code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
|---|---|---|---|---|
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
lowerCAmelCase__ = {
'''configuration_nezha''': ['''NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''NezhaConfig'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = [
'''NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''NezhaForNextSentencePrediction''',
'''NezhaForMaskedLM''',
'''NezhaForPreTraining''',
'''NezhaForMultipleChoice''',
'''NezhaForQuestionAnswering''',
'''NezhaForSequenceClassification''',
'''NezhaForTokenClassification''',
'''NezhaModel''',
'''NezhaPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_nezha import (
NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST,
NezhaForMaskedLM,
NezhaForMultipleChoice,
NezhaForNextSentencePrediction,
NezhaForPreTraining,
NezhaForQuestionAnswering,
NezhaForSequenceClassification,
NezhaForTokenClassification,
NezhaModel,
NezhaPreTrainedModel,
)
else:
import sys
lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 130
|
class snake_case__(_UpperCamelCase ):
"""simple docstring"""
pass
class snake_case__(_UpperCamelCase ):
"""simple docstring"""
pass
class snake_case__:
"""simple docstring"""
def __init__( self : Optional[Any] ):
lowercase__ : List[Any] = [
[],
[],
[],
]
def snake_case ( self : Tuple , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ):
try:
if len(self.queues[priority] ) >= 100:
raise OverflowError("Maximum queue size is 100" )
self.queues[priority].append(SCREAMING_SNAKE_CASE )
except IndexError:
raise ValueError("Valid priorities are 0, 1, and 2" )
def snake_case ( self : List[str] ):
for queue in self.queues:
if queue:
return queue.pop(0 )
raise UnderFlowError("All queues are empty" )
def __str__( self : Dict ):
return "\n".join(f"""Priority {i}: {q}""" for i, q in enumerate(self.queues ) )
class snake_case__:
"""simple docstring"""
def __init__( self : List[str] ):
lowercase__ : Tuple = []
def snake_case ( self : List[str] , SCREAMING_SNAKE_CASE : int ):
if len(self.queue ) == 100:
raise OverFlowError("Maximum queue size is 100" )
self.queue.append(SCREAMING_SNAKE_CASE )
def snake_case ( self : Union[str, Any] ):
if not self.queue:
raise UnderFlowError("The queue is empty" )
else:
lowercase__ : Optional[int] = min(self.queue )
self.queue.remove(SCREAMING_SNAKE_CASE )
return data
def __str__( self : Any ):
return str(self.queue )
def __lowerCamelCase ( ):
"""simple docstring"""
lowercase__ : Any = FixedPriorityQueue()
fpq.enqueue(0 , 10 )
fpq.enqueue(1 , 70 )
fpq.enqueue(0 , 100 )
fpq.enqueue(2 , 1 )
fpq.enqueue(2 , 5 )
fpq.enqueue(1 , 7 )
fpq.enqueue(2 , 4 )
fpq.enqueue(1 , 64 )
fpq.enqueue(0 , 128 )
print(lowerCamelCase__ )
print(fpq.dequeue() )
print(fpq.dequeue() )
print(fpq.dequeue() )
print(fpq.dequeue() )
print(fpq.dequeue() )
print(lowerCamelCase__ )
print(fpq.dequeue() )
print(fpq.dequeue() )
print(fpq.dequeue() )
print(fpq.dequeue() )
print(fpq.dequeue() )
def __lowerCamelCase ( ):
"""simple docstring"""
lowercase__ : Any = ElementPriorityQueue()
epq.enqueue(10 )
epq.enqueue(70 )
epq.enqueue(100 )
epq.enqueue(1 )
epq.enqueue(5 )
epq.enqueue(7 )
epq.enqueue(4 )
epq.enqueue(64 )
epq.enqueue(128 )
print(lowerCamelCase__ )
print(epq.dequeue() )
print(epq.dequeue() )
print(epq.dequeue() )
print(epq.dequeue() )
print(epq.dequeue() )
print(lowerCamelCase__ )
print(epq.dequeue() )
print(epq.dequeue() )
print(epq.dequeue() )
print(epq.dequeue() )
print(epq.dequeue() )
if __name__ == "__main__":
fixed_priority_queue()
element_priority_queue()
| 130
| 1
|
import argparse
import json
import os
from collections import OrderedDict
import torch
from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer
from transformers.tokenization_utils_base import AddedToken
@torch.no_grad()
def UpperCamelCase ( snake_case__ : Dict , snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : Optional[Any] , snake_case__ : Any ) -> str:
# Load configuration defined in the metadata file
with open(snake_case__ ) as metadata_file:
UpperCamelCase : List[str] = json.load(snake_case__ )
UpperCamelCase : Union[str, Any] = LukeConfig(use_entity_aware_attention=snake_case__ , **metadata['model_config'] )
# Load in the weights from the checkpoint_path
UpperCamelCase : Any = torch.load(snake_case__ , map_location='cpu' )['module']
# Load the entity vocab file
UpperCamelCase : Optional[Any] = load_original_entity_vocab(snake_case__ )
# add an entry for [MASK2]
UpperCamelCase : Any = max(entity_vocab.values() ) + 1
config.entity_vocab_size += 1
UpperCamelCase : str = XLMRobertaTokenizer.from_pretrained(metadata['model_config']['bert_model_name'] )
# Add special tokens to the token vocabulary for downstream tasks
UpperCamelCase : Tuple = AddedToken('<ent>' , lstrip=snake_case__ , rstrip=snake_case__ )
UpperCamelCase : Optional[int] = AddedToken('<ent2>' , lstrip=snake_case__ , rstrip=snake_case__ )
tokenizer.add_special_tokens({'additional_special_tokens': [entity_token_a, entity_token_a]} )
config.vocab_size += 2
print(F"""Saving tokenizer to {pytorch_dump_folder_path}""" )
tokenizer.save_pretrained(snake_case__ )
with open(os.path.join(snake_case__ , 'tokenizer_config.json' ) , 'r' ) as f:
UpperCamelCase : int = json.load(snake_case__ )
UpperCamelCase : List[Any] = 'MLukeTokenizer'
with open(os.path.join(snake_case__ , 'tokenizer_config.json' ) , 'w' ) as f:
json.dump(snake_case__ , snake_case__ )
with open(os.path.join(snake_case__ , MLukeTokenizer.vocab_files_names['entity_vocab_file'] ) , 'w' ) as f:
json.dump(snake_case__ , snake_case__ )
UpperCamelCase : Union[str, Any] = MLukeTokenizer.from_pretrained(snake_case__ )
# Initialize the embeddings of the special tokens
UpperCamelCase : List[str] = tokenizer.convert_tokens_to_ids(['@'] )[0]
UpperCamelCase : List[Any] = tokenizer.convert_tokens_to_ids(['#'] )[0]
UpperCamelCase : int = state_dict['embeddings.word_embeddings.weight']
UpperCamelCase : Optional[Any] = word_emb[ent_init_index].unsqueeze(0 )
UpperCamelCase : Tuple = word_emb[enta_init_index].unsqueeze(0 )
UpperCamelCase : Optional[int] = torch.cat([word_emb, ent_emb, enta_emb] )
# add special tokens for 'entity_predictions.bias'
for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]:
UpperCamelCase : Tuple = state_dict[bias_name]
UpperCamelCase : List[Any] = decoder_bias[ent_init_index].unsqueeze(0 )
UpperCamelCase : str = decoder_bias[enta_init_index].unsqueeze(0 )
UpperCamelCase : Union[str, Any] = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] )
# Initialize the query layers of the entity-aware self-attention mechanism
for layer_index in range(config.num_hidden_layers ):
for matrix_name in ["query.weight", "query.bias"]:
UpperCamelCase : Optional[int] = F"""encoder.layer.{layer_index}.attention.self."""
UpperCamelCase : List[str] = state_dict[prefix + matrix_name]
UpperCamelCase : Optional[Any] = state_dict[prefix + matrix_name]
UpperCamelCase : Union[str, Any] = state_dict[prefix + matrix_name]
# Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks
UpperCamelCase : Any = state_dict['entity_embeddings.entity_embeddings.weight']
UpperCamelCase : str = entity_emb[entity_vocab['[MASK]']].unsqueeze(0 )
UpperCamelCase : Optional[Any] = torch.cat([entity_emb, entity_mask_emb] )
# add [MASK2] for 'entity_predictions.bias'
UpperCamelCase : Any = state_dict['entity_predictions.bias']
UpperCamelCase : Tuple = entity_prediction_bias[entity_vocab['[MASK]']].unsqueeze(0 )
UpperCamelCase : Tuple = torch.cat([entity_prediction_bias, entity_mask_bias] )
UpperCamelCase : Tuple = LukeForMaskedLM(config=snake_case__ ).eval()
state_dict.pop('entity_predictions.decoder.weight' )
state_dict.pop('lm_head.decoder.weight' )
state_dict.pop('lm_head.decoder.bias' )
UpperCamelCase : str = OrderedDict()
for key, value in state_dict.items():
if not (key.startswith('lm_head' ) or key.startswith('entity_predictions' )):
UpperCamelCase : Optional[int] = state_dict[key]
else:
UpperCamelCase : List[Any] = state_dict[key]
UpperCamelCase : int = model.load_state_dict(snake_case__ , strict=snake_case__ )
if set(snake_case__ ) != {"luke.embeddings.position_ids"}:
raise ValueError(F"""Unexpected unexpected_keys: {unexpected_keys}""" )
if set(snake_case__ ) != {
"lm_head.decoder.weight",
"lm_head.decoder.bias",
"entity_predictions.decoder.weight",
}:
raise ValueError(F"""Unexpected missing_keys: {missing_keys}""" )
model.tie_weights()
assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all()
assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all()
# Check outputs
UpperCamelCase : int = MLukeTokenizer.from_pretrained(snake_case__ , task='entity_classification' )
UpperCamelCase : str = 'ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).'
UpperCamelCase : int = (0, 9)
UpperCamelCase : Optional[Any] = tokenizer(snake_case__ , entity_spans=[span] , return_tensors='pt' )
UpperCamelCase : str = model(**snake_case__ )
# Verify word hidden states
if model_size == "large":
raise NotImplementedError
else: # base
UpperCamelCase : Optional[int] = torch.Size((1, 33, 768) )
UpperCamelCase : Union[str, Any] = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] )
if not (outputs.last_hidden_state.shape == expected_shape):
raise ValueError(
F"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" )
if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , snake_case__ , atol=1E-4 ):
raise ValueError
# Verify entity hidden states
if model_size == "large":
raise NotImplementedError
else: # base
UpperCamelCase : Tuple = torch.Size((1, 1, 768) )
UpperCamelCase : Optional[int] = torch.tensor([[-0.1482, 0.0609, 0.0322]] )
if not (outputs.entity_last_hidden_state.shape == expected_shape):
raise ValueError(
F"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is"""
F""" {expected_shape}""" )
if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , snake_case__ , atol=1E-4 ):
raise ValueError
# Verify masked word/entity prediction
UpperCamelCase : str = MLukeTokenizer.from_pretrained(snake_case__ )
UpperCamelCase : int = 'Tokyo is the capital of <mask>.'
UpperCamelCase : str = (24, 30)
UpperCamelCase : List[str] = tokenizer(snake_case__ , entity_spans=[span] , return_tensors='pt' )
UpperCamelCase : Any = model(**snake_case__ )
UpperCamelCase : Tuple = encoding['input_ids'][0].tolist()
UpperCamelCase : int = input_ids.index(tokenizer.convert_tokens_to_ids('<mask>' ) )
UpperCamelCase : Dict = outputs.logits[0][mask_position_id].argmax(dim=-1 )
assert "Japan" == tokenizer.decode(snake_case__ )
UpperCamelCase : List[Any] = outputs.entity_logits[0][0].argmax().item()
UpperCamelCase : Optional[int] = [
entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id
]
assert [e for e in multilingual_predicted_entities if e.startswith('en:' )][0] == "en:Japan"
# Finally, save our PyTorch model and tokenizer
print('Saving PyTorch model to {}'.format(snake_case__ ) )
model.save_pretrained(snake_case__ )
def UpperCamelCase ( snake_case__ : List[str] ) -> Optional[Any]:
UpperCamelCase : Dict = ['[MASK]', '[PAD]', '[UNK]']
UpperCamelCase : Optional[Any] = [json.loads(snake_case__ ) for line in open(snake_case__ )]
UpperCamelCase : Optional[int] = {}
for entry in data:
UpperCamelCase : Tuple = entry['id']
for entity_name, language in entry["entities"]:
if entity_name in SPECIAL_TOKENS:
UpperCamelCase : int = entity_id
break
UpperCamelCase : Union[str, Any] = F"""{language}:{entity_name}"""
UpperCamelCase : str = entity_id
return new_mapping
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''')
parser.add_argument(
'''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.'''
)
parser.add_argument(
'''--entity_vocab_path''',
default=None,
type=str,
help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.'''
)
parser.add_argument(
'''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.'''
