code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
def A_ ( A__ , A__ , A__ ) -> int: def update_area_of_max_square(A__ , A__ ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 a__ : Optional[int] = update_area_of_max_square(A__ , col + 1 ) a__ : Union[str, Any] = update_area_of_max_square(row + 1 , col + 1 ) a__ : Tuple = update_area_of_max_square(row + 1 , A__ ) if mat[row][col]: a__ : Dict = 1 + min([right, diagonal, down] ) a__ : List[Any] = max(largest_square_area[0] , A__ ) return sub_problem_sol else: return 0 a__ : Union[str, Any] = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def A_ ( A__ , A__ , A__ ) -> int: def update_area_of_max_square_using_dp_array( A__ , A__ , A__ ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] a__ : List[Any] = update_area_of_max_square_using_dp_array(A__ , col + 1 , A__ ) a__ : Optional[Any] = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , A__ ) a__ : Optional[int] = update_area_of_max_square_using_dp_array(row + 1 , A__ , A__ ) if mat[row][col]: a__ : str = 1 + min([right, diagonal, down] ) a__ : List[str] = max(largest_square_area[0] , A__ ) a__ : List[Any] = sub_problem_sol return sub_problem_sol else: return 0 a__ : int = [0] a__ : Dict = [[-1] * cols for _ in range(A__ )] update_area_of_max_square_using_dp_array(0 , 0 , A__ ) return largest_square_area[0] def A_ ( A__ , A__ , A__ ) -> int: a__ : List[Any] = [[0] * (cols + 1) for _ in range(rows + 1 )] a__ : List[Any] = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): a__ : Union[str, Any] = dp_array[row][col + 1] a__ : int = dp_array[row + 1][col + 1] a__ : Dict = dp_array[row + 1][col] if mat[row][col] == 1: a__ : Tuple = 1 + min(A__ , A__ , A__ ) a__ : Optional[int] = max(dp_array[row][col] , A__ ) else: a__ : Tuple = 0 return largest_square_area def A_ ( A__ , A__ , A__ ) -> int: a__ : Any = [0] * (cols + 1) a__ : Any = [0] * (cols + 1) a__ : Dict = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): a__ : List[Any] = current_row[col + 1] a__ : Union[str, Any] = next_row[col + 1] a__ : List[Any] = next_row[col] if mat[row][col] == 1: a__ : Optional[Any] = 1 + min(A__ , A__ , A__ ) a__ : Tuple = max(current_row[col] , A__ ) else: a__ : Optional[Any] = 0 a__ : str = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
99
def A_ ( A__ ) -> int: stooge(A__ , 0 , len(A__ ) - 1 ) return arr def A_ ( A__ , A__ , A__ ) -> List[Any]: if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: a__ , a__ : List[str] = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: a__ : Dict = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(A__ , A__ , (h - t) ) # Recursively sort last 2/3 elements stooge(A__ , i + t , (A__) ) # Recursively sort first 2/3 elements stooge(A__ , A__ , (h - t) ) if __name__ == "__main__": lowercase : Dict = input("""Enter numbers separated by a comma:\n""").strip() lowercase : Dict = [int(item) for item in user_input.split(""",""")] print(stooge_sort(unsorted))
99
1
"""simple docstring""" import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class __SCREAMING_SNAKE_CASE : def __init__( self : List[str] , snake_case : Tuple , snake_case : List[str]=2 , snake_case : List[str]=8 , snake_case : List[Any]=True , snake_case : Optional[Any]=True , snake_case : List[Any]=True , snake_case : Dict=True , snake_case : Tuple=99 , snake_case : Dict=16 , snake_case : Dict=5 , snake_case : int=2 , snake_case : Any=36 , snake_case : str="gelu" , snake_case : Dict=0.0 , snake_case : List[Any]=0.0 , snake_case : int=512 , snake_case : List[Any]=16 , snake_case : Tuple=2 , snake_case : Any=0.02 , snake_case : Optional[Any]=3 , snake_case : List[Any]=4 , snake_case : str=None , ): '''simple docstring''' A__ : Union[str, Any] = parent A__ : Optional[Any] = batch_size A__ : Dict = seq_length A__ : str = is_training A__ : Tuple = use_input_mask A__ : Dict = use_token_type_ids A__ : Dict = use_labels A__ : int = vocab_size A__ : List[str] = hidden_size A__ : Union[str, Any] = num_hidden_layers A__ : int = num_attention_heads A__ : List[str] = intermediate_size A__ : int = hidden_act A__ : str = hidden_dropout_prob A__ : Tuple = attention_probs_dropout_prob A__ : Any = max_position_embeddings A__ : Optional[int] = type_vocab_size A__ : int = type_sequence_label_size A__ : Optional[Any] = initializer_range A__ : int = num_labels A__ : Optional[int] = num_choices A__ : Optional[int] = scope def _UpperCamelCase ( self : Optional[int] ): '''simple docstring''' A__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : Any = None if self.use_input_mask: A__ : Any = random_attention_mask([self.batch_size, self.seq_length] ) A__ : Optional[int] = None if self.use_token_type_ids: A__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A__ : Dict = None A__ : List[str] = None A__ : Union[str, Any] = None if self.use_labels: A__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ : Any = ids_tensor([self.batch_size] , self.num_choices ) A__ : Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCamelCase ( self : List[str] ): '''simple docstring''' return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case , initializer_range=self.initializer_range , ) def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ : Any = self.get_config() A__ : List[str] = 300 return config def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) : Tuple = self.prepare_config_and_inputs() A__ : List[str] = True A__ : List[str] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) A__ : int = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _UpperCamelCase ( self : Any , snake_case : Any , snake_case : Tuple , snake_case : Any , snake_case : Optional[int] , snake_case : Optional[int] , snake_case : Optional[int] , snake_case : Dict ): '''simple docstring''' A__ : List[str] = MraModel(config=snake_case ) model.to(snake_case ) model.eval() A__ : Dict = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case ) A__ : List[str] = model(snake_case , token_type_ids=snake_case ) A__ : Union[str, Any] = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self : Optional[Any] , snake_case : List[Any] , snake_case : Any , snake_case : Optional[Any] , snake_case : Union[str, Any] , snake_case : Tuple , snake_case : Dict , snake_case : str , snake_case : Dict , snake_case : str , ): '''simple docstring''' A__ : Dict = True A__ : Optional[Any] = MraModel(snake_case ) model.to(snake_case ) model.eval() A__ : Union[str, Any] = model( snake_case , attention_mask=snake_case , token_type_ids=snake_case , encoder_hidden_states=snake_case , encoder_attention_mask=snake_case , ) A__ : str = model( snake_case , attention_mask=snake_case , token_type_ids=snake_case , encoder_hidden_states=snake_case , ) A__ : Optional[int] = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self : int , snake_case : Optional[Any] , snake_case : Optional[int] , snake_case : int , snake_case : str , snake_case : Union[str, Any] , snake_case : Dict , snake_case : List[str] ): '''simple docstring''' A__ : Union[str, Any] = MraForMaskedLM(config=snake_case ) model.to(snake_case ) model.eval() A__ : List[Any] = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self : Optional[Any] , snake_case : Dict , snake_case : Dict , snake_case : Dict , snake_case : List[str] , snake_case : List[str] , snake_case : Tuple , snake_case : Union[str, Any] ): '''simple docstring''' A__ : Dict = MraForQuestionAnswering(config=snake_case ) model.to(snake_case ) model.eval() A__ : str = model( snake_case , attention_mask=snake_case , token_type_ids=snake_case , start_positions=snake_case , end_positions=snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCamelCase ( self : Tuple , snake_case : List[Any] , snake_case : Optional[Any] , snake_case : Optional[Any] , snake_case : List[str] , snake_case : Optional[int] , snake_case : List[str] , snake_case : Union[str, Any] ): '''simple docstring''' A__ : str = self.num_labels A__ : Optional[Any] = MraForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() A__ : str = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self : Union[str, Any] , snake_case : Dict , snake_case : str , snake_case : List[Any] , snake_case : Any , snake_case : Dict , snake_case : Tuple , snake_case : Optional[Any] ): '''simple docstring''' A__ : str = self.num_labels A__ : Union[str, Any] = MraForTokenClassification(config=snake_case ) model.to(snake_case ) model.eval() A__ : str = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCamelCase ( self : Tuple , snake_case : Optional[Any] , snake_case : Optional[int] , snake_case : int , snake_case : Optional[Any] , snake_case : List[str] , snake_case : Dict , snake_case : Optional[Any] ): '''simple docstring''' A__ : List[str] = self.num_choices A__ : str = MraForMultipleChoice(config=snake_case ) model.to(snake_case ) model.eval() A__ : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : Tuple = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : str = model( snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' A__ : List[str] = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) : Dict = config_and_inputs A__ : Optional[int] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase ): snake_case_ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = () def _UpperCamelCase ( self : int ): '''simple docstring''' A__ : Optional[Any] = MraModelTester(self ) A__ : List[str] = ConfigTester(self , config_class=snake_case , hidden_size=37 ) def _UpperCamelCase ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A__ : List[str] = type self.model_tester.create_and_check_model(*snake_case ) def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' A__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case ) def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case ) def _UpperCamelCase ( self : Optional[int] ): '''simple docstring''' A__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case ) def _UpperCamelCase ( self : int ): '''simple docstring''' A__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case ) def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case ) @slow def _UpperCamelCase ( self : Any ): '''simple docstring''' for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : str = MraModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @unittest.skip(reason="""MRA does not output attentions""" ) def _UpperCamelCase ( self : Tuple ): '''simple docstring''' return @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' A__ : str = MraModel.from_pretrained("""uw-madison/mra-base-512-4""" ) A__ : Any = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): A__ : List[Any] = model(snake_case )[0] A__ : List[Any] = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , snake_case ) A__ : int = torch.tensor( [[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=1e-4 ) ) @slow def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' A__ : Union[str, Any] = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-512-4""" ) A__ : Tuple = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): A__ : List[Any] = model(snake_case )[0] A__ : Dict = 5_0265 A__ : List[str] = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , snake_case ) A__ : List[Any] = torch.tensor( [[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=1e-4 ) ) @slow def _UpperCamelCase ( self : Dict ): '''simple docstring''' A__ : Any = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-4096-8-d3""" ) A__ : List[Any] = torch.arange(4096 ).unsqueeze(0 ) with torch.no_grad(): A__ : List[Any] = model(snake_case )[0] A__ : Union[str, Any] = 5_0265 A__ : Optional[Any] = torch.Size((1, 4096, vocab_size) ) self.assertEqual(output.shape , snake_case ) A__ : Optional[int] = torch.tensor( [[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=1e-4 ) )
296
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING A_ = logging.get_logger(__name__) A_ = { '''microsoft/table-transformer-detection''': ( '''https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json''' ), } class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): snake_case_ = 'table-transformer' snake_case_ = ['past_key_values'] snake_case_ = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : Dict , snake_case : int=True , snake_case : Dict=None , snake_case : Union[str, Any]=3 , snake_case : Dict=100 , snake_case : Tuple=6 , snake_case : Optional[int]=2048 , snake_case : int=8 , snake_case : Dict=6 , snake_case : Any=2048 , snake_case : str=8 , snake_case : Union[str, Any]=0.0 , snake_case : List[str]=0.0 , snake_case : List[str]=True , snake_case : Any="relu" , snake_case : str=256 , snake_case : int=0.1 , snake_case : Dict=0.0 , snake_case : str=0.0 , snake_case : Union[str, Any]=0.02 , snake_case : Union[str, Any]=1.0 , snake_case : Optional[Any]=False , snake_case : int="sine" , snake_case : Optional[Any]="resnet50" , snake_case : Optional[int]=True , snake_case : Any=False , snake_case : int=1 , snake_case : Tuple=5 , snake_case : Optional[int]=2 , snake_case : Tuple=1 , snake_case : Optional[Any]=1 , snake_case : Optional[Any]=5 , snake_case : Dict=2 , snake_case : Any=0.1 , **snake_case : Any , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) A__ : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(snake_case , snake_case ): A__ : Optional[int] = backbone_config.get("""model_type""" ) A__ : Optional[int] = CONFIG_MAPPING[backbone_model_type] A__ : List[str] = config_class.from_dict(snake_case ) # set timm attributes to None A__ , A__ , A__ : str = None, None, None A__ : Tuple = use_timm_backbone A__ : str = backbone_config A__ : str = num_channels A__ : List[Any] = num_queries A__ : Optional[Any] = d_model A__ : Tuple = encoder_ffn_dim A__ : Union[str, Any] = encoder_layers A__ : List[Any] = encoder_attention_heads A__ : Optional[int] = decoder_ffn_dim A__ : Any = decoder_layers A__ : int = decoder_attention_heads A__ : Any = dropout A__ : Dict = attention_dropout A__ : Dict = activation_dropout A__ : Tuple = activation_function A__ : List[str] = init_std A__ : List[str] = init_xavier_std A__ : Any = encoder_layerdrop A__ : Optional[Any] = decoder_layerdrop A__ : Union[str, Any] = encoder_layers A__ : Dict = auxiliary_loss A__ : List[Any] = position_embedding_type A__ : Optional[Any] = backbone A__ : str = use_pretrained_backbone A__ : Union[str, Any] = dilation # Hungarian matcher A__ : Tuple = class_cost A__ : Optional[Any] = bbox_cost A__ : Dict = giou_cost # Loss coefficients A__ : Any = mask_loss_coefficient A__ : str = dice_loss_coefficient A__ : str = bbox_loss_coefficient A__ : Union[str, Any] = giou_loss_coefficient A__ : List[str] = eos_coefficient super().__init__(is_encoder_decoder=snake_case , **snake_case ) @property def _UpperCamelCase ( self : List[str] ): '''simple docstring''' return self.encoder_attention_heads @property def _UpperCamelCase ( self : Dict ): '''simple docstring''' return self.d_model class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): snake_case_ = version.parse('1.11' ) @property def _UpperCamelCase ( self : Any ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _UpperCamelCase ( self : Optional[int] ): '''simple docstring''' return 1e-5 @property def _UpperCamelCase ( self : List[str] ): '''simple docstring''' return 12
296
1
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def __snake_case ( UpperCAmelCase_ : dict , UpperCAmelCase_ : str , UpperCAmelCase_ : set , UpperCAmelCase_ : set , UpperCAmelCase_ : dict , UpperCAmelCase_ : dict , UpperCAmelCase_ : PriorityQueue , UpperCAmelCase_ : dict , UpperCAmelCase_ : float | int , ): for nxt, d in graph[v]: if nxt in visited_forward: continue lowerCamelCase_ = cst_fwd.get(UpperCAmelCase_ , np.inf ) lowerCamelCase_ = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) lowerCamelCase_ = new_cost_f lowerCamelCase_ = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: lowerCamelCase_ = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def __snake_case ( UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : dict , UpperCAmelCase_ : dict ): lowerCamelCase_ = -1 lowerCamelCase_ = set() lowerCamelCase_ = set() lowerCamelCase_ = {source: 0} lowerCamelCase_ = {destination: 0} lowerCamelCase_ = {source: None} lowerCamelCase_ = {destination: None} lowerCamelCase_ = PriorityQueue() lowerCamelCase_ = PriorityQueue() lowerCamelCase_ = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): lowerCamelCase_ ,lowerCamelCase_ = queue_forward.get() visited_forward.add(UpperCAmelCase_ ) lowerCamelCase_ ,lowerCamelCase_ = queue_backward.get() visited_backward.add(UpperCAmelCase_ ) lowerCamelCase_ = pass_and_relaxation( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) lowerCamelCase_ = pass_and_relaxation( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: lowerCamelCase_ = shortest_distance return shortest_path_distance a_ : List[Any] = { """B""": [["""C""", 1]], """C""": [["""D""", 1]], """D""": [["""F""", 1]], """E""": [["""B""", 1], ["""G""", 2]], """F""": [], """G""": [["""F""", 1]], } a_ : Optional[int] = { """B""": [["""E""", 1]], """C""": [["""B""", 1]], """D""": [["""C""", 1]], """F""": [["""D""", 1], ["""G""", 1]], """E""": [[None, np.inf]], """G""": [["""E""", 2]], } if __name__ == "__main__": import doctest doctest.testmod()
55
'''simple docstring''' from __future__ import annotations def __snake_case ( UpperCAmelCase_ : int ): lowerCamelCase_ = 2 lowerCamelCase_ = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(UpperCAmelCase_ ) if n > 1: factors.append(UpperCAmelCase_ ) return factors if __name__ == "__main__": import doctest doctest.testmod()
55
1
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor lowerCamelCase__ = logging.get_logger(__name__) class A__ ( __magic_name__ ): def __init__( self : Any , *a : Any , **a : List[str] ): '''simple docstring''' warnings.warn( 'The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use GLPNImageProcessor instead.' , a , ) super().__init__(*a , **a )
307
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class A__ ( __magic_name__ ): lowercase = (DPMSolverSDEScheduler,) lowercase = 10 def _lowerCamelCase ( self : Optional[int] , **a : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = { 'num_train_timesteps': 1_100, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', 'noise_sampler_seed': 0, } config.update(**a ) return config def _lowerCamelCase ( self : Tuple ): '''simple docstring''' for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=a ) def _lowerCamelCase ( self : int ): '''simple docstring''' for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=a , beta_end=a ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=a ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=a ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : int = self.scheduler_classes[0] lowerCAmelCase__ : Tuple = self.get_scheduler_config() lowerCAmelCase__ : List[Any] = scheduler_class(**a ) scheduler.set_timesteps(self.num_inference_steps ) lowerCAmelCase__ : Dict = self.dummy_model() lowerCAmelCase__ : int = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase__ : int = sample.to(a ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase__ : List[Any] = scheduler.scale_model_input(a , a ) lowerCAmelCase__ : str = model(a , a ) lowerCAmelCase__ : int = scheduler.step(a , a , a ) lowerCAmelCase__ : Any = output.prev_sample lowerCAmelCase__ : List[Any] = torch.sum(torch.abs(a ) ) lowerCAmelCase__ : Optional[int] = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_6_7.4_7_8_2_1_0_4_4_9_2_1_8_7_5 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_7_8_7_0_5_9_6_4_5_6_5_2_7_7 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_1.5_9_3_5_2_1_1_1_8_1_6_4_0_6 ) < 1E-2 assert abs(result_mean.item() - 0.2_2_3_4_2_9_0_6_8_9_2_2_9_9_6_5_2 ) < 1E-3 else: assert abs(result_sum.item() - 1_6_2.5_2_3_8_3_4_2_2_8_5_1_5_6_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_1_6_1_9_5_7_0_8_5_1_3_2_6 ) < 1E-3 def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Dict = self.scheduler_classes[0] lowerCAmelCase__ : List[str] = self.get_scheduler_config(prediction_type='v_prediction' ) lowerCAmelCase__ : Any = scheduler_class(**a ) scheduler.set_timesteps(self.num_inference_steps ) lowerCAmelCase__ : Optional[int] = self.dummy_model() lowerCAmelCase__ : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase__ : Any = sample.to(a ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase__ : str = scheduler.scale_model_input(a , a ) lowerCAmelCase__ : str = model(a , a ) lowerCAmelCase__ : Dict = scheduler.step(a , a , a ) lowerCAmelCase__ : Tuple = output.prev_sample lowerCAmelCase__ : int = torch.sum(torch.abs(a ) ) lowerCAmelCase__ : Union[str, Any] = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_2_4.7_7_1_4_9_2_0_0_4_3_9_4_5_3 ) < 1E-2 assert abs(result_mean.item() - 0.1_6_2_2_6_2_8_9_0_1_4_8_1_6_2_8_4 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_2_8.1_6_6_3_3_6_0_5_9_5_7_0_3 ) < 1E-2 assert abs(result_mean.item() - 0.1_6_6_8_8_3_2_6_0_0_1_1_6_7_2_9_7 ) < 1E-3 else: assert abs(result_sum.item() - 1_1_9.8_4_8_7_5_4_8_8_2_8_1_2_5 ) < 1E-2 assert abs(result_mean.item() - 0.1_5_6_0_5_3_0_6_6_2_5_3_6_6_2_1 ) < 1E-3 def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.scheduler_classes[0] lowerCAmelCase__ : Optional[int] = self.get_scheduler_config() lowerCAmelCase__ : int = scheduler_class(**a ) scheduler.set_timesteps(self.num_inference_steps , device=a ) lowerCAmelCase__ : Tuple = self.dummy_model() lowerCAmelCase__ : Any = self.dummy_sample_deter.to(a ) * scheduler.init_noise_sigma for t in scheduler.timesteps: lowerCAmelCase__ : Dict = scheduler.scale_model_input(a , a ) lowerCAmelCase__ : Optional[int] = model(a , a ) lowerCAmelCase__ : Tuple = scheduler.step(a , a , a ) lowerCAmelCase__ : Dict = output.prev_sample lowerCAmelCase__ : Union[str, Any] = torch.sum(torch.abs(a ) ) lowerCAmelCase__ : Dict = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_6_7.4_6_9_5_7_3_9_7_4_6_0_9_3_8 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_8_0_5_9_3_4_6_0_7_9_8_2_6_3_5 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_1.5_9_3_5_3_6_3_7_6_9_5_3_1_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_2_3_4_2_9_0_8_3_8_2_4_1_5_7_7_1 ) < 1E-3 else: assert abs(result_sum.item() - 1_6_2.5_2_3_8_3_4_2_2_8_5_1_5_6_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_1_6_1_9_5_7_0_8_5_1_3_2_6 ) < 1E-3 def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Tuple = self.scheduler_classes[0] lowerCAmelCase__ : Any = self.get_scheduler_config() lowerCAmelCase__ : Any = scheduler_class(**a , use_karras_sigmas=a ) scheduler.set_timesteps(self.num_inference_steps , device=a ) lowerCAmelCase__ : str = self.dummy_model() lowerCAmelCase__ : Any = self.dummy_sample_deter.to(a ) * scheduler.init_noise_sigma lowerCAmelCase__ : str = sample.to(a ) for t in scheduler.timesteps: lowerCAmelCase__ : Any = scheduler.scale_model_input(a , a ) lowerCAmelCase__ : int = model(a , a ) lowerCAmelCase__ : Union[str, Any] = scheduler.step(a , a , a ) lowerCAmelCase__ : Union[str, Any] = output.prev_sample lowerCAmelCase__ : Optional[int] = torch.sum(torch.abs(a ) ) lowerCAmelCase__ : Any = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_7_6.6_6_9_7_4_1_3_5_7_4_2_1_8_8 ) < 1E-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_7.6_3_6_5_3_5_6_4_4_5_3_1_2_5 ) < 1E-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2 else: assert abs(result_sum.item() - 1_7_0.3_1_3_5_2_2_3_3_8_8_6_7_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2
307
1
"""simple docstring""" from argparse import ArgumentParser from . import BaseTransformersCLICommand def snake_case ( A__ ): return DownloadCommand(args.model ,args.cache_dir ,args.force ,args.trust_remote_code ) class UpperCamelCase_ (UpperCamelCase__ ): @staticmethod def _SCREAMING_SNAKE_CASE ( lowerCAmelCase_ : List[str] ) -> Tuple: UpperCAmelCase_ : List[str] = parser.add_parser("download" ) download_parser.add_argument( "--cache-dir" , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help="Path to location to store the models" ) download_parser.add_argument( "--force" , action="store_true" , help="Force the model to be download even if already in cache-dir" ) download_parser.add_argument( "--trust-remote-code" , action="store_true" , help="Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine" , ) download_parser.add_argument("model" , type=lowerCAmelCase__ , help="Name of the model to download" ) download_parser.set_defaults(func=lowerCAmelCase__ ) def __init__( self : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] ) -> Optional[Any]: UpperCAmelCase_ : Tuple = model UpperCAmelCase_ : Optional[int] = cache UpperCAmelCase_ : Any = force UpperCAmelCase_ : Dict = trust_remote_code def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
268
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging UpperCAmelCase : int = { """cola""": 2, """mnli""": 3, """mrpc""": 2, """sst-2""": 2, """sts-b""": 1, """qqp""": 2, """qnli""": 2, """rte""": 2, """wnli""": 2, } logging.set_verbosity_info() def _A ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Union[str, Any]=None ): """simple docstring""" a__ : Optional[int] =XLNetConfig.from_json_file(SCREAMING_SNAKE_CASE ) a__ : Dict =finetuning_task.lower() if finetuning_task is not None else "" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(f'''Building PyTorch XLNetForSequenceClassification model from configuration: {config}''' ) a__ : List[str] =finetuning_task a__ : Tuple =GLUE_TASKS_NUM_LABELS[finetuning_task] a__ : List[Any] =XLNetForSequenceClassification(SCREAMING_SNAKE_CASE ) elif "squad" in finetuning_task: a__ : Optional[int] =finetuning_task a__ : Dict =XLNetForQuestionAnswering(SCREAMING_SNAKE_CASE ) else: a__ : List[Any] =XLNetLMHeadModel(SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Save pytorch-model a__ : Dict =os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) a__ : Dict =os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) print(f'''Save PyTorch model to {os.path.abspath(SCREAMING_SNAKE_CASE )}''' ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE ) print(f'''Save configuration file to {os.path.abspath(SCREAMING_SNAKE_CASE )}''' ) with open(SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": UpperCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--xlnet_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained XLNet model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the folder to store the PyTorch model or dataset/vocab.""", ) parser.add_argument( """--finetuning_task""", default=None, type=str, help="""Name of a task on which the XLNet TensorFlow model was fine-tuned""", ) UpperCAmelCase : int = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
95
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A : str = { "configuration_xlm_roberta_xl": [ "XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMRobertaXLConfig", "XLMRobertaXLOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = [ "XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMRobertaXLForCausalLM", "XLMRobertaXLForMaskedLM", "XLMRobertaXLForMultipleChoice", "XLMRobertaXLForQuestionAnswering", "XLMRobertaXLForSequenceClassification", "XLMRobertaXLForTokenClassification", "XLMRobertaXLModel", "XLMRobertaXLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys A : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure)
354
from __future__ import annotations A : Dict = "#" class lowerCamelCase : """simple docstring""" def __init__( self : Dict ) -> None: SCREAMING_SNAKE_CASE_ = {} def __A ( self : List[Any] , __magic_name__ : str ) -> None: SCREAMING_SNAKE_CASE_ = self._trie for char in text: if char not in trie: SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = trie[char] SCREAMING_SNAKE_CASE_ = True def __A ( self : Union[str, Any] , __magic_name__ : str ) -> tuple | list: SCREAMING_SNAKE_CASE_ = self._trie for char in prefix: if char in trie: SCREAMING_SNAKE_CASE_ = trie[char] else: return [] return self._elements(__magic_name__ ) def __A ( self : int , __magic_name__ : dict ) -> tuple: SCREAMING_SNAKE_CASE_ = [] for c, v in d.items(): SCREAMING_SNAKE_CASE_ = [" "] if c == END else [(c + s) for s in self._elements(__magic_name__ )] result.extend(__magic_name__ ) return tuple(__magic_name__ ) A : Union[str, Any] = Trie() A : Optional[int] = ("depart", "detergent", "daring", "dog", "deer", "deal") for word in words: trie.insert_word(word) def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = trie.find_word(__UpperCamelCase ) return tuple(string + word for word in suffixes ) def a__ ( ): print(autocomplete_using_trie("de" ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
305
0
from scipy.stats import spearmanr import datasets __lowercase = ''' The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. ''' __lowercase = ''' Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {\'spearmanr\': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results[\'spearmanr\']) -0.7 >>> print(round(results[\'spearmanr_pvalue\'], 2)) 0.19 ''' __lowercase = r'''\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase_ ( datasets.Metric ): '''simple docstring''' def UpperCamelCase__ ( self) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float'''), '''references''': datasets.Value('''float'''), }) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'''] , ) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase=False) -> List[str]: __UpperCamelCase :Optional[Any] = spearmanr(__lowercase , __lowercase) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
43
'''simple docstring''' import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets SCREAMING_SNAKE_CASE_: Optional[Any] ='\\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks\n and Collin Burns\n and Saurav Kadavath\n and Akul Arora\n and Steven Basart\n and Eric Tang\n and Dawn Song\n and Jacob Steinhardt},\n journal={arXiv preprint arXiv:2103.03874},\n year={2021}\n}\n' SCREAMING_SNAKE_CASE_: Union[str, Any] ='\\nThis metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.\nIt first canonicalizes the inputs (e.g., converting "1/2" to "\\frac{1}{2}") and then computes accuracy.\n' SCREAMING_SNAKE_CASE_: List[Any] =r'\nCalculates accuracy after canonicalizing inputs.\n\nArgs:\n predictions: list of predictions to score. Each prediction\n is a string that contains natural language and LaTex.\n references: list of reference for each prediction. Each\n reference is a string that contains natural language\n and LaTex.\nReturns:\n accuracy: accuracy after canonicalizing inputs\n (e.g., converting "1/2" to "\\frac{1}{2}")\n\nExamples:\n >>> metric = datasets.load_metric("competition_math")\n >>> results = metric.compute(references=["\\frac{1}{2}"], predictions=["1/2"])\n >>> print(results)\n {\'accuracy\': 1.0}\n' @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): def _lowercase (self : Optional[Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" ), "references": datasets.Value("string" ), } ) , homepage="https://github.com/hendrycks/math" , codebase_urls=["https://github.com/hendrycks/math"] , ) def _lowercase (self : Tuple , __a : Optional[int] , __a : List[Any] ): UpperCAmelCase_ = 0.0 for i, j in zip(__a , __a ): n_correct += 1.0 if math_equivalence.is_equiv(__a , __a ) else 0.0 UpperCAmelCase_ = n_correct / len(__a ) return { "accuracy": accuracy, }
1
0
from __future__ import annotations def lowercase_ ( A__ = 4 ) -> list[list[int]]: """simple docstring""" snake_case = abs(A__ ) or 4 return [[1 + x + y * row_size for x in range(A__ )] for y in range(A__ )] def lowercase_ ( A__ ) -> list[list[int]]: """simple docstring""" return reverse_row(transpose(A__ ) ) # OR.. transpose(reverse_column(matrix)) def lowercase_ ( A__ ) -> list[list[int]]: """simple docstring""" return reverse_row(reverse_column(A__ ) ) # OR.. reverse_column(reverse_row(matrix)) def lowercase_ ( A__ ) -> list[list[int]]: """simple docstring""" return reverse_column(transpose(A__ ) ) # OR.. transpose(reverse_row(matrix)) def lowercase_ ( A__ ) -> list[list[int]]: """simple docstring""" snake_case = [list(A__ ) for x in zip(*A__ )] return matrix def lowercase_ ( A__ ) -> list[list[int]]: """simple docstring""" snake_case = matrix[::-1] return matrix def lowercase_ ( A__ ) -> list[list[int]]: """simple docstring""" snake_case = [x[::-1] for x in matrix] return matrix def lowercase_ ( A__ ) -> None: """simple docstring""" for i in matrix: print(*A__ ) if __name__ == "__main__": _A = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 90 counterclockwise:\n") print_matrix(rotate_aa(matrix)) _A = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 180:\n") print_matrix(rotate_aaa(matrix)) _A = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 270 counterclockwise:\n") print_matrix(rotate_aaa(matrix))
137
from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json" ), "google/realm-orqa-nq-openqa": "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json", "google/realm-orqa-nq-reader": "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json", "google/realm-orqa-wq-openqa": "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json", "google/realm-orqa-wq-reader": "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json", # See all REALM models at https://huggingface.co/models?filter=realm } class lowerCamelCase ( A_ ): UpperCAmelCase__ : str = "realm" def __init__(self : Optional[int] , _A : Optional[Any]=3_0_5_2_2 , _A : Tuple=7_6_8 , _A : List[str]=1_2_8 , _A : Optional[Any]=1_2 , _A : Dict=1_2 , _A : Tuple=8 , _A : Dict=3_0_7_2 , _A : Union[str, Any]="gelu_new" , _A : Any=0.1 , _A : int=0.1 , _A : Union[str, Any]=5_1_2 , _A : List[str]=2 , _A : Any=0.02 , _A : int=1E-12 , _A : Tuple=2_5_6 , _A : Optional[Any]=1_0 , _A : Any=1E-3 , _A : int=5 , _A : int=3_2_0 , _A : Dict=1_3_3_5_3_7_1_8 , _A : Any=5_0_0_0 , _A : Union[str, Any]=1 , _A : Dict=0 , _A : int=2 , **_A : Union[str, Any] , ) -> Optional[Any]: super().__init__(pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A ) # Common config snake_case = vocab_size snake_case = max_position_embeddings snake_case = hidden_size snake_case = retriever_proj_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = num_candidates snake_case = intermediate_size snake_case = hidden_act snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = initializer_range snake_case = type_vocab_size snake_case = layer_norm_eps # Reader config snake_case = span_hidden_size snake_case = max_span_width snake_case = reader_layer_norm_eps snake_case = reader_beam_size snake_case = reader_seq_len # Retrieval config snake_case = num_block_records snake_case = searcher_beam_size
137
1
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration lowercase : Union[str, Any] = 5_0_0_0_0_0 lowercase : Optional[Any] = os.path.split(__file__) lowercase : List[Any] = os.path.join(RESULTS_BASEPATH, """results""", RESULTS_FILENAME.replace(""".py""", """.json""")) @get_duration def A_ ( A__ , **A__ ) -> str: a__ : Tuple = dataset.map(**A__ ) @get_duration def A_ ( A__ , **A__ ) -> str: a__ : List[Any] = dataset.filter(**A__ ) def A_ ( ) -> List[Any]: a__ : Any = {'num examples': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: a__ : int = datasets.Features({'text': datasets.Value('string' ), 'numbers': datasets.Value('float32' )} ) a__ : Dict = generate_example_dataset( os.path.join(A__ , 'dataset.arrow' ) , A__ , num_examples=A__ ) a__ : Tuple = transformers.AutoTokenizer.from_pretrained('bert-base-cased' , use_fast=A__ ) def tokenize(A__ ): return tokenizer(examples['text'] ) a__ : int = map(A__ ) a__ : str = map(A__ , batched=A__ ) a__ : List[str] = map(A__ , function=lambda A__ : None , batched=A__ ) with dataset.formatted_as(type='numpy' ): a__ : Optional[int] = map(A__ , function=lambda A__ : None , batched=A__ ) with dataset.formatted_as(type='pandas' ): a__ : Optional[Any] = map(A__ , function=lambda A__ : None , batched=A__ ) with dataset.formatted_as(type='torch' , columns='numbers' ): a__ : Dict = map(A__ , function=lambda A__ : None , batched=A__ ) with dataset.formatted_as(type='tensorflow' , columns='numbers' ): a__ : Any = map(A__ , function=lambda A__ : None , batched=A__ ) a__ : Optional[int] = map(A__ , function=A__ , batched=A__ ) a__ : Tuple = filter(A__ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(A__ , 'wb' ) as f: f.write(json.dumps(A__ ).encode('utf-8' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
99
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() snake_case__ : Dict = logging.get_logger(__name__) snake_case__ : Optional[Any] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'encoder.layer_norm_for_extract': 'layer_norm_for_extract', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'label_embs_concat': 'label_embeddings_concat', 'mask_emb': 'masked_spec_embed', 'spk_proj': 'speaker_proj', } snake_case__ : Optional[int] = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'label_embeddings_concat', 'speaker_proj', 'layer_norm_for_extract', ] def _a ( lowerCamelCase: List[Any] , lowerCamelCase: Any , lowerCamelCase: Union[str, Any] , lowerCamelCase: Any , lowerCamelCase: int ) -> List[str]: '''simple docstring''' for attribute in key.split('''.''' ): __A = getattr(lowerCamelCase , lowerCamelCase ) if weight_type is not None: __A = getattr(lowerCamelCase , lowerCamelCase ).shape else: __A = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": __A = value elif weight_type == "weight_g": __A = value elif weight_type == "weight_v": __A = value elif weight_type == "bias": __A = value else: __A = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def _a ( lowerCamelCase: List[str] , lowerCamelCase: Optional[int] ) -> Tuple: '''simple docstring''' __A = [] __A = fairseq_model.state_dict() __A = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): __A = False if "conv_layers" in name: load_conv_layer( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , hf_model.config.feat_extract_norm == '''group''' , ) __A = True else: for key, mapped_key in MAPPING.items(): __A = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key): # special case since naming is very similar continue __A = True if "*" in mapped_key: __A = name.split(lowerCamelCase )[0].split('''.''' )[-2] __A = mapped_key.replace('''*''' , lowerCamelCase ) if "weight_g" in name: __A = '''weight_g''' elif "weight_v" in name: __A = '''weight_v''' elif "bias" in name: __A = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj __A = '''weight''' else: __A = None set_recursively(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) continue if not is_used: unused_weights.append(lowerCamelCase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def _a ( lowerCamelCase: int , lowerCamelCase: Any , lowerCamelCase: int , lowerCamelCase: int , lowerCamelCase: List[str] ) -> Union[str, Any]: '''simple docstring''' __A = full_name.split('''conv_layers.''' )[-1] __A = name.split('''.''' ) __A = int(items[0] ) __A = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __A = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __A = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) __A = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __A = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowerCamelCase ) @torch.no_grad() def _a ( lowerCamelCase: Tuple , lowerCamelCase: int , lowerCamelCase: Optional[Any]=None , lowerCamelCase: Optional[Any]=None , lowerCamelCase: Optional[int]=True ) -> List[Any]: '''simple docstring''' if config_path is not None: __A = UniSpeechSatConfig.from_pretrained(lowerCamelCase ) else: __A = UniSpeechSatConfig() __A = '''''' if is_finetuned: __A = UniSpeechSatForCTC(lowerCamelCase ) else: __A = UniSpeechSatForPreTraining(lowerCamelCase ) __A , __A , __A = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) __A = model[0].eval() recursively_load_weights(lowerCamelCase , lowerCamelCase ) hf_wavavec.save_pretrained(lowerCamelCase ) if __name__ == "__main__": snake_case__ : Tuple = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) snake_case__ : Any = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
117
0
'''simple docstring''' from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record __lowerCAmelCase = '''\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } ''' __lowerCAmelCase = '''\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. ''' __lowerCAmelCase = ''' Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for \'record\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'prediction_text\': the predicted answer text - for \'multirc\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question-answer pair as specified by the dataset - \'prediction\': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for \'record\': list of question-answers dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'answers\': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for \'record\': - \'exact_match\': Exact match between answer and gold answer - \'f1\': F1 score - for \'multirc\': - \'exact_match\': Exact match between answer and gold answer - \'f1_m\': Per-question macro-F1 score - \'f1_a\': Average F1 score over all answers - for \'axb\': \'matthews_correlation\': Matthew Correlation - for \'cb\': - \'accuracy\': Accuracy - \'f1\': F1 score - for all others: - \'accuracy\': Accuracy Examples: >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\') >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}] >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\') >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> Any: return float((preds == labels).mean() ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_="binary" ) -> List[str]: _a : Any = simple_accuracy(lowerCAmelCase_ , lowerCAmelCase_ ) _a : Optional[Any] = float(fa_score(y_true=lowerCAmelCase_ , y_pred=lowerCAmelCase_ , average=lowerCAmelCase_ ) ) return { "accuracy": acc, "f1": fa, } def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> Dict: _a : Tuple = {} for id_pred, label in zip(lowerCAmelCase_ , lowerCAmelCase_ ): _a : Dict = f"""{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}""" _a : int = id_pred['prediction'] if question_id in question_map: question_map[question_id].append((pred, label) ) else: _a : Dict = [(pred, label)] _a , _a : Union[str, Any] = [], [] for question, preds_labels in question_map.items(): _a , _a : List[Any] = zip(*lowerCAmelCase_ ) _a : Union[str, Any] = fa_score(y_true=lowerCAmelCase_ , y_pred=lowerCAmelCase_ , average='macro' ) fas.append(lowerCAmelCase_ ) _a : Union[str, Any] = int(sum(pred == label for pred, label in preds_labels ) == len(lowerCAmelCase_ ) ) ems.append(lowerCAmelCase_ ) _a : int = float(sum(lowerCAmelCase_ ) / len(lowerCAmelCase_ ) ) _a : Union[str, Any] = sum(lowerCAmelCase_ ) / len(lowerCAmelCase_ ) _a : Optional[Any] = float(fa_score(y_true=lowerCAmelCase_ , y_pred=[id_pred['prediction'] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): def __lowercase ( self : Optional[int] ): if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( 'You should supply a configuration name selected in ' '["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]' ) return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(self._get_feature_types() ) ,codebase_urls=[] ,reference_urls=[] ,format='numpy' if not self.config_name == 'record' and not self.config_name == 'multirc' else None ,) def __lowercase ( self : str ): if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('int64' ), "query": datasets.Value('int64' ), }, "prediction_text": datasets.Value('string' ), }, "references": { "idx": { "passage": datasets.Value('int64' ), "query": datasets.Value('int64' ), }, "answers": datasets.Sequence(datasets.Value('string' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('int64' ), "paragraph": datasets.Value('int64' ), "question": datasets.Value('int64' ), }, "prediction": datasets.Value('int64' ), }, "references": datasets.Value('int64' ), } else: return { "predictions": datasets.Value('int64' ), "references": datasets.Value('int64' ), } def __lowercase ( self : int ,_UpperCAmelCase : List[Any] ,_UpperCAmelCase : Optional[int] ): if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(UpperCAmelCase__ ,UpperCAmelCase__ )} elif self.config_name == "cb": return acc_and_fa(UpperCAmelCase__ ,UpperCAmelCase__ ,fa_avg='macro' ) elif self.config_name == "record": _a : str = [ { 'qas': [ {'id': ref['idx']['query'], 'answers': [{'text': ans} for ans in ref['answers']]} for ref in references ] } ] _a : Dict = {pred['idx']['query']: pred['prediction_text'] for pred in predictions} return evaluate_record(UpperCAmelCase__ ,UpperCAmelCase__ )[0] elif self.config_name == "multirc": return evaluate_multirc(UpperCAmelCase__ ,UpperCAmelCase__ ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(UpperCAmelCase__ ,UpperCAmelCase__ )} else: raise KeyError( 'You should supply a configuration name selected in ' '["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]' )
361
'''simple docstring''' from math import sqrt def __lowerCamelCase ( lowerCAmelCase_ ) -> int: _a : Dict = 0 for i in range(1 , int(sqrt(lowerCAmelCase_ ) + 1 ) ): if n % i == 0 and i != sqrt(lowerCAmelCase_ ): total += i + n // i elif i == sqrt(lowerCAmelCase_ ): total += i return total - n def __lowerCamelCase ( lowerCAmelCase_ = 10000 ) -> int: _a : Union[str, Any] = sum( i for i in range(1 , lowerCAmelCase_ ) if sum_of_divisors(sum_of_divisors(lowerCAmelCase_ ) ) == i and sum_of_divisors(lowerCAmelCase_ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
107
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _A : Optional[int] = logging.get_logger(__name__) _A : int = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Union[str, Any] = """data2vec-text""" def __init__( self : Any , SCREAMING_SNAKE_CASE__ : int=3_05_22 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=7_68 , SCREAMING_SNAKE_CASE__ : List[Any]=12 , SCREAMING_SNAKE_CASE__ : Dict=12 , SCREAMING_SNAKE_CASE__ : Tuple=30_72 , SCREAMING_SNAKE_CASE__ : Tuple="gelu" , SCREAMING_SNAKE_CASE__ : str=0.1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE__ : Dict=5_12 , SCREAMING_SNAKE_CASE__ : Tuple=2 , SCREAMING_SNAKE_CASE__ : List[Any]=0.0_2 , SCREAMING_SNAKE_CASE__ : Tuple=1e-1_2 , SCREAMING_SNAKE_CASE__ : Dict=1 , SCREAMING_SNAKE_CASE__ : Optional[int]=0 , SCREAMING_SNAKE_CASE__ : Any=2 , SCREAMING_SNAKE_CASE__ : Optional[Any]="absolute" , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Dict=None , **SCREAMING_SNAKE_CASE__ : Optional[Any] , ) -> int: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = hidden_act __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = position_embedding_type __lowerCAmelCase = use_cache __lowerCAmelCase = classifier_dropout class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' @property def a ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __lowerCAmelCase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __lowerCAmelCase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
229
'''simple docstring''' import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor _A : Optional[int] = logging.get_logger(__name__) class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : Dict , *SCREAMING_SNAKE_CASE__ : Optional[int] , **SCREAMING_SNAKE_CASE__ : List[str] ) -> None: warnings.warn( """The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use SegformerImageProcessor instead.""" , SCREAMING_SNAKE_CASE__ , ) super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
229
1
import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : List[str] ) -> Dict: """simple docstring""" lowercase__ = 0 @slow def lowerCamelCase__ (self : Dict ) -> List[Any]: """simple docstring""" for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): lowercase__ = AutoTokenizer.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) self.assertIsInstance(_lowercase , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(_lowercase ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): lowercase__ = AutoTokenizer.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) self.assertIsInstance(_lowercase , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(_lowercase ) , 0 ) def lowerCamelCase__ (self : Any ) -> Dict: """simple docstring""" lowercase__ = AutoTokenizer.from_pretrained(_lowercase ) self.assertIsInstance(_lowercase , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def lowerCamelCase__ (self : Dict ) -> str: """simple docstring""" lowercase__ = AutoTokenizer.from_pretrained(_lowercase ) self.assertIsInstance(_lowercase , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 20 ) def lowerCamelCase__ (self : int ) -> List[str]: """simple docstring""" lowercase__ = AutoConfig.from_pretrained(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) # Check that tokenizer_type ≠ model_type lowercase__ = AutoTokenizer.from_pretrained(_lowercase , config=_lowercase ) self.assertIsInstance(_lowercase , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def lowerCamelCase__ (self : str ) -> str: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.txt""" , os.path.join(_lowercase , """vocab.txt""" ) ) lowercase__ = AutoTokenizer.from_pretrained(_lowercase , tokenizer_type="""bert""" , use_fast=_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.json""" , os.path.join(_lowercase , """vocab.json""" ) ) shutil.copy("""./tests/fixtures/merges.txt""" , os.path.join(_lowercase , """merges.txt""" ) ) lowercase__ = AutoTokenizer.from_pretrained(_lowercase , tokenizer_type="""gpt2""" , use_fast=_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) @require_tokenizers def lowerCamelCase__ (self : str ) -> Union[str, Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.txt""" , os.path.join(_lowercase , """vocab.txt""" ) ) lowercase__ = AutoTokenizer.from_pretrained(_lowercase , tokenizer_type="""bert""" ) self.assertIsInstance(_lowercase , _lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.json""" , os.path.join(_lowercase , """vocab.json""" ) ) shutil.copy("""./tests/fixtures/merges.txt""" , os.path.join(_lowercase , """merges.txt""" ) ) lowercase__ = AutoTokenizer.from_pretrained(_lowercase , tokenizer_type="""gpt2""" ) self.assertIsInstance(_lowercase , _lowercase ) def lowerCamelCase__ (self : Optional[Any] ) -> List[Any]: """simple docstring""" with pytest.raises(_lowercase ): AutoTokenizer.from_pretrained("""./""" , tokenizer_type="""xxx""" ) @require_tokenizers def lowerCamelCase__ (self : List[str] ) -> Union[str, Any]: """simple docstring""" for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: lowercase__ = tokenizer_class.from_pretrained("""wietsedv/bert-base-dutch-cased""" ) self.assertIsInstance(_lowercase , (BertTokenizer, BertTokenizerFast) ) if isinstance(_lowercase , _lowercase ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , _lowercase ) else: self.assertEqual(tokenizer.do_lower_case , _lowercase ) self.assertEqual(tokenizer.model_max_length , 512 ) @require_tokenizers def lowerCamelCase__ (self : Dict ) -> List[str]: """simple docstring""" for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( _lowercase , """julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier""" , ): lowercase__ = tokenizer_class.from_pretrained("""julien-c/herlolip-not-exists""" ) def lowerCamelCase__ (self : Any ) -> List[str]: """simple docstring""" lowercase__ = TOKENIZER_MAPPING.values() lowercase__ = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(_lowercase ) @require_tokenizers def lowerCamelCase__ (self : List[Any] ) -> Any: """simple docstring""" self.assertIsInstance(AutoTokenizer.from_pretrained("""bert-base-cased""" , use_fast=_lowercase ) , _lowercase ) self.assertIsInstance(AutoTokenizer.from_pretrained("""bert-base-cased""" ) , _lowercase ) @require_tokenizers def lowerCamelCase__ (self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = AutoTokenizer.from_pretrained("""distilbert-base-uncased""" , do_lower_case=_lowercase ) lowercase__ = """Hello, world. How are you?""" lowercase__ = tokenizer.tokenize(_lowercase ) self.assertEqual("""[UNK]""" , tokens[0] ) lowercase__ = AutoTokenizer.from_pretrained("""microsoft/mpnet-base""" , do_lower_case=_lowercase ) lowercase__ = tokenizer.tokenize(_lowercase ) self.assertEqual("""[UNK]""" , tokens[0] ) @require_tokenizers def lowerCamelCase__ (self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = AutoTokenizer.from_pretrained("""robot-test/dummy-tokenizer-fast-with-model-config""" ) self.assertEqual(type(_lowercase ) , _lowercase ) self.assertEqual(tokenizer.model_max_length , 512 ) self.assertEqual(tokenizer.vocab_size , 3_0000 ) self.assertEqual(tokenizer.unk_token , """[UNK]""" ) self.assertEqual(tokenizer.padding_side , """right""" ) self.assertEqual(tokenizer.truncation_side , """right""" ) def lowerCamelCase__ (self : str ) -> str: """simple docstring""" lowercase__ = AutoTokenizer.from_pretrained(_lowercase ) self.assertIsInstance(_lowercase , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowercase ) lowercase__ = AutoTokenizer.from_pretrained(_lowercase ) self.assertIsInstance(_lowercase , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 12 ) def lowerCamelCase__ (self : Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ = AutoTokenizer.from_pretrained("""ctrl""" ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(_lowercase , _lowercase ) def lowerCamelCase__ (self : Tuple ) -> Tuple: """simple docstring""" lowercase__ = get_tokenizer_config("""bert-base-cased""" ) lowercase__ = config.pop("""_commit_hash""" , _lowercase ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(_lowercase , {"""do_lower_case""": False} ) # This model does not have a tokenizer_config so we get back an empty dict. lowercase__ = get_tokenizer_config(_lowercase ) self.assertDictEqual(_lowercase , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. lowercase__ = AutoTokenizer.from_pretrained(_lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowercase ) lowercase__ = get_tokenizer_config(_lowercase ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config["""tokenizer_class"""] , """BertTokenizer""" ) def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" try: AutoConfig.register("""custom""" , _lowercase ) AutoTokenizer.register(_lowercase , slow_tokenizer_class=_lowercase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_lowercase ): AutoTokenizer.register(_lowercase , slow_tokenizer_class=_lowercase ) lowercase__ = CustomTokenizer.from_pretrained(_lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowercase ) lowercase__ = AutoTokenizer.from_pretrained(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def lowerCamelCase__ (self : Optional[Any] ) -> Tuple: """simple docstring""" try: AutoConfig.register("""custom""" , _lowercase ) # Can register in two steps AutoTokenizer.register(_lowercase , slow_tokenizer_class=_lowercase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(_lowercase , fast_tokenizer_class=_lowercase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( _lowercase , slow_tokenizer_class=_lowercase , fast_tokenizer_class=_lowercase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_lowercase ): AutoTokenizer.register(_lowercase , fast_tokenizer_class=_lowercase ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ = BertTokenizerFast.from_pretrained(_lowercase ) bert_tokenizer.save_pretrained(_lowercase ) lowercase__ = CustomTokenizerFast.from_pretrained(_lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowercase ) lowercase__ = AutoTokenizer.from_pretrained(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) lowercase__ = AutoTokenizer.from_pretrained(_lowercase , use_fast=_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowerCamelCase__ (self : List[str] ) -> Union[str, Any]: """simple docstring""" with self.assertRaises(_lowercase ): lowercase__ = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(_lowercase ): lowercase__ = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=_lowercase ) lowercase__ = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=_lowercase ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowercase ) lowercase__ = AutoTokenizer.from_pretrained(_lowercase , trust_remote_code=_lowercase ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version lowercase__ = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=_lowercase , use_fast=_lowercase ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowercase ) lowercase__ = AutoTokenizer.from_pretrained(_lowercase , trust_remote_code=_lowercase , use_fast=_lowercase ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizer""" ) @require_tokenizers def lowerCamelCase__ (self : List[Any] ) -> List[Any]: """simple docstring""" class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = False class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = NewTokenizer A__ = False try: AutoConfig.register("""custom""" , _lowercase ) AutoTokenizer.register(_lowercase , slow_tokenizer_class=_lowercase ) AutoTokenizer.register(_lowercase , fast_tokenizer_class=_lowercase ) # If remote code is not set, the default is to use local lowercase__ = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertFalse(tokenizer.special_attribute_present ) lowercase__ = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" , use_fast=_lowercase ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. lowercase__ = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=_lowercase ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertFalse(tokenizer.special_attribute_present ) lowercase__ = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=_lowercase , use_fast=_lowercase ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub lowercase__ = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=_lowercase ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertTrue(tokenizer.special_attribute_present ) lowercase__ = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=_lowercase , use_fast=_lowercase ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowerCamelCase__ (self : Dict ) -> int: """simple docstring""" lowercase__ = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer_legacy""" , trust_remote_code=_lowercase ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version lowercase__ = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer_legacy""" , trust_remote_code=_lowercase , use_fast=_lowercase ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" with self.assertRaisesRegex( _lowercase , """bert-base is not a local folder and is not a valid model identifier""" ): lowercase__ = AutoTokenizer.from_pretrained("""bert-base""" ) def lowerCamelCase__ (self : Dict ) -> Tuple: """simple docstring""" with self.assertRaisesRegex( _lowercase , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): lowercase__ = AutoTokenizer.from_pretrained(_lowercase , revision="""aaaaaa""" ) def lowerCamelCase__ (self : Dict ) -> Optional[Any]: """simple docstring""" lowercase__ = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) with RequestCounter() as counter: lowercase__ = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
366
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : List[str] = logging.get_logger(__name__) A : List[Any] = { 'nvidia/segformer-b0-finetuned-ade-512-512': ( 'https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json' ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''segformer''' def __init__(self : Dict , _UpperCAmelCase : Optional[int]=3 , _UpperCAmelCase : Dict=4 , _UpperCAmelCase : Union[str, Any]=[2, 2, 2, 2] , _UpperCAmelCase : List[str]=[8, 4, 2, 1] , _UpperCAmelCase : str=[32, 64, 160, 256] , _UpperCAmelCase : Optional[int]=[7, 3, 3, 3] , _UpperCAmelCase : int=[4, 2, 2, 2] , _UpperCAmelCase : str=[1, 2, 5, 8] , _UpperCAmelCase : Optional[int]=[4, 4, 4, 4] , _UpperCAmelCase : List[Any]="gelu" , _UpperCAmelCase : Optional[Any]=0.0 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : List[str]=0.02 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Optional[Any]=1E-6 , _UpperCAmelCase : Optional[Any]=256 , _UpperCAmelCase : Any=255 , **_UpperCAmelCase : str , ) -> Tuple: """simple docstring""" super().__init__(**_UpperCAmelCase ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( """Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be""" """ removed, as the behaviour will default to that of reshape_last_stage = True.""" , _UpperCAmelCase , ) lowercase__ = num_channels lowercase__ = num_encoder_blocks lowercase__ = depths lowercase__ = sr_ratios lowercase__ = hidden_sizes lowercase__ = patch_sizes lowercase__ = strides lowercase__ = mlp_ratios lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = classifier_dropout_prob lowercase__ = initializer_range lowercase__ = drop_path_rate lowercase__ = layer_norm_eps lowercase__ = decoder_hidden_size lowercase__ = kwargs.get("""reshape_last_stage""" , _UpperCAmelCase ) lowercase__ = semantic_loss_ignore_index class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = version.parse('''1.11''' ) @property def lowerCamelCase__ (self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCamelCase__ (self : Optional[int] ) -> float: """simple docstring""" return 1E-4 @property def lowerCamelCase__ (self : Optional[Any] ) -> int: """simple docstring""" return 12
146
0
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class A__ : def __init__( self , __magic_name__ , __magic_name__=1_3 , __magic_name__=7 , __magic_name__=False , __magic_name__=True , __magic_name__=False , __magic_name__=False , __magic_name__=1_9 , __magic_name__=3_2 , __magic_name__=5 , __magic_name__=4 , __magic_name__=3_7 , __magic_name__="gelu" , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=5_1_2 , __magic_name__=1_6 , __magic_name__=2 , __magic_name__=0.02 , __magic_name__=3 , __magic_name__=4 , __magic_name__=None , ): lowerCamelCase : Dict = parent lowerCamelCase : Dict = batch_size lowerCamelCase : Optional[int] = seq_length lowerCamelCase : Dict = is_training lowerCamelCase : Union[str, Any] = use_input_mask lowerCamelCase : Dict = use_token_type_ids lowerCamelCase : Any = use_labels lowerCamelCase : Tuple = vocab_size lowerCamelCase : Optional[int] = hidden_size lowerCamelCase : List[str] = num_hidden_layers lowerCamelCase : Optional[int] = num_attention_heads lowerCamelCase : Optional[Any] = intermediate_size lowerCamelCase : Optional[Any] = hidden_act lowerCamelCase : Tuple = hidden_dropout_prob lowerCamelCase : List[str] = attention_probs_dropout_prob lowerCamelCase : Optional[Any] = max_position_embeddings lowerCamelCase : Dict = type_vocab_size lowerCamelCase : Tuple = type_sequence_label_size lowerCamelCase : Dict = initializer_range lowerCamelCase : Optional[int] = num_labels lowerCamelCase : List[str] = num_choices lowerCamelCase : List[str] = scope def UpperCamelCase__ ( self ): lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase : Union[str, Any] = None if self.use_input_mask: lowerCamelCase : int = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase : Dict = None lowerCamelCase : List[Any] = None lowerCamelCase : Optional[Any] = None if self.use_labels: lowerCamelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase : Optional[int] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self ): lowerCamelCase : Optional[Any] = EsmConfig( vocab_size=3_3 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=SCREAMING_SNAKE_CASE_ , esmfold_config={"""trunk""": {"""num_blocks""": 2}, """fp16_esm""": False} , ) return config def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): lowerCamelCase : int = EsmForProteinFolding(config=SCREAMING_SNAKE_CASE_ ).float() model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase : Optional[Any] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ) lowerCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 1_4, 3) ) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) ) def UpperCamelCase__ ( self ): lowerCamelCase : Optional[int] = self.prepare_config_and_inputs() ( lowerCamelCase ) : Tuple = config_and_inputs lowerCamelCase : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class A__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase): _UpperCAmelCase : List[str] = False _UpperCAmelCase : Optional[Any] = (EsmForProteinFolding,) if is_torch_available() else () _UpperCAmelCase : Dict = () _UpperCAmelCase : Dict = {} if is_torch_available() else {} _UpperCAmelCase : Optional[Any] = False def UpperCamelCase__ ( self ): lowerCamelCase : Dict = EsmFoldModelTester(self ) lowerCamelCase : List[str] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , hidden_size=3_7 ) def UpperCamelCase__ ( self ): self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) @unittest.skip("""Does not support attention outputs""" ) def UpperCamelCase__ ( self ): pass @unittest.skip def UpperCamelCase__ ( self ): pass @unittest.skip("""Esm does not support embedding resizing""" ) def UpperCamelCase__ ( self ): pass @unittest.skip("""Esm does not support embedding resizing""" ) def UpperCamelCase__ ( self ): pass @unittest.skip("""ESMFold does not support passing input embeds!""" ) def UpperCamelCase__ ( self ): pass @unittest.skip("""ESMFold does not support head pruning.""" ) def UpperCamelCase__ ( self ): pass @unittest.skip("""ESMFold does not support head pruning.""" ) def UpperCamelCase__ ( self ): pass @unittest.skip("""ESMFold does not support head pruning.""" ) def UpperCamelCase__ ( self ): pass @unittest.skip("""ESMFold does not support head pruning.""" ) def UpperCamelCase__ ( self ): pass @unittest.skip("""ESMFold does not support head pruning.""" ) def UpperCamelCase__ ( self ): pass @unittest.skip("""ESMFold does not output hidden states in the normal way.""" ) def UpperCamelCase__ ( self ): pass @unittest.skip("""ESMfold does not output hidden states in the normal way.""" ) def UpperCamelCase__ ( self ): pass @unittest.skip("""ESMFold only has one output format.""" ) def UpperCamelCase__ ( self ): pass @unittest.skip("""This test doesn't work for ESMFold and doesn't test core functionality""" ) def UpperCamelCase__ ( self ): pass @unittest.skip("""ESMFold does not support input chunking.""" ) def UpperCamelCase__ ( self ): pass @unittest.skip("""ESMFold doesn't respect you and it certainly doesn't respect your initialization arguments.""" ) def UpperCamelCase__ ( self ): pass @unittest.skip("""ESMFold doesn't support torchscript compilation.""" ) def UpperCamelCase__ ( self ): pass @unittest.skip("""ESMFold doesn't support torchscript compilation.""" ) def UpperCamelCase__ ( self ): pass @unittest.skip("""ESMFold doesn't support torchscript compilation.""" ) def UpperCamelCase__ ( self ): pass @unittest.skip("""ESMFold doesn't support data parallel.""" ) def UpperCamelCase__ ( self ): pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCamelCase__ ( self ): pass @require_torch class A__ ( _lowerCAmelCase): @slow def UpperCamelCase__ ( self ): lowerCamelCase : Tuple = EsmForProteinFolding.from_pretrained("""facebook/esmfold_v1""" ).float() model.eval() lowerCamelCase : str = torch.tensor([[0, 6, 4, 1_3, 5, 4, 1_6, 1_2, 1_1, 7, 2]] ) lowerCamelCase : str = model(SCREAMING_SNAKE_CASE_ )["""positions"""] lowerCamelCase : Optional[Any] = torch.tensor([2.5_828, 0.7_993, -1_0.9_3_3_4] , dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) )
287
from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize("""repo_id""" , ["""canonical_dataset_name""", """org-name/dataset-name"""] ) @pytest.mark.parametrize("""path""" , ["""filename.csv""", """filename with blanks.csv"""] ) @pytest.mark.parametrize("""revision""" , [None, """v2"""] ) def lowerCAmelCase_ (lowerCAmelCase__: Any , lowerCAmelCase__: int , lowerCAmelCase__: Optional[int] ): """simple docstring""" UpperCAmelCase_: int = hf_hub_url(repo_id=lowerCAmelCase__ , path=lowerCAmelCase__ , revision=lowerCAmelCase__ ) assert url == F'https://huggingface.co/datasets/{repo_id}/resolve/{revision or "main"}/{quote(lowerCAmelCase__ )}'
147
0
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class UpperCamelCase__ : """simple docstring""" def __init__( self , _A , _A=99 , _A=13 , _A=16 , _A=7 , _A=True , _A=True , _A=True , _A=False , _A=True , _A=2 , _A=32 , _A=4 , _A=4 , _A=30 , _A=0 , _A=1 , _A=2 , _A=None , ) -> Tuple: SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = decoder_seq_length # For common tests SCREAMING_SNAKE_CASE_ = self.decoder_seq_length SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_attention_mask SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = d_model SCREAMING_SNAKE_CASE_ = d_model SCREAMING_SNAKE_CASE_ = decoder_layers SCREAMING_SNAKE_CASE_ = decoder_layers SCREAMING_SNAKE_CASE_ = decoder_ffn_dim SCREAMING_SNAKE_CASE_ = decoder_attention_heads SCREAMING_SNAKE_CASE_ = decoder_attention_heads SCREAMING_SNAKE_CASE_ = eos_token_id SCREAMING_SNAKE_CASE_ = bos_token_id SCREAMING_SNAKE_CASE_ = pad_token_id SCREAMING_SNAKE_CASE_ = decoder_start_token_id SCREAMING_SNAKE_CASE_ = use_cache SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = decoder_seq_length SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 1 def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_ = None if self.use_attention_mask: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) SCREAMING_SNAKE_CASE_ = None if self.use_labels: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_ = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def _UpperCamelCase ( self , _A , _A , _A , _A , ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = TrOCRDecoder(config=_A ).to(_A ).eval() SCREAMING_SNAKE_CASE_ = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass SCREAMING_SNAKE_CASE_ = model(_A , use_cache=_A ) SCREAMING_SNAKE_CASE_ = model(_A ) SCREAMING_SNAKE_CASE_ = model(_A , use_cache=_A ) self.parent.assertTrue(len(_A ) == len(_A ) ) self.parent.assertTrue(len(_A ) == len(_A ) + 1 ) SCREAMING_SNAKE_CASE_ = outputs['''past_key_values'''] # create hypothetical next token and extent to next_input_ids SCREAMING_SNAKE_CASE_ = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and SCREAMING_SNAKE_CASE_ = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE_ = model(_A )['''last_hidden_state'''] SCREAMING_SNAKE_CASE_ = model(_A , past_key_values=_A )['''last_hidden_state'''] # select random slice SCREAMING_SNAKE_CASE_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE_ = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() SCREAMING_SNAKE_CASE_ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(_A , _A , atol=1E-3 ) def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = config_and_inputs SCREAMING_SNAKE_CASE_ = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_torch class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =(TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () UpperCAmelCase_ =(TrOCRForCausalLM,) if is_torch_available() else () UpperCAmelCase_ ={"text-generation": TrOCRForCausalLM} if is_torch_available() else {} UpperCAmelCase_ =True UpperCAmelCase_ =False def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = TrOCRStandaloneDecoderModelTester(self , is_training=_A ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=_A ) def _UpperCamelCase ( self ) -> List[str]: pass def _UpperCamelCase ( self ) -> int: pass def _UpperCamelCase ( self ) -> List[Any]: pass def _UpperCamelCase ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*_A ) def _UpperCamelCase ( self ) -> List[Any]: return @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def _UpperCamelCase ( self ) -> List[Any]: pass
257
import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): # Initialise PyTorch model SCREAMING_SNAKE_CASE_ = BigBirdConfig.from_json_file(__lowerCamelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) if is_trivia_qa: SCREAMING_SNAKE_CASE_ = BigBirdForQuestionAnswering(__lowerCamelCase ) else: SCREAMING_SNAKE_CASE_ = BigBirdForPreTraining(__lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(__lowerCamelCase, __lowerCamelCase, is_trivia_qa=__lowerCamelCase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--big_bird_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_trivia_qa", action="store_true", help="Whether to convert a model with a trivia_qa head." ) __UpperCAmelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
257
1
'''simple docstring''' def a__ ( lowerCAmelCase__ ) -> bool: UpperCAmelCase__ : Optional[int] = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def a__ ( lowerCAmelCase__ = 50_00 ) -> int: UpperCAmelCase__ : Tuple = [(i * (3 * i - 1)) // 2 for i in range(1 , lowerCAmelCase__ )] for i, pentagonal_i in enumerate(lowerCAmelCase__ ): for j in range(lowerCAmelCase__ , len(lowerCAmelCase__ ) ): UpperCAmelCase__ : Any = pentagonal_nums[j] UpperCAmelCase__ : Optional[int] = pentagonal_i + pentagonal_j UpperCAmelCase__ : List[Any] = pentagonal_j - pentagonal_i if is_pentagonal(lowerCAmelCase__ ) and is_pentagonal(lowerCAmelCase__ ): return b return -1 if __name__ == "__main__": print(F"""{solution() = }""")
181
