int] = [obj for obj in objects if key(_lowerCAmelCase ).isupper()] # Classes are not all uppercase but start with a capital, they go second. snake_case__ : int = [obj for obj in objects if key(_lowerCAmelCase )[0].isupper() and not key(_lowerCAmelCase ).isupper()] # Functions begin with a lowercase, they go last. snake_case__ : str = [obj for obj in objects if not key(_lowerCAmelCase )[0].isupper()] snake_case__ : List[str] = ignore_underscore(_lowerCAmelCase ) return sorted(_lowerCAmelCase , key=_lowerCAmelCase ) + sorted(_lowerCAmelCase , key=_lowerCAmelCase ) + sorted(_lowerCAmelCase , key=_lowerCAmelCase ) def __snake_case( _lowerCAmelCase ) -> int: # This inner function sort imports between [ ]. def _replace(_lowerCAmelCase ): snake_case__ : Union[str, Any] = match.groups()[0] if "," not in imports: return f"[{imports}]" snake_case__ : int = [part.strip().replace("""\"""" , """""" ) for part in imports.split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: snake_case__ : List[str] = keys[:-1] return "[" + ", ".join([f"\"{k}\"" for k in sort_objects(_lowerCAmelCase )] ) + "]" snake_case__ : str = import_statement.split("""\n""" ) if len(_lowerCAmelCase ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. snake_case__ : Dict = 2 if lines[1].strip() == """[""" else 1 snake_case__ : str = [(i, _re_strip_line.search(_lowerCAmelCase ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] snake_case__ : str = sort_objects(_lowerCAmelCase , key=lambda _lowerCAmelCase : x[1] ) snake_case__ : Union[str, Any] = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_lowerCAmelCase ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: snake_case__ : Union[str, Any] = _re_bracket_content.sub(_replace , lines[1] ) else: snake_case__ : List[Any] = [part.strip().replace("""\"""" , """""" ) for part in lines[1].split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: snake_case__ : List[str] = keys[:-1] snake_case__ : int = get_indent(lines[1] ) + """, """.join([f"\"{k}\"" for k in sort_objects(_lowerCAmelCase )] ) return "\n".join(_lowerCAmelCase ) else: # Finally we have to deal with imports fitting on one line snake_case__ : Optional[Any] = _re_bracket_content.sub(_replace , _lowerCAmelCase ) return import_statement def __snake_case( _lowerCAmelCase , _lowerCAmelCase=True ) -> Dict: with open(_lowerCAmelCase , encoding="""utf-8""" ) as f: snake_case__ : Optional[int] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 snake_case__ : Optional[int] = split_code_in_indented_blocks( _lowerCAmelCase , start_prompt="""_import_structure = {""" , end_prompt="""if TYPE_CHECKING:""" ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_lowerCAmelCase ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. snake_case__ : Optional[Any] = main_blocks[block_idx] snake_case__ : Dict = block.split("""\n""" ) # Get to the start of the imports. snake_case__ : Dict = 0 while line_idx < len(_lowerCAmelCase ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: snake_case__ : Union[str, Any] = len(_lowerCAmelCase ) else: line_idx += 1 if line_idx >= len(_lowerCAmelCase ): continue # Ignore beginning and last line: they don't contain anything. snake_case__ : List[str] = """\n""".join(block_lines[line_idx:-1] ) snake_case__ : str = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. snake_case__ : Optional[int] = split_code_in_indented_blocks(_lowerCAmelCase , indent_level=_lowerCAmelCase ) # We have two categories of import key: list or _import_structure[key].append/extend snake_case__ : Tuple = _re_direct_key if """_import_structure = {""" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. snake_case__ : Optional[Any] = [(pattern.search(_lowerCAmelCase ).groups()[0] if pattern.search(_lowerCAmelCase ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. snake_case__ : Dict = [(i, key) for i, key in enumerate(_lowerCAmelCase ) if key is not None] snake_case__ : Union[str, Any] = [x[0] for x in sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. snake_case__ : List[Any] = 0 snake_case__ : Optional[Any] = [] for i in range(len(_lowerCAmelCase ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: snake_case__ : Optional[Any] = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(_lowerCAmelCase ) count += 1 # And we put our main block back together with its first and last line. snake_case__ : Dict = """\n""".join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(_lowerCAmelCase ): if check_only: return True else: print(f"Overwriting {file}." ) with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write("""\n""".join(_lowerCAmelCase ) ) def __snake_case( _lowerCAmelCase=True ) -> Tuple: snake_case__ : str = [] for root, _, files in os.walk(_lowerCAmelCase ): if "__init__.py" in files: snake_case__ : Union[str, Any] = sort_imports(os.path.join(_lowerCAmelCase , """__init__.py""" ) , check_only=_lowerCAmelCase ) if result: snake_case__ : Union[str, Any] = [os.path.join(_lowerCAmelCase , """__init__.py""" )] if len(_lowerCAmelCase ) > 0: raise ValueError(f"Would overwrite {len(_lowerCAmelCase )} files, run `make style`." ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") __a = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
35
0
from typing import TYPE_CHECKING from ...utils import _LazyModule lowercase : int = {'''tokenization_wav2vec2_phoneme''': ['''Wav2Vec2PhonemeCTCTokenizer''']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys lowercase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
36
def lowerCAmelCase__ ( _a : dict ): snake_case_ : List[Any] = set() # edges = list of graph's edges snake_case_ : int = get_edges(_a ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: snake_case_ , snake_case_ : Dict = edges.pop() chosen_vertices.add(_a ) chosen_vertices.add(_a ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(_a ) return chosen_vertices def lowerCAmelCase__ ( _a : dict ): snake_case_ : List[str] = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
36
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : Dict = logging.get_logger(__name__) UpperCAmelCase : Tuple = { """caidas/swin2sr-classicalsr-x2-64""": ( """https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json""" ), } class __lowerCAmelCase ( UpperCamelCase__): _lowercase : Any = """swin2sr""" _lowercase : Tuple = { """hidden_size""": """embed_dim""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self , lowerCAmelCase__=6_4 , lowerCAmelCase__=1 , lowerCAmelCase__=3 , lowerCAmelCase__=1_8_0 , lowerCAmelCase__=[6, 6, 6, 6, 6, 6] , lowerCAmelCase__=[6, 6, 6, 6, 6, 6] , lowerCAmelCase__=8 , lowerCAmelCase__=2.0 , lowerCAmelCase__=True , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.1 , lowerCAmelCase__="gelu" , lowerCAmelCase__=False , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-5 , lowerCAmelCase__=2 , lowerCAmelCase__=1.0 , lowerCAmelCase__="1conv" , lowerCAmelCase__="pixelshuffle" , **lowerCAmelCase__ , ) -> int: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) a__ : Optional[Any] =image_size a__ : Dict =patch_size a__ : Tuple =num_channels a__ : Union[str, Any] =embed_dim a__ : Optional[Any] =depths a__ : List[str] =len(lowerCAmelCase__ ) a__ : Any =num_heads a__ : Any =window_size a__ : str =mlp_ratio a__ : List[str] =qkv_bias a__ : Dict =hidden_dropout_prob a__ : List[str] =attention_probs_dropout_prob a__ : Dict =drop_path_rate a__ : Optional[Any] =hidden_act a__ : Union[str, Any] =use_absolute_embeddings a__ : Optional[Any] =layer_norm_eps a__ : List[Any] =initializer_range a__ : int =upscale a__ : Optional[int] =img_range a__ : Any =resi_connection a__ : Optional[Any] =upsampler
95
from __future__ import annotations from collections.abc import Iterator class UpperCAmelCase_ : '''simple docstring''' def __init__( self : Dict , UpperCamelCase__ : int ) -> None: """simple docstring""" __magic_name__ = value __magic_name__ = None __magic_name__ = None class UpperCAmelCase_ : '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase__ : Node ) -> None: """simple docstring""" __magic_name__ = tree def _lowercase ( self : Optional[Any] , UpperCamelCase__ : Node | None ) -> int: """simple docstring""" if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : int ) -> Iterator[int]: """simple docstring""" yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
88
0
def _UpperCamelCase (a__ :int ): """simple docstring""" UpperCamelCase__ = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def _UpperCamelCase (a__ :int = 100 ): """simple docstring""" UpperCamelCase__ = 1 UpperCamelCase__ = 2 for i in range(2 , max_n + 1 ): UpperCamelCase__ = pre_numerator UpperCamelCase__ = 2 * i // 3 if i % 3 == 0 else 1 UpperCamelCase__ = cur_numerator UpperCamelCase__ = e_cont * pre_numerator + temp return sum_digits(a__ ) if __name__ == "__main__": print(f"""{solution() = }""")
363
import json import os import torch from diffusers import UNetaDModel os.makedirs("hub/hopper-medium-v2/unet/hor32", exist_ok=True) os.makedirs("hub/hopper-medium-v2/unet/hor128", exist_ok=True) os.makedirs("hub/hopper-medium-v2/value_function", exist_ok=True) def _UpperCamelCase (a__ :int ): """simple docstring""" if hor == 128: UpperCamelCase__ = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""") UpperCamelCase__ = (32, 128, 256) UpperCamelCase__ = ("""UpResnetBlock1D""", """UpResnetBlock1D""") elif hor == 32: UpperCamelCase__ = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""") UpperCamelCase__ = (32, 64, 128, 256) UpperCamelCase__ = ("""UpResnetBlock1D""", """UpResnetBlock1D""", """UpResnetBlock1D""") UpperCamelCase__ = torch.load(f"""/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch""" ) UpperCamelCase__ = model.state_dict() UpperCamelCase__ = { """down_block_types""": down_block_types, """block_out_channels""": block_out_channels, """up_block_types""": up_block_types, """layers_per_block""": 1, """use_timestep_embedding""": True, """out_block_type""": """OutConv1DBlock""", """norm_num_groups""": 8, """downsample_each_block""": False, """in_channels""": 14, """out_channels""": 14, """extra_in_channels""": 0, """time_embedding_type""": """positional""", """flip_sin_to_cos""": False, """freq_shift""": 1, """sample_size""": 6_5536, """mid_block_type""": """MidResTemporalBlock1D""", """act_fn""": """mish""", } UpperCamelCase__ = UNetaDModel(**a__ ) print(f"""length of state dict: {len(state_dict.keys() )}""" ) print(f"""length of value function dict: {len(hf_value_function.state_dict().keys() )}""" ) UpperCamelCase__ = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): UpperCamelCase__ = state_dict.pop(a__ ) hf_value_function.load_state_dict(a__ ) torch.save(hf_value_function.state_dict() , f"""hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin""" ) with open(f"""hub/hopper-medium-v2/unet/hor{hor}/config.json""" , """w""" ) as f: json.dump(a__ , a__ ) def _UpperCamelCase (): """simple docstring""" UpperCamelCase__ = { """in_channels""": 14, """down_block_types""": ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D"""), """up_block_types""": (), """out_block_type""": """ValueFunction""", """mid_block_type""": """ValueFunctionMidBlock1D""", """block_out_channels""": (32, 64, 128, 256), """layers_per_block""": 1, """downsample_each_block""": True, """sample_size""": 6_5536, """out_channels""": 14, """extra_in_channels""": 0, """time_embedding_type""": """positional""", """use_timestep_embedding""": True, """flip_sin_to_cos""": False, """freq_shift""": 1, """norm_num_groups""": 8, """act_fn""": """mish""", } UpperCamelCase__ = torch.load("""/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch""" ) UpperCamelCase__ = model UpperCamelCase__ = UNetaDModel(**a__ ) print(f"""length of state dict: {len(state_dict.keys() )}""" ) print(f"""length of value function dict: {len(hf_value_function.state_dict().keys() )}""" ) UpperCamelCase__ = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): UpperCamelCase__ = state_dict.pop(a__ ) hf_value_function.load_state_dict(a__ ) torch.save(hf_value_function.state_dict() , """hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin""" ) with open("""hub/hopper-medium-v2/value_function/config.json""" , """w""" ) as f: json.dump(a__ , a__ ) if __name__ == "__main__": unet(32) # unet(128) value_function()