)
__UpperCAmelCase = parser.parse_args()
convert_luke_checkpoint(
args.checkpoint_path,
args.metadata_path,
args.entity_vocab_path,
args.pytorch_dump_folder_path,
args.model_size,
)
| 371
|
import argparse
import shlex
import runhouse as rh
if __name__ == "__main__":
# Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access
# setup instructions, if using on-demand hardware
# If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster
# If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster
# Throw an error if user passes both BYO and on-demand cluster args
# Otherwise, use default values
__UpperCAmelCase = argparse.ArgumentParser()
parser.add_argument('''--user''', type=str, default='''ubuntu''')
parser.add_argument('''--host''', type=str, default='''localhost''')
parser.add_argument('''--key_path''', type=str, default=None)
parser.add_argument('''--instance''', type=str, default='''V100:1''')
parser.add_argument('''--provider''', type=str, default='''cheapest''')
parser.add_argument('''--use_spot''', type=bool, default=False)
parser.add_argument('''--example''', type=str, default='''pytorch/text-generation/run_generation.py''')
__UpperCAmelCase , __UpperCAmelCase = parser.parse_known_args()
if args.host != "localhost":
if args.instance != "V100:1" or args.provider != "cheapest":
raise ValueError('''Cannot specify both BYO and on-demand cluster args''')
__UpperCAmelCase = rh.cluster(
name='''rh-cluster''', ips=[args.host], ssh_creds={'''ssh_user''': args.user, '''ssh_private_key''': args.key_path}
)
else:
__UpperCAmelCase = rh.cluster(
name='''rh-cluster''', instance_type=args.instance, provider=args.provider, use_spot=args.use_spot
)
__UpperCAmelCase = args.example.rsplit('''/''', 1)[0]
# Set up remote environment
cluster.install_packages(['''pip:./''']) # Installs transformers from local source
# Note transformers is copied into the home directory on the remote machine, so we can install from there
cluster.run([F"""pip install -r transformers/examples/{example_dir}/requirements.txt"""])
cluster.run(['''pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117'''])
# Run example. You can bypass the CLI wrapper and paste your own code here.
cluster.run([F"""python transformers/examples/{args.example} {" ".join(shlex.quote(arg) for arg in unknown)}"""])
# Alternatively, we can just import and run a training function (especially if there's no wrapper CLI):
# from my_script... import train
# reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard']
# launch_train_gpu = rh.function(fn=train,
# system=gpu,
# reqs=reqs,
# name='train_bert_glue')
#
# We can pass in arguments just like we would to a function:
# launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16
# stream_logs=True)
| 103
| 0
|
"""simple docstring"""
def _A ( lowercase , lowercase ):
"""simple docstring"""
if b == 0:
return 1
if (b % 2) == 0:
return actual_power(lowercase , int(b / 2 ) ) * actual_power(lowercase , int(b / 2 ) )
else:
return a * actual_power(lowercase , int(b / 2 ) ) * actual_power(lowercase , int(b / 2 ) )
def _A ( lowercase , lowercase ):
"""simple docstring"""
if b < 0:
return 1 / actual_power(lowercase , lowercase )
return actual_power(lowercase , lowercase )
if __name__ == "__main__":
print(power(-2, -3))
| 81
|
def UpperCAmelCase_ ( _A ):
'''simple docstring'''
return " ".join(input_str.split()[::-1] )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 314
| 0
|
'''simple docstring'''
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
lowerCAmelCase__ : str = logging.get_logger(__name__)
lowerCAmelCase__ : Tuple = {'vocab_file': 'sentencepiece.bpe.model'}
lowerCAmelCase__ : Union[str, Any] = {
'vocab_file': {
'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model',
}
}
lowerCAmelCase__ : List[str] = {
'camembert-base': 5_12,
}
lowerCAmelCase__ : int = '▁'
class SCREAMING_SNAKE_CASE__ ( snake_case__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES
SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP
SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
SCREAMING_SNAKE_CASE = ['''input_ids''', '''attention_mask''']
def __init__( self : Optional[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple="<s>" , UpperCAmelCase_ : Optional[Any]="</s>" , UpperCAmelCase_ : List[Any]="</s>" , UpperCAmelCase_ : int="<s>" , UpperCAmelCase_ : Union[str, Any]="<unk>" , UpperCAmelCase_ : str="<pad>" , UpperCAmelCase_ : Union[str, Any]="<mask>" , UpperCAmelCase_ : Dict=["<s>NOTUSED", "</s>NOTUSED"] , UpperCAmelCase_ : Tuple = None , **UpperCAmelCase_ : List[str] , ):
"""simple docstring"""
__UpperCAmelCase : List[Any] = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case ) if isinstance(_snake_case , _snake_case ) else mask_token
__UpperCAmelCase : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=_snake_case , eos_token=_snake_case , unk_token=_snake_case , sep_token=_snake_case , cls_token=_snake_case , pad_token=_snake_case , mask_token=_snake_case , additional_special_tokens=_snake_case , sp_model_kwargs=self.sp_model_kwargs , **_snake_case , )
__UpperCAmelCase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(_snake_case ) )
__UpperCAmelCase : Any = vocab_file
# HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual
# sentencepiece vocabulary (this is the case for <s> and </s>
__UpperCAmelCase : List[Any] = {"<s>NOTUSED": 0, "<pad>": 1, "</s>NOTUSED": 2, "<unk>": 3}
__UpperCAmelCase : str = len(self.fairseq_tokens_to_ids )
__UpperCAmelCase : Optional[int] = len(self.sp_model ) + len(self.fairseq_tokens_to_ids )
__UpperCAmelCase : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def lowerCamelCase_ ( self : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str = None ):
"""simple docstring"""
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__UpperCAmelCase : Optional[Any] = [self.cls_token_id]
__UpperCAmelCase : List[str] = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def lowerCamelCase_ ( self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : List[str] = False ):
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_snake_case , token_ids_a=_snake_case , already_has_special_tokens=_snake_case )
if token_ids_a is None:
return [1] + ([0] * len(_snake_case )) + [1]
return [1] + ([0] * len(_snake_case )) + [1, 1] + ([0] * len(_snake_case )) + [1]
def lowerCamelCase_ ( self : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] = None ):
"""simple docstring"""
__UpperCAmelCase : int = [self.sep_token_id]
__UpperCAmelCase : List[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def lowerCamelCase_ ( self : Any ):
"""simple docstring"""
return len(self.fairseq_tokens_to_ids ) + len(self.sp_model )
def lowerCamelCase_ ( self : List[str] ):
"""simple docstring"""
__UpperCAmelCase : int = {self.convert_ids_to_tokens(_snake_case ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def lowerCamelCase_ ( self : Optional[Any] , UpperCAmelCase_ : List[str] ):
"""simple docstring"""
return self.sp_model.encode(_snake_case , out_type=_snake_case )
def lowerCamelCase_ ( self : Any , UpperCAmelCase_ : int ):
"""simple docstring"""
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
elif self.sp_model.PieceToId(_snake_case ) == 0:
# Convert sentence piece unk token to fairseq unk token index
return self.unk_token_id
return self.fairseq_offset + self.sp_model.PieceToId(_snake_case )
def lowerCamelCase_ ( self : Union[str, Any] , UpperCAmelCase_ : Tuple ):
"""simple docstring"""
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def lowerCamelCase_ ( self : Dict , UpperCAmelCase_ : Union[str, Any] ):
"""simple docstring"""
__UpperCAmelCase : Any = []
__UpperCAmelCase : Optional[int] = ""
__UpperCAmelCase : List[Any] = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(_snake_case ) + token
__UpperCAmelCase : Optional[int] = True
__UpperCAmelCase : int = []
else:
current_sub_tokens.append(_snake_case )
__UpperCAmelCase : Union[str, Any] = False
out_string += self.sp_model.decode(_snake_case )
return out_string.strip()
def __getstate__( self : Optional[Any] ):
"""simple docstring"""
__UpperCAmelCase : Optional[int] = self.__dict__.copy()
__UpperCAmelCase : Dict = None
return state
def __setstate__( self : Optional[Any] , UpperCAmelCase_ : str ):
"""simple docstring"""
__UpperCAmelCase : str = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
__UpperCAmelCase : List[str] = {}
__UpperCAmelCase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def lowerCamelCase_ ( self : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Any = None ):
"""simple docstring"""
if not os.path.isdir(_snake_case ):
logger.error(f"Vocabulary path ({save_directory}) should be a directory" )
return
__UpperCAmelCase : Any = os.path.join(
_snake_case , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , _snake_case )
elif not os.path.isfile(self.vocab_file ):
with open(_snake_case , "wb" ) as fi:
__UpperCAmelCase : Any = self.sp_model.serialized_model_proto()
fi.write(_snake_case )
return (out_vocab_file,)
| 361
|
'''simple docstring'''
from heapq import heappop, heappush
import numpy as np
def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, ):
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = grid.shape
__UpperCAmelCase : List[str] = [-1, 1, 0, 0]
__UpperCAmelCase : Optional[Any] = [0, 0, -1, 1]
if allow_diagonal:
dx += [-1, -1, 1, 1]
dy += [-1, 1, -1, 1]
__UpperCAmelCase , __UpperCAmelCase : Tuple = [(0, source)], set()
__UpperCAmelCase : Any = np.full((rows, cols), np.inf )
__UpperCAmelCase : List[str] = 0
__UpperCAmelCase : Union[str, Any] = np.empty((rows, cols), dtype=_UpperCAmelCase )
__UpperCAmelCase : Any = None
while queue:
((__UpperCAmelCase) , (__UpperCAmelCase)) : Optional[Any] = heappop(_UpperCAmelCase )
if (x, y) in visited:
continue
visited.add((x, y) )
if (x, y) == destination:
__UpperCAmelCase : int = []
while (x, y) != source:
path.append((x, y) )
__UpperCAmelCase , __UpperCAmelCase : Tuple = predecessors[x, y]
path.append(_UpperCAmelCase ) # add the source manually
path.reverse()
return matrix[destination], path
for i in range(len(_UpperCAmelCase ) ):
__UpperCAmelCase , __UpperCAmelCase : int = x + dx[i], y + dy[i]
if 0 <= nx < rows and 0 <= ny < cols:
__UpperCAmelCase : Optional[Any] = grid[nx][ny]
if next_node == 1 and matrix[nx, ny] > dist + 1:
heappush(_UpperCAmelCase, (dist + 1, (nx, ny)) )
__UpperCAmelCase : List[str] = dist + 1
__UpperCAmelCase : int = (x, y)
return np.inf, []
if __name__ == "__main__":
import doctest
doctest.testmod()
| 37
| 0
|
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from diffusers import StableDiffusionKDiffusionPipeline
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
@slow
@require_torch_gpu
class lowerCAmelCase__ ( unittest.TestCase ):
def _snake_case ( self ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _snake_case ( self ):
"""simple docstring"""
lowercase_ : str = StableDiffusionKDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' )
lowercase_ : int = sd_pipe.to(__SCREAMING_SNAKE_CASE )
sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE )
sd_pipe.set_scheduler('''sample_euler''' )
lowercase_ : int = '''A painting of a squirrel eating a burger'''
lowercase_ : Optional[int] = torch.manual_seed(0 )
lowercase_ : Optional[Any] = sd_pipe([prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' )
lowercase_ : str = output.images
lowercase_ : str = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
lowercase_ : str = np.array([0.0_447, 0.0_492, 0.0_468, 0.0_408, 0.0_383, 0.0_408, 0.0_354, 0.0_380, 0.0_339] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def _snake_case ( self ):
"""simple docstring"""
lowercase_ : Any = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' )
lowercase_ : Optional[int] = sd_pipe.to(__SCREAMING_SNAKE_CASE )
sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE )
sd_pipe.set_scheduler('''sample_euler''' )
lowercase_ : Optional[int] = '''A painting of a squirrel eating a burger'''
lowercase_ : List[Any] = torch.manual_seed(0 )
lowercase_ : Optional[int] = sd_pipe([prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' )
lowercase_ : Any = output.images
lowercase_ : List[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
lowercase_ : str = np.array([0.1_237, 0.1_320, 0.1_438, 0.1_359, 0.1_390, 0.1_132, 0.1_277, 0.1_175, 0.1_112] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1
def _snake_case ( self ):
"""simple docstring"""
lowercase_ : str = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' )
lowercase_ : Optional[Any] = sd_pipe.to(__SCREAMING_SNAKE_CASE )
sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE )
sd_pipe.set_scheduler('''sample_dpmpp_2m''' )
lowercase_ : List[Any] = '''A painting of a squirrel eating a burger'''
lowercase_ : int = torch.manual_seed(0 )
lowercase_ : Dict = sd_pipe(
[prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=7.5 , num_inference_steps=15 , output_type='''np''' , use_karras_sigmas=__SCREAMING_SNAKE_CASE , )
lowercase_ : Union[str, Any] = output.images
lowercase_ : List[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
lowercase_ : Optional[int] = np.array(
[0.11_381_689, 0.12_112_921, 0.1_389_457, 0.12_549_606, 0.1_244_964, 0.10_831_517, 0.11_562_866, 0.10_867_816, 0.10_499_048] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 93
|
"""simple docstring"""
import argparse
import os
import re
import numpy as np
import PIL
import torch
from timm import create_model
from torch.optim.lr_scheduler import OneCycleLR
from torch.utils.data import DataLoader, Dataset
from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor
from accelerate import Accelerator
def _lowerCAmelCase ( lowercase_ ):
UpperCAmelCase = fname.split(os.path.sep )[-1]
return re.search(R'^(.*)_\d+\.jpg$' , lowercase_ ).groups()[0]
class A_ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
def __init__( self :List[str] , lowercase_ :Dict , lowercase_ :List[str]=None , lowercase_ :Optional[Any]=None ) -> Optional[int]:
UpperCAmelCase = file_names
UpperCAmelCase = image_transform
UpperCAmelCase = label_to_id
def __len__( self :Optional[int] ) -> Optional[Any]:
return len(self.file_names )
def __getitem__( self :int , lowercase_ :str ) -> List[str]:
UpperCAmelCase = self.file_names[idx]
UpperCAmelCase = PIL.Image.open(lowercase_ )
UpperCAmelCase = raw_image.convert('RGB' )
if self.image_transform is not None:
UpperCAmelCase = self.image_transform(lowercase_ )
UpperCAmelCase = extract_label(lowercase_ )
if self.label_to_id is not None:
UpperCAmelCase = self.label_to_id[label]
return {"image": image, "label": label}
def _lowerCAmelCase ( lowercase_ , lowercase_ ):
# Initialize accelerator
if args.with_tracking:
UpperCAmelCase = Accelerator(
cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='all' , project_dir=args.project_dir )
else:
UpperCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
UpperCAmelCase = config['lr']
UpperCAmelCase = int(config['num_epochs'] )
UpperCAmelCase = int(config['seed'] )
UpperCAmelCase = int(config['batch_size'] )
UpperCAmelCase = config['image_size']
if not isinstance(lowercase_ , (list, tuple) ):
UpperCAmelCase = (image_size, image_size)
# Parse out whether we are saving every epoch or after a certain number of batches
if hasattr(args.checkpointing_steps , 'isdigit' ):
if args.checkpointing_steps == "epoch":
UpperCAmelCase = args.checkpointing_steps
elif args.checkpointing_steps.isdigit():
UpperCAmelCase = int(args.checkpointing_steps )
else:
raise ValueError(
F"""Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.""" )
else:
UpperCAmelCase = None
# We need to initialize the trackers we use, and also store our configuration
if args.with_tracking:
UpperCAmelCase = os.path.split(lowercase_ )[-1].split('.' )[0]
accelerator.init_trackers(lowercase_ , lowercase_ )
# Grab all the image filenames
UpperCAmelCase = [os.path.join(args.data_dir , lowercase_ ) for fname in os.listdir(args.data_dir ) if fname.endswith('.jpg' )]
# Build the label correspondences
UpperCAmelCase = [extract_label(lowercase_ ) for fname in file_names]
UpperCAmelCase = list(set(lowercase_ ) )
id_to_label.sort()