'''simple docstring''' import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets UpperCamelCase__ = datasets.logging.get_logger(__name__) UpperCamelCase__ = '''\ @InProceedings{moosavi2019minimum, author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube}, title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection}, year = {2019}, booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Florence, Italy}, } @inproceedings{10.3115/1072399.1072405, author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette}, title = {A Model-Theoretic Coreference Scoring Scheme}, year = {1995}, isbn = {1558604022}, publisher = {Association for Computational Linguistics}, address = {USA}, url = {https://doi.org/10.3115/1072399.1072405}, doi = {10.3115/1072399.1072405}, booktitle = {Proceedings of the 6th Conference on Message Understanding}, pages = {45–52}, numpages = {8}, location = {Columbia, Maryland}, series = {MUC6 ’95} } @INPROCEEDINGS{Bagga98algorithmsfor, author = {Amit Bagga and Breck Baldwin}, title = {Algorithms for Scoring Coreference Chains}, booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference}, year = {1998}, pages = {563--566} } @INPROCEEDINGS{Luo05oncoreference, author = {Xiaoqiang Luo}, title = {On coreference resolution performance metrics}, booktitle = {In Proc. of HLT/EMNLP}, year = {2005}, pages = {25--32}, publisher = {URL} } @inproceedings{moosavi-strube-2016-coreference, title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric", author = "Moosavi, Nafise Sadat and Strube, Michael", booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = aug, year = "2016", address = "Berlin, Germany", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/P16-1060", doi = "10.18653/v1/P16-1060", pages = "632--642", } ''' UpperCamelCase__ = '''\ CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which implements of the common evaluation metrics including MUC [Vilain et al, 1995], B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005], LEA [Moosavi and Strube, 2016] and the averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) [Denis and Baldridge, 2009a; Pradhan et al., 2011]. This wrapper of CoVal currently only work with CoNLL line format: The CoNLL format has one word per line with all the annotation for this word in column separated by spaces: Column Type Description 1 Document ID This is a variation on the document filename 2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. 3 Word number 4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release. 5 Part-of-Speech 6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column. 7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-" 8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7. 9 Word sense This is the word sense of the word in Column 3. 10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. 11 Named Entities These columns identifies the spans representing various named entities. 12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7. N Coreference Coreference chain information encoded in a parenthesis structure. More informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md CoVal code was written by @ns-moosavi. Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py The test suite is taken from https://github.com/conll/reference-coreference-scorers/ Mention evaluation and the test suite are added by @andreasvc. Parsing CoNLL files is developed by Leo Born. ''' UpperCamelCase__ = ''' Calculates coreference evaluation metrics. Args: predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format. Each prediction is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format. Each reference is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. keep_singletons: After extracting all mentions of key or system files, mentions whose corresponding coreference chain is of size one, are considered as singletons. The default evaluation mode will include singletons in evaluations if they are included in the key or the system files. By setting \'keep_singletons=False\', all singletons in the key and system files will be excluded from the evaluation. NP_only: Most of the recent coreference resolvers only resolve NP mentions and leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs. min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans. Minimum spans are determined using the MINA algorithm. Returns: \'mentions\': mentions \'muc\': MUC metric [Vilain et al, 1995] \'bcub\': B-cubed [Bagga and Baldwin, 1998] \'ceafe\': CEAFe [Luo et al., 2005] \'lea\': LEA [Moosavi and Strube, 2016] \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) Examples: >>> coval = datasets.load_metric(\'coval\') >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\', ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\', ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\', ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\', ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\', ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\'] >>> references = [words] >>> predictions = [words] >>> results = coval.compute(predictions=predictions, references=references) >>> print(results) # doctest:+ELLIPSIS {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0} ''' def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__="dummy_doc" ) -> Dict: UpperCAmelCase__ : List[str] = {doc: key_lines} UpperCAmelCase__ : int = {doc: sys_lines} UpperCAmelCase__ : Optional[Any] = {} UpperCAmelCase__ : Optional[Any] = 0 UpperCAmelCase__ : Optional[Any] = 0 UpperCAmelCase__ : Union[str, Any] = 0 UpperCAmelCase__ : Optional[int] = 0 UpperCAmelCase__ : List[Any] = 0 UpperCAmelCase__ : Union[str, Any] = 0 UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = reader.get_doc_mentions(lowerCAmelCase__ , key_doc_lines[doc] , lowerCAmelCase__ ) key_singletons_num += singletons_num if NP_only or min_span: UpperCAmelCase__ : int = reader.set_annotated_parse_trees(lowerCAmelCase__ , key_doc_lines[doc] , lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ , UpperCAmelCase__ : str = reader.get_doc_mentions(lowerCAmelCase__ , sys_doc_lines[doc] , lowerCAmelCase__ ) sys_singletons_num += singletons_num if NP_only or min_span: UpperCAmelCase__ : str = reader.set_annotated_parse_trees(lowerCAmelCase__ , key_doc_lines[doc] , lowerCAmelCase__ , lowerCAmelCase__ ) if remove_nested: UpperCAmelCase__ , UpperCAmelCase__ : Tuple = reader.remove_nested_coref_mentions(lowerCAmelCase__ , lowerCAmelCase__ ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = reader.remove_nested_coref_mentions(lowerCAmelCase__ , lowerCAmelCase__ ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters UpperCAmelCase__ : Dict = reader.get_mention_assignments(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ : str = reader.get_mention_assignments(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ : Optional[Any] = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( '''Number of removed nested coreferring mentions in the key ''' F"""annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}""" ) logger.info( '''Number of resulting singleton clusters in the key ''' F"""annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}""" ) if not keep_singletons: logger.info( F"""{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system """ '''files, respectively''' ) return doc_coref_infos def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: UpperCAmelCase__ : str = get_coref_infos(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ : Optional[Any] = {} UpperCAmelCase__ : str = 0 UpperCAmelCase__ : Optional[int] = 0 for name, metric in metrics: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Dict = evaluator.evaluate_documents(lowerCAmelCase__ , lowerCAmelCase__ , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F"""{name}/recall""": recall, F"""{name}/precision""": precision, F"""{name}/f1""": fa} ) logger.info( name.ljust(10 ) , F"""Recall: {recall * 1_00:.2f}""" , F""" Precision: {precision * 1_00:.2f}""" , F""" F1: {fa * 1_00:.2f}""" , ) if conll_subparts_num == 3: UpperCAmelCase__ : Any = (conll / 3) * 1_00 logger.info(F"""CoNLL score: {conll:.2f}""" ) output_scores.update({'''conll_score''': conll} ) return output_scores def a__ ( lowerCAmelCase__ ) -> str: UpperCAmelCase__ : int = False for line in key_lines: if not line.startswith('''#''' ): if len(line.split() ) > 6: UpperCAmelCase__ : str = line.split()[5] if not parse_col == "-": UpperCAmelCase__ : Tuple = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase_ ( datasets.Metric ): def lowercase_ ( self : Any ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' ) ), '''references''': datasets.Sequence(datasets.Value('''string''' ) ), } ) , codebase_urls=['''https://github.com/ns-moosavi/coval'''] , reference_urls=[ '''https://github.com/ns-moosavi/coval''', '''https://www.aclweb.org/anthology/P16-1060''', '''http://www.conll.cemantix.org/2012/data.html''', ] , ) def lowercase_ ( self : Tuple , _A : Union[str, Any] , _A : Tuple , _A : Dict=True , _A : Optional[int]=False , _A : str=False , _A : List[str]=False ): '''simple docstring''' UpperCAmelCase__ : Any = [ ('''mentions''', evaluator.mentions), ('''muc''', evaluator.muc), ('''bcub''', evaluator.b_cubed), ('''ceafe''', evaluator.ceafe), ('''lea''', evaluator.lea), ] if min_span: UpperCAmelCase__ : int = util.check_gold_parse_annotation(_A ) if not has_gold_parse: raise NotImplementedError('''References should have gold parse annotation to use \'min_span\'.''' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" UpperCAmelCase__ : List[str] = evaluate( key_lines=_A , sys_lines=_A , metrics=_A , NP_only=_A , remove_nested=_A , keep_singletons=_A , min_span=_A , ) return score
181
1
"""simple docstring""" import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) a = '''bert-base-cased''' a = '''fp16''' a = '''bf16''' a = [FPaa, BFaa] @require_fsdp @require_cuda class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def lowerCAmelCase_ ( self : int ): super().setUp() _A = dict( ACCELERATE_USE_FSDP='true' , MASTER_ADDR='localhost' , MASTER_PORT='10999' , RANK='0' , LOCAL_RANK='0' , WORLD_SIZE='1' , ) def lowerCAmelCase_ ( self : Tuple ): from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(_UpperCAmelCase ): _A = self.dist_env.copy() _A = F'''{i + 1}''' _A = strategy with mockenv_context(**_UpperCAmelCase ): _A = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) ) def lowerCAmelCase_ ( self : Optional[int] ): from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(_UpperCAmelCase ): _A = self.dist_env.copy() _A = prefetch_policy with mockenv_context(**_UpperCAmelCase ): _A = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) ) def lowerCAmelCase_ ( self : List[str] ): from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(_UpperCAmelCase ): _A = self.dist_env.copy() _A = state_dict_type with mockenv_context(**_UpperCAmelCase ): _A = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def lowerCAmelCase_ ( self : Union[str, Any] ): _A = AutoModel.from_pretrained(_UpperCAmelCase ) for policy in FSDP_AUTO_WRAP_POLICY: _A = self.dist_env.copy() _A = policy if policy == "TRANSFORMER_BASED_WRAP": _A = 'BertLayer' elif policy == "SIZE_BASED_WRAP": _A = '2000' with mockenv_context(**_UpperCAmelCase ): _A = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(_UpperCAmelCase ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) _A = self.dist_env.copy() _A = 'TRANSFORMER_BASED_WRAP' _A = 'T5Layer' with mockenv_context(**_UpperCAmelCase ): _A = FullyShardedDataParallelPlugin() with self.assertRaises(_UpperCAmelCase ) as cm: fsdp_plugin.set_auto_wrap_policy(_UpperCAmelCase ) self.assertTrue('Could not find the transformer layer class to wrap in the model.' in str(cm.exception ) ) _A = self.dist_env.copy() _A = 'SIZE_BASED_WRAP' _A = '0' with mockenv_context(**_UpperCAmelCase ): _A = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(_UpperCAmelCase ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def lowerCAmelCase_ ( self : Optional[Any] ): from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: _A = self.dist_env.copy() _A = mp_dtype with mockenv_context(**_UpperCAmelCase ): _A = Accelerator() if mp_dtype == "fp16": _A = torch.floataa elif mp_dtype == "bf16": _A = torch.bfloataa _A = MixedPrecision(param_dtype=_UpperCAmelCase , reduce_dtype=_UpperCAmelCase , buffer_dtype=_UpperCAmelCase ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , _UpperCAmelCase ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , _UpperCAmelCase ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(_UpperCAmelCase ) def lowerCAmelCase_ ( self : Dict ): from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: _A = self.dist_env.copy() _A = str(_UpperCAmelCase ).lower() with mockenv_context(**_UpperCAmelCase ): _A = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=_UpperCAmelCase ) ) @require_fsdp @require_multi_gpu @slow class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def lowerCAmelCase_ ( self : str ): super().setUp() _A = 0.82 _A = [ 'fsdp_shard_grad_op_transformer_based_wrap', 'fsdp_full_shard_transformer_based_wrap', ] _A = { 'multi_gpu_fp16': 3_200, 'fsdp_shard_grad_op_transformer_based_wrap_fp16': 2_000, 'fsdp_full_shard_transformer_based_wrap_fp16': 1_900, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } _A = 160 _A = 160 _A = inspect.getfile(accelerate.test_utils ) _A = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'external_deps'] ) def lowerCAmelCase_ ( self : str ): _A = os.path.join(self.test_scripts_folder , 'test_performance.py' ) _A = ['accelerate', 'launch', '--num_processes=2', '--num_machines=1', '--machine_rank=0', '--use_fsdp'] for config in self.performance_configs: _A = cmd.copy() for i, strategy in enumerate(_UpperCAmelCase ): if strategy.lower() in config: cmd_config.append(F'''--fsdp_sharding_strategy={i+1}''' ) break if "fp32" in config: cmd_config.append('--mixed_precision=no' ) else: cmd_config.append('--mixed_precision=fp16' ) if "cpu_offload" in config: cmd_config.append('--fsdp_offload_params=True' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(F'''--fsdp_auto_wrap_policy={policy}''' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('--fsdp_transformer_layer_cls_to_wrap=BertLayer' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('--fsdp_min_num_params=2000' ) cmd_config.extend( [ self.test_file_path, F'''--output_dir={self.tmpdir}''', F'''--performance_lower_bound={self.performance_lower_bound}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() ) def lowerCAmelCase_ ( self : Dict ): _A = os.path.join(self.test_scripts_folder , 'test_checkpointing.py' ) _A = [ 'accelerate', 'launch', '--num_processes=2', '--num_machines=1', '--machine_rank=0', '--use_fsdp', '--mixed_precision=fp16', '--fsdp_transformer_layer_cls_to_wrap=BertLayer', ] for i, strategy in enumerate(_UpperCAmelCase ): _A = cmd.copy() cmd_config.append(F'''--fsdp_sharding_strategy={i+1}''' ) if strategy != "FULL_SHARD": continue _A = len(_UpperCAmelCase ) for state_dict_type in FSDP_STATE_DICT_TYPE: _A = cmd_config[:state_dict_config_index] cmd_config.append(F'''--fsdp_state_dict_type={state_dict_type}''' ) cmd_config.extend( [ self.test_file_path, F'''--output_dir={self.tmpdir}''', '--partial_train_epoch=1', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() ) _A = cmd_config[:-1] _A = os.path.join(self.tmpdir , 'epoch_0' ) cmd_config.extend( [ F'''--resume_from_checkpoint={resume_from_checkpoint}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() ) def lowerCAmelCase_ ( self : List[str] ): _A = os.path.join(self.test_scripts_folder , 'test_peak_memory_usage.py' ) _A = [ 'accelerate', 'launch', '--num_processes=2', '--num_machines=1', '--machine_rank=0', ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): _A = cmd.copy() if "fp16" in spec: cmd_config.extend(['--mixed_precision=fp16'] ) else: cmd_config.extend(['--mixed_precision=no'] ) if "multi_gpu" in spec: continue else: cmd_config.extend(['--use_fsdp'] ) for i, strategy in enumerate(_UpperCAmelCase ): if strategy.lower() in spec: cmd_config.append(F'''--fsdp_sharding_strategy={i+1}''' ) break if "cpu_offload" in spec: cmd_config.append('--fsdp_offload_params=True' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(F'''--fsdp_auto_wrap_policy={policy}''' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('--fsdp_transformer_layer_cls_to_wrap=BertLayer' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('--fsdp_min_num_params=2000' ) cmd_config.extend( [ self.test_file_path, F'''--output_dir={self.tmpdir}''', F'''--peak_memory_upper_bound={peak_mem_upper_bound}''', F'''--n_train={self.n_train}''', F'''--n_val={self.n_val}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() )
271
"""simple docstring""" def _snake_case ( _snake_case : str ) -> str: '''simple docstring''' _A = '' for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def _snake_case ( _snake_case : str ) -> dict[str, str]: '''simple docstring''' _A = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key _A = remove_duplicates(key.upper() ) _A = len(_snake_case ) # First fill cipher with key characters _A = {alphabet[i]: char for i, char in enumerate(_snake_case )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(_snake_case ) , 26 ): _A = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 _A = alphabet[i - offset] _A = char return cipher_alphabet def _snake_case ( _snake_case : str , _snake_case : dict[str, str] ) -> str: '''simple docstring''' return "".join(cipher_map.get(_snake_case , _snake_case ) for ch in message.upper() ) def _snake_case ( _snake_case : str , _snake_case : dict[str, str] ) -> str: '''simple docstring''' _A = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(_snake_case , _snake_case ) for ch in message.upper() ) def _snake_case ( ) -> None: '''simple docstring''' _A = input('Enter message to encode or decode: ' ).strip() _A = input('Enter keyword: ' ).strip() _A = input('Encipher or decipher? E/D:' ).strip()[0].lower() try: _A = {'e': encipher, 'd': decipher}[option] except KeyError: raise KeyError('invalid input option' ) _A = create_cipher_map(_snake_case ) print(func(_snake_case , _snake_case ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
271
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase = { '''configuration_bigbird_pegasus''': [ '''BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BigBirdPegasusConfig''', '''BigBirdPegasusOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ '''BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BigBirdPegasusForCausalLM''', '''BigBirdPegasusForConditionalGeneration''', '''BigBirdPegasusForQuestionAnswering''', '''BigBirdPegasusForSequenceClassification''', '''BigBirdPegasusModel''', '''BigBirdPegasusPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
89
"""simple docstring""" # Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar _UpperCamelCase : Optional[Any] = TypeVar('T') class a ( Generic[T] ): def __init__( self , _lowerCamelCase = True ): lowercase = {} # dictionary of lists lowercase = directed def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase ): if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(_lowerCamelCase ) self.adj_list[destination_vertex].append(_lowerCamelCase ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(_lowerCamelCase ) lowercase = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(_lowerCamelCase ) lowercase = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: lowercase = [destination_vertex] lowercase = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(_lowerCamelCase ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(_lowerCamelCase ) lowercase = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: lowercase = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: lowercase = [destination_vertex] lowercase = [] return self def __repr__( self ): return pformat(self.adj_list )
220
0
import copy import re class __a : __lowercase : Optional[Any] = 'hp' __lowercase : Tuple = {} __lowercase : Optional[Any] = None @classmethod def SCREAMING_SNAKE_CASE__ ( cls , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' lowercase__: int = prefix lowercase__: int = defaults cls.build_naming_info() @staticmethod def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' if len(__lowerCamelCase ) == 0: return "" lowercase__: Optional[Any] = None if any(char.isdigit() for char in word ): raise Exception(F'Parameters should not contain numbers: \'{word}\' contains a number' ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 , len(__lowerCamelCase ) + 1 ): lowercase__: str = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: lowercase__: Dict = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(lowerCAmelCase__ ): lowercase__: Any = '' while integer != 0: lowercase__: Dict = chr(ord('A' ) + integer % 10 ) + s integer //= 10 return s lowercase__: Union[str, Any] = 0 while True: lowercase__: Optional[int] = word + '#' + int_to_alphabetic(__lowerCamelCase ) if sword in info["reverse_short_word"]: continue else: lowercase__: Union[str, Any] = sword break lowercase__: List[Any] = short_word lowercase__: Optional[int] = word return short_word @staticmethod def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' lowercase__: Union[str, Any] = param_name.split('_' ) lowercase__: Dict = [TrialShortNamer.shortname_for_word(__lowerCamelCase , __lowerCamelCase ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name lowercase__: List[Any] = ['', '_'] for separator in separators: lowercase__: Union[str, Any] = separator.join(__lowerCamelCase ) if shortname not in info["reverse_short_param"]: lowercase__: List[Any] = shortname lowercase__: Optional[Any] = param_name return shortname return param_name @staticmethod def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' lowercase__: Tuple = TrialShortNamer.shortname_for_key(__lowerCamelCase , __lowerCamelCase ) lowercase__: Union[str, Any] = short_name lowercase__: int = param_name @classmethod def SCREAMING_SNAKE_CASE__ ( cls ) -> List[Any]: '''simple docstring''' if cls.NAMING_INFO is not None: return lowercase__: Dict = { 'short_word': {}, 'reverse_short_word': {}, 'short_param': {}, 'reverse_short_param': {}, } lowercase__: Optional[Any] = list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(__lowerCamelCase , __lowerCamelCase ) lowercase__: Optional[int] = info @classmethod def SCREAMING_SNAKE_CASE__ ( cls , lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' cls.build_naming_info() assert cls.PREFIX is not None lowercase__: Any = [copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(F'You should provide a default value for the param name {k} with value {v}' ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue lowercase__: List[Any] = cls.NAMING_INFO['short_param'][k] if isinstance(__lowerCamelCase , __lowerCamelCase ): lowercase__: int = 1 if v else 0 lowercase__: int = '' if isinstance(__lowerCamelCase , (int, float) ) else '-' lowercase__: Optional[int] = F'{key}{sep}{v}' name.append(__lowerCamelCase ) return "_".join(__lowerCamelCase ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls , lowerCAmelCase__ ) -> Any: '''simple docstring''' lowercase__: str = repr[len(cls.PREFIX ) + 1 :] if repr == "": lowercase__: Dict = [] else: lowercase__: str = repr.split('_' ) lowercase__: str = {} for value in values: if "-" in value: lowercase__ , lowercase__: str = value.split('-' ) else: lowercase__: Optional[Any] = re.sub('[0-9.]' , '' , __lowerCamelCase ) lowercase__: Any = float(re.sub('[^0-9.]' , '' , __lowerCamelCase ) ) lowercase__: List[Any] = cls.NAMING_INFO['reverse_short_param'][p_k] lowercase__: int = p_v for k in cls.DEFAULTS: if k not in parameters: lowercase__: Tuple = cls.DEFAULTS[k] return parameters
367
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class __a ( tf.keras.layers.Layer ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None ) -> int: '''simple docstring''' super().__init__() lowercase__: Union[str, Any] = pad_token_id lowercase__: List[str] = max_length lowercase__: int = vocab lowercase__: List[Any] = merges lowercase__: str = BytePairTokenizer(lowerCAmelCase__ , lowerCAmelCase__ , sequence_length=lowerCAmelCase__ ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls , lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Any: '''simple docstring''' lowercase__: Tuple = [' '.join(lowerCAmelCase__ ) for m in tokenizer.bpe_ranks.keys()] lowercase__: List[Any] = tokenizer.get_vocab() return cls(lowerCAmelCase__ , lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls , lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' lowercase__: int = GPTaTokenizer.from_pretrained(lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ ) return cls.from_tokenizer(lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls , lowerCAmelCase__ ) -> Dict: '''simple docstring''' return cls(**lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Optional[Any]: '''simple docstring''' lowercase__: Optional[Any] = self.tf_tokenizer(lowerCAmelCase__ ) lowercase__: List[Any] = tf.ones_like(lowerCAmelCase__ ) if self.pad_token_id is not None: # pad the tokens up to max length lowercase__: int = max_length if max_length is not None else self.max_length if max_length is not None: lowercase__ , lowercase__: List[Any] = pad_model_inputs( lowerCAmelCase__ , max_seq_length=lowerCAmelCase__ , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
288
0
"""simple docstring""" from __future__ import annotations def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ,lowercase ): # noqa: E741 """simple docstring""" while r - l > 1: _UpperCAmelCase = (l + r) // 2 if v[m] >= key: _UpperCAmelCase = m else: _UpperCAmelCase = m # noqa: E741 return r def __UpperCAmelCase ( lowercase ): """simple docstring""" if len(lowercase ) == 0: return 0 _UpperCAmelCase = [0] * len(lowercase ) _UpperCAmelCase = 1 _UpperCAmelCase = v[0] for i in range(1 ,len(lowercase ) ): if v[i] < tail[0]: _UpperCAmelCase = v[i] elif v[i] > tail[length - 1]: _UpperCAmelCase = v[i] length += 1 else: _UpperCAmelCase = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
289
"""simple docstring""" from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
289
1
"""simple docstring""" import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = ["""image_processor""", """tokenizer"""] UpperCamelCase__ = """FlavaImageProcessor""" UpperCamelCase__ = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : Union[str, Any] , __UpperCamelCase : Any=None , __UpperCamelCase : Optional[int]=None , **__UpperCamelCase : str )->List[Any]: _UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __UpperCamelCase , ) _UpperCAmelCase = kwargs.pop('''feature_extractor''' ) _UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = self.image_processor def __call__( self : List[Any] , __UpperCamelCase : Optional[ImageInput] = None , __UpperCamelCase : Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None , __UpperCamelCase : bool = True , __UpperCamelCase : Union[bool, str, PaddingStrategy] = False , __UpperCamelCase : Union[bool, str, TruncationStrategy] = False , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : int = 0 , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : bool = False , __UpperCamelCase : bool = False , __UpperCamelCase : bool = False , __UpperCamelCase : bool = False , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Union[str, TensorType]] = None , **__UpperCamelCase : Union[str, Any] , )->List[Any]: if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: _UpperCAmelCase = self.tokenizer( text=__UpperCamelCase , add_special_tokens=__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , stride=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_token_type_ids=__UpperCamelCase , return_attention_mask=__UpperCamelCase , return_overflowing_tokens=__UpperCamelCase , return_special_tokens_mask=__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , return_length=__UpperCamelCase , verbose=__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase , ) if images is not None: _UpperCAmelCase = self.image_processor( __UpperCamelCase , return_image_mask=__UpperCamelCase , return_codebook_pixels=__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase , ) if text is not None and images is not None: encoding.update(__UpperCamelCase ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__UpperCamelCase ) , tensor_type=__UpperCamelCase ) def lowercase__ ( self : Any , *__UpperCamelCase : List[Any] , **__UpperCamelCase : Optional[int] )->Any: return self.tokenizer.batch_decode(*__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Dict , *__UpperCamelCase : Optional[int] , **__UpperCamelCase : Dict )->Optional[Any]: return self.tokenizer.decode(*__UpperCamelCase , **__UpperCamelCase ) @property def lowercase__ ( self : Any )->Any: _UpperCAmelCase = self.tokenizer.model_input_names _UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowercase__ ( self : Dict )->Optional[int]: warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __UpperCamelCase , ) return self.image_processor_class @property def lowercase__ ( self : Any )->Tuple: warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __UpperCamelCase , ) return self.image_processor
364
"""simple docstring""" import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __A : Union[str, Any] = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. __A : Tuple = importlib.util.spec_from_file_location( "transformers", os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) __A : List[str] = spec.loader.load_module() __A : Any = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __A : Optional[int] = re.compile("\[(.+?)\]\((https://huggingface\.co/.+?)\)") __A : List[str] = { "CLIPConfigMixin", "DecisionTransformerConfigMixin", "EncoderDecoderConfigMixin", "RagConfigMixin", "SpeechEncoderDecoderConfigMixin", "VisionEncoderDecoderConfigMixin", "VisionTextDualEncoderConfigMixin", } def lowercase ( ): '''simple docstring''' _UpperCAmelCase = [] for config_class in list(CONFIG_MAPPING.values() ): _UpperCAmelCase = False # source code of `config_class` _UpperCAmelCase = inspect.getsource(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = _re_checkpoint.findall(_SCREAMING_SNAKE_CASE ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` _UpperCAmelCase , _UpperCAmelCase = checkpoint # verify the checkpoint name corresponds to the checkpoint link _UpperCAmelCase = f'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: _UpperCAmelCase = True break _UpperCAmelCase = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: _UpperCAmelCase = '''\n'''.join(sorted(_SCREAMING_SNAKE_CASE ) ) raise ValueError(f'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
326
0
from typing import TYPE_CHECKING from ...utils import _LazyModule lowerCAmelCase_ = {'''tokenization_bertweet''': ['''BertweetTokenizer''']} if TYPE_CHECKING: from .tokenization_bertweet import BertweetTokenizer else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
279
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
279
1
"""simple docstring""" import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class __A (snake_case__): '''simple docstring''' def __init__( self : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" snake_case_ = [] def lowerCAmelCase ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : int ) ->Tuple: """simple docstring""" self.events.append("""on_init_end""" ) def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str , **UpperCAmelCase_ : Dict ) ->List[Any]: """simple docstring""" self.events.append("""on_train_begin""" ) def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Optional[int] ) ->Optional[Any]: """simple docstring""" self.events.append("""on_train_end""" ) def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" self.events.append("""on_epoch_begin""" ) def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , **UpperCAmelCase_ : List[str] ) ->Union[str, Any]: """simple docstring""" self.events.append("""on_epoch_end""" ) def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any , **UpperCAmelCase_ : Optional[Any] ) ->List[str]: """simple docstring""" self.events.append("""on_step_begin""" ) def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : int ) ->Dict: """simple docstring""" self.events.append("""on_step_end""" ) def lowerCAmelCase ( self : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , **UpperCAmelCase_ : Any ) ->Optional[Any]: """simple docstring""" self.events.append("""on_evaluate""" ) def lowerCAmelCase ( self : int , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : List[str] ) ->Dict: """simple docstring""" self.events.append("""on_predict""" ) def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Dict ) ->Dict: """simple docstring""" self.events.append("""on_save""" ) def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Any ) ->str: """simple docstring""" self.events.append("""on_log""" ) def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Union[str, Any] ) ->Dict: """simple docstring""" self.events.append("""on_prediction_step""" ) @require_torch class __A (unittest.TestCase): '''simple docstring''' def lowerCAmelCase ( self : List[Any] ) ->Dict: """simple docstring""" snake_case_ = tempfile.mkdtemp() def lowerCAmelCase ( self : str ) ->Optional[Any]: """simple docstring""" shutil.rmtree(self.output_dir ) def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : str=0 , UpperCAmelCase_ : int=0 , UpperCAmelCase_ : Optional[int]=64 , UpperCAmelCase_ : List[Any]=64 , UpperCAmelCase_ : int=None , UpperCAmelCase_ : str=False , **UpperCAmelCase_ : int ) ->List[Any]: """simple docstring""" snake_case_ = RegressionDataset(length=UpperCAmelCase_ ) snake_case_ = RegressionDataset(length=UpperCAmelCase_ ) snake_case_ = RegressionModelConfig(a=UpperCAmelCase_ , b=UpperCAmelCase_ ) snake_case_ = RegressionPreTrainedModel(UpperCAmelCase_ ) snake_case_ = TrainingArguments(self.output_dir , disable_tqdm=UpperCAmelCase_ , report_to=[] , **UpperCAmelCase_ ) return Trainer( UpperCAmelCase_ , UpperCAmelCase_ , train_dataset=UpperCAmelCase_ , eval_dataset=UpperCAmelCase_ , callbacks=UpperCAmelCase_ , ) def lowerCAmelCase ( self : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any ) ->Optional[Any]: """simple docstring""" self.assertEqual(len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) ) # Order doesn't matter snake_case_ = sorted(UpperCAmelCase_ , key=lambda UpperCAmelCase_ : cb.__name__ if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else cb.__class__.__name__ ) snake_case_ = sorted(UpperCAmelCase_ , key=lambda UpperCAmelCase_ : cb.__name__ if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else cb.__class__.__name__ ) for cba, cba in zip(UpperCAmelCase_ , UpperCAmelCase_ ): if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): self.assertEqual(UpperCAmelCase_ , cba.__class__ ) elif not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): self.assertEqual(cba.__class__ , UpperCAmelCase_ ) else: self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCAmelCase ( self : int , UpperCAmelCase_ : List[Any] ) ->Optional[Any]: """simple docstring""" snake_case_ = ["""on_init_end""", """on_train_begin"""] snake_case_ = 0 snake_case_ = len(trainer.get_eval_dataloader() ) snake_case_ = ["""on_prediction_step"""] * len(trainer.get_eval_dataloader() ) + ["""on_log""", """on_evaluate"""] for _ in range(trainer.state.num_train_epochs ): expected_events.append("""on_epoch_begin""" ) for _ in range(UpperCAmelCase_ ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append("""on_log""" ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append("""on_save""" ) expected_events.append("""on_epoch_end""" ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def lowerCAmelCase ( self : int ) ->str: """simple docstring""" snake_case_ = self.get_trainer() snake_case_ = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase_ ) # Callbacks passed at init are added to the default callbacks snake_case_ = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(UpperCAmelCase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase_ ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback snake_case_ = self.get_trainer(disable_tqdm=UpperCAmelCase_ ) snake_case_ = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase_ ) def lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]: """simple docstring""" snake_case_ = DEFAULT_CALLBACKS.copy() + [ProgressCallback] snake_case_ = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(UpperCAmelCase_ ) expected_callbacks.remove(UpperCAmelCase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase_ ) snake_case_ = self.get_trainer() snake_case_ = trainer.pop_callback(UpperCAmelCase_ ) self.assertEqual(cb.__class__ , UpperCAmelCase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase_ ) trainer.add_callback(UpperCAmelCase_ ) expected_callbacks.insert(0 , UpperCAmelCase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase_ ) # We can also add, pop, or remove by instance snake_case_ = self.get_trainer() snake_case_ = trainer.callback_handler.callbacks[0] trainer.remove_callback(UpperCAmelCase_ ) expected_callbacks.remove(UpperCAmelCase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase_ ) snake_case_ = self.get_trainer() snake_case_ = trainer.callback_handler.callbacks[0] snake_case_ = trainer.pop_callback(UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase_ ) trainer.add_callback(UpperCAmelCase_ ) expected_callbacks.insert(0 , UpperCAmelCase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase_ ) def lowerCAmelCase ( self : Union[str, Any] ) ->int: """simple docstring""" import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action="""ignore""" , category=UpperCAmelCase_ ) snake_case_ = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() snake_case_ = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCAmelCase_ , self.get_expected_events(UpperCAmelCase_ ) ) # Independent log/save/eval snake_case_ = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() snake_case_ = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCAmelCase_ , self.get_expected_events(UpperCAmelCase_ ) ) snake_case_ = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() snake_case_ = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCAmelCase_ , self.get_expected_events(UpperCAmelCase_ ) ) snake_case_ = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="""steps""" ) trainer.train() snake_case_ = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCAmelCase_ , self.get_expected_events(UpperCAmelCase_ ) ) snake_case_ = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="""epoch""" ) trainer.train() snake_case_ = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCAmelCase_ , self.get_expected_events(UpperCAmelCase_ ) ) # A bit of everything snake_case_ = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy="""steps""" , ) trainer.train() snake_case_ = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCAmelCase_ , self.get_expected_events(UpperCAmelCase_ ) ) # warning should be emitted for duplicated callbacks with patch("""transformers.trainer_callback.logger.warning""" ) as warn_mock: snake_case_ = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(UpperCAmelCase_ ) in warn_mock.call_args[0][0]
233
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Tuple = { 'google/mobilenet_v1_1.0_224': 'https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json', 'google/mobilenet_v1_0.75_192': 'https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class __A (snake_case__): '''simple docstring''' __lowercase: List[Any] = """mobilenet_v1""" def __init__( self : Union[str, Any] , UpperCAmelCase_ : str=3 , UpperCAmelCase_ : List[Any]=224 , UpperCAmelCase_ : List[Any]=1.0 , UpperCAmelCase_ : Any=8 , UpperCAmelCase_ : int="relu6" , UpperCAmelCase_ : str=True , UpperCAmelCase_ : List[str]=0.999 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : List[Any]=0.001 , **UpperCAmelCase_ : Any , ) ->Union[str, Any]: """simple docstring""" super().__init__(**UpperCAmelCase_ ) if depth_multiplier <= 0: raise ValueError("""depth_multiplier must be greater than zero.""" ) snake_case_ = num_channels snake_case_ = image_size snake_case_ = depth_multiplier snake_case_ = min_depth snake_case_ = hidden_act snake_case_ = tf_padding snake_case_ = classifier_dropout_prob snake_case_ = initializer_range snake_case_ = layer_norm_eps class __A (snake_case__): '''simple docstring''' __lowercase: int = version.parse("""1.11""") @property def lowerCAmelCase ( self : Union[str, Any] ) ->Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict([("""pixel_values""", {0: """batch"""})] ) @property def lowerCAmelCase ( self : int ) ->Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "image-classification": return OrderedDict([("""logits""", {0: """batch"""})] ) else: return OrderedDict([("""last_hidden_state""", {0: """batch"""}), ("""pooler_output""", {0: """batch"""})] ) @property def lowerCAmelCase ( self : int ) ->float: """simple docstring""" return 1E-4
233
1
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = ['''image_processor''', '''tokenizer'''] snake_case_ = '''LayoutLMv2ImageProcessor''' snake_case_ = ('''LayoutXLMTokenizer''', '''LayoutXLMTokenizerFast''') def __init__( self , lowerCamelCase__=None , lowerCamelCase__=None , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , lowerCamelCase__ , ) __lowerCamelCase = kwargs.pop('feature_extractor' ) __lowerCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(lowerCamelCase__ , lowerCamelCase__ ) def __call__( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = True , lowerCamelCase__ = False , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = 0 , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = True , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> BatchEncoding: '''simple docstring''' # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes ' 'if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('You cannot return overflowing tokens without returning the offsets mapping.' ) # first, apply the image processor __lowerCamelCase = self.image_processor(images=lowerCamelCase__ , return_tensors=lowerCamelCase__ ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(lowerCamelCase__ , lowerCamelCase__ ): __lowerCamelCase = [text] # add batch dimension (as the image processor always adds a batch dimension) __lowerCamelCase = features['words'] __lowerCamelCase = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ , stride=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_token_type_ids=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , return_overflowing_tokens=lowerCamelCase__ , return_special_tokens_mask=lowerCamelCase__ , return_offsets_mapping=lowerCamelCase__ , return_length=lowerCamelCase__ , verbose=lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ , ) # add pixel values __lowerCamelCase = features.pop('pixel_values' ) if return_overflowing_tokens is True: __lowerCamelCase = self.get_overflowing_images(lowerCamelCase__ , encoded_inputs['overflow_to_sample_mapping'] ) __lowerCamelCase = images return encoded_inputs def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image __lowerCamelCase = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(lowerCamelCase__ ) != len(lowerCamelCase__ ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' f""" {len(lowerCamelCase__ )} and {len(lowerCamelCase__ )}""" ) return images_with_overflow def lowercase_ ( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> List[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase__ , **lowerCamelCase__ ) def lowercase_ ( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> List[Any]: '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase__ , **lowerCamelCase__ ) @property def lowercase_ ( self ) -> int: '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def lowercase_ ( self ) -> List[str]: '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , lowerCamelCase__ , ) return self.image_processor_class @property def lowercase_ ( self ) -> List[Any]: '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , lowerCamelCase__ , ) return self.image_processor
90
def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = [1] lowercase__ , lowercase__ , lowercase__ = 0, 0, 0 lowercase__ = ugly_nums[ia] * 2 lowercase__ = ugly_nums[ia] * 3 lowercase__ = ugly_nums[ia] * 5 for _ in range(1 , lowerCamelCase_ ): lowercase__ = min(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) ugly_nums.append(lowerCamelCase_ ) if next_num == next_a: ia += 1 lowercase__ = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 lowercase__ = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 lowercase__ = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(F"{ugly_numbers(2_00) = }")
207
0
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node UpperCamelCase_ = 4 UpperCamelCase_ = 3 class a_ ( _snake_case ): pass def A ( __UpperCAmelCase ) -> Tuple: '''simple docstring''' for shard in shards: for i in range(__UpperCAmelCase ): yield {"i": i, "shard": shard} def A ( ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = int(os.environ['''RANK'''] ) UpperCAmelCase_ = int(os.environ['''WORLD_SIZE'''] ) UpperCAmelCase_ = ArgumentParser() parser.add_argument('''--streaming''' , type=__UpperCAmelCase ) parser.add_argument('''--local_rank''' , type=__UpperCAmelCase ) parser.add_argument('''--num_workers''' , type=__UpperCAmelCase , default=0 ) UpperCAmelCase_ = parser.parse_args() UpperCAmelCase_ = args.streaming UpperCAmelCase_ = args.num_workers UpperCAmelCase_ = {'''shards''': [f"shard_{shard_idx}" for shard_idx in range(__UpperCAmelCase )]} UpperCAmelCase_ = IterableDataset.from_generator(__UpperCAmelCase , gen_kwargs=__UpperCAmelCase ) if not streaming: UpperCAmelCase_ = Dataset.from_list(list(__UpperCAmelCase ) ) UpperCAmelCase_ = split_dataset_by_node(__UpperCAmelCase , rank=__UpperCAmelCase , world_size=__UpperCAmelCase ) UpperCAmelCase_ = torch.utils.data.DataLoader(__UpperCAmelCase , num_workers=__UpperCAmelCase ) UpperCAmelCase_ = NUM_SHARDS * NUM_ITEMS_PER_SHARD UpperCAmelCase_ = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) UpperCAmelCase_ = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f"local_size {local_size} != expected_local_size {expected_local_size}" ) if __name__ == "__main__": main()
364
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "facebook/levit-128S": "https://huggingface.co/facebook/levit-128S/resolve/main/config.json", # See all LeViT models at https://huggingface.co/models?filter=levit } class a_ ( _snake_case ): UpperCamelCase__ : Optional[int] ="levit" def __init__( self :List[str] , _lowercase :List[Any]=224 , _lowercase :str=3 , _lowercase :Optional[int]=3 , _lowercase :str=2 , _lowercase :List[Any]=1 , _lowercase :str=16 , _lowercase :Dict=[128, 256, 384] , _lowercase :Union[str, Any]=[4, 8, 12] , _lowercase :Tuple=[4, 4, 4] , _lowercase :Dict=[16, 16, 16] , _lowercase :Any=0 , _lowercase :Dict=[2, 2, 2] , _lowercase :Any=[2, 2, 2] , _lowercase :Tuple=0.02 , **_lowercase :Union[str, Any] , ) -> Optional[Any]: super().__init__(**_lowercase) UpperCAmelCase_ = image_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = kernel_size UpperCAmelCase_ = stride UpperCAmelCase_ = padding UpperCAmelCase_ = hidden_sizes UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = depths UpperCAmelCase_ = key_dim UpperCAmelCase_ = drop_path_rate UpperCAmelCase_ = patch_size UpperCAmelCase_ = attention_ratio UpperCAmelCase_ = mlp_ratio UpperCAmelCase_ = initializer_range UpperCAmelCase_ = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class a_ ( _snake_case ): UpperCamelCase__ : Union[str, Any] =version.parse("1.11" ) @property def __a ( self :Any) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ]) @property def __a ( self :List[Any]) -> float: return 1E-4
344
0
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py _lowercase: int = "src/diffusers" _lowercase: Dict = "." # This is to make sure the diffusers module imported is the one in the repo. _lowercase: str = importlib.util.spec_from_file_location( "diffusers", os.path.join(DIFFUSERS_PATH, "__init__.py"), submodule_search_locations=[DIFFUSERS_PATH], ) _lowercase: List[str] = spec.loader.load_module() def a( A : Optional[int] , A : Tuple ) -> Optional[Any]: """simple docstring""" return line.startswith(A ) or len(A ) <= 1 or re.search(r"^\s*\)(\s*->.*:|:)\s*$" , A ) is not None def a( A : List[Any] ) -> str: """simple docstring""" a = object_name.split("." ) a = 0 # First let's find the module where our object lives. a = parts[i] while i < len(A ) and not os.path.isfile(os.path.join(A , f'''{module}.py''' ) ): i += 1 if i < len(A ): a = os.path.join(A , parts[i] ) if i >= len(A ): raise ValueError(f'''`object_name` should begin with the name of a module of diffusers but got {object_name}.''' ) with open(os.path.join(A , f'''{module}.py''' ) , "r" , encoding="utf-8" , newline="\n" ) as f: a = f.readlines() # Now let's find the class / func in the code! a = "" a = 0 for name in parts[i + 1 :]: while ( line_index < len(A ) and re.search(rf'''^{indent}(class|def)\s+{name}(\(|\:)''' , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(A ): raise ValueError(f''' {object_name} does not match any function or class in {module}.''' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). a = line_index while line_index < len(A ) and _should_continue(lines[line_index] , A ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 a = lines[start_index:line_index] return "".join(A ) _lowercase: str = re.compile(r"^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)") _lowercase: List[str] = re.compile(r"^\s*(\S+)->(\S+)(\s+.*|$)") _lowercase: str = re.compile(r"<FILL\s+[^>]*>") def a( A : List[Any] ) -> Any: """simple docstring""" a = code.split("\n" ) a = 0 while idx < len(A ) and len(lines[idx] ) == 0: idx += 1 if idx < len(A ): return re.search(r"^(\s*)\S" , lines[idx] ).groups()[0] return "" def a( A : int ) -> Union[str, Any]: """simple docstring""" a = len(get_indent(A ) ) > 0 if has_indent: a = f'''class Bla:\n{code}''' a = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=A ) a = black.format_str(A , mode=A ) a , a = style_docstrings_in_code(A ) return result[len("class Bla:\n" ) :] if has_indent else result def a( A : Optional[int] , A : Tuple=False ) -> Union[str, Any]: """simple docstring""" with open(A , "r" , encoding="utf-8" , newline="\n" ) as f: a = f.readlines() a = [] a = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(A ): a = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. a , a , a = search.groups() a = find_code_in_diffusers(A ) a = get_indent(A ) a = line_index + 1 if indent == theoretical_indent else line_index + 2 a = theoretical_indent a = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. a = True while line_index < len(A ) and should_continue: line_index += 1 if line_index >= len(A ): break a = lines[line_index] a = _should_continue(A , A ) and re.search(f'''^{indent}# End copy''' , A ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 a = lines[start_index:line_index] a = "".join(A ) # Remove any nested `Copied from` comments to avoid circular copies a = [line for line in theoretical_code.split("\n" ) if _re_copy_warning.search(A ) is None] a = "\n".join(A ) # Before comparing, use the `replace_pattern` on the original code. if len(A ) > 0: a = replace_pattern.replace("with" , "" ).split("," ) a = [_re_replace_pattern.search(A ) for p in patterns] for pattern in patterns: if pattern is None: continue a , a , a = pattern.groups() a = re.sub(A , A , A ) if option.strip() == "all-casing": a = re.sub(obja.lower() , obja.lower() , A ) a = re.sub(obja.upper() , obja.upper() , A ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line a = blackify(lines[start_index - 1] + theoretical_code ) a = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: a = lines[:start_index] + [theoretical_code] + lines[line_index:] a = start_index + 1 if overwrite and len(A ) > 0: # Warn the user a file has been modified. print(f'''Detected changes, rewriting {filename}.''' ) with open(A , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(A ) return diffs def a( A : bool = False ) -> List[Any]: """simple docstring""" a = glob.glob(os.path.join(A , "**/*.py" ) , recursive=A ) a = [] for filename in all_files: a = is_copy_consistent(A , A ) diffs += [f'''- {filename}: copy does not match {d[0]} at line {d[1]}''' for d in new_diffs] if not overwrite and len(A ) > 0: a = "\n".join(A ) raise Exception( "Found the following copy inconsistencies:\n" + diff + "\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them." ) if __name__ == "__main__": _lowercase: Dict = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") _lowercase: Tuple = parser.parse_args() check_copies(args.fix_and_overwrite)
227
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def a( A : dict ) -> tuple: """simple docstring""" return (data["data"], data["target"]) def a( A : np.ndarray , A : np.ndarray ) -> XGBClassifier: """simple docstring""" a = XGBClassifier() classifier.fit(A , A ) return classifier def a( ) -> None: """simple docstring""" a = load_iris() a , a = data_handling(A ) a , a , a , a = train_test_split( A , A , test_size=0.25 ) a = iris["target_names"] # Create an XGBoost Classifier from the training data a = xgboost(A , A ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( A , A , A , display_labels=A , cmap="Blues" , normalize="true" , ) plt.title("Normalized Confusion Matrix - IRIS Dataset" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
227
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : List[str] = logging.get_logger(__name__) UpperCAmelCase__ : str = { 'microsoft/wavlm-base': 'https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json', # See all WavLM models at https://huggingface.co/models?filter=wavlm } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Any = '''wavlm''' def __init__( self : Tuple , lowerCAmelCase_ : Tuple=3_2 , lowerCAmelCase_ : Any=7_6_8 , lowerCAmelCase_ : str=1_2 , lowerCAmelCase_ : Any=1_2 , lowerCAmelCase_ : Optional[int]=3_0_7_2 , lowerCAmelCase_ : Optional[Any]="gelu" , lowerCAmelCase_ : Tuple=0.1 , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : Tuple=0.1 , lowerCAmelCase_ : Any=0.0 , lowerCAmelCase_ : Optional[int]=0.1 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : int=0.02 , lowerCAmelCase_ : int=1e-5 , lowerCAmelCase_ : str="group" , lowerCAmelCase_ : Optional[int]="gelu" , lowerCAmelCase_ : Optional[Any]=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , lowerCAmelCase_ : Dict=(5, 2, 2, 2, 2, 2, 2) , lowerCAmelCase_ : List[Any]=(1_0, 3, 3, 3, 3, 2, 2) , lowerCAmelCase_ : Dict=False , lowerCAmelCase_ : str=1_2_8 , lowerCAmelCase_ : List[str]=1_6 , lowerCAmelCase_ : Tuple=3_2_0 , lowerCAmelCase_ : Union[str, Any]=8_0_0 , lowerCAmelCase_ : List[Any]=False , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Any=0.05 , lowerCAmelCase_ : Tuple=1_0 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : List[str]=0.0 , lowerCAmelCase_ : Tuple=1_0 , lowerCAmelCase_ : Tuple=3_2_0 , lowerCAmelCase_ : int=2 , lowerCAmelCase_ : List[Any]=0.1 , lowerCAmelCase_ : Union[str, Any]=1_0_0 , lowerCAmelCase_ : Dict=2_5_6 , lowerCAmelCase_ : str=2_5_6 , lowerCAmelCase_ : Optional[int]=0.1 , lowerCAmelCase_ : List[Any]="mean" , lowerCAmelCase_ : List[str]=False , lowerCAmelCase_ : Tuple=False , lowerCAmelCase_ : Dict=2_5_6 , lowerCAmelCase_ : Optional[Any]=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , lowerCAmelCase_ : List[str]=(5, 3, 3, 1, 1) , lowerCAmelCase_ : Union[str, Any]=(1, 2, 3, 1, 1) , lowerCAmelCase_ : Optional[int]=5_1_2 , lowerCAmelCase_ : str=8_0 , lowerCAmelCase_ : Optional[int]=0 , lowerCAmelCase_ : Optional[int]=1 , lowerCAmelCase_ : List[Any]=2 , lowerCAmelCase_ : str=False , lowerCAmelCase_ : str=3 , lowerCAmelCase_ : int=2 , lowerCAmelCase_ : List[Any]=3 , lowerCAmelCase_ : Union[str, Any]=None , **lowerCAmelCase_ : Tuple , ): """simple docstring""" super().__init__(**lowerCAmelCase_ , pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ ) _A: str = hidden_size _A: str = feat_extract_norm _A: Optional[Any] = feat_extract_activation _A: Optional[Any] = list(lowerCAmelCase_ ) _A: Optional[int] = list(lowerCAmelCase_ ) _A: str = list(lowerCAmelCase_ ) _A: int = conv_bias _A: Optional[Any] = num_buckets _A: Dict = max_bucket_distance _A: Optional[int] = num_conv_pos_embeddings _A: str = num_conv_pos_embedding_groups _A: Dict = len(self.conv_dim ) _A: Dict = num_hidden_layers _A: List[str] = intermediate_size _A: List[str] = hidden_act _A: Tuple = num_attention_heads _A: str = hidden_dropout _A: Any = attention_dropout _A: List[Any] = activation_dropout _A: int = feat_proj_dropout _A: List[str] = final_dropout _A: Optional[Any] = layerdrop _A: Any = layer_norm_eps _A: Optional[int] = initializer_range _A: Union[str, Any] = num_ctc_classes _A: Optional[int] = vocab_size _A: Any = do_stable_layer_norm _A: Dict = use_weighted_layer_sum _A: int = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _A: Dict = apply_spec_augment _A: Union[str, Any] = mask_time_prob _A: Optional[Any] = mask_time_length _A: List[Any] = mask_time_min_masks _A: Optional[Any] = mask_feature_prob _A: Any = mask_feature_length # parameters for pretraining with codevector quantized representations _A: Optional[Any] = num_codevectors_per_group _A: Tuple = num_codevector_groups _A: Any = contrastive_logits_temperature _A: List[Any] = num_negatives _A: Union[str, Any] = codevector_dim _A: List[str] = proj_codevector_dim _A: List[Any] = diversity_loss_weight # ctc loss _A: Optional[Any] = ctc_loss_reduction _A: str = ctc_zero_infinity # adapter _A: str = add_adapter _A: Optional[int] = adapter_kernel_size _A: str = adapter_stride _A: Dict = num_adapter_layers _A: Optional[int] = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _A: Dict = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _A: Optional[Any] = list(lowerCAmelCase_ ) _A: Optional[Any] = list(lowerCAmelCase_ ) _A: Dict = list(lowerCAmelCase_ ) _A: Optional[int] = xvector_output_dim @property def __magic_name__ ( self : Dict ): """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
301
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase__ : Union[str, Any] = { 'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'], 'tokenization_roc_bert': ['RoCBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[Any] = [ 'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoCBertForCausalLM', 'RoCBertForMaskedLM', 'RoCBertForMultipleChoice', 'RoCBertForPreTraining', 'RoCBertForQuestionAnswering', 'RoCBertForSequenceClassification', 'RoCBertForTokenClassification', 'RoCBertLayer', 'RoCBertModel', 'RoCBertPreTrainedModel', 'load_tf_weights_in_roc_bert', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys UpperCAmelCase__ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
301
1
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __A : """simple docstring""" @staticmethod def __lowercase ( *lowerCamelCase__ , **lowerCamelCase__ ): """simple docstring""" pass @is_pipeline_test @require_vision class __A ( unittest.TestCase ): """simple docstring""" @require_torch def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Dict =pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , ) __UpperCamelCase : Dict =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) __UpperCamelCase : int =image_classifier(lowerCamelCase__ , candidate_labels=['a', 'b', 'c'] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(lowerCamelCase__ ) , [ [{'score': 0.333, 'label': 'a'}, {'score': 0.333, 'label': 'b'}, {'score': 0.333, 'label': 'c'}], [{'score': 0.333, 'label': 'a'}, {'score': 0.333, 'label': 'c'}, {'score': 0.333, 'label': 'b'}], ] , ) __UpperCamelCase : Tuple =image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2 ) self.assertEqual( nested_simplify(lowerCamelCase__ ) , [ [ {'score': 0.333, 'label': ANY(lowerCamelCase__ )}, {'score': 0.333, 'label': ANY(lowerCamelCase__ )}, {'score': 0.333, 'label': ANY(lowerCamelCase__ )}, ], [ {'score': 0.333, 'label': ANY(lowerCamelCase__ )}, {'score': 0.333, 'label': ANY(lowerCamelCase__ )}, {'score': 0.333, 'label': ANY(lowerCamelCase__ )}, ], [ {'score': 0.333, 'label': ANY(lowerCamelCase__ )}, {'score': 0.333, 'label': ANY(lowerCamelCase__ )}, {'score': 0.333, 'label': ANY(lowerCamelCase__ )}, ], [ {'score': 0.333, 'label': ANY(lowerCamelCase__ )}, {'score': 0.333, 'label': ANY(lowerCamelCase__ )}, {'score': 0.333, 'label': ANY(lowerCamelCase__ )}, ], [ {'score': 0.333, 'label': ANY(lowerCamelCase__ )}, {'score': 0.333, 'label': ANY(lowerCamelCase__ )}, {'score': 0.333, 'label': ANY(lowerCamelCase__ )}, ], ] , ) @require_tf def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[Any] =pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , framework='tf' ) __UpperCamelCase : str =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) __UpperCamelCase : List[Any] =image_classifier(lowerCamelCase__ , candidate_labels=['a', 'b', 'c'] ) self.assertEqual( nested_simplify(lowerCamelCase__ ) , [{'score': 0.333, 'label': 'a'}, {'score': 0.333, 'label': 'b'}, {'score': 0.333, 'label': 'c'}] , ) __UpperCamelCase : Tuple =image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2 ) self.assertEqual( nested_simplify(lowerCamelCase__ ) , [ [ {'score': 0.333, 'label': ANY(lowerCamelCase__ )}, {'score': 0.333, 'label': ANY(lowerCamelCase__ )}, {'score': 0.333, 'label': ANY(lowerCamelCase__ )}, ], [ {'score': 0.333, 'label': ANY(lowerCamelCase__ )}, {'score': 0.333, 'label': ANY(lowerCamelCase__ )}, {'score': 0.333, 'label': ANY(lowerCamelCase__ )}, ], [ {'score': 0.333, 'label': ANY(lowerCamelCase__ )}, {'score': 0.333, 'label': ANY(lowerCamelCase__ )}, {'score': 0.333, 'label': ANY(lowerCamelCase__ )}, ], [ {'score': 0.333, 'label': ANY(lowerCamelCase__ )}, {'score': 0.333, 'label': ANY(lowerCamelCase__ )}, {'score': 0.333, 'label': ANY(lowerCamelCase__ )}, ], [ {'score': 0.333, 'label': ANY(lowerCamelCase__ )}, {'score': 0.333, 'label': ANY(lowerCamelCase__ )}, {'score': 0.333, 'label': ANY(lowerCamelCase__ )}, ], ] , ) @slow @require_torch def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[str] =pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , ) # This is an image of 2 cats with remotes and no planes __UpperCamelCase : List[str] =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) __UpperCamelCase : int =image_classifier(lowerCamelCase__ , candidate_labels=['cat', 'plane', 'remote'] ) self.assertEqual( nested_simplify(lowerCamelCase__ ) , [ {'score': 0.511, 'label': 'remote'}, {'score': 0.485, 'label': 'cat'}, {'score': 0.004, 'label': 'plane'}, ] , ) __UpperCamelCase : Optional[Any] =image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2 ) self.assertEqual( nested_simplify(lowerCamelCase__ ) , [ [ {'score': 0.511, 'label': 'remote'}, {'score': 0.485, 'label': 'cat'}, {'score': 0.004, 'label': 'plane'}, ], ] * 5 , ) @slow @require_tf def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[str] =pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , framework='tf' ) # This is an image of 2 cats with remotes and no planes __UpperCamelCase : List[Any] =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) __UpperCamelCase : Optional[int] =image_classifier(lowerCamelCase__ , candidate_labels=['cat', 'plane', 'remote'] ) self.assertEqual( nested_simplify(lowerCamelCase__ ) , [ {'score': 0.511, 'label': 'remote'}, {'score': 0.485, 'label': 'cat'}, {'score': 0.004, 'label': 'plane'}, ] , ) __UpperCamelCase : Optional[Any] =image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2 ) self.assertEqual( nested_simplify(lowerCamelCase__ ) , [ [ {'score': 0.511, 'label': 'remote'}, {'score': 0.485, 'label': 'cat'}, {'score': 0.004, 'label': 'plane'}, ], ] * 5 , )
71
from torch import nn class __A ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" super().__init__() __UpperCamelCase : Dict =class_size __UpperCamelCase : Any =embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) __UpperCamelCase : Any =nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : List[Any] =self.mlp(lowerCamelCase__ ) return logits
71
1
'''simple docstring''' from functools import lru_cache def __a ( UpperCAmelCase ) ->set: """simple docstring""" A = 2 A = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(UpperCAmelCase ) if n > 1: factors.add(UpperCAmelCase ) return factors @lru_cache def __a ( UpperCAmelCase ) ->int: """simple docstring""" return len(unique_prime_factors(UpperCAmelCase ) ) def __a ( UpperCAmelCase ) ->bool: """simple docstring""" return len(set(UpperCAmelCase ) ) in (0, 1) def __a ( UpperCAmelCase ) ->list: """simple docstring""" A = 2 while True: # Increment each value of a generated range A = [base + i for i in range(UpperCAmelCase )] # Run elements through out unique_prime_factors function # Append our target number to the end. A = [upf_len(UpperCAmelCase ) for x in group] checker.append(UpperCAmelCase ) # If all numbers in the list are equal, return the group variable. if equality(UpperCAmelCase ): return group # Increment our base variable by 1 base += 1 def __a ( UpperCAmelCase = 4 ) ->int: """simple docstring""" A = run(UpperCAmelCase ) return results[0] if len(UpperCAmelCase ) else None if __name__ == "__main__": print(solution())
360
'''simple docstring''' from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def __a ( UpperCAmelCase ) ->List[str]: """simple docstring""" if isinstance(UpperCAmelCase , collections.abc.Iterable ): return x return (x, x) @require_tf class __UpperCAmelCase : '''simple docstring''' def A (self : int , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[str] ): pass def A (self : List[str] ): pass def A (self : Union[str, Any] ): pass def A (self : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int=None , **_lowerCAmelCase : Dict ): A = VisionTextDualEncoderConfig.from_vision_text_configs(_lowerCAmelCase , _lowerCAmelCase ) A = TFVisionTextDualEncoderModel(_lowerCAmelCase ) A = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def A (self : Dict , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict=None , **_lowerCAmelCase : int ): A , A = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) A = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) A = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def A (self : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : str=None , **_lowerCAmelCase : List[Any] ): A , A = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) A = {"""vision_model""": vision_model, """text_model""": text_model} A = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**_lowerCAmelCase ) A = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def A (self : List[str] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any]=None , **_lowerCAmelCase : Any ): A , A = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) A = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) A = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) A = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCAmelCase ) A = TFVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ) A = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) A = after_output[0].numpy() A = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase , 1e-5 ) def A (self : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Any=None , **_lowerCAmelCase : List[Any] ): A , A = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) A = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) A = model( input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_attentions=_lowerCAmelCase ) A = output.vision_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) A = to_atuple(vision_model.config.image_size ) A = to_atuple(vision_model.config.patch_size ) A = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) A = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) A = output.text_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def A (self : List[Any] , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : float ): A = np.abs((a - b) ).max() self.assertLessEqual(_lowerCAmelCase , _lowerCAmelCase , F"""Difference between torch and flax is {diff} (>= {tol}).""" ) def A (self : List[str] ): A = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**_lowerCAmelCase ) def A (self : Optional[int] ): A = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_lowerCAmelCase ) def A (self : List[Any] ): A = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_lowerCAmelCase ) def A (self : int ): A = self.prepare_config_and_inputs() self.check_save_load(**_lowerCAmelCase ) def A (self : int ): A = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_lowerCAmelCase ) @slow def A (self : Tuple ): A , A = self.get_pretrained_model_and_inputs() A = model_a(**_lowerCAmelCase ) A = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_lowerCAmelCase ) A = TFVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ) A = model_a(**_lowerCAmelCase ) A = after_outputs[0].numpy() A = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase , 1e-5 ) @require_tf class __UpperCAmelCase ( A__ , unittest.TestCase ): '''simple docstring''' def A (self : int ): A = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-random-bert""" ) A = 13 A = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) A = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) A = random_attention_mask([batch_size, 4] ) A = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def A (self : Dict , _lowerCAmelCase : Dict , _lowerCAmelCase : int ): A = TFViTModel(_lowerCAmelCase , name="""vision_model""" ) A = TFBertModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def A (self : Union[str, Any] ): A = TFViTModelTester(self ) A = TFBertModelTester(self ) A = vit_model_tester.prepare_config_and_inputs() A = bert_model_tester.prepare_config_and_inputs() A , A , A = vision_config_and_inputs ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __UpperCAmelCase ( A__ , unittest.TestCase ): '''simple docstring''' def A (self : Optional[int] ): # DeiT repo doesn't have TF weights, but we don't actually use the weights at all so let's # just reinitialize it. A = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-deit-tf""" , """hf-internal-testing/tiny-random-roberta""" ) A = 13 A = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) A = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) A = random_attention_mask([batch_size, 4] ) A = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def A (self : List[str] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any]=None , **_lowerCAmelCase : Any ): A , A = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) A = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) A = model( input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_attentions=_lowerCAmelCase ) A = output.vision_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) A = to_atuple(vision_model.config.image_size ) A = to_atuple(vision_model.config.patch_size ) A = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) A = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) A = output.text_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def A (self : Any , _lowerCAmelCase : Any , _lowerCAmelCase : str ): A = TFDeiTModel(_lowerCAmelCase , name="""vision_model""" ) A = TFRobertaModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def A (self : str ): A = TFDeiTModelTester(self ) A = TFRobertaModelTester(self ) A = vit_model_tester.prepare_config_and_inputs() A = bert_model_tester.prepare_config_and_inputs() A , A , A = vision_config_and_inputs ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __UpperCAmelCase ( A__ , unittest.TestCase ): '''simple docstring''' def A (self : Dict ): A = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-clip-tf""" , """hf-internal-testing/tiny-random-bert""" ) A = 13 A = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) A = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) A = random_attention_mask([batch_size, 4] ) A = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def A (self : Optional[int] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ): A = TFCLIPVisionModel(_lowerCAmelCase , name="""vision_model""" ) A = TFBertModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def A (self : Optional[Any] ): A = TFCLIPVisionModelTester(self ) A = TFBertModelTester(self ) A = clip_model_tester.prepare_config_and_inputs() A = bert_model_tester.prepare_config_and_inputs() A , A = vision_config_and_inputs ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def A (self : Any ): A = TFVisionTextDualEncoderModel.from_pretrained( """clip-italian/clip-italian""" , logit_scale_init_value=1.0 , from_pt=_lowerCAmelCase ) A = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) A = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) A = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="""np""" ) A = model(**_lowerCAmelCase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) A = np.array([[1.2_284_727, 0.3_104_122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , _lowerCAmelCase , atol=1e-3 ) )
337
0
"""simple docstring""" import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def __a ( __lowerCamelCase ): return (data["data"], data["target"]) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Tuple = XGBRegressor(verbosity=0, random_state=42 ) xgb.fit(__lowerCamelCase, __lowerCamelCase ) # Predict target for test data UpperCAmelCase_ : Union[str, Any] = xgb.predict(__lowerCamelCase ) UpperCAmelCase_ : int = predictions.reshape(len(__lowerCamelCase ), 1 ) return predictions def __a ( ): UpperCAmelCase_ : List[Any] = fetch_california_housing() UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = data_handling(__lowerCamelCase ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = train_test_split( __lowerCamelCase, __lowerCamelCase, test_size=0.25, random_state=1 ) UpperCAmelCase_ : int = xgboost(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) # Error printing print(f"""Mean Absolute Error : {mean_absolute_error(__lowerCamelCase, __lowerCamelCase )}""" ) print(f"""Mean Square Error : {mean_squared_error(__lowerCamelCase, __lowerCamelCase )}""" ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
61
'''simple docstring''' import re from filelock import FileLock try: import nltk UpperCamelCase__ = True except (ImportError, ModuleNotFoundError): UpperCamelCase__ = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def a__ ( lowerCAmelCase__ ) -> str: re.sub('''<n>''' , '''''' , lowerCAmelCase__ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(lowerCAmelCase__ ) )
181
0
from math import factorial def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" if n < k or k < 0: raise ValueError("Please enter positive integers for n and k where n >= k" ) return factorial(_SCREAMING_SNAKE_CASE ) // (factorial(_SCREAMING_SNAKE_CASE ) * factorial(n - k )) if __name__ == "__main__": print( '''The number of five-card hands possible from a standard''', f'''fifty-two card deck is: {combinations(52, 5)}\n''', ) print( '''If a class of 40 students must be arranged into groups of''', f'''4 for group projects, there are {combinations(40, 4)} ways''', '''to arrange them.\n''', ) print( '''If 10 teams are competing in a Formula One race, there''', f'''are {combinations(10, 3)} ways that first, second and''', '''third place can be awarded.''', )
363