87
0
"""simple docstring""" import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE_ = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( A__ , unittest.TestCase ): '''simple docstring''' _snake_case = DebertaVaTokenizer _snake_case = DebertaVaTokenizerFast _snake_case = True _snake_case = True def A__ ( self ) -> Optional[Any]: super().setUp() # We have a SentencePiece fixture for testing __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , unk_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def A__ ( self , snake_case_ ) -> List[Any]: __lowerCAmelCase = """this is a test""" __lowerCAmelCase = """this is a test""" return input_text, output_text def A__ ( self ) -> Optional[Any]: __lowerCAmelCase = """<pad>""" __lowerCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def A__ ( self ) -> Any: __lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """[PAD]""" ) self.assertEqual(len(snake_case_ ) , 30_001 ) def A__ ( self ) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 30_000 ) def A__ ( self ) -> int: # fmt: off __lowerCAmelCase = """ \tHeLLo!how \n Are yoU? """ __lowerCAmelCase = ["""▁hello""", """!""", """how""", """▁are""", """▁you""", """?"""] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def A__ ( self ) -> int: pass @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def A__ ( self ) -> Dict: pass def A__ ( self ) -> List[str]: # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Dict: # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Any: # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Tuple: # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Any: # fmt: off __lowerCAmelCase = """ \tHeLLo!how \n Are yoU? """ __lowerCAmelCase = ["""▁""", """<unk>""", """e""", """<unk>""", """o""", """!""", """how""", """▁""", """<unk>""", """re""", """▁yo""", """<unk>""", """?"""] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> int: __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = tokenizer.encode(snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> str: __lowerCAmelCase = """This is a test""" __lowerCAmelCase = [13, 1, 4_398, 25, 21, 1_289] __lowerCAmelCase = ["""▁""", """T""", """his""", """▁is""", """▁a""", """▁test"""] __lowerCAmelCase = ["""▁""", """<unk>""", """his""", """▁is""", """▁a""", """▁test"""] __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , keep_accents=snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , keep_accents=snake_case_ ) __lowerCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = [13, 1, 23, 386, 19, 561, 3_050, 15, 17, 48, 25, 8_256, 18, 1, 9] __lowerCAmelCase = ["""▁""", """I""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """.""", ] __lowerCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on __lowerCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Optional[int]: __lowerCAmelCase = DebertaVaTokenizer(snake_case_ ) __lowerCAmelCase = tokenizer.encode("""sequence builders""" ) __lowerCAmelCase = tokenizer.encode("""multi-sequence build""" ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(snake_case_ ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(snake_case_ , snake_case_ ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , snake_case_ ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , snake_case_ , ) @slow def A__ ( self ) -> int: # fmt: off __lowerCAmelCase = {"""input_ids""": [[1, 39_867, 36, 19_390, 486, 27, 35_052, 81_436, 18, 60_685, 1_225, 7, 35_052, 81_436, 18, 9_367, 16_899, 18, 15_937, 53, 594, 773, 18, 16_287, 30_465, 36, 15_937, 6, 41_139, 38, 36_979, 60_763, 191, 6, 34_132, 99, 6, 50_538, 390, 43_230, 6, 34_132, 2_779, 20_850, 14, 699, 1_072, 1_194, 36, 382, 10_901, 53, 7, 699, 1_072, 2_084, 36, 20_422, 630, 53, 19, 105, 3_049, 1_896, 1_053, 16_899, 1_506, 11, 37_978, 4_243, 7, 1_237, 31_869, 200, 16_566, 654, 6, 35_052, 81_436, 7, 55_630, 13_593, 4, 2], [1, 26, 15_011, 13, 667, 8, 1_053, 18, 23_611, 1_237, 72_356, 12_820, 34, 104_134, 1_209, 35, 13_313, 6_627, 21, 202, 347, 7, 164, 2_399, 11, 46, 4_485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1_232, 2_864, 15_785, 14_951, 105, 5, 8_581, 1_250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name="""microsoft/deberta-v2-xlarge""" , revision="""ad6e42c1532ddf3a15c39246b63f5559d558b670""" , )
301
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} SCREAMING_SNAKE_CASE_ = { '''vocab_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt''' ), '''google/realm-orqa-nq-openqa''': '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-nq-reader''': '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt''', '''google/realm-orqa-wq-openqa''': '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-wq-reader''': '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-openqa''': ( '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-reader''': ( '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-openqa''': ( '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-reader''': ( '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json''' ), }, } SCREAMING_SNAKE_CASE_ = { '''google/realm-cc-news-pretrained-embedder''': 512, '''google/realm-cc-news-pretrained-encoder''': 512, '''google/realm-cc-news-pretrained-scorer''': 512, '''google/realm-cc-news-pretrained-openqa''': 512, '''google/realm-orqa-nq-openqa''': 512, '''google/realm-orqa-nq-reader''': 512, '''google/realm-orqa-wq-openqa''': 512, '''google/realm-orqa-wq-reader''': 512, } SCREAMING_SNAKE_CASE_ = { '''google/realm-cc-news-pretrained-embedder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-encoder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-scorer''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-reader''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-reader''': {'''do_lower_case''': True}, } class lowerCAmelCase_ ( A__ ): '''simple docstring''' _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_INIT_CONFIGURATION _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = RealmTokenizer def __init__( self , snake_case_=None , snake_case_=None , snake_case_=True , snake_case_="[UNK]" , snake_case_="[SEP]" , snake_case_="[PAD]" , snake_case_="[CLS]" , snake_case_="[MASK]" , snake_case_=True , snake_case_=None , **snake_case_ , ) -> Optional[int]: super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , ) __lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , snake_case_ ) != do_lower_case or normalizer_state.get("""strip_accents""" , snake_case_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , snake_case_ ) != tokenize_chinese_chars ): __lowerCAmelCase = getattr(snake_case_ , normalizer_state.pop("""type""" ) ) __lowerCAmelCase = do_lower_case __lowerCAmelCase = strip_accents __lowerCAmelCase = tokenize_chinese_chars __lowerCAmelCase = normalizer_class(**snake_case_ ) __lowerCAmelCase = do_lower_case def A__ ( self , snake_case_ , **snake_case_ ) -> Tuple: __lowerCAmelCase = PaddingStrategy.MAX_LENGTH __lowerCAmelCase = text __lowerCAmelCase = kwargs.pop("""text_pair""" , snake_case_ ) __lowerCAmelCase = kwargs.pop("""return_tensors""" , snake_case_ ) __lowerCAmelCase = { """input_ids""": [], """attention_mask""": [], """token_type_ids""": [], } for idx, candidate_text in enumerate(snake_case_ ): if batch_text_pair is not None: __lowerCAmelCase = batch_text_pair[idx] else: __lowerCAmelCase = None __lowerCAmelCase = super().__call__(snake_case_ , snake_case_ , return_tensors=snake_case_ , **snake_case_ ) __lowerCAmelCase = encoded_candidates.get("""input_ids""" ) __lowerCAmelCase = encoded_candidates.get("""attention_mask""" ) __lowerCAmelCase = encoded_candidates.get("""token_type_ids""" ) if encoded_input_ids is not None: output_data["input_ids"].append(snake_case_ ) if encoded_attention_mask is not None: output_data["attention_mask"].append(snake_case_ ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(snake_case_ ) __lowerCAmelCase = {key: item for key, item in output_data.items() if len(snake_case_ ) != 0} return BatchEncoding(snake_case_ , tensor_type=snake_case_ ) def A__ ( self , snake_case_ , snake_case_=None ) -> Optional[int]: __lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A__ ( self , snake_case_ , snake_case_ = None ) -> List[int]: __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]: __lowerCAmelCase = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ )
301
1
def UpperCAmelCase_ ( ) -> int: return 1 def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> int: return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> int: return 0 if x < 0 else five_pence(x - 5 ) + two_pence(__UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> int: return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(__UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> int: return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(__UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> int: return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(__UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> int: return 0 if x < 0 else one_pound(x - 1_00 ) + fifty_pence(__UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> int: return 0 if x < 0 else two_pound(x - 2_00 ) + one_pound(__UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : int = 2_00 ) -> int: return two_pound(__UpperCAmelCase ) if __name__ == "__main__": print(solution(int(input().strip())))
210
def UpperCAmelCase_ ( __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Union[str, Any] ) -> List[str]: SCREAMING_SNAKE_CASE_ = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : int , __UpperCAmelCase : Tuple ) -> int: SCREAMING_SNAKE_CASE_ = 0 while b > 0: if b & 1: SCREAMING_SNAKE_CASE_ = ((res % c) + (a % c)) % c a += a b >>= 1 return res
210
1