UpperCAmelCase = {lbl: i for i, lbl in enumerate(lowercase_ )}
# Set the seed before splitting the data.
np.random.seed(lowercase_ )
torch.manual_seed(lowercase_ )
torch.cuda.manual_seed_all(lowercase_ )
# Split our filenames between train and validation
UpperCAmelCase = np.random.permutation(len(lowercase_ ) )
UpperCAmelCase = int(0.8 * len(lowercase_ ) )
UpperCAmelCase = random_perm[:cut]
UpperCAmelCase = random_perm[cut:]
# For training we use a simple RandomResizedCrop
UpperCAmelCase = Compose([RandomResizedCrop(lowercase_ , scale=(0.5, 1.0) ), ToTensor()] )
UpperCAmelCase = PetsDataset(
[file_names[i] for i in train_split] , image_transform=lowercase_ , label_to_id=lowercase_ )
# For evaluation, we use a deterministic Resize
UpperCAmelCase = Compose([Resize(lowercase_ ), ToTensor()] )
UpperCAmelCase = PetsDataset([file_names[i] for i in eval_split] , image_transform=lowercase_ , label_to_id=lowercase_ )
# Instantiate dataloaders.
UpperCAmelCase = DataLoader(lowercase_ , shuffle=lowercase_ , batch_size=lowercase_ , num_workers=4 )
UpperCAmelCase = DataLoader(lowercase_ , shuffle=lowercase_ , batch_size=lowercase_ , num_workers=4 )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
UpperCAmelCase = create_model('resnet50d' , pretrained=lowercase_ , num_classes=len(lowercase_ ) )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
UpperCAmelCase = model.to(accelerator.device )
# Freezing the base model
for param in model.parameters():
UpperCAmelCase = False
for param in model.get_classifier().parameters():
UpperCAmelCase = True
# We normalize the batches of images to be a bit faster.
UpperCAmelCase = torch.tensor(model.default_cfg['mean'] )[None, :, None, None].to(accelerator.device )
UpperCAmelCase = torch.tensor(model.default_cfg['std'] )[None, :, None, None].to(accelerator.device )
# Instantiate optimizer
UpperCAmelCase = torch.optim.Adam(params=model.parameters() , lr=lr / 25 )
# Instantiate learning rate scheduler
UpperCAmelCase = OneCycleLR(optimizer=lowercase_ , max_lr=lowercase_ , epochs=lowercase_ , steps_per_epoch=len(lowercase_ ) )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare(
lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
# We need to keep track of how many total steps we have iterated over
UpperCAmelCase = 0
# We also need to keep track of the starting epoch so files are named properly
UpperCAmelCase = 0
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "":
accelerator.print(F"""Resumed from checkpoint: {args.resume_from_checkpoint}""" )
accelerator.load_state(args.resume_from_checkpoint )
UpperCAmelCase = os.path.basename(args.resume_from_checkpoint )
else:
# Get the most recent checkpoint
UpperCAmelCase = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()]
dirs.sort(key=os.path.getctime )
UpperCAmelCase = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last
# Extract `epoch_{i}` or `step_{i}`
UpperCAmelCase = os.path.splitext(lowercase_ )[0]
if "epoch" in training_difference:
UpperCAmelCase = int(training_difference.replace('epoch_' , '' ) ) + 1
UpperCAmelCase = None
else:
UpperCAmelCase = int(training_difference.replace('step_' , '' ) )
UpperCAmelCase = resume_step // len(lowercase_ )
resume_step -= starting_epoch * len(lowercase_ )
# Now we train the model
for epoch in range(lowercase_ , lowercase_ ):
model.train()
if args.with_tracking:
UpperCAmelCase = 0
if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None:
# We need to skip steps until we reach the resumed step
UpperCAmelCase = accelerator.skip_first_batches(lowercase_ , lowercase_ )
overall_step += resume_step
else:
# After the first iteration though, we need to go back to the original dataloader
UpperCAmelCase = train_dataloader
for batch in active_dataloader:
# We could avoid this line since we set the accelerator with `device_placement=True`.
UpperCAmelCase = {k: v.to(accelerator.device ) for k, v in batch.items()}
UpperCAmelCase = (batch['image'] - mean) / std
UpperCAmelCase = model(lowercase_ )
UpperCAmelCase = torch.nn.functional.cross_entropy(lowercase_ , batch['label'] )
# We keep track of the loss at each epoch
if args.with_tracking:
total_loss += loss.detach().float()
accelerator.backward(lowercase_ )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
if isinstance(lowercase_ , lowercase_ ):
UpperCAmelCase = F"""step_{overall_step}"""
if overall_step % checkpointing_steps == 0:
if args.output_dir is not None:
UpperCAmelCase = os.path.join(args.output_dir , lowercase_ )
accelerator.save_state(lowercase_ )
model.eval()
UpperCAmelCase = 0
UpperCAmelCase = 0
for step, batch in enumerate(lowercase_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
UpperCAmelCase = {k: v.to(accelerator.device ) for k, v in batch.items()}
UpperCAmelCase = (batch['image'] - mean) / std
with torch.no_grad():
UpperCAmelCase = model(lowercase_ )
UpperCAmelCase = outputs.argmax(dim=-1 )
UpperCAmelCase , UpperCAmelCase = accelerator.gather_for_metrics((predictions, batch['label']) )
UpperCAmelCase = predictions == references
num_elems += accurate_preds.shape[0]
accurate += accurate_preds.long().sum()
UpperCAmelCase = accurate.item() / num_elems
# Use accelerator.print to print only on the main process.
accelerator.print(F"""epoch {epoch}: {100 * eval_metric:.2f}""" )
if args.with_tracking:
accelerator.log(
{
'accuracy': 100 * eval_metric,
'train_loss': total_loss.item() / len(lowercase_ ),
'epoch': epoch,
} , step=lowercase_ , )
if checkpointing_steps == "epoch":
UpperCAmelCase = F"""epoch_{epoch}"""
if args.output_dir is not None:
UpperCAmelCase = os.path.join(args.output_dir , lowercase_ )
accelerator.save_state(lowercase_ )
if args.with_tracking:
accelerator.end_training()
def _lowerCAmelCase ( ):
UpperCAmelCase = argparse.ArgumentParser(description='Simple example of training script.' )
parser.add_argument('--data_dir' , required=lowercase_ , help='The data folder on disk.' )
parser.add_argument('--fp16' , action='store_true' , help='If passed, will use FP16 training.' )
parser.add_argument(
'--mixed_precision' , type=lowercase_ , default=lowercase_ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose'
'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'
'and an Nvidia Ampere GPU.' , )
parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' )
parser.add_argument(
'--checkpointing_steps' , type=lowercase_ , default=lowercase_ , help='Whether the various states should be saved at the end of every n steps, or \'epoch\' for each epoch.' , )
parser.add_argument(
'--output_dir' , type=lowercase_ , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , )
parser.add_argument(
'--resume_from_checkpoint' , type=lowercase_ , default=lowercase_ , help='If the training should continue from a checkpoint folder.' , )
parser.add_argument(
'--with_tracking' , action='store_true' , help='Whether to load in all available experiment trackers from the environment and use them for logging.' , )
parser.add_argument(
'--project_dir' , type=lowercase_ , default='logs' , help='Location on where to store experiment tracking logs` and relevent project information' , )
UpperCAmelCase = parser.parse_args()
UpperCAmelCase = {'lr': 3e-2, 'num_epochs': 3, 'seed': 42, 'batch_size': 64, 'image_size': 224}
training_function(lowercase_ , lowercase_ )
if __name__ == "__main__":
main()
| 78
| 0
|
from typing import List
import numpy as np
def lowerCAmelCase_ ( __lowerCAmelCase )-> int:
'''simple docstring'''
UpperCAmelCase : Any ={key: len(_snake_case ) for key, value in gen_kwargs.items() if isinstance(_snake_case , _snake_case )}
if len(set(lists_lengths.values() ) ) > 1:
raise RuntimeError(
(
'''Sharding is ambiguous for this dataset: '''
+ '''we found several data sources lists of different lengths, and we don\'t know over which list we should parallelize:\n'''
+ '''\n'''.join(f'''\t- key {key} has length {length}''' for key, length in lists_lengths.items() )
+ '''\nTo fix this, check the \'gen_kwargs\' and make sure to use lists only for data sources, '''
+ '''and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.'''
) )
UpperCAmelCase : int =max(lists_lengths.values() , default=0 )
return max(1 , _snake_case )
def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> List[range]:
'''simple docstring'''
UpperCAmelCase : Dict =[]
for group_idx in range(_snake_case ):
UpperCAmelCase : List[str] =num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs))
if num_shards_to_add == 0:
break
UpperCAmelCase : Tuple =shards_indices_per_group[-1].stop if shards_indices_per_group else 0
UpperCAmelCase : Optional[int] =range(_snake_case , start + num_shards_to_add )
shards_indices_per_group.append(_snake_case )
return shards_indices_per_group
def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> List[dict]:
'''simple docstring'''
UpperCAmelCase : int =_number_of_shards_in_gen_kwargs(_snake_case )
if num_shards == 1:
return [dict(_snake_case )]
else:
UpperCAmelCase : str =_distribute_shards(num_shards=_snake_case , max_num_jobs=_snake_case )
return [
{
key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]]
if isinstance(_snake_case , _snake_case )
else value
for key, value in gen_kwargs.items()
}
for group_idx in range(len(_snake_case ) )
]
def lowerCAmelCase_ ( __lowerCAmelCase )-> dict:
'''simple docstring'''
return {
key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]]
if isinstance(gen_kwargs_list[0][key] , _snake_case )
else gen_kwargs_list[0][key]
for key in gen_kwargs_list[0]
}
def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> dict:
'''simple docstring'''
UpperCAmelCase : Optional[Any] ={len(_snake_case ) for value in gen_kwargs.values() if isinstance(_snake_case , _snake_case )}
UpperCAmelCase : int ={}
for size in list_sizes:
UpperCAmelCase : List[Any] =list(range(_snake_case ) )
rng.shuffle(indices_per_size[size] )
# Now let's copy the gen_kwargs and shuffle the lists based on their sizes
UpperCAmelCase : Any =dict(_snake_case )
for key, value in shuffled_kwargs.items():
if isinstance(_snake_case , _snake_case ):
UpperCAmelCase : Dict =[value[i] for i in indices_per_size[len(_snake_case )]]
return shuffled_kwargs
| 369
|
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class __snake_case ( lowerCamelCase__ ):
__lowerCamelCase : Union[str, Any] = ["""image_processor""", """tokenizer"""]
__lowerCamelCase : Union[str, Any] = """CLIPImageProcessor"""
__lowerCamelCase : Any = ("""CLIPTokenizer""", """CLIPTokenizerFast""")
def __init__( self , snake_case__=None , snake_case__=None , **snake_case__ ) -> List[str]:
'''simple docstring'''
UpperCAmelCase : Optional[int] =None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , snake_case__ , )
UpperCAmelCase : int =kwargs.pop('''feature_extractor''' )
UpperCAmelCase : Tuple =image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(snake_case__ , snake_case__ )
def __call__( self , snake_case__=None , snake_case__=None , snake_case__=None , **snake_case__ ) -> Optional[Any]:
'''simple docstring'''
if text is None and images is None:
raise ValueError('''You have to specify either text or images. Both cannot be none.''' )
if text is not None:
UpperCAmelCase : List[Any] =self.tokenizer(snake_case__ , return_tensors=snake_case__ , **snake_case__ )
if images is not None:
UpperCAmelCase : Tuple =self.image_processor(snake_case__ , return_tensors=snake_case__ , **snake_case__ )
if text is not None and images is not None:
UpperCAmelCase : List[Any] =image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**snake_case__ ) , tensor_type=snake_case__ )
def UpperCAmelCase__ ( self , *snake_case__ , **snake_case__ ) -> Optional[int]:
'''simple docstring'''
return self.tokenizer.batch_decode(*snake_case__ , **snake_case__ )
def UpperCAmelCase__ ( self , *snake_case__ , **snake_case__ ) -> List[Any]:
'''simple docstring'''
return self.tokenizer.decode(*snake_case__ , **snake_case__ )
@property
def UpperCAmelCase__ ( self ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase : List[str] =self.tokenizer.model_input_names
UpperCAmelCase : Union[str, Any] =self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def UpperCAmelCase__ ( self ) -> str:
'''simple docstring'''
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , snake_case__ , )
return self.image_processor_class
@property
def UpperCAmelCase__ ( self ) -> Tuple:
'''simple docstring'''
warnings.warn(
'''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , snake_case__ , )
return self.image_processor
| 78
| 0
|
import json
import os
import unittest
from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast
from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class _lowercase ( lowercase__ , unittest.TestCase):
"""simple docstring"""
A__ = LEDTokenizer
A__ = LEDTokenizerFast
A__ = True
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
super().setUp()
lowerCamelCase__ : Optional[int] = [
"l",
"o",
"w",
"e",
"r",
"s",
"t",
"i",
"d",
"n",
"\u0120",
"\u0120l",
"\u0120n",
"\u0120lo",
"\u0120low",
"er",
"\u0120lowest",
"\u0120newer",
"\u0120wider",
"<unk>",
]
lowerCamelCase__ : str = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) )
lowerCamelCase__ : Any = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
lowerCamelCase__ : Optional[int] = {"unk_token": "<unk>"}
lowerCamelCase__ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
lowerCamelCase__ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(__lowerCamelCase ) + "\n" )
with open(self.merges_file , "w" , encoding="utf-8" ) as fp:
fp.write("\n".join(__lowerCamelCase ) )
def lowerCAmelCase ( self : Union[str, Any] , **__lowerCamelCase : Optional[Any] ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCamelCase )
def lowerCAmelCase ( self : Tuple , **__lowerCamelCase : List[str] ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCamelCase )
def lowerCAmelCase ( self : str , __lowerCamelCase : Optional[int] ):
'''simple docstring'''
return "lower newer", "lower newer"
@cached_property
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
return LEDTokenizer.from_pretrained("allenai/led-base-16384" )
@cached_property
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
return LEDTokenizerFast.from_pretrained("allenai/led-base-16384" )
@require_torch
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
lowerCamelCase__ : str = ["A long paragraph for summarization.", "Another paragraph for summarization."]