"""simple docstring""" from __future__ import annotations from random import choice def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" return choice(_SCREAMING_SNAKE_CASE ) def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = random_pivot(_SCREAMING_SNAKE_CASE ) # partition based on pivot # linear time UpperCamelCase = [e for e in lst if e < pivot] UpperCamelCase = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(_SCREAMING_SNAKE_CASE ) == k - 1: return pivot # pivot is in elements bigger than k elif len(_SCREAMING_SNAKE_CASE ) < k - 1: return kth_number(_SCREAMING_SNAKE_CASE , k - len(_SCREAMING_SNAKE_CASE ) - 1 ) # pivot is in elements smaller than k else: return kth_number(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
244
0
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A__ ( unittest.TestCase): @property def UpperCamelCase__ ( self ): torch.manual_seed(0 ) lowerCamelCase : int = UNetaDModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model @property def UpperCamelCase__ ( self ): torch.manual_seed(0 ) lowerCamelCase : Tuple = VQModel( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , ) return model @property def UpperCamelCase__ ( self ): torch.manual_seed(0 ) lowerCamelCase : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModel(lowerCAmelCase_ ) def UpperCamelCase__ ( self ): lowerCamelCase : List[Any] = self.dummy_uncond_unet lowerCamelCase : Optional[Any] = DDIMScheduler() lowerCamelCase : Tuple = self.dummy_vq_model lowerCamelCase : Optional[Any] = LDMPipeline(unet=lowerCAmelCase_ , vqvae=lowerCAmelCase_ , scheduler=lowerCAmelCase_ ) ldm.to(lowerCAmelCase_ ) ldm.set_progress_bar_config(disable=lowerCAmelCase_ ) lowerCamelCase : Dict = torch.manual_seed(0 ) lowerCamelCase : str = ldm(generator=lowerCAmelCase_ , num_inference_steps=2 , output_type="""numpy""" ).images lowerCamelCase : int = torch.manual_seed(0 ) lowerCamelCase : List[Any] = ldm(generator=lowerCAmelCase_ , num_inference_steps=2 , output_type="""numpy""" , return_dict=lowerCAmelCase_ )[0] lowerCamelCase : List[str] = image[0, -3:, -3:, -1] lowerCamelCase : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) lowerCamelCase : Optional[Any] = np.array([0.8_512, 0.818, 0.6_411, 0.6_808, 0.4_465, 0.5_618, 0.46, 0.6_231, 0.5_172] ) lowerCamelCase : Dict = 1e-2 if torch_device != '''mps''' else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class A__ ( unittest.TestCase): def UpperCamelCase__ ( self ): lowerCamelCase : List[Any] = LDMPipeline.from_pretrained("""CompVis/ldm-celebahq-256""" ) ldm.to(lowerCAmelCase_ ) ldm.set_progress_bar_config(disable=lowerCAmelCase_ ) lowerCamelCase : List[Any] = torch.manual_seed(0 ) lowerCamelCase : Tuple = ldm(generator=lowerCAmelCase_ , num_inference_steps=5 , output_type="""numpy""" ).images lowerCamelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 2_5_6, 2_5_6, 3) lowerCamelCase : Any = np.array([0.4_399, 0.44_975, 0.46_825, 0.474, 0.4_359, 0.4_581, 0.45_095, 0.4_341, 0.4_447] ) lowerCamelCase : int = 1e-2 if torch_device != '''mps''' else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
287
def lowerCamelCase__ ( a , a ) -> str: if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) _A: Union[str, Any] = str(bin(a ) )[2:] # remove the leading "0b" _A: Union[str, Any] = str(bin(a ) )[2:] # remove the leading "0b" _A: Optional[int] = max(len(a ) , len(a ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(a ) , b_binary.zfill(a ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
121
0
'''simple docstring''' def lowercase__( __UpperCamelCase: int ): """simple docstring""" if divisor % 5 == 0 or divisor % 2 == 0: return 0 SCREAMING_SNAKE_CASE : str = 1 SCREAMING_SNAKE_CASE : Optional[int] = 1 while repunit: SCREAMING_SNAKE_CASE : List[str] = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def lowercase__( __UpperCamelCase: int = 1_00_00_00 ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(__UpperCamelCase ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(F"""{solution() = }""")
363
'''simple docstring''' import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class _a ( unittest.TestCase ): '''simple docstring''' def __init__( self, A, A=2, A=56, A=True, A=True, A=True, A=True, A=99, A=32, A=2, A=2, A=7, A="gelu_new", A=0.1, A=0.1, A=512, A=16, A=2, A=0.02, A=4, A="block_sparse", A=True, A=False, A=2, A=3, ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = parent SCREAMING_SNAKE_CASE : int = batch_size SCREAMING_SNAKE_CASE : List[str] = seq_length SCREAMING_SNAKE_CASE : Optional[Any] = is_training SCREAMING_SNAKE_CASE : Dict = use_attention_mask SCREAMING_SNAKE_CASE : List[Any] = use_token_type_ids SCREAMING_SNAKE_CASE : Optional[Any] = use_labels SCREAMING_SNAKE_CASE : Optional[Any] = vocab_size SCREAMING_SNAKE_CASE : int = hidden_size SCREAMING_SNAKE_CASE : Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE : List[str] = num_attention_heads SCREAMING_SNAKE_CASE : Dict = intermediate_size SCREAMING_SNAKE_CASE : Optional[int] = hidden_act SCREAMING_SNAKE_CASE : str = hidden_dropout_prob SCREAMING_SNAKE_CASE : Tuple = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Any = max_position_embeddings SCREAMING_SNAKE_CASE : List[Any] = type_vocab_size SCREAMING_SNAKE_CASE : Any = type_sequence_label_size SCREAMING_SNAKE_CASE : List[Any] = initializer_range SCREAMING_SNAKE_CASE : Optional[Any] = num_choices SCREAMING_SNAKE_CASE : int = rescale_embeddings SCREAMING_SNAKE_CASE : Any = attention_type SCREAMING_SNAKE_CASE : str = use_bias SCREAMING_SNAKE_CASE : Tuple = block_size SCREAMING_SNAKE_CASE : List[Any] = num_random_blocks def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_attention_mask: SCREAMING_SNAKE_CASE : Dict = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : Optional[Any] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) SCREAMING_SNAKE_CASE : List[str] = BigBirdConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=A, initializer_range=self.initializer_range, attention_type=self.attention_type, block_size=self.block_size, num_random_blocks=self.num_random_blocks, use_bias=self.use_bias, rescale_embeddings=self.rescale_embeddings, ) return config, input_ids, token_type_ids, attention_mask def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE : List[str] = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask, } return config, inputs_dict @require_flax class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : str = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) A : List[Any] = False A : List[str] = False def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCamelCase_ ( self ): '''simple docstring''' super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCamelCase_ ( self ): '''simple docstring''' super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCamelCase_ ( self ): '''simple docstring''' super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCamelCase_ ( self ): '''simple docstring''' super().test_hidden_states_output() @slow def UpperCamelCase_ ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[Any] = model_class_name.from_pretrained('google/bigbird-roberta-base' ) self.assertIsNotNone(A ) def UpperCamelCase_ ( self ): '''simple docstring''' if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): SCREAMING_SNAKE_CASE : Any = self._prepare_for_class(A, A ) SCREAMING_SNAKE_CASE : List[str] = model_class(A ) @jax.jit def model_jitted(A, A=None, **A ): return model(input_ids=A, attention_mask=A, **A ) with self.subTest('JIT Enabled' ): SCREAMING_SNAKE_CASE : List[str] = model_jitted(**A ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): SCREAMING_SNAKE_CASE : Optional[Any] = model_jitted(**A ).to_tuple() self.assertEqual(len(A ), len(A ) ) for jitted_output, output in zip(A, A ): self.assertEqual(jitted_output.shape, output.shape ) def UpperCamelCase_ ( self, A, A, A, A=1E-5, A="outputs", A=None ): '''simple docstring''' if name.startswith('outputs.attentions' ): return else: super().check_pt_flax_outputs(A, A, A, A, A, A )
246
0
'''simple docstring''' import itertools import string from collections.abc import Generator, Iterable def __snake_case ( UpperCAmelCase_ : Iterable[str] , UpperCAmelCase_ : int ): lowerCamelCase_ = iter(UpperCAmelCase_ ) while True: lowerCamelCase_ = tuple(itertools.islice(UpperCAmelCase_ , UpperCAmelCase_ ) ) if not chunk: return yield chunk def __snake_case ( UpperCAmelCase_ : str ): lowerCamelCase_ = "".join([c.upper() for c in dirty if c in string.ascii_letters] ) lowerCamelCase_ = "" if len(UpperCAmelCase_ ) < 2: return dirty for i in range(len(UpperCAmelCase_ ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(UpperCAmelCase_ ) & 1: clean += "X" return clean def __snake_case ( UpperCAmelCase_ : str ): # I and J are used interchangeably to allow # us to use a 5x5 table (25 letters) lowerCamelCase_ = "ABCDEFGHIKLMNOPQRSTUVWXYZ" # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler lowerCamelCase_ = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(UpperCAmelCase_ ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(UpperCAmelCase_ ) return table def __snake_case ( UpperCAmelCase_ : str , UpperCAmelCase_ : str ): lowerCamelCase_ = generate_table(UpperCAmelCase_ ) lowerCamelCase_ = prepare_input(UpperCAmelCase_ ) lowerCamelCase_ = "" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(UpperCAmelCase_ , 2 ): lowerCamelCase_ ,lowerCamelCase_ = divmod(table.index(UpperCAmelCase_ ) , 5 ) lowerCamelCase_ ,lowerCamelCase_ = divmod(table.index(UpperCAmelCase_ ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def __snake_case ( UpperCAmelCase_ : str , UpperCAmelCase_ : str ): lowerCamelCase_ = generate_table(UpperCAmelCase_ ) lowerCamelCase_ = "" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(UpperCAmelCase_ , 2 ): lowerCamelCase_ ,lowerCamelCase_ = divmod(table.index(UpperCAmelCase_ ) , 5 ) lowerCamelCase_ ,lowerCamelCase_ = divmod(table.index(UpperCAmelCase_ ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
55
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed __snake_case = logging.getLogger(__name__) def _A ( SCREAMING_SNAKE_CASE__ : Dict=2 , SCREAMING_SNAKE_CASE__ : Dict=3 , SCREAMING_SNAKE_CASE__ : Any=16 , SCREAMING_SNAKE_CASE__ : int = 10 , SCREAMING_SNAKE_CASE__ : int = 2 ): def get_dataset(SCREAMING_SNAKE_CASE__ : List[Any] ): UpperCamelCase :Union[str, Any] = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(SCREAMING_SNAKE_CASE__ , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) UpperCamelCase :str = get_dataset(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Any = get_dataset(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Any = DataLoader(SCREAMING_SNAKE_CASE__ , shuffle=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ , num_workers=4 ) UpperCamelCase :Any = DataLoader(SCREAMING_SNAKE_CASE__ , shuffle=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ , num_workers=4 ) return (train_dataloader, valid_dataloader) def _A ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any=None ): UpperCamelCase :Dict = [] for epoch in range(SCREAMING_SNAKE_CASE__ ): # Train quickly model.train() for batch in dataloader: UpperCamelCase , UpperCamelCase :Optional[Any] = batch UpperCamelCase :int = model(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Optional[int] = torch.nn.functional.mse_loss(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) accelerator.backward(SCREAMING_SNAKE_CASE__ ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class UpperCAmelCase_ ( nn.Module ): """simple docstring""" def __init__( self ) -> str: super().__init__() UpperCamelCase :Optional[int] = nn.Parameter(torch.randn(1 ) ) UpperCamelCase :int = nn.Parameter(torch.randn(1 ) ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ ) -> int: return x * self.a + self.b class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> Dict: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCamelCase :Optional[Any] = DummyModel() UpperCamelCase :List[Any] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) UpperCamelCase , UpperCamelCase :Tuple = dummy_dataloaders() UpperCamelCase :Tuple = ProjectConfiguration(total_limit=1 , project_dir=SCREAMING_SNAKE_CASE_ , automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline UpperCamelCase :Dict = Accelerator(project_config=SCREAMING_SNAKE_CASE_ ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase :Union[str, Any] = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def UpperCAmelCase ( self ) -> str: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCamelCase :List[str] = DummyModel() UpperCamelCase :Union[str, Any] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) UpperCamelCase , UpperCamelCase :Dict = dummy_dataloaders() # Train baseline UpperCamelCase :Dict = Accelerator() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase :int = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial UpperCamelCase :int = os.path.join(SCREAMING_SNAKE_CASE_ , '''initial''' ) accelerator.save_state(SCREAMING_SNAKE_CASE_ ) ((UpperCamelCase) , (UpperCamelCase)) :Optional[Any] = model.a.item(), model.b.item() UpperCamelCase :Optional[int] = optimizer.state_dict() UpperCamelCase :Optional[int] = train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((UpperCamelCase) , (UpperCamelCase)) :Dict = model.a.item(), model.b.item() UpperCamelCase :Optional[Any] = optimizer.state_dict() # Train partially set_seed(42 ) UpperCamelCase :Any = DummyModel() UpperCamelCase :List[Any] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) UpperCamelCase , UpperCamelCase :List[Any] = dummy_dataloaders() UpperCamelCase :List[str] = Accelerator() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase :Tuple = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) accelerator.load_state(SCREAMING_SNAKE_CASE_ ) ((UpperCamelCase) , (UpperCamelCase)) :Tuple = model.a.item(), model.b.item() UpperCamelCase :Tuple = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Optional[int] = train(2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save everything UpperCamelCase :Optional[int] = os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoint''' ) accelerator.save_state(SCREAMING_SNAKE_CASE_ ) # Load everything back in and make sure all states work accelerator.load_state(SCREAMING_SNAKE_CASE_ ) test_rands += train(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((UpperCamelCase) , (UpperCamelCase)) :Union[str, Any] = model.a.item(), model.b.item() UpperCamelCase :Optional[Any] = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> List[Any]: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCamelCase :List[Any] = DummyModel() UpperCamelCase :Optional[int] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) UpperCamelCase , UpperCamelCase :int = dummy_dataloaders() UpperCamelCase :int = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline UpperCamelCase :Union[str, Any] = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase :Optional[Any] = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() ((UpperCamelCase) , (UpperCamelCase)) :List[str] = model.a.item(), model.b.item() UpperCamelCase :Dict = optimizer.state_dict() UpperCamelCase :Any = train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((UpperCamelCase) , (UpperCamelCase)) :Optional[int] = model.a.item(), model.b.item() UpperCamelCase :Any = optimizer.state_dict() # Train partially set_seed(42 ) UpperCamelCase :Union[str, Any] = DummyModel() UpperCamelCase :List[Any] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) UpperCamelCase , UpperCamelCase :Tuple = dummy_dataloaders() UpperCamelCase :Optional[Any] = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Union[str, Any] = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase :List[str] = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) ) ((UpperCamelCase) , (UpperCamelCase)) :Dict = model.a.item(), model.b.item() UpperCamelCase :Dict = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Any = train(2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_1''' ) ) test_rands += train(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((UpperCamelCase) , (UpperCamelCase)) :Optional[Any] = model.a.item(), model.b.item() UpperCamelCase :str = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase :List[Any] = torch.tensor([1, 2, 3] ) UpperCamelCase :Any = torch.tensor([2, 3, 4] ) UpperCamelCase :Optional[Any] = DummyModel() UpperCamelCase :Optional[Any] = torch.optim.Adam(net.parameters() ) UpperCamelCase :Optional[Any] = Accelerator() with self.assertRaises(SCREAMING_SNAKE_CASE_ ) as ve: accelerator.register_for_checkpointing(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Optional[Any] = str(ve.exception ) self.assertTrue('''Item at index 0''' in message ) self.assertTrue('''Item at index 1''' in message ) self.assertFalse('''Item at index 2''' in message ) self.assertFalse('''Item at index 3''' in message ) def UpperCAmelCase ( self ) -> Any: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCamelCase :List[Any] = DummyModel() UpperCamelCase :List[str] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) UpperCamelCase :Any = torch.optim.lr_scheduler.StepLR(SCREAMING_SNAKE_CASE_ , step_size=1 , gamma=0.99 ) UpperCamelCase , UpperCamelCase :Any = dummy_dataloaders() UpperCamelCase :Optional[int] = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline UpperCamelCase :str = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase :Tuple = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() UpperCamelCase :int = scheduler.state_dict() train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) ) self.assertEqual(SCREAMING_SNAKE_CASE_ , scheduler.state_dict() ) def UpperCAmelCase ( self ) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCamelCase :Optional[Any] = DummyModel() UpperCamelCase :int = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ , total_limit=2 ) # Train baseline UpperCamelCase :Tuple = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :List[str] = accelerator.prepare(SCREAMING_SNAKE_CASE_ ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_9''' ) ) ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_10''' ) ) ) @require_cuda def UpperCAmelCase ( self ) -> int: UpperCamelCase :int = ['''torchrun''', F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=os.environ.copy() ) if __name__ == "__main__": __snake_case = """/tmp/accelerate/state_checkpointing""" __snake_case = DummyModel() __snake_case = torch.optim.Adam(params=model.parameters(), lr=1E-3) __snake_case = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.9_9) __snake_case , __snake_case = dummy_dataloaders() __snake_case = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline __snake_case = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="""no""") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) __snake_case , __snake_case = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: __snake_case = group["""params"""][0].device break assert param_device.type == accelerator.device.type __snake_case = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""cpu""") for group in optimizer.param_groups: __snake_case = group["""params"""][0].device break assert ( param_device.type == torch.device("""cpu""").type ), f"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""on_device""") for group in optimizer.param_groups: __snake_case = group["""params"""][0].device break assert ( param_device.type == accelerator.device.type ), f"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="""Unsupported optimizer map location passed"""): accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""invalid""") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
259
0
"""simple docstring""" from sklearn.metrics import recall_score import datasets __UpperCamelCase = """ Recall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation: Recall = TP / (TP + FN) Where TP is the true positives and FN is the false negatives. """ __UpperCamelCase = """ Args: - **predictions** (`list` of `int`): The predicted labels. - **references** (`list` of `int`): The ground truth labels. - **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None. - **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`. - **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`. - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary. - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives. - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall. - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). - **sample_weight** (`list` of `float`): Sample weights Defaults to `None`. - **zero_division** (): Sets the value to return when there is a zero division. Defaults to . - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised. - `0`: If there is a zero division, the return value is `0`. - `1`: If there is a zero division, the return value is `1`. Returns: - **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better. Examples: Example 1-A simple example with some errors >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1]) >>> print(results) {'recall': 0.6666666666666666} Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`. >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0) >>> print(results) {'recall': 0.5} Example 3-The same example as Example 1, but with `sample_weight` included. >>> recall_metric = datasets.load_metric('recall') >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8] >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight) >>> print(results) {'recall': 0.55} Example 4-A multiclass example, using different averages. >>> recall_metric = datasets.load_metric('recall') >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {'recall': array([1., 0., 0.])} """ __UpperCamelCase = """ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase ( datasets.Metric ): def a_ ( self) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('int32')), 'references': datasets.Sequence(datasets.Value('int32')), } if self.config_name == 'multilabel' else { 'predictions': datasets.Value('int32'), 'references': datasets.Value('int32'), }), reference_urls=['https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html'], ) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__=None, lowerCAmelCase__=1, lowerCAmelCase__="binary", lowerCAmelCase__=None, lowerCAmelCase__="warn", ) -> Optional[Any]: snake_case_ = recall_score( lowerCAmelCase__, lowerCAmelCase__, labels=lowerCAmelCase__, pos_label=lowerCAmelCase__, average=lowerCAmelCase__, sample_weight=lowerCAmelCase__, zero_division=lowerCAmelCase__, ) return {"recall": float(lowerCAmelCase__) if score.size == 1 else score}
351
"""simple docstring""" from math import pi def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> float: return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
312
0
'''simple docstring''' from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowercase ( __lowerCAmelCase ): """simple docstring""" UpperCAmelCase = ['''image_processor''', '''tokenizer'''] UpperCAmelCase = '''BlipImageProcessor''' UpperCAmelCase = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self ,a_ ,a_ ) -> List[str]: _UpperCAmelCase : int = False super().__init__(lowerCAmelCase_ ,lowerCAmelCase_ ) _UpperCAmelCase : Optional[Any] = self.image_processor def __call__( self ,a_ = None ,a_ = None ,a_ = True ,a_ = False ,a_ = None ,a_ = None ,a_ = 0 ,a_ = None ,a_ = None ,a_ = False ,a_ = False ,a_ = False ,a_ = False ,a_ = False ,a_ = True ,a_ = None ,**a_ ,) -> BatchEncoding: if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None: _UpperCAmelCase : int = self.tokenizer _UpperCAmelCase : str = self.tokenizer( text=lowerCAmelCase_ ,add_special_tokens=lowerCAmelCase_ ,padding=lowerCAmelCase_ ,truncation=lowerCAmelCase_ ,max_length=lowerCAmelCase_ ,stride=lowerCAmelCase_ ,pad_to_multiple_of=lowerCAmelCase_ ,return_attention_mask=lowerCAmelCase_ ,return_overflowing_tokens=lowerCAmelCase_ ,return_special_tokens_mask=lowerCAmelCase_ ,return_offsets_mapping=lowerCAmelCase_ ,return_token_type_ids=lowerCAmelCase_ ,return_length=lowerCAmelCase_ ,verbose=lowerCAmelCase_ ,return_tensors=lowerCAmelCase_ ,**lowerCAmelCase_ ,) return text_encoding # add pixel_values _UpperCAmelCase : Optional[int] = self.image_processor(lowerCAmelCase_ ,return_tensors=lowerCAmelCase_ ) if text is not None: _UpperCAmelCase : Tuple = self.tokenizer( text=lowerCAmelCase_ ,add_special_tokens=lowerCAmelCase_ ,padding=lowerCAmelCase_ ,truncation=lowerCAmelCase_ ,max_length=lowerCAmelCase_ ,stride=lowerCAmelCase_ ,pad_to_multiple_of=lowerCAmelCase_ ,return_attention_mask=lowerCAmelCase_ ,return_overflowing_tokens=lowerCAmelCase_ ,return_special_tokens_mask=lowerCAmelCase_ ,return_offsets_mapping=lowerCAmelCase_ ,return_token_type_ids=lowerCAmelCase_ ,return_length=lowerCAmelCase_ ,verbose=lowerCAmelCase_ ,return_tensors=lowerCAmelCase_ ,**lowerCAmelCase_ ,) else: _UpperCAmelCase : List[str] = None if text_encoding is not None: encoding_image_processor.update(lowerCAmelCase_ ) return encoding_image_processor def _snake_case ( self ,*a_ ,**a_ ) -> Optional[Any]: return self.tokenizer.batch_decode(*lowerCAmelCase_ ,**lowerCAmelCase_ ) def _snake_case ( self ,*a_ ,**a_ ) -> Optional[int]: return self.tokenizer.decode(*lowerCAmelCase_ ,**lowerCAmelCase_ ) @property def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : List[Any] = self.tokenizer.model_input_names _UpperCAmelCase : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
215
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class a ( unittest.TestCase ): """simple docstring""" lowerCamelCase :Tuple = JukeboxTokenizer lowerCamelCase :str = { '''artist''': '''Zac Brown Band''', '''genres''': '''Country''', '''lyrics''': '''I met a traveller from an antique land, Who said "Two vast and trunkless legs of stone Stand in the desert. . . . Near them, on the sand, Half sunk a shattered visage lies, whose frown, And wrinkled lip, and sneer of cold command, Tell that its sculptor well those passions read Which yet survive, stamped on these lifeless things, The hand that mocked them, and the heart that fed; And on the pedestal, these words appear: My name is Ozymandias, King of Kings; Look on my Works, ye Mighty, and despair! Nothing beside remains. Round the decay Of that colossal Wreck, boundless and bare The lone and level sands stretch far away ''', } @require_torch def UpperCAmelCase ( self ) -> Tuple: import torch _A = JukeboxTokenizer.from_pretrained("""openai/jukebox-1b-lyrics""" ) _A = tokenizer(**self.metas )["""input_ids"""] # fmt: off _A = [ torch.tensor([[ 0, 0, 0, 71_69, 5_07, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 10_69, 11]] ), torch.tensor([[0, 0, 0, 10_69, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def UpperCAmelCase ( self ) -> List[str]: import torch _A = JukeboxTokenizer.from_pretrained("""openai/jukebox-5b-lyrics""" ) _A = tokenizer(**self.metas )["""input_ids"""] # fmt: off _A = [ torch.tensor([[ 0, 0, 0, 10_69, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
180
0
"""simple docstring""" import requests _a = """YOUR API KEY""" def __a ( __lowerCamelCase, __lowerCamelCase = giphy_api_key ): UpperCAmelCase_ : Optional[Any] = '+'.join(query.split() ) UpperCAmelCase_ : Any = f"""https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}""" UpperCAmelCase_ : Dict = requests.get(_A ).json()['data'] return [gif["url"] for gif in gifs] if __name__ == "__main__": print('\n'.join(get_gifs('space ship')))
352
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _a = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ 'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST', 'UniSpeechForCTC', 'UniSpeechForPreTraining', 'UniSpeechForSequenceClassification', 'UniSpeechModel', 'UniSpeechPreTrainedModel', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys _a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
23
0
"""simple docstring""" import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py __lowerCAmelCase : str ="""src/diffusers""" __lowerCAmelCase : List[str] =""".""" # This is to make sure the diffusers module imported is the one in the repo. __lowerCAmelCase : Any =importlib.util.spec_from_file_location( """diffusers""", os.path.join(DIFFUSERS_PATH, """__init__.py"""), submodule_search_locations=[DIFFUSERS_PATH], ) __lowerCAmelCase : Optional[int] =spec.loader.load_module() def UpperCAmelCase__ ( lowerCAmelCase__ :Any , lowerCAmelCase__ :int ) -> Optional[Any]: '''simple docstring''' return line.startswith(lowerCAmelCase__ ) or len(lowerCAmelCase__ ) <= 1 or re.search(R"""^\s*\)(\s*->.*:|:)\s*$""" , lowerCAmelCase__ ) is not None def UpperCAmelCase__ ( lowerCAmelCase__ :Any ) -> Dict: '''simple docstring''' lowercase = object_name.split(""".""" ) lowercase = 0 # First let's find the module where our object lives. lowercase = parts[i] while i < len(lowerCAmelCase__ ) and not os.path.isfile(os.path.join(lowerCAmelCase__ , f'{module}.py' ) ): i += 1 if i < len(lowerCAmelCase__ ): lowercase = os.path.join(lowerCAmelCase__ , parts[i] ) if i >= len(lowerCAmelCase__ ): raise ValueError(f'`object_name` should begin with the name of a module of diffusers but got {object_name}.' ) with open(os.path.join(lowerCAmelCase__ , f'{module}.py' ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowercase = f.readlines() # Now let's find the class / func in the code! lowercase = """""" lowercase = 0 for name in parts[i + 1 :]: while ( line_index < len(lowerCAmelCase__ ) and re.search(Rf'^{indent}(class|def)\s+{name}(\(|\:)' , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(lowerCAmelCase__ ): raise ValueError(f' {object_name} does not match any function or class in {module}.' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). lowercase = line_index while line_index < len(lowerCAmelCase__ ) and _should_continue(lines[line_index] , lowerCAmelCase__ ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 lowercase = lines[start_index:line_index] return "".join(lowerCAmelCase__ ) __lowerCAmelCase : Tuple =re.compile(R"""^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)""") __lowerCAmelCase : Dict =re.compile(R"""^\s*(\S+)->(\S+)(\s+.*|$)""") __lowerCAmelCase : Union[str, Any] =re.compile(R"""<FILL\s+[^>]*>""") def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[int] ) -> List[Any]: '''simple docstring''' lowercase = code.split("""\n""" ) lowercase = 0 while idx < len(lowerCAmelCase__ ) and len(lines[idx] ) == 0: idx += 1 if idx < len(lowerCAmelCase__ ): return re.search(R"""^(\s*)\S""" , lines[idx] ).groups()[0] return "" def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> Any: '''simple docstring''' lowercase = len(get_indent(lowerCAmelCase__ ) ) > 0 if has_indent: lowercase = f'class Bla:\n{code}' lowercase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9 , preview=lowerCAmelCase__ ) lowercase = black.format_str(lowerCAmelCase__ , mode=lowerCAmelCase__ ) lowercase , lowercase = style_docstrings_in_code(lowerCAmelCase__ ) return result[len("""class Bla:\n""" ) :] if has_indent else result def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Union[str, Any]=False ) -> Tuple: '''simple docstring''' with open(lowerCAmelCase__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowercase = f.readlines() lowercase = [] lowercase = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(lowerCAmelCase__ ): lowercase = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. lowercase , lowercase , lowercase = search.groups() lowercase = find_code_in_diffusers(lowerCAmelCase__ ) lowercase = get_indent(lowerCAmelCase__ ) lowercase = line_index + 1 if indent == theoretical_indent else line_index + 2 lowercase = theoretical_indent lowercase = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. lowercase = True while line_index < len(lowerCAmelCase__ ) and should_continue: line_index += 1 if line_index >= len(lowerCAmelCase__ ): break lowercase = lines[line_index] lowercase = _should_continue(lowerCAmelCase__ , lowerCAmelCase__ ) and re.search(f'^{indent}# End copy' , lowerCAmelCase__ ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 lowercase = lines[start_index:line_index] lowercase = """""".join(lowerCAmelCase__ ) # Remove any nested `Copied from` comments to avoid circular copies lowercase = [line for line in theoretical_code.split("""\n""" ) if _re_copy_warning.search(lowerCAmelCase__ ) is None] lowercase = """\n""".join(lowerCAmelCase__ ) # Before comparing, use the `replace_pattern` on the original code. if len(lowerCAmelCase__ ) > 0: lowercase = replace_pattern.replace("""with""" , """""" ).split(""",""" ) lowercase = [_re_replace_pattern.search(lowerCAmelCase__ ) for p in patterns] for pattern in patterns: if pattern is None: continue lowercase , lowercase , lowercase = pattern.groups() lowercase = re.sub(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if option.strip() == "all-casing": lowercase = re.sub(obja.lower() , obja.lower() , lowerCAmelCase__ ) lowercase = re.sub(obja.upper() , obja.upper() , lowerCAmelCase__ ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line lowercase = blackify(lines[start_index - 1] + theoretical_code ) lowercase = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: lowercase = lines[:start_index] + [theoretical_code] + lines[line_index:] lowercase = start_index + 1 if overwrite and len(lowerCAmelCase__ ) > 0: # Warn the user a file has been modified. print(f'Detected changes, rewriting {filename}.' ) with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lowerCAmelCase__ ) return diffs def UpperCAmelCase__ ( lowerCAmelCase__ :bool = False ) -> str: '''simple docstring''' lowercase = glob.glob(os.path.join(lowerCAmelCase__ , """**/*.py""" ) , recursive=lowerCAmelCase__ ) lowercase = [] for filename in all_files: lowercase = is_copy_consistent(lowerCAmelCase__ , lowerCAmelCase__ ) diffs += [f'- {filename}: copy does not match {d[0]} at line {d[1]}' for d in new_diffs] if not overwrite and len(lowerCAmelCase__ ) > 0: lowercase = """\n""".join(lowerCAmelCase__ ) raise Exception( """Found the following copy inconsistencies:\n""" + diff + """\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.""" ) if __name__ == "__main__": __lowerCAmelCase : str =argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") __lowerCAmelCase : Optional[Any] =parser.parse_args() check_copies(args.fix_and_overwrite)
197
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : List[str] =logging.get_logger(__name__) __lowerCAmelCase : str ={ """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json""" ), } class _A ( lowerCAmelCase ): snake_case__ : Tuple = 'dpr' def __init__( self , __lowerCAmelCase=3_0522 , __lowerCAmelCase=768 , __lowerCAmelCase=12 , __lowerCAmelCase=12 , __lowerCAmelCase=3072 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=512 , __lowerCAmelCase=2 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=1E-12 , __lowerCAmelCase=0 , __lowerCAmelCase="absolute" , __lowerCAmelCase = 0 , **__lowerCAmelCase , ): """simple docstring""" super().__init__(pad_token_id=__lowerCAmelCase , **__lowerCAmelCase ) lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = hidden_act lowercase = intermediate_size lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = type_vocab_size lowercase = initializer_range lowercase = layer_norm_eps lowercase = projection_dim lowercase = position_embedding_type
197
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __SCREAMING_SNAKE_CASE : Optional[Any] = { '''configuration_xlm''': ['''XLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMConfig''', '''XLMOnnxConfig'''], '''tokenization_xlm''': ['''XLMTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : List[str] = [ '''XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMForMultipleChoice''', '''XLMForQuestionAnswering''', '''XLMForQuestionAnsweringSimple''', '''XLMForSequenceClassification''', '''XLMForTokenClassification''', '''XLMModel''', '''XLMPreTrainedModel''', '''XLMWithLMHeadModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : List[Any] = [ '''TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMForMultipleChoice''', '''TFXLMForQuestionAnsweringSimple''', '''TFXLMForSequenceClassification''', '''TFXLMForTokenClassification''', '''TFXLMMainLayer''', '''TFXLMModel''', '''TFXLMPreTrainedModel''', '''TFXLMWithLMHeadModel''', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys __SCREAMING_SNAKE_CASE : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
73
"""simple docstring""" import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def lowerCAmelCase_( lowercase_ : List[str]="" ) -> str: _lowerCamelCase = tempfile.mkdtemp() return os.path.join(lowercase_ , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class lowerCamelCase_( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self ): _lowerCamelCase = torch.rand(1_2 , dtype=torch.floataa ) - 0.5 _lowerCamelCase = AgentAudio(lowerCamelCase__ ) _lowerCamelCase = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(lowerCamelCase__ , agent_type.to_raw() , atol=1e-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(lowerCamelCase__ ) ) # Ensure that the file contains the same value as the original tensor _lowerCamelCase , _lowerCamelCase = sf.read(lowerCamelCase__ ) self.assertTrue(torch.allclose(lowerCamelCase__ , torch.tensor(lowerCamelCase__ ) , atol=1e-4 ) ) def snake_case__ ( self ): _lowerCamelCase = torch.rand(1_2 , dtype=torch.floataa ) - 0.5 _lowerCamelCase = get_new_path(suffix='''.wav''' ) sf.write(lowerCamelCase__ , lowerCamelCase__ , 1_6_0_0_0 ) _lowerCamelCase = AgentAudio(lowerCamelCase__ ) self.assertTrue(torch.allclose(lowerCamelCase__ , agent_type.to_raw() , atol=1e-4 ) ) self.assertEqual(agent_type.to_string() , lowerCamelCase__ ) @require_vision @require_torch class lowerCamelCase_( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self ): _lowerCamelCase = torch.randint(0 , 2_5_6 , (6_4, 6_4, 3) ) _lowerCamelCase = AgentImage(lowerCamelCase__ ) _lowerCamelCase = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(lowerCamelCase__ , agent_type._tensor , atol=1e-4 ) ) self.assertIsInstance(agent_type.to_raw() , Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowerCamelCase__ ) ) def snake_case__ ( self ): _lowerCamelCase = Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' _lowerCamelCase = Image.open(lowerCamelCase__ ) _lowerCamelCase = AgentImage(lowerCamelCase__ ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowerCamelCase__ ) ) def snake_case__ ( self ): _lowerCamelCase = Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' _lowerCamelCase = Image.open(lowerCamelCase__ ) _lowerCamelCase = AgentImage(lowerCamelCase__ ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowerCamelCase__ ) ) class lowerCamelCase_( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self ): _lowerCamelCase = '''Hey!''' _lowerCamelCase = AgentText(lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , agent_type.to_string() ) self.assertEqual(lowerCamelCase__ , agent_type.to_raw() ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ )
73
1
'''simple docstring''' from __future__ import annotations from cmath import sqrt def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' if a == 0: raise ValueError('''Coefficient \'a\' must not be zero.''' ) A : List[Any] = b * b - 4 * a * c A : Tuple = (-b + sqrt(a_ )) / (2 * a) A : List[Any] = (-b - sqrt(a_ )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def lowerCAmelCase_ ( ): '''simple docstring''' A : List[Any] = quadratic_roots(a=5 , b=6 , c=1 ) print(F'The solutions are: {solutiona} and {solutiona}' ) if __name__ == "__main__": main()
3
'''simple docstring''' from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def UpperCAmelCase ( a_ ) -> Dict[str, torch.Tensor]: """simple docstring""" A_ : List[str] = [] A_ : Dict = [] A_ : List[Any] = [] for rt in rc.restypes: A_ : Tuple = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) A_ : Union[str, Any] = {name: i for i, name in enumerate(a_ )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 1_4 ) restype_atomaa_to_atomaa_list.append([0] * 3_7 ) restype_atomaa_mask_list.append([0.0] * 1_4 ) A_ : Tuple = torch.tensor( a_ , dtype=torch.intaa , device=protein["""aatype"""].device , ) A_ : Optional[int] = torch.tensor( a_ , dtype=torch.intaa , device=protein["""aatype"""].device , ) A_ : List[Any] = torch.tensor( a_ , dtype=torch.floataa , device=protein["""aatype"""].device , ) A_ : Optional[int] = protein["""aatype"""].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein A_ : Dict = restype_atomaa_to_atomaa[protein_aatype] A_ : Optional[Any] = restype_atomaa_mask[protein_aatype] A_ : Any = residx_atomaa_mask A_ : List[str] = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back A_ : Tuple = restype_atomaa_to_atomaa[protein_aatype] A_ : Tuple = residx_atomaa_to_atomaa.long() # create the corresponding mask A_ : Optional[Any] = torch.zeros([2_1, 3_7] , dtype=torch.floataa , device=protein["""aatype"""].device ) for restype, restype_letter in enumerate(rc.restypes ): A_ : Optional[Any] = rc.restype_atoa[restype_letter] A_ : Any = rc.residue_atoms[restype_name] for atom_name in atom_names: A_ : Any = rc.atom_order[atom_name] A_ : Optional[int] = 1 A_ : Optional[int] = restype_atomaa_mask[protein_aatype] A_ : Dict = residx_atomaa_mask return protein def UpperCAmelCase ( a_ ) -> Dict[str, np.ndarray]: """simple docstring""" A_ : Union[str, Any] = tree_map(lambda a_ : torch.tensor(a_ , device=batch["""aatype"""].device ) , a_ , np.ndarray ) A_ : Optional[int] = tensor_tree_map(lambda a_ : np.array(a_ ) , make_atomaa_masks(a_ ) ) return out
344
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase_ = {'''configuration_ibert''': ['''IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''IBertConfig''', '''IBertOnnxConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''IBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''IBertForMaskedLM''', '''IBertForMultipleChoice''', '''IBertForQuestionAnswering''', '''IBertForSequenceClassification''', '''IBertForTokenClassification''', '''IBertModel''', '''IBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
34
# HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers lowerCamelCase_ = float('''nan''') class __lowerCamelCase : def __init__( self , lowerCamelCase ) -> Any: snake_case_ = sys.stdout snake_case_ = open(lowerCamelCase , """a""" ) def __getattr__( self , lowerCamelCase ) -> Optional[int]: return getattr(self.stdout , lowerCamelCase ) def lowerCAmelCase_ ( self , lowerCamelCase ) -> Optional[int]: self.stdout.write(lowerCamelCase ) # strip tqdm codes self.file.write(re.sub(r"""^.*\r""" , """""" , lowerCamelCase , 0 , re.M ) ) def UpperCamelCase( lowercase_=80 , lowercase_=False ) -> Union[str, Any]: '''simple docstring''' snake_case_ = [] # deal with critical env vars snake_case_ = ["""CUDA_VISIBLE_DEVICES"""] for key in env_keys: snake_case_ = os.environ.get(lowercase_ , lowercase_ ) if val is not None: cmd.append(f'''{key}={val}''' ) # python executable (not always needed if the script is executable) snake_case_ = sys.executable if full_python_path else sys.executable.split("""/""" )[-1] cmd.append(lowercase_ ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes snake_case_ = [] snake_case_ = """""" while len(lowercase_ ) > 0: current_line += f'''{cmd.pop(0 )} ''' if len(lowercase_ ) == 0 or len(lowercase_ ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(lowercase_ ) snake_case_ = """""" return "\\\n".join(lowercase_ ) def UpperCamelCase( lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' snake_case_ = re.sub(r"""[\\\n]+""" , """ """ , args.base_cmd ) # remove --output_dir if any and set our own snake_case_ = re.sub("""--output_dir\s+[^\s]+""" , """""" , args.base_cmd ) args.base_cmd += f''' --output_dir {output_dir}''' # ensure we have --overwrite_output_dir snake_case_ = re.sub("""--overwrite_output_dir\s+""" , """""" , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def UpperCamelCase( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 100 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 1_00.2, 55.66_66, 2_22.22_22_22_22] )} , ) snake_case_ = subprocess.run(lowercase_ , capture_output=lowercase_ , text=lowercase_ ) if verbose: print("""STDOUT""" , result.stdout ) print("""STDERR""" , result.stderr ) # save the streams snake_case_ = variation.replace(""" """ , """-""" ) with open(Path(lowercase_ ) / f'''log.{prefix}.stdout.txt''' , """w""" ) as f: f.write(result.stdout ) with open(Path(lowercase_ ) / f'''log.{prefix}.stderr.txt''' , """w""" ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print("""failed""" ) return {target_metric_key: nan} with io.open(f'''{output_dir}/all_results.json''' , """r""" , encoding="""utf-8""" ) as f: snake_case_ = json.load(lowercase_ ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def UpperCamelCase( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> List[Any]: '''simple docstring''' snake_case_ = [] snake_case_ = [] snake_case_ = f'''{id}: {variation:<{longest_variation_len}}''' snake_case_ = f'''{preamble}: ''' snake_case_ = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(lowercase_ ) , desc=lowercase_ , leave=lowercase_ ): snake_case_ = process_run_single( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) snake_case_ = single_run_metrics[target_metric_key] if not math.isnan(lowercase_ ): metrics.append(lowercase_ ) results.append(lowercase_ ) outcome += "✓" else: outcome += "✘" snake_case_ = f'''\33[2K\r{outcome}''' if len(lowercase_ ) > 0: snake_case_ = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} snake_case_ = round(mean_metrics[target_metric_key] , 2 ) snake_case_ = f'''{outcome} {mean_target}''' if len(lowercase_ ) > 1: results_str += f''' {tuple(round(lowercase_ , 2 ) for x in results )}''' print(lowercase_ ) snake_case_ = variation return mean_metrics else: print(lowercase_ ) return {variation_key: variation, target_metric_key: nan} def UpperCamelCase( ) -> Any: '''simple docstring''' snake_case_ = torch.cuda.get_device_properties(torch.device("""cuda""" ) ) return f''' Datetime : {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" )} Software: transformers: {transformers.__version__} torch : {torch.__version__} cuda : {torch.version.cuda} python : {platform.python_version()} Hardware: {torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB ''' def UpperCamelCase( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Any: '''simple docstring''' snake_case_ = pd.DataFrame(lowercase_ ) snake_case_ = """variation""" snake_case_ = """diff_%""" snake_case_ = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan snake_case_ = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(lowercase_ ): # as a fallback, use the minimal value as the sentinel snake_case_ = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(lowercase_ ): snake_case_ = df.apply( lambda lowercase_ : round(100 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis="""columns""" , ) # re-order columns snake_case_ = [variation_key, target_metric_key, diff_key, *report_metric_keys] snake_case_ = df.reindex(lowercase_ , axis="""columns""" ) # reorder cols # capitalize snake_case_ = df.rename(str.capitalize , axis="""columns""" ) # make the cols as narrow as possible snake_case_ = df.rename(lambda lowercase_ : c.replace("""_""" , """<br>""" ) , axis="""columns""" ) snake_case_ = df.rename(lambda lowercase_ : c.replace("""_""" , """\n""" ) , axis="""columns""" ) snake_case_ = ["""""", """Copy between the cut-here-lines and paste as is to github or a forum"""] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=lowercase_ , floatfmt=""".2f""" )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=lowercase_ , floatfmt=""".2f""" )] print("""\n\n""".join(lowercase_ ) ) def UpperCamelCase( ) -> Union[str, Any]: '''simple docstring''' snake_case_ = argparse.ArgumentParser() parser.add_argument( """--base-cmd""" , default=lowercase_ , type=lowercase_ , required=lowercase_ , help="""Base cmd""" , ) parser.add_argument( """--variations""" , default=lowercase_ , type=lowercase_ , nargs="""+""" , required=lowercase_ , help="""Multi-dimensional variations, example: '|--fp16|--bf16' '|--tf32'""" , ) parser.add_argument( """--base-variation""" , default=lowercase_ , type=lowercase_ , help="""Baseline variation to compare to. if None the minimal target value will be used to compare against""" , ) parser.add_argument( """--target-metric-key""" , default=lowercase_ , type=lowercase_ , required=lowercase_ , help="""Target metric key in output_dir/all_results.json, e.g., train_samples_per_second""" , ) parser.add_argument( """--report-metric-keys""" , default="""""" , type=lowercase_ , help="""Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., 'train_loss train_samples""" , ) parser.add_argument( """--repeat-times""" , default=1 , type=lowercase_ , help="""How many times to re-run each variation - an average will be reported""" , ) parser.add_argument( """--output_dir""" , default="""output_benchmark""" , type=lowercase_ , help="""The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked""" , ) parser.add_argument( """--verbose""" , default=lowercase_ , action="""store_true""" , help="""Whether to show the outputs of each run or just the benchmark progress""" , ) snake_case_ = parser.parse_args() snake_case_ = args.output_dir Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) snake_case_ = get_base_command(lowercase_ , lowercase_ ) # split each dimension into its --foo variations snake_case_ = [list(map(str.strip , re.split(r"""\|""" , lowercase_ ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty snake_case_ = list(map(str.strip , map(""" """.join , itertools.product(*lowercase_ ) ) ) ) snake_case_ = max(len(lowercase_ ) for x in variations ) # split wanted keys snake_case_ = args.report_metric_keys.split() # capture prints into a log file for convenience snake_case_ = f'''benchmark-report-{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S" )}.txt''' print(f'''\nNote: each run\'s output is also logged under {output_dir}/log.*.std*.txt''' ) print(f'''and this script\'s output is also piped into {report_fn}''' ) snake_case_ = Tee(lowercase_ ) print(f'''\n*** Running {len(lowercase_ )} benchmarks:''' ) print(f'''Base command: {" ".join(lowercase_ )}''' ) snake_case_ = """variation""" snake_case_ = [] for id, variation in enumerate(tqdm(lowercase_ , desc="""Total completion: """ , leave=lowercase_ ) ): snake_case_ = base_cmd + variation.split() results.append( process_run( id + 1 , lowercase_ , lowercase_ , lowercase_ , lowercase_ , args.target_metric_key , lowercase_ , args.repeat_times , lowercase_ , args.verbose , ) ) process_results(lowercase_ , args.target_metric_key , lowercase_ , args.base_variation , lowercase_ ) if __name__ == "__main__": main()
34
1
"""simple docstring""" import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class _SCREAMING_SNAKE_CASE ( A__ ): def __init__( self ) -> Tuple: lowerCAmelCase_ :Dict = [] def __lowerCAmelCase ( self , __A , __A , __A , **__A ) -> List[str]: self.events.append("""on_init_end""" ) def __lowerCAmelCase ( self , __A , __A , __A , **__A ) -> Any: self.events.append("""on_train_begin""" ) def __lowerCAmelCase ( self , __A , __A , __A , **__A ) -> Tuple: self.events.append("""on_train_end""" ) def __lowerCAmelCase ( self , __A , __A , __A , **__A ) -> Any: self.events.append("""on_epoch_begin""" ) def __lowerCAmelCase ( self , __A , __A , __A , **__A ) -> Optional[Any]: self.events.append("""on_epoch_end""" ) def __lowerCAmelCase ( self , __A , __A , __A , **__A ) -> Optional[Any]: self.events.append("""on_step_begin""" ) def __lowerCAmelCase ( self , __A , __A , __A , **__A ) -> Any: self.events.append("""on_step_end""" ) def __lowerCAmelCase ( self , __A , __A , __A , **__A ) -> Any: self.events.append("""on_evaluate""" ) def __lowerCAmelCase ( self , __A , __A , __A , **__A ) -> int: self.events.append("""on_predict""" ) def __lowerCAmelCase ( self , __A , __A , __A , **__A ) -> Union[str, Any]: self.events.append("""on_save""" ) def __lowerCAmelCase ( self , __A , __A , __A , **__A ) -> Dict: self.events.append("""on_log""" ) def __lowerCAmelCase ( self , __A , __A , __A , **__A ) -> Optional[Any]: self.events.append("""on_prediction_step""" ) @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> Tuple: lowerCAmelCase_ :Optional[int] = tempfile.mkdtemp() def __lowerCAmelCase ( self ) -> Union[str, Any]: shutil.rmtree(self.output_dir ) def __lowerCAmelCase ( self , __A=0 , __A=0 , __A=64 , __A=64 , __A=None , __A=False , **__A ) -> Optional[int]: # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. lowerCAmelCase_ :Optional[Any] = RegressionDataset(length=__A ) lowerCAmelCase_ :str = RegressionDataset(length=__A ) lowerCAmelCase_ :Dict = RegressionModelConfig(a=__A , b=__A ) lowerCAmelCase_ :Dict = RegressionPreTrainedModel(__A ) lowerCAmelCase_ :Any = TrainingArguments(self.output_dir , disable_tqdm=__A , report_to=[] , **__A ) return Trainer( __A , __A , train_dataset=__A , eval_dataset=__A , callbacks=__A , ) def __lowerCAmelCase ( self , __A , __A ) -> List[Any]: self.assertEqual(len(__A ) , len(__A ) ) # Order doesn't matter lowerCAmelCase_ :Optional[int] = sorted(__A , key=lambda __A : cb.__name__ if isinstance(__A , __A ) else cb.__class__.__name__ ) lowerCAmelCase_ :List[Any] = sorted(__A , key=lambda __A : cb.__name__ if isinstance(__A , __A ) else cb.__class__.__name__ ) for cba, cba in zip(__A , __A ): if isinstance(__A , __A ) and isinstance(__A , __A ): self.assertEqual(__A , __A ) elif isinstance(__A , __A ) and not isinstance(__A , __A ): self.assertEqual(__A , cba.__class__ ) elif not isinstance(__A , __A ) and isinstance(__A , __A ): self.assertEqual(cba.__class__ , __A ) else: self.assertEqual(__A , __A ) def __lowerCAmelCase ( self , __A ) -> int: lowerCAmelCase_ :Optional[int] = ["""on_init_end""", """on_train_begin"""] lowerCAmelCase_ :Any = 0 lowerCAmelCase_ :Optional[Any] = len(trainer.get_eval_dataloader() ) lowerCAmelCase_ :List[Any] = ["""on_prediction_step"""] * len(trainer.get_eval_dataloader() ) + ["""on_log""", """on_evaluate"""] for _ in range(trainer.state.num_train_epochs ): expected_events.append("""on_epoch_begin""" ) for _ in range(__A ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append("""on_log""" ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append("""on_save""" ) expected_events.append("""on_epoch_end""" ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def __lowerCAmelCase ( self ) -> Tuple: lowerCAmelCase_ :Union[str, Any] = self.get_trainer() lowerCAmelCase_ :Optional[int] = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , __A ) # Callbacks passed at init are added to the default callbacks lowerCAmelCase_ :Optional[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(__A ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __A ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback lowerCAmelCase_ :List[Any] = self.get_trainer(disable_tqdm=__A ) lowerCAmelCase_ :Tuple = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , __A ) def __lowerCAmelCase ( self ) -> Tuple: lowerCAmelCase_ :Dict = DEFAULT_CALLBACKS.copy() + [ProgressCallback] lowerCAmelCase_ :Optional[int] = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(__A ) expected_callbacks.remove(__A ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __A ) lowerCAmelCase_ :int = self.get_trainer() lowerCAmelCase_ :Tuple = trainer.pop_callback(__A ) self.assertEqual(cb.__class__ , __A ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __A ) trainer.add_callback(__A ) expected_callbacks.insert(0 , __A ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __A ) # We can also add, pop, or remove by instance lowerCAmelCase_ :str = self.get_trainer() lowerCAmelCase_ :Optional[int] = trainer.callback_handler.callbacks[0] trainer.remove_callback(__A ) expected_callbacks.remove(__A ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __A ) lowerCAmelCase_ :int = self.get_trainer() lowerCAmelCase_ :Tuple = trainer.callback_handler.callbacks[0] lowerCAmelCase_ :Dict = trainer.pop_callback(__A ) self.assertEqual(__A , __A ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __A ) trainer.add_callback(__A ) expected_callbacks.insert(0 , __A ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __A ) def __lowerCAmelCase ( self ) -> Optional[Any]: import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action="""ignore""" , category=__A ) lowerCAmelCase_ :Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() lowerCAmelCase_ :Tuple = trainer.callback_handler.callbacks[-2].events self.assertEqual(__A , self.get_expected_events(__A ) ) # Independent log/save/eval lowerCAmelCase_ :Union[str, Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() lowerCAmelCase_ :Optional[int] = trainer.callback_handler.callbacks[-2].events self.assertEqual(__A , self.get_expected_events(__A ) ) lowerCAmelCase_ :Optional[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() lowerCAmelCase_ :Dict = trainer.callback_handler.callbacks[-2].events self.assertEqual(__A , self.get_expected_events(__A ) ) lowerCAmelCase_ :Any = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="""steps""" ) trainer.train() lowerCAmelCase_ :List[Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(__A , self.get_expected_events(__A ) ) lowerCAmelCase_ :Optional[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="""epoch""" ) trainer.train() lowerCAmelCase_ :Optional[Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(__A , self.get_expected_events(__A ) ) # A bit of everything lowerCAmelCase_ :Any = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy="""steps""" , ) trainer.train() lowerCAmelCase_ :Union[str, Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(__A , self.get_expected_events(__A ) ) # warning should be emitted for duplicated callbacks with patch("""transformers.trainer_callback.logger.warning""" ) as warn_mock: lowerCAmelCase_ :Optional[int] = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(__A ) in warn_mock.call_args[0][0]
84
'''simple docstring''' from scipy.stats import spearmanr import datasets __lowerCAmelCase = '\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n' __lowerCAmelCase = '\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {\'spearmanr\': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results[\'spearmanr\'])\n -0.7\n >>> print(round(results[\'spearmanr_pvalue\'], 2))\n 0.19\n' __lowerCAmelCase = r'\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def lowercase (self ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""] , ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> Optional[Any]: _snake_case = spearmanr(UpperCAmelCase , UpperCAmelCase ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
341
0
from sklearn.metrics import mean_squared_error import datasets lowerCAmelCase_ = '\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n' lowerCAmelCase_ = '\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n' lowerCAmelCase_ = '\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n "raw_values" : Returns a full set of errors in case of multioutput input.\n\n "uniform_average" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric("mse")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {\'mse\': 0.6123724356957945}\n\n If you\'re using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric("mse", "multilist")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mse\': array([0.41666667, 1. ])}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def __a ( self : List[Any] ) -> Optional[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html''' ] , ) def __a ( self : List[Any] ) -> int: """simple docstring""" if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value('''float''' ) ), "references": datasets.Sequence(datasets.Value('''float''' ) ), } else: return { "predictions": datasets.Value('''float''' ), "references": datasets.Value('''float''' ), } def __a ( self : Any , _A : Dict , _A : Any , _A : Any=None , _A : Any="uniform_average" , _A : Optional[Any]=True ) -> Dict: """simple docstring""" lowercase : Any = mean_squared_error( _A , _A , sample_weight=_A , multioutput=_A , squared=_A ) return {"mse": mse}
116
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 lowerCAmelCase_ = get_tests_dir('fixtures/dummy_feature_extractor_config.json') lowerCAmelCase_ = get_tests_dir('fixtures/vocab.json') lowerCAmelCase_ = get_tests_dir('fixtures') class _A ( unittest.TestCase ): _UpperCamelCase : int = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] def __a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" lowercase : Union[str, Any] = 0 def __a ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase : Union[str, Any] = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) self.assertIsInstance(_A , _A ) def __a ( self : Any ) -> int: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: lowercase : str = WavaVecaConfig() lowercase : Tuple = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) # save in new folder model_config.save_pretrained(_A ) processor.save_pretrained(_A ) lowercase : Optional[Any] = AutoProcessor.from_pretrained(_A ) self.assertIsInstance(_A , _A ) def __a ( self : Tuple ) -> Union[str, Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(_A , os.path.join(_A , _A ) ) copyfile(_A , os.path.join(_A , '''vocab.json''' ) ) lowercase : Any = AutoProcessor.from_pretrained(_A ) self.assertIsInstance(_A , _A ) def __a ( self : Tuple ) -> Any: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: lowercase : List[Any] = WavaVecaFeatureExtractor() lowercase : Optional[int] = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) lowercase : Union[str, Any] = WavaVecaProcessor(_A , _A ) # save in new folder processor.save_pretrained(_A ) # drop `processor_class` in tokenizer with open(os.path.join(_A , _A ) , '''r''' ) as f: lowercase : Union[str, Any] = json.load(_A ) config_dict.pop('''processor_class''' ) with open(os.path.join(_A , _A ) , '''w''' ) as f: f.write(json.dumps(_A ) ) lowercase : int = AutoProcessor.from_pretrained(_A ) self.assertIsInstance(_A , _A ) def __a ( self : str ) -> List[str]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: lowercase : int = WavaVecaFeatureExtractor() lowercase : Dict = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) lowercase : Optional[int] = WavaVecaProcessor(_A , _A ) # save in new folder processor.save_pretrained(_A ) # drop `processor_class` in feature extractor with open(os.path.join(_A , _A ) , '''r''' ) as f: lowercase : int = json.load(_A ) config_dict.pop('''processor_class''' ) with open(os.path.join(_A , _A ) , '''w''' ) as f: f.write(json.dumps(_A ) ) lowercase : Any = AutoProcessor.from_pretrained(_A ) self.assertIsInstance(_A , _A ) def __a ( self : List[Any] ) -> Tuple: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: lowercase : Dict = WavaVecaConfig(processor_class='''Wav2Vec2Processor''' ) model_config.save_pretrained(_A ) # copy relevant files copyfile(_A , os.path.join(_A , '''vocab.json''' ) ) # create emtpy sample processor with open(os.path.join(_A , _A ) , '''w''' ) as f: f.write('''{}''' ) lowercase : Tuple = AutoProcessor.from_pretrained(_A ) self.assertIsInstance(_A , _A ) def __a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" with self.assertRaises(_A ): lowercase : Optional[Any] = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_A ): lowercase : List[str] = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=_A ) lowercase : str = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=_A ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) lowercase : Union[str, Any] = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) lowercase : Optional[int] = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version lowercase : Any = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=_A , use_fast=_A ) lowercase : Any = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def __a ( self : Dict ) -> Optional[Any]: """simple docstring""" try: AutoConfig.register('''custom''' , _A ) AutoFeatureExtractor.register(_A , _A ) AutoTokenizer.register(_A , slow_tokenizer_class=_A ) AutoProcessor.register(_A , _A ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_A ): AutoProcessor.register(_A , _A ) # Now that the config is registered, it can be used as any other config with the auto-API lowercase : Optional[Any] = CustomFeatureExtractor.from_pretrained(_A ) with tempfile.TemporaryDirectory() as tmp_dir: lowercase : List[Any] = os.path.join(_A , '''vocab.txt''' ) with open(_A , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) lowercase : Optional[int] = CustomTokenizer(_A ) lowercase : Union[str, Any] = CustomProcessor(_A , _A ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(_A ) lowercase : Dict = AutoProcessor.from_pretrained(_A ) self.assertIsInstance(_A , _A ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def __a ( self : str ) -> Any: """simple docstring""" class _A ( _lowerCamelCase ): _UpperCamelCase : int = False class _A ( _lowerCamelCase ): _UpperCamelCase : Union[str, Any] = False class _A ( _lowerCamelCase ): _UpperCamelCase : Tuple = '''AutoFeatureExtractor''' _UpperCamelCase : Any = '''AutoTokenizer''' _UpperCamelCase : Any = False try: AutoConfig.register('''custom''' , _A ) AutoFeatureExtractor.register(_A , _A ) AutoTokenizer.register(_A , slow_tokenizer_class=_A ) AutoProcessor.register(_A , _A ) # If remote code is not set, the default is to use local classes. lowercase : List[Any] = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. lowercase : Any = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=_A ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. lowercase : Union[str, Any] = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=_A ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def __a ( self : Tuple ) -> Dict: """simple docstring""" lowercase : Optional[int] = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(processor.__class__.__name__ , '''BertTokenizerFast''' ) def __a ( self : Any ) -> int: """simple docstring""" lowercase : Any = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-convnext''' ) self.assertEqual(processor.__class__.__name__ , '''ConvNextImageProcessor''' ) @is_staging_test class _A ( unittest.TestCase ): _UpperCamelCase : int = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] @classmethod def __a ( cls : Tuple ) -> List[Any]: """simple docstring""" lowercase : str = TOKEN HfFolder.save_token(_A ) @classmethod def __a ( cls : List[Any] ) -> Dict: """simple docstring""" try: delete_repo(token=cls._token , repo_id='''test-processor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-processor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-processor''' ) except HTTPError: pass def __a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" lowercase : Any = WavaVecaProcessor.from_pretrained(_A ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(_A , '''test-processor''' ) , push_to_hub=_A , use_auth_token=self._token ) lowercase : Any = WavaVecaProcessor.from_pretrained(f"""{USER}/test-processor""" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(_A , getattr(new_processor.feature_extractor , _A ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def __a ( self : Optional[Any] ) -> str: """simple docstring""" lowercase : int = WavaVecaProcessor.from_pretrained(_A ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(_A , '''test-processor-org''' ) , push_to_hub=_A , use_auth_token=self._token , organization='''valid_org''' , ) lowercase : Dict = WavaVecaProcessor.from_pretrained('''valid_org/test-processor-org''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(_A , getattr(new_processor.feature_extractor , _A ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def __a ( self : str ) -> Dict: """simple docstring""" CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() lowercase : List[str] = CustomFeatureExtractor.from_pretrained(_A ) with tempfile.TemporaryDirectory() as tmp_dir: lowercase : Optional[int] = os.path.join(_A , '''vocab.txt''' ) with open(_A , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) lowercase : Optional[Any] = CustomTokenizer(_A ) lowercase : Optional[Any] = CustomProcessor(_A , _A ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(f"""{USER}/test-dynamic-processor""" , token=self._token ) lowercase : List[str] = Repository(_A , clone_from=f"""{USER}/test-dynamic-processor""" , token=self._token ) processor.save_pretrained(_A ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { '''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor''', '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(_A , '''tokenizer_config.json''' ) ) as f: lowercase : Optional[Any] = json.load(_A ) self.assertDictEqual( tokenizer_config['''auto_map'''] , { '''AutoTokenizer''': ['''custom_tokenization.CustomTokenizer''', None], '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(_A , '''custom_feature_extraction.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(_A , '''custom_tokenization.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(_A , '''custom_processing.py''' ) ) ) repo.push_to_hub() lowercase : Tuple = AutoProcessor.from_pretrained(f"""{USER}/test-dynamic-processor""" , trust_remote_code=_A ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , '''CustomProcessor''' )
116
1
import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging lowercase_ = logging.get_logger(__name__) class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = CLIPConfig lowerCamelCase = ['CLIPEncoderLayer'] def __init__( self : int,lowercase_ : CLIPConfig )-> Union[str, Any]: '''simple docstring''' super().__init__(lowercase_ ) A__ = CLIPVisionModelWithProjection(config.vision_config ) A__ = nn.Linear(config.vision_config.projection_dim,1 ) A__ = nn.Linear(config.vision_config.projection_dim,1 ) @torch.no_grad() def snake_case__ ( self : Optional[int],lowercase_ : List[Any],lowercase_ : Dict,lowercase_ : str=0.5,lowercase_ : List[Any]=0.5 )-> List[str]: '''simple docstring''' A__ = self.vision_model(lowercase_ )[0] A__ = self.p_head(lowercase_ ) A__ = nsfw_detected.flatten() A__ = nsfw_detected > p_threshold A__ = nsfw_detected.tolist() if any(lowercase_ ): logger.warning( 'Potential NSFW content was detected in one or more images. A black image will be returned instead.' ' Try again with a different prompt and/or seed.' ) for idx, nsfw_detected_ in enumerate(lowercase_ ): if nsfw_detected_: A__ = np.zeros(images[idx].shape ) A__ = self.w_head(lowercase_ ) A__ = watermark_detected.flatten() A__ = watermark_detected > w_threshold A__ = watermark_detected.tolist() if any(lowercase_ ): logger.warning( 'Potential watermarked content was detected in one or more images. A black image will be returned instead.' ' Try again with a different prompt and/or seed.' ) for idx, watermark_detected_ in enumerate(lowercase_ ): if watermark_detected_: A__ = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
7
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = 42 class lowerCAmelCase ( __UpperCamelCase, __UpperCamelCase ): @register_to_config def __init__( self : List[str] , UpperCAmelCase : int = 65536 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 2 , UpperCAmelCase : int = 2 , UpperCAmelCase : int = 0 , UpperCAmelCase : str = "fourier" , UpperCAmelCase : bool = True , UpperCAmelCase : bool = False , UpperCAmelCase : float = 0.0 , UpperCAmelCase : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , UpperCAmelCase : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , UpperCAmelCase : Tuple[str] = "UNetMidBlock1D" , UpperCAmelCase : str = None , UpperCAmelCase : Tuple[int] = (32, 32, 64) , UpperCAmelCase : str = None , UpperCAmelCase : int = 8 , UpperCAmelCase : int = 1 , UpperCAmelCase : bool = False , ) -> List[Any]: super().__init__() lowerCamelCase__ : Optional[int] = sample_size # time if time_embedding_type == "fourier": lowerCamelCase__ : Optional[Any] = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=UpperCAmelCase , log=UpperCAmelCase , flip_sin_to_cos=UpperCAmelCase ) lowerCamelCase__ : Any = 2 * block_out_channels[0] elif time_embedding_type == "positional": lowerCamelCase__ : List[Any] = Timesteps( block_out_channels[0] , flip_sin_to_cos=UpperCAmelCase , downscale_freq_shift=UpperCAmelCase ) lowerCamelCase__ : Dict = block_out_channels[0] if use_timestep_embedding: lowerCamelCase__ : str = block_out_channels[0] * 4 lowerCamelCase__ : List[Any] = TimestepEmbedding( in_channels=UpperCAmelCase , time_embed_dim=UpperCAmelCase , act_fn=UpperCAmelCase , out_dim=block_out_channels[0] , ) lowerCamelCase__ : Any = nn.ModuleList([] ) lowerCamelCase__ : Tuple = None lowerCamelCase__ : List[str] = nn.ModuleList([] ) lowerCamelCase__ : Optional[int] = None # down lowerCamelCase__ : Optional[int] = in_channels for i, down_block_type in enumerate(UpperCAmelCase ): lowerCamelCase__ : Union[str, Any] = output_channel lowerCamelCase__ : Tuple = block_out_channels[i] if i == 0: input_channel += extra_in_channels lowerCamelCase__ : Union[str, Any] = i == len(UpperCAmelCase ) - 1 lowerCamelCase__ : Optional[int] = get_down_block( UpperCAmelCase , num_layers=UpperCAmelCase , in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(UpperCAmelCase ) # mid lowerCamelCase__ : Optional[int] = get_mid_block( UpperCAmelCase , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=UpperCAmelCase , add_downsample=UpperCAmelCase , ) # up lowerCamelCase__ : Optional[int] = list(reversed(UpperCAmelCase ) ) lowerCamelCase__ : Optional[int] = reversed_block_out_channels[0] if out_block_type is None: lowerCamelCase__ : List[str] = out_channels else: lowerCamelCase__ : Any = block_out_channels[0] for i, up_block_type in enumerate(UpperCAmelCase ): lowerCamelCase__ : Tuple = output_channel lowerCamelCase__ : Union[str, Any] = ( reversed_block_out_channels[i + 1] if i < len(UpperCAmelCase ) - 1 else final_upsample_channels ) lowerCamelCase__ : List[str] = i == len(UpperCAmelCase ) - 1 lowerCamelCase__ : Dict = get_up_block( UpperCAmelCase , num_layers=UpperCAmelCase , in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(UpperCAmelCase ) lowerCamelCase__ : int = output_channel # out lowerCamelCase__ : int = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) lowerCamelCase__ : List[Any] = get_out_block( out_block_type=UpperCAmelCase , num_groups_out=UpperCAmelCase , embed_dim=block_out_channels[0] , out_channels=UpperCAmelCase , act_fn=UpperCAmelCase , fc_dim=block_out_channels[-1] // 4 , ) def A_ ( self : List[Any] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Union[torch.Tensor, float, int] , UpperCAmelCase : bool = True , ) -> Union[UNetaDOutput, Tuple]: lowerCamelCase__ : Optional[Any] = timestep if not torch.is_tensor(UpperCAmelCase ): lowerCamelCase__ : Optional[int] = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(UpperCAmelCase ) and len(timesteps.shape ) == 0: lowerCamelCase__ : List[str] = timesteps[None].to(sample.device ) lowerCamelCase__ : Optional[int] = self.time_proj(UpperCAmelCase ) if self.config.use_timestep_embedding: lowerCamelCase__ : str = self.time_mlp(UpperCAmelCase ) else: lowerCamelCase__ : List[str] = timestep_embed[..., None] lowerCamelCase__ : str = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) lowerCamelCase__ : str = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down lowerCamelCase__ : str = () for downsample_block in self.down_blocks: lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = downsample_block(hidden_states=UpperCAmelCase , temb=UpperCAmelCase ) down_block_res_samples += res_samples # 3. mid if self.mid_block: lowerCamelCase__ : Optional[Any] = self.mid_block(UpperCAmelCase , UpperCAmelCase ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): lowerCamelCase__ : Dict = down_block_res_samples[-1:] lowerCamelCase__ : Optional[Any] = down_block_res_samples[:-1] lowerCamelCase__ : Any = upsample_block(UpperCAmelCase , res_hidden_states_tuple=UpperCAmelCase , temb=UpperCAmelCase ) # 5. post-process if self.out_block: lowerCamelCase__ : Any = self.out_block(UpperCAmelCase , UpperCAmelCase ) if not return_dict: return (sample,) return UNetaDOutput(sample=UpperCAmelCase )