'''simple docstring''' import collections import importlib.util import os import re from pathlib import Path __A : str = "src/transformers" # Matches is_xxx_available() __A : str = re.compile(R"is\_([a-z_]*)_available()") # Catches a one-line _import_struct = {xxx} __A : int = re.compile(R"^_import_structure\s+=\s+\{([^\}]+)\}") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] __A : Tuple = re.compile(R"\s+\"\S*\":\s+\[([^\]]*)\]") # Catches a line if not is_foo_available __A : Optional[Any] = re.compile(R"^\s*if\s+not\s+is\_[a-z_]*\_available\(\)") # Catches a line _import_struct["bla"].append("foo") __A : Tuple = re.compile(R"^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] __A : Union[str, Any] = re.compile(R"^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]") # Catches a line with an object between quotes and a comma: "MyModel", __A : Tuple = re.compile("^\s+\"([^\"]+)\",") # Catches a line with objects between brackets only: ["foo", "bar"], __A : int = re.compile("^\s+\[([^\]]+)\]") # Catches a line with from foo import bar, bla, boo __A : Optional[Any] = re.compile(R"\s+from\s+\S*\s+import\s+([^\(\s].*)\n") # Catches a line with try: __A : List[Any] = re.compile(R"^\s*try:") # Catches a line with else: __A : Any = re.compile(R"^\s*else:") def UpperCamelCase_ ( A__ : Optional[int] ): '''simple docstring''' if _re_test_backend.search(A__ ) is None: return None lowerCAmelCase_ : List[Any] = [b[0] for b in _re_backend.findall(A__ )] backends.sort() return "_and_".join(A__ ) def UpperCamelCase_ ( A__ : List[Any] ): '''simple docstring''' with open(A__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowerCAmelCase_ : Any = f.readlines() lowerCAmelCase_ : Optional[int] = 0 while line_index < len(A__ ) and not lines[line_index].startswith("""_import_structure = {""" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(A__ ): return None # First grab the objects without a specific backend in _import_structure lowerCAmelCase_ : List[Any] = [] while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None: lowerCAmelCase_ : List[str] = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(A__ ): lowerCAmelCase_ : Union[str, Any] = _re_one_line_import_struct.search(A__ ).groups()[0] lowerCAmelCase_ : Optional[Any] = re.findall("""\[([^\]]+)\]""" , A__ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(""", """ )] ) line_index += 1 continue lowerCAmelCase_ : Optional[int] = _re_import_struct_key_value.search(A__ ) if single_line_import_search is not None: lowerCAmelCase_ : Optional[Any] = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(A__ ) > 0] objects.extend(A__ ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) line_index += 1 lowerCAmelCase_ : Union[str, Any] = {"""none""": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("""if TYPE_CHECKING""" ): # If the line is an if not is_backend_available, we grab all objects associated. lowerCAmelCase_ : Any = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase_ : int = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase_ : Optional[Any] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ): lowerCAmelCase_ : List[str] = lines[line_index] if _re_import_struct_add_one.search(A__ ) is not None: objects.append(_re_import_struct_add_one.search(A__ ).groups()[0] ) elif _re_import_struct_add_many.search(A__ ) is not None: lowerCAmelCase_ : str = _re_import_struct_add_many.search(A__ ).groups()[0].split(""", """ ) lowerCAmelCase_ : Optional[Any] = [obj[1:-1] for obj in imports if len(A__ ) > 0] objects.extend(A__ ) elif _re_between_brackets.search(A__ ) is not None: lowerCAmelCase_ : List[str] = _re_between_brackets.search(A__ ).groups()[0].split(""", """ ) lowerCAmelCase_ : List[Any] = [obj[1:-1] for obj in imports if len(A__ ) > 0] objects.extend(A__ ) elif _re_quote_object.search(A__ ) is not None: objects.append(_re_quote_object.search(A__ ).groups()[0] ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) elif line.startswith(""" """ * 12 + """\"""" ): objects.append(line[13:-3] ) line_index += 1 lowerCAmelCase_ : Union[str, Any] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowerCAmelCase_ : Optional[Any] = [] while ( line_index < len(A__ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("""else""" ) ): lowerCAmelCase_ : int = lines[line_index] lowerCAmelCase_ : Tuple = _re_import.search(A__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 lowerCAmelCase_ : List[str] = {"""none""": objects} # Let's continue with backend-specific objects while line_index < len(A__ ): # If the line is an if is_backend_available, we grab all objects associated. lowerCAmelCase_ : Dict = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase_ : Any = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase_ : Union[str, Any] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ): lowerCAmelCase_ : Tuple = lines[line_index] lowerCAmelCase_ : List[Any] = _re_import.search(A__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 12 ): objects.append(line[12:-2] ) line_index += 1 lowerCAmelCase_ : Any = objects else: line_index += 1 return import_dict_objects, type_hint_objects def UpperCamelCase_ ( A__ : Union[str, Any] , A__ : Tuple ): '''simple docstring''' def find_duplicates(A__ : str ): return [k for k, v in collections.Counter(A__ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowerCAmelCase_ : Optional[Any] = [] for key in import_dict_objects.keys(): lowerCAmelCase_ : Tuple = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f'Duplicate _import_structure definitions for: {duplicate_imports}' ) lowerCAmelCase_ : List[str] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f'Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowerCAmelCase_ : Union[str, Any] = """base imports""" if key == """none""" else f'{key} backend' errors.append(f'Differences for {name}:' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f' {a} in TYPE_HINT but not in _import_structure.' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f' {a} in _import_structure but not in TYPE_HINT.' ) return errors def UpperCamelCase_ ( ): '''simple docstring''' lowerCAmelCase_ : Tuple = [] for root, _, files in os.walk(A__ ): if "__init__.py" in files: lowerCAmelCase_ : Optional[Any] = os.path.join(A__ , """__init__.py""" ) lowerCAmelCase_ : Any = parse_init(A__ ) if objects is not None: lowerCAmelCase_ : Optional[int] = analyze_results(*A__ ) if len(A__ ) > 0: lowerCAmelCase_ : Tuple = f'Problem in {fname}, both halves do not define the same objects.\n{errors[0]}' failures.append("""\n""".join(A__ ) ) if len(A__ ) > 0: raise ValueError("""\n\n""".join(A__ ) ) def UpperCamelCase_ ( ): '''simple docstring''' lowerCAmelCase_ : Dict = [] for path, directories, files in os.walk(A__ ): for folder in directories: # Ignore private modules if folder.startswith("""_""" ): directories.remove(A__ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(A__ ) / folder).glob("""*.py""" ) ) ) == 0: continue lowerCAmelCase_ : Dict = str((Path(A__ ) / folder).relative_to(A__ ) ) lowerCAmelCase_ : int = short_path.replace(os.path.sep , """.""" ) submodules.append(A__ ) for fname in files: if fname == "__init__.py": continue lowerCAmelCase_ : Optional[Any] = str((Path(A__ ) / fname).relative_to(A__ ) ) lowerCAmelCase_ : Dict = short_path.replace(""".py""" , """""" ).replace(os.path.sep , """.""" ) if len(submodule.split(""".""" ) ) == 1: submodules.append(A__ ) return submodules __A : Any = [ "convert_pytorch_checkpoint_to_tf2", "modeling_flax_pytorch_utils", ] def UpperCamelCase_ ( ): '''simple docstring''' lowerCAmelCase_ : Optional[int] = importlib.util.spec_from_file_location( """transformers""" , os.path.join(A__ , """__init__.py""" ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) lowerCAmelCase_ : Optional[Any] = spec.loader.load_module() lowerCAmelCase_ : str = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(A__ ) > 0: lowerCAmelCase_ : Optional[Any] = """\n""".join(f'- {module}' for module in module_not_registered ) raise ValueError( """The following submodules are not properly registered in the main init of Transformers:\n""" f'{list_of_modules}\n' """Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" ) if __name__ == "__main__": check_all_inits() check_submodules()
120
'''simple docstring''' def UpperCamelCase_ ( A__ : str , A__ : list[str] ): '''simple docstring''' lowerCAmelCase_ : Dict = """""" for word_or_phrase in separated: if not isinstance(A__ , A__ ): raise Exception("""join() accepts only strings to be joined""" ) joined += word_or_phrase + separator return joined.strip(A__ ) if __name__ == "__main__": from doctest import testmod testmod()
120
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _A = logging.get_logger(__name__) _A = '''▁''' _A = {'''vocab_file''': '''sentencepiece.bpe.model'''} _A = { '''vocab_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model''' ), } } _A = { '''facebook/nllb-200-distilled-600M''': 10_24, } # fmt: off _A = ['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn'''] class lowerCamelCase ( lowerCamelCase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = ['''input_ids''', '''attention_mask'''] SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] def __init__(self , _lowerCamelCase , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<mask>" , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase = None , _lowerCamelCase=None , _lowerCamelCase=False , **_lowerCamelCase , ): """simple docstring""" UpperCAmelCase__ : List[str] = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else mask_token UpperCAmelCase__ : Dict = {} if sp_model_kwargs is None else sp_model_kwargs UpperCAmelCase__ : List[Any] = legacy_behaviour super().__init__( bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , tokenizer_file=__snake_case , src_lang=__snake_case , tgt_lang=__snake_case , additional_special_tokens=__snake_case , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=__snake_case , **__snake_case , ) UpperCAmelCase__ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__snake_case ) ) UpperCAmelCase__ : str = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token UpperCAmelCase__ : List[str] = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCAmelCase__ : List[str] = 1 UpperCAmelCase__ : int = len(self.sp_model ) UpperCAmelCase__ : Union[str, Any] = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__snake_case ) } UpperCAmelCase__ : Dict = {v: k for k, v in self.lang_code_to_id.items()} UpperCAmelCase__ : Optional[Any] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) UpperCAmelCase__ : Any = {v: k for k, v in self.fairseq_tokens_to_ids.items()} UpperCAmelCase__ : Optional[int] = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) UpperCAmelCase__ : Any = src_lang if src_lang is not None else """eng_Latn""" UpperCAmelCase__ : str = self.lang_code_to_id[self._src_lang] UpperCAmelCase__ : str = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__(self ): """simple docstring""" UpperCAmelCase__ : Tuple = self.__dict__.copy() UpperCAmelCase__ : List[str] = None UpperCAmelCase__ : Dict = self.sp_model.serialized_model_proto() return state def __setstate__(self , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Dict = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): UpperCAmelCase__ : Optional[int] = {} UpperCAmelCase__ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def _a (self ): """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def _a (self ): """simple docstring""" return self._src_lang @src_lang.setter def _a (self , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Optional[int] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _a (self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case ) UpperCAmelCase__ : Optional[Any] = [1] * len(self.prefix_tokens ) UpperCAmelCase__ : Tuple = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__snake_case )) + suffix_ones return prefix_ones + ([0] * len(__snake_case )) + ([0] * len(__snake_case )) + suffix_ones def _a (self , _lowerCamelCase , _lowerCamelCase = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _a (self , _lowerCamelCase , _lowerCamelCase = None ): """simple docstring""" UpperCAmelCase__ : List[Any] = [self.sep_token_id] UpperCAmelCase__ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) UpperCAmelCase__ : List[Any] = src_lang UpperCAmelCase__ : Optional[Any] = self(__snake_case , add_special_tokens=__snake_case , return_tensors=__snake_case , **__snake_case ) UpperCAmelCase__ : int = self.convert_tokens_to_ids(__snake_case ) UpperCAmelCase__ : List[str] = tgt_lang_id return inputs def _a (self ): """simple docstring""" UpperCAmelCase__ : Dict = {self.convert_ids_to_tokens(__snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _a (self , _lowerCamelCase ): """simple docstring""" return self.sp_model.encode(__snake_case , out_type=__snake_case ) def _a (self , _lowerCamelCase ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase__ : Tuple = self.sp_model.PieceToId(__snake_case ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _a (self , _lowerCamelCase ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _a (self , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Any = """""".join(__snake_case ).replace(__snake_case , """ """ ).strip() return out_string def _a (self , _lowerCamelCase , _lowerCamelCase = None ): """simple docstring""" if not os.path.isdir(__snake_case ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase__ : Any = os.path.join( __snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __snake_case ) elif not os.path.isfile(self.vocab_file ): with open(__snake_case , """wb""" ) as fi: UpperCAmelCase__ : Dict = self.sp_model.serialized_model_proto() fi.write(__snake_case ) return (out_vocab_file,) def _a (self , _lowerCamelCase , _lowerCamelCase = "eng_Latn" , _lowerCamelCase = None , _lowerCamelCase = "fra_Latn" , **_lowerCamelCase , ): """simple docstring""" UpperCAmelCase__ : int = src_lang UpperCAmelCase__ : Optional[int] = tgt_lang return super().prepare_seqaseq_batch(__snake_case , __snake_case , **__snake_case ) def _a (self ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def _a (self ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _a (self , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = self.lang_code_to_id[src_lang] if self.legacy_behaviour: UpperCAmelCase__ : Dict = [] UpperCAmelCase__ : Dict = [self.eos_token_id, self.cur_lang_code] else: UpperCAmelCase__ : Dict = [self.cur_lang_code] UpperCAmelCase__ : List[str] = [self.eos_token_id] def _a (self , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Optional[int] = self.lang_code_to_id[lang] if self.legacy_behaviour: UpperCAmelCase__ : List[Any] = [] UpperCAmelCase__ : str = [self.eos_token_id, self.cur_lang_code] else: UpperCAmelCase__ : List[str] = [self.cur_lang_code] UpperCAmelCase__ : int = [self.eos_token_id]