lowerCamelCase__ : Tuple = [0, 250, 251, 17818, 13, 39186, 1938, 4, 2]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
lowerCamelCase__ : List[str] = tokenizer(__lowerCamelCase , max_length=len(__lowerCamelCase ) , padding=__lowerCamelCase , return_tensors="pt" )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
self.assertEqual((2, 9) , batch.input_ids.shape )
self.assertEqual((2, 9) , batch.attention_mask.shape )
lowerCamelCase__ : Optional[Any] = batch.input_ids.tolist()[0]
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
@require_torch
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : List[str] = ["A long paragraph for summarization.", "Another paragraph for summarization."]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
lowerCamelCase__ : List[Any] = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors="pt" )
self.assertIn("input_ids" , __lowerCamelCase )
self.assertIn("attention_mask" , __lowerCamelCase )
self.assertNotIn("labels" , __lowerCamelCase )
self.assertNotIn("decoder_attention_mask" , __lowerCamelCase )
@require_torch
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
lowerCamelCase__ : Any = [
"Summary of the text.",
"Another summary.",
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
lowerCamelCase__ : Union[str, Any] = tokenizer(text_target=__lowerCamelCase , max_length=32 , padding="max_length" , return_tensors="pt" )
self.assertEqual(32 , targets["input_ids"].shape[1] )
@require_torch
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
lowerCamelCase__ : Tuple = tokenizer(
["I am a small frog" * 1024, "I am a small frog"] , padding=__lowerCamelCase , truncation=__lowerCamelCase , return_tensors="pt" )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
self.assertEqual(batch.input_ids.shape , (2, 5122) )
@require_torch
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
lowerCamelCase__ : Dict = ["A long paragraph for summarization."]
lowerCamelCase__ : List[Any] = [
"Summary of the text.",
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
lowerCamelCase__ : Dict = tokenizer(__lowerCamelCase , return_tensors="pt" )
lowerCamelCase__ : List[str] = tokenizer(text_target=__lowerCamelCase , return_tensors="pt" )
lowerCamelCase__ : List[str] = inputs["input_ids"]
lowerCamelCase__ : Dict = targets["input_ids"]
self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() )
self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() )
@require_torch
def lowerCAmelCase ( self : int ):
'''simple docstring'''
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
lowerCamelCase__ : List[str] = ["Summary of the text.", "Another summary."]
lowerCamelCase__ : List[Any] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]]
lowerCamelCase__ : int = tokenizer(__lowerCamelCase , padding=__lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = [[0] * len(__lowerCamelCase ) for x in encoded_output["input_ids"]]
lowerCamelCase__ : List[Any] = tokenizer.pad(__lowerCamelCase )
self.assertSequenceEqual(outputs["global_attention_mask"] , __lowerCamelCase )
def lowerCAmelCase ( self : int ):
'''simple docstring'''
pass
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ):
lowerCamelCase__ : str = self.rust_tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = self.tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase )
lowerCamelCase__ : int = "A, <mask> AllenNLP sentence."
lowerCamelCase__ : Any = tokenizer_r.encode_plus(__lowerCamelCase , add_special_tokens=__lowerCamelCase , return_token_type_ids=__lowerCamelCase )
lowerCamelCase__ : List[Any] = tokenizer_p.encode_plus(__lowerCamelCase , add_special_tokens=__lowerCamelCase , return_token_type_ids=__lowerCamelCase )
self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) )
self.assertEqual(
sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , )
lowerCamelCase__ : str = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] )
lowerCamelCase__ : List[str] = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] )
self.assertSequenceEqual(tokens_p["input_ids"] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] )
self.assertSequenceEqual(tokens_r["input_ids"] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] )
self.assertSequenceEqual(
__lowerCamelCase , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
self.assertSequenceEqual(
__lowerCamelCase , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
| 184
|
from __future__ import annotations
A : Union[str, Any] = {
"A": ["B", "C", "E"],
"B": ["A", "D", "E"],
"C": ["A", "F", "G"],
"D": ["B"],
"E": ["A", "B", "D"],
"F": ["C"],
"G": ["C"],
}
class _lowercase :
"""simple docstring"""
def __init__( self : Tuple , __lowerCamelCase : dict[str, list[str]] , __lowerCamelCase : str ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = graph
# mapping node to its parent in resulting breadth first tree
lowerCamelCase__ : dict[str, str | None] = {}
lowerCamelCase__ : Dict = source_vertex
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
lowerCamelCase__ : int = {self.source_vertex}
lowerCamelCase__ : Optional[int] = None
lowerCamelCase__ : Dict = [self.source_vertex] # first in first out queue
while queue:
lowerCamelCase__ : Optional[int] = queue.pop(0 )
for adjacent_vertex in self.graph[vertex]:
if adjacent_vertex not in visited:
visited.add(__lowerCamelCase )
lowerCamelCase__ : List[str] = vertex
queue.append(__lowerCamelCase )
def lowerCAmelCase ( self : Optional[Any] , __lowerCamelCase : str ):
'''simple docstring'''
if target_vertex == self.source_vertex:
return self.source_vertex
lowerCamelCase__ : Tuple = self.parent.get(__lowerCamelCase )
if target_vertex_parent is None:
lowerCamelCase__ : Tuple = (
f"No path from vertex: {self.source_vertex} to vertex: {target_vertex}"
)
raise ValueError(__lowerCamelCase )
return self.shortest_path(__lowerCamelCase ) + f"->{target_vertex}"
if __name__ == "__main__":
A : List[str] = Graph(graph, "G")
g.breath_first_search()
print(g.shortest_path("D"))
print(g.shortest_path("G"))
print(g.shortest_path("Foo"))
| 184
| 1
|
import torch
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.models.bert.modeling_bert import (
BERT_INPUTS_DOCSTRING,
BERT_START_DOCSTRING,
BertEmbeddings,
BertLayer,
BertPooler,
BertPreTrainedModel,
)
def lowerCAmelCase__ ( UpperCamelCase__ ):
'''simple docstring'''
_a : Optional[int] = torch.exp(_lowerCamelCase )
_a : Dict = torch.sum(_lowerCamelCase , dim=1 ) # sum of exp(x_i)
_a : List[Any] = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i)
return torch.log(_lowerCamelCase ) - B / A
class UpperCamelCase ( nn.Module ):
def __init__( self : List[str] , UpperCAmelCase__ : str ) -> Optional[Any]:
super().__init__()
_a : Tuple = config.output_attentions
_a : List[Any] = config.output_hidden_states
_a : str = nn.ModuleList([BertLayer(UpperCAmelCase__ ) for _ in range(config.num_hidden_layers )] )
_a : Any = nn.ModuleList([BertHighway(UpperCAmelCase__ ) for _ in range(config.num_hidden_layers )] )
_a : int = [-1 for _ in range(config.num_hidden_layers )]
def _lowercase ( self : str , UpperCAmelCase__ : int ) -> Optional[int]:
if (type(UpperCAmelCase__ ) is float) or (type(UpperCAmelCase__ ) is int):
for i in range(len(self.early_exit_entropy ) ):
_a : int = x
else:
_a : Union[str, Any] = x
def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Union[str, Any] ) -> Optional[Any]:
_a : int = pooler.state_dict()
for highway in self.highway:
for name, param in highway.pooler.state_dict().items():
param.copy_(loaded_model[name] )
def _lowercase ( self : int , UpperCAmelCase__ : Any , UpperCAmelCase__ : Any=None , UpperCAmelCase__ : Union[str, Any]=None , UpperCAmelCase__ : str=None , UpperCAmelCase__ : str=None , ) -> List[str]:
_a : str = ()
_a : List[str] = ()
_a : Tuple = ()
for i, layer_module in enumerate(self.layer ):
if self.output_hidden_states:
_a : List[Any] = all_hidden_states + (hidden_states,)
_a : str = layer_module(
UpperCAmelCase__ , UpperCAmelCase__ , head_mask[i] , UpperCAmelCase__ , UpperCAmelCase__ )
_a : str = layer_outputs[0]
if self.output_attentions:
_a : Dict = all_attentions + (layer_outputs[1],)
_a : int = (hidden_states,)
if self.output_hidden_states:
_a : Dict = current_outputs + (all_hidden_states,)
if self.output_attentions:
_a : Union[str, Any] = current_outputs + (all_attentions,)
_a : Optional[int] = self.highway[i](UpperCAmelCase__ )
# logits, pooled_output
if not self.training:
_a : Dict = highway_exit[0]
_a : str = entropy(UpperCAmelCase__ )
_a : List[Any] = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy
_a : str = all_highway_exits + (highway_exit,)
if highway_entropy < self.early_exit_entropy[i]:
_a : Any = (highway_logits,) + current_outputs[1:] + (all_highway_exits,)
raise HighwayException(UpperCAmelCase__ , i + 1 )
else:
_a : Optional[Any] = all_highway_exits + (highway_exit,)
# Add last layer
if self.output_hidden_states:
_a : str = all_hidden_states + (hidden_states,)
_a : Union[str, Any] = (hidden_states,)
if self.output_hidden_states:
_a : Any = outputs + (all_hidden_states,)
if self.output_attentions:
_a : Tuple = outputs + (all_attentions,)
_a : Any = outputs + (all_highway_exits,)
return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits
@add_start_docstrings(
'''The Bert Model transformer with early exiting (DeeBERT). ''' , a__ , )
class UpperCamelCase ( a__ ):
def __init__( self : int , UpperCAmelCase__ : Dict ) -> Optional[int]:
super().__init__(UpperCAmelCase__ )
_a : Optional[int] = config
_a : Dict = BertEmbeddings(UpperCAmelCase__ )
_a : Any = DeeBertEncoder(UpperCAmelCase__ )
_a : List[Any] = BertPooler(UpperCAmelCase__ )
self.init_weights()
def _lowercase ( self : Optional[Any] ) -> List[Any]:
self.encoder.init_highway_pooler(self.pooler )
def _lowercase ( self : List[str] ) -> Tuple:
return self.embeddings.word_embeddings
def _lowercase ( self : Dict , UpperCAmelCase__ : Tuple ) -> Dict:
_a : Union[str, Any] = value
def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : Any ) -> Any:
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(UpperCAmelCase__ )
@add_start_docstrings_to_model_forward(UpperCAmelCase__ )
def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : Any=None , UpperCAmelCase__ : Union[str, Any]=None , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : Any=None , UpperCAmelCase__ : Union[str, Any]=None , ) -> int:
if input_ids is not None and inputs_embeds is not None:
raise ValueError("""You cannot specify both input_ids and inputs_embeds at the same time""" )
elif input_ids is not None:
_a : Optional[int] = input_ids.size()
elif inputs_embeds is not None:
_a : str = inputs_embeds.size()[:-1]
else:
raise ValueError("""You have to specify either input_ids or inputs_embeds""" )
_a : Tuple = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
_a : Optional[Any] = torch.ones(UpperCAmelCase__ , device=UpperCAmelCase__ )
if encoder_attention_mask is None:
_a : Optional[int] = torch.ones(UpperCAmelCase__ , device=UpperCAmelCase__ )
if token_type_ids is None:
_a : Dict = torch.zeros(UpperCAmelCase__ , dtype=torch.long , device=UpperCAmelCase__ )
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
_a : torch.Tensor = self.get_extended_attention_mask(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
# If a 2D ou 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if encoder_attention_mask.dim() == 3:
_a : Optional[int] = encoder_attention_mask[:, None, :, :]
if encoder_attention_mask.dim() == 2:
_a : Optional[Any] = encoder_attention_mask[:, None, None, :]
_a : List[Any] = encoder_extended_attention_mask.to(
dtype=next(self.parameters() ).dtype ) # fp16 compatibility
_a : Dict = (1.0 - encoder_extended_attention_mask) * -10000.0
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
_a : int = self.get_head_mask(UpperCAmelCase__ , self.config.num_hidden_layers )
_a : str = self.embeddings(
input_ids=UpperCAmelCase__ , position_ids=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , inputs_embeds=UpperCAmelCase__ )
_a : Optional[Any] = self.encoder(
UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , head_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , )
_a : str = encoder_outputs[0]
_a : Tuple = self.pooler(UpperCAmelCase__ )
_a : Tuple = (
sequence_output,
pooled_output,
) + encoder_outputs[
1:
] # add hidden_states and attentions if they are here
return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits
class UpperCamelCase ( a__ ):
def __init__( self : Optional[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : List[str] ) -> Optional[Any]:
_a : str = message
_a : Dict = exit_layer # start from 1!