50
0
import qiskit def __UpperCamelCase ( _A = 2 ): lowerCAmelCase_ = qubits # Using Aer's simulator lowerCAmelCase_ = qiskit.Aer.get_backend('''aer_simulator''' ) # Creating a Quantum Circuit acting on the q register lowerCAmelCase_ = qiskit.QuantumCircuit(lowerCamelCase_ , lowerCamelCase_ ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 , lowerCamelCase_ ): # Adding CX (CNOT) gate circuit.cx(i - 1 , lowerCamelCase_ ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(lowerCamelCase_ ) ) , list(range(lowerCamelCase_ ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator lowerCAmelCase_ = qiskit.execute(lowerCamelCase_ , lowerCamelCase_ , shots=1000 ) return job.result().get_counts(lowerCamelCase_ ) if __name__ == "__main__": print(f"Total count for various states are: {quantum_entanglement(3)}")
356
from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _A = logging.get_logger(__name__) class A ( __UpperCAmelCase ): __snake_case = ['pixel_values'] def __init__( self, UpperCamelCase__ = True, UpperCamelCase__ = 32, UpperCamelCase__=PILImageResampling.BILINEAR, UpperCamelCase__ = True, **UpperCamelCase__, ): """simple docstring""" lowerCAmelCase_ = do_resize lowerCAmelCase_ = do_rescale lowerCAmelCase_ = size_divisor lowerCAmelCase_ = resample super().__init__(**UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ = None, **UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ , lowerCAmelCase_ = get_image_size(UpperCamelCase__ ) # Rounds the height and width down to the closest multiple of size_divisor lowerCAmelCase_ = height // size_divisor * size_divisor lowerCAmelCase_ = width // size_divisor * size_divisor lowerCAmelCase_ = resize(UpperCamelCase__, (new_h, new_w), resample=UpperCamelCase__, data_format=UpperCamelCase__, **UpperCamelCase__ ) return image def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ = None, **UpperCamelCase__ ): """simple docstring""" return rescale(image=UpperCamelCase__, scale=UpperCamelCase__, data_format=UpperCamelCase__, **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ = None, UpperCamelCase__ = None, UpperCamelCase__=None, UpperCamelCase__ = None, UpperCamelCase__ = None, UpperCamelCase__ = ChannelDimension.FIRST, **UpperCamelCase__, ): """simple docstring""" lowerCAmelCase_ = do_resize if do_resize is not None else self.do_resize lowerCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase_ = size_divisor if size_divisor is not None else self.size_divisor lowerCAmelCase_ = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) lowerCAmelCase_ = make_list_of_images(UpperCamelCase__ ) if not valid_images(UpperCamelCase__ ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. lowerCAmelCase_ = [to_numpy_array(UpperCamelCase__ ) for img in images] if do_resize: lowerCAmelCase_ = [self.resize(UpperCamelCase__, size_divisor=UpperCamelCase__, resample=UpperCamelCase__ ) for image in images] if do_rescale: lowerCAmelCase_ = [self.rescale(UpperCamelCase__, scale=1 / 255 ) for image in images] lowerCAmelCase_ = [to_channel_dimension_format(UpperCamelCase__, UpperCamelCase__ ) for image in images] lowerCAmelCase_ = {'''pixel_values''': images} return BatchFeature(data=UpperCamelCase__, tensor_type=UpperCamelCase__ )
167
0
from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class __magic_name__ ( lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : int = '' lowerCamelCase__ : str = 'hf-legacy' # "hf://"" is reserved for hffs def __init__( self, lowercase_ = None, lowercase_ = None, **lowercase_, ) -> Dict: """simple docstring""" super().__init__(self, **lowercase_ ) a__ =repo_info a__ =token a__ =None def _UpperCAmelCase ( self ) -> Dict: """simple docstring""" if self.dir_cache is None: a__ ={} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes a__ ={ '''name''': hf_file.rfilename, '''size''': None, '''type''': '''file''', } self.dir_cache.update( { str(lowercase_ ): {'''name''': str(lowercase_ ), '''size''': None, '''type''': '''directory'''} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def _UpperCAmelCase ( self, lowercase_, lowercase_ = "rb", **lowercase_, ) -> str: """simple docstring""" if not isinstance(self.repo_info, lowercase_ ): raise NotImplementedError(F"""Open is only implemented for dataset repositories, but got {self.repo_info}""" ) a__ =hf_hub_url(self.repo_info.id, lowercase_, revision=self.repo_info.sha ) return fsspec.open( lowercase_, mode=lowercase_, headers=get_authentication_headers_for_url(lowercase_, use_auth_token=self.token ), client_kwargs={'''trust_env''': True}, ).open() def _UpperCAmelCase ( self, lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" self._get_dirs() a__ =self._strip_protocol(lowercase_ ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(lowercase_ ) def _UpperCAmelCase ( self, lowercase_, lowercase_=False, **lowercase_ ) -> Union[str, Any]: """simple docstring""" self._get_dirs() a__ =PurePosixPath(path.strip('''/''' ) ) a__ ={} for p, f in self.dir_cache.items(): a__ =PurePosixPath(p.strip('''/''' ) ) a__ =p.parent if root == path: a__ =f a__ =list(paths.values() ) if detail: return out else: return sorted(f['''name'''] for f in out )
188
import os import string import sys lowerCamelCase = 1 << 8 lowerCamelCase = { '''tab''': ord('''\t'''), '''newline''': ord('''\r'''), '''esc''': 27, '''up''': 65 + ARROW_KEY_FLAG, '''down''': 66 + ARROW_KEY_FLAG, '''right''': 67 + ARROW_KEY_FLAG, '''left''': 68 + ARROW_KEY_FLAG, '''mod_int''': 91, '''undefined''': sys.maxsize, '''interrupt''': 3, '''insert''': 50, '''delete''': 51, '''pg_up''': 53, '''pg_down''': 54, } lowerCamelCase = KEYMAP['''up'''] lowerCamelCase = KEYMAP['''left'''] if sys.platform == "win32": lowerCamelCase = [] lowerCamelCase = { b'''\xe0H''': KEYMAP['''up'''] - ARROW_KEY_FLAG, b'''\x00H''': KEYMAP['''up'''] - ARROW_KEY_FLAG, b'''\xe0P''': KEYMAP['''down'''] - ARROW_KEY_FLAG, b'''\x00P''': KEYMAP['''down'''] - ARROW_KEY_FLAG, b'''\xe0M''': KEYMAP['''right'''] - ARROW_KEY_FLAG, b'''\x00M''': KEYMAP['''right'''] - ARROW_KEY_FLAG, b'''\xe0K''': KEYMAP['''left'''] - ARROW_KEY_FLAG, b'''\x00K''': KEYMAP['''left'''] - ARROW_KEY_FLAG, } for i in range(10): lowerCamelCase = ord(str(i)) def UpperCAmelCase__ ( ): '''simple docstring''' if os.name == "nt": import msvcrt a__ ='''mbcs''' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(_A ) == 0: # Read the keystroke a__ =msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): a__ =ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: a__ =chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['''mod_int'''] ) ) WIN_CH_BUFFER.append(_A ) if ord(_A ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(1_26 ) ) a__ =chr(KEYMAP['''esc'''] ) except KeyError: a__ =cha[1] else: a__ =ch.decode(_A ) else: a__ =WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty a__ =sys.stdin.fileno() a__ =termios.tcgetattr(_A ) try: tty.setraw(_A ) a__ =sys.stdin.read(1 ) finally: termios.tcsetattr(_A , termios.TCSADRAIN , _A ) return ch def UpperCAmelCase__ ( ): '''simple docstring''' a__ =get_raw_chars() if ord(_A ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(_A ) == KEYMAP["esc"]: a__ =get_raw_chars() if ord(_A ) == KEYMAP["mod_int"]: a__ =get_raw_chars() if ord(_A ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(_A ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(_A ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
188
1
import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def lowerCamelCase_ ( lowerCamelCase__ ): if "cls_token" in name: lowerCamelCase_ = name.replace("cls_token" , "vit.embeddings.cls_token" ) if "mask_token" in name: lowerCamelCase_ = name.replace("mask_token" , "decoder.mask_token" ) if "decoder_pos_embed" in name: lowerCamelCase_ = name.replace("decoder_pos_embed" , "decoder.decoder_pos_embed" ) if "pos_embed" in name and "decoder" not in name: lowerCamelCase_ = name.replace("pos_embed" , "vit.embeddings.position_embeddings" ) if "patch_embed.proj" in name: lowerCamelCase_ = name.replace("patch_embed.proj" , "vit.embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: lowerCamelCase_ = name.replace("patch_embed.norm" , "vit.embeddings.norm" ) if "decoder_blocks" in name: lowerCamelCase_ = name.replace("decoder_blocks" , "decoder.decoder_layers" ) if "blocks" in name: lowerCamelCase_ = name.replace("blocks" , "vit.encoder.layer" ) if "attn.proj" in name: lowerCamelCase_ = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: lowerCamelCase_ = name.replace("attn" , "attention.self" ) if "norm1" in name: lowerCamelCase_ = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: lowerCamelCase_ = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: lowerCamelCase_ = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: lowerCamelCase_ = name.replace("mlp.fc2" , "output.dense" ) if "decoder_embed" in name: lowerCamelCase_ = name.replace("decoder_embed" , "decoder.decoder_embed" ) if "decoder_norm" in name: lowerCamelCase_ = name.replace("decoder_norm" , "decoder.decoder_norm" ) if "decoder_pred" in name: lowerCamelCase_ = name.replace("decoder_pred" , "decoder.decoder_pred" ) if "norm.weight" in name and "decoder" not in name: lowerCamelCase_ = name.replace("norm.weight" , "vit.layernorm.weight" ) if "norm.bias" in name and "decoder" not in name: lowerCamelCase_ = name.replace("norm.bias" , "vit.layernorm.bias" ) return name def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): for key in orig_state_dict.copy().keys(): lowerCamelCase_ = orig_state_dict.pop(__SCREAMING_SNAKE_CASE ) if "qkv" in key: lowerCamelCase_ = key.split("." ) lowerCamelCase_ = int(key_split[1] ) if "decoder_blocks" in key: lowerCamelCase_ = config.decoder_hidden_size lowerCamelCase_ = """decoder.decoder_layers.""" if "weight" in key: lowerCamelCase_ = val[:dim, :] lowerCamelCase_ = val[dim : dim * 2, :] lowerCamelCase_ = val[-dim:, :] elif "bias" in key: lowerCamelCase_ = val[:dim] lowerCamelCase_ = val[dim : dim * 2] lowerCamelCase_ = val[-dim:] else: lowerCamelCase_ = config.hidden_size lowerCamelCase_ = """vit.encoder.layer.""" if "weight" in key: lowerCamelCase_ = val[:dim, :] lowerCamelCase_ = val[dim : dim * 2, :] lowerCamelCase_ = val[-dim:, :] elif "bias" in key: lowerCamelCase_ = val[:dim] lowerCamelCase_ = val[dim : dim * 2] lowerCamelCase_ = val[-dim:] else: lowerCamelCase_ = val return orig_state_dict def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = ViTMAEConfig() if "large" in checkpoint_url: lowerCamelCase_ = 1_0_2_4 lowerCamelCase_ = 4_0_9_6 lowerCamelCase_ = 2_4 lowerCamelCase_ = 1_6 elif "huge" in checkpoint_url: lowerCamelCase_ = 1_4 lowerCamelCase_ = 1_2_8_0 lowerCamelCase_ = 5_1_2_0 lowerCamelCase_ = 3_2 lowerCamelCase_ = 1_6 lowerCamelCase_ = ViTMAEForPreTraining(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = torch.hub.load_state_dict_from_url(__SCREAMING_SNAKE_CASE , map_location="cpu" )["""model"""] lowerCamelCase_ = ViTMAEImageProcessor(size=config.image_size ) lowerCamelCase_ = convert_state_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) model.load_state_dict(__SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ = """https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg""" lowerCamelCase_ = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw ) lowerCamelCase_ = ViTMAEImageProcessor(size=config.image_size ) lowerCamelCase_ = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors="pt" ) # forward pass torch.manual_seed(2 ) lowerCamelCase_ = model(**__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = outputs.logits if "large" in checkpoint_url: lowerCamelCase_ = torch.tensor( [[-0.73_09, -0.71_28, -1.01_69], [-1.01_61, -0.90_58, -1.18_78], [-1.04_78, -0.94_11, -1.19_11]] ) elif "huge" in checkpoint_url: lowerCamelCase_ = torch.tensor( [[-1.15_99, -0.91_99, -1.22_21], [-1.19_52, -0.92_69, -1.23_07], [-1.21_43, -0.93_37, -1.22_62]] ) else: lowerCamelCase_ = torch.tensor( [[-0.91_92, -0.84_81, -1.12_59], [-1.13_49, -1.00_34, -1.25_99], [-1.17_57, -1.04_29, -1.27_26]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __A =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __A =parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
370
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__=False ): lowerCamelCase_ = OmegaConf.load(lowerCamelCase__ ) if display: print(yaml.dump(OmegaConf.to_container(lowerCamelCase__ ) ) ) return config def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None ): if conf_path is None: lowerCamelCase_ = "./model_checkpoints/vqgan_only.yaml" lowerCamelCase_ = load_config(lowerCamelCase__ , display=lowerCamelCase__ ) lowerCamelCase_ = VQModel(**config.model.params ) if ckpt_path is None: lowerCamelCase_ = "./model_checkpoints/vqgan_only.pt" lowerCamelCase_ = torch.load(lowerCamelCase__ , map_location=lowerCamelCase__ ) if ".ckpt" in ckpt_path: lowerCamelCase_ = sd["state_dict"] model.load_state_dict(lowerCamelCase__ , strict=lowerCamelCase__ ) model.to(lowerCamelCase__ ) del sd return model def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = model.encode(lowerCamelCase__ ) print(F'VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}' ) lowerCamelCase_ = model.decode(lowerCamelCase__ ) return xrec def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__=False ): lowerCamelCase_ , lowerCamelCase_ = string.rsplit("." , 1 ) if reload: lowerCamelCase_ = importlib.import_module(lowerCamelCase__ ) importlib.reload(lowerCamelCase__ ) return getattr(importlib.import_module(lowerCamelCase__ , package=lowerCamelCase__ ) , cls ) def lowerCamelCase_ ( lowerCamelCase__ ): if "target" not in config: raise KeyError("Expected key `target` to instantiate." ) return get_obj_from_str(config["target"] )(**config.get("params" , {} ) ) def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=True , lowerCamelCase__=True ): lowerCamelCase_ = instantiate_from_config(lowerCamelCase__ ) if sd is not None: model.load_state_dict(lowerCamelCase__ ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): # load the specified checkpoint if ckpt: lowerCamelCase_ = torch.load(lowerCamelCase__ , map_location="cpu" ) lowerCamelCase_ = pl_sd["global_step"] print(F'loaded model from global step {global_step}.' ) else: lowerCamelCase_ = {"state_dict": None} lowerCamelCase_ = None lowerCamelCase_ = load_model_from_config(config.model , pl_sd["state_dict"] , gpu=lowerCamelCase__ , eval_mode=lowerCamelCase__ )["model"] return model, global_step
47
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __snake_case = logging.get_logger(__name__) def _A ( _lowercase ) -> Any: """simple docstring""" __UpperCamelCase = SwinConfig( embed_dim=1_92 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['stage2', 'stage3', 'stage4'] , ) __UpperCamelCase = DetaConfig( backbone_config=_lowercase , num_queries=9_00 , encoder_ffn_dim=20_48 , decoder_ffn_dim=20_48 , num_feature_levels=5 , assign_first_stage=_lowercase , with_box_refine=_lowercase , two_stage=_lowercase , ) # set labels __UpperCamelCase = 'huggingface/label-files' if "o365" in model_name: __UpperCamelCase = 3_66 __UpperCamelCase = 'object365-id2label.json' else: __UpperCamelCase = 91 __UpperCamelCase = 'coco-detection-id2label.json' __UpperCamelCase = num_labels __UpperCamelCase = json.load(open(cached_download(hf_hub_url(_lowercase , _lowercase , repo_type='dataset' ) ) , 'r' ) ) __UpperCamelCase = {int(_lowercase ): v for k, v in idalabel.items()} __UpperCamelCase = idalabel __UpperCamelCase = {v: k for k, v in idalabel.items()} return config def _A ( _lowercase ) -> Any: """simple docstring""" __UpperCamelCase = [] # stem # fmt: off rename_keys.append(('backbone.0.body.patch_embed.proj.weight', 'model.backbone.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.0.body.patch_embed.proj.bias', 'model.backbone.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.0.body.patch_embed.norm.weight', 'model.backbone.model.embeddings.norm.weight') ) rename_keys.append(('backbone.0.body.patch_embed.norm.bias', 'model.backbone.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm1.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm1.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm2.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm2.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.reduction.weight''', f'''model.backbone.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.norm.weight''', f'''model.backbone.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.norm.bias''', f'''model.backbone.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append(('backbone.0.body.norm1.weight', 'model.backbone.model.hidden_states_norms.stage2.weight') ) rename_keys.append(('backbone.0.body.norm1.bias', 'model.backbone.model.hidden_states_norms.stage2.bias') ) rename_keys.append(('backbone.0.body.norm2.weight', 'model.backbone.model.hidden_states_norms.stage3.weight') ) rename_keys.append(('backbone.0.body.norm2.bias', 'model.backbone.model.hidden_states_norms.stage3.bias') ) rename_keys.append(('backbone.0.body.norm3.weight', 'model.backbone.model.hidden_states_norms.stage4.weight') ) rename_keys.append(('backbone.0.body.norm3.bias', 'model.backbone.model.hidden_states_norms.stage4.bias') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight''', f'''model.encoder.layers.{i}.self_attn.sampling_offsets.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias''', f'''model.encoder.layers.{i}.self_attn.sampling_offsets.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.attention_weights.weight''', f'''model.encoder.layers.{i}.self_attn.attention_weights.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.attention_weights.bias''', f'''model.encoder.layers.{i}.self_attn.attention_weights.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.value_proj.weight''', f'''model.encoder.layers.{i}.self_attn.value_proj.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.value_proj.bias''', f'''model.encoder.layers.{i}.self_attn.value_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.output_proj.weight''', f'''model.encoder.layers.{i}.self_attn.output_proj.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.output_proj.bias''', f'''model.encoder.layers.{i}.self_attn.output_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.weight''', f'''model.encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''model.encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''model.encoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''model.encoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''model.encoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''model.encoder.layers.{i}.fc2.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''model.encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''model.encoder.layers.{i}.final_layer_norm.bias''') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight''', f'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias''', f'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.attention_weights.weight''', f'''model.decoder.layers.{i}.encoder_attn.attention_weights.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.attention_weights.bias''', f'''model.decoder.layers.{i}.encoder_attn.attention_weights.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.value_proj.weight''', f'''model.decoder.layers.{i}.encoder_attn.value_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.value_proj.bias''', f'''model.decoder.layers.{i}.encoder_attn.value_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.output_proj.weight''', f'''model.decoder.layers.{i}.encoder_attn.output_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.output_proj.bias''', f'''model.decoder.layers.{i}.encoder_attn.output_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.weight''', f'''model.decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''model.decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''model.decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''model.decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm2.weight''', f'''model.decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm2.bias''', f'''model.decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''model.decoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''model.decoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''model.decoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''model.decoder.layers.{i}.fc2.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''model.decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''model.decoder.layers.{i}.final_layer_norm.bias''') ) # fmt: on return rename_keys def _A ( _lowercase , _lowercase , _lowercase ) -> Any: """simple docstring""" __UpperCamelCase = dct.pop(_lowercase ) __UpperCamelCase = val def _A ( _lowercase , _lowercase ) -> str: """simple docstring""" __UpperCamelCase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __UpperCamelCase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __UpperCamelCase = state_dict.pop(f'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight''' ) __UpperCamelCase = state_dict.pop(f'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict __UpperCamelCase = in_proj_weight[:dim, :] __UpperCamelCase = in_proj_bias[: dim] __UpperCamelCase = in_proj_weight[ dim : dim * 2, : ] __UpperCamelCase = in_proj_bias[ dim : dim * 2 ] __UpperCamelCase = in_proj_weight[ -dim :, : ] __UpperCamelCase = in_proj_bias[-dim :] # fmt: on def _A ( _lowercase , _lowercase ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention __UpperCamelCase = state_dict.pop(f'''transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) __UpperCamelCase = state_dict.pop(f'''transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict __UpperCamelCase = in_proj_weight[:hidden_size, :] __UpperCamelCase = in_proj_bias[:hidden_size] __UpperCamelCase = in_proj_weight[ hidden_size : hidden_size * 2, : ] __UpperCamelCase = in_proj_bias[hidden_size : hidden_size * 2] __UpperCamelCase = in_proj_weight[-hidden_size:, :] __UpperCamelCase = in_proj_bias[-hidden_size:] def _A ( ) -> Optional[int]: """simple docstring""" __UpperCamelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __UpperCamelCase = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im @torch.no_grad() def _A ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]: """simple docstring""" __UpperCamelCase = get_deta_config(_lowercase ) # load original state dict if model_name == "deta-swin-large": __UpperCamelCase = hf_hub_download(repo_id='nielsr/deta-checkpoints' , filename='adet_swin_ft.pth' ) elif model_name == "deta-swin-large-o365": __UpperCamelCase = hf_hub_download(repo_id='jozhang97/deta-swin-l-o365' , filename='deta_swin_pt_o365.pth' ) else: raise ValueError(f'''Model name {model_name} not supported''' ) __UpperCamelCase = torch.load(_lowercase , map_location='cpu' )['model'] # original state dict for name, param in state_dict.items(): print(_lowercase , param.shape ) # rename keys __UpperCamelCase = create_rename_keys(_lowercase ) for src, dest in rename_keys: rename_key(_lowercase , _lowercase , _lowercase ) read_in_swin_q_k_v(_lowercase , config.backbone_config ) read_in_decoder_q_k_v(_lowercase , _lowercase ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: __UpperCamelCase = state_dict.pop(_lowercase ) __UpperCamelCase = val if "input_proj" in key: __UpperCamelCase = state_dict.pop(_lowercase ) __UpperCamelCase = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: __UpperCamelCase = state_dict.pop(_lowercase ) __UpperCamelCase = val # finally, create HuggingFace model and load state dict __UpperCamelCase = DetaForObjectDetection(_lowercase ) model.load_state_dict(_lowercase ) model.eval() __UpperCamelCase = 'cuda' if torch.cuda.is_available() else 'cpu' model.to(_lowercase ) # load image processor __UpperCamelCase = DetaImageProcessor(format='coco_detection' ) # verify our conversion on image __UpperCamelCase = prepare_img() __UpperCamelCase = processor(images=_lowercase , return_tensors='pt' ) __UpperCamelCase = encoding['pixel_values'] __UpperCamelCase = model(pixel_values.to(_lowercase ) ) # verify logits print('Logits:' , outputs.logits[0, :3, :3] ) print('Boxes:' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": __UpperCamelCase = torch.tensor( [[-7.63_08, -2.84_85, -5.37_37], [-7.20_37, -4.55_05, -4.80_27], [-7.29_43, -4.26_11, -4.66_17]] ) __UpperCamelCase = torch.tensor([[0.49_87, 0.49_69, 0.99_99], [0.25_49, 0.54_98, 0.48_05], [0.54_98, 0.27_57, 0.05_69]] ) elif model_name == "deta-swin-large-o365": __UpperCamelCase = torch.tensor( [[-8.01_22, -3.57_20, -4.97_17], [-8.15_47, -3.68_86, -4.63_89], [-7.66_10, -3.61_94, -5.01_34]] ) __UpperCamelCase = torch.tensor([[0.25_23, 0.55_49, 0.48_81], [0.77_15, 0.41_49, 0.46_01], [0.55_03, 0.27_53, 0.05_75]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(_lowercase ) , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(_lowercase ) , atol=1e-4 ) print('Everything ok!' ) if pytorch_dump_folder_path: # Save model and processor logger.info(f'''Saving PyTorch model and processor to {pytorch_dump_folder_path}...''' ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) processor.save_pretrained(_lowercase ) # Push to hub if push_to_hub: print('Pushing model and processor to hub...' ) model.push_to_hub(f'''jozhang97/{model_name}''' ) processor.push_to_hub(f'''jozhang97/{model_name}''' ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument( '''--model_name''', type=str, default='''deta-swin-large''', choices=['''deta-swin-large''', '''deta-swin-large-o365'''], help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __snake_case = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
310
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class __lowerCamelCase : _lowercase = XGLMConfig _lowercase = {} _lowercase = """gelu""" def __init__( self: Optional[int],A_: Dict,A_: Any=14,A_: Optional[int]=7,A_: str=True,A_: Any=True,A_: Optional[int]=True,A_: Optional[int]=99,A_: List[str]=32,A_: Any=2,A_: Tuple=4,A_: List[str]=37,A_: Dict="gelu",A_: int=0.1,A_: List[str]=0.1,A_: int=512,A_: List[Any]=0.0_2,): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_input_mask __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = d_model __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = ffn_dim __UpperCamelCase = activation_function __UpperCamelCase = activation_dropout __UpperCamelCase = attention_dropout __UpperCamelCase = max_position_embeddings __UpperCamelCase = initializer_range __UpperCamelCase = None __UpperCamelCase = 0 __UpperCamelCase = 2 __UpperCamelCase = 1 def snake_case_ ( self: Dict ): '''simple docstring''' return XGLMConfig.from_pretrained('facebook/xglm-564M' ) def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length],self.vocab_size ),clip_value_min=0,clip_value_max=3 ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = self.get_config() __UpperCamelCase = floats_tensor([self.num_hidden_layers, self.num_attention_heads],2 ) return ( config, input_ids, input_mask, head_mask, ) def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' return XGLMConfig( vocab_size=self.vocab_size,d_model=self.hidden_size,num_layers=self.num_hidden_layers,attention_heads=self.num_attention_heads,ffn_dim=self.ffn_dim,activation_function=self.activation_function,activation_dropout=self.activation_dropout,attention_dropout=self.attention_dropout,max_position_embeddings=self.max_position_embeddings,initializer_range=self.initializer_range,use_cache=A_,bos_token_id=self.bos_token_id,eos_token_id=self.eos_token_id,pad_token_id=self.pad_token_id,return_dict=A_,) def snake_case_ ( self: int ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() ( ( __UpperCamelCase ), ( __UpperCamelCase ), ( __UpperCamelCase ), ( __UpperCamelCase ), ) = config_and_inputs __UpperCamelCase = { 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class __lowerCamelCase (_a , _a , unittest.TestCase ): _lowercase = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () _lowercase = (TFXGLMForCausalLM,) if is_tf_available() else () _lowercase = ( {"""feature-extraction""": TFXGLMModel, """text-generation""": TFXGLMForCausalLM} if is_tf_available() else {} ) _lowercase = False _lowercase = False _lowercase = False def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = TFXGLMModelTester(self ) __UpperCamelCase = ConfigTester(self,config_class=A_,n_embd=37 ) def snake_case_ ( self: Any ): '''simple docstring''' self.config_tester.run_common_tests() @slow def snake_case_ ( self: Any ): '''simple docstring''' for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = TFXGLMModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' ) def snake_case_ ( self: Tuple ): '''simple docstring''' super().test_resize_token_embeddings() @require_tf class __lowerCamelCase (unittest.TestCase ): @slow def snake_case_ ( self: Optional[Any],A_: int=True ): '''simple docstring''' __UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = tf.convert_to_tensor([[2, 268, 9865]],dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __UpperCamelCase = [2, 268, 9865, 67, 11, 1988, 5_7252, 9865, 5, 984, 67, 1988, 21_3838, 1658, 53, 7_0446, 33, 6657, 278, 1581] # fmt: on __UpperCamelCase = model.generate(A_,do_sample=A_,num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist(),A_ ) @slow def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) tf.random.set_seed(0 ) __UpperCamelCase = tokenizer('Today is a nice day and',return_tensors='tf' ) __UpperCamelCase = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(':/CPU:0' ): __UpperCamelCase = model.generate(A_,do_sample=A_,seed=[7, 0] ) __UpperCamelCase = tokenizer.decode(output_ids[0],skip_special_tokens=A_ ) __UpperCamelCase = ( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(A_,A_ ) @slow def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = 'left' # use different length sentences to test batching __UpperCamelCase = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] __UpperCamelCase = tokenizer(A_,return_tensors='tf',padding=A_ ) __UpperCamelCase = inputs['input_ids'] __UpperCamelCase = model.generate(input_ids=A_,attention_mask=inputs['attention_mask'],max_new_tokens=12 ) __UpperCamelCase = tokenizer(sentences[0],return_tensors='tf' ).input_ids __UpperCamelCase = model.generate(input_ids=A_,max_new_tokens=12 ) __UpperCamelCase = tokenizer(sentences[1],return_tensors='tf' ).input_ids __UpperCamelCase = model.generate(input_ids=A_,max_new_tokens=12 ) __UpperCamelCase = tokenizer.batch_decode(A_,skip_special_tokens=A_ ) __UpperCamelCase = tokenizer.decode(output_non_padded[0],skip_special_tokens=A_ ) __UpperCamelCase = tokenizer.decode(output_padded[0],skip_special_tokens=A_ ) __UpperCamelCase = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(A_,A_ ) self.assertListEqual(A_,[non_padded_sentence, padded_sentence] )
310
1
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowercase__ = logging.get_logger(__name__) def _snake_case ( lowercase__ , lowercase__=False ): _lowerCamelCase : str = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith('head' ): _lowerCamelCase : Dict = 'segformer.encoder.' + key if key.startswith('backbone' ): _lowerCamelCase : Optional[int] = key.replace('backbone' , 'segformer.encoder' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 _lowerCamelCase : Dict = key[key.find('patch_embed' ) + len('patch_embed' )] _lowerCamelCase : Union[str, Any] = key.replace(f'''patch_embed{idx}''' , f'''patch_embeddings.{int(lowercase__ )-1}''' ) if "norm" in key: _lowerCamelCase : Tuple = key.replace('norm' , 'layer_norm' ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 _lowerCamelCase : int = key[key.find('segformer.encoder.layer_norm' ) + len('segformer.encoder.layer_norm' )] _lowerCamelCase : Optional[Any] = key.replace(f'''layer_norm{idx}''' , f'''layer_norm.{int(lowercase__ )-1}''' ) if "layer_norm1" in key: _lowerCamelCase : Any = key.replace('layer_norm1' , 'layer_norm_1' ) if "layer_norm2" in key: _lowerCamelCase : Dict = key.replace('layer_norm2' , 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 _lowerCamelCase : Dict = key[key.find('block' ) + len('block' )] _lowerCamelCase : str = key.replace(f'''block{idx}''' , f'''block.{int(lowercase__ )-1}''' ) if "attn.q" in key: _lowerCamelCase : Union[str, Any] = key.replace('attn.q' , 'attention.self.query' ) if "attn.proj" in key: _lowerCamelCase : List[Any] = key.replace('attn.proj' , 'attention.output.dense' ) if "attn" in key: _lowerCamelCase : Tuple = key.replace('attn' , 'attention.self' ) if "fc1" in key: _lowerCamelCase : int = key.replace('fc1' , 'dense1' ) if "fc2" in key: _lowerCamelCase : Optional[Any] = key.replace('fc2' , 'dense2' ) if "linear_pred" in key: _lowerCamelCase : Dict = key.replace('linear_pred' , 'classifier' ) if "linear_fuse" in key: _lowerCamelCase : List[str] = key.replace('linear_fuse.conv' , 'linear_fuse' ) _lowerCamelCase : Tuple = key.replace('linear_fuse.bn' , 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 _lowerCamelCase : Optional[int] = key[key.find('linear_c' ) + len('linear_c' )] _lowerCamelCase : Optional[int] = key.replace(f'''linear_c{idx}''' , f'''linear_c.{int(lowercase__ )-1}''' ) if key.startswith('head' ): _lowerCamelCase : Union[str, Any] = key.replace('head' , 'classifier' ) _lowerCamelCase : int = value return new_state_dict def _snake_case ( lowercase__ , lowercase__ ): # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) _lowerCamelCase : Optional[int] = state_dict.pop(f'''segformer.encoder.block.{i}.{j}.attention.self.kv.weight''' ) _lowerCamelCase : str = state_dict.pop(f'''segformer.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict _lowerCamelCase : Dict = kv_weight[ : config.hidden_sizes[i], : ] _lowerCamelCase : List[Any] = kv_bias[: config.hidden_sizes[i]] _lowerCamelCase : int = kv_weight[ config.hidden_sizes[i] :, : ] _lowerCamelCase : str = kv_bias[ config.hidden_sizes[i] : ] def _snake_case ( ): _lowerCamelCase : Any = 'http://images.cocodataset.org/val2017/000000039769.jpg' _lowerCamelCase : Tuple = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return image @torch.no_grad() def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : Optional[Any] = SegformerConfig() _lowerCamelCase : Union[str, Any] = False # set attributes based on model_name _lowerCamelCase : Union[str, Any] = 'huggingface/label-files' if "segformer" in model_name: _lowerCamelCase : Tuple = model_name[len('segformer.' ) : len('segformer.' ) + 2] if "ade" in model_name: _lowerCamelCase : List[Any] = 150 _lowerCamelCase : Tuple = 'ade20k-id2label.json' _lowerCamelCase : str = (1, 150, 128, 128) elif "city" in model_name: _lowerCamelCase : List[Any] = 19 _lowerCamelCase : Dict = 'cityscapes-id2label.json' _lowerCamelCase : Dict = (1, 19, 128, 128) else: raise ValueError(f'''Model {model_name} not supported''' ) elif "mit" in model_name: _lowerCamelCase : List[Any] = True _lowerCamelCase : str = model_name[4:6] _lowerCamelCase : Any = 1000 _lowerCamelCase : Any = 'imagenet-1k-id2label.json' _lowerCamelCase : Union[str, Any] = (1, 1000) else: raise ValueError(f'''Model {model_name} not supported''' ) # set config attributes _lowerCamelCase : Union[str, Any] = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type='dataset' ) , 'r' ) ) _lowerCamelCase : Optional[Any] = {int(lowercase__ ): v for k, v in idalabel.items()} _lowerCamelCase : Tuple = idalabel _lowerCamelCase : Tuple = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": _lowerCamelCase : Dict = [64, 128, 320, 512] _lowerCamelCase : List[str] = 256 elif size == "b2": _lowerCamelCase : int = [64, 128, 320, 512] _lowerCamelCase : str = 768 _lowerCamelCase : Optional[Any] = [3, 4, 6, 3] elif size == "b3": _lowerCamelCase : Any = [64, 128, 320, 512] _lowerCamelCase : Any = 768 _lowerCamelCase : int = [3, 4, 18, 3] elif size == "b4": _lowerCamelCase : Tuple = [64, 128, 320, 512] _lowerCamelCase : int = 768 _lowerCamelCase : Union[str, Any] = [3, 8, 27, 3] elif size == "b5": _lowerCamelCase : Dict = [64, 128, 320, 512] _lowerCamelCase : int = 768 _lowerCamelCase : Any = [3, 6, 40, 3] else: raise ValueError(f'''Size {size} not supported''' ) # load image processor (only resize + normalize) _lowerCamelCase : Dict = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=lowercase__ , align=lowercase__ , do_random_crop=lowercase__ ) # prepare image _lowerCamelCase : Dict = prepare_img() _lowerCamelCase : Optional[Any] = image_processor(images=lowercase__ , return_tensors='pt' ).pixel_values logger.info(f'''Converting model {model_name}...''' ) # load original state dict if encoder_only: _lowerCamelCase : Any = torch.load(lowercase__ , map_location=torch.device('cpu' ) ) else: _lowerCamelCase : Dict = torch.load(lowercase__ , map_location=torch.device('cpu' ) )['state_dict'] # rename keys _lowerCamelCase : Dict = rename_keys(lowercase__ , encoder_only=lowercase__ ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(lowercase__ , lowercase__ ) # create HuggingFace model and load state dict if encoder_only: _lowerCamelCase : Union[str, Any] = False _lowerCamelCase : str = SegformerForImageClassification(lowercase__ ) else: _lowerCamelCase : Optional[int] = SegformerForSemanticSegmentation(lowercase__ ) model.load_state_dict(lowercase__ ) model.eval() # forward pass _lowerCamelCase : List[Any] = model(lowercase__ ) _lowerCamelCase : Optional[Any] = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": _lowerCamelCase : List[str] = torch.tensor( [ [[-4.6_3_1_0, -5.5_2_3_2, -6.2_3_5_6], [-5.1_9_2_1, -6.1_4_4_4, -6.5_9_9_6], [-5.4_4_2_4, -6.2_7_9_0, -6.7_5_7_4]], [[-1_2.1_3_9_1, -1_3.3_1_2_2, -1_3.9_5_5_4], [-1_2.8_7_3_2, -1_3.9_3_5_2, -1_4.3_5_6_3], [-1_2.9_4_3_8, -1_3.8_2_2_6, -1_4.2_5_1_3]], [[-1_2.5_1_3_4, -1_3.4_6_8_6, -1_4.4_9_1_5], [-1_2.8_6_6_9, -1_4.4_3_4_3, -1_4.7_7_5_8], [-1_3.2_5_2_3, -1_4.5_8_1_9, -1_5.0_6_9_4]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": _lowerCamelCase : Union[str, Any] = torch.tensor( [ [[-7.5_8_2_0, -8.7_2_3_1, -8.3_2_1_5], [-8.0_6_0_0, -1_0.3_5_2_9, -1_0.0_3_0_4], [-7.5_2_0_8, -9.4_1_0_3, -9.6_2_3_9]], [[-1_2.6_9_1_8, -1_3.8_9_9_4, -1_3.7_1_3_7], [-1_3.3_1_9_6, -1_5.7_5_2_3, -1_5.4_7_8_9], [-1_2.9_3_4_3, -1_4.8_7_5_7, -1_4.9_6_8_9]], [[-1_1.1_9_1_1, -1_1.9_4_2_1, -1_1.3_2_4_3], [-1_1.3_3_4_2, -1_3.6_8_3_9, -1_3.3_5_8_1], [-1_0.3_9_0_9, -1_2.1_8_3_2, -1_2.4_8_5_8]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": _lowerCamelCase : Union[str, Any] = torch.tensor( [ [[-1_1.8_1_7_3, -1_4.3_8_5_0, -1_6.3_1_2_8], [-1_4.5_6_4_8, -1_6.5_8_0_4, -1_8.6_5_6_8], [-1_4.7_2_2_3, -1_5.7_3_8_7, -1_8.4_2_1_8]], [[-1_5.7_2_9_0, -1_7.9_1_7_1, -1_9.4_4_2_3], [-1_8.3_1_0_5, -1_9.9_4_4_8, -2_1.4_6_6_1], [-1_7.9_2_9_6, -1_8.6_4_9_7, -2_0.7_9_1_0]], [[-1_5.0_7_8_3, -1_7.0_3_3_6, -1_8.2_7_8_9], [-1_6.8_7_7_1, -1_8.6_8_7_0, -2_0.1_6_1_2], [-1_6.2_4_5_4, -1_7.1_4_2_6, -1_9.5_0_5_5]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": _lowerCamelCase : Union[str, Any] = torch.tensor( [ [[-9.0_8_7_8, -1_0.2_0_8_1, -1_0.1_8_9_1], [-9.3_1_4_4, -1_0.7_9_4_1, -1_0.9_8_4_3], [-9.2_2_9_4, -1_0.3_8_5_5, -1_0.5_7_0_4]], [[-1_2.2_3_1_6, -1_3.9_0_6_8, -1_3.6_1_0_2], [-1_2.9_1_6_1, -1_4.3_7_0_2, -1_4.3_2_3_5], [-1_2.5_2_3_3, -1_3.7_1_7_4, -1_3.7_9_3_2]], [[-1_4.6_2_7_5, -1_5.2_4_9_0, -1_4.9_7_2_7], [-1_4.3_4_0_0, -1_5.9_6_8_7, -1_6.2_8_2_7], [-1_4.1_4_8_4, -1_5.4_0_3_3, -1_5.8_9_3_7]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": _lowerCamelCase : int = torch.tensor( [ [[-1_2.3_1_4_4, -1_3.2_4_4_7, -1_4.0_8_0_2], [-1_3.3_6_1_4, -1_4.5_8_1_6, -1_5.6_1_1_7], [-1_3.3_3_4_0, -1_4.4_4_3_3, -1_6.2_2_1_9]], [[-1_9.2_7_8_1, -2_0.4_1_2_8, -2_0.7_5_0_6], [-2_0.6_1_5_3, -2_1.6_5_6_6, -2_2.0_9_9_8], [-1_9.9_8_0_0, -2_1.0_4_3_0, -2_2.1_4_9_4]], [[-1_8.8_7_3_9, -1_9.7_8_0_4, -2_1.1_8_3_4], [-2_0.1_2_3_3, -2_1.6_7_6_5, -2_3.2_9_4_4], [-2_0.0_3_1_5, -2_1.2_6_4_1, -2_3.6_9_4_4]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": _lowerCamelCase : Tuple = torch.tensor( [ [[-9.5_5_2_4, -1_2.0_8_3_5, -1_1.7_3_4_8], [-1_0.5_2_2_9, -1_3.6_4_4_6, -1_4.5_6_6_2], [-9.5_8_4_2, -1_2.8_8_5_1, -1_3.9_4_1_4]], [[-1_5.3_4_3_2, -1_7.5_3_2_3, -1_7.0_8_1_8], [-1_6.3_3_3_0, -1_8.9_2_5_5, -1_9.2_1_0_1], [-1_5.1_3_4_0, -1_7.7_8_4_8, -1_8.3_9_7_1]], [[-1_2.6_0_7_2, -1_4.9_4_8_6, -1_4.6_6_3_1], [-1_3.7_6_2_9, -1_7.0_9_0_7, -1_7.7_7_4_5], [-1_2.7_8_9_9, -1_6.1_6_9_5, -1_7.1_6_7_1]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": _lowerCamelCase : Optional[int] = torch.tensor( [ [[-1_1.9_2_9_5, -1_3.4_0_5_7, -1_4.8_1_0_6], [-1_3.3_4_3_1, -1_4.8_1_7_9, -1_5.3_7_8_1], [-1_4.2_8_3_6, -1_5.5_9_4_2, -1_6.1_5_8_8]], [[-1_1.4_9_0_6, -1_2.8_0_6_7, -1_3.6_5_6_4], [-1_3.1_1_8_9, -1_4.0_5_0_0, -1_4.1_5_4_3], [-1_3.8_7_4_8, -1_4.5_1_3_6, -1_4.8_7_8_9]], [[0.5_3_7_4, 0.1_0_6_7, -0.4_7_4_2], [0.1_1_4_1, -0.2_2_5_5, -0.7_0_9_9], [-0.3_0_0_0, -0.5_9_2_4, -1.3_1_0_5]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": _lowerCamelCase : Dict = torch.tensor( [ [[-7.8_2_1_7, -9.8_7_6_7, -1_0.1_7_1_7], [-9.4_4_3_8, -1_0.9_0_5_8, -1_1.4_0_4_7], [-9.7_9_3_9, -1_2.3_4_9_5, -1_2.1_0_7_9]], [[-7.1_5_1_4, -9.5_3_3_6, -1_0.0_8_6_0], [-9.7_7_7_6, -1_1.6_8_2_2, -1_1.8_4_3_9], [-1_0.1_4_1_1, -1_2.7_6_5_5, -1_2.8_9_7_2]], [[0.3_0_2_1, 0.0_8_0_5, -0.2_3_1_0], [-0.0_3_2_8, -0.1_6_0_5, -0.2_7_1_4], [-0.1_4_0_8, -0.5_4_7_7, -0.6_9_7_6]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": _lowerCamelCase : Optional[Any] = torch.tensor( [ [ [-1.1_372E01, -1.2_787E01, -1.3_477E01], [-1.2_536E01, -1.4_194E01, -1.4_409E01], [-1.3_217E01, -1.4_888E01, -1.5_327E01], ], [ [-1.4_791E01, -1.7_122E01, -1.8_277E01], [-1.7_163E01, -1.9_192E01, -1.9_533E01], [-1.7_897E01, -1.9_991E01, -2.0_315E01], ], [ [7.6_723E-01, 4.1_921E-01, -7.7_878E-02], [4.7_772E-01, 9.5_557E-03, -2.8_082E-01], [3.6_032E-01, -2.4_826E-01, -5.1_168E-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": _lowerCamelCase : Optional[Any] = torch.tensor( [ [[-9.4_9_5_9, -1_1.3_0_8_7, -1_1.7_4_7_9], [-1_1.0_0_2_5, -1_2.6_5_4_0, -1_2.3_3_1_9], [-1_1.4_0_6_4, -1_3.0_4_8_7, -1_2.9_9_0_5]], [[-9.8_9_0_5, -1_1.3_0_8_4, -1_2.0_8_5_4], [-1_1.1_7_2_6, -1_2.7_6_9_8, -1_2.9_5_8_3], [-1_1.5_9_8_5, -1_3.3_2_7_8, -1_4.1_7_7_4]], [[0.2_2_1_3, 0.0_1_9_2, -0.2_4_6_6], [-0.1_7_3_1, -0.4_2_1_3, -0.4_8_7_4], [-0.3_1_2_6, -0.6_5_4_1, -1.1_3_8_9]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": _lowerCamelCase : Dict = torch.tensor( [ [[-1_3.5_7_4_8, -1_3.9_1_1_1, -1_2.6_5_0_0], [-1_4.3_5_0_0, -1_5.3_6_8_3, -1_4.2_3_2_8], [-1_4.7_5_3_2, -1_6.0_4_2_4, -1_5.6_0_8_7]], [[-1_7.1_6_5_1, -1_5.8_7_2_5, -1_2.9_6_5_3], [-1_7.2_5_8_0, -1_7.3_7_1_8, -1_4.8_2_2_3], [-1_6.6_0_5_8, -1_6.8_7_8_3, -1_6.7_4_5_2]], [[-3.6_4_5_6, -3.0_2_0_9, -1.4_2_0_3], [-3.0_7_9_7, -3.1_9_5_9, -2.0_0_0_0], [-1.8_7_5_7, -1.9_2_1_7, -1.6_9_9_7]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": _lowerCamelCase : Tuple = torch.tensor( [ [[-1_6.0_9_7_6, -1_6.4_8_5_6, -1_7.3_9_6_2], [-1_6.6_2_3_4, -1_9.0_3_4_2, -1_9.7_6_8_5], [-1_6.0_9_0_0, -1_8.0_6_6_1, -1_9.1_1_8_0]], [[-1_8.4_7_5_0, -1_8.8_4_8_8, -1_9.5_0_7_4], [-1_9.4_0_3_0, -2_2.1_5_7_0, -2_2.5_9_7_7], [-1_9.1_1_9_1, -2_0.8_4_8_6, -2_2.3_7_8_3]], [[-4.5_1_7_8, -5.5_0_3_7, -6.5_1_0_9], [-5.0_8_8_4, -7.2_1_7_4, -8.0_3_3_4], [-4.4_1_5_6, -5.8_1_1_7, -7.2_9_7_0]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": _lowerCamelCase : List[str] = torch.tensor( [ [[-1_4.2_0_8_1, -1_4.4_7_3_2, -1_4.1_9_7_7], [-1_4.5_8_6_7, -1_6.4_4_2_3, -1_6.6_3_5_6], [-1_3.4_4_4_1, -1_4.9_6_8_5, -1_6.8_6_9_6]], [[-1_4.4_5_7_6, -1_4.7_0_7_3, -1_5.0_4_5_1], [-1_5.0_8_1_6, -1_7.6_2_3_7, -1_7.9_8_7_3], [-1_4.4_2_1_3, -1_6.0_1_9_9, -1_8.5_9_9_2]], [[-4.7_3_4_9, -4.9_5_8_8, -5.0_9_6_6], [-4.3_2_1_0, -6.9_3_2_5, -7.2_5_9_1], [-3.4_3_1_2, -4.7_4_8_4, -7.1_9_1_7]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": _lowerCamelCase : Optional[int] = torch.tensor( [ [[-1_1.7_7_3_7, -1_1.9_5_2_6, -1_1.3_2_7_3], [-1_3.6_6_9_2, -1_4.4_5_7_4, -1_3.8_8_7_8], [-1_3.8_9_3_7, -1_4.6_9_2_4, -1_5.9_3_4_5]], [[-1_4.6_7_0_6, -1_4.5_3_3_0, -1_4.1_3_0_6], [-1_6.1_5_0_2, -1_6.8_1_8_0, -1_6.4_2_6_9], [-1_6.8_3_3_8, -1_7.8_9_3_9, -2_0.1_7_4_6]], [[1.0_4_9_1, 0.8_2_8_9, 1.0_3_1_0], [1.1_0_4_4, 0.5_2_1_9, 0.8_0_5_5], [1.0_8_9_9, 0.6_9_2_6, 0.5_5_9_0]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": _lowerCamelCase : Union[str, Any] = torch.tensor( [ [[-1_2.5_6_4_1, -1_3.4_7_7_7, -1_3.0_6_8_4], [-1_3.9_5_8_7, -1_5.8_9_8_3, -1_6.6_5_5_7], [-1_3.3_1_0_9, -1_5.7_3_5_0, -1_6.3_1_4_1]], [[-1_4.7_0_7_4, -1_5.4_3_5_2, -1_4.5_9_4_4], [-1_6.6_3_5_3, -1_8.1_6_6_3, -1_8.6_1_2_0], [-1_5.1_7_0_2, -1_8.0_3_2_9, -1_8.1_5_4_7]], [[-1.7_9_9_0, -2.0_9_5_1, -1.7_7_8_4], [-2.6_3_9_7, -3.8_2_4_5, -3.9_6_8_6], [-1.5_2_6_4, -2.8_1_2_6, -2.9_3_1_6]], ] ) else: _lowerCamelCase : Optional[int] = logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , lowercase__ , atol=1E-2 ) # finally, save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) model.save_pretrained(lowercase__ ) image_processor.save_pretrained(lowercase__ ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""segformer.b0.512x512.ade.160k""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) lowercase__ = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
12
"""simple docstring""" import re def _snake_case ( lowercase__ ): _lowerCamelCase : Optional[int] = re.compile(r'^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$' ) if match := re.search(lowercase__ , lowercase__ ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator("""+918827897895"""))
12
1
"""simple docstring""" def lowercase ( lowerCAmelCase__ : str ) -> list: if n_term == "": return [] __a = [] for temp in range(int(lowerCAmelCase__ ) ): series.append(f'''1/{temp + 1}''' if series else '''1''' ) return series if __name__ == "__main__": lowercase_ = input("Enter the last number (nth term) of the Harmonic Series") print("Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n") print(harmonic_series(nth_term))
45
from __future__ import annotations def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" for i in range(1 ,len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 ,len(__UpperCamelCase ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 ,len(__UpperCamelCase ) ): for j in range(1 ,len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] ,matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
312
0
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase : Optional[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' _A : str = XLMRobertaTokenizer _A : Dict = XLMRobertaTokenizerFast _A : List[Any] = True _A : int = True def lowerCAmelCase ( self : int ) -> List[Any]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __lowercase : Tuple = XLMRobertaTokenizer(__a , keep_accents=__a ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __lowercase : int = """<pad>""" __lowercase : Optional[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__a ) , __a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__a ) , __a ) def lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(__a ) , 1002 ) def lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1002 ) def lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase : Tuple = XLMRobertaTokenizer(__a , keep_accents=__a ) __lowercase : Optional[int] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__a , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__a ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __lowercase : Union[str, Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) __lowercase : int = tokenizer.convert_tokens_to_ids(__a ) self.assertListEqual( __a , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) __lowercase : Union[str, Any] = tokenizer.convert_ids_to_tokens(__a ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __lowercase : Optional[int] = (self.rust_tokenizer_class, """hf-internal-testing/tiny-xlm-roberta""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase : Optional[int] = self.rust_tokenizer_class.from_pretrained(__a , **__a ) __lowercase : List[str] = self.tokenizer_class.from_pretrained(__a , **__a ) __lowercase : List[str] = tempfile.mkdtemp() __lowercase : Optional[Any] = tokenizer_r.save_pretrained(__a ) __lowercase : int = tokenizer_p.save_pretrained(__a ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) __lowercase : Optional[int] = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(__a , __a ) # Checks everything loads correctly in the same way __lowercase : str = tokenizer_r.from_pretrained(__a ) __lowercase : Any = tokenizer_p.from_pretrained(__a ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__a , __a ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__a ) # Save tokenizer rust, legacy_format=True __lowercase : Dict = tempfile.mkdtemp() __lowercase : List[Any] = tokenizer_r.save_pretrained(__a , legacy_format=__a ) __lowercase : Optional[int] = tokenizer_p.save_pretrained(__a ) # Checks it save with the same files self.assertSequenceEqual(__a , __a ) # Checks everything loads correctly in the same way __lowercase : int = tokenizer_r.from_pretrained(__a ) __lowercase : List[Any] = tokenizer_p.from_pretrained(__a ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__a , __a ) ) shutil.rmtree(__a ) # Save tokenizer rust, legacy_format=False __lowercase : Union[str, Any] = tempfile.mkdtemp() __lowercase : str = tokenizer_r.save_pretrained(__a , legacy_format=__a ) __lowercase : Optional[int] = tokenizer_p.save_pretrained(__a ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __lowercase : Optional[int] = tokenizer_r.from_pretrained(__a ) __lowercase : Optional[Any] = tokenizer_p.from_pretrained(__a ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__a , __a ) ) shutil.rmtree(__a ) @cached_property def lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" return XLMRobertaTokenizer.from_pretrained("""xlm-roberta-base""" ) def lowerCAmelCase ( self : int ) -> List[Any]: """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(__a , f.name ) __lowercase : int = XLMRobertaTokenizer(f.name , keep_accents=__a ) __lowercase : List[str] = pickle.dumps(__a ) pickle.loads(__a ) def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" if not self.test_rust_tokenizer: return __lowercase : Any = self.get_tokenizer() __lowercase : str = self.get_rust_tokenizer() __lowercase : int = """I was born in 92000, and this is falsé.""" __lowercase : Dict = tokenizer.tokenize(__a ) __lowercase : Optional[int] = rust_tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) __lowercase : Optional[Any] = tokenizer.encode(__a , add_special_tokens=__a ) __lowercase : Tuple = rust_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) __lowercase : int = self.get_rust_tokenizer() __lowercase : Optional[Any] = tokenizer.encode(__a ) __lowercase : Any = rust_tokenizer.encode(__a ) self.assertListEqual(__a , __a ) @slow def lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = """Hello World!""" __lowercase : Optional[Any] = [0, 35378, 6661, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(__a , self.big_tokenizer.encode(__a ) ) @slow def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase : Any = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) __lowercase : str = [ 0, 3293, 83, 10, 4552, 4989, 7986, 678, 10, 5915, 111, 179459, 124850, 4, 6044, 237, 12, 6, 5, 6, 4, 6780, 705, 15, 1388, 44, 378, 10114, 711, 152, 20, 6, 5, 22376, 642, 1221, 15190, 34153, 450, 5608, 959, 1119, 57702, 136, 186, 47, 1098, 29367, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6044, 237, 6284, 50901, 528, 31, 90, 34, 927, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(__a , self.big_tokenizer.encode(__a ) ) @slow def lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" __lowercase : int = {"""input_ids""": [[0, 11062, 82772, 7, 15, 82772, 538, 51529, 237, 17198, 1290, 206, 9, 215175, 1314, 136, 17198, 1290, 206, 9, 56359, 42, 122009, 9, 16466, 16, 87344, 4537, 9, 4717, 78381, 6, 159958, 7, 15, 24480, 618, 4, 527, 22693, 5428, 4, 2777, 24480, 9874, 4, 43523, 594, 4, 803, 18392, 33189, 18, 4, 43523, 24447, 12399, 100, 24955, 83658, 9626, 144057, 15, 839, 22335, 16, 136, 24955, 83658, 83479, 15, 39102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 122009, 115774, 23, 805, 1328, 46876, 7, 136, 53894, 1940, 42227, 41159, 17721, 823, 425, 4, 27512, 98722, 206, 136, 5531, 4970, 919, 17336, 5, 2], [0, 20080, 618, 83, 82775, 47, 479, 9, 1517, 73, 53894, 333, 80581, 110117, 18811, 5256, 1295, 51, 152526, 297, 7986, 390, 124416, 538, 35431, 214, 98, 15044, 25737, 136, 7108, 43701, 23, 756, 135355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 581, 63773, 119455, 6, 147797, 88203, 7, 645, 70, 21, 3285, 10269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__a , model_name="""xlm-roberta-base""" , revision="""d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3""" , )
306
def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : Optional[Any] = len(lowerCAmelCase_ ) __lowercase : str = len(lowerCAmelCase_ ) __lowercase : Optional[int] = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] __lowercase : Tuple = True for i in range(lowerCAmelCase_ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: __lowercase : Optional[Any] = True if a[i].islower(): __lowercase : Dict = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
306
1
import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __init__(self : Tuple , a__ : int , a__ : Any=7 , a__ : Any=3 , a__ : Union[str, Any]=18 , a__ : str=30 , a__ : Optional[int]=400 , a__ : Any=True , a__ : Tuple=None , a__ : str=True , a__ : str=[0.5, 0.5, 0.5] , a__ : Any=[0.5, 0.5, 0.5] , ): """simple docstring""" __snake_case = size if size is not None else {'''height''': 18, '''width''': 18} __snake_case = parent __snake_case = batch_size __snake_case = num_channels __snake_case = image_size __snake_case = min_resolution __snake_case = max_resolution __snake_case = do_resize __snake_case = size __snake_case = do_normalize __snake_case = image_mean __snake_case = image_std def a (self : str ): """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , unittest.TestCase ): A_ : List[str] = DPTImageProcessor if is_vision_available() else None def a (self : Optional[int] ): """simple docstring""" __snake_case = DPTImageProcessingTester(self ) @property def a (self : int ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def a (self : Optional[Any] ): """simple docstring""" __snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a__ , '''image_mean''' ) ) self.assertTrue(hasattr(a__ , '''image_std''' ) ) self.assertTrue(hasattr(a__ , '''do_normalize''' ) ) self.assertTrue(hasattr(a__ , '''do_resize''' ) ) self.assertTrue(hasattr(a__ , '''size''' ) ) def a (self : Optional[int] ): """simple docstring""" __snake_case = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) __snake_case = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def a (self : Tuple ): """simple docstring""" __snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ ) for image in image_inputs: self.assertIsInstance(a__ , Image.Image ) # Test not batched input __snake_case = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __snake_case = image_processing(a__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def a (self : Any ): """simple docstring""" __snake_case = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ , numpify=a__ ) for image in image_inputs: self.assertIsInstance(a__ , np.ndarray ) # Test not batched input __snake_case = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __snake_case = image_processing(a__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def a (self : str ): """simple docstring""" __snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ , torchify=a__ ) for image in image_inputs: self.assertIsInstance(a__ , torch.Tensor ) # Test not batched input __snake_case = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __snake_case = image_processing(a__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
24
'''simple docstring''' import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = """MCTCTFeatureExtractor""" lowerCamelCase__ = """AutoTokenizer""" def __init__( self : Dict , __snake_case : Optional[int] , __snake_case : List[str] ) -> str: super().__init__(__snake_case , __snake_case ) UpperCAmelCase : List[Any] = self.feature_extractor UpperCAmelCase : Union[str, Any] = False def __call__( self : Any , *__snake_case : List[str] , **__snake_case : Any ) -> List[Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__snake_case , **__snake_case ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) UpperCAmelCase : int = kwargs.pop('''raw_speech''' ) else: UpperCAmelCase : Union[str, Any] = kwargs.pop('''audio''' , __snake_case ) UpperCAmelCase : Optional[Any] = kwargs.pop('''sampling_rate''' , __snake_case ) UpperCAmelCase : Dict = kwargs.pop('''text''' , __snake_case ) if len(__snake_case ) > 0: UpperCAmelCase : Any = args[0] UpperCAmelCase : Optional[int] = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: UpperCAmelCase : List[str] = self.feature_extractor(__snake_case , *__snake_case , sampling_rate=__snake_case , **__snake_case ) if text is not None: UpperCAmelCase : int = self.tokenizer(__snake_case , **__snake_case ) if text is None: return inputs elif audio is None: return encodings else: UpperCAmelCase : str = encodings['''input_ids'''] return inputs def A ( self : List[Any] , *__snake_case : List[Any] , **__snake_case : List[Any] ) -> str: return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def A ( self : List[Any] , *__snake_case : int , **__snake_case : Optional[int] ) -> Any: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*__snake_case , **__snake_case ) UpperCAmelCase : List[Any] = kwargs.pop('''input_features''' , __snake_case ) UpperCAmelCase : Optional[Any] = kwargs.pop('''labels''' , __snake_case ) if len(__snake_case ) > 0: UpperCAmelCase : List[str] = args[0] UpperCAmelCase : List[Any] = args[1:] if input_features is not None: UpperCAmelCase : Tuple = self.feature_extractor.pad(__snake_case , *__snake_case , **__snake_case ) if labels is not None: UpperCAmelCase : Optional[int] = self.tokenizer.pad(__snake_case , **__snake_case ) if labels is None: return input_features elif input_features is None: return labels else: UpperCAmelCase : List[str] = labels['''input_ids'''] return input_features def A ( self : Union[str, Any] , *__snake_case : Optional[Any] , **__snake_case : Optional[int] ) -> Optional[Any]: return self.tokenizer.decode(*__snake_case , **__snake_case ) @contextmanager def A ( self : Any ) -> Optional[int]: warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) UpperCAmelCase : Dict = True UpperCAmelCase : List[Any] = self.tokenizer yield UpperCAmelCase : Tuple = self.feature_extractor UpperCAmelCase : List[Any] = False
23
0
'''simple docstring''' lowerCAmelCase__ = '''ABCDEFGHIJKLMNOPQRSTUVWXYZ''' def _A ( ): """simple docstring""" __lowercase = input('''Enter message: ''' ) __lowercase = input('''Enter key [alphanumeric]: ''' ) __lowercase = input('''Encrypt/Decrypt [e/d]: ''' ) if mode.lower().startswith('''e''' ): __lowercase = '''encrypt''' __lowercase = encrypt_message(A__ , A__ ) elif mode.lower().startswith('''d''' ): __lowercase = '''decrypt''' __lowercase = decrypt_message(A__ , A__ ) print(F"\n{mode.title()}ed message:" ) print(A__ ) def _A ( A__ , A__ ): """simple docstring""" return translate_message(A__ , A__ , '''encrypt''' ) def _A ( A__ , A__ ): """simple docstring""" return translate_message(A__ , A__ , '''decrypt''' ) def _A ( A__ , A__ , A__ ): """simple docstring""" __lowercase = [] __lowercase = 0 __lowercase = key.upper() for symbol in message: __lowercase = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(A__ ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(A__ ): __lowercase = 0 else: translated.append(A__ ) return "".join(A__ ) if __name__ == "__main__": main()
52
'''simple docstring''' def _A ( A__ = 1000 ): """simple docstring""" __lowercase , __lowercase = 1, 1 __lowercase = 2 while True: __lowercase = 0 __lowercase = fa + fa __lowercase , __lowercase = fa, f index += 1 for _ in str(A__ ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
52
1
'''simple docstring''' import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class __UpperCamelCase ( lowerCAmelCase_ ): def __UpperCAmelCase ( self ): '''simple docstring''' __a : Tuple = pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type , pa.intaa() ) def __UpperCAmelCase ( self ): '''simple docstring''' with self.assertRaises(__a ): __a : Any = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() ) def __UpperCAmelCase ( self ): '''simple docstring''' with self.assertRaises(__a ): __a : Optional[Any] = pa.array(TypedSequence([1, 2, 3] , try_type=Value('bool' ) , type=Value('int64' ) ) ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Union[str, Any] = pa.array(TypedSequence([1, 2, 3] , type=Value('int32' ) ) ) self.assertEqual(arr.type , pa.intaa() ) def __UpperCAmelCase ( self ): '''simple docstring''' with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): __a : Union[str, Any] = pa.array(TypedSequence(['foo', 'bar'] , type=Value('int64' ) ) ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[Any] = pa.array(TypedSequence([1, 2, 3] , try_type=Value('int32' ) ) ) self.assertEqual(arr.type , pa.intaa() ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[str] = pa.array(TypedSequence(['foo', 'bar'] , try_type=Value('int64' ) ) ) self.assertEqual(arr.type , pa.string() ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Tuple = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , 'int64' ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , 'int64' ) ) def __UpperCAmelCase ( self ): '''simple docstring''' with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): __a : Any = pa.array(TypedSequence(['foo', 'bar'] , type=ArrayaD((1, 3) , 'int64' ) ) ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : str = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , 'int64' ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , 'int64' ) ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[str] = pa.array(TypedSequence(['foo', 'bar'] , try_type=ArrayaD((1, 3) , 'int64' ) ) ) self.assertEqual(arr.type , pa.string() ) @require_pil def __UpperCAmelCase ( self ): '''simple docstring''' import PIL.Image __a : Union[str, Any] = PIL.Image.fromarray(np.arange(10 , dtype=np.uinta ).reshape(2 , 5 ) ) with patch( 'datasets.arrow_writer.cast_to_python_objects' , side_effect=__a ) as mock_cast_to_python_objects: __a : Union[str, Any] = pa.array(TypedSequence([{'path': None, 'bytes': b'image_bytes'}, pil_image] , type=Image() ) ) __a , __a : Optional[Any] = mock_cast_to_python_objects.call_args_list[-1] self.assertIn('optimize_list_casting' , __a ) self.assertFalse(kwargs['optimize_list_casting'] ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : int ): __a : str = pa.BufferReader(_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , pa.Buffer ) else pa.memory_map(_SCREAMING_SNAKE_CASE ) __a : Dict = pa.ipc.open_stream(_SCREAMING_SNAKE_CASE ) __a : pa.Table = f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] ) @pytest.mark.parametrize( 'fields' , [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Optional[Any] ): __a : str = pa.BufferOutputStream() __a : Any = pa.schema(_SCREAMING_SNAKE_CASE ) if fields else None with ArrowWriter(stream=_SCREAMING_SNAKE_CASE , schema=_SCREAMING_SNAKE_CASE , writer_batch_size=_SCREAMING_SNAKE_CASE ) as writer: writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) __a , __a : Dict = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: __a : List[Any] = {'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(_SCREAMING_SNAKE_CASE , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def lowerCamelCase (): __a : int = pa.BufferOutputStream() __a : Optional[int] = Features({'labels': ClassLabel(names=['neg', 'pos'] )} ) with ArrowWriter(stream=_SCREAMING_SNAKE_CASE , features=_SCREAMING_SNAKE_CASE ) as writer: writer.write({'labels': 0} ) writer.write({'labels': 1} ) __a , __a : List[Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata __a : int = pa.BufferReader(output.getvalue() ) __a : Tuple = pa.ipc.open_stream(_SCREAMING_SNAKE_CASE ) __a : pa.Table = f.read_all() __a : Optional[int] = pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(_SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Any ): __a : int = pa.BufferOutputStream() with ArrowWriter( stream=_SCREAMING_SNAKE_CASE , writer_batch_size=_SCREAMING_SNAKE_CASE , hash_salt='split_name' , check_duplicates=_SCREAMING_SNAKE_CASE , ) as writer: with pytest.raises(_SCREAMING_SNAKE_CASE ): writer.write({'col_1': 'foo', 'col_2': 1} , key=[1, 2] ) __a , __a : Optional[Any] = writer.finalize() @pytest.mark.parametrize('writer_batch_size' , [None, 2, 10] ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[Any] ): __a : Tuple = pa.BufferOutputStream() with ArrowWriter( stream=_SCREAMING_SNAKE_CASE , writer_batch_size=_SCREAMING_SNAKE_CASE , hash_salt='split_name' , check_duplicates=_SCREAMING_SNAKE_CASE , ) as writer: with pytest.raises(_SCREAMING_SNAKE_CASE ): writer.write({'col_1': 'foo', 'col_2': 1} , key=10 ) writer.write({'col_1': 'bar', 'col_2': 2} , key=10 ) __a , __a : Optional[Any] = writer.finalize() @pytest.mark.parametrize('writer_batch_size' , [None, 2, 10] ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : List[str] ): __a : List[str] = pa.BufferOutputStream() with ArrowWriter( stream=_SCREAMING_SNAKE_CASE , writer_batch_size=_SCREAMING_SNAKE_CASE , hash_salt='split_name' , check_duplicates=_SCREAMING_SNAKE_CASE , ) as writer: writer.write({'col_1': 'foo', 'col_2': 1} , key=1 ) writer.write({'col_1': 'bar', 'col_2': 2} , key=2 ) __a , __a : Optional[int] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] ) @pytest.mark.parametrize( 'fields' , [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Dict ): __a : Optional[int] = pa.BufferOutputStream() __a : int = pa.schema(_SCREAMING_SNAKE_CASE ) if fields else None with ArrowWriter(stream=_SCREAMING_SNAKE_CASE , schema=_SCREAMING_SNAKE_CASE , writer_batch_size=_SCREAMING_SNAKE_CASE ) as writer: writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) writer.write_batch({'col_1': [], 'col_2': []} ) __a , __a : Dict = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: __a : str = {'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(_SCREAMING_SNAKE_CASE , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] ) @pytest.mark.parametrize( 'fields' , [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[Any] ): __a : Tuple = pa.BufferOutputStream() __a : str = pa.schema(_SCREAMING_SNAKE_CASE ) if fields else None with ArrowWriter(stream=_SCREAMING_SNAKE_CASE , schema=_SCREAMING_SNAKE_CASE , writer_batch_size=_SCREAMING_SNAKE_CASE ) as writer: writer.write_table(pa.Table.from_pydict({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) ) __a , __a : str = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: __a : List[str] = {'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(_SCREAMING_SNAKE_CASE , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] ) @pytest.mark.parametrize( 'fields' , [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[str] ): __a : List[Any] = pa.BufferOutputStream() __a : List[Any] = pa.schema(_SCREAMING_SNAKE_CASE ) if fields else None with ArrowWriter(stream=_SCREAMING_SNAKE_CASE , schema=_SCREAMING_SNAKE_CASE , writer_batch_size=_SCREAMING_SNAKE_CASE ) as writer: writer.write_row(pa.Table.from_pydict({'col_1': ['foo'], 'col_2': [1]} ) ) writer.write_row(pa.Table.from_pydict({'col_1': ['bar'], 'col_2': [2]} ) ) __a , __a : str = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: __a : List[Any] = {'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(_SCREAMING_SNAKE_CASE , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def lowerCamelCase (): with tempfile.TemporaryDirectory() as tmp_dir: __a : List[Any] = {'col_1': pa.string(), 'col_2': pa.intaa()} __a : Optional[int] = os.path.join(_SCREAMING_SNAKE_CASE , 'test.arrow' ) with ArrowWriter(path=_SCREAMING_SNAKE_CASE , schema=pa.schema(_SCREAMING_SNAKE_CASE ) ) as writer: writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) __a , __a : List[Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(_SCREAMING_SNAKE_CASE , metadata=writer._schema.metadata ) _check_output(_SCREAMING_SNAKE_CASE , 1 ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : int ): if pa.types.is_list(_SCREAMING_SNAKE_CASE ): return get_base_dtype(arr_type.value_type ) else: return arr_type def lowerCamelCase (_SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : int ): if isinstance(lst[0] , _SCREAMING_SNAKE_CASE ): change_first_primitive_element_in_list(lst[0] , _SCREAMING_SNAKE_CASE ) else: __a : List[str] = value @pytest.mark.parametrize('optimized_int_type, expected_dtype' , [(None, pa.intaa()), (Value('int32' ), pa.intaa())] ) @pytest.mark.parametrize('sequence' , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Union[str, Any] ): __a : Optional[Any] = pa.array(TypedSequence(_SCREAMING_SNAKE_CASE , optimized_int_type=_SCREAMING_SNAKE_CASE ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( 'col, expected_dtype' , [ ('attention_mask', pa.inta()), ('special_tokens_mask', pa.inta()), ('token_type_ids', pa.inta()), ('input_ids', pa.intaa()), ('other', pa.intaa()), ] , ) @pytest.mark.parametrize('sequence' , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[Any] ): # in range __a : Any = pa.array(OptimizedTypedSequence(_SCREAMING_SNAKE_CASE , col=_SCREAMING_SNAKE_CASE ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications __a : Optional[Any] = copy.deepcopy(_SCREAMING_SNAKE_CASE ) __a : List[str] = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __a : Dict = pa.array(OptimizedTypedSequence(_SCREAMING_SNAKE_CASE , col=_SCREAMING_SNAKE_CASE ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize('raise_exception' , [False, True] ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] ): __a : Union[str, Any] = str(tmp_path / 'dataset-train.arrow' ) try: with ArrowWriter(path=_SCREAMING_SNAKE_CASE ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[Any] ): __a : Optional[Any] = 'mock://dataset-train.arrow' with ArrowWriter(path=_SCREAMING_SNAKE_CASE , storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs , type(_SCREAMING_SNAKE_CASE ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) __a , __a : Dict = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(_SCREAMING_SNAKE_CASE ) def lowerCamelCase (): __a : List[Any] = pa.BufferOutputStream() with ParquetWriter(stream=_SCREAMING_SNAKE_CASE ) as writer: writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) __a , __a : int = writer.finalize() assert num_examples == 2 assert num_bytes > 0 __a : Optional[Any] = pa.BufferReader(output.getvalue() ) __a : pa.Table = pq.read_table(_SCREAMING_SNAKE_CASE ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize('embed_local_files' , [False, True] ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str ): import PIL.Image __a : List[Any] = str(tmp_path / 'test_image_rgb.jpg' ) PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta ) ).save(_SCREAMING_SNAKE_CASE , format='png' ) __a : Union[str, Any] = pa.BufferOutputStream() with ParquetWriter( stream=_SCREAMING_SNAKE_CASE , features=Features({'image': Image()} ) , embed_local_files=_SCREAMING_SNAKE_CASE ) as writer: writer.write({'image': image_path} ) writer.finalize() __a : Any = pa.BufferReader(output.getvalue() ) __a : pa.Table = pq.read_table(_SCREAMING_SNAKE_CASE ) __a : Union[str, Any] = pa_table.to_pydict() if embed_local_files: assert isinstance(out['image'][0]['path'] , _SCREAMING_SNAKE_CASE ) with open(_SCREAMING_SNAKE_CASE , 'rb' ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def lowerCamelCase (): __a : Tuple = pa.schema([pa.field('col_1' , pa.string() , nullable=_SCREAMING_SNAKE_CASE )] ) __a : str = pa.BufferOutputStream() with ArrowWriter(stream=_SCREAMING_SNAKE_CASE ) as writer: writer._build_writer(inferred_schema=_SCREAMING_SNAKE_CASE ) assert writer._schema == pa.schema([pa.field('col_1' , pa.string() )] )
27
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( "The `inpainting.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionInpaintPipeline` instead." )
342
0