371
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: _A = None _A = logging.get_logger(__name__) _A = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} _A = { """vocab_file""": { """google/fnet-base""": """https://huggingface.co/google/fnet-base/resolve/main/spiece.model""", """google/fnet-large""": """https://huggingface.co/google/fnet-large/resolve/main/spiece.model""", }, """tokenizer_file""": { """google/fnet-base""": """https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json""", """google/fnet-large""": """https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json""", }, } _A = { """google/fnet-base""": 5_12, """google/fnet-large""": 5_12, } _A = """▁""" class lowerCamelCase ( lowerCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = ['input_ids', 'token_type_ids'] SCREAMING_SNAKE_CASE = FNetTokenizer def __init__(self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase="<unk>" , _lowerCamelCase="[SEP]" , _lowerCamelCase="<pad>" , _lowerCamelCase="[CLS]" , _lowerCamelCase="[MASK]" , **_lowerCamelCase , ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = ( AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase , normalized=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else mask_token ) super().__init__( _lowerCamelCase , tokenizer_file=_lowerCamelCase , do_lower_case=_lowerCamelCase , remove_space=_lowerCamelCase , keep_accents=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , **_lowerCamelCase , ) UpperCAmelCase__ : Optional[int] = do_lower_case UpperCAmelCase__ : List[str] = remove_space UpperCAmelCase__ : Optional[Any] = keep_accents UpperCAmelCase__ : List[str] = vocab_file UpperCAmelCase__ : Optional[int] = False if not self.vocab_file else True def _a (self , _lowerCamelCase , _lowerCamelCase = None ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = [self.sep_token_id] UpperCAmelCase__ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _a (self , _lowerCamelCase , _lowerCamelCase = None ): """simple docstring""" UpperCAmelCase__ : List[str] = [self.sep_token_id] UpperCAmelCase__ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _a (self , _lowerCamelCase , _lowerCamelCase = None ): """simple docstring""" if not os.path.isdir(_lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase__ : List[str] = os.path.join( _lowerCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ): copyfile(self.vocab_file , _lowerCamelCase ) return (out_vocab_file,)
166
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _lowerCamelCase : List[str] = { 'configuration_tapas': ['TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TapasConfig'], 'tokenization_tapas': ['TapasTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[int] = [ 'TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TapasForMaskedLM', 'TapasForQuestionAnswering', 'TapasForSequenceClassification', 'TapasModel', 'TapasPreTrainedModel', 'load_tf_weights_in_tapas', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Dict = [ 'TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFTapasForMaskedLM', 'TFTapasForQuestionAnswering', 'TFTapasForSequenceClassification', 'TFTapasModel', 'TFTapasPreTrainedModel', ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys _lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
258
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) @add_end_docstrings(A__ ) class __UpperCAmelCase ( A__ ): '''simple docstring''' def __init__(self : Tuple , *_lowerCAmelCase : List[str] , **_lowerCAmelCase : List[str] ): super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def A (self : Any , _lowerCAmelCase : str=None ): A = {} if top_k is not None: A = top_k return {}, {}, postprocess_params def __call__(self : str , _lowerCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_lowerCAmelCase : int ): return super().__call__(_lowerCAmelCase , **_lowerCAmelCase ) def A (self : List[str] , _lowerCAmelCase : List[Any] ): A = load_image(_lowerCAmelCase ) A = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) return model_inputs def A (self : Union[str, Any] , _lowerCAmelCase : Optional[int] ): A = self.model(**_lowerCAmelCase ) return model_outputs def A (self : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int=5 ): if top_k > self.model.config.num_labels: A = self.model.config.num_labels if self.framework == "pt": A = model_outputs.logits.softmax(-1 )[0] A , A = probs.topk(_lowerCAmelCase ) elif self.framework == "tf": A = stable_softmax(model_outputs.logits , axis=-1 )[0] A = tf.math.top_k(_lowerCAmelCase , k=_lowerCAmelCase ) A , A = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(F"""Unsupported framework: {self.framework}""" ) A = scores.tolist() A = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_lowerCAmelCase , _lowerCAmelCase )]
258
1
"""simple docstring""" import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers _UpperCAmelCase = 'python tqdm regex requests packaging filelock numpy tokenizers'.split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append('dataclasses') if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append('importlib_metadata') for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_=None ) -> List[Any]: require_version(deps[pkg] , UpperCamelCase_ )
369
import re from filelock import FileLock try: import nltk _UpperCAmelCase = True except (ImportError, ModuleNotFoundError): _UpperCAmelCase = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def lowerCAmelCase_ ( UpperCamelCase_ ) -> str: re.sub("<n>" , "" , UpperCamelCase_ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(UpperCamelCase_ ) )
328
0
'''simple docstring''' a_ = [0, 2, 4, 6, 8] a_ = [1, 3, 5, 7, 9] def _a( UpperCamelCase__ : int, UpperCamelCase__ : int, UpperCamelCase__ : list[int], UpperCamelCase__ : int ): '''simple docstring''' if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1, -1, -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 1_0 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 SCREAMING_SNAKE_CASE__ : List[str] =0 for digit in range(1_0 ): SCREAMING_SNAKE_CASE__ : Dict =digit result += reversible_numbers( 0, (remainder + 2 * digit) // 1_0, UpperCamelCase__, UpperCamelCase__ ) return result SCREAMING_SNAKE_CASE__ : Union[str, Any] =0 for digita in range(1_0 ): SCREAMING_SNAKE_CASE__ : str =digita if (remainder + digita) % 2 == 0: SCREAMING_SNAKE_CASE__ : Any =ODD_DIGITS else: SCREAMING_SNAKE_CASE__ : Any =EVEN_DIGITS for digita in other_parity_digits: SCREAMING_SNAKE_CASE__ : List[str] =digita result += reversible_numbers( remaining_length - 2, (remainder + digita + digita) // 1_0, UpperCamelCase__, UpperCamelCase__, ) return result def _a( UpperCamelCase__ : int = 9 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int =0 for length in range(1, max_power + 1 ): result += reversible_numbers(UpperCamelCase__, 0, [0] * length, UpperCamelCase__ ) return result if __name__ == "__main__": print(F'''{solution() = }''')
152
'''simple docstring''' from __future__ import annotations def _a( UpperCamelCase__ : list[int] ): '''simple docstring''' if not nums: return 0 SCREAMING_SNAKE_CASE__ : Dict =nums[0] SCREAMING_SNAKE_CASE__ : Optional[int] =0 for num in nums[1:]: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict =( max_excluding + num, max(UpperCamelCase__, UpperCamelCase__ ), ) return max(UpperCamelCase__, UpperCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
152
1
'''simple docstring''' from collections.abc import Iterable from typing import Any class a : def __init__( self , __magic_name__ = None ) -> int: _a = value _a = None # Added in order to delete a node easier _a = None _a = None def __repr__( self ) -> str: from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({f'{self.value}': (self.left, self.right)} , indent=1 ) class a : def __init__( self , __magic_name__ = None ) -> Tuple: _a = root def __str__( self ) -> str: return str(self.root ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> None: if new_children is not None: # reset its kids _a = node.parent if node.parent is not None: # reset its parent if self.is_right(__magic_name__ ): # If it is the right children _a = new_children else: _a = new_children else: _a = new_children def __UpperCAmelCase ( self , __magic_name__ ) -> bool: if node.parent and node.parent.right: return node == node.parent.right return False def __UpperCAmelCase ( self ) -> bool: return self.root is None def __UpperCAmelCase ( self , __magic_name__ ) -> None: _a = Node(__magic_name__ ) # create a new Node if self.empty(): # if Tree is empty _a = new_node # set its root else: # Tree is not empty _a = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: _a = new_node # We insert the new node in a leaf break else: _a = parent_node.left else: if parent_node.right is None: _a = new_node break else: _a = parent_node.right _a = parent_node def __UpperCAmelCase ( self , *__magic_name__ ) -> None: for value in values: self.__insert(__magic_name__ ) def __UpperCAmelCase ( self , __magic_name__ ) -> Node | None: if self.empty(): raise IndexError('Warning: Tree is empty! please use another.' ) else: _a = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: _a = node.left if value < node.value else node.right return node def __UpperCAmelCase ( self , __magic_name__ = None ) -> Node | None: if node is None: if self.root is None: return None _a = self.root if not self.empty(): while node.right is not None: _a = node.right return node def __UpperCAmelCase ( self , __magic_name__ = None ) -> Node | None: if node is None: _a = self.root if self.root is None: return None if not self.empty(): _a = self.root while node.left is not None: _a = node.left return node def __UpperCAmelCase ( self , __magic_name__ ) -> None: _a = self.search(__magic_name__ ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(__magic_name__ , __magic_name__ ) elif node.left is None: # Has only right children self.__reassign_nodes(__magic_name__ , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(__magic_name__ , node.left ) else: _a = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore _a = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def __UpperCAmelCase ( self , __magic_name__ ) -> Iterable: if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def __UpperCAmelCase ( self , __magic_name__=None ) -> Any: if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> None: if node: self.inorder(__magic_name__ , node.left ) arr.append(node.value ) self.inorder(__magic_name__ , node.right ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> int: _a = [] self.inorder(__magic_name__ , __magic_name__ ) # append all values to list using inorder traversal return arr[k - 1] def _A (lowerCAmelCase__ :Node | None ) -> list[Node]: '''simple docstring''' _a = [] if curr_node is not None: _a = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def _A () -> None: '''simple docstring''' _a = (8, 3, 6, 1, 10, 14, 13, 4, 7) _a = BinarySearchTree() for i in testlist: t.insert(lowerCAmelCase__ ) # Prints all the elements of the list in order traversal print(lowerCAmelCase__ ) if t.search(6 ) is not None: print('The value 6 exists' ) else: print('The value 6 doesn\'t exist' ) if t.search(-1 ) is not None: print('The value -1 exists' ) else: print('The value -1 doesn\'t exist' ) if not t.empty(): print('Max Value: ' , t.get_max().value ) # type: ignore print('Min Value: ' , t.get_min().value ) # type: ignore for i in testlist: t.remove(lowerCAmelCase__ ) print(lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