class UpperCamelCase ( nn.Module ):
def __init__( self : str , UpperCAmelCase__ : int ) -> Tuple:
super().__init__()
_a : Union[str, Any] = BertPooler(UpperCAmelCase__ )
_a : Tuple = nn.Dropout(config.hidden_dropout_prob )
_a : str = nn.Linear(config.hidden_size , config.num_labels )
def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : Optional[int] ) -> Dict:
# Pooler
_a : Optional[Any] = encoder_outputs[0]
_a : int = self.pooler(UpperCAmelCase__ )
# "return" pooler_output
# BertModel
_a : Union[str, Any] = (pooler_input, pooler_output) + encoder_outputs[1:]
# "return" bmodel_output
# Dropout and classification
_a : Union[str, Any] = bmodel_output[1]
_a : int = self.dropout(UpperCAmelCase__ )
_a : Dict = self.classifier(UpperCAmelCase__ )
return logits, pooled_output
@add_start_docstrings(
'''Bert Model (with early exiting - DeeBERT) with a classifier on top,\n also takes care of multi-layer training. ''' , a__ , )
class UpperCamelCase ( a__ ):
def __init__( self : Union[str, Any] , UpperCAmelCase__ : Union[str, Any] ) -> Union[str, Any]:
super().__init__(UpperCAmelCase__ )
_a : str = config.num_labels
_a : List[Any] = config.num_hidden_layers
_a : Union[str, Any] = DeeBertModel(UpperCAmelCase__ )
_a : List[Any] = nn.Dropout(config.hidden_dropout_prob )
_a : str = nn.Linear(config.hidden_size , self.config.num_labels )
self.init_weights()
@add_start_docstrings_to_model_forward(UpperCAmelCase__ )
def _lowercase ( self : List[str] , UpperCAmelCase__ : int=None , UpperCAmelCase__ : Union[str, Any]=None , UpperCAmelCase__ : Any=None , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : Any=None , UpperCAmelCase__ : Optional[int]=None , UpperCAmelCase__ : int=-1 , UpperCAmelCase__ : Optional[int]=False , ) -> List[Any]:
_a : int = self.num_layers
try:
_a : Optional[Any] = self.bert(
UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , position_ids=UpperCAmelCase__ , head_mask=UpperCAmelCase__ , inputs_embeds=UpperCAmelCase__ , )
# sequence_output, pooled_output, (hidden_states), (attentions), highway exits
_a : Any = outputs[1]
_a : Tuple = self.dropout(UpperCAmelCase__ )
_a : Any = self.classifier(UpperCAmelCase__ )
_a : Dict = (logits,) + outputs[2:] # add hidden states and attention if they are here
except HighwayException as e:
_a : List[Any] = e.message
_a : Optional[int] = e.exit_layer
_a : Tuple = outputs[0]
if not self.training:
_a : Optional[int] = entropy(UpperCAmelCase__ )
_a : Any = []
_a : Optional[Any] = []
if labels is not None:
if self.num_labels == 1:
# We are doing regression
_a : Union[str, Any] = MSELoss()
_a : Union[str, Any] = loss_fct(logits.view(-1 ) , labels.view(-1 ) )
else:
_a : Any = CrossEntropyLoss()
_a : Optional[int] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
# work with highway exits
_a : int = []
for highway_exit in outputs[-1]:
_a : List[Any] = highway_exit[0]
if not self.training:
highway_logits_all.append(UpperCAmelCase__ )
highway_entropy.append(highway_exit[2] )
if self.num_labels == 1:
# We are doing regression
_a : int = MSELoss()
_a : Any = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) )
else:
_a : Dict = CrossEntropyLoss()
_a : List[str] = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
highway_losses.append(UpperCAmelCase__ )
if train_highway:
_a : Union[str, Any] = (sum(highway_losses[:-1] ),) + outputs
# exclude the final highway, of course
else:
_a : Any = (loss,) + outputs
if not self.training:
_a : Any = outputs + ((original_entropy, highway_entropy), exit_layer)
if output_layer >= 0:
_a : int = (
(outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:]
) # use the highway of the last layer
return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
| 370
|
"""simple docstring"""
import argparse
import json
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from typing import List
import timm
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download
from torch import Tensor
from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification
from transformers.utils import logging
logging.set_verbosity_info()
_snake_case = logging.get_logger()
@dataclass
class UpperCamelCase :
UpperCamelCase : nn.Module
UpperCamelCase : List[nn.Module] = field(default_factory=snake_case_ )
UpperCamelCase : list = field(default_factory=snake_case_ )
def _lowercase ( self : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Tensor , UpperCAmelCase__ : Tensor ) -> Any:
_a : int = len(list(m.modules() ) ) == 1 or isinstance(UpperCAmelCase__ , nn.Convad ) or isinstance(UpperCAmelCase__ , nn.BatchNormad )
if has_not_submodules:
self.traced.append(UpperCAmelCase__ )
def __call__( self : Tuple , UpperCAmelCase__ : Tensor ) -> Tuple:
for m in self.module.modules():
self.handles.append(m.register_forward_hook(self._forward_hook ) )
self.module(UpperCAmelCase__ )
[x.remove() for x in self.handles]
return self
@property
def _lowercase ( self : Optional[int] ) -> int:
# check the len of the state_dict keys to see if we have learnable params
return list(filter(lambda UpperCAmelCase__ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) )
@dataclass
class UpperCamelCase :
UpperCamelCase : nn.Module
UpperCamelCase : nn.Module
UpperCamelCase : int = 0
UpperCamelCase : List = field(default_factory=snake_case_ )
UpperCamelCase : List = field(default_factory=snake_case_ )
def __call__( self : Optional[Any] , UpperCAmelCase__ : Tensor ) -> Tuple:
_a : Union[str, Any] = Tracker(self.dest )(UpperCAmelCase__ ).parametrized
_a : List[Any] = Tracker(self.src )(UpperCAmelCase__ ).parametrized
_a : Tuple = list(filter(lambda UpperCAmelCase__ : type(UpperCAmelCase__ ) not in self.src_skip , UpperCAmelCase__ ) )
_a : Union[str, Any] = list(filter(lambda UpperCAmelCase__ : type(UpperCAmelCase__ ) not in self.dest_skip , UpperCAmelCase__ ) )
if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ):
raise Exception(
f"""Numbers of operations are different. Source module has {len(UpperCAmelCase__ )} operations while"""
f""" destination module has {len(UpperCAmelCase__ )}.""" )
for dest_m, src_m in zip(UpperCAmelCase__ , UpperCAmelCase__ ):
dest_m.load_state_dict(src_m.state_dict() )
if self.verbose == 1:
print(f"""Transfered from={src_m} to={dest_m}""" )
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = True ):
'''simple docstring'''
print(F"""Converting {name}...""" )
with torch.no_grad():
_a : List[str] = timm.create_model(UpperCamelCase__ , pretrained=UpperCamelCase__ ).eval()
_a : str = ResNetForImageClassification(UpperCamelCase__ ).eval()
_a : List[str] = ModuleTransfer(src=UpperCamelCase__ , dest=UpperCamelCase__ )
_a : List[str] = torch.randn((1, 3, 2_2_4, 2_2_4) )
module_transfer(UpperCamelCase__ )
assert torch.allclose(from_model(UpperCamelCase__ ) , our_model(UpperCamelCase__ ).logits ), "The model logits don't match the original one."
_a : Dict = F"""resnet{'-'.join(name.split('resnet' ) )}"""
print(UpperCamelCase__ )
if push_to_hub:
our_model.push_to_hub(
repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add model""" , use_temp_dir=UpperCamelCase__ , )
# we can use the convnext one
_a : Optional[Any] = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" )
image_processor.push_to_hub(
repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add image processor""" , use_temp_dir=UpperCamelCase__ , )
print(F"""Pushed {checkpoint_name}""" )
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = True ):
'''simple docstring'''
_a : Any = """imagenet-1k-id2label.json"""
_a : Optional[int] = 1_0_0_0
_a : Any = (1, num_labels)
_a : Union[str, Any] = """huggingface/label-files"""
_a : Tuple = num_labels
_a : Optional[int] = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type="""dataset""" ) , """r""" ) )
_a : Optional[Any] = {int(UpperCamelCase__ ): v for k, v in idalabel.items()}
_a : Any = idalabel
_a : Tuple = {v: k for k, v in idalabel.items()}
_a : List[str] = partial(UpperCamelCase__ , num_labels=UpperCamelCase__ , idalabel=UpperCamelCase__ , labelaid=UpperCamelCase__ )
_a : Union[str, Any] = {
"""resnet18""": ImageNetPreTrainedConfig(
depths=[2, 2, 2, 2] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type="""basic""" ),
"""resnet26""": ImageNetPreTrainedConfig(
depths=[2, 2, 2, 2] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ),
"""resnet34""": ImageNetPreTrainedConfig(
depths=[3, 4, 6, 3] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type="""basic""" ),
"""resnet50""": ImageNetPreTrainedConfig(
depths=[3, 4, 6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ),
"""resnet101""": ImageNetPreTrainedConfig(
depths=[3, 4, 2_3, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ),
"""resnet152""": ImageNetPreTrainedConfig(
depths=[3, 8, 3_6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ),
}
if model_name:
convert_weight_and_push(UpperCamelCase__ , names_to_config[model_name] , UpperCamelCase__ , UpperCamelCase__ )
else:
for model_name, config in names_to_config.items():
convert_weight_and_push(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
return config, expected_shape
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default=None,
type=str,
help=(
'The name of the model you wish to convert, it must be one of the supported resnet* architecture,'
' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.'
),
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
type=Path,
required=True,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub',
default=True,
type=bool,
required=False,
help='If True, push model and image processor to the hub.',
)
_snake_case = parser.parse_args()
_snake_case = args.pytorch_dump_folder_path
pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True)
convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 324
| 0
|
from typing import Dict, List
from nltk.translate import gleu_score
import datasets
from datasets import MetricInfo
SCREAMING_SNAKE_CASE__ : List[Any] = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n"
SCREAMING_SNAKE_CASE__ : Optional[int] = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n"
SCREAMING_SNAKE_CASE__ : Any = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCAmelCase__ ( datasets.Metric ):
def __A ( self : str ) -> MetricInfo:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ),
'''references''': datasets.Sequence(
datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ) , id='''references''' ),
} ) , )
def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[List[List[str]]] , SCREAMING_SNAKE_CASE__ : List[List[str]] , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : int = 4 , ) -> Dict[str, float]:
return {
"google_bleu": gleu_score.corpus_gleu(
list_of_references=SCREAMING_SNAKE_CASE__ , hypotheses=SCREAMING_SNAKE_CASE__ , min_len=SCREAMING_SNAKE_CASE__ , max_len=SCREAMING_SNAKE_CASE__ )
}
| 270
|
from queue import PriorityQueue
from typing import Any
import numpy as np
def __magic_name__ ( __lowerCAmelCase : dict , __lowerCAmelCase : str , __lowerCAmelCase : set , __lowerCAmelCase : set , __lowerCAmelCase : dict , __lowerCAmelCase : dict , __lowerCAmelCase : PriorityQueue , __lowerCAmelCase : dict , __lowerCAmelCase : float | int , ) -> float | int:
for nxt, d in graph[v]:
if nxt in visited_forward:
continue
__lowerCamelCase = cst_fwd.get(__lowerCAmelCase , np.inf )
__lowerCamelCase = cst_fwd[v] + d
if new_cost_f < old_cost_f:
queue.put((new_cost_f, nxt) )
__lowerCamelCase = new_cost_f
__lowerCamelCase = v
if nxt in visited_backward:
if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance:
__lowerCamelCase = cst_fwd[v] + d + cst_bwd[nxt]
return shortest_distance
def __magic_name__ ( __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : dict , __lowerCAmelCase : dict ) -> int:
__lowerCamelCase = -1
__lowerCamelCase = set()
__lowerCamelCase = set()
__lowerCamelCase = {source: 0}
__lowerCamelCase = {destination: 0}
__lowerCamelCase = {source: None}
__lowerCamelCase = {destination: None}
__lowerCamelCase = PriorityQueue()
__lowerCamelCase = PriorityQueue()
__lowerCamelCase = np.inf
queue_forward.put((0, source) )
queue_backward.put((0, destination) )
if source == destination:
return 0
while not queue_forward.empty() and not queue_backward.empty():
__lowerCamelCase , __lowerCamelCase = queue_forward.get()
visited_forward.add(__lowerCAmelCase )
__lowerCamelCase , __lowerCamelCase = queue_backward.get()
visited_backward.add(__lowerCAmelCase )
__lowerCamelCase = pass_and_relaxation(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , )
__lowerCamelCase = pass_and_relaxation(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , )
if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance:
break
if shortest_distance != np.inf:
__lowerCamelCase = shortest_distance
return shortest_path_distance