"""simple docstring""" # HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers snake_case__ : Tuple = float('''nan''') class snake_case_: def __init__( self : Optional[Any] , UpperCamelCase_ : Dict ): lowerCAmelCase : Union[str, Any] = sys.stdout lowerCAmelCase : List[Any] = open(UpperCamelCase_ , '''a''' ) def __getattr__( self : Any , UpperCamelCase_ : Optional[int] ): return getattr(self.stdout , UpperCamelCase_ ) def lowerCamelCase__ ( self : int , UpperCamelCase_ : Dict ): self.stdout.write(UpperCamelCase_ ) # strip tqdm codes self.file.write(re.sub(r'''^.*\r''' , '''''' , UpperCamelCase_ , 0 , re.M ) ) def _snake_case ( _snake_case : List[Any]=80 , _snake_case : List[Any]=False ): lowerCAmelCase : Union[str, Any] = [] # deal with critical env vars lowerCAmelCase : Union[str, Any] = ['''CUDA_VISIBLE_DEVICES'''] for key in env_keys: lowerCAmelCase : int = os.environ.get(_snake_case , _snake_case ) if val is not None: cmd.append(f'''{key}={val}''' ) # python executable (not always needed if the script is executable) lowerCAmelCase : Optional[Any] = sys.executable if full_python_path else sys.executable.split('''/''' )[-1] cmd.append(_snake_case ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes lowerCAmelCase : str = [] lowerCAmelCase : Any = '''''' while len(_snake_case ) > 0: current_line += f'''{cmd.pop(0 )} ''' if len(_snake_case ) == 0 or len(_snake_case ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(_snake_case ) lowerCAmelCase : str = '''''' return "\\\n".join(_snake_case ) def _snake_case ( _snake_case : Tuple , _snake_case : Any ): # unwrap multi-line input lowerCAmelCase : List[Any] = re.sub(r'''[\\\n]+''' , ''' ''' , args.base_cmd ) # remove --output_dir if any and set our own lowerCAmelCase : Tuple = re.sub('''--output_dir\s+[^\s]+''' , '''''' , args.base_cmd ) args.base_cmd += f''' --output_dir {output_dir}''' # ensure we have --overwrite_output_dir lowerCAmelCase : List[str] = re.sub('''--overwrite_output_dir\s+''' , '''''' , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def _snake_case ( _snake_case : Optional[Any] , _snake_case : List[str] , _snake_case : Optional[Any] , _snake_case : Any , _snake_case : Tuple , _snake_case : List[Any] , _snake_case : List[Any] ): # Enable to debug everything but the run itself, to do it fast and see the progress. # This is useful for debugging the output formatting quickly - we can remove it later once # everybody is happy with the output if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 100 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6666, 222.22222222] )} , ) lowerCAmelCase : str = subprocess.run(_snake_case , capture_output=_snake_case , text=_snake_case ) if verbose: print('''STDOUT''' , result.stdout ) print('''STDERR''' , result.stderr ) # save the streams lowerCAmelCase : Optional[int] = variation.replace(''' ''' , '''-''' ) with open(Path(_snake_case ) / f'''log.{prefix}.stdout.txt''' , '''w''' ) as f: f.write(result.stdout ) with open(Path(_snake_case ) / f'''log.{prefix}.stderr.txt''' , '''w''' ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print('''failed''' ) return {target_metric_key: nan} with io.open(f'''{output_dir}/all_results.json''' , '''r''' , encoding='''utf-8''' ) as f: lowerCAmelCase : Union[str, Any] = json.load(_snake_case ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def _snake_case ( _snake_case : Optional[int] , _snake_case : Union[str, Any] , _snake_case : str , _snake_case : Optional[int] , _snake_case : Any , _snake_case : Union[str, Any] , _snake_case : List[str] , _snake_case : Optional[Any] , _snake_case : str , _snake_case : Any , ): lowerCAmelCase : int = [] lowerCAmelCase : Tuple = [] lowerCAmelCase : List[Any] = f'''{id}: {variation:<{longest_variation_len}}''' lowerCAmelCase : Union[str, Any] = f'''{preamble}: ''' lowerCAmelCase : str = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(_snake_case ) , desc=_snake_case , leave=_snake_case ): lowerCAmelCase : Dict = process_run_single( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) lowerCAmelCase : Any = single_run_metrics[target_metric_key] if not math.isnan(_snake_case ): metrics.append(_snake_case ) results.append(_snake_case ) outcome += "✓" else: outcome += "✘" lowerCAmelCase : str = f'''\33[2K\r{outcome}''' if len(_snake_case ) > 0: lowerCAmelCase : List[Any] = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} lowerCAmelCase : str = round(mean_metrics[target_metric_key] , 2 ) lowerCAmelCase : Dict = f'''{outcome} {mean_target}''' if len(_snake_case ) > 1: results_str += f''' {tuple(round(_snake_case , 2 ) for x in results )}''' print(_snake_case ) lowerCAmelCase : Any = variation return mean_metrics else: print(_snake_case ) return {variation_key: variation, target_metric_key: nan} def _snake_case ( ): lowerCAmelCase : int = torch.cuda.get_device_properties(torch.device('''cuda''' ) ) return f''' Datetime : {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" )} Software: transformers: {transformers.__version__} torch : {torch.__version__} cuda : {torch.version.cuda} python : {platform.python_version()} Hardware: {torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB ''' def _snake_case ( _snake_case : Union[str, Any] , _snake_case : Union[str, Any] , _snake_case : Tuple , _snake_case : Union[str, Any] , _snake_case : int ): lowerCAmelCase : Tuple = pd.DataFrame(_snake_case ) lowerCAmelCase : Tuple = '''variation''' lowerCAmelCase : str = '''diff_%''' lowerCAmelCase : List[str] = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan lowerCAmelCase : Any = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(_snake_case ): # as a fallback, use the minimal value as the sentinel lowerCAmelCase : List[Any] = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(_snake_case ): lowerCAmelCase : Dict = df.apply( lambda _snake_case : round(100 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis='''columns''' , ) # re-order columns lowerCAmelCase : Tuple = [variation_key, target_metric_key, diff_key, *report_metric_keys] lowerCAmelCase : int = df.reindex(_snake_case , axis='''columns''' ) # reorder cols # capitalize lowerCAmelCase : Tuple = df.rename(str.capitalize , axis='''columns''' ) # make the cols as narrow as possible lowerCAmelCase : str = df.rename(lambda _snake_case : c.replace('''_''' , '''<br>''' ) , axis='''columns''' ) lowerCAmelCase : List[str] = df.rename(lambda _snake_case : c.replace('''_''' , '''\n''' ) , axis='''columns''' ) lowerCAmelCase : Tuple = ['''''', '''Copy between the cut-here-lines and paste as is to github or a forum'''] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=_snake_case , floatfmt='''.2f''' )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=_snake_case , floatfmt='''.2f''' )] print('''\n\n'''.join(_snake_case ) ) def _snake_case ( ): lowerCAmelCase : str = argparse.ArgumentParser() parser.add_argument( '''--base-cmd''' , default=_snake_case , type=_snake_case , required=_snake_case , help='''Base cmd''' , ) parser.add_argument( '''--variations''' , default=_snake_case , type=_snake_case , nargs='''+''' , required=_snake_case , help='''Multi-dimensional variations, example: \'|--fp16|--bf16\' \'|--tf32\'''' , ) parser.add_argument( '''--base-variation''' , default=_snake_case , type=_snake_case , help='''Baseline variation to compare to. if None the minimal target value will be used to compare against''' , ) parser.add_argument( '''--target-metric-key''' , default=_snake_case , type=_snake_case , required=_snake_case , help='''Target metric key in output_dir/all_results.json, e.g., train_samples_per_second''' , ) parser.add_argument( '''--report-metric-keys''' , default='''''' , type=_snake_case , help='''Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., \'train_loss train_samples''' , ) parser.add_argument( '''--repeat-times''' , default=1 , type=_snake_case , help='''How many times to re-run each variation - an average will be reported''' , ) parser.add_argument( '''--output_dir''' , default='''output_benchmark''' , type=_snake_case , help='''The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked''' , ) parser.add_argument( '''--verbose''' , default=_snake_case , action='''store_true''' , help='''Whether to show the outputs of each run or just the benchmark progress''' , ) lowerCAmelCase : Dict = parser.parse_args() lowerCAmelCase : str = args.output_dir Path(_snake_case ).mkdir(exist_ok=_snake_case ) lowerCAmelCase : Tuple = get_base_command(_snake_case , _snake_case ) # split each dimension into its --foo variations lowerCAmelCase : List[Any] = [list(map(str.strip , re.split(r'''\|''' , _snake_case ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty lowerCAmelCase : Optional[Any] = list(map(str.strip , map(''' '''.join , itertools.product(*_snake_case ) ) ) ) lowerCAmelCase : Any = max(len(_snake_case ) for x in variations ) # split wanted keys lowerCAmelCase : List[str] = args.report_metric_keys.split() # capture prints into a log file for convenience lowerCAmelCase : List[Any] = f'''benchmark-report-{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S" )}.txt''' print(f'''\nNote: each run\'s output is also logged under {output_dir}/log.*.std*.txt''' ) print(f'''and this script\'s output is also piped into {report_fn}''' ) lowerCAmelCase : Optional[Any] = Tee(_snake_case ) print(f'''\n*** Running {len(_snake_case )} benchmarks:''' ) print(f'''Base command: {" ".join(_snake_case )}''' ) lowerCAmelCase : str = '''variation''' lowerCAmelCase : str = [] for id, variation in enumerate(tqdm(_snake_case , desc='''Total completion: ''' , leave=_snake_case ) ): lowerCAmelCase : str = base_cmd + variation.split() results.append( process_run( id + 1 , _snake_case , _snake_case , _snake_case , _snake_case , args.target_metric_key , _snake_case , args.repeat_times , _snake_case , args.verbose , ) ) process_results(_snake_case , args.target_metric_key , _snake_case , args.base_variation , _snake_case ) if __name__ == "__main__": main()
314
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def _snake_case ( _snake_case : Dict ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4e00 and cp <= 0X9fff) or (cp >= 0X3400 and cp <= 0X4dbf) # or (cp >= 0X2_0000 and cp <= 0X2_a6df) # or (cp >= 0X2_a700 and cp <= 0X2_b73f) # or (cp >= 0X2_b740 and cp <= 0X2_b81f) # or (cp >= 0X2_b820 and cp <= 0X2_ceaf) # or (cp >= 0Xf900 and cp <= 0Xfaff) or (cp >= 0X2_f800 and cp <= 0X2_fa1f) # ): # return True return False def _snake_case ( _snake_case : str ): # word like '180' or '身高' or '神' for char in word: lowerCAmelCase : str = ord(_snake_case ) if not _is_chinese_char(_snake_case ): return 0 return 1 def _snake_case ( _snake_case : List[str] ): lowerCAmelCase : List[Any] = set() for token in tokens: lowerCAmelCase : Union[str, Any] = len(_snake_case ) > 1 and is_chinese(_snake_case ) if chinese_word: word_set.add(_snake_case ) lowerCAmelCase : List[str] = list(_snake_case ) return word_list def _snake_case ( _snake_case : List[str] , _snake_case : set() ): if not chinese_word_set: return bert_tokens lowerCAmelCase : List[Any] = max([len(_snake_case ) for w in chinese_word_set] ) lowerCAmelCase : Optional[Any] = bert_tokens lowerCAmelCase, lowerCAmelCase : Any = 0, len(_snake_case ) while start < end: lowerCAmelCase : str = True if is_chinese(bert_word[start] ): lowerCAmelCase : List[Any] = min(end - start , _snake_case ) for i in range(_snake_case , 1 , -1 ): lowerCAmelCase : str = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): lowerCAmelCase : Optional[Any] = '''##''' + bert_word[j] lowerCAmelCase : Union[str, Any] = start + i lowerCAmelCase : Optional[Any] = False break if single_word: start += 1 return bert_word def _snake_case ( _snake_case : List[str] , _snake_case : LTP , _snake_case : BertTokenizer ): lowerCAmelCase : Optional[int] = [] for i in range(0 , len(_snake_case ) , 100 ): lowerCAmelCase : Optional[int] = ltp_tokenizer.seg(lines[i : i + 100] )[0] lowerCAmelCase : Union[str, Any] = [get_chinese_word(_snake_case ) for r in res] ltp_res.extend(_snake_case ) assert len(_snake_case ) == len(_snake_case ) lowerCAmelCase : int = [] for i in range(0 , len(_snake_case ) , 100 ): lowerCAmelCase : Optional[Any] = bert_tokenizer(lines[i : i + 100] , add_special_tokens=_snake_case , truncation=_snake_case , max_length=512 ) bert_res.extend(res['''input_ids'''] ) assert len(_snake_case ) == len(_snake_case ) lowerCAmelCase : Union[str, Any] = [] for input_ids, chinese_word in zip(_snake_case , _snake_case ): lowerCAmelCase : Optional[int] = [] for id in input_ids: lowerCAmelCase : Union[str, Any] = bert_tokenizer._convert_id_to_token(_snake_case ) input_tokens.append(_snake_case ) lowerCAmelCase : Any = add_sub_symbol(_snake_case , _snake_case ) lowerCAmelCase : Union[str, Any] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_snake_case ): if token[:2] == "##": lowerCAmelCase : Any = token[2:] # save chinese tokens' pos if len(_snake_case ) == 1 and _is_chinese_char(ord(_snake_case ) ): ref_id.append(_snake_case ) ref_ids.append(_snake_case ) assert len(_snake_case ) == len(_snake_case ) return ref_ids def _snake_case ( _snake_case : Dict ): # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f: lowerCAmelCase : List[str] = f.readlines() lowerCAmelCase : Union[str, Any] = [line.strip() for line in data if len(_snake_case ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' lowerCAmelCase : List[str] = LTP(args.ltp ) # faster in GPU device lowerCAmelCase : Any = BertTokenizer.from_pretrained(args.bert ) lowerCAmelCase : int = prepare_ref(_snake_case , _snake_case , _snake_case ) with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f: lowerCAmelCase : List[Any] = [json.dumps(_snake_case ) + '''\n''' for ref in ref_ids] f.writelines(_snake_case ) if __name__ == "__main__": snake_case__ : Optional[int] = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''' ) parser.add_argument('''--bert''', type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''') parser.add_argument('''--save_path''', type=str, default='''./resources/ref.txt''', help='''path to save res''') snake_case__ : int = parser.parse_args() main(args)
314
1
'''simple docstring''' def snake_case_ (_a : float , _a : float , _a : float , _a : float , _a : float , ): UpperCAmelCase = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError('''All input parameters must be positive''' ) if any(p > 1 for p in parameters[1:4] ): raise ValueError('''Relative densities cannot be greater than one''' ) else: UpperCAmelCase = 1 - (matter_density + radiation_density + dark_energy) UpperCAmelCase = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) UpperCAmelCase = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation A =0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
34
'''simple docstring''' from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal A =logging.get_logger(__name__) A =TypeVar('DatasetType', Dataset, IterableDataset) def snake_case_ (_a : List[DatasetType] , _a : Optional[List[float]] = None , _a : Optional[int] = None , _a : Optional[DatasetInfo] = None , _a : Optional[NamedSplit] = None , _a : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ): from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('''Unable to interleave an empty list of datasets.''' ) for i, dataset in enumerate(_a ): if not isinstance(_a , (Dataset, IterableDataset) ): if isinstance(_a , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " '''is an empty dataset dictionary.''' ) raise ValueError( F"Dataset at position {i} has at least one split: {list(_a )}\n" F"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(_a ) )}']" ) raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_a ).__name__}." ) if i == 0: UpperCAmelCase , UpperCAmelCase = ( (Dataset, IterableDataset) if isinstance(_a , _a ) else (IterableDataset, Dataset) ) elif not isinstance(_a , _a ): raise ValueError( F"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F"{stopping_strategy} is not supported. Please enter a valid stopping_strategy." ) if dataset_type is Dataset: return _interleave_map_style_datasets( _a , _a , _a , info=_a , split=_a , stopping_strategy=_a ) else: return _interleave_iterable_datasets( _a , _a , _a , info=_a , split=_a , stopping_strategy=_a ) def snake_case_ (_a : List[DatasetType] , _a : Optional[DatasetInfo] = None , _a : Optional[NamedSplit] = None , _a : int = 0 , ): if not dsets: raise ValueError('''Unable to concatenate an empty list of datasets.''' ) for i, dataset in enumerate(_a ): if not isinstance(_a , (Dataset, IterableDataset) ): if isinstance(_a , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " '''is an empty dataset dictionary.''' ) raise ValueError( F"Dataset at position {i} has at least one split: {list(_a )}\n" F"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(_a ) )}']" ) raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_a ).__name__}." ) if i == 0: UpperCAmelCase , UpperCAmelCase = ( (Dataset, IterableDataset) if isinstance(_a , _a ) else (IterableDataset, Dataset) ) elif not isinstance(_a , _a ): raise ValueError( F"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if dataset_type is Dataset: return _concatenate_map_style_datasets(_a , info=_a , split=_a , axis=_a ) else: return _concatenate_iterable_datasets(_a , info=_a , split=_a , axis=_a )
34
1
from __future__ import annotations class lowerCamelCase : """simple docstring""" def __init__( self : Tuple, _UpperCAmelCase : int = 0 ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = key def A_ ( self : List[Any], _UpperCAmelCase : str, _UpperCAmelCase : int ) -> list[str]: """simple docstring""" assert isinstance(_UpperCAmelCase, _UpperCAmelCase ) and isinstance(_UpperCAmelCase, _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : int = key or self.__key or 1 # make sure key is an appropriate size key %= 2_5_5 return [chr(ord(_UpperCAmelCase ) ^ key ) for ch in content] def A_ ( self : Optional[Any], _UpperCAmelCase : str, _UpperCAmelCase : int ) -> list[str]: """simple docstring""" assert isinstance(_UpperCAmelCase, _UpperCAmelCase ) and isinstance(_UpperCAmelCase, _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Any = key or self.__key or 1 # make sure key is an appropriate size key %= 2_5_5 return [chr(ord(_UpperCAmelCase ) ^ key ) for ch in content] def A_ ( self : Union[str, Any], _UpperCAmelCase : str, _UpperCAmelCase : int = 0 ) -> str: """simple docstring""" assert isinstance(_UpperCAmelCase, _UpperCAmelCase ) and isinstance(_UpperCAmelCase, _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Tuple = key or self.__key or 1 # make sure key can be any size while key > 2_5_5: key -= 2_5_5 # This will be returned SCREAMING_SNAKE_CASE__ : List[Any] = "" for ch in content: ans += chr(ord(_UpperCAmelCase ) ^ key ) return ans def A_ ( self : Dict, _UpperCAmelCase : str, _UpperCAmelCase : int = 0 ) -> str: """simple docstring""" assert isinstance(_UpperCAmelCase, _UpperCAmelCase ) and isinstance(_UpperCAmelCase, _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[str] = key or self.__key or 1 # make sure key can be any size while key > 2_5_5: key -= 2_5_5 # This will be returned SCREAMING_SNAKE_CASE__ : Tuple = "" for ch in content: ans += chr(ord(_UpperCAmelCase ) ^ key ) return ans def A_ ( self : Tuple, _UpperCAmelCase : str, _UpperCAmelCase : int = 0 ) -> bool: """simple docstring""" assert isinstance(_UpperCAmelCase, _UpperCAmelCase ) and isinstance(_UpperCAmelCase, _UpperCAmelCase ) try: with open(_UpperCAmelCase ) as fin, open("encrypt.out", "w+" ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(_UpperCAmelCase, _UpperCAmelCase ) ) except OSError: return False return True def A_ ( self : Tuple, _UpperCAmelCase : str, _UpperCAmelCase : int ) -> bool: """simple docstring""" assert isinstance(_UpperCAmelCase, _UpperCAmelCase ) and isinstance(_UpperCAmelCase, _UpperCAmelCase ) try: with open(_UpperCAmelCase ) as fin, open("decrypt.out", "w+" ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(_UpperCAmelCase, _UpperCAmelCase ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
191
import qiskit def _a ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> qiskit.result.counts.Counts: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = qiskit.Aer.get_backend("aer_simulator" ) # Create a Quantum Circuit acting on the q register SCREAMING_SNAKE_CASE__ : List[Any] = qiskit.QuantumCircuit(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator SCREAMING_SNAKE_CASE__ : int = qiskit.execute(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , shots=10_00 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": _lowerCamelCase : List[str] = single_qubit_measure(2, 2) print(f"Total count for various states are: {counts}")
191
1
import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' __lowerCamelCase : str = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING __lowerCamelCase : Optional[int] = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ): A : List[str] = AudioClassificationPipeline(model=lowerCamelCase__, feature_extractor=lowerCamelCase__ ) # test with a raw waveform A : Any = np.zeros((3_4000,) ) A : Any = np.zeros((1_4000,) ) return audio_classifier, [audioa, audio] def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ ): A , A : List[Any] = examples A : Optional[Any] = audio_classifier(lowerCamelCase__ ) # by default a model is initialized with num_labels=2 self.assertEqual( lowerCamelCase__, [ {"""score""": ANY(lowerCamelCase__ ), """label""": ANY(lowerCamelCase__ )}, {"""score""": ANY(lowerCamelCase__ ), """label""": ANY(lowerCamelCase__ )}, ], ) A : Tuple = audio_classifier(lowerCamelCase__, top_k=1 ) self.assertEqual( lowerCamelCase__, [ {"""score""": ANY(lowerCamelCase__ ), """label""": ANY(lowerCamelCase__ )}, ], ) self.run_torchaudio(lowerCamelCase__ ) @require_torchaudio def _lowerCAmelCase ( self, lowerCamelCase__ ): import datasets # test with a local file A : List[Any] = datasets.load_dataset("""hf-internal-testing/librispeech_asr_dummy""", """clean""", split="""validation""" ) A : Optional[int] = dataset[0]["""audio"""]["""array"""] A : int = audio_classifier(lowerCamelCase__ ) self.assertEqual( lowerCamelCase__, [ {"""score""": ANY(lowerCamelCase__ ), """label""": ANY(lowerCamelCase__ )}, {"""score""": ANY(lowerCamelCase__ ), """label""": ANY(lowerCamelCase__ )}, ], ) @require_torch def _lowerCAmelCase ( self ): A : Optional[int] = """anton-l/wav2vec2-random-tiny-classifier""" A : str = pipeline("""audio-classification""", model=lowerCamelCase__ ) A : Any = np.ones((8000,) ) A : List[Any] = audio_classifier(lowerCamelCase__, top_k=4 ) A : int = [ {"""score""": 0.0842, """label""": """no"""}, {"""score""": 0.0838, """label""": """up"""}, {"""score""": 0.0837, """label""": """go"""}, {"""score""": 0.0834, """label""": """right"""}, ] A : Union[str, Any] = [ {"""score""": 0.0845, """label""": """stop"""}, {"""score""": 0.0844, """label""": """on"""}, {"""score""": 0.0841, """label""": """right"""}, {"""score""": 0.0834, """label""": """left"""}, ] self.assertIn(nested_simplify(lowerCamelCase__, decimals=4 ), [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) A : str = {"""array""": np.ones((8000,) ), """sampling_rate""": audio_classifier.feature_extractor.sampling_rate} A : str = audio_classifier(lowerCamelCase__, top_k=4 ) self.assertIn(nested_simplify(lowerCamelCase__, decimals=4 ), [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def _lowerCAmelCase ( self ): import datasets A : Tuple = """superb/wav2vec2-base-superb-ks""" A : Optional[int] = pipeline("""audio-classification""", model=lowerCamelCase__ ) A : Optional[Any] = datasets.load_dataset("""anton-l/superb_dummy""", """ks""", split="""test""" ) A : List[str] = np.array(dataset[3]["""speech"""], dtype=np.floataa ) A : List[str] = audio_classifier(lowerCamelCase__, top_k=4 ) self.assertEqual( nested_simplify(lowerCamelCase__, decimals=3 ), [ {"""score""": 0.981, """label""": """go"""}, {"""score""": 0.007, """label""": """up"""}, {"""score""": 0.006, """label""": """_unknown_"""}, {"""score""": 0.001, """label""": """down"""}, ], ) @require_tf @unittest.skip("""Audio classification is not implemented for TF""" ) def _lowerCAmelCase ( self ): pass
116
from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge SCREAMING_SNAKE_CASE_:Any = [ """Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of the""" """ final seconds on board Flight 9525. The Germanwings co-pilot says he had a \"previous episode of severe""" """ depression\" German airline confirms it knew of Andreas Lubitz's depression years before he took control.""", """The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal""" """ accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC's""" """ founding Rome Statute in January. Israel and the United States opposed the Palestinians' efforts to join the""" """ body.""", """Amnesty International releases its annual report on the death penalty. The report catalogs the use of""" """ state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the""" """ world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital""" """ punishment.""", ] SCREAMING_SNAKE_CASE_:Optional[int] = [ """Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports .""" """ Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz""" """ had informed his Lufthansa training school of an episode of severe depression, airline says .""", """Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .""" """ Israel and the United States opposed the move, which could open the door to war crimes investigations against""" """ Israelis .""", """Amnesty's annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to""" """ death . Organization claims that governments around the world are using the threat of terrorism to advance""" """ executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death""" """ sentences up by 28% .""", ] def __UpperCamelCase ( ) -> Optional[Any]: """simple docstring""" A : Tuple = calculate_rouge(_lowerCAmelCase , _lowerCAmelCase , bootstrap_aggregation=_lowerCAmelCase , rouge_keys=["""rouge2""", """rougeL"""] ) assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) A : Tuple = calculate_rouge(_lowerCAmelCase , _lowerCAmelCase , bootstrap_aggregation=_lowerCAmelCase , rouge_keys=["""rouge2"""] ) assert ( pd.DataFrame(no_aggregation["""rouge2"""] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra["""rouge2"""] ).fmeasure.mean() ) def __UpperCamelCase ( ) -> List[Any]: """simple docstring""" A : Dict = """rougeLsum""" A : str = calculate_rouge(_lowerCAmelCase , _lowerCAmelCase , newline_sep=_lowerCAmelCase , rouge_keys=[k] )[k] A : Tuple = calculate_rouge(_lowerCAmelCase , _lowerCAmelCase , newline_sep=_lowerCAmelCase , rouge_keys=[k] )[k] assert score > score_no_sep def __UpperCamelCase ( ) -> Tuple: """simple docstring""" A : Union[str, Any] = ["""rouge1""", """rouge2""", """rougeL"""] A : Dict = calculate_rouge(_lowerCAmelCase , _lowerCAmelCase , newline_sep=_lowerCAmelCase , rouge_keys=_lowerCAmelCase ) A : List[str] = calculate_rouge(_lowerCAmelCase , _lowerCAmelCase , newline_sep=_lowerCAmelCase , rouge_keys=_lowerCAmelCase ) assert score_sep == score_no_sep def __UpperCamelCase ( ) -> Optional[Any]: """simple docstring""" A : Optional[Any] = [ """Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.""", """Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports .""", ] A : Optional[Any] = [ """Margot Frank, died in 1945, a month earlier than previously thought.""", """Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of""" """ the final seconds on board Flight 9525.""", ] assert calculate_rouge(_lowerCAmelCase , _lowerCAmelCase , newline_sep=_lowerCAmelCase ) == calculate_rouge(_lowerCAmelCase , _lowerCAmelCase , newline_sep=_lowerCAmelCase ) def __UpperCamelCase ( ) -> List[Any]: """simple docstring""" A : Tuple = [ """\" \"a person who has such a video needs to immediately give it to the investigators,\" prosecutor says .<n> \"it is a very disturbing scene,\" editor-in-chief of bild online tells \"erin burnett: outfront\" """ ] A : Union[str, Any] = [ """ Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports . Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .""" ] A : int = calculate_rouge(_lowerCAmelCase , _lowerCAmelCase , rouge_keys=["""rougeLsum"""] , newline_sep=_lowerCAmelCase )["""rougeLsum"""] A : Optional[Any] = calculate_rouge(_lowerCAmelCase , _lowerCAmelCase , rouge_keys=["""rougeLsum"""] )["""rougeLsum"""] assert new_score > prev_score def __UpperCamelCase ( ) -> Any: """simple docstring""" A : Tuple = Path("""examples/seq2seq/test_data/wmt_en_ro""" ) A : Optional[Any] = calculate_rouge_path(data_dir.joinpath("""test.source""" ) , data_dir.joinpath("""test.target""" ) ) assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) A : List[Any] = calculate_rouge_path( data_dir.joinpath("""test.source""" ) , data_dir.joinpath("""test.target""" ) , bootstrap_aggregation=_lowerCAmelCase ) assert isinstance(_lowerCAmelCase , _lowerCAmelCase )
116
1
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) snake_case__ : List[str] = logging.getLogger(__name__) @dataclass class A_ : lowerCAmelCase__ = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) lowerCAmelCase__ = field( default=_lowerCamelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) lowerCAmelCase__ = field( default=_lowerCamelCase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) lowerCAmelCase__ = field( default=_lowerCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) lowerCAmelCase__ = field(default=_lowerCamelCase , metadata={"""help""": """Whether tp freeze the encoder."""} ) lowerCAmelCase__ = field(default=_lowerCamelCase , metadata={"""help""": """Whether to freeze the embeddings."""} ) @dataclass class A_ : lowerCAmelCase__ = field( metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} ) lowerCAmelCase__ = field( default="""summarization""" , metadata={"""help""": """Task name, summarization (or summarization_{dataset} for pegasus) or translation"""} , ) lowerCAmelCase__ = field( default=1024 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) lowerCAmelCase__ = field( default=128 , metadata={ """help""": ( """The maximum total sequence length for target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) lowerCAmelCase__ = field( default=142 , metadata={ """help""": ( """The maximum total sequence length for validation target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded. """ """This argument is also used to override the ``max_length`` param of ``model.generate``, which is used """ """during ``evaluate`` and ``predict``.""" ) } , ) lowerCAmelCase__ = field( default=142 , metadata={ """help""": ( """The maximum total sequence length for test target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) lowerCAmelCase__ = field(default=-1 , metadata={"""help""": """# training examples. -1 means use all."""} ) lowerCAmelCase__ = field(default=-1 , metadata={"""help""": """# validation examples. -1 means use all."""} ) lowerCAmelCase__ = field(default=-1 , metadata={"""help""": """# test examples. -1 means use all."""} ) lowerCAmelCase__ = field(default=_lowerCamelCase , metadata={"""help""": """Source language id for translation."""} ) lowerCAmelCase__ = field(default=_lowerCamelCase , metadata={"""help""": """Target language id for translation."""} ) lowerCAmelCase__ = field(default=_lowerCamelCase , metadata={"""help""": """# num_beams to use for evaluation."""} ) lowerCAmelCase__ = field( default=_lowerCamelCase , metadata={"""help""": """If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."""} , ) def _a ( lowerCamelCase: Dict , lowerCamelCase: str , lowerCamelCase: Optional[Any] ) -> Optional[int]: '''simple docstring''' logger.info(F"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(F""" {key} = {metrics[key]}""" ) save_json(lowerCamelCase , os.path.join(lowerCamelCase , F"""{split}_results.json""" ) ) def _a ( ) -> List[str]: '''simple docstring''' __A = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __A , __A , __A = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __A , __A , __A = parser.parse_args_into_dataclasses() check_output_dir(lowerCamelCase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , lowerCamelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __A = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __A = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(lowerCamelCase , lowerCamelCase , lowerCamelCase ): assert hasattr(lowerCamelCase , lowerCamelCase ), F"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(lowerCamelCase , lowerCamelCase , getattr(lowerCamelCase , lowerCamelCase ) ) __A = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __A = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='''.ckpt''' in model_args.model_name_or_path , config=lowerCamelCase , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(lowerCamelCase , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: __A = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(lowerCamelCase , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(lowerCamelCase , lowerCamelCase ): __A = tokenizer.lang_code_to_id[data_args.tgt_lang] else: __A = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(lowerCamelCase ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) __A = SeqaSeqDataset # Get datasets __A = ( dataset_class( lowerCamelCase , type_path='''train''' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_train else None ) __A = ( dataset_class( lowerCamelCase , type_path='''val''' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) __A = ( dataset_class( lowerCamelCase , type_path='''test''' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_predict else None ) # Initialize our Trainer __A = ( build_compute_metrics_fn(data_args.task , lowerCamelCase ) if training_args.predict_with_generate else None ) __A = SeqaSeqTrainer( model=lowerCamelCase , args=lowerCamelCase , data_args=lowerCamelCase , train_dataset=lowerCamelCase , eval_dataset=lowerCamelCase , data_collator=SeqaSeqDataCollator( lowerCamelCase , lowerCamelCase , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=lowerCamelCase , tokenizer=lowerCamelCase , ) __A = {} # Training if training_args.do_train: logger.info('''*** Train ***''' ) __A = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) __A = train_result.metrics __A = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('''train''' , lowerCamelCase , training_args.output_dir ) all_metrics.update(lowerCamelCase ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __A = trainer.evaluate(metric_key_prefix='''val''' ) __A = data_args.n_val __A = round(metrics['''val_loss'''] , 4 ) if trainer.is_world_process_zero(): handle_metrics('''val''' , lowerCamelCase , training_args.output_dir ) all_metrics.update(lowerCamelCase ) if training_args.do_predict: logger.info('''*** Predict ***''' ) __A = trainer.predict(test_dataset=lowerCamelCase , metric_key_prefix='''test''' ) __A = test_output.metrics __A = data_args.n_test if trainer.is_world_process_zero(): __A = round(metrics['''test_loss'''] , 4 ) handle_metrics('''test''' , lowerCamelCase , training_args.output_dir ) all_metrics.update(lowerCamelCase ) if training_args.predict_with_generate: __A = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=lowerCamelCase , clean_up_tokenization_spaces=lowerCamelCase ) __A = lmap(str.strip , lowerCamelCase ) write_txt_file(lowerCamelCase , os.path.join(training_args.output_dir , '''test_generations.txt''' ) ) if trainer.is_world_process_zero(): save_json(lowerCamelCase , os.path.join(training_args.output_dir , '''all_results.json''' ) ) return all_metrics def _a ( lowerCamelCase: int ) -> Union[str, Any]: '''simple docstring''' main() if __name__ == "__main__": main()
250
def _a ( lowerCamelCase: str ) -> bool: '''simple docstring''' __A = [int(lowerCamelCase ) for i in ip_va_address.split('''.''' ) if i.isdigit()] return len(lowerCamelCase ) == 4 and all(0 <= int(lowerCamelCase ) <= 2_54 for octet in octets ) if __name__ == "__main__": snake_case__ : Union[str, Any] = input().strip() snake_case__ : Any = 'valid' if is_ip_va_address_valid(ip) else 'invalid' print(f'{ip} is a {valid_or_invalid} IP v4 address.')
250
1
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def snake_case_ ( lowerCAmelCase_ : List[Any] ): # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def snake_case_ ( ): with parallel_backend("""spark""" ): assert ParallelBackendConfig.backend_name == "spark" __lowercase : List[Any] = [1, 2, 3] with pytest.raises(lowerCAmelCase_ ): with parallel_backend("""unsupported backend""" ): map_nested(lowerCAmelCase_ , lowerCAmelCase_ , num_proc=2 ) with pytest.raises(lowerCAmelCase_ ): with parallel_backend("""unsupported backend""" ): map_nested(lowerCAmelCase_ , lowerCAmelCase_ , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("""num_proc""" , [2, -1] ) def snake_case_ ( lowerCAmelCase_ : Union[str, Any] ): __lowercase : List[str] = [1, 2] __lowercase : Optional[Any] = {"""a""": 1, """b""": 2} __lowercase : str = {"""a""": [1, 2], """b""": [3, 4]} __lowercase : Tuple = {"""a""": {"""1""": 1}, """b""": 2} __lowercase : Optional[int] = {"""a""": 1, """b""": 2, """c""": 3, """d""": 4} __lowercase : int = [2, 3] __lowercase : Union[str, Any] = {"""a""": 2, """b""": 3} __lowercase : List[str] = {"""a""": [2, 3], """b""": [4, 5]} __lowercase : Optional[Any] = {"""a""": {"""1""": 2}, """b""": 3} __lowercase : Any = {"""a""": 2, """b""": 3, """c""": 4, """d""": 5} with parallel_backend("""spark""" ): assert map_nested(lowerCAmelCase_ , lowerCAmelCase_ , num_proc=lowerCAmelCase_ ) == expected_map_nested_sa assert map_nested(lowerCAmelCase_ , lowerCAmelCase_ , num_proc=lowerCAmelCase_ ) == expected_map_nested_sa assert map_nested(lowerCAmelCase_ , lowerCAmelCase_ , num_proc=lowerCAmelCase_ ) == expected_map_nested_sa assert map_nested(lowerCAmelCase_ , lowerCAmelCase_ , num_proc=lowerCAmelCase_ ) == expected_map_nested_sa assert map_nested(lowerCAmelCase_ , lowerCAmelCase_ , num_proc=lowerCAmelCase_ ) == expected_map_nested_sa
233
import math class lowerCAmelCase : '''simple docstring''' def __init__( self : Tuple , __a : int=0 ) -> Optional[Any]: # a graph with Node 0,1,...,N-1 """simple docstring""" __lowercase : Any = n __lowercase : Optional[int] = [ [math.inf for j in range(0 , __a )] for i in range(0 , __a ) ] # adjacency matrix for weight __lowercase : Dict = [ [math.inf for j in range(0 , __a )] for i in range(0 , __a ) ] # dp[i][j] stores minimum distance from i to j def lowerCAmelCase ( self : int , __a : Optional[int] , __a : Tuple , __a : Dict ) -> Dict: """simple docstring""" __lowercase : Any = w def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): __lowercase : List[str] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def lowerCAmelCase ( self : Any , __a : Any , __a : str ) -> int: """simple docstring""" return self.dp[u][v] if __name__ == "__main__": lowerCamelCase : int = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
233
1
"""simple docstring""" from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake _lowerCAmelCase : int = numpy.array([0, 0]) _lowerCAmelCase : Dict = numpy.array([0.5, 0.8_660_254]) _lowerCAmelCase : str = numpy.array([1, 0]) _lowerCAmelCase : Union[str, Any] = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> list[numpy.ndarray]: '''simple docstring''' _lowerCamelCase : Dict = initial_vectors for _ in range(_lowerCamelCase ): _lowerCamelCase : int = iteration_step(_lowerCamelCase ) return vectors def lowerCamelCase_( _lowerCamelCase ) -> list[numpy.ndarray]: '''simple docstring''' _lowerCamelCase : Union[str, Any] = [] for i, start_vector in enumerate(vectors[:-1] ): _lowerCamelCase : Union[str, Any] = vectors[i + 1] new_vectors.append(_lowerCamelCase ) _lowerCamelCase : Optional[int] = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> numpy.ndarray: '''simple docstring''' _lowerCamelCase : int = numpy.radians(_lowerCamelCase ) _lowerCamelCase, _lowerCamelCase : Optional[Any] = numpy.cos(_lowerCamelCase ), numpy.sin(_lowerCamelCase ) _lowerCamelCase : str = numpy.array(((c, -s), (s, c)) ) return numpy.dot(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> None: '''simple docstring''' _lowerCamelCase : Optional[Any] = plt.gca() axes.set_aspect("equal" ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() _lowerCamelCase, _lowerCamelCase : Union[str, Any] = zip(*_lowerCamelCase ) plt.plot(_lowerCamelCase , _lowerCamelCase ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : Any = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
340
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : Optional[Any] = { '''configuration_mctct''': ['''MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MCTCTConfig'''], '''feature_extraction_mctct''': ['''MCTCTFeatureExtractor'''], '''processing_mctct''': ['''MCTCTProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Dict = [ '''MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MCTCTForCTC''', '''MCTCTModel''', '''MCTCTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys _lowerCAmelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
340
1
import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def _snake_case ( lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] ): """simple docstring""" assert isinstance(lowerCAmelCase , lowerCAmelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def _snake_case ( lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : Union[str, Any] = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE_ : List[str] = TextDatasetReader(lowerCAmelCase , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase ).read() _check_text_dataset(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize( "features" , [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ] , ) def _snake_case ( lowerCAmelCase : Tuple , lowerCAmelCase : Dict , lowerCAmelCase : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : Optional[Any] = {"text": "string"} SCREAMING_SNAKE_CASE_ : Any = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE_ : List[str] = ( Features({feature: Value(lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE_ : Optional[Any] = TextDatasetReader(lowerCAmelCase , features=lowerCAmelCase , cache_dir=lowerCAmelCase ).read() _check_text_dataset(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def _snake_case ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : List[str] = {"text": "string"} SCREAMING_SNAKE_CASE_ : List[str] = TextDatasetReader(lowerCAmelCase , cache_dir=lowerCAmelCase , split=lowerCAmelCase ).read() _check_text_dataset(lowerCAmelCase , lowerCAmelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def _snake_case ( lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : Optional[int] ): """simple docstring""" if issubclass(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = text_path elif issubclass(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = [text_path] SCREAMING_SNAKE_CASE_ : int = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : Optional[int] = {"text": "string"} SCREAMING_SNAKE_CASE_ : List[str] = TextDatasetReader(lowerCAmelCase , cache_dir=lowerCAmelCase ).read() _check_text_dataset(lowerCAmelCase , lowerCAmelCase ) def _snake_case ( lowerCAmelCase : Dict , lowerCAmelCase : Dict , lowerCAmelCase : List[str]=("train",) ): """simple docstring""" assert isinstance(lowerCAmelCase , lowerCAmelCase ) for split in splits: SCREAMING_SNAKE_CASE_ : int = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def _snake_case ( lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : Union[str, Any] = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE_ : List[Any] = TextDatasetReader({"train": text_path} , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase ).read() _check_text_datasetdict(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize( "features" , [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ] , ) def _snake_case ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = tmp_path / "cache" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" SCREAMING_SNAKE_CASE_ : Tuple = {"text": "string"} SCREAMING_SNAKE_CASE_ : Any = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE_ : Dict = ( Features({feature: Value(lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE_ : str = TextDatasetReader({"train": text_path} , features=lowerCAmelCase , cache_dir=lowerCAmelCase ).read() _check_text_datasetdict(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def _snake_case ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : Any , lowerCAmelCase : Dict ): """simple docstring""" if split: SCREAMING_SNAKE_CASE_ : Optional[int] = {split: text_path} else: SCREAMING_SNAKE_CASE_ : List[Any] = "train" SCREAMING_SNAKE_CASE_ : Tuple = {"train": text_path, "test": text_path} SCREAMING_SNAKE_CASE_ : Any = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : List[str] = {"text": "string"} SCREAMING_SNAKE_CASE_ : str = TextDatasetReader(lowerCAmelCase , cache_dir=lowerCAmelCase ).read() _check_text_datasetdict(lowerCAmelCase , lowerCAmelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
18
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase : int = {"configuration_glpn": ["GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP", "GLPNConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = ["GLPNFeatureExtractor"] lowerCamelCase : Optional[int] = ["GLPNImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Union[str, Any] = [ "GLPN_PRETRAINED_MODEL_ARCHIVE_LIST", "GLPNForDepthEstimation", "GLPNLayer", "GLPNModel", "GLPNPreTrainedModel", ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys lowerCamelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
47
0
_UpperCAmelCase = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def UpperCamelCase ( ): '''simple docstring''' A_ : Tuple = input('Enter message: ' ) A_ : int = input('Enter key [alphanumeric]: ' ) A_ : Optional[Any] = input('Encrypt/Decrypt [e/d]: ' ) if mode.lower().startswith('e' ): A_ : List[Any] = 'encrypt' A_ : int = encrypt_message(__lowercase , __lowercase ) elif mode.lower().startswith('d' ): A_ : Optional[Any] = 'decrypt' A_ : Dict = decrypt_message(__lowercase , __lowercase ) print(f'''\n{mode.title()}ed message:''' ) print(__lowercase ) def UpperCamelCase ( __lowercase : str , __lowercase : str ): '''simple docstring''' return translate_message(__lowercase , __lowercase , 'encrypt' ) def UpperCamelCase ( __lowercase : str , __lowercase : str ): '''simple docstring''' return translate_message(__lowercase , __lowercase , 'decrypt' ) def UpperCamelCase ( __lowercase : str , __lowercase : str , __lowercase : str ): '''simple docstring''' A_ : Tuple = [] A_ : str = 0 A_ : Optional[int] = key.upper() for symbol in message: A_ : Optional[Any] = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(__lowercase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(__lowercase ): A_ : str = 0 else: translated.append(__lowercase ) return "".join(__lowercase ) if __name__ == "__main__": main()
357
import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } _UpperCAmelCase = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def UpperCamelCase ( __lowercase : Optional[Any] ,__lowercase : Tuple ,__lowercase : str ,__lowercase : List[Any] ,__lowercase : Optional[int] ): '''simple docstring''' for attribute in key.split('.' ): A_ : List[Any] = getattr(__lowercase ,__lowercase ) if weight_type is not None: A_ : Dict = getattr(__lowercase ,__lowercase ).shape else: A_ : Union[str, Any] = hf_pointer.shape assert hf_shape == value.shape, ( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": A_ : Dict = value elif weight_type == "weight_g": A_ : str = value elif weight_type == "weight_v": A_ : int = value elif weight_type == "bias": A_ : int = value else: A_ : List[Any] = value logger.info(f'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def UpperCamelCase ( __lowercase : Optional[Any] ,__lowercase : Union[str, Any] ): '''simple docstring''' A_ : List[Any] = [] A_ : int = fairseq_model.state_dict() A_ : Optional[Any] = hf_model.feature_extractor A_ : List[str] = hf_model.adapter for name, value in fairseq_dict.items(): A_ : Tuple = False if "conv_layers" in name: load_conv_layer( __lowercase ,__lowercase ,__lowercase ,__lowercase ,hf_model.config.feat_extract_norm == 'group' ,) A_ : Optional[Any] = True elif any(x in name for x in ['adaptor', 'w2v_encoder.proj.', 'w2v_proj_ln.'] ): load_adapter(__lowercase ,__lowercase ,__lowercase ,__lowercase ) A_ : Union[str, Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: A_ : Tuple = True if "*" in mapped_key: A_ : Optional[Any] = name.split(__lowercase )[0].split('.' )[-2] A_ : List[Any] = mapped_key.replace('*' ,__lowercase ) if "weight_g" in name: A_ : Optional[int] = 'weight_g' elif "weight_v" in name: A_ : Union[str, Any] = 'weight_v' elif "bias" in name: A_ : Any = 'bias' elif "weight" in name: A_ : str = 'weight' else: A_ : Optional[Any] = None set_recursively(__lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ) continue if not is_used: unused_weights.append(__lowercase ) logger.warning(f'''Unused weights: {unused_weights}''' ) def UpperCamelCase ( __lowercase : Dict ,__lowercase : List[Any] ,__lowercase : Tuple ,__lowercase : Dict ,__lowercase : Any ): '''simple docstring''' A_ : List[Any] = full_name.split('conv_layers.' )[-1] A_ : Optional[int] = name.split('.' ) A_ : Tuple = int(items[0] ) A_ : int = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) A_ : Union[str, Any] = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) A_ : str = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) A_ : List[str] = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) A_ : List[Any] = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__lowercase ) def UpperCamelCase ( __lowercase : Any ,__lowercase : Tuple ,__lowercase : Optional[Any] ,__lowercase : Union[str, Any] ): '''simple docstring''' A_ : Union[str, Any] = full_name.split('adaptor.' )[-1] A_ : List[Any] = name.split('.' ) if items[1].isdigit(): A_ : Union[str, Any] = int(items[1] ) else: A_ : Tuple = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.''' A_ : Dict = value logger.info(f'''Adapter proj layer norm bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.''' A_ : int = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.''' A_ : Dict = value logger.info(f'''Adapter proj layer bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.''' A_ : Tuple = value logger.info(f'''Adapter proj layer weight was initialized from {full_name}.''' ) elif isinstance(__lowercase ,__lowercase ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.''' A_ : Tuple = value logger.info(f'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.''' A_ : str = value logger.info(f'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) else: unused_weights.append(__lowercase ) def UpperCamelCase ( __lowercase : List[Any] ): '''simple docstring''' A_ , A_ : Any = emb.weight.shape A_ : Tuple = nn.Linear(__lowercase ,__lowercase ,bias=__lowercase ) A_ : Optional[Any] = emb.weight.data return lin_layer @torch.no_grad() def UpperCamelCase ( __lowercase : Any ,__lowercase : Optional[int] ,__lowercase : Any ,__lowercase : str ,__lowercase : Dict ,__lowercase : Dict ,__lowercase : Tuple ,__lowercase : Optional[int] ,__lowercase : List[str] ,__lowercase : List[Any] ,__lowercase : str ,): '''simple docstring''' A_ : Optional[int] = WavaVecaConfig.from_pretrained( __lowercase ,add_adapter=__lowercase ,adapter_stride=__lowercase ,adapter_kernel_size=__lowercase ,use_auth_token=__lowercase ,output_hidden_size=__lowercase ,) A_ : Any = MBartConfig.from_pretrained(__lowercase ) # load model A_ , A_ , A_ : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={ 'config_yaml': config_yaml_path, 'data': '/'.join(dict_path.split('/' )[:-1] ), 'w2v_path': checkpoint_path, 'load_pretrained_decoder_from': None, } ,) A_ : Union[str, Any] = model[0].eval() # load feature extractor A_ : Any = WavaVecaFeatureExtractor.from_pretrained(__lowercase ,use_auth_token=__lowercase ) # set weights for wav2vec2 encoder A_ : Optional[Any] = WavaVecaModel(__lowercase ) recursively_load_weights_wavaveca(model.encoder ,__lowercase ) # load decoder weights A_ : Dict = MBartForCausalLM(__lowercase ) A_ , A_ : Union[str, Any] = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() ,strict=__lowercase ) logger.warning(f'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(f'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) A_ : Optional[int] = SpeechEncoderDecoderModel(encoder=__lowercase ,decoder=__lowercase ) A_ : Any = False A_ : List[Any] = MBartaaTokenizer(__lowercase ) tokenizer.save_pretrained(__lowercase ) A_ : Dict = hf_wavavec.config.to_dict() A_ : Any = tokenizer.pad_token_id A_ : Optional[Any] = tokenizer.bos_token_id A_ : Union[str, Any] = tokenizer.eos_token_id A_ : Dict = 'mbart50' A_ : str = 'wav2vec2' A_ : int = tokenizer.eos_token_id A_ : List[str] = 25_00_04 A_ : int = tokenizer.eos_token_id A_ : Optional[Any] = SpeechEncoderDecoderConfig.from_dict(__lowercase ) hf_wavavec.save_pretrained(__lowercase ) feature_extractor.save_pretrained(__lowercase ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_yaml_path""", default=None, type=str, help="""Path to yaml file of fine-tuned model""") parser.add_argument( """--encoder_config_path""", default="""facebook/wav2vec2-xls-r-1b""", type=str, help="""Path to hf encoder wav2vec2 checkpoint config""", ) parser.add_argument( """--decoder_config_path""", default="""facebook/mbart-large-50-one-to-many-mmt""", type=str, help="""Path to hf decoder checkpoint config""", ) parser.add_argument("""--add_adapter""", default=True, type=bool, help="""whethere to add model adapter layers""") parser.add_argument("""--adapter_stride""", default=2, type=int, help="""stride of adapter layers""") parser.add_argument("""--adapter_kernel_size""", default=3, type=int, help="""kernel size of adapter layers""") parser.add_argument("""--encoder_output_dim""", default=1024, type=int, help="""encoder output dim""") parser.add_argument("""--start_token_id""", default=250004, type=int, help="""`decoder_start_token_id` of model config""") _UpperCAmelCase = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
192
0
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) def lowerCamelCase__ ( A__ : Any , A__ : Union[str, Any]=False ): '''simple docstring''' __lowerCamelCase = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith("""head""" ): __lowerCamelCase = """segformer.encoder.""" + key if key.startswith("""backbone""" ): __lowerCamelCase = key.replace("""backbone""" , """segformer.encoder""" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 __lowerCamelCase = key[key.find("""patch_embed""" ) + len("""patch_embed""" )] __lowerCamelCase = key.replace(f'patch_embed{idx}' , f'patch_embeddings.{int(A__ )-1}' ) if "norm" in key: __lowerCamelCase = key.replace("""norm""" , """layer_norm""" ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 __lowerCamelCase = key[key.find("""segformer.encoder.layer_norm""" ) + len("""segformer.encoder.layer_norm""" )] __lowerCamelCase = key.replace(f'layer_norm{idx}' , f'layer_norm.{int(A__ )-1}' ) if "layer_norm1" in key: __lowerCamelCase = key.replace("""layer_norm1""" , """layer_norm_1""" ) if "layer_norm2" in key: __lowerCamelCase = key.replace("""layer_norm2""" , """layer_norm_2""" ) if "block" in key: # replace for example block1 by block.0 __lowerCamelCase = key[key.find("""block""" ) + len("""block""" )] __lowerCamelCase = key.replace(f'block{idx}' , f'block.{int(A__ )-1}' ) if "attn.q" in key: __lowerCamelCase = key.replace("""attn.q""" , """attention.self.query""" ) if "attn.proj" in key: __lowerCamelCase = key.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in key: __lowerCamelCase = key.replace("""attn""" , """attention.self""" ) if "fc1" in key: __lowerCamelCase = key.replace("""fc1""" , """dense1""" ) if "fc2" in key: __lowerCamelCase = key.replace("""fc2""" , """dense2""" ) if "linear_pred" in key: __lowerCamelCase = key.replace("""linear_pred""" , """classifier""" ) if "linear_fuse" in key: __lowerCamelCase = key.replace("""linear_fuse.conv""" , """linear_fuse""" ) __lowerCamelCase = key.replace("""linear_fuse.bn""" , """batch_norm""" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 __lowerCamelCase = key[key.find("""linear_c""" ) + len("""linear_c""" )] __lowerCamelCase = key.replace(f'linear_c{idx}' , f'linear_c.{int(A__ )-1}' ) if key.startswith("""head""" ): __lowerCamelCase = key.replace("""head""" , """classifier""" ) __lowerCamelCase = value return new_state_dict def lowerCamelCase__ ( A__ : List[Any] , A__ : int ): '''simple docstring''' for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) __lowerCamelCase = state_dict.pop(f'segformer.encoder.block.{i}.{j}.attention.self.kv.weight' ) __lowerCamelCase = state_dict.pop(f'segformer.encoder.block.{i}.{j}.attention.self.kv.bias' ) # next, add keys and values (in that order) to the state dict __lowerCamelCase = kv_weight[ : config.hidden_sizes[i], : ] __lowerCamelCase = kv_bias[: config.hidden_sizes[i]] __lowerCamelCase = kv_weight[ config.hidden_sizes[i] :, : ] __lowerCamelCase = kv_bias[ config.hidden_sizes[i] : ] def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowerCamelCase = Image.open(requests.get(A__ , stream=A__ ).raw ) return image @torch.no_grad() def lowerCamelCase__ ( A__ : int , A__ : Optional[Any] , A__ : Union[str, Any] ): '''simple docstring''' __lowerCamelCase = SegformerConfig() __lowerCamelCase = False # set attributes based on model_name __lowerCamelCase = """huggingface/label-files""" if "segformer" in model_name: __lowerCamelCase = model_name[len("""segformer.""" ) : len("""segformer.""" ) + 2] if "ade" in model_name: __lowerCamelCase = 150 __lowerCamelCase = """ade20k-id2label.json""" __lowerCamelCase = (1, 150, 128, 128) elif "city" in model_name: __lowerCamelCase = 19 __lowerCamelCase = """cityscapes-id2label.json""" __lowerCamelCase = (1, 19, 128, 128) else: raise ValueError(f'Model {model_name} not supported' ) elif "mit" in model_name: __lowerCamelCase = True __lowerCamelCase = model_name[4:6] __lowerCamelCase = 1000 __lowerCamelCase = """imagenet-1k-id2label.json""" __lowerCamelCase = (1, 1000) else: raise ValueError(f'Model {model_name} not supported' ) # set config attributes __lowerCamelCase = json.load(open(hf_hub_download(A__ , A__ , repo_type="""dataset""" ) , """r""" ) ) __lowerCamelCase = {int(A__ ): v for k, v in idalabel.items()} __lowerCamelCase = idalabel __lowerCamelCase = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": __lowerCamelCase = [64, 128, 320, 512] __lowerCamelCase = 256 elif size == "b2": __lowerCamelCase = [64, 128, 320, 512] __lowerCamelCase = 768 __lowerCamelCase = [3, 4, 6, 3] elif size == "b3": __lowerCamelCase = [64, 128, 320, 512] __lowerCamelCase = 768 __lowerCamelCase = [3, 4, 18, 3] elif size == "b4": __lowerCamelCase = [64, 128, 320, 512] __lowerCamelCase = 768 __lowerCamelCase = [3, 8, 27, 3] elif size == "b5": __lowerCamelCase = [64, 128, 320, 512] __lowerCamelCase = 768 __lowerCamelCase = [3, 6, 40, 3] else: raise ValueError(f'Size {size} not supported' ) # load image processor (only resize + normalize) __lowerCamelCase = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=A__ , align=A__ , do_random_crop=A__ ) # prepare image __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(images=A__ , return_tensors="""pt""" ).pixel_values logger.info(f'Converting model {model_name}...' ) # load original state dict if encoder_only: __lowerCamelCase = torch.load(A__ , map_location=torch.device("""cpu""" ) ) else: __lowerCamelCase = torch.load(A__ , map_location=torch.device("""cpu""" ) )["""state_dict"""] # rename keys __lowerCamelCase = rename_keys(A__ , encoder_only=A__ ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(A__ , A__ ) # create HuggingFace model and load state dict if encoder_only: __lowerCamelCase = False __lowerCamelCase = SegformerForImageClassification(A__ ) else: __lowerCamelCase = SegformerForSemanticSegmentation(A__ ) model.load_state_dict(A__ ) model.eval() # forward pass __lowerCamelCase = model(A__ ) __lowerCamelCase = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": __lowerCamelCase = torch.tensor( [ [[-4.6_310, -5.5_232, -6.2_356], [-5.1_921, -6.1_444, -6.5_996], [-5.4_424, -6.2_790, -6.7_574]], [[-12.1_391, -13.3_122, -13.9_554], [-12.8_732, -13.9_352, -14.3_563], [-12.9_438, -13.8_226, -14.2_513]], [[-12.5_134, -13.4_686, -14.4_915], [-12.8_669, -14.4_343, -14.7_758], [-13.2_523, -14.5_819, -15.0_694]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": __lowerCamelCase = torch.tensor( [ [[-7.5_820, -8.7_231, -8.3_215], [-8.0_600, -10.3_529, -10.0_304], [-7.5_208, -9.4_103, -9.6_239]], [[-12.6_918, -13.8_994, -13.7_137], [-13.3_196, -15.7_523, -15.4_789], [-12.9_343, -14.8_757, -14.9_689]], [[-11.1_911, -11.9_421, -11.3_243], [-11.3_342, -13.6_839, -13.3_581], [-10.3_909, -12.1_832, -12.4_858]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": __lowerCamelCase = torch.tensor( [ [[-11.8_173, -14.3_850, -16.3_128], [-14.5_648, -16.5_804, -18.6_568], [-14.7_223, -15.7_387, -18.4_218]], [[-15.7_290, -17.9_171, -19.4_423], [-18.3_105, -19.9_448, -21.4_661], [-17.9_296, -18.6_497, -20.7_910]], [[-15.0_783, -17.0_336, -18.2_789], [-16.8_771, -18.6_870, -20.1_612], [-16.2_454, -17.1_426, -19.5_055]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": __lowerCamelCase = torch.tensor( [ [[-9.0_878, -10.2_081, -10.1_891], [-9.3_144, -10.7_941, -10.9_843], [-9.2_294, -10.3_855, -10.5_704]], [[-12.2_316, -13.9_068, -13.6_102], [-12.9_161, -14.3_702, -14.3_235], [-12.5_233, -13.7_174, -13.7_932]], [[-14.6_275, -15.2_490, -14.9_727], [-14.3_400, -15.9_687, -16.2_827], [-14.1_484, -15.4_033, -15.8_937]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": __lowerCamelCase = torch.tensor( [ [[-12.3_144, -13.2_447, -14.0_802], [-13.3_614, -14.5_816, -15.6_117], [-13.3_340, -14.4_433, -16.2_219]], [[-19.2_781, -20.4_128, -20.7_506], [-20.6_153, -21.6_566, -22.0_998], [-19.9_800, -21.0_430, -22.1_494]], [[-18.8_739, -19.7_804, -21.1_834], [-20.1_233, -21.6_765, -23.2_944], [-20.0_315, -21.2_641, -23.6_944]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": __lowerCamelCase = torch.tensor( [ [[-9.5_524, -12.0_835, -11.7_348], [-10.5_229, -13.6_446, -14.5_662], [-9.5_842, -12.8_851, -13.9_414]], [[-15.3_432, -17.5_323, -17.0_818], [-16.3_330, -18.9_255, -19.2_101], [-15.1_340, -17.7_848, -18.3_971]], [[-12.6_072, -14.9_486, -14.6_631], [-13.7_629, -17.0_907, -17.7_745], [-12.7_899, -16.1_695, -17.1_671]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": __lowerCamelCase = torch.tensor( [ [[-11.9_295, -13.4_057, -14.8_106], [-13.3_431, -14.8_179, -15.3_781], [-14.2_836, -15.5_942, -16.1_588]], [[-11.4_906, -12.8_067, -13.6_564], [-13.1_189, -14.0_500, -14.1_543], [-13.8_748, -14.5_136, -14.8_789]], [[0.5_374, 0.1_067, -0.4_742], [0.1_141, -0.2_255, -0.7_099], [-0.3_000, -0.5_924, -1.3_105]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": __lowerCamelCase = torch.tensor( [ [[-7.8_217, -9.8_767, -10.1_717], [-9.4_438, -10.9_058, -11.4_047], [-9.7_939, -12.3_495, -12.1_079]], [[-7.1_514, -9.5_336, -10.0_860], [-9.7_776, -11.6_822, -11.8_439], [-10.1_411, -12.7_655, -12.8_972]], [[0.3_021, 0.0_805, -0.2_310], [-0.0_328, -0.1_605, -0.2_714], [-0.1_408, -0.5_477, -0.6_976]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": __lowerCamelCase = torch.tensor( [ [ [-1.1_3_7_2E0_1, -1.2_7_8_7E0_1, -1.3_4_7_7E0_1], [-1.2_5_3_6E0_1, -1.4_1_9_4E0_1, -1.4_4_0_9E0_1], [-1.3_2_1_7E0_1, -1.4_8_8_8E0_1, -1.5_3_2_7E0_1], ], [ [-1.4_7_9_1E0_1, -1.7_1_2_2E0_1, -1.8_2_7_7E0_1], [-1.7_1_6_3E0_1, -1.9_1_9_2E0_1, -1.9_5_3_3E0_1], [-1.7_8_9_7E0_1, -1.9_9_9_1E0_1, -2.0_3_1_5E0_1], ], [ [7.6_7_2_3E-0_1, 4.1_9_2_1E-0_1, -7.7_8_7_8E-0_2], [4.7_7_7_2E-0_1, 9.5_5_5_7E-0_3, -2.8_0_8_2E-0_1], [3.6_0_3_2E-0_1, -2.4_8_2_6E-0_1, -5.1_1_6_8E-0_1], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": __lowerCamelCase = torch.tensor( [ [[-9.4_959, -11.3_087, -11.7_479], [-11.0_025, -12.6_540, -12.3_319], [-11.4_064, -13.0_487, -12.9_905]], [[-9.8_905, -11.3_084, -12.0_854], [-11.1_726, -12.7_698, -12.9_583], [-11.5_985, -13.3_278, -14.1_774]], [[0.2_213, 0.0_192, -0.2_466], [-0.1_731, -0.4_213, -0.4_874], [-0.3_126, -0.6_541, -1.1_389]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": __lowerCamelCase = torch.tensor( [ [[-13.5_748, -13.9_111, -12.6_500], [-14.3_500, -15.3_683, -14.2_328], [-14.7_532, -16.0_424, -15.6_087]], [[-17.1_651, -15.8_725, -12.9_653], [-17.2_580, -17.3_718, -14.8_223], [-16.6_058, -16.8_783, -16.7_452]], [[-3.6_456, -3.0_209, -1.4_203], [-3.0_797, -3.1_959, -2.0_000], [-1.8_757, -1.9_217, -1.6_997]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": __lowerCamelCase = torch.tensor( [ [[-16.0_976, -16.4_856, -17.3_962], [-16.6_234, -19.0_342, -19.7_685], [-16.0_900, -18.0_661, -19.1_180]], [[-18.4_750, -18.8_488, -19.5_074], [-19.4_030, -22.1_570, -22.5_977], [-19.1_191, -20.8_486, -22.3_783]], [[-4.5_178, -5.5_037, -6.5_109], [-5.0_884, -7.2_174, -8.0_334], [-4.4_156, -5.8_117, -7.2_970]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": __lowerCamelCase = torch.tensor( [ [[-14.2_081, -14.4_732, -14.1_977], [-14.5_867, -16.4_423, -16.6_356], [-13.4_441, -14.9_685, -16.8_696]], [[-14.4_576, -14.7_073, -15.0_451], [-15.0_816, -17.6_237, -17.9_873], [-14.4_213, -16.0_199, -18.5_992]], [[-4.7_349, -4.9_588, -5.0_966], [-4.3_210, -6.9_325, -7.2_591], [-3.4_312, -4.7_484, -7.1_917]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": __lowerCamelCase = torch.tensor( [ [[-11.7_737, -11.9_526, -11.3_273], [-13.6_692, -14.4_574, -13.8_878], [-13.8_937, -14.6_924, -15.9_345]], [[-14.6_706, -14.5_330, -14.1_306], [-16.1_502, -16.8_180, -16.4_269], [-16.8_338, -17.8_939, -20.1_746]], [[1.0_491, 0.8_289, 1.0_310], [1.1_044, 0.5_219, 0.8_055], [1.0_899, 0.6_926, 0.5_590]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": __lowerCamelCase = torch.tensor( [ [[-12.5_641, -13.4_777, -13.0_684], [-13.9_587, -15.8_983, -16.6_557], [-13.3_109, -15.7_350, -16.3_141]], [[-14.7_074, -15.4_352, -14.5_944], [-16.6_353, -18.1_663, -18.6_120], [-15.1_702, -18.0_329, -18.1_547]], [[-1.7_990, -2.0_951, -1.7_784], [-2.6_397, -3.8_245, -3.9_686], [-1.5_264, -2.8_126, -2.9_316]], ] ) else: __lowerCamelCase = logits.argmax(-1 ).item() print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , A__ , atol=1E-2 ) # finally, save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(A__ ).mkdir(exist_ok=A__ ) model.save_pretrained(A__ ) image_processor.save_pretrained(A__ ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument( '--model_name', default='segformer.b0.512x512.ade.160k', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) UpperCAmelCase_ = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
12
from __future__ import annotations from PIL import Image # Define glider example UpperCAmelCase_ = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example UpperCAmelCase_ = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def lowerCamelCase__ ( A__ : list[list[int]] ): '''simple docstring''' __lowerCamelCase = [] for i in range(len(A__ ) ): __lowerCamelCase = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours __lowerCamelCase = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(A__ ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(A__ ) - 1: neighbour_count += cells[i + 1][j] if i < len(A__ ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. __lowerCamelCase = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(A__ ) return next_generation def lowerCamelCase__ ( A__ : list[list[int]] , A__ : int ): '''simple docstring''' __lowerCamelCase = [] for _ in range(A__ ): # Create output image __lowerCamelCase = Image.new("""RGB""" , (len(cells[0] ), len(A__ )) ) __lowerCamelCase = img.load() # Save cells to image for x in range(len(A__ ) ): for y in range(len(cells[0] ) ): __lowerCamelCase = 255 - cells[y][x] * 255 __lowerCamelCase = (colour, colour, colour) # Save image images.append(A__ ) __lowerCamelCase = new_generation(A__ ) return images if __name__ == "__main__": UpperCAmelCase_ = generate_images(GLIDER, 16) images[0].save('out.gif', save_all=True, append_images=images[1:])
12
1
"""simple docstring""" from __future__ import annotations class a : """simple docstring""" def __init__( self: Tuple , UpperCamelCase: str , UpperCamelCase: str ): """simple docstring""" A__ , A__ = text, pattern A__ , A__ = len(UpperCamelCase ), len(UpperCamelCase ) def UpperCamelCase ( self: Any , UpperCamelCase: str ): """simple docstring""" for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def UpperCamelCase ( self: Dict , UpperCamelCase: int ): """simple docstring""" for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def UpperCamelCase ( self: List[Any] ): """simple docstring""" A__ = [] for i in range(self.textLen - self.patLen + 1 ): A__ = self.mismatch_in_text(UpperCamelCase ) if mismatch_index == -1: positions.append(UpperCamelCase ) else: A__ = self.match_in_pattern(self.text[mismatch_index] ) A__ = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions SCREAMING_SNAKE_CASE_ : Optional[int] = 'ABAABA' SCREAMING_SNAKE_CASE_ : Tuple = 'AB' SCREAMING_SNAKE_CASE_ : Tuple = BoyerMooreSearch(text, pattern) SCREAMING_SNAKE_CASE_ : Tuple = bms.bad_character_heuristic() if len(positions) == 0: print('No match found') else: print('Pattern found in following positions: ') print(positions)
367
"""simple docstring""" import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE_ : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece_bpe.model') class a ( _lowerCamelCase, unittest.TestCase ): """simple docstring""" UpperCAmelCase = BartphoTokenizer UpperCAmelCase = False UpperCAmelCase = True def UpperCamelCase ( self: Optional[Any] ): """simple docstring""" super().setUp() A__ = ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] A__ = dict(zip(UpperCamelCase , range(len(UpperCamelCase ) ) ) ) A__ = {"""unk_token""": """<unk>"""} A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""monolingual_vocab_file"""] ) with open(self.monolingual_vocab_file , """w""" , encoding="""utf-8""" ) as fp: for token in vocab_tokens: fp.write(f"""{token} {vocab_tokens[token]}\n""" ) A__ = BartphoTokenizer(UpperCamelCase , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase ( self: Dict , **UpperCamelCase: Tuple ): """simple docstring""" kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase ) def UpperCamelCase ( self: Union[str, Any] , UpperCamelCase: Tuple ): """simple docstring""" A__ = """This is a là test""" A__ = """This is a<unk><unk> test""" return input_text, output_text def UpperCamelCase ( self: Union[str, Any] ): """simple docstring""" A__ = BartphoTokenizer(UpperCamelCase , self.monolingual_vocab_file , **self.special_tokens_map ) A__ = """This is a là test""" A__ = """▁This ▁is ▁a ▁l à ▁t est""".split() A__ = tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) A__ = tokens + [tokenizer.unk_token] A__ = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase ) , UpperCamelCase )
69
0
import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = [ '''word_embeddings_layernorm.weight''', '''word_embeddings_layernorm.bias''', '''input_layernorm.weight''', '''input_layernorm.bias''', '''post_attention_layernorm.weight''', '''post_attention_layernorm.bias''', '''self_attention.dense.bias''', '''mlp.dense_4h_to_h.bias''', '''ln_f.weight''', '''ln_f.bias''', ] UpperCamelCase = [ '''mlp.dense_4h_to_h.weight''', '''self_attention.dense.weight''', ] def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE = { """word_embeddings.weight""": """word_embeddings.weight""", """word_embeddings.norm.weight""": """word_embeddings_layernorm.weight""", """word_embeddings.norm.bias""": """word_embeddings_layernorm.bias""", """weight""": """ln_f.weight""", """bias""": """ln_f.bias""", } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks _SCREAMING_SNAKE_CASE = int(re.match(r""".*layer_(\d*).*""" ,snake_case__ )[1] ) layer_number -= 3 return F'h.{layer_number}.' + key def __lowerCamelCase ( snake_case__ ) -> Optional[int]: """simple docstring""" if dtype == torch.bool: return 1 / 8 _SCREAMING_SNAKE_CASE = re.search(r"""[^\d](\d+)$""" ,str(snake_case__ ) ) if bit_search is None: raise ValueError(F'`dtype` is not a valid dtype: {dtype}.' ) _SCREAMING_SNAKE_CASE = int(bit_search.groups()[0] ) return bit_size // 8 def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) -> List[str]: """simple docstring""" if bloom_config_file == "": _SCREAMING_SNAKE_CASE = BloomConfig() else: _SCREAMING_SNAKE_CASE = BloomConfig.from_json_file(snake_case__ ) if shard_model: _SCREAMING_SNAKE_CASE = os.listdir(snake_case__ ) _SCREAMING_SNAKE_CASE = sorted(filter(lambda snake_case__ : s.startswith("""layer""" ) and "model_00" in s ,snake_case__ ) ) _SCREAMING_SNAKE_CASE = {"""weight_map""": {}, """metadata""": {}} _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = BloomConfig() for j, file in enumerate(snake_case__ ): print("""Processing file: {}""".format(snake_case__ ) ) _SCREAMING_SNAKE_CASE = None for i in range(snake_case__ ): # load all TP files _SCREAMING_SNAKE_CASE = file.replace("""model_00""" ,F'model_0{i}' ) _SCREAMING_SNAKE_CASE = torch.load(os.path.join(snake_case__ ,snake_case__ ) ,map_location="""cpu""" ) # Rename keys in the transformers names _SCREAMING_SNAKE_CASE = list(temp.keys() ) for key in keys: _SCREAMING_SNAKE_CASE = temp.pop(snake_case__ ) if tensors is None: _SCREAMING_SNAKE_CASE = temp else: for key in tensors.keys(): if any(key.endswith(snake_case__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel _SCREAMING_SNAKE_CASE = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks _SCREAMING_SNAKE_CASE = torch.cat([tensors[key], temp[key]] ,dim=snake_case__ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(snake_case__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): _SCREAMING_SNAKE_CASE = tensors[key] / pretraining_tp torch.save( snake_case__ ,os.path.join( snake_case__ ,"""pytorch_model_{}-of-{}.bin""".format(str(j + 1 ).zfill(5 ) ,str(len(snake_case__ ) ).zfill(5 ) ) ,) ,) for key in tensors.keys(): _SCREAMING_SNAKE_CASE = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: _SCREAMING_SNAKE_CASE = """pytorch_model_{}-of-{}.bin""".format( str(j + 1 ).zfill(5 ) ,str(len(snake_case__ ) ).zfill(5 ) ) _SCREAMING_SNAKE_CASE = BloomConfig() _SCREAMING_SNAKE_CASE = pytorch_dump_folder_path + """/""" + CONFIG_NAME _SCREAMING_SNAKE_CASE = total_size with open(snake_case__ ,"""w""" ,encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) with open(os.path.join(snake_case__ ,WEIGHTS_NAME + """.index.json""" ) ,"""w""" ,encoding="""utf-8""" ) as f: _SCREAMING_SNAKE_CASE = json.dumps(snake_case__ ,indent=2 ,sort_keys=snake_case__ ) + """\n""" f.write(snake_case__ ) else: _SCREAMING_SNAKE_CASE = BloomModel(snake_case__ ) _SCREAMING_SNAKE_CASE = os.listdir(snake_case__ ) _SCREAMING_SNAKE_CASE = sorted(filter(lambda snake_case__ : s.startswith("""layer""" ) and "model_00" in s ,snake_case__ ) ) _SCREAMING_SNAKE_CASE = None for i, file in enumerate(snake_case__ ): _SCREAMING_SNAKE_CASE = None for i in range(snake_case__ ): # load all TP files _SCREAMING_SNAKE_CASE = file.replace("""model_00""" ,F'model_0{i}' ) _SCREAMING_SNAKE_CASE = torch.load(os.path.join(snake_case__ ,snake_case__ ) ,map_location="""cpu""" ) # Rename keys in the transformers names _SCREAMING_SNAKE_CASE = list(temp.keys() ) for key in keys: _SCREAMING_SNAKE_CASE = temp.pop(snake_case__ ) if tensors is None: _SCREAMING_SNAKE_CASE = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(snake_case__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel _SCREAMING_SNAKE_CASE = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks _SCREAMING_SNAKE_CASE = torch.cat([tensors[key], temp[key]] ,dim=snake_case__ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(snake_case__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): _SCREAMING_SNAKE_CASE = tensors[key] / pretraining_tp _SCREAMING_SNAKE_CASE = model.load_state_dict(snake_case__ ,strict=snake_case__ ) assert not other_keys.unexpected_keys, F'The keys {other_keys.unexpected_keys} are unexpected' if missing_keys is None: _SCREAMING_SNAKE_CASE = set(other_keys.missing_keys ) else: _SCREAMING_SNAKE_CASE = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, F'The keys {missing_keys} are missing' # Save pytorch-model os.makedirs(snake_case__ ,exist_ok=snake_case__ ) _SCREAMING_SNAKE_CASE = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME _SCREAMING_SNAKE_CASE = pytorch_dump_folder_path + """/""" + CONFIG_NAME print(F'Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}' ) if config.torch_dtype is not None: _SCREAMING_SNAKE_CASE = model.to(config.torch_dtype ) torch.save(model.state_dict() ,snake_case__ ) print(F'Save configuration file to {pytorch_config_dump_path}' ) with open(snake_case__ ,"""w""" ,encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bloom_checkpoint_path''', default=None, type=str, required=True, help='''Path to the Megatron-LM checkpoint path.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--bloom_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--shard_model''', action='''store_true''', help='''An optional setting to shard the output model \nThis enables sharding the converted checkpoint''', ) parser.add_argument( '''--pretraining_tp''', default=4, type=int, help='''Pretraining TP rank that has been used when training the model in Megatron-LM \n''', ) UpperCamelCase = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