369
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a_ : Union[str, Any] = logging.get_logger(__name__) a_ : Union[str, Any] = {"vocab_file": "spiece.model"} a_ : List[Any] = { "vocab_file": { "bert_for_seq_generation": ( "https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model" ), } } a_ : Dict = {"bert_for_seq_generation": 5_1_2} class a ( _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = [] _lowerCAmelCase = ["""input_ids""", """attention_mask"""] def __init__( self , __magic_name__ , __magic_name__="<s>" , __magic_name__="</s>" , __magic_name__="<unk>" , __magic_name__="<pad>" , __magic_name__="<::::>" , __magic_name__ = None , **__magic_name__ , ) -> None: _a = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=__magic_name__ , eos_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , sep_token=__magic_name__ , sp_model_kwargs=self.sp_model_kwargs , **__magic_name__ , ) _a = vocab_file _a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__magic_name__ ) @property def __UpperCAmelCase ( self ) -> Dict: return self.sp_model.get_piece_size() def __UpperCAmelCase ( self ) -> str: _a = {self.convert_ids_to_tokens(__magic_name__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Any: _a = self.__dict__.copy() _a = None return state def __setstate__( self , __magic_name__ ) -> int: _a = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): _a = {} _a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __UpperCAmelCase ( self , __magic_name__ ) -> List[str]: return self.sp_model.encode(__magic_name__ , out_type=__magic_name__ ) def __UpperCAmelCase ( self , __magic_name__ ) -> List[str]: return self.sp_model.piece_to_id(__magic_name__ ) def __UpperCAmelCase ( self , __magic_name__ ) -> List[str]: _a = self.sp_model.IdToPiece(__magic_name__ ) return token def __UpperCAmelCase ( self , __magic_name__ ) -> Optional[Any]: _a = [] _a = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__magic_name__ ) + token _a = [] else: current_sub_tokens.append(__magic_name__ ) out_string += self.sp_model.decode(__magic_name__ ) return out_string.strip() def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ = None ) -> Tuple[str]: if not os.path.isdir(__magic_name__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _a = os.path.join( __magic_name__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__magic_name__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __magic_name__ ) elif not os.path.isfile(self.vocab_file ): with open(__magic_name__ , 'wb' ) as fi: _a = self.sp_model.serialized_model_proto() fi.write(__magic_name__ ) return (out_vocab_file,)
104
0
from __future__ import annotations def lowerCAmelCase_ ( __A = 4 ) -> list[list[int]]: '''simple docstring''' UpperCAmelCase__ = abs(__A ) or 4 return [[1 + x + y * row_size for x in range(__A )] for y in range(__A )] def lowerCAmelCase_ ( __A ) -> list[list[int]]: '''simple docstring''' return reverse_row(transpose(__A ) ) # OR.. transpose(reverse_column(matrix)) def lowerCAmelCase_ ( __A ) -> list[list[int]]: '''simple docstring''' return reverse_row(reverse_column(__A ) ) # OR.. reverse_column(reverse_row(matrix)) def lowerCAmelCase_ ( __A ) -> list[list[int]]: '''simple docstring''' return reverse_column(transpose(__A ) ) # OR.. transpose(reverse_row(matrix)) def lowerCAmelCase_ ( __A ) -> list[list[int]]: '''simple docstring''' UpperCAmelCase__ = [list(__A ) for x in zip(*__A )] return matrix def lowerCAmelCase_ ( __A ) -> list[list[int]]: '''simple docstring''' UpperCAmelCase__ = matrix[::-1] return matrix def lowerCAmelCase_ ( __A ) -> list[list[int]]: '''simple docstring''' UpperCAmelCase__ = [x[::-1] for x in matrix] return matrix def lowerCAmelCase_ ( __A ) -> None: '''simple docstring''' for i in matrix: print(*__A ) if __name__ == "__main__": UpperCamelCase__ = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 90 counterclockwise:\n') print_matrix(rotate_aa(matrix)) UpperCamelCase__ = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 180:\n') print_matrix(rotate_aaa(matrix)) UpperCamelCase__ = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 270 counterclockwise:\n') print_matrix(rotate_aaa(matrix))
65
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process _snake_case = logging.getLogger(__name__) _snake_case = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) _snake_case = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _snake_case : lowerCamelCase__: Optional[str] = field( default=_lowercase , metadata={ "help": ( "The model checkpoint for weights initialization.Don't set if you want to train a model from scratch." ) } , ) lowerCamelCase__: Optional[str] = field( default=_lowercase , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(_lowercase )} , ) lowerCamelCase__: Optional[str] = field( default=_lowercase , metadata={ "help": ( "Override some existing default config settings when a model is trained from scratch. Example: " "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" ) } , ) lowerCamelCase__: Optional[str] = field( default=_lowercase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCamelCase__: Optional[str] = field( default=_lowercase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) lowerCamelCase__: Optional[str] = field( default=_lowercase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) lowerCamelCase__: bool = field( default=_lowercase , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) lowerCamelCase__: str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) lowerCamelCase__: bool = field( default=_lowercase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) def _lowerCamelCase ( self: str ) -> Tuple: if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( "--config_overrides can't be used in combination with --config_name or --model_name_or_path" ) @dataclass class _snake_case : lowerCamelCase__: Optional[str] = field( default=_lowercase , metadata={"help": "The name of the dataset to use (via the datasets library)."} ) lowerCamelCase__: Optional[str] = field( default=_lowercase , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) lowerCamelCase__: Optional[str] = field(default=_lowercase , metadata={"help": "The input training data file (a text file)."} ) lowerCamelCase__: Optional[str] = field( default=_lowercase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) lowerCamelCase__: Optional[str] = field( default=_lowercase , metadata={"help": "An optional input train ref data file for whole word masking in Chinese."} , ) lowerCamelCase__: Optional[str] = field( default=_lowercase , metadata={"help": "An optional input validation ref data file for whole word masking in Chinese."} , ) lowerCamelCase__: bool = field( default=_lowercase , metadata={"help": "Overwrite the cached training and evaluation sets"} ) lowerCamelCase__: Optional[int] = field( default=5 , metadata={ "help": "The percentage of the train set used as validation set in case there's no validation split" } , ) lowerCamelCase__: Optional[int] = field( default=_lowercase , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated. Default to the max input length of the model." ) } , ) lowerCamelCase__: Optional[int] = field( default=_lowercase , metadata={"help": "The number of processes to use for the preprocessing."} , ) lowerCamelCase__: float = field( default=0.15 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} ) lowerCamelCase__: bool = field( default=_lowercase , metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } , ) def _lowerCamelCase ( self: Any ) -> Tuple: if self.train_file is not None: __UpperCAmelCase : Optional[int] = self.train_file.split("." )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: __UpperCAmelCase : str = self.validation_file.split("." )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def _UpperCamelCase ( snake_case__, snake_case__ ) -> Optional[int]: with open(snake_case__, "r", encoding="utf-8" ) as f: __UpperCAmelCase : List[str] = [json.loads(snake_case__ ) for line in f.read().splitlines() if (len(snake_case__ ) > 0 and not line.isspace())] assert len(snake_case__ ) == len(snake_case__ ) __UpperCAmelCase : Optional[int] = {c: dataset[c] for c in dataset.column_names} __UpperCAmelCase : Any = refs return Dataset.from_dict(snake_case__ ) def _UpperCamelCase ( ) -> str: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __UpperCAmelCase : Optional[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = parser.parse_args_into_dataclasses() # Detecting last checkpoint. __UpperCAmelCase : int = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __UpperCAmelCase : List[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout )], ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s", snake_case__ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __UpperCAmelCase : Optional[Any] = load_dataset(data_args.dataset_name, data_args.dataset_config_name ) if "validation" not in datasets.keys(): __UpperCAmelCase : Dict = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=f'''train[:{data_args.validation_split_percentage}%]''', ) __UpperCAmelCase : List[str] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=f'''train[{data_args.validation_split_percentage}%:]''', ) else: __UpperCAmelCase : List[Any] = {} if data_args.train_file is not None: __UpperCAmelCase : Optional[int] = data_args.train_file if data_args.validation_file is not None: __UpperCAmelCase : List[str] = data_args.validation_file __UpperCAmelCase : Tuple = data_args.train_file.split("." )[-1] if extension == "txt": __UpperCAmelCase : str = "text" __UpperCAmelCase : List[Any] = load_dataset(snake_case__, data_files=snake_case__ ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCAmelCase : Tuple = { "cache_dir": model_args.cache_dir, "revision": model_args.model_revision, "use_auth_token": True if model_args.use_auth_token else None, } if model_args.config_name: __UpperCAmelCase : Any = AutoConfig.from_pretrained(model_args.config_name, **snake_case__ ) elif model_args.model_name_or_path: __UpperCAmelCase : int = AutoConfig.from_pretrained(model_args.model_name_or_path, **snake_case__ ) else: __UpperCAmelCase : str = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch." ) if model_args.config_overrides is not None: logger.info(f'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(f'''New config: {config}''' ) __UpperCAmelCase : List[Any] = { "cache_dir": model_args.cache_dir, "use_fast": model_args.use_fast_tokenizer, "revision": model_args.model_revision, "use_auth_token": True if model_args.use_auth_token else None, } if model_args.tokenizer_name: __UpperCAmelCase : List[str] = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **snake_case__ ) elif model_args.model_name_or_path: __UpperCAmelCase : Optional[int] = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **snake_case__ ) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script." "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) if model_args.model_name_or_path: __UpperCAmelCase : int = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path ), config=snake_case__, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) else: logger.info("Training new model from scratch" ) __UpperCAmelCase : Any = AutoModelForMaskedLM.from_config(snake_case__ ) model.resize_token_embeddings(len(snake_case__ ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: __UpperCAmelCase : List[str] = datasets["train"].column_names else: __UpperCAmelCase : Union[str, Any] = datasets["validation"].column_names __UpperCAmelCase : Union[str, Any] = "text" if "text" in column_names else column_names[0] __UpperCAmelCase : Any = "max_length" if data_args.pad_to_max_length else False def tokenize_function(snake_case__ ): # Remove empty lines __UpperCAmelCase : Any = [line for line in examples["text"] if len(snake_case__ ) > 0 and not line.isspace()] return tokenizer(examples["text"], padding=snake_case__, truncation=snake_case__, max_length=data_args.max_seq_length ) __UpperCAmelCase : List[str] = datasets.map( snake_case__, batched=snake_case__, num_proc=data_args.preprocessing_num_workers, remove_columns=[text_column_name], load_from_cache_file=not data_args.overwrite_cache, ) # Add the chinese references if provided if data_args.train_ref_file is not None: __UpperCAmelCase : str = add_chinese_references(tokenized_datasets["train"], data_args.train_ref_file ) if data_args.validation_ref_file is not None: __UpperCAmelCase : List[str] = add_chinese_references( tokenized_datasets["validation"], data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer __UpperCAmelCase : List[str] = data_args.train_ref_file or data_args.validation_ref_file if has_ref: __UpperCAmelCase : Tuple = False # Data collator # This one will take care of randomly masking the tokens. __UpperCAmelCase : Optional[Any] = DataCollatorForWholeWordMask(tokenizer=snake_case__, mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __UpperCAmelCase : str = Trainer( model=snake_case__, args=snake_case__, train_dataset=tokenized_datasets["train"] if training_args.do_train else None, eval_dataset=tokenized_datasets["validation"] if training_args.do_eval else None, tokenizer=snake_case__, data_collator=snake_case__, ) # Training if training_args.do_train: if last_checkpoint is not None: __UpperCAmelCase : int = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): __UpperCAmelCase : Any = model_args.model_name_or_path else: __UpperCAmelCase : Tuple = None __UpperCAmelCase : str = trainer.train(resume_from_checkpoint=snake_case__ ) trainer.save_model() # Saves the tokenizer too for easy upload __UpperCAmelCase : str = os.path.join(training_args.output_dir, "train_results.txt" ) if trainer.is_world_process_zero(): with open(snake_case__, "w" ) as writer: logger.info("***** Train results *****" ) for key, value in sorted(train_result.metrics.items() ): logger.info(f''' {key} = {value}''' ) writer.write(f'''{key} = {value}\n''' ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir, "trainer_state.json" ) ) # Evaluation __UpperCAmelCase : Dict = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) __UpperCAmelCase : List[Any] = trainer.evaluate() __UpperCAmelCase : int = math.exp(eval_output["eval_loss"] ) __UpperCAmelCase : Union[str, Any] = perplexity __UpperCAmelCase : List[Any] = os.path.join(training_args.output_dir, "eval_results_mlm_wwm.txt" ) if trainer.is_world_process_zero(): with open(snake_case__, "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in sorted(results.items() ): logger.info(f''' {key} = {value}''' ) writer.write(f'''{key} = {value}\n''' ) return results def _UpperCamelCase ( snake_case__ ) -> Dict: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
157
0
"""simple docstring""" import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) lowerCamelCase = logging.getLogger() lowerCamelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def lowercase__ ( self : Optional[int] , _UpperCAmelCase : Tuple ) -> str: '''simple docstring''' os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) UpperCAmelCase_ = {"source": "What is love ?", "target": "life"} UpperCAmelCase_ = {"train": 12, "val": 2, "test": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: UpperCAmelCase_ = "\n".join([contents[field]] * n_lines[split] ) with open(os.path.join(_UpperCAmelCase , F"""{split}.{field}""" ) , "w" ) as f: f.write(_UpperCAmelCase ) def lowercase__ ( self : str , _UpperCAmelCase : int , _UpperCAmelCase : str = "pytorch" ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = self.get_auto_remove_tmp_dir() UpperCAmelCase_ = os.path.join(_UpperCAmelCase , "output" ) UpperCAmelCase_ = os.path.join(_UpperCAmelCase , "data" ) self._create_dummy_data(data_dir=_UpperCAmelCase ) UpperCAmelCase_ = F""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(F"""--gpus={gpus}""" ) if is_apex_available(): testargs.append("--fp16" ) else: testargs.append("--gpus=0" ) testargs.append("--distributed_backend=ddp_cpu" ) testargs.append("--num_processes=2" ) UpperCAmelCase_ = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(_UpperCAmelCase , env=self.get_env() ) UpperCAmelCase_ = os.path.join(_UpperCAmelCase , "metrics.json" ) with open(_UpperCAmelCase ) as f: UpperCAmelCase_ = json.load(_UpperCAmelCase ) return result @require_torch_gpu def lowercase__ ( self : List[str] ) -> Any: '''simple docstring''' UpperCAmelCase_ = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_multi_gpu def lowercase__ ( self : str ) -> str: '''simple docstring''' UpperCAmelCase_ = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_gpu @require_ray def lowercase__ ( self : Dict ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = self._run_finetune(gpus=1 , distributed_retriever="ray" ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_multi_gpu @require_ray def lowercase__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = self._run_finetune(gpus=1 , distributed_retriever="ray" ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 )
241
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""", """roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""", } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''roberta''' def __init__( self : int , _UpperCAmelCase : List[Any]=50265 , _UpperCAmelCase : str=768 , _UpperCAmelCase : List[str]=12 , _UpperCAmelCase : int=12 , _UpperCAmelCase : Tuple=3072 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Optional[int]=512 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Optional[int]=0.02 , _UpperCAmelCase : Optional[Any]=1e-12 , _UpperCAmelCase : Dict=1 , _UpperCAmelCase : str=0 , _UpperCAmelCase : int=2 , _UpperCAmelCase : Tuple="absolute" , _UpperCAmelCase : Any=True , _UpperCAmelCase : int=None , **_UpperCAmelCase : List[str] , ) -> Any: '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = position_embedding_type UpperCAmelCase_ = use_cache UpperCAmelCase_ = classifier_dropout class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def lowercase__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase_ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
241
1
from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging a__ = logging.get_logger(__name__) a__ = { '''nielsr/canine-s''': 2048, } # Unicode defines 1,114,112 total “codepoints” a__ = 1114112 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py a__ = 0 a__ = 0XE0_00 a__ = 0XE0_01 a__ = 0XE0_02 a__ = 0XE0_03 a__ = 0XE0_04 # Maps special codepoints to human-readable names. a__ = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: '''[CLS]''', SEP: '''[SEP]''', BOS: '''[BOS]''', MASK: '''[MASK]''', PAD: '''[PAD]''', RESERVED: '''[RESERVED]''', } # Maps special codepoint human-readable names to their codepoint values. a__ = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , _a=chr(_SCREAMING_SNAKE_CASE ) , _a=chr(_SCREAMING_SNAKE_CASE ) , _a=chr(_SCREAMING_SNAKE_CASE ) , _a=chr(_SCREAMING_SNAKE_CASE ) , _a=chr(_SCREAMING_SNAKE_CASE ) , _a=chr(_SCREAMING_SNAKE_CASE ) , _a=False , _a=2_0_4_8 , **_a , ) -> Union[str, Any]: _a : List[str] = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else bos_token _a : Tuple = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else eos_token _a : Tuple = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else sep_token _a : Dict = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else cls_token _a : Optional[int] = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _a : List[str] = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else mask_token super().__init__( bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE , model_max_length=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # Creates a mapping for looking up the IDs of special symbols. _a : List[str] = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): _a : Optional[int] = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. _a : str = { codepoint: name for name, codepoint in self._special_codepoints.items() } _a : Optional[Any] = UNICODE_VOCAB_SIZE _a : Optional[Any] = len(self._special_codepoints ) @property def __lowercase ( self ) -> int: return self._unicode_vocab_size def __lowercase ( self , _a ) -> List[str]: return list(_SCREAMING_SNAKE_CASE ) def __lowercase ( self , _a ) -> int: try: return ord(_SCREAMING_SNAKE_CASE ) except TypeError: raise ValueError(F"""invalid token: '{token}'""" ) def __lowercase ( self , _a ) -> str: try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(_SCREAMING_SNAKE_CASE ) except TypeError: raise ValueError(F"""invalid id: {index}""" ) def __lowercase ( self , _a ) -> str: return "".join(_SCREAMING_SNAKE_CASE ) def __lowercase ( self , _a , _a = None ) -> List[int]: _a : Tuple = [self.sep_token_id] _a : Optional[int] = [self.cls_token_id] _a : str = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def __lowercase ( self , _a , _a = None , _a = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_SCREAMING_SNAKE_CASE , token_ids_a=_SCREAMING_SNAKE_CASE , already_has_special_tokens=_SCREAMING_SNAKE_CASE ) _a : Optional[Any] = [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] if token_ids_a is not None: result += ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] return result def __lowercase ( self , _a , _a = None ) -> List[int]: _a : List[str] = [self.sep_token_id] _a : Dict = [self.cls_token_id] _a : Tuple = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def __lowercase ( self , _a , _a = None ) -> Optional[int]: return ()
235
'''simple docstring''' from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) SCREAMING_SNAKE_CASE__ = _symbol_database.Default() SCREAMING_SNAKE_CASE__ = _descriptor_pool.Default().AddSerializedFile( b'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03' ) SCREAMING_SNAKE_CASE__ = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals) if _descriptor._USE_C_DESCRIPTORS is False: SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = b'H\003' # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" SCREAMING_SNAKE_CASE__ = 4_5 SCREAMING_SNAKE_CASE__ = 1_5_8_1 SCREAMING_SNAKE_CASE__ = 1_5_1_7 SCREAMING_SNAKE_CASE__ = 1_5_7_0 SCREAMING_SNAKE_CASE__ = 1_5_8_4 SCREAMING_SNAKE_CASE__ = 1_7_9_3 SCREAMING_SNAKE_CASE__ = 1_7_9_5 SCREAMING_SNAKE_CASE__ = 1_9_1_6 SCREAMING_SNAKE_CASE__ = 1_8_6_4 SCREAMING_SNAKE_CASE__ = 1_9_0_5 SCREAMING_SNAKE_CASE__ = 1_9_1_9 SCREAMING_SNAKE_CASE__ = 2_4_2_9 SCREAMING_SNAKE_CASE__ = 2_2_0_8 SCREAMING_SNAKE_CASE__ = 2_4_1_8 SCREAMING_SNAKE_CASE__ = 2_3_2_3 SCREAMING_SNAKE_CASE__ = 2_4_0_7 # @@protoc_insertion_point(module_scope)