306
from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class __UpperCAmelCase : def __init__( self: Any , UpperCAmelCase_: int , UpperCAmelCase_: Optional[int]=13 , UpperCAmelCase_: str=7 , UpperCAmelCase_: int=True , UpperCAmelCase_: List[str]=True , UpperCAmelCase_: Dict=True , UpperCAmelCase_: Any=True , UpperCAmelCase_: Tuple=99 , UpperCAmelCase_: Optional[Any]=32 , UpperCAmelCase_: Optional[int]=2 , UpperCAmelCase_: Tuple=4 , UpperCAmelCase_: Tuple=37 , UpperCAmelCase_: Union[str, Any]="gelu" , UpperCAmelCase_: List[str]=0.1 , UpperCAmelCase_: int=0.1 , UpperCAmelCase_: str=512 , UpperCAmelCase_: Union[str, Any]=16 , UpperCAmelCase_: List[Any]=2 , UpperCAmelCase_: str=0.02 , UpperCAmelCase_: int=False , UpperCAmelCase_: Union[str, Any]=True , UpperCAmelCase_: Optional[Any]="None" , UpperCAmelCase_: Optional[int]=3 , UpperCAmelCase_: Any=4 , UpperCAmelCase_: Optional[int]=None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_input_mask _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_labels _SCREAMING_SNAKE_CASE = num_choices _SCREAMING_SNAKE_CASE = relative_attention _SCREAMING_SNAKE_CASE = position_biased_input _SCREAMING_SNAKE_CASE = pos_att_type _SCREAMING_SNAKE_CASE = scope def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_input_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=UpperCAmelCase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: int , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: int , UpperCAmelCase_: List[str] , UpperCAmelCase_: List[str] , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModel(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _SCREAMING_SNAKE_CASE = [input_ids, input_mask] _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[str] , UpperCAmelCase_: Tuple , UpperCAmelCase_: int , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaForMaskedLM(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self: Any , UpperCAmelCase_: Any , UpperCAmelCase_: List[str] , UpperCAmelCase_: Dict , UpperCAmelCase_: List[str] , UpperCAmelCase_: str , UpperCAmelCase_: int , UpperCAmelCase_: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = TFDebertaVaForSequenceClassification(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Any , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = TFDebertaVaForTokenClassification(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self: Any , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: str , UpperCAmelCase_: str , UpperCAmelCase_: Any , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaForQuestionAnswering(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): __snake_case : int = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) __snake_case : Union[str, Any] = ( { "feature-extraction": TFDebertaVaModel, "fill-mask": TFDebertaVaForMaskedLM, "question-answering": TFDebertaVaForQuestionAnswering, "text-classification": TFDebertaVaForSequenceClassification, "token-classification": TFDebertaVaForTokenClassification, "zero-shot": TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) __snake_case : Dict = False __snake_case : Optional[Any] = False def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) self.assertIsNotNone(UpperCAmelCase_ ) @require_tf class __UpperCAmelCase (unittest.TestCase ): @unittest.skip(reason="""Model not available yet""" ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' pass @slow def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) _SCREAMING_SNAKE_CASE = tf.constant([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) _SCREAMING_SNAKE_CASE = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = tf.constant( [[[0.23_56, 0.19_48, 0.03_69], [-0.10_63, 0.35_86, -0.51_52], [-0.63_99, -0.02_59, -0.25_25]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , UpperCAmelCase_ , atol=1E-4 )
306
1
"""simple docstring""" import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowerCamelCase__ ( unittest.TestCase ): def _UpperCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() def _UpperCamelCase ( self ): UpperCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) UpperCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) UpperCAmelCase = """xvjiarui/stable-diffusion-2-inpainting""" UpperCAmelCase = FlaxStableDiffusionInpaintPipeline.from_pretrained(lowerCamelCase_ ,safety_checker=lowerCamelCase_ ) UpperCAmelCase = """Face of a yellow cat, high resolution, sitting on a park bench""" UpperCAmelCase = jax.random.PRNGKey(0 ) UpperCAmelCase = 50 UpperCAmelCase = jax.device_count() UpperCAmelCase = num_samples * [prompt] UpperCAmelCase = num_samples * [init_image] UpperCAmelCase = num_samples * [mask_image] UpperCAmelCase = pipeline.prepare_inputs(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) # shard inputs and rng UpperCAmelCase = replicate(lowerCamelCase_ ) UpperCAmelCase = jax.random.split(lowerCamelCase_ ,jax.device_count() ) UpperCAmelCase = shard(lowerCamelCase_ ) UpperCAmelCase = shard(lowerCamelCase_ ) UpperCAmelCase = shard(lowerCamelCase_ ) UpperCAmelCase = pipeline( lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,jit=lowerCamelCase_ ) UpperCAmelCase = output.images.reshape(lowerCamelCase_ ,512 ,512 ,3 ) UpperCAmelCase = images[0, 253:256, 253:256, -1] UpperCAmelCase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) UpperCAmelCase = jnp.array( [0.3611307, 0.37649736, 0.3757408, 0.38213953, 0.39295167, 0.3841631, 0.41554978, 0.4137475, 0.4217084] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
365
"""simple docstring""" import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) def _a ( _snake_case , _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = WavaVecaForSequenceClassification.from_pretrained(_snake_case , config=_snake_case ) UpperCAmelCase = downstream_dict["""projector.weight"""] UpperCAmelCase = downstream_dict["""projector.bias"""] UpperCAmelCase = downstream_dict["""model.post_net.linear.weight"""] UpperCAmelCase = downstream_dict["""model.post_net.linear.bias"""] return model def _a ( _snake_case , _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = WavaVecaForAudioFrameClassification.from_pretrained(_snake_case , config=_snake_case ) UpperCAmelCase = downstream_dict["""model.linear.weight"""] UpperCAmelCase = downstream_dict["""model.linear.bias"""] return model def _a ( _snake_case , _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = WavaVecaForXVector.from_pretrained(_snake_case , config=_snake_case ) UpperCAmelCase = downstream_dict["""connector.weight"""] UpperCAmelCase = downstream_dict["""connector.bias"""] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): UpperCAmelCase = downstream_dict[ F'''model.framelevel_feature_extractor.module.{i}.kernel.weight''' ] UpperCAmelCase = downstream_dict[F'''model.framelevel_feature_extractor.module.{i}.kernel.bias'''] UpperCAmelCase = downstream_dict["""model.utterancelevel_feature_extractor.linear1.weight"""] UpperCAmelCase = downstream_dict["""model.utterancelevel_feature_extractor.linear1.bias"""] UpperCAmelCase = downstream_dict["""model.utterancelevel_feature_extractor.linear2.weight"""] UpperCAmelCase = downstream_dict["""model.utterancelevel_feature_extractor.linear2.bias"""] UpperCAmelCase = downstream_dict["""objective.W"""] return model @torch.no_grad() def _a ( _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = torch.load(_snake_case , map_location="""cpu""" ) UpperCAmelCase = checkpoint["""Downstream"""] UpperCAmelCase = WavaVecaConfig.from_pretrained(_snake_case ) UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained( _snake_case , return_attention_mask=_snake_case , do_normalize=_snake_case ) UpperCAmelCase = hf_config.architectures[0] if arch.endswith("""ForSequenceClassification""" ): UpperCAmelCase = convert_classification(_snake_case , _snake_case , _snake_case ) elif arch.endswith("""ForAudioFrameClassification""" ): UpperCAmelCase = convert_diarization(_snake_case , _snake_case , _snake_case ) elif arch.endswith("""ForXVector""" ): UpperCAmelCase = convert_xvector(_snake_case , _snake_case , _snake_case ) else: raise NotImplementedError(F'''S3PRL weights conversion is not supported for {arch}''' ) if hf_config.use_weighted_layer_sum: UpperCAmelCase = checkpoint["""Featurizer"""]["""weights"""] hf_feature_extractor.save_pretrained(_snake_case ) hf_model.save_pretrained(_snake_case ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument( """--base_model_name""", default=None, type=str, help="""Name of the huggingface pretrained base model.""" ) parser.add_argument("""--config_path""", default=None, type=str, help="""Path to the huggingface classifier config.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to the s3prl checkpoint.""") parser.add_argument("""--model_dump_path""", default=None, type=str, help="""Path to the final converted model.""") _UpperCamelCase = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
234
0
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase : Union[str, Any] = logging.get_logger() @dataclass class A__ : _UpperCAmelCase :nn.Module _UpperCAmelCase :List[nn.Module] = field(default_factory=__snake_case ) _UpperCAmelCase :list = field(default_factory=__snake_case ) def __UpperCamelCase( self , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : str = len(list(m.modules() ) ) == 1 or isinstance(A_ , nn.Convad ) or isinstance(A_ , nn.BatchNormad ) if has_not_submodules: self.traced.append(A_ ) def __call__( self , A_ ): '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(A_ ) [x.remove() for x in self.handles] return self @property def __UpperCamelCase( self ): '''simple docstring''' return list(filter(lambda A_ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class A__ : _UpperCAmelCase :nn.Module _UpperCAmelCase :nn.Module _UpperCAmelCase :int = 1 _UpperCAmelCase :List = field(default_factory=__snake_case ) _UpperCAmelCase :List = field(default_factory=__snake_case ) _UpperCAmelCase :bool = True def __call__( self , A_ ): '''simple docstring''' UpperCamelCase : Dict = Tracker(self.dest )(A_ ).parametrized UpperCamelCase : List[str] = Tracker(self.src )(A_ ).parametrized UpperCamelCase : List[Any] = list(filter(lambda A_ : type(A_ ) not in self.src_skip , A_ ) ) UpperCamelCase : Optional[int] = list(filter(lambda A_ : type(A_ ) not in self.dest_skip , A_ ) ) if len(A_ ) != len(A_ ) and self.raise_if_mismatch: raise Exception( F"""Numbers of operations are different. Source module has {len(A_ )} operations while""" F""" destination module has {len(A_ )}.""" ) for dest_m, src_m in zip(A_ , A_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F"""Transfered from={src_m} to={dest_m}""" ) class A__ ( nn.Module ): def __init__( self , A_ ): '''simple docstring''' super().__init__() UpperCamelCase : List[Tuple[str, nn.Module]] = [] # - get the stem feature_blocks.append(("conv1", model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith("block" ), F"""Unexpected layer name {k}""" UpperCamelCase : Dict = len(A_ ) + 1 feature_blocks.append((F"""res{block_index}""", v) ) UpperCamelCase : Optional[int] = nn.ModuleDict(A_ ) def __UpperCamelCase( self , A_ ): '''simple docstring''' return get_trunk_forward_outputs( A_ , out_feat_keys=A_ , feature_blocks=self._feature_blocks , ) class A__ ( __snake_case ): def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : Optional[int] = x.split("-" ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self , A_ ): '''simple docstring''' if x not in self: UpperCamelCase : Tuple = self.convert_name_to_timm(A_ ) UpperCamelCase : List[Any] = partial(lambda: (timm.create_model(A_ , pretrained=A_ ).eval(), None) ) else: UpperCamelCase : Any = super().__getitem__(A_ ) return val class A__ ( __snake_case ): def __getitem__( self , A_ ): '''simple docstring''' if "seer" in x and "in1k" not in x: UpperCamelCase : str = RegNetModel else: UpperCamelCase : Optional[int] = RegNetForImageClassification return val def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[str]: for from_key, to_key in keys: UpperCamelCase : Dict = from_state_dict[from_key].clone() print(F"""Copied key={from_key} to={to_key}""" ) return to_state_dict def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = True , ) -> int: print(F"""Converting {name}...""" ) with torch.no_grad(): UpperCamelCase , UpperCamelCase : List[Any] = from_model_func() UpperCamelCase : Optional[Any] = our_model_func(_lowerCAmelCase ).eval() UpperCamelCase : Optional[Any] = ModuleTransfer(src=_lowerCAmelCase , dest=_lowerCAmelCase , raise_if_mismatch=_lowerCAmelCase ) UpperCamelCase : List[Any] = torch.randn((1, 3, 224, 224) ) module_transfer(_lowerCAmelCase ) if from_state_dict is not None: UpperCamelCase : Union[str, Any] = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: UpperCamelCase : int = [("0.clf.0.weight", "classifier.1.weight"), ("0.clf.0.bias", "classifier.1.bias")] UpperCamelCase : Any = manually_copy_vissl_head(_lowerCAmelCase , our_model.state_dict() , _lowerCAmelCase ) our_model.load_state_dict(_lowerCAmelCase ) UpperCamelCase : Union[str, Any] = our_model(_lowerCAmelCase , output_hidden_states=_lowerCAmelCase ) UpperCamelCase : Union[str, Any] = ( our_outputs.logits if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else our_outputs.last_hidden_state ) UpperCamelCase : Union[str, Any] = from_model(_lowerCAmelCase ) UpperCamelCase : Tuple = from_output[-1] if type(_lowerCAmelCase ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: UpperCamelCase : Tuple = our_outputs.hidden_states[-1] assert torch.allclose(_lowerCAmelCase , _lowerCAmelCase ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message="Add model" , use_temp_dir=_lowerCAmelCase , ) UpperCamelCase : Tuple = 224 if "seer" not in name else 384 # we can use the convnext one UpperCamelCase : Optional[Any] = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" , size=_lowerCAmelCase ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message="Add image processor" , use_temp_dir=_lowerCAmelCase , ) print(F"""Pushed {name}""" ) def A_ ( _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = True ) -> List[str]: UpperCamelCase : List[Any] = "imagenet-1k-id2label.json" UpperCamelCase : List[Any] = 1000 UpperCamelCase : Union[str, Any] = (1, num_labels) UpperCamelCase : int = "huggingface/label-files" UpperCamelCase : int = num_labels UpperCamelCase : int = json.load(open(cached_download(hf_hub_url(_lowerCAmelCase , _lowerCAmelCase , repo_type="dataset" ) ) , "r" ) ) UpperCamelCase : Tuple = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} UpperCamelCase : List[Any] = idalabel UpperCamelCase : Optional[Any] = {v: k for k, v in idalabel.items()} UpperCamelCase : Dict = partial(_lowerCAmelCase , num_labels=_lowerCAmelCase , idalabel=_lowerCAmelCase , labelaid=_lowerCAmelCase ) UpperCamelCase : Optional[int] = { "regnet-x-002": ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 , layer_type="x" ), "regnet-x-004": ImageNetPreTrainedConfig( depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 160, 384] , groups_width=16 , layer_type="x" ), "regnet-x-006": ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 240, 528] , groups_width=24 , layer_type="x" ), "regnet-x-008": ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[64, 128, 288, 672] , groups_width=16 , layer_type="x" ), "regnet-x-016": ImageNetPreTrainedConfig( depths=[2, 4, 10, 2] , hidden_sizes=[72, 168, 408, 912] , groups_width=24 , layer_type="x" ), "regnet-x-032": ImageNetPreTrainedConfig( depths=[2, 6, 15, 2] , hidden_sizes=[96, 192, 432, 1008] , groups_width=48 , layer_type="x" ), "regnet-x-040": ImageNetPreTrainedConfig( depths=[2, 5, 14, 2] , hidden_sizes=[80, 240, 560, 1360] , groups_width=40 , layer_type="x" ), "regnet-x-064": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 392, 784, 1624] , groups_width=56 , layer_type="x" ), "regnet-x-080": ImageNetPreTrainedConfig( depths=[2, 5, 15, 1] , hidden_sizes=[80, 240, 720, 1920] , groups_width=120 , layer_type="x" ), "regnet-x-120": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 , layer_type="x" ), "regnet-x-160": ImageNetPreTrainedConfig( depths=[2, 6, 13, 1] , hidden_sizes=[256, 512, 896, 2048] , groups_width=128 , layer_type="x" ), "regnet-x-320": ImageNetPreTrainedConfig( depths=[2, 7, 13, 1] , hidden_sizes=[336, 672, 1344, 2520] , groups_width=168 , layer_type="x" ), # y variant "regnet-y-002": ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 ), "regnet-y-004": ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[48, 104, 208, 440] , groups_width=8 ), "regnet-y-006": ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[48, 112, 256, 608] , groups_width=16 ), "regnet-y-008": ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[64, 128, 320, 768] , groups_width=16 ), "regnet-y-016": ImageNetPreTrainedConfig( depths=[2, 6, 17, 2] , hidden_sizes=[48, 120, 336, 888] , groups_width=24 ), "regnet-y-032": ImageNetPreTrainedConfig( depths=[2, 5, 13, 1] , hidden_sizes=[72, 216, 576, 1512] , groups_width=24 ), "regnet-y-040": ImageNetPreTrainedConfig( depths=[2, 6, 12, 2] , hidden_sizes=[128, 192, 512, 1088] , groups_width=64 ), "regnet-y-064": ImageNetPreTrainedConfig( depths=[2, 7, 14, 2] , hidden_sizes=[144, 288, 576, 1296] , groups_width=72 ), "regnet-y-080": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 448, 896, 2016] , groups_width=56 ), "regnet-y-120": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 ), "regnet-y-160": ImageNetPreTrainedConfig( depths=[2, 4, 11, 1] , hidden_sizes=[224, 448, 1232, 3024] , groups_width=112 ), "regnet-y-320": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 "regnet-y-320-seer": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), "regnet-y-640-seer": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), "regnet-y-1280-seer": RegNetConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), "regnet-y-2560-seer": RegNetConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), "regnet-y-10b-seer": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 1_1110, 2_8280] , groups_width=1010 ), # finetuned on imagenet "regnet-y-320-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), "regnet-y-640-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), "regnet-y-1280-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), "regnet-y-2560-seer-in1k": ImageNetPreTrainedConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), "regnet-y-10b-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 1_1110, 2_8280] , groups_width=1010 ), } UpperCamelCase : Optional[Any] = NameToOurModelFuncMap() UpperCamelCase : List[str] = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(_lowerCAmelCase , _lowerCAmelCase ) -> Tuple[nn.Module, Dict]: UpperCamelCase : str = torch.hub.load_state_dict_from_url(_lowerCAmelCase , model_dir=str(_lowerCAmelCase ) , map_location="cpu" ) UpperCamelCase : str = model_func() # check if we have a head, if yes add it UpperCamelCase : int = files["classy_state_dict"]["base_model"]["model"] UpperCamelCase : Tuple = model_state_dict["trunk"] model.load_state_dict(_lowerCAmelCase ) return model.eval(), model_state_dict["heads"] # pretrained UpperCamelCase : Union[str, Any] = partial( _lowerCAmelCase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) UpperCamelCase : int = partial( _lowerCAmelCase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) UpperCamelCase : str = partial( _lowerCAmelCase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) UpperCamelCase : Optional[int] = partial( _lowerCAmelCase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=620.83 , w_m=2.52 ) ) ) , ) # IN1K finetuned UpperCamelCase : str = partial( _lowerCAmelCase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) UpperCamelCase : Tuple = partial( _lowerCAmelCase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) UpperCamelCase : Dict = partial( _lowerCAmelCase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) UpperCamelCase : Dict = partial( _lowerCAmelCase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=620.83 , w_m=2.52 ) ) ) , ) if model_name: convert_weight_and_push( _lowerCAmelCase , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , _lowerCAmelCase , _lowerCAmelCase , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( _lowerCAmelCase , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) return config, expected_shape if __name__ == "__main__": __lowerCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help=( """The name of the model you wish to convert, it must be one of the supported regnet* architecture,""" """ currently: regnetx-*, regnety-*. If `None`, all of them will the converted.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=Path, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=True, type=bool, required=False, help="""If True, push model and image processor to the hub.""", ) __lowerCamelCase : Dict = parser.parse_args() __lowerCamelCase : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
52
import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __lowerCamelCase : str = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. __lowerCamelCase : Tuple = direct_transformers_import(PATH_TO_TRANSFORMERS) __lowerCamelCase : List[str] = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __lowerCamelCase : Optional[Any] = re.compile(r"""\[(.+?)\]\((https://huggingface\.co/.+?)\)""") __lowerCamelCase : List[str] = { """DecisionTransformerConfig""", """EncoderDecoderConfig""", """MusicgenConfig""", """RagConfig""", """SpeechEncoderDecoderConfig""", """TimmBackboneConfig""", """VisionEncoderDecoderConfig""", """VisionTextDualEncoderConfig""", """LlamaConfig""", } def A_ ( _lowerCAmelCase ) -> List[str]: UpperCamelCase : Optional[Any] = None # source code of `config_class` UpperCamelCase : Tuple = inspect.getsource(_lowerCAmelCase ) UpperCamelCase : Optional[Any] = _re_checkpoint.findall(_lowerCAmelCase ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith("/" ): UpperCamelCase : Dict = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link UpperCamelCase : Any = F"""https://huggingface.co/{ckpt_name}""" if ckpt_link == ckpt_link_from_name: UpperCamelCase : List[Any] = ckpt_name break return checkpoint def A_ ( ) -> List[str]: UpperCamelCase : Optional[int] = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue UpperCamelCase : Union[str, Any] = get_checkpoint_from_config_class(_lowerCAmelCase ) UpperCamelCase : Optional[int] = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: UpperCamelCase : Any = "\n".join(sorted(_lowerCAmelCase ) ) raise ValueError(F"""The following configurations don't contain any valid checkpoint:\n{message}""" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
52
1
from __future__ import annotations def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = 2 lowercase = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(lowerCAmelCase__ ) if n > 1: factors.append(lowerCAmelCase__ ) return factors if __name__ == "__main__": import doctest doctest.testmod()
97
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase__ :Optional[int] = logging.get_logger(__name__) lowercase__ :List[Any] = { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json", "umberto-commoncrawl-cased-v1": ( "https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json" ), "umberto-wikipedia-uncased-v1": ( "https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json" ), } class lowercase ( SCREAMING_SNAKE_CASE__ ): lowercase_ : List[Any] ='''camembert''' def __init__( self ,A__=3_0_5_2_2 ,A__=7_6_8 ,A__=1_2 ,A__=1_2 ,A__=3_0_7_2 ,A__="gelu" ,A__=0.1 ,A__=0.1 ,A__=5_1_2 ,A__=2 ,A__=0.02 ,A__=1E-12 ,A__=1 ,A__=0 ,A__=2 ,A__="absolute" ,A__=True ,A__=None ,**A__ ,): super().__init__(pad_token_id=A__ ,bos_token_id=A__ ,eos_token_id=A__ ,**A__) lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = hidden_act lowercase = intermediate_size lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = type_vocab_size lowercase = initializer_range lowercase = layer_norm_eps lowercase = position_embedding_type lowercase = use_cache lowercase = classifier_dropout class lowercase ( SCREAMING_SNAKE_CASE__ ): @property def A__ ( self): if self.task == "multiple-choice": lowercase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowercase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ])
97
1
# HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers _SCREAMING_SNAKE_CASE : str = float('''nan''') class UpperCAmelCase__ : """simple docstring""" def __init__( self : Tuple , __lowerCamelCase : Tuple ) -> Dict: SCREAMING_SNAKE_CASE__ = sys.stdout SCREAMING_SNAKE_CASE__ = open(__lowerCamelCase , '''a''' ) def __getattr__( self : Any , __lowerCamelCase : Any ) -> str: return getattr(self.stdout , __lowerCamelCase ) def lowercase_ ( self : str , __lowerCamelCase : List[Any] ) -> Any: self.stdout.write(__lowerCamelCase ) # strip tqdm codes self.file.write(re.sub(r'''^.*\r''' , '''''' , __lowerCamelCase , 0 , re.M ) ) def UpperCAmelCase_ ( _A=80 , _A=False ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [] # deal with critical env vars SCREAMING_SNAKE_CASE__ = ['''CUDA_VISIBLE_DEVICES'''] for key in env_keys: SCREAMING_SNAKE_CASE__ = os.environ.get(_A , _A ) if val is not None: cmd.append(F'''{key}={val}''' ) # python executable (not always needed if the script is executable) SCREAMING_SNAKE_CASE__ = sys.executable if full_python_path else sys.executable.split('''/''' )[-1] cmd.append(_A ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = '''''' while len(_A ) > 0: current_line += F'''{cmd.pop(0 )} ''' if len(_A ) == 0 or len(_A ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(_A ) SCREAMING_SNAKE_CASE__ = '''''' return "\\\n".join(_A ) def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = re.sub(R'''[\\\n]+''' , ''' ''' , args.base_cmd ) # remove --output_dir if any and set our own SCREAMING_SNAKE_CASE__ = re.sub('''--output_dir\s+[^\s]+''' , '''''' , args.base_cmd ) args.base_cmd += F''' --output_dir {output_dir}''' # ensure we have --overwrite_output_dir SCREAMING_SNAKE_CASE__ = re.sub('''--overwrite_output_dir\s+''' , '''''' , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def UpperCAmelCase_ ( _A , _A , _A , _A , _A , _A , _A ): '''simple docstring''' if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 1_00 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 1_0.3_1, 1_0_0.2, 5_5.6_6_6_6, 2_2_2.2_2_2_2_2_2_2_2] )} , ) SCREAMING_SNAKE_CASE__ = subprocess.run(_A , capture_output=_A , text=_A ) if verbose: print('''STDOUT''' , result.stdout ) print('''STDERR''' , result.stderr ) # save the streams SCREAMING_SNAKE_CASE__ = variation.replace(''' ''' , '''-''' ) with open(Path(_A ) / F'''log.{prefix}.stdout.txt''' , '''w''' ) as f: f.write(result.stdout ) with open(Path(_A ) / F'''log.{prefix}.stderr.txt''' , '''w''' ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print('''failed''' ) return {target_metric_key: nan} with io.open(F'''{output_dir}/all_results.json''' , '''r''' , encoding='''utf-8''' ) as f: SCREAMING_SNAKE_CASE__ = json.load(_A ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def UpperCAmelCase_ ( _A , _A , _A , _A , _A , _A , _A , _A , _A , _A , ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = F'''{id}: {variation:<{longest_variation_len}}''' SCREAMING_SNAKE_CASE__ = F'''{preamble}: ''' SCREAMING_SNAKE_CASE__ = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(_A ) , desc=_A , leave=_A ): SCREAMING_SNAKE_CASE__ = process_run_single( _A , _A , _A , _A , _A , _A , _A ) SCREAMING_SNAKE_CASE__ = single_run_metrics[target_metric_key] if not math.isnan(_A ): metrics.append(_A ) results.append(_A ) outcome += "✓" else: outcome += "✘" SCREAMING_SNAKE_CASE__ = F'''\33[2K\r{outcome}''' if len(_A ) > 0: SCREAMING_SNAKE_CASE__ = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} SCREAMING_SNAKE_CASE__ = round(mean_metrics[target_metric_key] , 2 ) SCREAMING_SNAKE_CASE__ = F'''{outcome} {mean_target}''' if len(_A ) > 1: results_str += F''' {tuple(round(_A , 2 ) for x in results )}''' print(_A ) SCREAMING_SNAKE_CASE__ = variation return mean_metrics else: print(_A ) return {variation_key: variation, target_metric_key: nan} def UpperCAmelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = torch.cuda.get_device_properties(torch.device('''cuda''' ) ) return F''' Datetime : {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" )} Software: transformers: {transformers.__version__} torch : {torch.__version__} cuda : {torch.version.cuda} python : {platform.python_version()} Hardware: {torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB ''' def UpperCAmelCase_ ( _A , _A , _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = pd.DataFrame(_A ) SCREAMING_SNAKE_CASE__ = '''variation''' SCREAMING_SNAKE_CASE__ = '''diff_%''' SCREAMING_SNAKE_CASE__ = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan SCREAMING_SNAKE_CASE__ = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(_A ): # as a fallback, use the minimal value as the sentinel SCREAMING_SNAKE_CASE__ = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(_A ): SCREAMING_SNAKE_CASE__ = df.apply( lambda _A : round(1_00 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis='''columns''' , ) # re-order columns SCREAMING_SNAKE_CASE__ = [variation_key, target_metric_key, diff_key, *report_metric_keys] SCREAMING_SNAKE_CASE__ = df.reindex(_A , axis='''columns''' ) # reorder cols # capitalize SCREAMING_SNAKE_CASE__ = df.rename(str.capitalize , axis='''columns''' ) # make the cols as narrow as possible SCREAMING_SNAKE_CASE__ = df.rename(lambda _A : c.replace('''_''' , '''<br>''' ) , axis='''columns''' ) SCREAMING_SNAKE_CASE__ = df.rename(lambda _A : c.replace('''_''' , '''\n''' ) , axis='''columns''' ) SCREAMING_SNAKE_CASE__ = ['''''', '''Copy between the cut-here-lines and paste as is to github or a forum'''] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=_A , floatfmt='''.2f''' )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=_A , floatfmt='''.2f''' )] print('''\n\n'''.join(_A ) ) def UpperCAmelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument( '''--base-cmd''' , default=_A , type=_A , required=_A , help='''Base cmd''' , ) parser.add_argument( '''--variations''' , default=_A , type=_A , nargs='''+''' , required=_A , help='''Multi-dimensional variations, example: \'|--fp16|--bf16\' \'|--tf32\'''' , ) parser.add_argument( '''--base-variation''' , default=_A , type=_A , help='''Baseline variation to compare to. if None the minimal target value will be used to compare against''' , ) parser.add_argument( '''--target-metric-key''' , default=_A , type=_A , required=_A , help='''Target metric key in output_dir/all_results.json, e.g., train_samples_per_second''' , ) parser.add_argument( '''--report-metric-keys''' , default='''''' , type=_A , help='''Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., \'train_loss train_samples''' , ) parser.add_argument( '''--repeat-times''' , default=1 , type=_A , help='''How many times to re-run each variation - an average will be reported''' , ) parser.add_argument( '''--output_dir''' , default='''output_benchmark''' , type=_A , help='''The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked''' , ) parser.add_argument( '''--verbose''' , default=_A , action='''store_true''' , help='''Whether to show the outputs of each run or just the benchmark progress''' , ) SCREAMING_SNAKE_CASE__ = parser.parse_args() SCREAMING_SNAKE_CASE__ = args.output_dir Path(_A ).mkdir(exist_ok=_A ) SCREAMING_SNAKE_CASE__ = get_base_command(_A , _A ) # split each dimension into its --foo variations SCREAMING_SNAKE_CASE__ = [list(map(str.strip , re.split(R'''\|''' , _A ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty SCREAMING_SNAKE_CASE__ = list(map(str.strip , map(''' '''.join , itertools.product(*_A ) ) ) ) SCREAMING_SNAKE_CASE__ = max(len(_A ) for x in variations ) # split wanted keys SCREAMING_SNAKE_CASE__ = args.report_metric_keys.split() # capture prints into a log file for convenience SCREAMING_SNAKE_CASE__ = F'''benchmark-report-{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S" )}.txt''' print(F'''\nNote: each run\'s output is also logged under {output_dir}/log.*.std*.txt''' ) print(F'''and this script\'s output is also piped into {report_fn}''' ) SCREAMING_SNAKE_CASE__ = Tee(_A ) print(F'''\n*** Running {len(_A )} benchmarks:''' ) print(F'''Base command: {" ".join(_A )}''' ) SCREAMING_SNAKE_CASE__ = '''variation''' SCREAMING_SNAKE_CASE__ = [] for id, variation in enumerate(tqdm(_A , desc='''Total completion: ''' , leave=_A ) ): SCREAMING_SNAKE_CASE__ = base_cmd + variation.split() results.append( process_run( id + 1 , _A , _A , _A , _A , args.target_metric_key , _A , args.repeat_times , _A , args.verbose , ) ) process_results(_A , args.target_metric_key , _A , args.base_variation , _A ) if __name__ == "__main__": main()
314
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def UpperCAmelCase_ ( ): '''simple docstring''' raise RuntimeError('''CUDA out of memory.''' ) class UpperCAmelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Any ) -> int: super().__init__() SCREAMING_SNAKE_CASE__ = nn.Linear(3 , 4 ) SCREAMING_SNAKE_CASE__ = nn.BatchNormad(4 ) SCREAMING_SNAKE_CASE__ = nn.Linear(4 , 5 ) def lowercase_ ( self : int , __lowerCamelCase : Optional[int] ) -> Tuple: return self.lineara(self.batchnorm(self.lineara(__lowerCamelCase ) ) ) class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : List[Any] ) -> Dict: SCREAMING_SNAKE_CASE__ = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__lowerCamelCase : Optional[int] ): nonlocal batch_sizes batch_sizes.append(__lowerCamelCase ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(__lowerCamelCase , [128, 64, 32, 16, 8] ) def lowercase_ ( self : Optional[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] ): nonlocal batch_sizes batch_sizes.append(__lowerCamelCase ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = mock_training_loop_function('''hello''' ) self.assertListEqual(__lowerCamelCase , [128, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, '''hello'''] ) def lowercase_ ( self : str ) -> List[Any]: @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(__lowerCamelCase : Optional[Any] ): pass with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def lowercase_ ( self : Union[str, Any] ) -> List[str]: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(__lowerCamelCase : Dict ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def lowercase_ ( self : List[Any] ) -> List[str]: @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : Any ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function(128 , '''hello''' , '''world''' ) self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] ) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] ) def lowercase_ ( self : Union[str, Any] ) -> int: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(__lowerCamelCase : Tuple ): raise ValueError('''Oops, we had an error!''' ) with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] ) @require_cuda def lowercase_ ( self : Optional[int] ) -> str: SCREAMING_SNAKE_CASE__ = torch.cuda.memory_allocated() SCREAMING_SNAKE_CASE__ = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = release_memory(__lowerCamelCase ) self.assertEqual(torch.cuda.memory_allocated() , __lowerCamelCase )
314
1
import random def UpperCamelCase_( snake_case__: int ) -> bool: UpperCAmelCase__ = num - 1 UpperCAmelCase__ = 0 while s % 2 == 0: UpperCAmelCase__ = s // 2 t += 1 for _ in range(5 ): UpperCAmelCase__ = random.randrange(2 , num - 1 ) UpperCAmelCase__ = pow(snake_case__ , snake_case__ , snake_case__ ) if v != 1: UpperCAmelCase__ = 0 while v != (num - 1): if i == t - 1: return False else: UpperCAmelCase__ = i + 1 UpperCAmelCase__ = (v**2) % num return True def UpperCamelCase_( snake_case__: int ) -> bool: if num < 2: return False UpperCAmelCase__ = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 1_01, 1_03, 1_07, 1_09, 1_13, 1_27, 1_31, 1_37, 1_39, 1_49, 1_51, 1_57, 1_63, 1_67, 1_73, 1_79, 1_81, 1_91, 1_93, 1_97, 1_99, 2_11, 2_23, 2_27, 2_29, 2_33, 2_39, 2_41, 2_51, 2_57, 2_63, 2_69, 2_71, 2_77, 2_81, 2_83, 2_93, 3_07, 3_11, 3_13, 3_17, 3_31, 3_37, 3_47, 3_49, 3_53, 3_59, 3_67, 3_73, 3_79, 3_83, 3_89, 3_97, 4_01, 4_09, 4_19, 4_21, 4_31, 4_33, 4_39, 4_43, 4_49, 4_57, 4_61, 4_63, 4_67, 4_79, 4_87, 4_91, 4_99, 5_03, 5_09, 5_21, 5_23, 5_41, 5_47, 5_57, 5_63, 5_69, 5_71, 5_77, 5_87, 5_93, 5_99, 6_01, 6_07, 6_13, 6_17, 6_19, 6_31, 6_41, 6_43, 6_47, 6_53, 6_59, 6_61, 6_73, 6_77, 6_83, 6_91, 7_01, 7_09, 7_19, 7_27, 7_33, 7_39, 7_43, 7_51, 7_57, 7_61, 7_69, 7_73, 7_87, 7_97, 8_09, 8_11, 8_21, 8_23, 8_27, 8_29, 8_39, 8_53, 8_57, 8_59, 8_63, 8_77, 8_81, 8_83, 8_87, 9_07, 9_11, 9_19, 9_29, 9_37, 9_41, 9_47, 9_53, 9_67, 9_71, 9_77, 9_83, 9_91, 9_97, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(snake_case__ ) def UpperCamelCase_( snake_case__: int = 10_24 ) -> int: while True: UpperCAmelCase__ = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(snake_case__ ): return num if __name__ == "__main__": _UpperCamelCase = generate_large_prime() print(('''Prime number:''', num)) print(('''is_prime_low_num:''', is_prime_low_num(num)))
335
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params _UpperCamelCase = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['''memory_attention''', '''encoder_attn'''], ['''attention''', '''attn'''], ['''/''', '''.'''], ['''.LayerNorm.gamma''', '''_layer_norm.weight'''], ['''.LayerNorm.beta''', '''_layer_norm.bias'''], ['''r.layer_''', '''r.layers.'''], ['''output_proj''', '''out_proj'''], ['''ffn.dense_1.''', '''fc2.'''], ['''ffn.dense.''', '''fc1.'''], ['''ffn_layer_norm''', '''final_layer_norm'''], ['''kernel''', '''weight'''], ['''encoder_layer_norm.''', '''encoder.layer_norm.'''], ['''decoder_layer_norm.''', '''decoder.layer_norm.'''], ['''embeddings.weights''', '''shared.weight'''], ] def UpperCamelCase_( snake_case__: int ) -> str: for pegasus_name, hf_name in PATTERNS: UpperCAmelCase__ = k.replace(snake_case__ , snake_case__ ) return k def UpperCamelCase_( snake_case__: dict , snake_case__: dict ) -> PegasusForConditionalGeneration: UpperCAmelCase__ = DEFAULTS.copy() cfg_kwargs.update(snake_case__ ) UpperCAmelCase__ = PegasusConfig(**snake_case__ ) UpperCAmelCase__ = PegasusForConditionalGeneration(snake_case__ ) UpperCAmelCase__ = torch_model.model.state_dict() UpperCAmelCase__ = {} for k, v in tf_weights.items(): UpperCAmelCase__ = rename_state_dict_key(snake_case__ ) if new_k not in sd: raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})" ) if "dense" in k or "proj" in new_k: UpperCAmelCase__ = v.T UpperCAmelCase__ = torch.tensor(snake_case__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f"{new_k}, {k}, {v.shape}, {sd[new_k].shape}" # make sure embedding.padding_idx is respected UpperCAmelCase__ = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] ) UpperCAmelCase__ = mapping['shared.weight'] UpperCAmelCase__ = mapping['shared.weight'] UpperCAmelCase__ = {k: torch.zeros_like(snake_case__ ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping} mapping.update(**snake_case__ ) UpperCAmelCase__ , UpperCAmelCase__ = torch_model.model.load_state_dict(snake_case__ , strict=snake_case__ ) UpperCAmelCase__ = [ k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight'] ] assert unexpected_missing == [], f"no matches found for the following torch keys {unexpected_missing}" assert extra == [], f"no matches found for the following tf keys {extra}" return torch_model def UpperCamelCase_( snake_case__: int="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: UpperCAmelCase__ = tf.train.list_variables(snake_case__ ) UpperCAmelCase__ = {} UpperCAmelCase__ = ['Adafactor', 'global_step'] for name, shape in tqdm(snake_case__ , desc='converting tf checkpoint to dict' ): UpperCAmelCase__ = any(pat in name for pat in ignore_name ) if skip_key: continue UpperCAmelCase__ = tf.train.load_variable(snake_case__ , snake_case__ ) UpperCAmelCase__ = array return tf_weights def UpperCamelCase_( snake_case__: str , snake_case__: str ) -> Optional[Any]: # save tokenizer first UpperCAmelCase__ = Path(snake_case__ ).parent.name UpperCAmelCase__ = task_specific_params[f"summarization_{dataset}"]['max_position_embeddings'] UpperCAmelCase__ = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=snake_case__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(snake_case__ ) # convert model UpperCAmelCase__ = get_tf_weights_as_numpy(snake_case__ ) UpperCAmelCase__ = task_specific_params[f"summarization_{dataset}"] if dataset == "large": UpperCAmelCase__ = task_specific_params UpperCAmelCase__ = convert_pegasus(snake_case__ , snake_case__ ) torch_model.save_pretrained(snake_case__ ) UpperCAmelCase__ = torch_model.state_dict() sd.pop('model.decoder.embed_positions.weight' ) sd.pop('model.encoder.embed_positions.weight' ) torch.save(snake_case__ , Path(snake_case__ ) / 'pytorch_model.bin' ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') _UpperCamelCase = parser.parse_args() if args.save_dir is None: _UpperCamelCase = Path(args.tf_ckpt_path).parent.name _UpperCamelCase = os.path.join('''pegasus''', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
335
1
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): _snake_case : Optional[Any] = 'pt' elif is_tf_available(): _snake_case : List[str] = 'tf' else: _snake_case : List[str] = 'jax' class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = ByTaTokenizer a_ = False def lowercase ( self : Any ) -> Dict: super().setUp() __lowerCAmelCase = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase ( self : str ) -> List[Any]: return ByTaTokenizer.from_pretrained('google/byt5-small' ) def lowercase ( self : Any , **lowerCAmelCase_ : List[Any] ) -> ByTaTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def lowercase ( self : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : Dict=2_0 , lowerCAmelCase_ : List[str]=5 ) -> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. __lowerCAmelCase = [] for i in range(len(lowerCAmelCase_ ) ): try: __lowerCAmelCase = tokenizer.decode([i] , clean_up_tokenization_spaces=lowerCAmelCase_ ) except UnicodeDecodeError: pass toks.append((i, tok) ) __lowerCAmelCase = list(filter(lambda lowerCAmelCase_ : re.match(R'^[ a-zA-Z]+$' , t[1] ) , lowerCAmelCase_ ) ) __lowerCAmelCase = list(filter(lambda lowerCAmelCase_ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=lowerCAmelCase_ ) , lowerCAmelCase_ ) ) if max_length is not None and len(lowerCAmelCase_ ) > max_length: __lowerCAmelCase = toks[:max_length] if min_length is not None and len(lowerCAmelCase_ ) < min_length and len(lowerCAmelCase_ ) > 0: while len(lowerCAmelCase_ ) < min_length: __lowerCAmelCase = toks + toks # toks_str = [t[1] for t in toks] __lowerCAmelCase = [t[0] for t in toks] # Ensure consistency __lowerCAmelCase = tokenizer.decode(lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) if " " not in output_txt and len(lowerCAmelCase_ ) > 1: __lowerCAmelCase = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowerCAmelCase_ ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowerCAmelCase_ ) ) if with_prefix_space: __lowerCAmelCase = ' ' + output_txt __lowerCAmelCase = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) return output_txt, output_ids def lowercase ( self : Optional[int] ) -> int: __lowerCAmelCase = self.ta_base_tokenizer __lowerCAmelCase = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] ) __lowerCAmelCase = tokenizer(['hi', 'I went to the gym', ''] ) self.assertListEqual(batch_with_eos_added['input_ids'] , batch_without_eos_added['input_ids'] ) def lowercase ( self : Tuple ) -> Any: __lowerCAmelCase = self.ta_base_tokenizer __lowerCAmelCase = 'Unicode €.' __lowerCAmelCase = tokenizer(lowerCAmelCase_ ) __lowerCAmelCase = [8_8, 1_1_3, 1_0_8, 1_0_2, 1_1_4, 1_0_3, 1_0_4, 3_5, 2_2_9, 1_3_3, 1_7_5, 4_9, 1] self.assertEqual(encoded['input_ids'] , lowerCAmelCase_ ) # decoding __lowerCAmelCase = tokenizer.decode(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , 'Unicode €.</s>' ) __lowerCAmelCase = tokenizer('e è é ê ë' ) __lowerCAmelCase = [1_0_4, 3_5, 1_9_8, 1_7_1, 3_5, 1_9_8, 1_7_2, 3_5, 1_9_8, 1_7_3, 3_5, 1_9_8, 1_7_4, 1] self.assertEqual(encoded['input_ids'] , lowerCAmelCase_ ) # decoding __lowerCAmelCase = tokenizer.decode(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , 'e è é ê ë</s>' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , 'e è é ê ë</s>' ) def lowercase ( self : int ) -> Tuple: __lowerCAmelCase = self.ta_base_tokenizer __lowerCAmelCase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off __lowerCAmelCase = [6_8, 3_5, 1_1_1, 1_1_4, 1_1_3, 1_0_6, 3_5, 1_1_5, 1_0_0, 1_1_7, 1_0_0, 1_0_6, 1_1_7, 1_0_0, 1_1_5, 1_0_7, 3_5, 1_0_5, 1_1_4, 1_1_7, 3_5, 1_1_8, 1_2_0, 1_1_2, 1_1_2, 1_0_0, 1_1_7, 1_0_8, 1_2_5, 1_0_0, 1_1_9, 1_0_8, 1_1_4, 1_1_3, 4_9, 1, 0] # fmt: on __lowerCAmelCase = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) if FRAMEWORK != "jax": __lowerCAmelCase = list(batch.input_ids.numpy()[0] ) else: __lowerCAmelCase = list(batch.input_ids.tolist()[0] ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual((2, 3_7) , batch.input_ids.shape ) self.assertEqual((2, 3_7) , batch.attention_mask.shape ) def lowercase ( self : Tuple ) -> Optional[Any]: __lowerCAmelCase = self.ta_base_tokenizer __lowerCAmelCase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __lowerCAmelCase = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , lowerCAmelCase_ ) self.assertIn('attention_mask' , lowerCAmelCase_ ) self.assertNotIn('decoder_input_ids' , lowerCAmelCase_ ) self.assertNotIn('decoder_attention_mask' , lowerCAmelCase_ ) def lowercase ( self : Optional[Any] ) -> Optional[int]: __lowerCAmelCase = self.ta_base_tokenizer __lowerCAmelCase = [ 'Summary of the text.', 'Another summary.', ] __lowerCAmelCase = tokenizer( text_target=lowerCAmelCase_ , max_length=3_2 , padding='max_length' , truncation=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ ) self.assertEqual(3_2 , targets['input_ids'].shape[1] ) def lowercase ( self : Dict ) -> Union[str, Any]: __lowerCAmelCase = self.ta_base_tokenizer __lowerCAmelCase = ['A long paragraph for summarization. </s>'] __lowerCAmelCase = ['Summary of the text. </s>'] # fmt: off __lowerCAmelCase = [6_8, 3_5, 1_1_1, 1_1_4, 1_1_3, 1_0_6, 3_5, 1_1_5, 1_0_0, 1_1_7, 1_0_0, 1_0_6, 1_1_7, 1_0_0, 1_1_5, 1_0_7, 3_5, 1_0_5, 1_1_4, 1_1_7, 3_5, 1_1_8, 1_2_0, 1_1_2, 1_1_2, 1_0_0, 1_1_7, 1_0_8, 1_2_5, 1_0_0, 1_1_9, 1_0_8, 1_1_4, 1_1_3, 4_9, 3_5, 1] __lowerCAmelCase = [8_6, 1_2_0, 1_1_2, 1_1_2, 1_0_0, 1_1_7, 1_2_4, 3_5, 1_1_4, 1_0_5, 3_5, 1_1_9, 1_0_7, 1_0_4, 3_5, 1_1_9, 1_0_4, 1_2_3, 1_1_9, 4_9, 3_5, 1] # fmt: on __lowerCAmelCase = tokenizer(lowerCAmelCase_ , text_target=lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , batch['input_ids'][0] ) self.assertEqual(lowerCAmelCase_ , batch['labels'][0] ) def lowercase ( self : Any ) -> Union[str, Any]: # safety check on max_len default value so we are sure the test works __lowerCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 4_2 ) # Now let's start the test __lowerCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc __lowerCAmelCase = tempfile.mkdtemp() __lowerCAmelCase = ' He is very happy, UNwant\u00E9d,running' __lowerCAmelCase = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) tokenizer.save_pretrained(lowerCAmelCase_ ) __lowerCAmelCase = tokenizer.__class__.from_pretrained(lowerCAmelCase_ ) __lowerCAmelCase = after_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) shutil.rmtree(lowerCAmelCase_ ) __lowerCAmelCase = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc __lowerCAmelCase = tempfile.mkdtemp() __lowerCAmelCase = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) __lowerCAmelCase = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) __lowerCAmelCase = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) tokenizer.save_pretrained(lowerCAmelCase_ ) __lowerCAmelCase = tokenizer.__class__.from_pretrained(lowerCAmelCase_ ) __lowerCAmelCase = after_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 4_2 ) __lowerCAmelCase = tokenizer.__class__.from_pretrained(lowerCAmelCase_ , model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length , 4_3 ) shutil.rmtree(lowerCAmelCase_ ) def lowercase ( self : Optional[int] ) -> Union[str, Any]: __lowerCAmelCase = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowerCAmelCase_ ) with open(os.path.join(lowerCAmelCase_ , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: __lowerCAmelCase = json.load(lowerCAmelCase_ ) with open(os.path.join(lowerCAmelCase_ , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: __lowerCAmelCase = json.load(lowerCAmelCase_ ) __lowerCAmelCase = [f"""<extra_id_{i}>""" for i in range(1_2_5 )] __lowerCAmelCase = added_tokens_extra_ids + [ 'an_additional_special_token' ] __lowerCAmelCase = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(lowerCAmelCase_ , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) with open(os.path.join(lowerCAmelCase_ , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __lowerCAmelCase = tokenizer_class.from_pretrained( lowerCAmelCase_ , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __lowerCAmelCase = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=lowerCAmelCase_ )] __lowerCAmelCase = tokenizer_class.from_pretrained( lowerCAmelCase_ , additional_special_tokens=lowerCAmelCase_ , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def lowercase ( self : List[str] ) -> Optional[int]: __lowerCAmelCase = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowerCAmelCase_ ) __lowerCAmelCase = tokenizer_class.from_pretrained(lowerCAmelCase_ ) self.assertTrue(tokenizer.decode([2_5_5] ) == '' ) def lowercase ( self : str ) -> List[Any]: pass def lowercase ( self : Tuple ) -> Dict: pass def lowercase ( self : int ) -> Any: pass def lowercase ( self : Any ) -> Tuple: pass def lowercase ( self : List[str] ) -> int: # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens __lowerCAmelCase = self.get_tokenizers(fast=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): __lowerCAmelCase = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>'] __lowerCAmelCase = tokenizer.convert_tokens_to_string(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : str ) -> List[str]: __lowerCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): __lowerCAmelCase = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] __lowerCAmelCase = 0 __lowerCAmelCase = tokenizer.convert_ids_to_tokens( lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) for attr in attributes_list: setattr(lowerCAmelCase_ , attr + '_id' , lowerCAmelCase_ ) self.assertEqual(getattr(lowerCAmelCase_ , lowerCAmelCase_ ) , lowerCAmelCase_ ) self.assertEqual(getattr(lowerCAmelCase_ , attr + '_id' ) , lowerCAmelCase_ ) setattr(lowerCAmelCase_ , attr + '_id' , lowerCAmelCase_ ) self.assertEqual(getattr(lowerCAmelCase_ , lowerCAmelCase_ ) , lowerCAmelCase_ ) self.assertEqual(getattr(lowerCAmelCase_ , attr + '_id' ) , lowerCAmelCase_ ) setattr(lowerCAmelCase_ , 'additional_special_tokens_ids' , [] ) self.assertListEqual(getattr(lowerCAmelCase_ , 'additional_special_tokens' ) , [] ) self.assertListEqual(getattr(lowerCAmelCase_ , 'additional_special_tokens_ids' ) , [] ) setattr(lowerCAmelCase_ , 'additional_special_tokens_ids' , [token_id_to_test_setters] ) self.assertListEqual(getattr(lowerCAmelCase_ , 'additional_special_tokens' ) , [token_to_test_setters] ) self.assertListEqual(getattr(lowerCAmelCase_ , 'additional_special_tokens_ids' ) , [token_id_to_test_setters] )
284
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _snake_case : List[Any] = { 'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'], 'tokenization_biogpt': ['BioGptTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Optional[int] = [ 'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BioGptForCausalLM', 'BioGptForTokenClassification', 'BioGptForSequenceClassification', 'BioGptModel', 'BioGptPreTrainedModel', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys _snake_case : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
284
1
'''simple docstring''' def __UpperCamelCase ( ): lowercase__ : Any = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] lowercase__ : Any = 6 lowercase__ : Optional[Any] = 1 lowercase__ : int = 1901 lowercase__ : List[str] = 0 while year < 2001: day += 7 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 lowercase__ : List[Any] = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 lowercase__ : Any = day - 29 else: if day > days_per_month[month - 1]: month += 1 lowercase__ : List[Any] = day - days_per_month[month - 2] if month > 12: year += 1 lowercase__ : Dict = 1 if year < 2001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
214
'''simple docstring''' def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): lowercase__ : Dict = len(UpperCAmelCase ) print('''The following activities are selected:''' ) # The first activity is always selected lowercase__ : str = 0 print(UpperCAmelCase , end=''',''' ) # Consider rest of the activities for j in range(UpperCAmelCase ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(UpperCAmelCase , end=''',''' ) lowercase__ : str = j if __name__ == "__main__": import doctest doctest.testmod() __a: str = [1, 3, 0, 5, 8, 5] __a: Optional[Any] = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
214
1
'''simple docstring''' from __future__ import annotations def _A ( snake_case , snake_case , snake_case , snake_case ) -> int: # noqa: E741 while r - l > 1: _lowercase : Dict = (l + r) // 2 if v[m] >= key: _lowercase : List[Any] = m else: _lowercase : Tuple = m # noqa: E741 return r def _A ( snake_case ) -> int: if len(snake_case ) == 0: return 0 _lowercase : Union[str, Any] = [0] * len(snake_case ) _lowercase : Optional[Any] = 1 _lowercase : int = v[0] for i in range(1 , len(snake_case ) ): if v[i] < tail[0]: _lowercase : List[Any] = v[i] elif v[i] > tail[length - 1]: _lowercase : Tuple = v[i] length += 1 else: _lowercase : List[str] = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
250
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging _snake_case = logging.get_logger(__name__) if is_vision_available(): import PIL class a__ ( lowerCamelCase_ ): _SCREAMING_SNAKE_CASE : Dict = ['pixel_values'] def __init__( self , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = PILImageResampling.BICUBIC , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = True , _UpperCamelCase = 1 / 255 , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = True , **_UpperCamelCase , ): """simple docstring""" super().__init__(**_UpperCamelCase ) _lowercase : Dict = size if size is not None else {"shortest_edge": 224} _lowercase : List[Any] = get_size_dict(_UpperCamelCase , default_to_square=_UpperCamelCase ) _lowercase : Union[str, Any] = crop_size if crop_size is not None else {"height": 224, "width": 224} _lowercase : Tuple = get_size_dict(_UpperCamelCase , default_to_square=_UpperCamelCase , param_name="crop_size" ) _lowercase : List[str] = do_resize _lowercase : Dict = size _lowercase : Any = resample _lowercase : int = do_center_crop _lowercase : Optional[Any] = crop_size _lowercase : Tuple = do_rescale _lowercase : Any = rescale_factor _lowercase : Union[str, Any] = do_normalize _lowercase : List[Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _lowercase : List[Any] = image_std if image_std is not None else OPENAI_CLIP_STD _lowercase : Optional[int] = do_convert_rgb def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = PILImageResampling.BICUBIC , _UpperCamelCase = None , **_UpperCamelCase , ): """simple docstring""" _lowercase : int = get_size_dict(_UpperCamelCase , default_to_square=_UpperCamelCase ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) _lowercase : List[str] = get_resize_output_image_size(_UpperCamelCase , size=size["shortest_edge"] , default_to_square=_UpperCamelCase ) return resize(_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ): """simple docstring""" _lowercase : int = get_size_dict(_UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(_UpperCamelCase , size=(size["height"], size["width"]) , data_format=_UpperCamelCase , **_UpperCamelCase ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ): """simple docstring""" return rescale(_UpperCamelCase , scale=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ): """simple docstring""" return normalize(_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = ChannelDimension.FIRST , **_UpperCamelCase , ): """simple docstring""" _lowercase : Tuple = do_resize if do_resize is not None else self.do_resize _lowercase : Union[str, Any] = size if size is not None else self.size _lowercase : Optional[int] = get_size_dict(_UpperCamelCase , param_name="size" , default_to_square=_UpperCamelCase ) _lowercase : List[Any] = resample if resample is not None else self.resample _lowercase : Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop _lowercase : Union[str, Any] = crop_size if crop_size is not None else self.crop_size _lowercase : Tuple = get_size_dict(_UpperCamelCase , param_name="crop_size" , default_to_square=_UpperCamelCase ) _lowercase : Any = do_rescale if do_rescale is not None else self.do_rescale _lowercase : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _lowercase : List[str] = do_normalize if do_normalize is not None else self.do_normalize _lowercase : Optional[int] = image_mean if image_mean is not None else self.image_mean _lowercase : Dict = image_std if image_std is not None else self.image_std _lowercase : Tuple = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _lowercase : str = make_list_of_images(_UpperCamelCase ) if not valid_images(_UpperCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: _lowercase : List[Any] = [convert_to_rgb(_UpperCamelCase ) for image in images] # All transformations expect numpy arrays. _lowercase : List[Any] = [to_numpy_array(_UpperCamelCase ) for image in images] if do_resize: _lowercase : Optional[Any] = [self.resize(image=_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase ) for image in images] if do_center_crop: _lowercase : Optional[int] = [self.center_crop(image=_UpperCamelCase , size=_UpperCamelCase ) for image in images] if do_rescale: _lowercase : Any = [self.rescale(image=_UpperCamelCase , scale=_UpperCamelCase ) for image in images] if do_normalize: _lowercase : List[Any] = [self.normalize(image=_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase ) for image in images] _lowercase : List[Any] = [to_channel_dimension_format(_UpperCamelCase , _UpperCamelCase ) for image in images] _lowercase : Dict = {"pixel_values": images} return BatchFeature(data=_UpperCamelCase , tensor_type=_UpperCamelCase )
250
1
"""simple docstring""" from __future__ import annotations from collections.abc import Generator def UpperCAmelCase ( ): """simple docstring""" A__ = {} A__ = 2 while True: A__ = factor_map.pop(UpperCamelCase__ , UpperCamelCase__ ) if factor: A__ = factor + prime while x in factor_map: x += factor A__ = factor else: A__ = prime yield prime prime += 1 def UpperCAmelCase ( UpperCamelCase__ = 1E10 ): """simple docstring""" A__ = sieve() A__ = 1 while True: A__ = next(UpperCamelCase__ ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(UpperCamelCase__ ) n += 2 if __name__ == "__main__": print(solution())
154
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCamelCase = { "configuration_timesformer": ["TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimesformerConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ "TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimesformerModel", "TimesformerForVideoClassification", "TimesformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
154
1
def __UpperCamelCase ( _A ): lowerCAmelCase_ = set() # To detect a back edge, keep track of vertices currently in the recursion stack lowerCAmelCase_ = set() return any( node not in visited and depth_first_search(_A , _A , _A , _A ) for node in graph ) def __UpperCamelCase ( _A , _A , _A , _A ): visited.add(_A ) rec_stk.add(_A ) for node in graph[vertex]: if node not in visited: if depth_first_search(_A , _A , _A , _A ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(_A ) return False if __name__ == "__main__": from doctest import testmod testmod()
278
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __UpperCamelCase ( _A ): lowerCAmelCase_ = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2] lowerCAmelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False lowerCAmelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False lowerCAmelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: lowerCAmelCase_ = [3, 3, 3, 3] lowerCAmelCase_ = [5, 5, 5, 5] elif "fl4" in model_name: lowerCAmelCase_ = [4, 4, 4, 4] lowerCAmelCase_ = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: lowerCAmelCase_ = [3, 3, 3, 3] if "lrf" in model_name: lowerCAmelCase_ = [3, 3, 3, 3] else: lowerCAmelCase_ = [2, 2, 2, 2] if "tiny" in model_name: lowerCAmelCase_ = 96 elif "small" in model_name: lowerCAmelCase_ = 96 elif "base" in model_name: lowerCAmelCase_ = 128 elif "large" in model_name: lowerCAmelCase_ = 192 elif "xlarge" in model_name: lowerCAmelCase_ = 256 elif "huge" in model_name: lowerCAmelCase_ = 352 # set label information lowerCAmelCase_ = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: lowerCAmelCase_ = '''imagenet-22k-id2label.json''' else: lowerCAmelCase_ = '''imagenet-1k-id2label.json''' lowerCAmelCase_ = json.load(open(hf_hub_download(_A , _A , repo_type='''dataset''' ) , '''r''' ) ) lowerCAmelCase_ = {int(_A ): v for k, v in idalabel.items()} lowerCAmelCase_ = {v: k for k, v in idalabel.items()} lowerCAmelCase_ = FocalNetConfig( embed_dim=_A , depths=_A , focal_levels=_A , focal_windows=_A , use_conv_embed=_A , idalabel=_A , labelaid=_A , use_post_layernorm=_A , use_layerscale=_A , ) return config def __UpperCamelCase ( _A ): if "patch_embed.proj" in name: lowerCAmelCase_ = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowerCAmelCase_ = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: lowerCAmelCase_ = '''encoder.''' + name if "encoder.layers" in name: lowerCAmelCase_ = name.replace('''encoder.layers''' , '''encoder.stages''' ) if "downsample.proj" in name: lowerCAmelCase_ = name.replace('''downsample.proj''' , '''downsample.projection''' ) if "blocks" in name: lowerCAmelCase_ = name.replace('''blocks''' , '''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: lowerCAmelCase_ = name.replace('''modulation.f''' , '''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: lowerCAmelCase_ = name.replace('''modulation.h''' , '''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: lowerCAmelCase_ = name.replace('''modulation.proj''' , '''modulation.projection_out''' ) if name == "norm.weight": lowerCAmelCase_ = '''layernorm.weight''' if name == "norm.bias": lowerCAmelCase_ = '''layernorm.bias''' if "head" in name: lowerCAmelCase_ = name.replace('''head''' , '''classifier''' ) else: lowerCAmelCase_ = '''focalnet.''' + name return name def __UpperCamelCase ( _A , _A , _A=False ): # fmt: off lowerCAmelCase_ = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on lowerCAmelCase_ = model_name_to_url[model_name] print('''Checkpoint URL: ''' , _A ) lowerCAmelCase_ = torch.hub.load_state_dict_from_url(_A , map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): lowerCAmelCase_ = state_dict.pop(_A ) lowerCAmelCase_ = val lowerCAmelCase_ = get_focalnet_config(_A ) lowerCAmelCase_ = FocalNetForImageClassification(_A ) model.eval() # load state dict model.load_state_dict(_A ) # verify conversion lowerCAmelCase_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase_ = BitImageProcessor( do_resize=_A , size={'''shortest_edge''': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=_A , crop_size=224 , do_normalize=_A , image_mean=_A , image_std=_A , ) lowerCAmelCase_ = Image.open(requests.get(_A , stream=_A ).raw ) lowerCAmelCase_ = processor(images=_A , return_tensors='''pt''' ) lowerCAmelCase_ = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ), ] ) lowerCAmelCase_ = image_transforms(_A ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , _A , atol=1E-4 ) lowerCAmelCase_ = model(**_A ) lowerCAmelCase_ = outputs.logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": lowerCAmelCase_ = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ) elif model_name == "focalnet-tiny-lrf": lowerCAmelCase_ = torch.tensor([1.1_6_6_9, 0.0_1_2_5, -0.1_6_9_5] ) elif model_name == "focalnet-small": lowerCAmelCase_ = torch.tensor([0.4_9_1_7, -0.0_4_3_0, 0.1_3_4_1] ) elif model_name == "focalnet-small-lrf": lowerCAmelCase_ = torch.tensor([-0.2_5_8_8, -0.5_3_4_2, -0.2_3_3_1] ) elif model_name == "focalnet-base": lowerCAmelCase_ = torch.tensor([-0.1_6_5_5, -0.4_0_9_0, -0.1_7_3_0] ) elif model_name == "focalnet-base-lrf": lowerCAmelCase_ = torch.tensor([0.5_3_0_6, -0.0_4_8_3, -0.3_9_2_8] ) assert torch.allclose(outputs.logits[0, :3] , _A , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"Saving model and processor of {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_A ) processor.save_pretrained(_A ) if push_to_hub: print(f"Pushing model and processor of {model_name} to the hub..." ) model.push_to_hub(f"{model_name}" ) processor.push_to_hub(f"{model_name}" ) if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''focalnet-tiny''', type=str, help='''Name of the FocalNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub.''', ) _A = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
278
1
import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: nn.ModuleList , lowerCAmelCase: nn.ModuleList , lowerCAmelCase: List[int] ) -> None: _UpperCAmelCase : Tuple = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(lowerCAmelCase ) == len(lowerCAmelCase ), F'{len(lowerCAmelCase )} != {len(lowerCAmelCase )}' dest_layers.load_state_dict(layers_to_copy.state_dict() ) SCREAMING_SNAKE_CASE_ = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } SCREAMING_SNAKE_CASE_ = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int , lowerCAmelCase: Optional[Any] ) -> Any: try: _UpperCAmelCase : Optional[Any] = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F'no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first' F' {n_student}' ) return list(range(lowerCAmelCase ) ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: List[str] , lowerCAmelCase: int ) -> List[int]: if n_student > n_teacher: raise ValueError(F'Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}' ) elif n_teacher == n_student: return list(range(lowerCAmelCase ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Union[str, PreTrainedModel] , lowerCAmelCase: Union[str, Path] = "student" , lowerCAmelCase: Union[int, None] = None , lowerCAmelCase: Union[int, None] = None , lowerCAmelCase: Tuple=False , lowerCAmelCase: List[Any]=None , lowerCAmelCase: Tuple=None , **lowerCAmelCase: Any , ) -> Tuple[PreTrainedModel, List[int], List[int]]: _UpperCAmelCase : Tuple = "encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher." assert (e is not None) or (d is not None), _msg if isinstance(lowerCAmelCase , lowerCAmelCase ): AutoTokenizer.from_pretrained(lowerCAmelCase ).save_pretrained(lowerCAmelCase ) # purely for convenience _UpperCAmelCase : str = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase ).eval() else: assert isinstance(lowerCAmelCase , lowerCAmelCase ), F'teacher must be a model or string got type {type(lowerCAmelCase )}' _UpperCAmelCase : List[str] = teacher.config.to_diff_dict() try: _UpperCAmelCase , _UpperCAmelCase : Optional[int] = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: _UpperCAmelCase : Optional[Any] = teacher_e if d is None: _UpperCAmelCase : str = teacher_d init_kwargs.update({"encoder_layers": e, "decoder_layers": d} ) except AttributeError: # T5 if hasattr(teacher.config , "num_encoder_layers" ): _UpperCAmelCase , _UpperCAmelCase : str = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: _UpperCAmelCase , _UpperCAmelCase : List[Any] = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: _UpperCAmelCase : List[Any] = teacher_e if d is None: _UpperCAmelCase : Optional[int] = teacher_d if hasattr(teacher.config , "num_encoder_layers" ): init_kwargs.update({"num_encoder_layers": e, "num_decoder_layers": d} ) else: init_kwargs.update({"num_layers": e, "num_decoder_layers": d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(lowerCAmelCase ) # Copy weights _UpperCAmelCase : Tuple = teacher.config_class(**lowerCAmelCase ) _UpperCAmelCase : int = AutoModelForSeqaSeqLM.from_config(lowerCAmelCase ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. _UpperCAmelCase : int = student.load_state_dict(teacher.state_dict() , strict=lowerCAmelCase ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save _UpperCAmelCase , _UpperCAmelCase : Dict = list(range(lowerCAmelCase ) ), list(range(lowerCAmelCase ) ) logger.info( F'Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to' F' {save_path}' ) student.save_pretrained(lowerCAmelCase ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: _UpperCAmelCase : List[int] = pick_layers_to_copy(lowerCAmelCase , lowerCAmelCase ) if d_layers_to_copy is None: _UpperCAmelCase : List[int] = pick_layers_to_copy(lowerCAmelCase , lowerCAmelCase ) try: if hasattr( lowerCAmelCase , "prophetnet" ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , lowerCAmelCase ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , lowerCAmelCase ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , lowerCAmelCase ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , lowerCAmelCase ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , lowerCAmelCase ) copy_layers(teacher.decoder.block , student.decoder.block , lowerCAmelCase ) logger.info( F'Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}' ) _UpperCAmelCase : Dict = { "teacher_type": teacher.config.model_type, "copied_encoder_layers": e_layers_to_copy, "copied_decoder_layers": d_layers_to_copy, } student.save_pretrained(lowerCAmelCase ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
189
from typing import Any class a : def __init__( self , A_ ): '''simple docstring''' _UpperCAmelCase : List[Any] = data _UpperCAmelCase : Any = None class a : def __init__( self ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = None def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : str = self.head while temp is not None: print(temp.data , end=" " ) _UpperCAmelCase : str = temp.next print() def _UpperCAmelCase ( self , A_ ): '''simple docstring''' _UpperCAmelCase : Optional[int] = Node(A_ ) _UpperCAmelCase : Tuple = self.head _UpperCAmelCase : Tuple = new_node def _UpperCAmelCase ( self , A_ , A_ ): '''simple docstring''' if node_data_a == node_data_a: return else: _UpperCAmelCase : int = self.head while node_a is not None and node_a.data != node_data_a: _UpperCAmelCase : Tuple = node_a.next _UpperCAmelCase : Dict = self.head while node_a is not None and node_a.data != node_data_a: _UpperCAmelCase : List[Any] = node_a.next if node_a is None or node_a is None: return _UpperCAmelCase , _UpperCAmelCase : Optional[int] = node_a.data, node_a.data if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('After swapping') ll.print_list()
189
1
"""simple docstring""" from math import factorial def a__ ( snake_case__ = 20 ) -> int: lowerCamelCase = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... lowerCamelCase = n // 2 return int(factorial(lowercase_ ) / (factorial(lowercase_ ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: lowerCAmelCase : List[str] = int(sys.argv[1]) print(solution(n)) except ValueError: print("""Invalid entry - please enter a number.""")