321
0
import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase_ : Optional[int] = 'T5Config' def lowerCAmelCase_ ( __UpperCAmelCase: jnp.array , __UpperCAmelCase: int , __UpperCAmelCase: int ) -> jnp.ndarray: UpperCamelCase__ : List[Any] = jnp.zeros_like(__UpperCAmelCase ) UpperCamelCase__ : Optional[int] = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) UpperCamelCase__ : Dict = shifted_input_ids.at[:, 0].set(__UpperCAmelCase ) UpperCamelCase__ : Tuple = jnp.where(shifted_input_ids == -100 , __UpperCAmelCase , __UpperCAmelCase ) return shifted_input_ids class lowercase__ ( __lowerCamelCase ): '''simple docstring''' a : Optional[Any] = "mt5" a : Union[str, Any] = MTaConfig class lowercase__ ( __lowerCamelCase ): '''simple docstring''' a : List[Any] = "mt5" a : str = MTaConfig class lowercase__ ( __lowerCamelCase ): '''simple docstring''' a : List[Any] = "mt5" a : int = MTaConfig
362
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) def lowerCAmelCase_ ( __UpperCAmelCase: Optional[int] , __UpperCAmelCase: Optional[Any]=False ) -> List[Any]: UpperCamelCase__ : str = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" UpperCamelCase__ : Tuple = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def lowerCAmelCase_ ( __UpperCAmelCase: Dict , __UpperCAmelCase: Any , __UpperCAmelCase: Dict=False ) -> Union[str, Any]: for i in range(config.num_hidden_layers ): if base_model: UpperCamelCase__ : Tuple = '''''' else: UpperCamelCase__ : Optional[int] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCamelCase__ : Dict = state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) UpperCamelCase__ : Union[str, Any] = state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase__ : Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] UpperCamelCase__ : int = in_proj_bias[: config.hidden_size] UpperCamelCase__ : Dict = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCamelCase__ : str = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCamelCase__ : List[Any] = in_proj_weight[ -config.hidden_size :, : ] UpperCamelCase__ : List[Any] = in_proj_bias[-config.hidden_size :] def lowerCAmelCase_ ( __UpperCAmelCase: Optional[Any] ) -> Optional[Any]: UpperCamelCase__ : int = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__UpperCAmelCase , __UpperCAmelCase ) def lowerCAmelCase_ ( __UpperCAmelCase: List[Any] , __UpperCAmelCase: str , __UpperCAmelCase: Tuple ) -> Dict: UpperCamelCase__ : List[str] = dct.pop(__UpperCAmelCase ) UpperCamelCase__ : int = val def lowerCAmelCase_ ( ) -> Tuple: UpperCamelCase__ : Optional[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCamelCase__ : int = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( __UpperCAmelCase: List[str] , __UpperCAmelCase: Dict , __UpperCAmelCase: List[Any]=True ) -> Union[str, Any]: UpperCamelCase__ : Optional[Any] = ViTConfig() # patch_size if model_name[-1] == "8": UpperCamelCase__ : List[str] = 8 # set labels if required if not base_model: UpperCamelCase__ : Union[str, Any] = 1000 UpperCamelCase__ : Optional[Any] = '''huggingface/label-files''' UpperCamelCase__ : Dict = '''imagenet-1k-id2label.json''' UpperCamelCase__ : str = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) UpperCamelCase__ : Dict = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} UpperCamelCase__ : str = idalabel UpperCamelCase__ : List[Any] = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: UpperCamelCase__ : str = 384 UpperCamelCase__ : str = 1536 UpperCamelCase__ : Tuple = 12 UpperCamelCase__ : Optional[int] = 6 # load original model from torch hub UpperCamelCase__ : Any = torch.hub.load('''facebookresearch/dino:main''' , __UpperCAmelCase ) original_model.eval() # load state_dict of original model, remove and rename some keys UpperCamelCase__ : str = original_model.state_dict() if base_model: remove_classification_head_(__UpperCAmelCase ) UpperCamelCase__ : int = create_rename_keys(__UpperCAmelCase , base_model=__UpperCAmelCase ) for src, dest in rename_keys: rename_key(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) read_in_q_k_v(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # load HuggingFace model if base_model: UpperCamelCase__ : int = ViTModel(__UpperCAmelCase , add_pooling_layer=__UpperCAmelCase ).eval() else: UpperCamelCase__ : Optional[int] = ViTForImageClassification(__UpperCAmelCase ).eval() model.load_state_dict(__UpperCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor UpperCamelCase__ : Dict = ViTImageProcessor() UpperCamelCase__ : List[Any] = image_processor(images=prepare_img() , return_tensors='''pt''' ) UpperCamelCase__ : Optional[Any] = encoding['''pixel_values'''] UpperCamelCase__ : Optional[Any] = model(__UpperCAmelCase ) if base_model: UpperCamelCase__ : Union[str, Any] = original_model(__UpperCAmelCase ) assert torch.allclose(__UpperCAmelCase , outputs.last_hidden_state[:, 0, :] , atol=1e-1 ) else: UpperCamelCase__ : Any = original_model(__UpperCAmelCase ) assert logits.shape == outputs.logits.shape assert torch.allclose(__UpperCAmelCase , outputs.logits , atol=1e-3 ) Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__UpperCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) UpperCAmelCase_ = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
247
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json", "umberto-commoncrawl-cased-v1": ( "https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json" ), "umberto-wikipedia-uncased-v1": ( "https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json" ), } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'camembert' def __init__( self, __a=3_0522, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=2, __a=0.02, __a=1E-12, __a=1, __a=0, __a=2, __a="absolute", __a=True, __a=None, **__a, ): '''simple docstring''' super().__init__(pad_token_id=__a, bos_token_id=__a, eos_token_id=__a, **__a) _lowerCAmelCase : Optional[Any] = vocab_size _lowerCAmelCase : Optional[int] = hidden_size _lowerCAmelCase : Union[str, Any] = num_hidden_layers _lowerCAmelCase : Optional[int] = num_attention_heads _lowerCAmelCase : Tuple = hidden_act _lowerCAmelCase : Tuple = intermediate_size _lowerCAmelCase : Optional[Any] = hidden_dropout_prob _lowerCAmelCase : Tuple = attention_probs_dropout_prob _lowerCAmelCase : List[Any] = max_position_embeddings _lowerCAmelCase : Optional[Any] = type_vocab_size _lowerCAmelCase : str = initializer_range _lowerCAmelCase : List[Any] = layer_norm_eps _lowerCAmelCase : int = position_embedding_type _lowerCAmelCase : Dict = use_cache _lowerCAmelCase : Dict = classifier_dropout class UpperCAmelCase_ ( a): @property def snake_case__ ( self): '''simple docstring''' if self.task == "multiple-choice": _lowerCAmelCase : Optional[Any] = {0: "batch", 1: "choice", 2: "sequence"} else: _lowerCAmelCase : Union[str, Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ])
36
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir("fixtures/test_sentencepiece_bpe.model") class UpperCAmelCase_ ( a , unittest.TestCase): lowerCamelCase__ = BartphoTokenizer lowerCamelCase__ = False lowerCamelCase__ = True def snake_case__ ( self): '''simple docstring''' super().setUp() _lowerCAmelCase : str = ["▁This", "▁is", "▁a", "▁t", "est"] _lowerCAmelCase : List[str] = dict(zip(__a, range(len(__a)))) _lowerCAmelCase : Optional[Any] = {"unk_token": "<unk>"} _lowerCAmelCase : Optional[int] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["monolingual_vocab_file"]) with open(self.monolingual_vocab_file, "w", encoding="utf-8") as fp: for token in vocab_tokens: fp.write(f"{token} {vocab_tokens[token]}\n") _lowerCAmelCase : Optional[Any] = BartphoTokenizer(__a, self.monolingual_vocab_file, **self.special_tokens_map) tokenizer.save_pretrained(self.tmpdirname) def snake_case__ ( self, **__a): '''simple docstring''' kwargs.update(self.special_tokens_map) return BartphoTokenizer.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = "This is a là test" _lowerCAmelCase : Optional[int] = "This is a<unk><unk> test" return input_text, output_text def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = BartphoTokenizer(__a, self.monolingual_vocab_file, **self.special_tokens_map) _lowerCAmelCase : List[Any] = "This is a là test" _lowerCAmelCase : str = "▁This ▁is ▁a ▁l à ▁t est".split() _lowerCAmelCase : str = tokenizer.tokenize(__a) self.assertListEqual(__a, __a) _lowerCAmelCase : Tuple = tokens + [tokenizer.unk_token] _lowerCAmelCase : List[str] = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a), __a)
36
1
def _a ( SCREAMING_SNAKE_CASE : list , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int = 0 , SCREAMING_SNAKE_CASE : int = 0 ): """simple docstring""" UpperCamelCase__ : int = right or len(SCREAMING_SNAKE_CASE ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
51
import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 __UpperCamelCase : List[Any] = data_utils.TransfoXLTokenizer __UpperCamelCase : str = data_utils.TransfoXLCorpus __UpperCamelCase : Dict = data_utils __UpperCamelCase : List[Any] = data_utils def _a ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(SCREAMING_SNAKE_CASE , '''rb''' ) as fp: UpperCamelCase__ : str = pickle.load(SCREAMING_SNAKE_CASE , encoding='''latin1''' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) UpperCamelCase__ : Tuple = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''pretrained_vocab_file'''] print(F"Save vocabulary to {pytorch_vocab_dump_path}" ) UpperCamelCase__ : List[str] = corpus.vocab.__dict__ torch.save(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = corpus.__dict__ corpus_dict_no_vocab.pop('''vocab''' , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[int] = pytorch_dump_folder_path + '''/''' + CORPUS_NAME print(F"Save dataset to {pytorch_dataset_dump_path}" ) torch.save(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model UpperCamelCase__ : List[Any] = os.path.abspath(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = os.path.abspath(SCREAMING_SNAKE_CASE ) print(F"Converting Transformer XL checkpoint from {tf_path} with config at {config_path}." ) # Initialise PyTorch model if transfo_xl_config_file == "": UpperCamelCase__ : Any = TransfoXLConfig() else: UpperCamelCase__ : int = TransfoXLConfig.from_json_file(SCREAMING_SNAKE_CASE ) print(F"Building PyTorch model from configuration: {config}" ) UpperCamelCase__ : Dict = TransfoXLLMHeadModel(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : str = load_tf_weights_in_transfo_xl(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Save pytorch-model UpperCamelCase__ : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) print(F"Save PyTorch model to {os.path.abspath(SCREAMING_SNAKE_CASE )}" ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE ) print(F"Save configuration file to {os.path.abspath(SCREAMING_SNAKE_CASE )}" ) with open(SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--tf_checkpoint_path", default="", type=str, help="An optional path to a TensorFlow checkpoint path to be converted.", ) parser.add_argument( "--transfo_xl_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--transfo_xl_dataset_file", default="", type=str, help="An optional dataset file to be converted in a vocabulary.", ) __UpperCamelCase : int = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
51
1
'''simple docstring''' from __future__ import annotations def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> set[str]: '''simple docstring''' _UpperCAmelCase ,_UpperCAmelCase : Any = set(lowerCAmelCase_ ), [start] while stack: _UpperCAmelCase : Optional[int] = stack.pop() explored.add(lowerCAmelCase_ ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(lowerCAmelCase_ ) return explored A_ : str = { """A""": ["""B""", """C""", """D"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F"""], """D""": ["""B""", """D"""], """E""": ["""B""", """F"""], """F""": ["""C""", """E""", """G"""], """G""": ["""F"""], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, """A"""))