291
def UpperCamelCase (lowercase_: int = 10 ) -> str: if not isinstance(lowercase_ , lowercase_ ) or n < 0: raise ValueError("""Invalid input""" ) A__ : List[str] = 10**n A__ : Any = 28433 * (pow(2 , 7830457 , lowercase_ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(f'''{solution(10) = }''')
192
0
'''simple docstring''' def __lowerCamelCase ( lowerCAmelCase_ ) -> Any: if len(lowerCAmelCase_ ) <= 1: return [tuple(lowerCAmelCase_ )] _a : Any = [] def generate(lowerCAmelCase_ , lowerCAmelCase_ ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , lowerCAmelCase_ ) for i in range(k - 1 ): if k % 2 == 0: # k is even _a , _a : Union[str, Any] = arr[k - 1], arr[i] else: # k is odd _a , _a : str = arr[k - 1], arr[0] generate(k - 1 , lowerCAmelCase_ ) generate(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) return res if __name__ == "__main__": __lowerCAmelCase = input('''Enter numbers separated by a comma:\n''').strip() __lowerCAmelCase = [int(item) for item in user_input.split(''',''')] print(heaps(arr))
355
'''simple docstring''' import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller __lowerCAmelCase = 3 def __lowerCamelCase ( lowerCAmelCase_ ) -> int: print('Generating primitive root of p' ) while True: _a : List[Any] = random.randrange(3 , lowerCAmelCase_ ) if pow(lowerCAmelCase_ , 2 , lowerCAmelCase_ ) == 1: continue if pow(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) == 1: continue return g def __lowerCamelCase ( lowerCAmelCase_ ) -> tuple[tuple[int, int, int, int], tuple[int, int]]: print('Generating prime p...' ) _a : int = rabin_miller.generate_large_prime(lowerCAmelCase_ ) # select large prime number. _a : List[str] = primitive_root(lowerCAmelCase_ ) # one primitive root on modulo p. _a : Any = random.randrange(3 , lowerCAmelCase_ ) # private_key -> have to be greater than 2 for safety. _a : List[Any] = cryptomath.find_mod_inverse(pow(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) , lowerCAmelCase_ ) _a : Tuple = (key_size, e_a, e_a, p) _a : str = (key_size, d) return public_key, private_key def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> None: if os.path.exists(f"""{name}_pubkey.txt""" ) or os.path.exists(f"""{name}_privkey.txt""" ): print('\nWARNING:' ) print( f"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" 'Use a different name or delete these files and re-run this program.' ) sys.exit() _a , _a : Dict = generate_key(lowerCAmelCase_ ) print(f"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(f"""{name}_pubkey.txt""" , 'w' ) as fo: fo.write(f"""{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}""" ) print(f"""Writing private key to file {name}_privkey.txt...""" ) with open(f"""{name}_privkey.txt""" , 'w' ) as fo: fo.write(f"""{private_key[0]},{private_key[1]}""" ) def __lowerCamelCase ( ) -> None: print('Making key files...' ) make_key_files('elgamal' , 2048 ) print('Key files generation successful' ) if __name__ == "__main__": main()
107
0
'''simple docstring''' import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A__ : Dict =get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class UpperCAmelCase ( snake_case_ , unittest.TestCase ): _lowercase: Optional[Any] = XLMRobertaTokenizer _lowercase: Any = XLMRobertaTokenizerFast _lowercase: int = True _lowercase: Union[str, Any] = True def lowercase__ ( self : List[Any] ) -> Tuple: super().setUp() # We have a SentencePiece fixture for testing _lowerCAmelCase = XLMRobertaTokenizer(__snake_case , keep_accents=__snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : Optional[Any] ) -> List[str]: _lowerCAmelCase = """<pad>""" _lowerCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case ) , __snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case ) , __snake_case ) def lowercase__ ( self : Dict ) -> Union[str, Any]: _lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(__snake_case ) , 10_02 ) def lowercase__ ( self : Optional[Any] ) -> List[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 10_02 ) def lowercase__ ( self : Dict ) -> Dict: _lowerCAmelCase = XLMRobertaTokenizer(__snake_case , keep_accents=__snake_case ) _lowerCAmelCase = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__snake_case , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__snake_case ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) _lowerCAmelCase = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __snake_case , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) _lowerCAmelCase = tokenizer.convert_tokens_to_ids(__snake_case ) self.assertListEqual( __snake_case , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) _lowerCAmelCase = tokenizer.convert_ids_to_tokens(__snake_case ) self.assertListEqual( __snake_case , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def lowercase__ ( self : List[str] ) -> Tuple: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return _lowerCAmelCase = (self.rust_tokenizer_class, """hf-internal-testing/tiny-xlm-roberta""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): _lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) _lowerCAmelCase = self.tokenizer_class.from_pretrained(__snake_case , **__snake_case ) _lowerCAmelCase = tempfile.mkdtemp() _lowerCAmelCase = tokenizer_r.save_pretrained(__snake_case ) _lowerCAmelCase = tokenizer_p.save_pretrained(__snake_case ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) _lowerCAmelCase = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(__snake_case , __snake_case ) # Checks everything loads correctly in the same way _lowerCAmelCase = tokenizer_r.from_pretrained(__snake_case ) _lowerCAmelCase = tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__snake_case ) # Save tokenizer rust, legacy_format=True _lowerCAmelCase = tempfile.mkdtemp() _lowerCAmelCase = tokenizer_r.save_pretrained(__snake_case , legacy_format=__snake_case ) _lowerCAmelCase = tokenizer_p.save_pretrained(__snake_case ) # Checks it save with the same files self.assertSequenceEqual(__snake_case , __snake_case ) # Checks everything loads correctly in the same way _lowerCAmelCase = tokenizer_r.from_pretrained(__snake_case ) _lowerCAmelCase = tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) # Save tokenizer rust, legacy_format=False _lowerCAmelCase = tempfile.mkdtemp() _lowerCAmelCase = tokenizer_r.save_pretrained(__snake_case , legacy_format=__snake_case ) _lowerCAmelCase = tokenizer_p.save_pretrained(__snake_case ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way _lowerCAmelCase = tokenizer_r.from_pretrained(__snake_case ) _lowerCAmelCase = tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) @cached_property def lowercase__ ( self : Dict ) -> List[Any]: return XLMRobertaTokenizer.from_pretrained("""xlm-roberta-base""" ) def lowercase__ ( self : Union[str, Any] ) -> List[str]: with tempfile.NamedTemporaryFile() as f: shutil.copyfile(__snake_case , f.name ) _lowerCAmelCase = XLMRobertaTokenizer(f.name , keep_accents=__snake_case ) _lowerCAmelCase = pickle.dumps(__snake_case ) pickle.loads(__snake_case ) def lowercase__ ( self : Optional[int] ) -> List[str]: if not self.test_rust_tokenizer: return _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = self.get_rust_tokenizer() _lowerCAmelCase = """I was born in 92000, and this is falsé.""" _lowerCAmelCase = tokenizer.tokenize(__snake_case ) _lowerCAmelCase = rust_tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) _lowerCAmelCase = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) _lowerCAmelCase = rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) _lowerCAmelCase = self.get_rust_tokenizer() _lowerCAmelCase = tokenizer.encode(__snake_case ) _lowerCAmelCase = rust_tokenizer.encode(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) @slow def lowercase__ ( self : Dict ) -> List[str]: _lowerCAmelCase = """Hello World!""" _lowerCAmelCase = [0, 3_53_78, 66_61, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(__snake_case , self.big_tokenizer.encode(__snake_case ) ) @slow def lowercase__ ( self : Optional[Any] ) -> Optional[int]: _lowerCAmelCase = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) _lowerCAmelCase = [ 0, 32_93, 83, 10, 45_52, 49_89, 79_86, 6_78, 10, 59_15, 1_11, 17_94_59, 12_48_50, 4, 60_44, 2_37, 12, 6, 5, 6, 4, 67_80, 7_05, 15, 13_88, 44, 3_78, 1_01_14, 7_11, 1_52, 20, 6, 5, 2_23_76, 6_42, 12_21, 1_51_90, 3_41_53, 4_50, 56_08, 9_59, 11_19, 5_77_02, 1_36, 1_86, 47, 10_98, 2_93_67, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 60_44, 2_37, 62_84, 5_09_01, 5_28, 31, 90, 34, 9_27, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(__snake_case , self.big_tokenizer.encode(__snake_case ) ) @slow def lowercase__ ( self : str ) -> Any: # fmt: off _lowerCAmelCase = {"""input_ids""": [[0, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [0, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__snake_case , model_name="""xlm-roberta-base""" , revision="""d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3""" , )
70
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer A__ : List[str] =logging.get_logger(__name__) A__ : Any ={'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} A__ : Any ={ '''vocab_file''': { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt''' ), } } A__ : Optional[int] ={ '''junnyu/roformer_chinese_small''': 15_36, '''junnyu/roformer_chinese_base''': 15_36, '''junnyu/roformer_chinese_char_small''': 5_12, '''junnyu/roformer_chinese_char_base''': 5_12, '''junnyu/roformer_small_discriminator''': 1_28, '''junnyu/roformer_small_generator''': 1_28, } A__ : Optional[int] ={ '''junnyu/roformer_chinese_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_base''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_base''': {'''do_lower_case''': True}, '''junnyu/roformer_small_discriminator''': {'''do_lower_case''': True}, '''junnyu/roformer_small_generator''': {'''do_lower_case''': True}, } class UpperCAmelCase ( snake_case_ ): _lowercase: Optional[Any] = VOCAB_FILES_NAMES _lowercase: Tuple = PRETRAINED_VOCAB_FILES_MAP _lowercase: Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase: str = PRETRAINED_INIT_CONFIGURATION _lowercase: List[Any] = RoFormerTokenizer def __init__( self : Dict , __snake_case : str=None , __snake_case : Tuple=None , __snake_case : List[Any]=True , __snake_case : str="[UNK]" , __snake_case : Tuple="[SEP]" , __snake_case : str="[PAD]" , __snake_case : str="[CLS]" , __snake_case : Any="[MASK]" , __snake_case : Dict=True , __snake_case : str=None , **__snake_case : Optional[Any] , ) -> Union[str, Any]: super().__init__( __snake_case , tokenizer_file=__snake_case , do_lower_case=__snake_case , unk_token=__snake_case , sep_token=__snake_case , pad_token=__snake_case , cls_token=__snake_case , mask_token=__snake_case , tokenize_chinese_chars=__snake_case , strip_accents=__snake_case , **__snake_case , ) _lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get("""lowercase""" , __snake_case ) != do_lower_case or pre_tok_state.get("""strip_accents""" , __snake_case ) != strip_accents ): _lowerCAmelCase = getattr(__snake_case , pre_tok_state.pop("""type""" ) ) _lowerCAmelCase = do_lower_case _lowerCAmelCase = strip_accents _lowerCAmelCase = pre_tok_class(**__snake_case ) _lowerCAmelCase = do_lower_case def __getstate__( self : int ) -> Optional[int]: _lowerCAmelCase = self.__dict__.copy() _lowerCAmelCase = BertPreTokenizer() return state def __setstate__( self : Tuple , __snake_case : Tuple ) -> List[str]: _lowerCAmelCase = d _lowerCAmelCase = self.__dict__["""_tokenizer"""].get_vocab() _lowerCAmelCase = PreTokenizer.custom(JiebaPreTokenizer(__snake_case ) ) def lowercase__ ( self : Union[str, Any] , __snake_case : Optional[int] , __snake_case : Optional[int]=None ) -> Optional[Any]: _lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase__ ( self : List[str] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]: _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase__ ( self : int , __snake_case : str , __snake_case : Optional[str] = None ) -> Tuple[str]: _lowerCAmelCase = self._tokenizer.model.save(__snake_case , name=__snake_case ) return tuple(__snake_case ) def lowercase__ ( self : Dict , __snake_case : Dict , __snake_case : int=None , __snake_case : List[Any]=None , __snake_case : List[Any]=False , **__snake_case : Dict , ) -> str: _lowerCAmelCase = BertPreTokenizer() return super().save_pretrained(__snake_case , __snake_case , __snake_case , __snake_case , **__snake_case )
70
1
"""simple docstring""" import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html lowercase_ = "platform" import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class __lowerCAmelCase : '''simple docstring''' __UpperCAmelCase : List[str] = PegasusConfig __UpperCAmelCase : Dict = {} __UpperCAmelCase : str = 'gelu' def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=False , _a=99 , _a=32 , _a=5 , _a=4 , _a=37 , _a=0.1 , _a=0.1 , _a=20 , _a=2 , _a=1 , _a=0 , ): __a = parent __a = batch_size __a = seq_length __a = is_training __a = use_labels __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = eos_token_id __a = pad_token_id __a = bos_token_id def __UpperCAmelCase ( self ): __a = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) __a = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) __a = np.concatenate([input_ids, eos_tensor] , axis=1 ) __a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __a = prepare_pegasus_inputs_dict(_a , _a , _a ) return config, inputs_dict def __UpperCAmelCase ( self , _a , _a , _a ): __a = 20 __a = model_class_name(_a ) __a = model.encode(inputs_dict['''input_ids'''] ) __a , __a = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) __a = model.init_cache(decoder_input_ids.shape[0] , _a , _a ) __a = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) __a = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __a = model.decode( decoder_input_ids[:, :-1] , _a , decoder_attention_mask=_a , past_key_values=_a , decoder_position_ids=_a , ) __a = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) __a = model.decode( decoder_input_ids[:, -1:] , _a , decoder_attention_mask=_a , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_a , ) __a = model.decode(_a , _a ) __a = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f'''Max diff is {diff}''' ) def __UpperCAmelCase ( self , _a , _a , _a ): __a = 20 __a = model_class_name(_a ) __a = model.encode(inputs_dict['''input_ids'''] ) __a , __a = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) __a = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) __a = model.init_cache(decoder_input_ids.shape[0] , _a , _a ) __a = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __a = model.decode( decoder_input_ids[:, :-1] , _a , decoder_attention_mask=_a , past_key_values=_a , decoder_position_ids=_a , ) __a = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) __a = model.decode( decoder_input_ids[:, -1:] , _a , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_a , decoder_position_ids=_a , ) __a = model.decode(_a , _a , decoder_attention_mask=_a ) __a = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f'''Max diff is {diff}''' ) def lowercase ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any]=None , lowerCAmelCase__ : Optional[int]=None , ) -> str: if attention_mask is None: __a = np.not_equal(lowerCAmelCase__ , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: __a = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) __UpperCAmelCase : Optional[Any] = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : Tuple = False __UpperCAmelCase : List[str] = False __UpperCAmelCase : List[str] = False def __UpperCAmelCase ( self ): __a = FlaxPegasusModelTester(self ) __a = ConfigTester(self , config_class=_a ) def __UpperCAmelCase ( self ): self.config_tester.run_common_tests() def __UpperCAmelCase ( self ): __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_a , _a , _a ) def __UpperCAmelCase ( self ): __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_a , _a , _a ) def __UpperCAmelCase ( self ): __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __a = self._prepare_for_class(_a , _a ) __a = model_class(_a ) @jax.jit def encode_jitted(_a , _a=None , **_a ): return model.encode(input_ids=_a , attention_mask=_a ) with self.subTest('''JIT Enabled''' ): __a = encode_jitted(**_a ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): __a = encode_jitted(**_a ).to_tuple() self.assertEqual(len(_a ) , len(_a ) ) for jitted_output, output in zip(_a , _a ): self.assertEqual(jitted_output.shape , output.shape ) def __UpperCAmelCase ( self ): __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __a = model_class(_a ) __a = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] ) __a = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(_a , _a , _a ): return model.decode( decoder_input_ids=_a , decoder_attention_mask=_a , encoder_outputs=_a , ) with self.subTest('''JIT Enabled''' ): __a = decode_jitted(**_a ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): __a = decode_jitted(**_a ).to_tuple() self.assertEqual(len(_a ) , len(_a ) ) for jitted_output, output in zip(_a , _a ): self.assertEqual(jitted_output.shape , output.shape ) @slow def __UpperCAmelCase ( self ): for model_class_name in self.all_model_classes: __a = model_class_name.from_pretrained('''google/pegasus-large''' , from_pt=_a ) __a = np.ones((1, 1) ) __a = model(_a ) self.assertIsNotNone(_a ) @slow def __UpperCAmelCase ( self ): __a = FlaxPegasusForConditionalGeneration.from_pretrained('''google/pegasus-xsum''' ) __a = PegasusTokenizer.from_pretrained('''google/pegasus-xsum''' ) __a = [ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] __a = [ '''California\'s largest electricity provider has turned off power to hundreds of thousands of customers.''', '''Pop group N-Dubz have revealed they were surprised to get four nominations for this year\'s Mobo Awards.''', ] __a = tokenizer(_a , return_tensors='''np''' , truncation=_a , max_length=512 , padding=_a ) __a = model.generate(**_a , num_beams=2 ).sequences __a = tokenizer.batch_decode(_a , skip_special_tokens=_a ) assert tgt_text == decoded
11
"""simple docstring""" import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def lowercase ( lowerCAmelCase__ : dict ) -> tuple: return (data["data"], data["target"]) def lowercase ( lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : np.ndarray ) -> np.ndarray: __a = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(lowerCAmelCase__ , lowerCAmelCase__ ) # Predict target for test data __a = xgb.predict(lowerCAmelCase__ ) __a = predictions.reshape(len(lowerCAmelCase__ ) , 1 ) return predictions def lowercase ( ) -> None: __a = fetch_california_housing() __a , __a = data_handling(lowerCAmelCase__ ) __a , __a , __a , __a = train_test_split( lowerCAmelCase__ , lowerCAmelCase__ , test_size=0.25 , random_state=1 ) __a = xgboost(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Error printing print(f'''Mean Absolute Error : {mean_absolute_error(lowerCAmelCase__ , lowerCAmelCase__ )}''' ) print(f'''Mean Square Error : {mean_squared_error(lowerCAmelCase__ , lowerCAmelCase__ )}''' ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
11
1
from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class a__ : """simple docstring""" __lowerCamelCase = BlenderbotConfig __lowerCamelCase = {} __lowerCamelCase = 'gelu' def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=False , lowercase=99 , lowercase=32 , lowercase=2 , lowercase=4 , lowercase=37 , lowercase=0.1 , lowercase=0.1 , lowercase=20 , lowercase=2 , lowercase=1 , lowercase=0 , ) -> Any: '''simple docstring''' A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = eos_token_id A__ = pad_token_id A__ = bos_token_id def UpperCamelCase ( self ) -> Dict: '''simple docstring''' A__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) A__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) A__ = tf.concat([input_ids, eos_tensor] , axis=1 ) A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) A__ = prepare_blenderbot_inputs_dict(lowercase , lowercase , lowercase ) return config, inputs_dict def UpperCamelCase ( self , lowercase , lowercase ) -> Tuple: '''simple docstring''' A__ = TFBlenderbotModel(config=lowercase ).get_decoder() A__ = inputs_dict["input_ids"] A__ = input_ids[:1, :] A__ = inputs_dict["attention_mask"][:1, :] A__ = inputs_dict["head_mask"] A__ = 1 # first forward pass A__ = model(lowercase , attention_mask=lowercase , head_mask=lowercase , use_cache=lowercase ) A__ , A__ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids A__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) A__ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and A__ = tf.concat([input_ids, next_tokens] , axis=-1 ) A__ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) A__ = model(lowercase , attention_mask=lowercase )[0] A__ = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice A__ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) A__ = output_from_no_past[:, -3:, random_slice_idx] A__ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase , lowercase , rtol=1e-3 ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Union[str, Any] , SCREAMING_SNAKE_CASE_: Tuple , SCREAMING_SNAKE_CASE_: List[Any] , SCREAMING_SNAKE_CASE_: Any=None , SCREAMING_SNAKE_CASE_: int=None , SCREAMING_SNAKE_CASE_: int=None , SCREAMING_SNAKE_CASE_: int=None , SCREAMING_SNAKE_CASE_: List[str]=None , ) -> Optional[int]: '''simple docstring''' if attention_mask is None: A__ = tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: A__ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: A__ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: A__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: A__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class a__ ( snake_case , snake_case , unittest.TestCase ): """simple docstring""" __lowerCamelCase = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () __lowerCamelCase = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () __lowerCamelCase = ( { 'conversational': TFBlenderbotForConditionalGeneration, 'feature-extraction': TFBlenderbotModel, 'summarization': TFBlenderbotForConditionalGeneration, 'text2text-generation': TFBlenderbotForConditionalGeneration, 'translation': TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) __lowerCamelCase = True __lowerCamelCase = False __lowerCamelCase = False def UpperCamelCase ( self ) -> int: '''simple docstring''' A__ = TFBlenderbotModelTester(self ) A__ = ConfigTester(self , config_class=lowercase ) def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase ( self ) -> List[Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase ) @require_tokenizers @require_tf class a__ ( unittest.TestCase ): """simple docstring""" __lowerCamelCase = ['My friends are cool but they eat too many carbs.'] __lowerCamelCase = 'facebook/blenderbot-400M-distill' @cached_property def UpperCamelCase ( self ) -> List[Any]: '''simple docstring''' return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def UpperCamelCase ( self ) -> Optional[int]: '''simple docstring''' A__ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def UpperCamelCase ( self ) -> int: '''simple docstring''' A__ = self.tokenizer(self.src_text , return_tensors="tf" ) A__ = self.model.generate( model_inputs.input_ids , ) A__ = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowercase )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
68
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {'vocab_file': 'sentencepiece.bpe.model'} lowerCamelCase__ = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, } lowerCamelCase__ = { 'moussaKam/mbarthez': 1_024, 'moussaKam/barthez': 1_024, 'moussaKam/barthez-orangesum-title': 1_024, } lowerCamelCase__ = '▁' class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Any = VOCAB_FILES_NAMES lowerCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase : int = ["input_ids", "attention_mask"] def __init__( self : int , lowerCamelCase__ : Tuple , lowerCamelCase__ : List[Any]="<s>" , lowerCamelCase__ : Dict="</s>" , lowerCamelCase__ : Union[str, Any]="</s>" , lowerCamelCase__ : List[Any]="<s>" , lowerCamelCase__ : List[str]="<unk>" , lowerCamelCase__ : str="<pad>" , lowerCamelCase__ : Tuple="<mask>" , lowerCamelCase__ : Optional[Dict[str, Any]] = None , **lowerCamelCase__ : Dict , ) ->None: '''simple docstring''' _UpperCAmelCase : Dict = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else mask_token _UpperCAmelCase : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase__ , ) _UpperCAmelCase : Union[str, Any] = vocab_file _UpperCAmelCase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCamelCase__ ) ) _UpperCAmelCase : Optional[int] = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} _UpperCAmelCase : List[str] = len(self.sp_model ) - 1 _UpperCAmelCase : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ) ->List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCAmelCase : Union[str, Any] = [self.cls_token_id] _UpperCAmelCase : str = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase__ ( self : int , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None , lowerCamelCase__ : bool = False ) ->List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ , token_ids_a=lowerCamelCase__ , already_has_special_tokens=lowerCamelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase__ )) + [1] return [1] + ([0] * len(lowerCamelCase__ )) + [1, 1] + ([0] * len(lowerCamelCase__ )) + [1] def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ) ->List[int]: '''simple docstring''' _UpperCAmelCase : Optional[int] = [self.sep_token_id] _UpperCAmelCase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCAmelCase__ ( self : List[Any] ) ->List[str]: '''simple docstring''' return len(self.sp_model ) def lowerCAmelCase__ ( self : int ) ->int: '''simple docstring''' _UpperCAmelCase : List[Any] = {self.convert_ids_to_tokens(lowerCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCAmelCase__ ( self : int , lowerCamelCase__ : str ) ->List[str]: '''simple docstring''' return self.sp_model.encode(lowerCamelCase__ , out_type=lowerCamelCase__ ) def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : Union[str, Any] ) ->List[Any]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _UpperCAmelCase : Optional[Any] = self.sp_model.PieceToId(lowerCamelCase__ ) return spm_id if spm_id else self.unk_token_id def lowerCAmelCase__ ( self : str , lowerCamelCase__ : Any ) ->Optional[Any]: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(lowerCamelCase__ ) def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : List[Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = [] _UpperCAmelCase : Optional[Any] = "" _UpperCAmelCase : Optional[int] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCamelCase__ ) + token _UpperCAmelCase : Union[str, Any] = True _UpperCAmelCase : Union[str, Any] = [] else: current_sub_tokens.append(lowerCamelCase__ ) _UpperCAmelCase : int = False out_string += self.sp_model.decode(lowerCamelCase__ ) return out_string.strip() def __getstate__( self : Dict ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : List[str] = self.__dict__.copy() _UpperCAmelCase : Optional[int] = None return state def __setstate__( self : Any , lowerCamelCase__ : Dict ) ->Tuple: '''simple docstring''' _UpperCAmelCase : Dict = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _UpperCAmelCase : List[Any] = {} _UpperCAmelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : str , lowerCamelCase__ : Optional[str] = None ) ->Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCamelCase__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _UpperCAmelCase : Union[str, Any] = os.path.join( lowerCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase__ , "wb" ) as fi: _UpperCAmelCase : Dict = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase__ ) return (out_vocab_file,)
234
0
class lowercase_ : def __init__( self , __UpperCamelCase = "" , __UpperCamelCase = False ): """simple docstring""" UpperCamelCase_ = {} # A node will be a leaf if the tree contains its word UpperCamelCase_ = is_leaf UpperCamelCase_ = prefix def lowerCamelCase_ ( self , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = 0 for q, w in zip(self.prefix , __UpperCamelCase ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def lowerCamelCase_ ( self , __UpperCamelCase ): """simple docstring""" for word in words: self.insert(__UpperCamelCase ) def lowerCamelCase_ ( self , __UpperCamelCase ): """simple docstring""" if self.prefix == word: UpperCamelCase_ = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: UpperCamelCase_ = RadixNode(prefix=__UpperCamelCase , is_leaf=__UpperCamelCase ) else: UpperCamelCase_ = self.nodes[word[0]] UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = incoming_node.match( __UpperCamelCase ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(__UpperCamelCase ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: UpperCamelCase_ = remaining_prefix UpperCamelCase_ = self.nodes[matching_string[0]] UpperCamelCase_ = RadixNode(__UpperCamelCase , __UpperCamelCase ) UpperCamelCase_ = aux_node if remaining_word == "": UpperCamelCase_ = True else: self.nodes[matching_string[0]].insert(__UpperCamelCase ) def lowerCamelCase_ ( self , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = self.nodes.get(word[0] , __UpperCamelCase ) if not incoming_node: return False else: UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = incoming_node.match( __UpperCamelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(__UpperCamelCase ) def lowerCamelCase_ ( self , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = self.nodes.get(word[0] , __UpperCamelCase ) if not incoming_node: return False else: UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = incoming_node.match( __UpperCamelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(__UpperCamelCase ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: UpperCamelCase_ = list(self.nodes.values() )[0] UpperCamelCase_ = merging_node.is_leaf self.prefix += merging_node.prefix UpperCamelCase_ = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: UpperCamelCase_ = False # If there is 1 edge, we merge it with its child else: UpperCamelCase_ = list(incoming_node.nodes.values() )[0] UpperCamelCase_ = merging_node.is_leaf incoming_node.prefix += merging_node.prefix UpperCamelCase_ = merging_node.nodes return True def lowerCamelCase_ ( self , __UpperCamelCase = 0 ): """simple docstring""" if self.prefix != "": print("""-""" * height , self.prefix , """ (leaf)""" if self.is_leaf else """""" ) for value in self.nodes.values(): value.print_tree(height + 1 ) def lowerCamelCase__ ( ) -> bool: UpperCamelCase_ = """banana bananas bandana band apple all beast""".split() UpperCamelCase_ = RadixNode() root.insert_many(a__ ) assert all(root.find(a__ ) for word in words ) assert not root.find("""bandanas""" ) assert not root.find("""apps""" ) root.delete("""all""" ) assert not root.find("""all""" ) root.delete("""banana""" ) assert not root.find("""banana""" ) assert root.find("""bananas""" ) return True def lowerCamelCase__ ( ) -> None: assert test_trie() def lowerCamelCase__ ( ) -> None: UpperCamelCase_ = RadixNode() UpperCamelCase_ = """banana bananas bandanas bandana band apple all beast""".split() root.insert_many(a__ ) print("""Words:""" , a__ ) print("""Tree:""" ) root.print_tree() if __name__ == "__main__": main()
352
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def lowerCamelCase__ ( a__ : Dict ) -> List[Any]: UpperCamelCase_ = {} UpperCamelCase_ = tokenizer(example["""content"""] , truncation=a__ )["""input_ids"""] UpperCamelCase_ = len(example["""content"""] ) / len(output["""input_ids"""] ) return output _A = HfArgumentParser(PretokenizationArguments) _A = parser.parse_args() if args.num_workers is None: _A = multiprocessing.cpu_count() _A = AutoTokenizer.from_pretrained(args.tokenizer_dir) _A = time.time() _A = load_dataset(args.dataset_name, split='''train''') print(F'''Dataset loaded in {time.time()-t_start:.2f}s''') _A = time.time() _A = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ '''repo_name''', '''path''', '''copies''', '''size''', '''content''', '''license''', '''hash''', '''line_mean''', '''line_max''', '''alpha_frac''', '''autogenerated''', ], ) print(F'''Dataset tokenized in {time.time()-t_start:.2f}s''') _A = time.time() ds.push_to_hub(args.tokenized_data_repo) print(F'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
261
0
"""simple docstring""" def a__ ( snake_case__ , snake_case__ ) -> Tuple: assert x is not None assert y is not None lowerCamelCase = len(snake_case__ ) lowerCamelCase = len(snake_case__ ) # declaring the array for storing the dp values lowerCamelCase = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 , m + 1 ): for j in range(1 , n + 1 ): lowerCamelCase = 1 if x[i - 1] == y[j - 1] else 0 lowerCamelCase = max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match ) lowerCamelCase = """""" lowerCamelCase , lowerCamelCase = m, n while i > 0 and j > 0: lowerCamelCase = 1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: lowerCamelCase = x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": lowerCAmelCase : Tuple = """AGGTAB""" lowerCAmelCase : Tuple = """GXTXAYB""" lowerCAmelCase : Any = 4 lowerCAmelCase : Optional[int] = """GTAB""" lowerCAmelCase , lowerCAmelCase : Optional[Any] = longest_common_subsequence(a, b) print("""len =""", ln, """, sub-sequence =""", subseq) import doctest doctest.testmod()
291
"""simple docstring""" import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class __magic_name__ ( unittest.TestCase ): '''simple docstring''' def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=99 , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.02 , _a=4 , ): """simple docstring""" lowerCamelCase = parent lowerCamelCase = batch_size lowerCamelCase = seq_length lowerCamelCase = is_training lowerCamelCase = use_attention_mask lowerCamelCase = use_token_type_ids lowerCamelCase = use_labels lowerCamelCase = vocab_size lowerCamelCase = hidden_size lowerCamelCase = num_hidden_layers lowerCamelCase = num_attention_heads lowerCamelCase = intermediate_size lowerCamelCase = hidden_act lowerCamelCase = hidden_dropout_prob lowerCamelCase = attention_probs_dropout_prob lowerCamelCase = max_position_embeddings lowerCamelCase = type_vocab_size lowerCamelCase = type_sequence_label_size lowerCamelCase = initializer_range lowerCamelCase = num_choices def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase = None if self.use_attention_mask: lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase = None if self.use_token_type_ids: lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_a , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = config_and_inputs lowerCamelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class __magic_name__ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = True __UpperCamelCase = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = FlaxRoFormerModelTester(self ) @slow def _lowerCAmelCase ( self ): """simple docstring""" for model_class_name in self.all_model_classes: lowerCamelCase = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=_a ) lowerCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(_a ) @require_flax class __magic_name__ ( unittest.TestCase ): '''simple docstring''' @slow def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) lowerCamelCase = jnp.array([[0, 1, 2, 3, 4, 5]] ) lowerCamelCase = model(_a )[0] lowerCamelCase = 50_000 lowerCamelCase = (1, 6, vocab_size) self.assertEqual(output.shape , _a ) lowerCamelCase = jnp.array( [[[-0.1_205, -1.0_265, 0.2_922], [-1.5_134, 0.1_974, 0.1_519], [-5.0_135, -3.9_003, -0.8_404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , _a , atol=1e-4 ) )
291
1
'''simple docstring''' import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase__ : Optional[Any] = 16 lowerCAmelCase__ : Optional[int] = 32 def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase = 16 ): __UpperCAmelCase : Dict = AutoTokenizer.from_pretrained("bert-base-cased" ) __UpperCAmelCase : Union[str, Any] = load_dataset("glue", "mrpc" ) def tokenize_function(_UpperCAmelCase ): # max_length=None => use the model max length (it's actually the default) __UpperCAmelCase : int = tokenizer(examples["sentence1"], examples["sentence2"], truncation=_UpperCAmelCase, max_length=_UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __UpperCAmelCase : Any = datasets.map( _UpperCAmelCase, batched=_UpperCAmelCase, remove_columns=["idx", "sentence1", "sentence2"], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __UpperCAmelCase : Optional[Any] = tokenized_datasets.rename_column("label", "labels" ) def collate_fn(_UpperCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. __UpperCAmelCase : int = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __UpperCAmelCase : Tuple = 16 elif accelerator.mixed_precision != "no": __UpperCAmelCase : int = 8 else: __UpperCAmelCase : Optional[Any] = None return tokenizer.pad( _UpperCAmelCase, padding="longest", max_length=_UpperCAmelCase, pad_to_multiple_of=_UpperCAmelCase, return_tensors="pt", ) # Instantiate dataloaders. __UpperCAmelCase : List[Any] = DataLoader( tokenized_datasets["train"], shuffle=_UpperCAmelCase, collate_fn=_UpperCAmelCase, batch_size=_UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = DataLoader( tokenized_datasets["validation"], shuffle=_UpperCAmelCase, collate_fn=_UpperCAmelCase, batch_size=_UpperCAmelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase__ : List[str] = mocked_dataloaders # noqa: F811 def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase ): # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", _UpperCAmelCase ) == "1": __UpperCAmelCase : Any = 2 # Initialize accelerator __UpperCAmelCase : List[str] = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __UpperCAmelCase : List[Any] = config["lr"] __UpperCAmelCase : int = int(config["num_epochs"] ) __UpperCAmelCase : Optional[Any] = int(config["seed"] ) __UpperCAmelCase : List[str] = int(config["batch_size"] ) __UpperCAmelCase : List[Any] = evaluate.load("glue", "mrpc" ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=_UpperCAmelCase ) def inner_training_loop(_UpperCAmelCase ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(_UpperCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __UpperCAmelCase : Optional[Any] = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", return_dict=_UpperCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __UpperCAmelCase : Tuple = model.to(accelerator.device ) # Instantiate optimizer __UpperCAmelCase : Optional[Any] = AdamW(params=model.parameters(), lr=_UpperCAmelCase ) __UpperCAmelCase , __UpperCAmelCase : int = get_dataloaders(_UpperCAmelCase, _UpperCAmelCase ) # Instantiate scheduler __UpperCAmelCase : List[str] = get_linear_schedule_with_warmup( optimizer=_UpperCAmelCase, num_warmup_steps=100, num_training_steps=(len(_UpperCAmelCase ) * num_epochs), ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = accelerator.prepare( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) # Now we train the model for epoch in range(_UpperCAmelCase ): model.train() for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __UpperCAmelCase : List[Any] = model(**_UpperCAmelCase ) __UpperCAmelCase : Dict = outputs.loss accelerator.backward(_UpperCAmelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __UpperCAmelCase : int = model(**_UpperCAmelCase ) __UpperCAmelCase : Tuple = outputs.logits.argmax(dim=-1 ) __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=_UpperCAmelCase, references=_UpperCAmelCase, ) __UpperCAmelCase : Tuple = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:", _UpperCAmelCase ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def __UpperCamelCase ( ): __UpperCAmelCase : Optional[Any] = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision", type=_UpperCAmelCase, default=_UpperCAmelCase, choices=["no", "fp16", "bf16", "fp8"], help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU.", ) parser.add_argument("--cpu", action="store_true", help="If passed, will train on the CPU." ) __UpperCAmelCase : Dict = parser.parse_args() __UpperCAmelCase : Tuple = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(_UpperCAmelCase, _UpperCAmelCase ) if __name__ == "__main__": main()
37
'''simple docstring''' # # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def __UpperCamelCase ( *_UpperCAmelCase ): with open(_UpperCAmelCase, "r" ) as fh: fcntl.flock(_UpperCAmelCase, fcntl.LOCK_EX ) try: print(*_UpperCAmelCase ) finally: fcntl.flock(_UpperCAmelCase, fcntl.LOCK_UN ) lowerCAmelCase__ : Dict = int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(local_rank) lowerCAmelCase__ : Optional[int] = torch.device("cuda", local_rank) lowerCAmelCase__ : List[str] = socket.gethostname() lowerCAmelCase__ : Optional[Any] = f"[{hostname}-{local_rank}]" try: # test distributed dist.init_process_group("nccl") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank lowerCAmelCase__ : Tuple = dist.get_rank() lowerCAmelCase__ : Optional[int] = dist.get_world_size() printflock(f"{gpu} is OK (global rank: {rank}/{world_size})") dist.barrier() if rank == 0: printflock(f"pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}") except Exception: printflock(f"{gpu} is broken") raise
37
1
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> bool: # 1. Validate that path exists between current and next vertices if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> bool: # Base Case if curr_ind == len(_UpperCAmelCase ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(_UpperCAmelCase ) ): if valid_connection(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): # Insert current vertex into path as next transition lowerCamelCase__ : List[Any] = next_ver # Validate created path if util_hamilton_cycle(_UpperCAmelCase , _UpperCAmelCase , curr_ind + 1 ): return True # Backtrack lowerCamelCase__ : List[str] = -1 return False def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase = 0 ) -> list[int]: lowerCamelCase__ : Any = [-1] * (len(_UpperCAmelCase ) + 1) # initialize start and end of path with starting index lowerCamelCase__ : Optional[Any] = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(_UpperCAmelCase , _UpperCAmelCase , 1 ) else []
50
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: _UpperCAmelCase : int = None _UpperCAmelCase : Dict = logging.get_logger(__name__) _UpperCAmelCase : Optional[int] = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} _UpperCAmelCase : List[Any] = { """vocab_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json""" ), }, } _UpperCAmelCase : List[str] = { """facebook/nllb-large-en-ro""": 10_24, """facebook/nllb-200-distilled-600M""": 10_24, } # fmt: off _UpperCAmelCase : Optional[int] = ["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""] class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = ["""input_ids""", """attention_mask"""] UpperCAmelCase__ = NllbTokenizer UpperCAmelCase__ = [] UpperCAmelCase__ = [] def __init__( self : Tuple , UpperCAmelCase : int=None , UpperCAmelCase : Any=None , UpperCAmelCase : str="<s>" , UpperCAmelCase : Optional[Any]="</s>" , UpperCAmelCase : str="</s>" , UpperCAmelCase : Tuple="<s>" , UpperCAmelCase : Optional[Any]="<unk>" , UpperCAmelCase : List[str]="<pad>" , UpperCAmelCase : Union[str, Any]="<mask>" , UpperCAmelCase : Tuple=None , UpperCAmelCase : int=None , UpperCAmelCase : Dict=None , UpperCAmelCase : Any=False , **UpperCAmelCase : Optional[int] , ) -> Tuple: # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase__ : List[Any] = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token lowerCamelCase__ : Union[str, Any] = legacy_behaviour super().__init__( vocab_file=UpperCAmelCase , tokenizer_file=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , src_lang=UpperCAmelCase , tgt_lang=UpperCAmelCase , additional_special_tokens=UpperCAmelCase , legacy_behaviour=UpperCAmelCase , **UpperCAmelCase , ) lowerCamelCase__ : List[Any] = vocab_file lowerCamelCase__ : Dict = False if not self.vocab_file else True lowerCamelCase__ : Optional[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) lowerCamelCase__ : str = { lang_code: self.convert_tokens_to_ids(UpperCAmelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowerCamelCase__ : int = src_lang if src_lang is not None else 'eng_Latn' lowerCamelCase__ : List[Any] = self.convert_tokens_to_ids(self._src_lang ) lowerCamelCase__ : str = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def A_ ( self : int ) -> str: return self._src_lang @src_lang.setter def A_ ( self : List[Any] , UpperCAmelCase : str ) -> None: lowerCamelCase__ : Any = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def A_ ( self : Optional[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def A_ ( self : Optional[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: lowerCamelCase__ : Dict = [self.sep_token_id] lowerCamelCase__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A_ ( self : int , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Optional[str] , UpperCAmelCase : Optional[str] , **UpperCAmelCase : List[str] ) -> Dict: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) lowerCamelCase__ : Optional[int] = src_lang lowerCamelCase__ : Optional[int] = self(UpperCAmelCase , add_special_tokens=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = self.convert_tokens_to_ids(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = tgt_lang_id return inputs def A_ ( self : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : str = "eng_Latn" , UpperCAmelCase : Optional[List[str]] = None , UpperCAmelCase : str = "fra_Latn" , **UpperCAmelCase : Dict , ) -> BatchEncoding: lowerCamelCase__ : Any = src_lang lowerCamelCase__ : int = tgt_lang return super().prepare_seqaseq_batch(UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def A_ ( self : Union[str, Any] ) -> Optional[int]: return self.set_src_lang_special_tokens(self.src_lang ) def A_ ( self : Any ) -> Union[str, Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def A_ ( self : str , UpperCAmelCase : Optional[Any] ) -> None: lowerCamelCase__ : int = self.convert_tokens_to_ids(UpperCAmelCase ) if self.legacy_behaviour: lowerCamelCase__ : int = [] lowerCamelCase__ : str = [self.eos_token_id, self.cur_lang_code] else: lowerCamelCase__ : int = [self.cur_lang_code] lowerCamelCase__ : Tuple = [self.eos_token_id] lowerCamelCase__ : Any = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase__ : Optional[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase__ : str = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def A_ ( self : int , UpperCAmelCase : str ) -> None: lowerCamelCase__ : Union[str, Any] = self.convert_tokens_to_ids(UpperCAmelCase ) if self.legacy_behaviour: lowerCamelCase__ : Dict = [] lowerCamelCase__ : Union[str, Any] = [self.eos_token_id, self.cur_lang_code] else: lowerCamelCase__ : Any = [self.cur_lang_code] lowerCamelCase__ : Optional[Any] = [self.eos_token_id] lowerCamelCase__ : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase__ : List[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase__ : Optional[int] = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def A_ ( self : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory.""" ) return lowerCamelCase__ : int = os.path.join( UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ): copyfile(self.vocab_file , UpperCAmelCase ) return (out_vocab_file,)
50
1
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = [ ["attention", "attn"], ["encoder_attention", "encoder_attn"], ["q_lin", "q_proj"], ["k_lin", "k_proj"], ["v_lin", "v_proj"], ["out_lin", "out_proj"], ["norm_embeddings", "layernorm_embedding"], ["position_embeddings", "embed_positions"], ["embeddings", "embed_tokens"], ["ffn.lin", "fc"], ] def __lowerCamelCase ( __lowerCAmelCase : List[str] ) -> Union[str, Any]: if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: snake_case = k.replace(__lowerCAmelCase , __lowerCAmelCase ) if k.startswith("""encoder""" ): snake_case = k.replace(""".attn""" , """.self_attn""" ) snake_case = k.replace("""norm1""" , """self_attn_layer_norm""" ) snake_case = k.replace("""norm2""" , """final_layer_norm""" ) elif k.startswith("""decoder""" ): snake_case = k.replace("""norm1""" , """self_attn_layer_norm""" ) snake_case = k.replace("""norm2""" , """encoder_attn_layer_norm""" ) snake_case = k.replace("""norm3""" , """final_layer_norm""" ) return k def __lowerCamelCase ( __lowerCAmelCase : Optional[int] ) -> Tuple: snake_case = [ """model.encoder.layernorm_embedding.weight""", """model.encoder.layernorm_embedding.bias""", """model.decoder.layernorm_embedding.weight""", """model.decoder.layernorm_embedding.bias""", ] for k in keys: snake_case = sd.pop(__lowerCAmelCase ) snake_case = k.replace("""layernorm_embedding""" , """layer_norm""" ) assert new_k not in sd snake_case = v _SCREAMING_SNAKE_CASE = ["START"] @torch.no_grad() def __lowerCamelCase ( __lowerCAmelCase : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] ) -> List[Any]: snake_case = torch.load(__lowerCAmelCase , map_location="""cpu""" ) snake_case = model["""model"""] snake_case = BlenderbotConfig.from_json_file(__lowerCAmelCase ) snake_case = BlenderbotForConditionalGeneration(__lowerCAmelCase ) snake_case = m.model.state_dict().keys() snake_case = [] snake_case = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue snake_case = rename_state_dict_key(__lowerCAmelCase ) if new_k not in valid_keys: failures.append([k, new_k] ) else: snake_case = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(__lowerCAmelCase ) m.model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) m.half() m.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin") parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.") parser.add_argument( "--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use" ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
3
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : Tuple )-> Optional[Any]: snake_case = 0 def lowerCAmelCase ( self : str )-> Any: snake_case = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : List[Any] )-> str: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = Path(__snake_case ) / """preprocessor_config.json""" snake_case = Path(__snake_case ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : List[str] )-> Optional[Any]: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: snake_case = Path(__snake_case ) / """preprocessor_config.json""" snake_case = Path(__snake_case ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : Tuple )-> Optional[int]: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = CLIPConfig() # Create a dummy config file with image_proceesor_type snake_case = Path(__snake_case ) / """preprocessor_config.json""" snake_case = Path(__snake_case ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally snake_case = AutoImageProcessor.from_pretrained(__snake_case ).to_dict() config_dict.pop("""image_processor_type""" ) snake_case = CLIPImageProcessor(**__snake_case ) # save in new folder model_config.save_pretrained(__snake_case ) config.save_pretrained(__snake_case ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) # make sure private variable is not incorrectly saved snake_case = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : List[Any] )-> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = Path(__snake_case ) / """preprocessor_config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : int )-> Dict: with self.assertRaisesRegex( __snake_case , """clip-base is not a local folder and is not a valid model identifier""" ): snake_case = AutoImageProcessor.from_pretrained("""clip-base""" ) def lowerCAmelCase ( self : Tuple )-> int: with self.assertRaisesRegex( __snake_case , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): snake_case = AutoImageProcessor.from_pretrained(__snake_case , revision="""aaaaaa""" ) def lowerCAmelCase ( self : str )-> Union[str, Any]: with self.assertRaisesRegex( __snake_case , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" ) def lowerCAmelCase ( self : List[str] )-> List[str]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__snake_case ): snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__snake_case ): snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case ) snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__snake_case ) snake_case = AutoImageProcessor.from_pretrained(__snake_case , trust_remote_code=__snake_case ) self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""" ) def lowerCAmelCase ( self : List[str] )-> Dict: try: AutoConfig.register("""custom""" , __snake_case ) AutoImageProcessor.register(__snake_case , __snake_case ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__snake_case ): AutoImageProcessor.register(__snake_case , __snake_case ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case = Path(__snake_case ) / """preprocessor_config.json""" snake_case = Path(__snake_case ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) ) snake_case = CustomImageProcessor.from_pretrained(__snake_case ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__snake_case ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def lowerCAmelCase ( self : Dict )-> Optional[int]: class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = True try: AutoConfig.register("""custom""" , __snake_case ) AutoImageProcessor.register(__snake_case , __snake_case ) # If remote code is not set, the default is to use local snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(not hasattr(__snake_case , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
3
1
"""simple docstring""" from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass a :List[str] = (3, 9, -11, 0, 7, 5, 1, -1) a :List[str] = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class __a : '''simple docstring''' _SCREAMING_SNAKE_CASE :int _SCREAMING_SNAKE_CASE :Node | None class __a : '''simple docstring''' def __init__( self , _a ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ : Node | None = None for i in sorted(_a , reverse=_a ): SCREAMING_SNAKE_CASE__ : List[str] = Node(_a , self.head ) def __iter__( self ) -> Iterator[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.head while node: yield node.data SCREAMING_SNAKE_CASE__ : Optional[int] = node.next_node def __len__( self ) -> int: """simple docstring""" return sum(1 for _ in self ) def __str__( self ) -> str: """simple docstring""" return " -> ".join([str(_a ) for node in self] ) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> SortedLinkedList: return SortedLinkedList(list(__lowerCAmelCase ) + list(__lowerCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() a :int = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
132
"""simple docstring""" import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class __a (unittest.TestCase): '''simple docstring''' def __init__( self , _a , _a = True , _a = None , _a = 32 , _a = True , _a = 1 / 255 , _a = True , _a = True , _a = [0.48_145_466, 0.4_578_275, 0.40_821_073] , _a = [0.26_862_954, 0.26_130_258, 0.27_577_711] , _a = True , _a=7 , _a=30 , _a=400 , _a=3 , ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = parent SCREAMING_SNAKE_CASE__ : Tuple = do_resize SCREAMING_SNAKE_CASE__ : Union[str, Any] = size if size is not None else {"""shortest_edge""": 288} SCREAMING_SNAKE_CASE__ : List[str] = size_divisor SCREAMING_SNAKE_CASE__ : Tuple = do_rescale SCREAMING_SNAKE_CASE__ : List[str] = rescale_factor SCREAMING_SNAKE_CASE__ : Union[str, Any] = do_normalize SCREAMING_SNAKE_CASE__ : List[str] = do_center_crop SCREAMING_SNAKE_CASE__ : Union[str, Any] = image_mean SCREAMING_SNAKE_CASE__ : List[str] = image_std SCREAMING_SNAKE_CASE__ : List[str] = do_pad SCREAMING_SNAKE_CASE__ : Union[str, Any] = batch_size SCREAMING_SNAKE_CASE__ : int = num_channels SCREAMING_SNAKE_CASE__ : Dict = min_resolution SCREAMING_SNAKE_CASE__ : str = max_resolution def _a ( self ) -> List[str]: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def _a ( self , _a , _a=False ) -> int: """simple docstring""" if not batched: SCREAMING_SNAKE_CASE__ : List[Any] = self.size["""shortest_edge"""] SCREAMING_SNAKE_CASE__ : Union[str, Any] = image_inputs[0] if isinstance(_a , Image.Image ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = image.size else: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = image.shape[1], image.shape[2] SCREAMING_SNAKE_CASE__ : Tuple = size / min(_a , _a ) if h < w: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = size, scale * w else: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = scale * h, size SCREAMING_SNAKE_CASE__ : Union[str, Any] = int((1_333 / 800) * size ) if max(_a , _a ) > max_size: SCREAMING_SNAKE_CASE__ : List[str] = max_size / max(_a , _a ) SCREAMING_SNAKE_CASE__ : Any = newh * scale SCREAMING_SNAKE_CASE__ : Any = neww * scale SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = int(newh + 0.5 ), int(neww + 0.5 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: SCREAMING_SNAKE_CASE__ : Dict = [] for image in image_inputs: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) SCREAMING_SNAKE_CASE__ : Any = max(_a , key=lambda _a : item[0] )[0] SCREAMING_SNAKE_CASE__ : Any = max(_a , key=lambda _a : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __a (UpperCamelCase_ , unittest.TestCase): '''simple docstring''' _SCREAMING_SNAKE_CASE :Optional[int] = BridgeTowerImageProcessor if is_vision_available() else None def _a ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = BridgeTowerImageProcessingTester(self ) @property def _a ( self ) -> Optional[int]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _a ( self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a , """image_mean""" ) ) self.assertTrue(hasattr(_a , """image_std""" ) ) self.assertTrue(hasattr(_a , """do_normalize""" ) ) self.assertTrue(hasattr(_a , """do_resize""" ) ) self.assertTrue(hasattr(_a , """size""" ) ) self.assertTrue(hasattr(_a , """size_divisor""" ) ) def _a ( self ) -> List[str]: """simple docstring""" pass def _a ( self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE__ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = self.image_processor_tester.get_expected_values(_a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__ : List[str] = image_processing(_a , return_tensors="""pt""" ).pixel_values SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = self.image_processor_tester.get_expected_values(_a , batched=_a ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _a ( self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE__ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , numpify=_a ) for image in image_inputs: self.assertIsInstance(_a , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE__ : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = self.image_processor_tester.get_expected_values(_a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__ : Tuple = image_processing(_a , return_tensors="""pt""" ).pixel_values SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = self.image_processor_tester.get_expected_values(_a , batched=_a ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _a ( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE__ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , torchify=_a ) for image in image_inputs: self.assertIsInstance(_a , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = self.image_processor_tester.get_expected_values(_a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__ : Dict = image_processing(_a , return_tensors="""pt""" ).pixel_values SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = self.image_processor_tester.get_expected_values(_a , batched=_a ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
132
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCamelCase = { '''configuration_rembert''': ['''REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RemBertConfig''', '''RemBertOnnxConfig'''] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['''RemBertTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['''RemBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RemBertForCausalLM''', '''RemBertForMaskedLM''', '''RemBertForMultipleChoice''', '''RemBertForQuestionAnswering''', '''RemBertForSequenceClassification''', '''RemBertForTokenClassification''', '''RemBertLayer''', '''RemBertModel''', '''RemBertPreTrainedModel''', '''load_tf_weights_in_rembert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRemBertForCausalLM''', '''TFRemBertForMaskedLM''', '''TFRemBertForMultipleChoice''', '''TFRemBertForQuestionAnswering''', '''TFRemBertForSequenceClassification''', '''TFRemBertForTokenClassification''', '''TFRemBertLayer''', '''TFRemBertModel''', '''TFRemBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
335
# flake8: noqa # Lint as: python3 _UpperCamelCase = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
335
1
"""simple docstring""" from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
81
from math import isclose, sqrt def a_ ( _A , _A , _A ) -> tuple[float, float, float]: """simple docstring""" snake_case__ = point_y / 4 / point_x snake_case__ = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) snake_case__ = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) snake_case__ = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 snake_case__ = outgoing_gradient**2 + 4 snake_case__ = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) snake_case__ = (point_y - outgoing_gradient * point_x) ** 2 - 100 snake_case__ = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) snake_case__ = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point snake_case__ = x_minus if isclose(_A , _A ) else x_plus snake_case__ = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def a_ ( _A = 1.4 , _A = -9.6 ) -> int: """simple docstring""" snake_case__ = 0 snake_case__ = first_x_coord snake_case__ = first_y_coord snake_case__ = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): snake_case__ , snake_case__ , snake_case__ = next_point(_A , _A , _A ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(f'''{solution() = }''')
307
0
import flax.linen as nn import jax import jax.numpy as jnp class lowerCAmelCase__ ( nn.Module ): __a = 42 __a = jnp.floataa def lowercase ( self : Union[str, Any] ): _snake_case = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Any , _lowerCamelCase : Any ): _snake_case = hidden_states.shape _snake_case = jax.image.resize( _a , shape=(batch, height * 2, width * 2, channels) , method='''nearest''' , ) _snake_case = self.conv(_a ) return hidden_states class lowerCAmelCase__ ( nn.Module ): __a = 42 __a = jnp.floataa def lowercase ( self : Tuple ): _snake_case = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Any , _lowerCamelCase : str ): _snake_case = self.conv(_a ) return hidden_states class lowerCAmelCase__ ( nn.Module ): __a = 42 __a = None __a = 0.0 __a = None __a = jnp.floataa def lowercase ( self : Optional[Any] ): _snake_case = self.in_channels if self.out_channels is None else self.out_channels _snake_case = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) _snake_case = nn.Conv( _a , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) _snake_case = nn.Dense(_a , dtype=self.dtype ) _snake_case = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) _snake_case = nn.Dropout(self.dropout_prob ) _snake_case = nn.Conv( _a , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) _snake_case = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut _snake_case = None if use_nin_shortcut: _snake_case = nn.Conv( _a , kernel_size=(1, 1) , strides=(1, 1) , padding='''VALID''' , dtype=self.dtype , ) def __call__( self : int , _lowerCamelCase : Optional[int] , _lowerCamelCase : Tuple , _lowerCamelCase : str=True ): _snake_case = hidden_states _snake_case = self.norma(_a ) _snake_case = nn.swish(_a ) _snake_case = self.conva(_a ) _snake_case = self.time_emb_proj(nn.swish(_a ) ) _snake_case = jnp.expand_dims(jnp.expand_dims(_a , 1 ) , 1 ) _snake_case = hidden_states + temb _snake_case = self.norma(_a ) _snake_case = nn.swish(_a ) _snake_case = self.dropout(_a , _a ) _snake_case = self.conva(_a ) if self.conv_shortcut is not None: _snake_case = self.conv_shortcut(_a ) return hidden_states + residual
361
"""simple docstring""" import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser( description=( 'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='bert', choices=['bert']) parser.add_argument('--model_name', default='bert-base-uncased', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') UpperCAmelCase__ = parser.parse_args() if args.model_type == "bert": UpperCAmelCase__ = BertForMaskedLM.from_pretrained(args.model_name) UpperCAmelCase__ = 'bert' else: raise ValueError('args.model_type should be "bert".') UpperCAmelCase__ = model.state_dict() UpperCAmelCase__ = {} for w in ["word_embeddings", "position_embeddings"]: UpperCAmelCase__ = state_dict[F"{prefix}.embeddings.{w}.weight"] for w in ["weight", "bias"]: UpperCAmelCase__ = state_dict[F"{prefix}.embeddings.LayerNorm.{w}"] UpperCAmelCase__ = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: UpperCAmelCase__ = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}" ] UpperCAmelCase__ = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}" ] UpperCAmelCase__ = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}" ] UpperCAmelCase__ = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}" ] UpperCAmelCase__ = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}" ] UpperCAmelCase__ = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}" ] UpperCAmelCase__ = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}" ] UpperCAmelCase__ = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}" ] std_idx += 1 UpperCAmelCase__ = state_dict['cls.predictions.decoder.weight'] UpperCAmelCase__ = state_dict['cls.predictions.bias'] if args.vocab_transform: for w in ["weight", "bias"]: UpperCAmelCase__ = state_dict[F"cls.predictions.transform.dense.{w}"] UpperCAmelCase__ = state_dict[F"cls.predictions.transform.LayerNorm.{w}"] print(F"N layers selected for distillation: {std_idx}") print(F"Number of params transferred for distillation: {len(compressed_sd.keys())}") print(F"Save transferred checkpoint to {args.dump_checkpoint}.") torch.save(compressed_sd, args.dump_checkpoint)
40
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase : Tuple =logging.get_logger(__name__) _UpperCAmelCase : str ={ """microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""", } class snake_case__( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = """git_vision_model""" def __init__( self , __lowercase=7_6_8 , __lowercase=3_0_7_2 , __lowercase=1_2 , __lowercase=1_2 , __lowercase=3 , __lowercase=2_2_4 , __lowercase=1_6 , __lowercase="quick_gelu" , __lowercase=1e-5 , __lowercase=0.0 , __lowercase=0.02 , **__lowercase , ) -> int: super().__init__(**__lowercase ) lowerCAmelCase_ : Union[str, Any] = hidden_size lowerCAmelCase_ : List[str] = intermediate_size lowerCAmelCase_ : Tuple = num_hidden_layers lowerCAmelCase_ : Optional[Any] = num_attention_heads lowerCAmelCase_ : List[str] = num_channels lowerCAmelCase_ : int = patch_size lowerCAmelCase_ : Any = image_size lowerCAmelCase_ : List[Any] = initializer_range lowerCAmelCase_ : str = attention_dropout lowerCAmelCase_ : List[str] = layer_norm_eps lowerCAmelCase_ : Optional[Any] = hidden_act @classmethod def lowercase_ ( cls , __lowercase , **__lowercase ) -> "PretrainedConfig": cls._set_token_in_kwargs(__lowercase ) lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = cls.get_config_dict(__lowercase , **__lowercase ) # get the vision config dict if we are loading from GITConfig if config_dict.get('''model_type''' ) == "git": lowerCAmelCase_ : Any = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__lowercase , **__lowercase ) class snake_case__( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = """git""" def __init__( self , __lowercase=None , __lowercase=3_0_5_2_2 , __lowercase=7_6_8 , __lowercase=6 , __lowercase=1_2 , __lowercase=3_0_7_2 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=1_0_2_4 , __lowercase=0.02 , __lowercase=1e-12 , __lowercase=0 , __lowercase="absolute" , __lowercase=True , __lowercase=False , __lowercase=1_0_1 , __lowercase=1_0_2 , __lowercase=None , **__lowercase , ) -> str: super().__init__(bos_token_id=__lowercase , eos_token_id=__lowercase , pad_token_id=__lowercase , **__lowercase ) if vision_config is None: lowerCAmelCase_ : Tuple = {} logger.info('''vision_config is None. initializing the GitVisionConfig with default values.''' ) lowerCAmelCase_ : Optional[int] = GitVisionConfig(**__lowercase ) lowerCAmelCase_ : Any = vocab_size lowerCAmelCase_ : Optional[Any] = hidden_size lowerCAmelCase_ : Union[str, Any] = num_hidden_layers lowerCAmelCase_ : int = num_attention_heads lowerCAmelCase_ : str = hidden_act lowerCAmelCase_ : Optional[Any] = intermediate_size lowerCAmelCase_ : Dict = hidden_dropout_prob lowerCAmelCase_ : List[Any] = attention_probs_dropout_prob lowerCAmelCase_ : Optional[Any] = max_position_embeddings lowerCAmelCase_ : List[str] = initializer_range lowerCAmelCase_ : Optional[int] = layer_norm_eps lowerCAmelCase_ : Optional[Any] = position_embedding_type lowerCAmelCase_ : Union[str, Any] = use_cache lowerCAmelCase_ : Dict = tie_word_embeddings lowerCAmelCase_ : List[str] = num_image_with_embedding lowerCAmelCase_ : List[str] = bos_token_id lowerCAmelCase_ : str = eos_token_id def lowercase_ ( self ) -> Tuple: lowerCAmelCase_ : int = copy.deepcopy(self.__dict__ ) lowerCAmelCase_ : Dict = self.vision_config.to_dict() lowerCAmelCase_ : Tuple = self.__class__.model_type return output
262
from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig _UpperCAmelCase : Dict ={ """susnato/ernie-m-base_pytorch""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json""", """susnato/ernie-m-large_pytorch""": """https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json""", } class snake_case__( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = """ernie_m""" SCREAMING_SNAKE_CASE__ : Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self , __lowercase = 2_5_0_0_0_2 , __lowercase = 7_6_8 , __lowercase = 1_2 , __lowercase = 1_2 , __lowercase = 3_0_7_2 , __lowercase = "gelu" , __lowercase = 0.1 , __lowercase = 0.1 , __lowercase = 5_1_4 , __lowercase = 0.02 , __lowercase = 1 , __lowercase = 1e-05 , __lowercase=None , __lowercase=False , __lowercase=0.0 , **__lowercase , ) -> Tuple: super().__init__(pad_token_id=__lowercase , **__lowercase ) lowerCAmelCase_ : Tuple = vocab_size lowerCAmelCase_ : Dict = hidden_size lowerCAmelCase_ : Tuple = num_hidden_layers lowerCAmelCase_ : int = num_attention_heads lowerCAmelCase_ : Dict = intermediate_size lowerCAmelCase_ : int = hidden_act lowerCAmelCase_ : Union[str, Any] = hidden_dropout_prob lowerCAmelCase_ : Any = attention_probs_dropout_prob lowerCAmelCase_ : Union[str, Any] = max_position_embeddings lowerCAmelCase_ : str = initializer_range lowerCAmelCase_ : List[str] = layer_norm_eps lowerCAmelCase_ : List[Any] = classifier_dropout lowerCAmelCase_ : Any = is_decoder lowerCAmelCase_ : List[Any] = act_dropout