215
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A_ : Optional[Any] = { """configuration_llama""": ["""LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LlamaConfig"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[str] = ["""LlamaTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Dict = ["""LlamaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[int] = [ """LlamaForCausalLM""", """LlamaModel""", """LlamaPreTrainedModel""", """LlamaForSequenceClassification""", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys A_ : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
215
1
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class _a : _a : CommonSchedulerState # setable values _a : jnp.ndarray _a : jnp.ndarray _a : Optional[int] = None @classmethod def UpperCAmelCase__( cls : Dict , _SCREAMING_SNAKE_CASE : CommonSchedulerState , _SCREAMING_SNAKE_CASE : jnp.ndarray , _SCREAMING_SNAKE_CASE : jnp.ndarray )-> Optional[Any]: return cls(common=_SCREAMING_SNAKE_CASE , init_noise_sigma=_SCREAMING_SNAKE_CASE , timesteps=_SCREAMING_SNAKE_CASE ) @dataclass class _a ( _lowercase): _a : DDPMSchedulerState class _a ( _lowercase , _lowercase): _a : Any = [e.name for e in FlaxKarrasDiffusionSchedulers] _a : jnp.dtype @property def UpperCAmelCase__( self : Tuple )-> Any: return True @register_to_config def __init__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : int = 1000 , _SCREAMING_SNAKE_CASE : float = 0.0001 , _SCREAMING_SNAKE_CASE : float = 0.02 , _SCREAMING_SNAKE_CASE : str = "linear" , _SCREAMING_SNAKE_CASE : Optional[jnp.ndarray] = None , _SCREAMING_SNAKE_CASE : str = "fixed_small" , _SCREAMING_SNAKE_CASE : bool = True , _SCREAMING_SNAKE_CASE : str = "epsilon" , _SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa , )-> Optional[int]: lowerCAmelCase__ : List[Any] = dtype def UpperCAmelCase__( self : Dict , _SCREAMING_SNAKE_CASE : Optional[CommonSchedulerState] = None )-> DDPMSchedulerState: if common is None: lowerCAmelCase__ : Optional[Any] = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution lowerCAmelCase__ : str = jnp.array(1.0 , dtype=self.dtype ) lowerCAmelCase__ : Optional[int] = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=_SCREAMING_SNAKE_CASE , init_noise_sigma=_SCREAMING_SNAKE_CASE , timesteps=_SCREAMING_SNAKE_CASE , ) def UpperCAmelCase__( self : Any , _SCREAMING_SNAKE_CASE : DDPMSchedulerState , _SCREAMING_SNAKE_CASE : jnp.ndarray , _SCREAMING_SNAKE_CASE : Optional[int] = None )-> jnp.ndarray: return sample def UpperCAmelCase__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : DDPMSchedulerState , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Tuple = () )-> DDPMSchedulerState: lowerCAmelCase__ : List[str] = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 lowerCAmelCase__ : List[Any] = (jnp.arange(0 , _SCREAMING_SNAKE_CASE ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=_SCREAMING_SNAKE_CASE , timesteps=_SCREAMING_SNAKE_CASE , ) def UpperCAmelCase__( self : str , _SCREAMING_SNAKE_CASE : DDPMSchedulerState , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Union[str, Any]=None , _SCREAMING_SNAKE_CASE : Dict=None )-> Any: lowerCAmelCase__ : int = state.common.alphas_cumprod[t] lowerCAmelCase__ : List[str] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample lowerCAmelCase__ : List[Any] = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: lowerCAmelCase__ : List[Any] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": lowerCAmelCase__ : Dict = jnp.clip(_SCREAMING_SNAKE_CASE , a_min=1E-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": lowerCAmelCase__ : Any = jnp.log(jnp.clip(_SCREAMING_SNAKE_CASE , a_min=1E-20 ) ) elif variance_type == "fixed_large": lowerCAmelCase__ : Optional[Any] = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log lowerCAmelCase__ : str = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": lowerCAmelCase__ : Dict = variance lowerCAmelCase__ : str = state.common.betas[t] lowerCAmelCase__ : Dict = (predicted_variance + 1) / 2 lowerCAmelCase__ : Union[str, Any] = frac * max_log + (1 - frac) * min_log return variance def UpperCAmelCase__( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : DDPMSchedulerState , _SCREAMING_SNAKE_CASE : jnp.ndarray , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : jnp.ndarray , _SCREAMING_SNAKE_CASE : Optional[jax.random.KeyArray] = None , _SCREAMING_SNAKE_CASE : bool = True , )-> Union[FlaxDDPMSchedulerOutput, Tuple]: lowerCAmelCase__ : Optional[Any] = timestep if key is None: lowerCAmelCase__ : str = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: lowerCAmelCase__ : List[str] = jnp.split(_SCREAMING_SNAKE_CASE , sample.shape[1] , axis=1 ) else: lowerCAmelCase__ : List[str] = None # 1. compute alphas, betas lowerCAmelCase__ : str = state.common.alphas_cumprod[t] lowerCAmelCase__ : Optional[int] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) lowerCAmelCase__ : Any = 1 - alpha_prod_t lowerCAmelCase__ : Union[str, Any] = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": lowerCAmelCase__ : str = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": lowerCAmelCase__ : Dict = model_output elif self.config.prediction_type == "v_prediction": lowerCAmelCase__ : str = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` ' ''' for the FlaxDDPMScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: lowerCAmelCase__ : Optional[Any] = jnp.clip(_SCREAMING_SNAKE_CASE , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCAmelCase__ : List[str] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t lowerCAmelCase__ : Union[str, Any] = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCAmelCase__ : List[Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): lowerCAmelCase__ : Union[str, Any] = jax.random.split(_SCREAMING_SNAKE_CASE , num=1 ) lowerCAmelCase__ : List[str] = jax.random.normal(_SCREAMING_SNAKE_CASE , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , predicted_variance=_SCREAMING_SNAKE_CASE ) ** 0.5) * noise lowerCAmelCase__ : Any = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) lowerCAmelCase__ : Union[str, Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=_SCREAMING_SNAKE_CASE , state=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : str , _SCREAMING_SNAKE_CASE : DDPMSchedulerState , _SCREAMING_SNAKE_CASE : jnp.ndarray , _SCREAMING_SNAKE_CASE : jnp.ndarray , _SCREAMING_SNAKE_CASE : jnp.ndarray , )-> jnp.ndarray: return add_noise_common(state.common , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : str , _SCREAMING_SNAKE_CASE : DDPMSchedulerState , _SCREAMING_SNAKE_CASE : jnp.ndarray , _SCREAMING_SNAKE_CASE : jnp.ndarray , _SCREAMING_SNAKE_CASE : jnp.ndarray , )-> jnp.ndarray: return get_velocity_common(state.common , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __len__( self : Optional[int] )-> str: return self.config.num_train_timesteps
356
class _a : def __init__( self : str , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[Any] )-> Tuple: lowerCAmelCase__ : List[Any] = None lowerCAmelCase__ : int = None lowerCAmelCase__ : Union[str, Any] = graph self._normalize_graph(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Tuple = len(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Optional[int] = None def UpperCAmelCase__( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] )-> Union[str, Any]: if sources is int: lowerCAmelCase__ : List[Any] = [sources] if sinks is int: lowerCAmelCase__ : Optional[Any] = [sinks] if len(_SCREAMING_SNAKE_CASE ) == 0 or len(_SCREAMING_SNAKE_CASE ) == 0: return lowerCAmelCase__ : Union[str, Any] = sources[0] lowerCAmelCase__ : Dict = sinks[0] # make fake vertex if there are more # than one source or sink if len(_SCREAMING_SNAKE_CASE ) > 1 or len(_SCREAMING_SNAKE_CASE ) > 1: lowerCAmelCase__ : List[Any] = 0 for i in sources: max_input_flow += sum(self.graph[i] ) lowerCAmelCase__ : Any = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: lowerCAmelCase__ : Optional[Any] = max_input_flow lowerCAmelCase__ : List[str] = 0 lowerCAmelCase__ : List[Any] = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: lowerCAmelCase__ : str = max_input_flow lowerCAmelCase__ : Tuple = size - 1 def UpperCAmelCase__( self : Union[str, Any] )-> Union[str, Any]: if self.maximum_flow_algorithm is None: raise Exception('''You need to set maximum flow algorithm before.''' ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def UpperCAmelCase__( self : str , _SCREAMING_SNAKE_CASE : List[Any] )-> int: lowerCAmelCase__ : int = algorithm(self ) class _a : def __init__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : Tuple )-> Union[str, Any]: lowerCAmelCase__ : Tuple = flow_network lowerCAmelCase__ : Dict = flow_network.verticesCount lowerCAmelCase__ : Optional[Any] = flow_network.sourceIndex lowerCAmelCase__ : Optional[Any] = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that lowerCAmelCase__ : str = flow_network.graph lowerCAmelCase__ : Optional[int] = False def UpperCAmelCase__( self : List[str] )-> Dict: if not self.executed: self._algorithm() lowerCAmelCase__ : Any = True def UpperCAmelCase__( self : Optional[Any] )-> int: pass class _a ( _lowercase): def __init__( self : Any , _SCREAMING_SNAKE_CASE : List[Any] )-> Union[str, Any]: super().__init__(_SCREAMING_SNAKE_CASE ) # use this to save your result lowerCAmelCase__ : Dict = -1 def UpperCAmelCase__( self : Any )-> Optional[Any]: if not self.executed: raise Exception('''You should execute algorithm before using its result!''' ) return self.maximum_flow class _a ( _lowercase): def __init__( self : Any , _SCREAMING_SNAKE_CASE : List[str] )-> List[str]: super().__init__(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Any = [[0] * self.verticies_count for i in range(self.verticies_count )] lowerCAmelCase__ : Optional[Any] = [0] * self.verticies_count lowerCAmelCase__ : str = [0] * self.verticies_count def UpperCAmelCase__( self : Any )-> List[Any]: lowerCAmelCase__ : Optional[Any] = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule lowerCAmelCase__ : Any = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list lowerCAmelCase__ : str = 0 while i < len(_SCREAMING_SNAKE_CASE ): lowerCAmelCase__ : Union[str, Any] = vertices_list[i] lowerCAmelCase__ : Any = self.heights[vertex_index] self.process_vertex(_SCREAMING_SNAKE_CASE ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(_SCREAMING_SNAKE_CASE ) ) lowerCAmelCase__ : Optional[Any] = 0 else: i += 1 lowerCAmelCase__ : Optional[Any] = sum(self.preflow[self.source_index] ) def UpperCAmelCase__( self : List[str] , _SCREAMING_SNAKE_CASE : Optional[Any] )-> Optional[int]: while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.relabel(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : int , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] )-> Union[str, Any]: lowerCAmelCase__ : Union[str, Any] = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def UpperCAmelCase__( self : Optional[int] , _SCREAMING_SNAKE_CASE : Any )-> Optional[int]: lowerCAmelCase__ : Optional[int] = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): lowerCAmelCase__ : List[Any] = self.heights[to_index] if min_height is not None: lowerCAmelCase__ : Optional[Any] = min_height + 1 if __name__ == "__main__": lowerCamelCase = [0] lowerCamelCase = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] lowerCamelCase = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network lowerCamelCase = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate lowerCamelCase = flow_network.find_maximum_flow() print(f'''maximum flow is {maximum_flow}''')
211
0