262
1
import string def a__ ( lowerCAmelCase__ ) -> str: UpperCAmelCase__ : Any = '''''' for i in sequence: UpperCAmelCase__ : List[Any] = ord(lowerCAmelCase__ ) if 65 <= extract <= 90: output += chr(1_55 - extract ) elif 97 <= extract <= 1_22: output += chr(2_19 - extract ) else: output += i return output def a__ ( lowerCAmelCase__ ) -> str: UpperCAmelCase__ : List[Any] = string.ascii_letters UpperCAmelCase__ : Tuple = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(lowerCAmelCase__ )] if c in letters else c for c in sequence ) def a__ ( ) -> None: from timeit import timeit print('''Running performance benchmarks...''' ) UpperCAmelCase__ : Dict = '''from string import printable ; from __main__ import atbash, atbash_slow''' print(F"""> atbash_slow(): {timeit("atbash_slow(printable)" , setup=lowerCAmelCase__ )} seconds""" ) print(F"""> atbash(): {timeit("atbash(printable)" , setup=lowerCAmelCase__ )} seconds""" ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(F"""{example} encrypted in atbash: {atbash(example)}""") benchmark()
352
'''simple docstring''' class lowerCamelCase_ : def __init__( self : Union[str, Any] , _A : int ): '''simple docstring''' UpperCAmelCase__ : str = n UpperCAmelCase__ : Union[str, Any] = [None] * self.n UpperCAmelCase__ : Tuple = 0 # index of the first element UpperCAmelCase__ : int = 0 UpperCAmelCase__ : int = 0 def __len__( self : Optional[Any] ): '''simple docstring''' return self.size def lowercase_ ( self : Dict ): '''simple docstring''' return self.size == 0 def lowercase_ ( self : List[str] ): '''simple docstring''' return False if self.is_empty() else self.array[self.front] def lowercase_ ( self : List[Any] , _A : int ): '''simple docstring''' if self.size >= self.n: raise Exception('''QUEUE IS FULL''' ) UpperCAmelCase__ : str = data UpperCAmelCase__ : Optional[Any] = (self.rear + 1) % self.n self.size += 1 return self def lowercase_ ( self : List[Any] ): '''simple docstring''' if self.size == 0: raise Exception('''UNDERFLOW''' ) UpperCAmelCase__ : Any = self.array[self.front] UpperCAmelCase__ : List[Any] = None UpperCAmelCase__ : Tuple = (self.front + 1) % self.n self.size -= 1 return temp
299
0
import math def UpperCAmelCase_( a__ , a__ = 0 , a__ = 0 ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = end or len(a__ ) for i in range(a__ , a__ ): SCREAMING_SNAKE_CASE : int = i SCREAMING_SNAKE_CASE : str = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: SCREAMING_SNAKE_CASE : List[Any] = array[temp_index - 1] temp_index -= 1 SCREAMING_SNAKE_CASE : Any = temp_index_value return array def UpperCAmelCase_( a__ , a__ , a__ ): # Max Heap """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = index SCREAMING_SNAKE_CASE : Union[str, Any] = 2 * index + 1 # Left Node SCREAMING_SNAKE_CASE : int = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: SCREAMING_SNAKE_CASE : Optional[int] = left_index if right_index < heap_size and array[largest] < array[right_index]: SCREAMING_SNAKE_CASE : str = right_index if largest != index: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = array[largest], array[index] heapify(a__ , a__ , a__ ) def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = len(a__ ) for i in range(n // 2 , -1 , -1 ): heapify(a__ , a__ , a__ ) for i in range(n - 1 , 0 , -1 ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = array[0], array[i] heapify(a__ , 0 , a__ ) return array def UpperCAmelCase_( a__ , a__ , a__ , a__ ): """simple docstring""" if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def UpperCAmelCase_( a__ , a__ , a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = low SCREAMING_SNAKE_CASE : Any = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = array[j], array[i] i += 1 def UpperCAmelCase_( a__ ): """simple docstring""" if len(a__ ) == 0: return array SCREAMING_SNAKE_CASE : Dict = 2 * math.ceil(math.loga(len(a__ ) ) ) SCREAMING_SNAKE_CASE : Any = 16 return intro_sort(a__ , 0 , len(a__ ) , a__ , a__ ) def UpperCAmelCase_( a__ , a__ , a__ , a__ , a__ ): """simple docstring""" while end - start > size_threshold: if max_depth == 0: return heap_sort(a__ ) max_depth -= 1 SCREAMING_SNAKE_CASE : List[str] = median_of_a(a__ , a__ , start + ((end - start) // 2) + 1 , end - 1 ) SCREAMING_SNAKE_CASE : int = partition(a__ , a__ , a__ , a__ ) intro_sort(a__ , a__ , a__ , a__ , a__ ) SCREAMING_SNAKE_CASE : Any = p return insertion_sort(a__ , a__ , a__ ) if __name__ == "__main__": import doctest doctest.testmod() a__ : Optional[Any] = input('''Enter numbers separated by a comma : ''').strip() a__ : str = [float(item) for item in user_input.split(''',''')] print(sort(unsorted))
313
from abc import ABC, abstractmethod from typing import List, Optional class a_ ( a__ ): """simple docstring""" def __init__( self ) ->List[str]: # test for the above condition self.test() def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = False while not completed: if counter == 1: self.reset() SCREAMING_SNAKE_CASE : List[Any] = self.advance() if not self.does_advance(_lowerCamelCase ): raise Exception( '''Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.''' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = self.update(_lowerCamelCase ) counter += 1 if counter > 1_0000: raise Exception('''update() does not fulfill the constraint.''' ) if self.remaining() != 0: raise Exception('''Custom Constraint is not defined correctly.''' ) @abstractmethod def __lowerCAmelCase ( self ) ->Optional[int]: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def __lowerCAmelCase ( self ) ->Optional[Any]: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def __lowerCAmelCase ( self ) ->Union[str, Any]: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def __lowerCAmelCase ( self , _lowerCamelCase=False ) ->Any: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->int: super(_lowerCamelCase , self ).__init__() if not isinstance(_lowerCamelCase , _lowerCamelCase ) or len(_lowerCamelCase ) == 0: raise ValueError(F"""`token_ids` has to be a non-empty list, but is {token_ids}.""" ) if any((not isinstance(_lowerCamelCase , _lowerCamelCase ) or token_id < 0) for token_id in token_ids ): raise ValueError(F"""Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.""" ) SCREAMING_SNAKE_CASE : Optional[Any] = token_ids SCREAMING_SNAKE_CASE : Union[str, Any] = len(self.token_ids ) SCREAMING_SNAKE_CASE : Any = -1 # the index of the currently fulfilled step SCREAMING_SNAKE_CASE : Any = False def __lowerCAmelCase ( self ) ->List[Any]: if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def __lowerCAmelCase ( self , _lowerCamelCase ) ->Union[str, Any]: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError(F"""`token_id` has to be an `int`, but is {token_id} of type {type(_lowerCamelCase )}""" ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError(F"""`token_id` has to be an `int`, but is {token_id} of type {type(_lowerCamelCase )}""" ) SCREAMING_SNAKE_CASE : str = False SCREAMING_SNAKE_CASE : Any = False SCREAMING_SNAKE_CASE : List[Any] = False if self.does_advance(_lowerCamelCase ): self.fulfilled_idx += 1 SCREAMING_SNAKE_CASE : str = True if self.fulfilled_idx == (self.seqlen - 1): SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : Union[str, Any] = completed else: # failed to make progress. SCREAMING_SNAKE_CASE : Dict = True self.reset() return stepped, completed, reset def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : List[Any] = False SCREAMING_SNAKE_CASE : Union[str, Any] = 0 def __lowerCAmelCase ( self ) ->Any: return self.seqlen - (self.fulfilled_idx + 1) def __lowerCAmelCase ( self , _lowerCamelCase=False ) ->Dict: SCREAMING_SNAKE_CASE : Any = PhrasalConstraint(self.token_ids ) if stateful: SCREAMING_SNAKE_CASE : Dict = self.seqlen SCREAMING_SNAKE_CASE : int = self.fulfilled_idx SCREAMING_SNAKE_CASE : Tuple = self.completed return new_constraint class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=True ) ->Dict: SCREAMING_SNAKE_CASE : Any = max([len(_lowerCamelCase ) for one in nested_token_ids] ) SCREAMING_SNAKE_CASE : List[str] = {} for token_ids in nested_token_ids: SCREAMING_SNAKE_CASE : Optional[Any] = root for tidx, token_id in enumerate(_lowerCamelCase ): if token_id not in level: SCREAMING_SNAKE_CASE : Any = {} SCREAMING_SNAKE_CASE : Tuple = level[token_id] if no_subsets and self.has_subsets(_lowerCamelCase , _lowerCamelCase ): raise ValueError( '''Each list in `nested_token_ids` can\'t be a complete subset of another list, but is''' F""" {nested_token_ids}.""" ) SCREAMING_SNAKE_CASE : List[Any] = root def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : List[Any] = self.trie for current_token in current_seq: SCREAMING_SNAKE_CASE : int = start[current_token] SCREAMING_SNAKE_CASE : Optional[int] = list(start.keys() ) return next_tokens def __lowerCAmelCase ( self , _lowerCamelCase ) ->Dict: SCREAMING_SNAKE_CASE : Any = self.next_tokens(_lowerCamelCase ) return len(_lowerCamelCase ) == 0 def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Any = list(root.values() ) if len(_lowerCamelCase ) == 0: return 1 else: return sum([self.count_leaves(_lowerCamelCase ) for nn in next_nodes] ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Dict: SCREAMING_SNAKE_CASE : List[str] = self.count_leaves(_lowerCamelCase ) return len(_lowerCamelCase ) != leaf_count class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->str: super(_lowerCamelCase , self ).__init__() if not isinstance(_lowerCamelCase , _lowerCamelCase ) or len(_lowerCamelCase ) == 0: raise ValueError(F"""`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.""" ) if any(not isinstance(_lowerCamelCase , _lowerCamelCase ) for token_ids in nested_token_ids ): raise ValueError(F"""`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.""" ) if any( any((not isinstance(_lowerCamelCase , _lowerCamelCase ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( F"""Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.""" ) SCREAMING_SNAKE_CASE : List[Any] = DisjunctiveTrie(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = nested_token_ids SCREAMING_SNAKE_CASE : Optional[int] = self.trie.max_height SCREAMING_SNAKE_CASE : Union[str, Any] = [] SCREAMING_SNAKE_CASE : Optional[int] = False def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : str = self.trie.next_tokens(self.current_seq ) if len(_lowerCamelCase ) == 0: return None else: return token_list def __lowerCAmelCase ( self , _lowerCamelCase ) ->Dict: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError(F"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(_lowerCamelCase )}""" ) SCREAMING_SNAKE_CASE : List[str] = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def __lowerCAmelCase ( self , _lowerCamelCase ) ->Any: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError(F"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(_lowerCamelCase )}""" ) SCREAMING_SNAKE_CASE : int = False SCREAMING_SNAKE_CASE : List[Any] = False SCREAMING_SNAKE_CASE : Union[str, Any] = False if self.does_advance(_lowerCamelCase ): self.current_seq.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = True else: SCREAMING_SNAKE_CASE : Dict = True self.reset() SCREAMING_SNAKE_CASE : Any = self.trie.reached_leaf(self.current_seq ) SCREAMING_SNAKE_CASE : List[Any] = completed return stepped, completed, reset def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Any = False SCREAMING_SNAKE_CASE : List[Any] = [] def __lowerCAmelCase ( self ) ->Optional[Any]: if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def __lowerCAmelCase ( self , _lowerCamelCase=False ) ->List[str]: SCREAMING_SNAKE_CASE : str = DisjunctiveConstraint(self.token_ids ) if stateful: SCREAMING_SNAKE_CASE : str = self.seqlen SCREAMING_SNAKE_CASE : int = self.current_seq SCREAMING_SNAKE_CASE : Optional[int] = self.completed return new_constraint class a_ : """simple docstring""" def __init__( self , _lowerCamelCase ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : List[Any] = constraints # max # of steps required to fulfill a given constraint SCREAMING_SNAKE_CASE : str = max([c.seqlen for c in constraints] ) SCREAMING_SNAKE_CASE : List[str] = len(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = False self.init_state() def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : Any = [] SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : Tuple = [constraint.copy(stateful=_lowerCamelCase ) for constraint in self.constraints] def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : str = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Tuple = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" SCREAMING_SNAKE_CASE : Optional[int] = constraint.advance() if isinstance(_lowerCamelCase , _lowerCamelCase ): token_list.append(_lowerCamelCase ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): token_list.extend(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : List[str] = self.inprogress_constraint.advance() if isinstance(_lowerCamelCase , _lowerCamelCase ): token_list.append(_lowerCamelCase ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): token_list.extend(_lowerCamelCase ) if len(_lowerCamelCase ) == 0: return None else: return token_list def __lowerCAmelCase ( self , _lowerCamelCase ) ->Union[str, Any]: self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.add(_lowerCamelCase ) # the entire list of constraints are fulfilled if self.completed: break def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[Any]: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError(F"""`token_id` should be an `int`, but is `{token_id}`.""" ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = False, False if self.completed: SCREAMING_SNAKE_CASE : List[str] = True SCREAMING_SNAKE_CASE : Optional[int] = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.inprogress_constraint.update(_lowerCamelCase ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : Optional[int] = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) SCREAMING_SNAKE_CASE : str = None if len(self.pending_constraints ) == 0: # we're done! SCREAMING_SNAKE_CASE : Optional[Any] = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(_lowerCamelCase ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = pending_constraint.update(_lowerCamelCase ) if not stepped: raise Exception( '''`constraint.update(token_id)` is not yielding incremental progress, ''' '''even though `constraint.does_advance(token_id)` is true.''' ) if complete: self.complete_constraints.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = None if not complete and stepped: SCREAMING_SNAKE_CASE : Optional[Any] = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". SCREAMING_SNAKE_CASE : Union[str, Any] = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. SCREAMING_SNAKE_CASE : str = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def __lowerCAmelCase ( self , _lowerCamelCase=True ) ->str: SCREAMING_SNAKE_CASE : Dict = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: SCREAMING_SNAKE_CASE : str = [ constraint.copy(stateful=_lowerCamelCase ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: SCREAMING_SNAKE_CASE : Optional[int] = self.inprogress_constraint.copy(stateful=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = [constraint.copy() for constraint in self.pending_constraints] return new_state
313
1
"""simple docstring""" def _lowerCamelCase(__UpperCamelCase ) -> str: if not all(char in """01""" for char in bin_string ): raise ValueError("""Non-binary value was passed to the function""" ) if not bin_string: raise ValueError("""Empty string was passed to the function""" ) _lowerCAmelCase ="""""" while len(__UpperCamelCase ) % 3 != 0: _lowerCAmelCase ="""0""" + bin_string _lowerCAmelCase =[ bin_string[index : index + 3] for index in range(len(__UpperCamelCase ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: _lowerCAmelCase =0 for index, val in enumerate(__UpperCamelCase ): oct_val += int(2 ** (2 - index) * int(__UpperCamelCase ) ) oct_string += str(__UpperCamelCase ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
341
"""simple docstring""" import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class lowerCamelCase__ : '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=99 , __UpperCAmelCase=13 , __UpperCAmelCase=16 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=2 , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=30 , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=None , ) -> Any: _lowerCAmelCase =parent _lowerCAmelCase =batch_size _lowerCAmelCase =decoder_seq_length # For common tests _lowerCAmelCase =self.decoder_seq_length _lowerCAmelCase =is_training _lowerCAmelCase =use_attention_mask _lowerCAmelCase =use_labels _lowerCAmelCase =vocab_size _lowerCAmelCase =d_model _lowerCAmelCase =d_model _lowerCAmelCase =decoder_layers _lowerCAmelCase =decoder_layers _lowerCAmelCase =decoder_ffn_dim _lowerCAmelCase =decoder_attention_heads _lowerCAmelCase =decoder_attention_heads _lowerCAmelCase =eos_token_id _lowerCAmelCase =bos_token_id _lowerCAmelCase =pad_token_id _lowerCAmelCase =decoder_start_token_id _lowerCAmelCase =use_cache _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =None _lowerCAmelCase =decoder_seq_length _lowerCAmelCase =2 _lowerCAmelCase =1 def _lowerCAmelCase ( self ) -> Tuple: _lowerCAmelCase =ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) _lowerCAmelCase =None if self.use_attention_mask: _lowerCAmelCase =ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) _lowerCAmelCase =None if self.use_labels: _lowerCAmelCase =ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) _lowerCAmelCase =TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> List[Any]: _lowerCAmelCase =True _lowerCAmelCase =TrOCRDecoder(config=__UpperCAmelCase ).to(__UpperCAmelCase ).eval() _lowerCAmelCase =input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass _lowerCAmelCase =model(__UpperCAmelCase , use_cache=__UpperCAmelCase ) _lowerCAmelCase =model(__UpperCAmelCase ) _lowerCAmelCase =model(__UpperCAmelCase , use_cache=__UpperCAmelCase ) self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) ) self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) + 1 ) _lowerCAmelCase =outputs["""past_key_values"""] # create hypothetical next token and extent to next_input_ids _lowerCAmelCase =ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and _lowerCAmelCase =torch.cat([input_ids, next_tokens] , dim=-1 ) _lowerCAmelCase =model(__UpperCAmelCase )["""last_hidden_state"""] _lowerCAmelCase =model(__UpperCAmelCase , past_key_values=__UpperCAmelCase )["""last_hidden_state"""] # select random slice _lowerCAmelCase =ids_tensor((1,) , output_from_past.shape[-1] ).item() _lowerCAmelCase =output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() _lowerCAmelCase =output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) def _lowerCAmelCase ( self ) -> List[str]: _lowerCAmelCase =self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =config_and_inputs _lowerCAmelCase ={"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_torch class lowerCamelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () lowerCamelCase = (TrOCRForCausalLM,) if is_torch_available() else () lowerCamelCase = {'''text-generation''': TrOCRForCausalLM} if is_torch_available() else {} lowerCamelCase = True lowerCamelCase = False def _lowerCAmelCase ( self ) -> int: _lowerCAmelCase =TrOCRStandaloneDecoderModelTester(self , is_training=__UpperCAmelCase ) _lowerCAmelCase =ConfigTester(self , config_class=__UpperCAmelCase ) def _lowerCAmelCase ( self ) -> List[str]: pass def _lowerCAmelCase ( self ) -> List[Any]: pass def _lowerCAmelCase ( self ) -> Any: pass def _lowerCAmelCase ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def _lowerCAmelCase ( self ) -> Any: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*__UpperCAmelCase ) def _lowerCAmelCase ( self ) -> Tuple: return @unittest.skip("""The model doesn't support left padding""" ) # and it's not used enough to be worth fixing :) def _lowerCAmelCase ( self ) -> str: pass
341
1
import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html lowerCAmelCase__ = 'platform' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class lowerCAmelCase__ : '''simple docstring''' __SCREAMING_SNAKE_CASE = PegasusConfig __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = "gelu" def __init__( self , __lowerCamelCase , __lowerCamelCase=1_3 , __lowerCamelCase=7 , __lowerCamelCase=True , __lowerCamelCase=False , __lowerCamelCase=9_9 , __lowerCamelCase=3_2 , __lowerCamelCase=5 , __lowerCamelCase=4 , __lowerCamelCase=3_7 , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=2_0 , __lowerCamelCase=2 , __lowerCamelCase=1 , __lowerCamelCase=0 , ) -> Any: _A : Optional[int] = parent _A : str = batch_size _A : Dict = seq_length _A : Any = is_training _A : Any = use_labels _A : Tuple = vocab_size _A : Any = hidden_size _A : Tuple = num_hidden_layers _A : Optional[Any] = num_attention_heads _A : str = intermediate_size _A : int = hidden_dropout_prob _A : List[str] = attention_probs_dropout_prob _A : Any = max_position_embeddings _A : Any = eos_token_id _A : int = pad_token_id _A : Optional[Any] = bos_token_id def _lowerCamelCase ( self) -> Any: _A : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size).clip(3 , self.vocab_size) _A : int = np.expand_dims(np.array([self.eos_token_id] * self.batch_size) , 1) _A : List[str] = np.concatenate([input_ids, eos_tensor] , axis=1) _A : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _A : List[str] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _A : Dict = prepare_pegasus_inputs_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase) return config, inputs_dict def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> List[Any]: _A : List[str] = 2_0 _A : Optional[Any] = model_class_name(__lowerCamelCase) _A : str = model.encode(inputs_dict["input_ids"]) _A , _A : List[Any] = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) _A : Tuple = model.init_cache(decoder_input_ids.shape[0] , __lowerCamelCase , __lowerCamelCase) _A : List[Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4") _A : List[str] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _A : str = model.decode( decoder_input_ids[:, :-1] , __lowerCamelCase , decoder_attention_mask=__lowerCamelCase , past_key_values=__lowerCamelCase , decoder_position_ids=__lowerCamelCase , ) _A : List[Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4") _A : Union[str, Any] = model.decode( decoder_input_ids[:, -1:] , __lowerCamelCase , decoder_attention_mask=__lowerCamelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__lowerCamelCase , ) _A : List[str] = model.decode(__lowerCamelCase , __lowerCamelCase) _A : Optional[int] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3 , msg=F"Max diff is {diff}") def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> Optional[Any]: _A : Union[str, Any] = 2_0 _A : Union[str, Any] = model_class_name(__lowerCamelCase) _A : str = model.encode(inputs_dict["input_ids"]) _A , _A : str = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) _A : Optional[int] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ] , axis=-1 , ) _A : Tuple = model.init_cache(decoder_input_ids.shape[0] , __lowerCamelCase , __lowerCamelCase) _A : Optional[Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _A : Optional[Any] = model.decode( decoder_input_ids[:, :-1] , __lowerCamelCase , decoder_attention_mask=__lowerCamelCase , past_key_values=__lowerCamelCase , decoder_position_ids=__lowerCamelCase , ) _A : Union[str, Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4") _A : List[str] = model.decode( decoder_input_ids[:, -1:] , __lowerCamelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__lowerCamelCase , decoder_position_ids=__lowerCamelCase , ) _A : Optional[int] = model.decode(__lowerCamelCase , __lowerCamelCase , decoder_attention_mask=__lowerCamelCase) _A : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3 , msg=F"Max diff is {diff}") def _UpperCAmelCase (UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : str=None , UpperCamelCase__ : Optional[int]=None , ): if attention_mask is None: _A : Tuple = np.not_equal(UpperCamelCase__ , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: _A : List[Any] = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class lowerCAmelCase__ ( a , unittest.TestCase): '''simple docstring''' __SCREAMING_SNAKE_CASE = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) __SCREAMING_SNAKE_CASE = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def _lowerCamelCase ( self) -> Union[str, Any]: _A : List[str] = FlaxPegasusModelTester(self) _A : Optional[int] = ConfigTester(self , config_class=__lowerCamelCase) def _lowerCamelCase ( self) -> Union[str, Any]: self.config_tester.run_common_tests() def _lowerCamelCase ( self) -> str: _A , _A : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase) def _lowerCamelCase ( self) -> Dict: _A , _A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase) def _lowerCamelCase ( self) -> Dict: _A , _A : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): _A : List[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase) _A : Union[str, Any] = model_class(__lowerCamelCase) @jax.jit def encode_jitted(__lowerCamelCase , __lowerCamelCase=None , **__lowerCamelCase): return model.encode(input_ids=__lowerCamelCase , attention_mask=__lowerCamelCase) with self.subTest("JIT Enabled"): _A : Any = encode_jitted(**__lowerCamelCase).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): _A : Union[str, Any] = encode_jitted(**__lowerCamelCase).to_tuple() self.assertEqual(len(__lowerCamelCase) , len(__lowerCamelCase)) for jitted_output, output in zip(__lowerCamelCase , __lowerCamelCase): self.assertEqual(jitted_output.shape , output.shape) def _lowerCamelCase ( self) -> Dict: _A , _A : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): _A : int = model_class(__lowerCamelCase) _A : Dict = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"]) _A : Union[str, Any] = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase): return model.decode( decoder_input_ids=__lowerCamelCase , decoder_attention_mask=__lowerCamelCase , encoder_outputs=__lowerCamelCase , ) with self.subTest("JIT Enabled"): _A : List[str] = decode_jitted(**__lowerCamelCase).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): _A : Optional[int] = decode_jitted(**__lowerCamelCase).to_tuple() self.assertEqual(len(__lowerCamelCase) , len(__lowerCamelCase)) for jitted_output, output in zip(__lowerCamelCase , __lowerCamelCase): self.assertEqual(jitted_output.shape , output.shape) @slow def _lowerCamelCase ( self) -> List[str]: for model_class_name in self.all_model_classes: _A : Tuple = model_class_name.from_pretrained("google/pegasus-large" , from_pt=__lowerCamelCase) _A : Union[str, Any] = np.ones((1, 1)) _A : Optional[int] = model(__lowerCamelCase) self.assertIsNotNone(__lowerCamelCase) @slow def _lowerCamelCase ( self) -> Tuple: _A : Optional[Any] = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum") _A : str = PegasusTokenizer.from_pretrained("google/pegasus-xsum") _A : Any = [ " PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.", " The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" ", ] _A : List[Any] = [ "California's largest electricity provider has turned off power to hundreds of thousands of customers.", "Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.", ] _A : Any = tokenizer(__lowerCamelCase , return_tensors="np" , truncation=__lowerCamelCase , max_length=5_1_2 , padding=__lowerCamelCase) _A : List[Any] = model.generate(**__lowerCamelCase , num_beams=2).sequences _A : Optional[Any] = tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase) assert tgt_text == decoded
11
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available lowerCAmelCase__ = {'configuration_speech_encoder_decoder': ['SpeechEncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['SpeechEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['FlaxSpeechEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
11
1
import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset SCREAMING_SNAKE_CASE_:str = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self, lowerCamelCase__ ): super().__init__() A : Optional[int] = torchvision.models.resnetaaa(pretrained=lowerCamelCase__ ) A : List[Any] = list(model.children() )[:-2] A : Tuple = nn.Sequential(*lowerCamelCase__ ) A : Dict = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def _lowerCAmelCase ( self, lowerCamelCase__ ): # Bx3x224x224 -> Bx2048x7x7 -> Bx2048xN -> BxNx2048 A : Dict = self.pool(self.model(lowerCamelCase__ ) ) A : List[str] = torch.flatten(lowerCamelCase__, start_dim=2 ) A : str = out.transpose(1, 2 ).contiguous() return out # BxNx2048 class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ): A : Optional[Any] = [json.loads(lowerCamelCase__ ) for l in open(lowerCamelCase__ )] A : str = os.path.dirname(lowerCamelCase__ ) A : List[str] = tokenizer A : Any = labels A : Optional[int] = len(lowerCamelCase__ ) A : str = max_seq_length A : List[Any] = transforms def __len__( self ): return len(self.data ) def __getitem__( self, lowerCamelCase__ ): A : Any = torch.LongTensor(self.tokenizer.encode(self.data[index]["""text"""], add_special_tokens=lowerCamelCase__ ) ) A : str = sentence[0], sentence[1:-1], sentence[-1] A : Union[str, Any] = sentence[: self.max_seq_length] A : str = torch.zeros(self.n_classes ) A : Union[str, Any] = 1 A : Optional[Any] = Image.open(os.path.join(self.data_dir, self.data[index]["""img"""] ) ).convert("""RGB""" ) A : Tuple = self.transforms(lowerCamelCase__ ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def _lowerCAmelCase ( self ): A : Any = Counter() for row in self.data: label_freqs.update(row["""label"""] ) return label_freqs def __UpperCamelCase ( _lowerCAmelCase ) -> List[str]: """simple docstring""" A : int = [len(row["""sentence"""] ) for row in batch] A : Dict = len(_lowerCAmelCase ), max(_lowerCAmelCase ) A : Dict = torch.zeros(_lowerCAmelCase , _lowerCAmelCase , dtype=torch.long ) A : Optional[Any] = torch.zeros(_lowerCAmelCase , _lowerCAmelCase , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(_lowerCAmelCase , _lowerCAmelCase ) ): A : str = input_row["""sentence"""] A : List[Any] = 1 A : Optional[int] = torch.stack([row["""image"""] for row in batch] ) A : List[Any] = torch.stack([row["""label"""] for row in batch] ) A : List[str] = torch.stack([row["""image_start_token"""] for row in batch] ) A : int = torch.stack([row["""image_end_token"""] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def __UpperCamelCase ( ) -> List[Any]: """simple docstring""" return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def __UpperCamelCase ( ) -> Dict: """simple docstring""" return transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46_777_044, 0.44_531_429, 0.40_661_017] , std=[0.12_221_994, 0.12_145_835, 0.14_380_469] , ), ] )
353
from random import randint, random def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = 5 , ) -> list: """simple docstring""" A : Any = [[-1] * number_of_cells] # Create a highway without any car A : Tuple = 0 A : Dict = max(_lowerCAmelCase , 0 ) while i < number_of_cells: A : Any = ( randint(0 , _lowerCAmelCase ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> int: """simple docstring""" A : List[str] = 0 A : Dict = highway_now[car_index + 1 :] for cell in range(len(_lowerCAmelCase ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(_lowerCAmelCase , -1 ) def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> list: """simple docstring""" A : str = len(_lowerCAmelCase ) # Beforce calculations, the highway is empty A : Any = [-1] * number_of_cells for car_index in range(_lowerCAmelCase ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed A : str = min(highway_now[car_index] + 1 , _lowerCAmelCase ) # Number of empty cell before the next car A : Optional[int] = get_distance(_lowerCAmelCase , _lowerCAmelCase ) - 1 # We can't have the car causing an accident A : Any = min(next_highway[car_index] , _lowerCAmelCase ) if random() < probability: # Randomly, a driver will slow down A : Optional[Any] = max(next_highway[car_index] - 1 , 0 ) return next_highway def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> list: """simple docstring""" A : Any = len(highway[0] ) for i in range(_lowerCAmelCase ): A : Optional[int] = update(highway[i] , _lowerCAmelCase , _lowerCAmelCase ) A : Tuple = [-1] * number_of_cells for car_index in range(_lowerCAmelCase ): A : Dict = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) A : Optional[int] = (car_index + speed) % number_of_cells # Commit the change of position A : Dict = speed highway.append(_lowerCAmelCase ) return highway if __name__ == "__main__": import doctest doctest.testmod()
115
0
"""simple docstring""" __SCREAMING_SNAKE_CASE ={} def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ): # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on lowercase_ : Any = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one lowercase_ : Optional[int] = _calculate(days - 1 , __SCREAMING_SNAKE_CASE , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 lowercase_ : Any = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter lowercase_ : Dict = _calculate(days - 1 , __SCREAMING_SNAKE_CASE , 0 ) lowercase_ : str = state_late + state_absent + state_ontime lowercase_ : Tuple = prizestrings return prizestrings def lowercase__( __SCREAMING_SNAKE_CASE : int = 30 ): return _calculate(__SCREAMING_SNAKE_CASE , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
213
"""simple docstring""" from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class UpperCamelCase ( yaml.SafeLoader ): def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' lowercase_ : str = [self.constructed_objects[key_node] for key_node, _ in node.value] lowercase_ : str = [tuple(__UpperCamelCase ) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else key for key in keys] lowercase_ : List[Any] = Counter(__UpperCamelCase ) lowercase_ : str = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(f'''Got duplicate yaml keys: {duplicate_keys}''' ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase=False ) -> List[Any]: '''simple docstring''' lowercase_ : Optional[int] = super().construct_mapping(__UpperCamelCase ,deep=__UpperCamelCase ) self._check_no_duplicates_on_constructed_node(__UpperCamelCase ) return mapping def lowercase__( __SCREAMING_SNAKE_CASE : str ): lowercase_ : Tuple = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: lowercase_ : Dict = full_content[1:].index('---' ) + 1 lowercase_ : Optional[int] = '\n'.join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(__SCREAMING_SNAKE_CASE ) class UpperCamelCase ( lowercase_ ): # class attributes lowercase = {'train_eval_index'} # train-eval-index in the YAML metadata @classmethod def _UpperCAmelCase ( cls ,__UpperCamelCase ) -> "DatasetMetadata": '''simple docstring''' with open(__UpperCamelCase ,encoding='utf-8' ) as readme_file: lowercase_ , lowercase_ : Optional[int] = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(__UpperCamelCase ) else: return cls() def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[Any]: '''simple docstring''' if path.exists(): with open(__UpperCamelCase ,encoding='utf-8' ) as readme_file: lowercase_ : Dict = readme_file.read() else: lowercase_ : int = None lowercase_ : Any = self._to_readme(__UpperCamelCase ) with open(__UpperCamelCase ,'w' ,encoding='utf-8' ) as readme_file: readme_file.write(__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase = None ) -> str: '''simple docstring''' if readme_content is not None: lowercase_ , lowercase_ : Optional[Any] = _split_yaml_from_readme(__UpperCamelCase ) lowercase_ : Optional[Any] = '---\n' + self.to_yaml_string() + '---\n' + content else: lowercase_ : Tuple = '---\n' + self.to_yaml_string() + '---\n' return full_content @classmethod def _UpperCAmelCase ( cls ,__UpperCamelCase ) -> "DatasetMetadata": '''simple docstring''' lowercase_ : List[str] = yaml.load(__UpperCamelCase ,Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields lowercase_ : Dict = { (key.replace('-' ,'_' ) if key.replace('-' ,'_' ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**__UpperCamelCase ) def _UpperCAmelCase ( self ) -> str: '''simple docstring''' return yaml.safe_dump( { (key.replace('_' ,'-' ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } ,sort_keys=__UpperCamelCase ,allow_unicode=__UpperCamelCase ,encoding='utf-8' ,).decode('utf-8' ) __SCREAMING_SNAKE_CASE ={ "image-classification": [], "translation": [], "image-segmentation": [], "fill-mask": [], "automatic-speech-recognition": [], "token-classification": [], "sentence-similarity": [], "audio-classification": [], "question-answering": [], "summarization": [], "zero-shot-classification": [], "table-to-text": [], "feature-extraction": [], "other": [], "multiple-choice": [], "text-classification": [], "text-to-image": [], "text2text-generation": [], "zero-shot-image-classification": [], "tabular-classification": [], "tabular-regression": [], "image-to-image": [], "tabular-to-text": [], "unconditional-image-generation": [], "text-retrieval": [], "text-to-speech": [], "object-detection": [], "audio-to-audio": [], "text-generation": [], "conversational": [], "table-question-answering": [], "visual-question-answering": [], "image-to-text": [], "reinforcement-learning": [], "voice-activity-detection": [], "time-series-forecasting": [], "document-question-answering": [], } if __name__ == "__main__": from argparse import ArgumentParser __SCREAMING_SNAKE_CASE =ArgumentParser(usage="Validate the yaml metadata block of a README.md file.") ap.add_argument("readme_filepath") __SCREAMING_SNAKE_CASE =ap.parse_args() __SCREAMING_SNAKE_CASE =Path(args.readme_filepath) __SCREAMING_SNAKE_CASE =DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
213
1
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): A__ : Optional[int] ='''pt''' elif is_tf_available(): A__ : List[str] ='''tf''' else: A__ : str ='''jax''' class UpperCAmelCase ( snake_case_ , unittest.TestCase ): _lowercase: int = ByTaTokenizer _lowercase: Union[str, Any] = False def lowercase__ ( self : Union[str, Any] ) -> Tuple: super().setUp() _lowerCAmelCase = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase__ ( self : Optional[int] ) -> Any: return ByTaTokenizer.from_pretrained("""google/byt5-small""" ) def lowercase__ ( self : Dict , **__snake_case : Optional[Any] ) -> ByTaTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) def lowercase__ ( self : Optional[int] , __snake_case : List[Any] , __snake_case : Tuple=False , __snake_case : Any=20 , __snake_case : List[str]=5 ) -> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. _lowerCAmelCase = [] for i in range(len(__snake_case ) ): try: _lowerCAmelCase = tokenizer.decode([i] , clean_up_tokenization_spaces=__snake_case ) except UnicodeDecodeError: pass toks.append((i, tok) ) _lowerCAmelCase = list(filter(lambda __snake_case : re.match(R"""^[ a-zA-Z]+$""" , t[1] ) , __snake_case ) ) _lowerCAmelCase = list(filter(lambda __snake_case : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=__snake_case ) , __snake_case ) ) if max_length is not None and len(__snake_case ) > max_length: _lowerCAmelCase = toks[:max_length] if min_length is not None and len(__snake_case ) < min_length and len(__snake_case ) > 0: while len(__snake_case ) < min_length: _lowerCAmelCase = toks + toks # toks_str = [t[1] for t in toks] _lowerCAmelCase = [t[0] for t in toks] # Ensure consistency _lowerCAmelCase = tokenizer.decode(__snake_case , clean_up_tokenization_spaces=__snake_case ) if " " not in output_txt and len(__snake_case ) > 1: _lowerCAmelCase = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=__snake_case ) + """ """ + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=__snake_case ) ) if with_prefix_space: _lowerCAmelCase = """ """ + output_txt _lowerCAmelCase = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) return output_txt, output_ids def lowercase__ ( self : List[str] ) -> Optional[int]: _lowerCAmelCase = self.ta_base_tokenizer _lowerCAmelCase = tokenizer(["""hi</s>""", """I went to the gym</s>""", """</s>"""] ) _lowerCAmelCase = tokenizer(["""hi""", """I went to the gym""", """"""] ) self.assertListEqual(batch_with_eos_added["""input_ids"""] , batch_without_eos_added["""input_ids"""] ) def lowercase__ ( self : Any ) -> Tuple: _lowerCAmelCase = self.ta_base_tokenizer _lowerCAmelCase = """Unicode €.""" _lowerCAmelCase = tokenizer(__snake_case ) _lowerCAmelCase = [88, 1_13, 1_08, 1_02, 1_14, 1_03, 1_04, 35, 2_29, 1_33, 1_75, 49, 1] self.assertEqual(encoded["""input_ids"""] , __snake_case ) # decoding _lowerCAmelCase = tokenizer.decode(__snake_case ) self.assertEqual(__snake_case , """Unicode €.</s>""" ) _lowerCAmelCase = tokenizer("""e è é ê ë""" ) _lowerCAmelCase = [1_04, 35, 1_98, 1_71, 35, 1_98, 1_72, 35, 1_98, 1_73, 35, 1_98, 1_74, 1] self.assertEqual(encoded["""input_ids"""] , __snake_case ) # decoding _lowerCAmelCase = tokenizer.decode(__snake_case ) self.assertEqual(__snake_case , """e è é ê ë</s>""" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("""e è é ê ë""" ) ) , """e è é ê ë</s>""" ) def lowercase__ ( self : List[Any] ) -> Dict: _lowerCAmelCase = self.ta_base_tokenizer _lowerCAmelCase = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] # fmt: off _lowerCAmelCase = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 1, 0] # fmt: on _lowerCAmelCase = tokenizer(__snake_case , padding=__snake_case , return_tensors=__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) if FRAMEWORK != "jax": _lowerCAmelCase = list(batch.input_ids.numpy()[0] ) else: _lowerCAmelCase = list(batch.input_ids.tolist()[0] ) self.assertListEqual(__snake_case , __snake_case ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def lowercase__ ( self : Any ) -> Optional[Any]: _lowerCAmelCase = self.ta_base_tokenizer _lowerCAmelCase = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] _lowerCAmelCase = tokenizer(__snake_case , padding=__snake_case , return_tensors=__snake_case ) # check if input_ids are returned and no decoder_input_ids self.assertIn("""input_ids""" , __snake_case ) self.assertIn("""attention_mask""" , __snake_case ) self.assertNotIn("""decoder_input_ids""" , __snake_case ) self.assertNotIn("""decoder_attention_mask""" , __snake_case ) def lowercase__ ( self : str ) -> Dict: _lowerCAmelCase = self.ta_base_tokenizer _lowerCAmelCase = [ """Summary of the text.""", """Another summary.""", ] _lowerCAmelCase = tokenizer( text_target=__snake_case , max_length=32 , padding="""max_length""" , truncation=__snake_case , return_tensors=__snake_case ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) def lowercase__ ( self : List[Any] ) -> Any: _lowerCAmelCase = self.ta_base_tokenizer _lowerCAmelCase = ["""A long paragraph for summarization. </s>"""] _lowerCAmelCase = ["""Summary of the text. </s>"""] # fmt: off _lowerCAmelCase = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 35, 1] _lowerCAmelCase = [86, 1_20, 1_12, 1_12, 1_00, 1_17, 1_24, 35, 1_14, 1_05, 35, 1_19, 1_07, 1_04, 35, 1_19, 1_04, 1_23, 1_19, 49, 35, 1] # fmt: on _lowerCAmelCase = tokenizer(__snake_case , text_target=__snake_case ) self.assertEqual(__snake_case , batch["""input_ids"""][0] ) self.assertEqual(__snake_case , batch["""labels"""][0] ) def lowercase__ ( self : Optional[int] ) -> Tuple: # safety check on max_len default value so we are sure the test works _lowerCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test _lowerCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc _lowerCAmelCase = tempfile.mkdtemp() _lowerCAmelCase = """ He is very happy, UNwant\u00E9d,running""" _lowerCAmelCase = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) tokenizer.save_pretrained(__snake_case ) _lowerCAmelCase = tokenizer.__class__.from_pretrained(__snake_case ) _lowerCAmelCase = after_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) shutil.rmtree(__snake_case ) _lowerCAmelCase = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc _lowerCAmelCase = tempfile.mkdtemp() _lowerCAmelCase = """ He is very happy, UNwant\u00E9d,running""" tokenizer.add_tokens(["""bim""", """bambam"""] ) _lowerCAmelCase = tokenizer.additional_special_tokens additional_special_tokens.append("""new_additional_special_token""" ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) _lowerCAmelCase = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) tokenizer.save_pretrained(__snake_case ) _lowerCAmelCase = tokenizer.__class__.from_pretrained(__snake_case ) _lowerCAmelCase = after_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) self.assertIn("""new_additional_special_token""" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) _lowerCAmelCase = tokenizer.__class__.from_pretrained(__snake_case , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(__snake_case ) def lowercase__ ( self : Union[str, Any] ) -> Dict: _lowerCAmelCase = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__snake_case ) with open(os.path.join(__snake_case , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: _lowerCAmelCase = json.load(__snake_case ) with open(os.path.join(__snake_case , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: _lowerCAmelCase = json.load(__snake_case ) _lowerCAmelCase = [f"<extra_id_{i}>" for i in range(1_25 )] _lowerCAmelCase = added_tokens_extra_ids + [ """an_additional_special_token""" ] _lowerCAmelCase = added_tokens_extra_ids + [ """an_additional_special_token""" ] with open(os.path.join(__snake_case , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(__snake_case , __snake_case ) with open(os.path.join(__snake_case , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(__snake_case , __snake_case ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _lowerCAmelCase = tokenizer_class.from_pretrained( __snake_case , ) self.assertIn( """an_additional_special_token""" , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ["""an_additional_special_token"""] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["""an_additional_special_token"""] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _lowerCAmelCase = added_tokens_extra_ids + [AddedToken("""a_new_additional_special_token""" , lstrip=__snake_case )] _lowerCAmelCase = tokenizer_class.from_pretrained( __snake_case , additional_special_tokens=__snake_case , ) self.assertIn("""a_new_additional_special_token""" , tokenizer.additional_special_tokens ) self.assertEqual( ["""a_new_additional_special_token"""] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["""a_new_additional_special_token"""] ) ) , ) def lowercase__ ( self : Union[str, Any] ) -> Union[str, Any]: _lowerCAmelCase = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__snake_case ) _lowerCAmelCase = tokenizer_class.from_pretrained(__snake_case ) self.assertTrue(tokenizer.decode([2_55] ) == """""" ) def lowercase__ ( self : List[Any] ) -> List[Any]: pass def lowercase__ ( self : Union[str, Any] ) -> str: pass def lowercase__ ( self : Union[str, Any] ) -> Dict: pass def lowercase__ ( self : Tuple ) -> List[Any]: pass def lowercase__ ( self : Optional[Any] ) -> Optional[int]: # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens _lowerCAmelCase = self.get_tokenizers(fast=__snake_case , do_lower_case=__snake_case ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): _lowerCAmelCase = ["""t""", """h""", """i""", """s""", """ """, """i""", """s""", """ """, """a""", """ """, """t""", """e""", """x""", """t""", """</s>"""] _lowerCAmelCase = tokenizer.convert_tokens_to_string(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowercase__ ( self : List[Any] ) -> Dict: _lowerCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): _lowerCAmelCase = [ """bos_token""", """eos_token""", """unk_token""", """sep_token""", """pad_token""", """cls_token""", """mask_token""", ] _lowerCAmelCase = 0 _lowerCAmelCase = tokenizer.convert_ids_to_tokens( __snake_case , skip_special_tokens=__snake_case ) for attr in attributes_list: setattr(__snake_case , attr + """_id""" , __snake_case ) self.assertEqual(getattr(__snake_case , __snake_case ) , __snake_case ) self.assertEqual(getattr(__snake_case , attr + """_id""" ) , __snake_case ) setattr(__snake_case , attr + """_id""" , __snake_case ) self.assertEqual(getattr(__snake_case , __snake_case ) , __snake_case ) self.assertEqual(getattr(__snake_case , attr + """_id""" ) , __snake_case ) setattr(__snake_case , """additional_special_tokens_ids""" , [] ) self.assertListEqual(getattr(__snake_case , """additional_special_tokens""" ) , [] ) self.assertListEqual(getattr(__snake_case , """additional_special_tokens_ids""" ) , [] ) setattr(__snake_case , """additional_special_tokens_ids""" , [token_id_to_test_setters] ) self.assertListEqual(getattr(__snake_case , """additional_special_tokens""" ) , [token_to_test_setters] ) self.assertListEqual(getattr(__snake_case , """additional_special_tokens_ids""" ) , [token_id_to_test_setters] )
220
'''simple docstring''' import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(snake_case_ ) , '''Tatoeba directory does not exist.''' ) class UpperCAmelCase ( unittest.TestCase ): @cached_property def lowercase__ ( self : int ) -> Any: _lowerCAmelCase = tempfile.mkdtemp() return TatoebaConverter(save_dir=__snake_case ) @slow def lowercase__ ( self : Dict ) -> int: self.resolver.convert_models(["""heb-eng"""] ) @slow def lowercase__ ( self : Optional[int] ) -> Tuple: _lowerCAmelCase , _lowerCAmelCase = self.resolver.write_model_card("""opus-mt-he-en""" , dry_run=__snake_case ) assert mmeta["long_pair"] == "heb-eng"
220
1
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase = get_tests_dir('''fixtures/test_sentencepiece_no_bos.model''') @require_sentencepiece @require_tokenizers class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): '''simple docstring''' __lowercase : Union[str, Any] = PegasusTokenizer __lowercase : int = PegasusTokenizerFast __lowercase : str = True __lowercase : List[Any] = True def UpperCAmelCase_ ( self ) -> List[Any]: super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase__ : Optional[Any] = PegasusTokenizer(__UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase_ ( self ) -> Tuple: return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def UpperCAmelCase_ ( self ,**__UpperCAmelCase ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname ,**__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> List[Any]: return ("This is a test", "This is a test") def UpperCAmelCase_ ( self ) -> Optional[Any]: lowerCAmelCase__ : str = """</s>""" lowerCAmelCase__ : Union[str, Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) ,__UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) ,__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> int: lowerCAmelCase__ : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"""<pad>""" ) self.assertEqual(vocab_keys[1] ,"""</s>""" ) self.assertEqual(vocab_keys[-1] ,"""v""" ) self.assertEqual(len(__UpperCAmelCase ) ,1103 ) def UpperCAmelCase_ ( self ) -> List[str]: self.assertEqual(self.get_tokenizer().vocab_size ,1103 ) def UpperCAmelCase_ ( self ) -> Dict: lowerCAmelCase__ : List[str] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase__ : Union[str, Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase__ : List[Any] = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) lowerCAmelCase__ : List[str] = rust_tokenizer([raw_input_str] ,return_tensors=__UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ).input_ids[0] lowerCAmelCase__ : str = py_tokenizer([raw_input_str] ,return_tensors=__UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ).input_ids[0] self.assertListEqual(__UpperCAmelCase ,__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> List[Any]: lowerCAmelCase__ : List[str] = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowerCAmelCase__ : Union[str, Any] = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" lowerCAmelCase__ : Tuple = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] lowerCAmelCase__ : Union[str, Any] = tokenizer([raw_input_str] ,return_tensors=__UpperCAmelCase ).input_ids[0] self.assertListEqual(__UpperCAmelCase ,__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> int: lowerCAmelCase__ : Any = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 lowerCAmelCase__ : Any = """To ensure a smooth flow of bank resolutions.""" lowerCAmelCase__ : str = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] lowerCAmelCase__ : Optional[Any] = tokenizer([raw_input_str] ,return_tensors=__UpperCAmelCase ).input_ids[0] self.assertListEqual(__UpperCAmelCase ,__UpperCAmelCase ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def UpperCAmelCase_ ( self ) -> Optional[Any]: lowerCAmelCase__ : str = ["""This is going to be way too long.""" * 150, """short example"""] lowerCAmelCase__ : List[Any] = ["""not super long but more than 5 tokens""", """tiny"""] lowerCAmelCase__ : str = self._large_tokenizer(__UpperCAmelCase ,padding=__UpperCAmelCase ,truncation=__UpperCAmelCase ,return_tensors="""pt""" ) lowerCAmelCase__ : Dict = self._large_tokenizer( text_target=__UpperCAmelCase ,max_length=5 ,padding=__UpperCAmelCase ,truncation=__UpperCAmelCase ,return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(__UpperCAmelCase ) == 2 # input_ids, attention_mask. @slow def UpperCAmelCase_ ( self ) -> str: # fmt: off lowerCAmelCase__ : Any = {"""input_ids""": [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCAmelCase ,model_name="""google/bigbird-pegasus-large-arxiv""" ,revision="""ba85d0851d708441f91440d509690f1ab6353415""" ,) @require_sentencepiece @require_tokenizers class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): '''simple docstring''' __lowercase : Union[str, Any] = PegasusTokenizer __lowercase : List[Any] = PegasusTokenizerFast __lowercase : Union[str, Any] = True __lowercase : Optional[int] = True def UpperCAmelCase_ ( self ) -> Optional[int]: super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase__ : Union[str, Any] = PegasusTokenizer(__UpperCAmelCase ,offset=0 ,mask_token_sent=__UpperCAmelCase ,mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase_ ( self ) -> List[Any]: return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def UpperCAmelCase_ ( self ,**__UpperCAmelCase ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname ,**__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> int: return ("This is a test", "This is a test") def UpperCAmelCase_ ( self ) -> Dict: lowerCAmelCase__ : Dict = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase__ : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase__ : int = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) lowerCAmelCase__ : str = rust_tokenizer([raw_input_str] ,return_tensors=__UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ).input_ids[0] lowerCAmelCase__ : Any = py_tokenizer([raw_input_str] ,return_tensors=__UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ).input_ids[0] self.assertListEqual(__UpperCAmelCase ,__UpperCAmelCase ) @require_torch def UpperCAmelCase_ ( self ) -> str: lowerCAmelCase__ : Tuple = ["""This is going to be way too long.""" * 1000, """short example"""] lowerCAmelCase__ : str = ["""not super long but more than 5 tokens""", """tiny"""] lowerCAmelCase__ : Optional[int] = self._large_tokenizer(__UpperCAmelCase ,padding=__UpperCAmelCase ,truncation=__UpperCAmelCase ,return_tensors="""pt""" ) lowerCAmelCase__ : Optional[Any] = self._large_tokenizer( text_target=__UpperCAmelCase ,max_length=5 ,padding=__UpperCAmelCase ,truncation=__UpperCAmelCase ,return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(__UpperCAmelCase ) == 2 # input_ids, attention_mask. def UpperCAmelCase_ ( self ) -> str: lowerCAmelCase__ : Any = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) lowerCAmelCase__ : Dict = self._large_tokenizer(__UpperCAmelCase ).input_ids self.assertListEqual( __UpperCAmelCase ,[182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] ,)
37
'''simple docstring''' from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : List[str] = analyze_text(UpperCamelCase ) lowerCAmelCase__ : Optional[int] = list(""" """ + ascii_lowercase ) # what is our total sum of probabilities. lowerCAmelCase__ : List[Any] = sum(single_char_strings.values() ) # one length string lowerCAmelCase__ : Optional[int] = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: lowerCAmelCase__ : List[Any] = single_char_strings[ch] lowerCAmelCase__ : List[Any] = my_str / all_sum my_fir_sum += prob * math.loga(UpperCamelCase ) # entropy formula. # print entropy print(f"""{round(-1 * my_fir_sum ):.1f}""" ) # two len string lowerCAmelCase__ : Dict = sum(two_char_strings.values() ) lowerCAmelCase__ : int = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: lowerCAmelCase__ : Union[str, Any] = cha + cha if sequence in two_char_strings: lowerCAmelCase__ : Dict = two_char_strings[sequence] lowerCAmelCase__ : Tuple = int(UpperCamelCase ) / all_sum my_sec_sum += prob * math.loga(UpperCamelCase ) # print second entropy print(f"""{round(-1 * my_sec_sum ):.1f}""" ) # print the difference between them print(f"""{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}""" ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Optional[Any] = Counter() # type: ignore lowerCAmelCase__ : Tuple = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(UpperCamelCase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
37
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : str = 384 UpperCAmelCase_ : Optional[int] = 7 if "tiny" in model_name: UpperCAmelCase_ : Dict = 96 UpperCAmelCase_ : Any = (2, 2, 6, 2) UpperCAmelCase_ : str = (3, 6, 12, 24) elif "small" in model_name: UpperCAmelCase_ : Optional[int] = 96 UpperCAmelCase_ : Union[str, Any] = (2, 2, 18, 2) UpperCAmelCase_ : Any = (3, 6, 12, 24) elif "base" in model_name: UpperCAmelCase_ : List[Any] = 128 UpperCAmelCase_ : List[Any] = (2, 2, 18, 2) UpperCAmelCase_ : Optional[Any] = (4, 8, 16, 32) UpperCAmelCase_ : Optional[Any] = 12 UpperCAmelCase_ : int = 512 elif "large" in model_name: UpperCAmelCase_ : List[Any] = 192 UpperCAmelCase_ : int = (2, 2, 18, 2) UpperCAmelCase_ : List[str] = (6, 12, 24, 48) UpperCAmelCase_ : Tuple = 12 UpperCAmelCase_ : int = 768 # set label information UpperCAmelCase_ : Dict = 150 UpperCAmelCase_ : Dict = '''huggingface/label-files''' UpperCAmelCase_ : str = '''ade20k-id2label.json''' UpperCAmelCase_ : List[str] = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase_ : Any = {int(_lowercase ): v for k, v in idalabel.items()} UpperCAmelCase_ : List[str] = {v: k for k, v in idalabel.items()} UpperCAmelCase_ : List[Any] = SwinConfig( embed_dim=_lowercase , depths=_lowercase , num_heads=_lowercase , window_size=_lowercase , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) UpperCAmelCase_ : str = UperNetConfig( backbone_config=_lowercase , auxiliary_in_channels=_lowercase , num_labels=_lowercase , idalabel=_lowercase , labelaid=_lowercase , ) return config def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = [] # fmt: off # stem rename_keys.append(('''backbone.patch_embed.projection.weight''', '''backbone.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.patch_embed.projection.bias''', '''backbone.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.patch_embed.norm.weight''', '''backbone.embeddings.norm.weight''') ) rename_keys.append(('''backbone.patch_embed.norm.bias''', '''backbone.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm1.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm1.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm2.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm2.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((f'''backbone.stages.{i}.downsample.reduction.weight''', f'''backbone.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((f'''backbone.stages.{i}.downsample.norm.weight''', f'''backbone.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((f'''backbone.stages.{i}.downsample.norm.bias''', f'''backbone.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ('''decode_head.conv_seg.weight''', '''decode_head.classifier.weight'''), ('''decode_head.conv_seg.bias''', '''decode_head.classifier.bias'''), ('''auxiliary_head.conv_seg.weight''', '''auxiliary_head.classifier.weight'''), ('''auxiliary_head.conv_seg.bias''', '''auxiliary_head.classifier.bias'''), ] ) # fmt: on return rename_keys def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : Any = dct.pop(_lowercase ) UpperCAmelCase_ : Union[str, Any] = val def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): UpperCAmelCase_ : Optional[int] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) UpperCAmelCase_ : List[str] = state_dict.pop(f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight''' ) UpperCAmelCase_ : Any = state_dict.pop(f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ : int = in_proj_weight[:dim, :] UpperCAmelCase_ : Optional[int] = in_proj_bias[: dim] UpperCAmelCase_ : int = in_proj_weight[ dim : dim * 2, : ] UpperCAmelCase_ : str = in_proj_bias[ dim : dim * 2 ] UpperCAmelCase_ : Any = in_proj_weight[ -dim :, : ] UpperCAmelCase_ : int = in_proj_bias[-dim :] # fmt: on def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_, UpperCAmelCase_ : str = x.shape UpperCAmelCase_ : Dict = x.reshape(_lowercase , 4 , in_channel // 4 ) UpperCAmelCase_ : Dict = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(_lowercase , _lowercase ) return x def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_, UpperCAmelCase_ : int = x.shape UpperCAmelCase_ : Optional[int] = x.reshape(_lowercase , in_channel // 4 , 4 ) UpperCAmelCase_ : Dict = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(_lowercase , _lowercase ) return x def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : str = x.shape[0] UpperCAmelCase_ : Optional[int] = x.reshape(4 , in_channel // 4 ) UpperCAmelCase_ : Dict = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(_lowercase ) return x def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : Tuple = x.shape[0] UpperCAmelCase_ : int = x.reshape(in_channel // 4 , 4 ) UpperCAmelCase_ : Any = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(_lowercase ) return x def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : int = { '''upernet-swin-tiny''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth''', '''upernet-swin-small''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth''', '''upernet-swin-base''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth''', '''upernet-swin-large''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth''', } UpperCAmelCase_ : List[Any] = model_name_to_url[model_name] UpperCAmelCase_ : List[str] = torch.hub.load_state_dict_from_url(_lowercase , map_location='''cpu''' , file_name=_lowercase )[ '''state_dict''' ] for name, param in state_dict.items(): print(_lowercase , param.shape ) UpperCAmelCase_ : List[Any] = get_upernet_config(_lowercase ) UpperCAmelCase_ : Union[str, Any] = UperNetForSemanticSegmentation(_lowercase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): UpperCAmelCase_ : Dict = state_dict.pop(_lowercase ) if "bn" in key: UpperCAmelCase_ : Optional[int] = key.replace('''bn''' , '''batch_norm''' ) UpperCAmelCase_ : Dict = val # rename keys UpperCAmelCase_ : Dict = create_rename_keys(_lowercase ) for src, dest in rename_keys: rename_key(_lowercase , _lowercase , _lowercase ) read_in_q_k_v(_lowercase , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: UpperCAmelCase_ : int = reverse_correct_unfold_reduction_order(_lowercase ) if "norm" in key: UpperCAmelCase_ : Any = reverse_correct_unfold_norm_order(_lowercase ) model.load_state_dict(_lowercase ) # verify on image UpperCAmelCase_ : List[str] = '''https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg''' UpperCAmelCase_ : Any = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ).convert('''RGB''' ) UpperCAmelCase_ : Union[str, Any] = SegformerImageProcessor() UpperCAmelCase_ : Optional[int] = processor(_lowercase , return_tensors='''pt''' ).pixel_values with torch.no_grad(): UpperCAmelCase_ : Dict = model(_lowercase ) UpperCAmelCase_ : Any = outputs.logits print(logits.shape ) print('''First values of logits:''' , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": UpperCAmelCase_ : Any = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ) elif model_name == "upernet-swin-small": UpperCAmelCase_ : str = torch.tensor( [[-7.1921, -7.1921, -6.9532], [-7.1921, -7.1921, -6.9532], [-7.0908, -7.0908, -6.8534]] ) elif model_name == "upernet-swin-base": UpperCAmelCase_ : Any = torch.tensor( [[-6.5851, -6.5851, -6.4330], [-6.5851, -6.5851, -6.4330], [-6.4763, -6.4763, -6.3254]] ) elif model_name == "upernet-swin-large": UpperCAmelCase_ : List[Any] = torch.tensor( [[-7.5297, -7.5297, -7.3802], [-7.5297, -7.5297, -7.3802], [-7.4044, -7.4044, -7.2586]] ) print('''Logits:''' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , _lowercase , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowercase ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(_lowercase ) if push_to_hub: print(f'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(f'''openmmlab/{model_name}''' ) processor.push_to_hub(f'''openmmlab/{model_name}''' ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='upernet-swin-tiny', type=str, choices=[F"""upernet-swin-{size}""" for size in ['tiny', 'small', 'base', 'large']], help='Name of the Swin + UperNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __a = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
235
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class __a( unittest.TestCase ): """simple docstring""" def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : Optional[int] = tempfile.mkdtemp() UpperCAmelCase_ : str = BlipImageProcessor() UpperCAmelCase_ : Dict = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''' ) UpperCAmelCase_ : Optional[Any] = BlipaProcessor(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) processor.save_pretrained(self.tmpdirname ) def a__ ( self ,**_SCREAMING_SNAKE_CASE ) -> Optional[int]: return AutoProcessor.from_pretrained(self.tmpdirname ,**_SCREAMING_SNAKE_CASE ).tokenizer def a__ ( self ,**_SCREAMING_SNAKE_CASE ) -> Dict: return AutoProcessor.from_pretrained(self.tmpdirname ,**_SCREAMING_SNAKE_CASE ).image_processor def a__ ( self ) -> List[Any]: shutil.rmtree(self.tmpdirname ) def a__ ( self ) -> Tuple: UpperCAmelCase_ : Tuple = [np.random.randint(255 ,size=(3, 30, 400) ,dtype=np.uinta )] UpperCAmelCase_ : Optional[Any] = [Image.fromarray(np.moveaxis(_SCREAMING_SNAKE_CASE ,0 ,-1 ) ) for x in image_inputs] return image_inputs def a__ ( self ) -> List[str]: UpperCAmelCase_ : Dict = BlipaProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase_ : str = self.get_tokenizer(bos_token='''(BOS)''' ,eos_token='''(EOS)''' ) UpperCAmelCase_ : int = self.get_image_processor(do_normalize=_SCREAMING_SNAKE_CASE ,padding_value=1.0 ) UpperCAmelCase_ : Union[str, Any] = BlipaProcessor.from_pretrained( self.tmpdirname ,bos_token='''(BOS)''' ,eos_token='''(EOS)''' ,do_normalize=_SCREAMING_SNAKE_CASE ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,_SCREAMING_SNAKE_CASE ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Any: UpperCAmelCase_ : Dict = self.get_image_processor() UpperCAmelCase_ : Any = self.get_tokenizer() UpperCAmelCase_ : str = BlipaProcessor(tokenizer=_SCREAMING_SNAKE_CASE ,image_processor=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = self.prepare_image_inputs() UpperCAmelCase_ : Optional[Any] = image_processor(_SCREAMING_SNAKE_CASE ,return_tensors='''np''' ) UpperCAmelCase_ : int = processor(images=_SCREAMING_SNAKE_CASE ,return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1e-2 ) def a__ ( self ) -> int: UpperCAmelCase_ : str = self.get_image_processor() UpperCAmelCase_ : List[Any] = self.get_tokenizer() UpperCAmelCase_ : Any = BlipaProcessor(tokenizer=_SCREAMING_SNAKE_CASE ,image_processor=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = '''lower newer''' UpperCAmelCase_ : Optional[int] = processor(text=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = tokenizer(_SCREAMING_SNAKE_CASE ,return_token_type_ids=_SCREAMING_SNAKE_CASE ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : str = self.get_image_processor() UpperCAmelCase_ : List[Any] = self.get_tokenizer() UpperCAmelCase_ : Tuple = BlipaProcessor(tokenizer=_SCREAMING_SNAKE_CASE ,image_processor=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = '''lower newer''' UpperCAmelCase_ : int = self.prepare_image_inputs() UpperCAmelCase_ : List[str] = processor(text=_SCREAMING_SNAKE_CASE ,images=_SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) ,['''pixel_values''', '''input_ids''', '''attention_mask'''] ) # test if it raises when no input is passed with pytest.raises(_SCREAMING_SNAKE_CASE ): processor() def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : Tuple = self.get_image_processor() UpperCAmelCase_ : Dict = self.get_tokenizer() UpperCAmelCase_ : List[str] = BlipaProcessor(tokenizer=_SCREAMING_SNAKE_CASE ,image_processor=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase_ : List[str] = processor.batch_decode(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> str: UpperCAmelCase_ : Union[str, Any] = self.get_image_processor() UpperCAmelCase_ : int = self.get_tokenizer() UpperCAmelCase_ : Any = BlipaProcessor(tokenizer=_SCREAMING_SNAKE_CASE ,image_processor=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = '''lower newer''' UpperCAmelCase_ : Union[str, Any] = self.prepare_image_inputs() UpperCAmelCase_ : Any = processor(text=_SCREAMING_SNAKE_CASE ,images=_SCREAMING_SNAKE_CASE ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) ,['''pixel_values''', '''input_ids''', '''attention_mask'''] )
235
1