SCREAMING_SNAKE_CASE__ : List[Any] = {
"B": [["C", 1]],
"C": [["D", 1]],
"D": [["F", 1]],
"E": [["B", 1], ["G", 2]],
"F": [],
"G": [["F", 1]],
}
SCREAMING_SNAKE_CASE__ : Optional[int] = {
"B": [["E", 1]],
"C": [["B", 1]],
"D": [["C", 1]],
"F": [["D", 1], ["G", 1]],
"E": [[None, np.inf]],
"G": [["E", 2]],
}
if __name__ == "__main__":
import doctest
doctest.testmod()
| 270
| 1
|
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self : int , __A : List[str] ):
# we need a list not a string, so do something to change the type
snake_case__ : Dict = arr.split("," )
def _lowercase ( self : Union[str, Any] ):
snake_case__ : Union[str, Any] = [int(self.array[0] )] * len(self.array )
snake_case__ : Optional[Any] = [int(self.array[0] )] * len(self.array )
for i in range(1 , len(self.array ) ):
snake_case__ : Tuple = max(
int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) )
snake_case__ : Dict = max(sum_value[i] , rear[i - 1] )
return rear[len(self.array ) - 1]
if __name__ == "__main__":
__lowerCamelCase : Tuple = input("""please input some numbers:""")
__lowerCamelCase : List[Any] = SubArray(whole_array)
__lowerCamelCase : List[Any] = array.solve_sub_array()
print(("""the results is:""", re))
| 286
|
from __future__ import annotations
def SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : float , snake_case_ : float ):
if days_between_payments <= 0:
raise ValueError("days_between_payments must be > 0" )
if daily_interest_rate < 0:
raise ValueError("daily_interest_rate must be >= 0" )
if principal <= 0:
raise ValueError("principal must be > 0" )
return principal * daily_interest_rate * days_between_payments
def SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : float , snake_case_ : float , ):
if number_of_compounding_periods <= 0:
raise ValueError("number_of_compounding_periods must be > 0" )
if nominal_annual_interest_rate_percentage < 0:
raise ValueError("nominal_annual_interest_rate_percentage must be >= 0" )
if principal <= 0:
raise ValueError("principal must be > 0" )
return principal * (
(1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods
- 1
)
def SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : float , snake_case_ : float , ):
if number_of_years <= 0:
raise ValueError("number_of_years must be > 0" )
if nominal_annual_percentage_rate < 0:
raise ValueError("nominal_annual_percentage_rate must be >= 0" )
if principal <= 0:
raise ValueError("principal must be > 0" )
return compound_interest(
snake_case_ , nominal_annual_percentage_rate / 365 , number_of_years * 365 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 286
| 1
|
'''simple docstring'''
from __future__ import annotations
import math
def _lowerCAmelCase ( _UpperCamelCase : int ) -> bool:
"""simple docstring"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(_UpperCamelCase ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def _lowerCAmelCase ( _UpperCamelCase : int ) -> list[int]:
"""simple docstring"""
_SCREAMING_SNAKE_CASE =str(_UpperCamelCase )
_SCREAMING_SNAKE_CASE =[n]
for i in range(1 , len(_UpperCamelCase ) ):
list_nums.append(int(str_num[i:] ) )
list_nums.append(int(str_num[:-i] ) )
return list_nums
def _lowerCAmelCase ( _UpperCamelCase : int ) -> bool:
"""simple docstring"""
if len(str(_UpperCamelCase ) ) > 3:
if not is_prime(int(str(_UpperCamelCase )[-3:] ) ) or not is_prime(int(str(_UpperCamelCase )[:3] ) ):
return False
return True
def _lowerCAmelCase ( _UpperCamelCase : int = 11 ) -> list[int]:
"""simple docstring"""
_SCREAMING_SNAKE_CASE =[]
_SCREAMING_SNAKE_CASE =13
while len(_UpperCamelCase ) != count:
if validate(_UpperCamelCase ):
_SCREAMING_SNAKE_CASE =list_truncated_nums(_UpperCamelCase )
if all(is_prime(_UpperCamelCase ) for i in list_nums ):
list_truncated_primes.append(_UpperCamelCase )
num += 2
return list_truncated_primes
def _lowerCAmelCase ( ) -> int:
"""simple docstring"""
return sum(compute_truncated_primes(11 ) )
if __name__ == "__main__":
print(f'''{sum(compute_truncated_primes(1_1)) = }''')
| 47
|
'''simple docstring'''
from typing import List, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase : List[Any] = logging.get_logger(__name__)
lowerCamelCase : str = {
"huggingface/time-series-transformer-tourism-monthly": (
"https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json"
),
# See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer
}
class A__ ( A__ ):
A__ = 'time_series_transformer'
A__ = {
'hidden_size': 'd_model',
'num_attention_heads': 'encoder_attention_heads',
'num_hidden_layers': 'encoder_layers',
}
def __init__( self : Optional[int] , _a : Optional[int] = None , _a : Optional[int] = None , _a : str = "student_t" , _a : str = "nll" , _a : int = 1 , _a : List[int] = [1, 2, 3, 4, 5, 6, 7] , _a : Optional[Union[str, bool]] = "mean" , _a : int = 0 , _a : int = 0 , _a : int = 0 , _a : int = 0 , _a : Optional[List[int]] = None , _a : Optional[List[int]] = None , _a : int = 32 , _a : int = 32 , _a : int = 2 , _a : int = 2 , _a : int = 2 , _a : int = 2 , _a : bool = True , _a : str = "gelu" , _a : int = 64 , _a : float = 0.1 , _a : float = 0.1 , _a : float = 0.1 , _a : float = 0.1 , _a : float = 0.1 , _a : int = 100 , _a : float = 0.02 , _a : Union[str, Any]=True , **_a : Optional[Any] , ) -> Optional[Any]:
'''simple docstring'''
_SCREAMING_SNAKE_CASE =prediction_length
_SCREAMING_SNAKE_CASE =context_length or prediction_length
_SCREAMING_SNAKE_CASE =distribution_output
_SCREAMING_SNAKE_CASE =loss
_SCREAMING_SNAKE_CASE =input_size
_SCREAMING_SNAKE_CASE =num_time_features
_SCREAMING_SNAKE_CASE =lags_sequence
_SCREAMING_SNAKE_CASE =scaling
_SCREAMING_SNAKE_CASE =num_dynamic_real_features
_SCREAMING_SNAKE_CASE =num_static_real_features
_SCREAMING_SNAKE_CASE =num_static_categorical_features
if cardinality and num_static_categorical_features > 0:
if len(_a ) != num_static_categorical_features:
raise ValueError(
'The cardinality should be a list of the same length as `num_static_categorical_features`' )
_SCREAMING_SNAKE_CASE =cardinality
else:
_SCREAMING_SNAKE_CASE =[0]
if embedding_dimension and num_static_categorical_features > 0:
if len(_a ) != num_static_categorical_features:
raise ValueError(
'The embedding dimension should be a list of the same length as `num_static_categorical_features`' )
_SCREAMING_SNAKE_CASE =embedding_dimension
else:
_SCREAMING_SNAKE_CASE =[min(50 , (cat + 1) // 2 ) for cat in self.cardinality]
_SCREAMING_SNAKE_CASE =num_parallel_samples
# Transformer architecture configuration
_SCREAMING_SNAKE_CASE =input_size * len(_a ) + self._number_of_features
_SCREAMING_SNAKE_CASE =d_model
_SCREAMING_SNAKE_CASE =encoder_attention_heads
_SCREAMING_SNAKE_CASE =decoder_attention_heads
_SCREAMING_SNAKE_CASE =encoder_ffn_dim
_SCREAMING_SNAKE_CASE =decoder_ffn_dim
_SCREAMING_SNAKE_CASE =encoder_layers
_SCREAMING_SNAKE_CASE =decoder_layers
_SCREAMING_SNAKE_CASE =dropout
_SCREAMING_SNAKE_CASE =attention_dropout
_SCREAMING_SNAKE_CASE =activation_dropout
_SCREAMING_SNAKE_CASE =encoder_layerdrop
_SCREAMING_SNAKE_CASE =decoder_layerdrop
_SCREAMING_SNAKE_CASE =activation_function
_SCREAMING_SNAKE_CASE =init_std
_SCREAMING_SNAKE_CASE =use_cache
super().__init__(is_encoder_decoder=_a , **_a )
@property
def A ( self : List[Any] ) -> int:
'''simple docstring'''
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
)
| 47
| 1
|
"""simple docstring"""
import argparse
import glob
import importlib.util
import os
import re
import black
from doc_builder.style_doc import style_docstrings_in_code
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_copies.py
lowercase : Tuple = """src/diffusers"""
lowercase : Dict = """."""
# This is to make sure the diffusers module imported is the one in the repo.
lowercase : Union[str, Any] = importlib.util.spec_from_file_location(
"""diffusers""",
os.path.join(DIFFUSERS_PATH, """__init__.py"""),
submodule_search_locations=[DIFFUSERS_PATH],
)
lowercase : List[Any] = spec.loader.load_module()
def A_ ( A__ , A__ ) -> Optional[Any]:
return line.startswith(_A ) or len(_A ) <= 1 or re.search(R'^\s*\)(\s*->.*:|:)\s*$' , _A ) is not None
def A_ ( A__ ) -> int:
a__ : Optional[Any] = object_name.split('.' )
a__ : Optional[Any] = 0
# First let's find the module where our object lives.
a__ : Dict = parts[i]
while i < len(_A ) and not os.path.isfile(os.path.join(_A , F'{module}.py' ) ):
i += 1
if i < len(_A ):
a__ : Dict = os.path.join(_A , parts[i] )
if i >= len(_A ):
raise ValueError(F'`object_name` should begin with the name of a module of diffusers but got {object_name}.' )
with open(os.path.join(_A , F'{module}.py' ) , 'r' , encoding='utf-8' , newline='\n' ) as f:
a__ : List[Any] = f.readlines()
# Now let's find the class / func in the code!
a__ : Dict = ''
a__ : Tuple = 0
for name in parts[i + 1 :]:
while (
line_index < len(_A ) and re.search(RF'^{indent}(class|def)\s+{name}(\(|\:)' , lines[line_index] ) is None
):
line_index += 1
indent += " "
line_index += 1
if line_index >= len(_A ):
raise ValueError(F' {object_name} does not match any function or class in {module}.' )
# We found the beginning of the class / func, now let's find the end (when the indent diminishes).
a__ : Tuple = line_index
while line_index < len(_A ) and _should_continue(lines[line_index] , _A ):
line_index += 1
# Clean up empty lines at the end (if any).
while len(lines[line_index - 1] ) <= 1:
line_index -= 1
a__ : Dict = lines[start_index:line_index]
return "".join(_A )
lowercase : Union[str, Any] = re.compile(r"""^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)""")
lowercase : Optional[int] = re.compile(r"""^\s*(\S+)->(\S+)(\s+.*|$)""")
lowercase : str = re.compile(r"""<FILL\s+[^>]*>""")
def A_ ( A__ ) -> Optional[Any]:
a__ : Optional[int] = code.split('\n' )
a__ : Optional[Any] = 0
while idx < len(_A ) and len(lines[idx] ) == 0:
idx += 1
if idx < len(_A ):
return re.search(R'^(\s*)\S' , lines[idx] ).groups()[0]
return ""
def A_ ( A__ ) -> List[Any]:
a__ : Optional[Any] = len(get_indent(_A ) ) > 0
if has_indent:
a__ : int = F'class Bla:\n{code}'
a__ : Union[str, Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=_A )
a__ : List[str] = black.format_str(_A , mode=_A )
a__ : List[str] = style_docstrings_in_code(_A )
return result[len('class Bla:\n' ) :] if has_indent else result
def A_ ( A__ , A__=False ) -> int:
with open(_A , 'r' , encoding='utf-8' , newline='\n' ) as f:
a__ : str = f.readlines()
a__ : Union[str, Any] = []
a__ : str = 0
# Not a for loop cause `lines` is going to change (if `overwrite=True`).
while line_index < len(_A ):
a__ : List[str] = _re_copy_warning.search(lines[line_index] )
if search is None:
line_index += 1
continue
# There is some copied code here, let's retrieve the original.
a__ : Optional[Any] = search.groups()
a__ : Optional[int] = find_code_in_diffusers(_A )
a__ : List[Any] = get_indent(_A )
a__ : str = line_index + 1 if indent == theoretical_indent else line_index + 2
a__ : Union[str, Any] = theoretical_indent
a__ : Dict = start_index
# Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment.
a__ : Optional[int] = True
while line_index < len(_A ) and should_continue:
line_index += 1
if line_index >= len(_A ):
break
a__ : Any = lines[line_index]
a__ : Optional[int] = _should_continue(_A , _A ) and re.search(F'^{indent}# End copy' , _A ) is None
# Clean up empty lines at the end (if any).
while len(lines[line_index - 1] ) <= 1:
line_index -= 1
a__ : Union[str, Any] = lines[start_index:line_index]
a__ : Optional[int] = ''.join(_A )
# Remove any nested `Copied from` comments to avoid circular copies
a__ : List[Any] = [line for line in theoretical_code.split('\n' ) if _re_copy_warning.search(_A ) is None]
a__ : List[Any] = '\n'.join(_A )
# Before comparing, use the `replace_pattern` on the original code.
if len(_A ) > 0:
a__ : List[Any] = replace_pattern.replace('with' , '' ).split(',' )
a__ : Union[str, Any] = [_re_replace_pattern.search(_A ) for p in patterns]
for pattern in patterns:
if pattern is None:
continue
a__ : Tuple = pattern.groups()
a__ : Optional[Any] = re.sub(_A , _A , _A )
if option.strip() == "all-casing":
a__ : Any = re.sub(obja.lower() , obja.lower() , _A )
a__ : Optional[int] = re.sub(obja.upper() , obja.upper() , _A )
# Blackify after replacement. To be able to do that, we need the header (class or function definition)
# from the previous line
a__ : Any = blackify(lines[start_index - 1] + theoretical_code )
a__ : Optional[int] = theoretical_code[len(lines[start_index - 1] ) :]
# Test for a diff and act accordingly.
if observed_code != theoretical_code:
diffs.append([object_name, start_index] )
if overwrite:
a__ : Optional[int] = lines[:start_index] + [theoretical_code] + lines[line_index:]
a__ : str = start_index + 1
if overwrite and len(_A ) > 0:
# Warn the user a file has been modified.
print(F'Detected changes, rewriting {filename}.' )
with open(_A , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.writelines(_A )
return diffs
def A_ ( A__ = False ) -> Optional[Any]:
a__ : Union[str, Any] = glob.glob(os.path.join(_A , '**/*.py' ) , recursive=_A )
a__ : Union[str, Any] = []
for filename in all_files:
a__ : int = is_copy_consistent(_A , _A )
diffs += [F'- {filename}: copy does not match {d[0]} at line {d[1]}' for d in new_diffs]
if not overwrite and len(_A ) > 0:
a__ : Any = '\n'.join(_A )
raise Exception(
'Found the following copy inconsistencies:\n'
+ diff
+ '\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.' )
if __name__ == "__main__":
lowercase : Any = argparse.ArgumentParser()
parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""")
lowercase : Tuple = parser.parse_args()
check_copies(args.fix_and_overwrite)
| 353
|
import pickle
import numpy as np
from matplotlib import pyplot as plt
class A__ :
"""simple docstring"""
def __init__( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase=0.2 , lowercase=0.2) -> Any:
'''simple docstring'''
a__ : Tuple = bp_numa
a__ : Union[str, Any] = bp_numa
a__ : Optional[int] = bp_numa
a__ : Optional[int] = conva_get[:2]
a__ : Optional[Any] = conva_get[2]
a__ : Optional[int] = size_pa
a__ : Union[str, Any] = rate_w
a__ : Dict = rate_t
a__ : int = [
np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0]) + 0.5)
for i in range(self.conva[1])
]
a__ : Optional[int] = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa) + 0.5)
a__ : Optional[int] = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa) + 0.5)
a__ : Any = -2 * np.random.rand(self.conva[1]) + 1
a__ : Optional[Any] = -2 * np.random.rand(self.num_bpa) + 1
a__ : Optional[int] = -2 * np.random.rand(self.num_bpa) + 1
def __lowercase ( self , lowercase) -> List[Any]:
'''simple docstring'''
a__ : Optional[Any] = {
'num_bp1': self.num_bpa,
'num_bp2': self.num_bpa,
'num_bp3': self.num_bpa,
'conv1': self.conva,
'step_conv1': self.step_conva,
'size_pooling1': self.size_poolinga,
'rate_weight': self.rate_weight,
'rate_thre': self.rate_thre,
'w_conv1': self.w_conva,
'wkj': self.wkj,
'vji': self.vji,
'thre_conv1': self.thre_conva,
'thre_bp2': self.thre_bpa,
'thre_bp3': self.thre_bpa,
}
with open(lowercase , 'wb') as f:
pickle.dump(lowercase , lowercase)
print(F'Model saved: {save_path}')
@classmethod
def __lowercase ( cls , lowercase) -> Any:
'''simple docstring'''
with open(lowercase , 'rb') as f:
a__ : Any = pickle.load(lowercase) # noqa: S301
a__ : Dict = model_dic.get('conv1')
conv_get.append(model_dic.get('step_conv1'))
a__ : Tuple = model_dic.get('size_pooling1')
a__ : Optional[int] = model_dic.get('num_bp1')
a__ : Tuple = model_dic.get('num_bp2')
a__ : Optional[Any] = model_dic.get('num_bp3')
a__ : Optional[Any] = model_dic.get('rate_weight')
a__ : int = model_dic.get('rate_thre')
# create model instance
a__ : Union[str, Any] = CNN(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase)
# modify model parameter
a__ : str = model_dic.get('w_conv1')
a__ : Optional[int] = model_dic.get('wkj')
a__ : Tuple = model_dic.get('vji')
a__ : str = model_dic.get('thre_conv1')
a__ : List[str] = model_dic.get('thre_bp2')
a__ : Tuple = model_dic.get('thre_bp3')
return conv_ins
def __lowercase ( self , lowercase) -> Any:
'''simple docstring'''
return 1 / (1 + np.exp(-1 * x))
def __lowercase ( self , lowercase) -> Optional[int]:
'''simple docstring'''
return round(lowercase , 3)
def __lowercase ( self , lowercase , lowercase , lowercase , lowercase , lowercase) -> Any:
'''simple docstring'''
a__ : Union[str, Any] = convs[0]
a__ : Tuple = convs[1]
a__ : Any = np.shape(lowercase)[0]
# get the data slice of original image data, data_focus
a__ : Tuple = []
for i_focus in range(0 , size_data - size_conv + 1 , lowercase):
for j_focus in range(0 , size_data - size_conv + 1 , lowercase):
a__ : str = data[
i_focus : i_focus + size_conv, j_focus : j_focus + size_conv
]
data_focus.append(lowercase)
# calculate the feature map of every single kernel, and saved as list of matrix
a__ : str = []
a__ : Union[str, Any] = int((size_data - size_conv) / conv_step + 1)
for i_map in range(lowercase):
a__ : Tuple = []
for i_focus in range(len(lowercase)):
a__ : Optional[Any] = (
np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map]))
- thre_convs[i_map]
)
featuremap.append(self.sig(lowercase))
a__ : Dict = np.asmatrix(lowercase).reshape(
lowercase , lowercase)
data_featuremap.append(lowercase)
# expanding the data slice to One dimenssion
a__ : int = []
for each_focus in data_focus:
focusa_list.extend(self.Expand_Mat(lowercase))
a__ : Optional[int] = np.asarray(lowercase)
return focus_list, data_featuremap
def __lowercase ( self , lowercase , lowercase , lowercase="average_pool") -> str:
'''simple docstring'''
a__ : Any = len(featuremaps[0])
a__ : int = int(size_map / size_pooling)
a__ : Optional[Any] = []
for i_map in range(len(lowercase)):
a__ : Any = featuremaps[i_map]
a__ : Optional[int] = []
for i_focus in range(0 , lowercase , lowercase):
for j_focus in range(0 , lowercase , lowercase):
a__ : Any = feature_map[
i_focus : i_focus + size_pooling,
j_focus : j_focus + size_pooling,
]
if pooling_type == "average_pool":
# average pooling
map_pooled.append(np.average(lowercase))
elif pooling_type == "max_pooling":
# max pooling
map_pooled.append(np.max(lowercase))
a__ : List[str] = np.asmatrix(lowercase).reshape(lowercase , lowercase)
featuremap_pooled.append(lowercase)
return featuremap_pooled
def __lowercase ( self , lowercase) -> Optional[Any]:
'''simple docstring'''
a__ : Any = []
for i in range(len(lowercase)):
a__ : Tuple = np.shape(data[i])
a__ : List[str] = data[i].reshape(1 , shapes[0] * shapes[1])
a__ : Optional[Any] = data_listed.getA().tolist()[0]
data_expanded.extend(lowercase)
a__ : Union[str, Any] = np.asarray(lowercase)
return data_expanded
def __lowercase ( self , lowercase) -> Dict:
'''simple docstring'''
a__ : Dict = np.asarray(lowercase)
a__ : Optional[int] = np.shape(lowercase)
a__ : Any = data_mat.reshape(1 , shapes[0] * shapes[1])
return data_expanded
def __lowercase ( self , lowercase , lowercase , lowercase , lowercase , lowercase) -> str:
'''simple docstring'''
a__ : int = []
a__ : Optional[int] = 0
for i_map in range(lowercase):
a__ : Optional[Any] = np.ones((size_map, size_map))
for i in range(0 , lowercase , lowercase):
for j in range(0 , lowercase , lowercase):
a__ : Union[str, Any] = pd_pool[
i_pool
]
a__ : Tuple = i_pool + 1
a__ : Optional[int] = np.multiply(
lowercase , np.multiply(out_map[i_map] , (1 - out_map[i_map])))
pd_all.append(lowercase)
return pd_all
def __lowercase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase=bool) -> str:
'''simple docstring'''
print('----------------------Start Training-------------------------')
print((' - - Shape: Train_Data ', np.shape(lowercase)))
print((' - - Shape: Teach_Data ', np.shape(lowercase)))
a__ : Dict = 0
a__ : List[Any] = []
a__ : Optional[int] = 1_0000
while rp < n_repeat and mse >= error_accuracy:
a__ : Dict = 0
print(F'-------------Learning Time {rp}--------------')
for p in range(len(lowercase)):
# print('------------Learning Image: %d--------------'%p)
a__ : Dict = np.asmatrix(datas_train[p])
a__ : Any = np.asarray(datas_teach[p])
a__ , a__ : Optional[int] = self.convolute(
lowercase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , )
a__ : Dict = self.pooling(lowercase , self.size_poolinga)
a__ : Optional[Any] = np.shape(lowercase)
a__ : Union[str, Any] = self._expand(lowercase)
a__ : List[Any] = data_bp_input
a__ : Tuple = np.dot(lowercase , self.vji.T) - self.thre_bpa
a__ : Any = self.sig(lowercase)
a__ : Any = np.dot(lowercase , self.wkj.T) - self.thre_bpa
a__ : Any = self.sig(lowercase)
# --------------Model Leaning ------------------------
# calculate error and gradient---------------
a__ : Any = np.multiply(
(data_teach - bp_outa) , np.multiply(lowercase , (1 - bp_outa)))
a__ : Optional[Any] = np.multiply(
np.dot(lowercase , self.wkj) , np.multiply(lowercase , (1 - bp_outa)))
a__ : Tuple = np.dot(lowercase , self.vji)
a__ : Union[str, Any] = pd_i_all / (self.size_poolinga * self.size_poolinga)
a__ : List[str] = pd_conva_pooled.T.getA().tolist()
a__ : str = self._calculate_gradient_from_pool(
lowercase , lowercase , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , )
# weight and threshold learning process---------
# convolution layer
for k_conv in range(self.conva[1]):
a__ : Optional[int] = self._expand_mat(pd_conva_all[k_conv])
a__ : int = self.rate_weight * np.dot(lowercase , lowercase)
a__ : List[str] = self.w_conva[k_conv] + delta_w.reshape(
(self.conva[0], self.conva[0]))
a__ : str = (
self.thre_conva[k_conv]
- np.sum(pd_conva_all[k_conv]) * self.rate_thre
)
# all connected layer
a__ : List[str] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight
a__ : List[str] = self.vji + pd_j_all.T * bp_outa * self.rate_weight
a__ : Tuple = self.thre_bpa - pd_k_all * self.rate_thre
a__ : Tuple = self.thre_bpa - pd_j_all * self.rate_thre
# calculate the sum error of all single image
a__ : List[str] = np.sum(abs(data_teach - bp_outa))
error_count += errors
# print(' ----Teach ',data_teach)
# print(' ----BP_output ',bp_out3)
a__ : Any = rp + 1
a__ : Optional[Any] = error_count / patterns
all_mse.append(lowercase)
def draw_error():
a__ : int = [error_accuracy for i in range(int(n_repeat * 1.2))]
plt.plot(lowercase , '+-')
plt.plot(lowercase , 'r--')
plt.xlabel('Learning Times')
plt.ylabel('All_mse')
plt.grid(lowercase , alpha=0.5)
plt.show()
print('------------------Training Complished---------------------')
print((' - - Training epoch: ', rp, F' - - Mse: {mse:.6f}'))
if draw_e:
draw_error()
return mse
def __lowercase ( self , lowercase) -> Optional[int]:
'''simple docstring'''
a__ : str = []
print('-------------------Start Testing-------------------------')
print((' - - Shape: Test_Data ', np.shape(lowercase)))
for p in range(len(lowercase)):
a__ : int = np.asmatrix(datas_test[p])
a__ , a__ : Optional[int] = self.convolute(
lowercase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , )
a__ : str = self.pooling(lowercase , self.size_poolinga)
a__ : Optional[int] = self._expand(lowercase)
a__ : str = data_bp_input
a__ : Union[str, Any] = bp_outa * self.vji.T - self.thre_bpa
a__ : Optional[Any] = self.sig(lowercase)
a__ : int = bp_outa * self.wkj.T - self.thre_bpa
a__ : Dict = self.sig(lowercase)
produce_out.extend(bp_outa.getA().tolist())
a__ : List[Any] = [list(map(self.do_round , lowercase)) for each in produce_out]
return np.asarray(lowercase)
def __lowercase ( self , lowercase) -> str:
'''simple docstring'''
a__ : str = np.asmatrix(lowercase)
a__ , a__ : str = self.convolute(
lowercase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , )
a__ : List[str] = self.pooling(lowercase , self.size_poolinga)
return data_conveda, data_pooleda
if __name__ == "__main__":
pass
| 225
| 0
|
"""simple docstring"""
from ..utils import DummyObject, requires_backends
class _UpperCAmelCase( metaclass=lowerCamelCase ):
lowercase__ = ['note_seq']
def __init__( self , *__a , **__a) -> Dict:
'''simple docstring'''
requires_backends(self , ['''note_seq'''])
@classmethod
def UpperCAmelCase ( cls , *__a , **__a) -> Dict:
'''simple docstring'''
requires_backends(cls , ['''note_seq'''])
@classmethod
def UpperCAmelCase ( cls , *__a , **__a) -> Tuple:
'''simple docstring'''
requires_backends(cls , ['''note_seq'''])
| 194
|
"""simple docstring"""
import inspect
from typing import Optional, Union
import numpy as np
import PIL
import torch
from torch.nn import functional as F
from torchvision import transforms
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
DPMSolverMultistepScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
from diffusers.utils import (
PIL_INTERPOLATION,
randn_tensor,
)
def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> int:
"""simple docstring"""
if isinstance(__snake_case, torch.Tensor ):
return image
elif isinstance(__snake_case, PIL.Image.Image ):
_UpperCamelCase = [image]
if isinstance(image[0], PIL.Image.Image ):
_UpperCamelCase = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image]
_UpperCamelCase = np.concatenate(__snake_case, axis=0 )
_UpperCamelCase = np.array(__snake_case ).astype(np.floataa ) / 255.0
_UpperCamelCase = image.transpose(0, 3, 1, 2 )
_UpperCamelCase = 2.0 * image - 1.0
_UpperCamelCase = torch.from_numpy(__snake_case )
elif isinstance(image[0], torch.Tensor ):
_UpperCamelCase = torch.cat(__snake_case, dim=0 )
return image
def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case=0.9995 ) -> List[Any]:
"""simple docstring"""
if not isinstance(__snake_case, np.ndarray ):
_UpperCamelCase = True
_UpperCamelCase = va.device
_UpperCamelCase = va.cpu().numpy()
_UpperCamelCase = va.cpu().numpy()
_UpperCamelCase = np.sum(va * va / (np.linalg.norm(__snake_case ) * np.linalg.norm(__snake_case )) )
if np.abs(__snake_case ) > DOT_THRESHOLD:
_UpperCamelCase = (1 - t) * va + t * va
else:
_UpperCamelCase = np.arccos(__snake_case )
_UpperCamelCase = np.sin(__snake_case )
_UpperCamelCase = theta_a * t
_UpperCamelCase = np.sin(__snake_case )
_UpperCamelCase = np.sin(theta_a - theta_t ) / sin_theta_a
_UpperCamelCase = sin_theta_t / sin_theta_a
_UpperCamelCase = sa * va + sa * va
if inputs_are_torch:
_UpperCamelCase = torch.from_numpy(__snake_case ).to(__snake_case )
return va
def lowerCamelCase__ ( __snake_case, __snake_case ) -> List[str]:
"""simple docstring"""
_UpperCamelCase = F.normalize(__snake_case, dim=-1 )
_UpperCamelCase = F.normalize(__snake_case, dim=-1 )
return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 )
def lowerCamelCase__ ( __snake_case, __snake_case ) -> Optional[int]:
"""simple docstring"""
for param in model.parameters():
_UpperCamelCase = value
class _UpperCAmelCase( lowerCamelCase ):
def __init__( self , __a , __a , __a , __a , __a , __a , __a , __a=None , __a=None , __a=None , ) -> List[str]:
'''simple docstring'''
super().__init__()
self.register_modules(
vae=__a , text_encoder=__a , clip_model=__a , tokenizer=__a , unet=__a , scheduler=__a , feature_extractor=__a , coca_model=__a , coca_tokenizer=__a , coca_transform=__a , )
_UpperCamelCase = (
feature_extractor.size
if isinstance(feature_extractor.size , __a)
else feature_extractor.size['''shortest_edge''']
)
_UpperCamelCase = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std)
set_requires_grad(self.text_encoder , __a)
set_requires_grad(self.clip_model , __a)
def UpperCAmelCase ( self , __a = "auto") -> Union[str, Any]:
'''simple docstring'''
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
_UpperCamelCase = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(__a)
def UpperCAmelCase ( self) -> Optional[int]:
'''simple docstring'''
self.enable_attention_slicing(__a)
def UpperCAmelCase ( self) -> int:
'''simple docstring'''
set_requires_grad(self.vae , __a)
def UpperCAmelCase ( self) -> Union[str, Any]:
'''simple docstring'''
set_requires_grad(self.vae , __a)
def UpperCAmelCase ( self) -> Tuple:
'''simple docstring'''
set_requires_grad(self.unet , __a)
def UpperCAmelCase ( self) -> int:
'''simple docstring'''
set_requires_grad(self.unet , __a)
def UpperCAmelCase ( self , __a , __a , __a) -> Any:
'''simple docstring'''
# get the original timestep using init_timestep
_UpperCamelCase = min(int(num_inference_steps * strength) , __a)
_UpperCamelCase = max(num_inference_steps - init_timestep , 0)
_UpperCamelCase = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a=None) -> Tuple:
'''simple docstring'''
if not isinstance(__a , torch.Tensor):
raise ValueError(F'''`image` has to be of type `torch.Tensor` but is {type(__a)}''')
_UpperCamelCase = image.to(device=__a , dtype=__a)
if isinstance(__a , __a):
_UpperCamelCase = [
self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(__a)
]
_UpperCamelCase = torch.cat(__a , dim=0)
else:
_UpperCamelCase = self.vae.encode(__a).latent_dist.sample(__a)
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
_UpperCamelCase = 0.1_8215 * init_latents
_UpperCamelCase = init_latents.repeat_interleave(__a , dim=0)
_UpperCamelCase = randn_tensor(init_latents.shape , generator=__a , device=__a , dtype=__a)
# get latents
_UpperCamelCase = self.scheduler.add_noise(__a , __a , __a)
_UpperCamelCase = init_latents
return latents
def UpperCAmelCase ( self , __a) -> str:
'''simple docstring'''
_UpperCamelCase = self.coca_transform(__a).unsqueeze(0)
with torch.no_grad(), torch.cuda.amp.autocast():
_UpperCamelCase = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype))
_UpperCamelCase = self.coca_tokenizer.decode(generated[0].cpu().numpy())
return generated.split('''<end_of_text>''')[0].replace('''<start_of_text>''' , '''''').rstrip(''' .,''')
def UpperCAmelCase ( self , __a , __a) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.feature_extractor.preprocess(__a)
_UpperCamelCase = torch.from_numpy(clip_image_input['''pixel_values'''][0]).unsqueeze(0).to(self.device).half()
_UpperCamelCase = self.clip_model.get_image_features(__a)
_UpperCamelCase = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=__a)
_UpperCamelCase = image_embeddings_clip.repeat_interleave(__a , dim=0)
return image_embeddings_clip
@torch.enable_grad()
def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a , ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = latents.detach().requires_grad_()
_UpperCamelCase = self.scheduler.scale_model_input(__a , __a)
# predict the noise residual
_UpperCamelCase = self.unet(__a , __a , encoder_hidden_states=__a).sample
if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler)):
_UpperCamelCase = self.scheduler.alphas_cumprod[timestep]
_UpperCamelCase = 1 - alpha_prod_t
# compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_UpperCamelCase = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5
_UpperCamelCase = torch.sqrt(__a)
_UpperCamelCase = pred_original_sample * (fac) + latents * (1 - fac)
elif isinstance(self.scheduler , __a):
_UpperCamelCase = self.scheduler.sigmas[index]
_UpperCamelCase = latents - sigma * noise_pred
else:
raise ValueError(F'''scheduler type {type(self.scheduler)} not supported''')
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
_UpperCamelCase = 1 / 0.1_8215 * sample
_UpperCamelCase = self.vae.decode(__a).sample
_UpperCamelCase = (image / 2 + 0.5).clamp(0 , 1)
_UpperCamelCase = transforms.Resize(self.feature_extractor_size)(__a)
_UpperCamelCase = self.normalize(__a).to(latents.dtype)
_UpperCamelCase = self.clip_model.get_image_features(__a)
_UpperCamelCase = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=__a)
_UpperCamelCase = spherical_dist_loss(__a , __a).mean() * clip_guidance_scale
_UpperCamelCase = -torch.autograd.grad(__a , __a)[0]
if isinstance(self.scheduler , __a):
_UpperCamelCase = latents.detach() + grads * (sigma**2)
_UpperCamelCase = noise_pred_original
else:
_UpperCamelCase = noise_pred_original - torch.sqrt(__a) * grads
return noise_pred, latents
@torch.no_grad()
def __call__( self , __a , __a , __a = None , __a = None , __a = 5_12 , __a = 5_12 , __a = 0.6 , __a = 50 , __a = 7.5 , __a = 1 , __a = 0.0 , __a = 1_00 , __a = None , __a = "pil" , __a = True , __a = 0.8 , __a = 0.1 , __a = 0.1 , ) -> Dict:
'''simple docstring'''
if isinstance(__a , __a) and len(__a) != batch_size:
raise ValueError(F'''You have passed {batch_size} batch_size, but only {len(__a)} generators.''')
if height % 8 != 0 or width % 8 != 0:
raise ValueError(F'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''')
if isinstance(__a , torch.Generator) and batch_size > 1:
_UpperCamelCase = [generator] + [None] * (batch_size - 1)
_UpperCamelCase = [
('''model''', self.coca_model is None),
('''tokenizer''', self.coca_tokenizer is None),
('''transform''', self.coca_transform is None),
]
_UpperCamelCase = [x[0] for x in coca_is_none if x[1]]
_UpperCamelCase = ''', '''.join(__a)
# generate prompts with coca model if prompt is None
if content_prompt is None:
if len(__a):
raise ValueError(
F'''Content prompt is None and CoCa [{coca_is_none_str}] is None.'''
F'''Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''')
_UpperCamelCase = self.get_image_description(__a)
if style_prompt is None:
if len(__a):
raise ValueError(
F'''Style prompt is None and CoCa [{coca_is_none_str}] is None.'''
F''' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''')
_UpperCamelCase = self.get_image_description(__a)
# get prompt text embeddings for content and style
_UpperCamelCase = self.tokenizer(
__a , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=__a , return_tensors='''pt''' , )
_UpperCamelCase = self.text_encoder(content_text_input.input_ids.to(self.device))[0]
_UpperCamelCase = self.tokenizer(
__a , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=__a , return_tensors='''pt''' , )
_UpperCamelCase = self.text_encoder(style_text_input.input_ids.to(self.device))[0]
_UpperCamelCase = slerp(__a , __a , __a)
# duplicate text embeddings for each generation per prompt
_UpperCamelCase = text_embeddings.repeat_interleave(__a , dim=0)
# set timesteps
_UpperCamelCase = '''offset''' in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys())
_UpperCamelCase = {}
if accepts_offset:
_UpperCamelCase = 1
self.scheduler.set_timesteps(__a , **__a)
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
self.scheduler.timesteps.to(self.device)
_UpperCamelCase , _UpperCamelCase = self.get_timesteps(__a , __a , self.device)
_UpperCamelCase = timesteps[:1].repeat(__a)
# Preprocess image
_UpperCamelCase = preprocess(__a , __a , __a)
_UpperCamelCase = self.prepare_latents(
__a , __a , __a , text_embeddings.dtype , self.device , __a)
_UpperCamelCase = preprocess(__a , __a , __a)
_UpperCamelCase = self.prepare_latents(
__a , __a , __a , text_embeddings.dtype , self.device , __a)
_UpperCamelCase = slerp(__a , __a , __a)
if clip_guidance_scale > 0:
_UpperCamelCase = self.get_clip_image_embeddings(__a , __a)
_UpperCamelCase = self.get_clip_image_embeddings(__a , __a)
_UpperCamelCase = slerp(
__a , __a , __a)
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
_UpperCamelCase = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
_UpperCamelCase = content_text_input.input_ids.shape[-1]
_UpperCamelCase = self.tokenizer([''''''] , padding='''max_length''' , max_length=__a , return_tensors='''pt''')
_UpperCamelCase = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
# duplicate unconditional embeddings for each generation per prompt
_UpperCamelCase = uncond_embeddings.repeat_interleave(__a , dim=0)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
_UpperCamelCase = torch.cat([uncond_embeddings, text_embeddings])
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
_UpperCamelCase = (batch_size, self.unet.config.in_channels, height // 8, width // 8)
_UpperCamelCase = text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not work reproducibly on mps
_UpperCamelCase = torch.randn(__a , generator=__a , device='''cpu''' , dtype=__a).to(
self.device)
else:
_UpperCamelCase = torch.randn(__a , generator=__a , device=self.device , dtype=__a)
else:
if latents.shape != latents_shape:
raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''')
_UpperCamelCase = latents.to(self.device)
# scale the initial noise by the standard deviation required by the scheduler
_UpperCamelCase = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
_UpperCamelCase = '''eta''' in set(inspect.signature(self.scheduler.step).parameters.keys())
_UpperCamelCase = {}
if accepts_eta:
_UpperCamelCase = eta
# check if the scheduler accepts generator
_UpperCamelCase = '''generator''' in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
_UpperCamelCase = generator
with self.progress_bar(total=__a):
for i, t in enumerate(__a):
# expand the latents if we are doing classifier free guidance
_UpperCamelCase = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
_UpperCamelCase = self.scheduler.scale_model_input(__a , __a)
# predict the noise residual
_UpperCamelCase = self.unet(__a , __a , encoder_hidden_states=__a).sample
# perform classifier free guidance
if do_classifier_free_guidance:
_UpperCamelCase , _UpperCamelCase = noise_pred.chunk(2)
_UpperCamelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# perform clip guidance
if clip_guidance_scale > 0:
_UpperCamelCase = (
text_embeddings.chunk(2)[1] if do_classifier_free_guidance else text_embeddings
)
_UpperCamelCase , _UpperCamelCase = self.cond_fn(
__a , __a , __a , __a , __a , __a , __a , )
# compute the previous noisy sample x_t -> x_t-1
_UpperCamelCase = self.scheduler.step(__a , __a , __a , **__a).prev_sample
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
_UpperCamelCase = 1 / 0.1_8215 * latents
_UpperCamelCase = self.vae.decode(__a).sample
_UpperCamelCase = (image / 2 + 0.5).clamp(0 , 1)
_UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1).numpy()
if output_type == "pil":
_UpperCamelCase = self.numpy_to_pil(__a)
if not return_dict:
return (image, None)
return StableDiffusionPipelineOutput(images=__a , nsfw_content_detected=__a)
| 194
| 1
|
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
UNetaDConditionModel,
VideoToVideoSDPipeline,
)
from diffusers.utils import floats_tensor, is_xformers_available, skip_mps
from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
@skip_mps
class A ( _UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase = VideoToVideoSDPipeline
lowerCamelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({'video'} ) - {'image', 'width', 'height'}
lowerCamelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'video'} ) - {'image'}
lowerCamelCase = PipelineTesterMixin.required_optional_params - {'latents'}
lowerCamelCase = False
# No `output_type`.
lowerCamelCase = frozenset(
[
'num_inference_steps',
'generator',
'latents',
'return_dict',
'callback',
'callback_steps',
] )
def snake_case__ ( self : Tuple )-> Optional[int]:
'''simple docstring'''
torch.manual_seed(0 )
A__ = UNetaDConditionModel(
block_out_channels=(3_2, 6_4, 6_4, 6_4),layers_per_block=2,sample_size=3_2,in_channels=4,out_channels=4,down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D'),up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D'),cross_attention_dim=3_2,attention_head_dim=4,)
A__ = DDIMScheduler(
beta_start=0.00_085,beta_end=0.012,beta_schedule='scaled_linear',clip_sample=lowercase_,set_alpha_to_one=lowercase_,)
torch.manual_seed(0 )
A__ = AutoencoderKL(
block_out_channels=[3_2, 6_4],in_channels=3,out_channels=3,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'],up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'],latent_channels=4,sample_size=1_2_8,)
torch.manual_seed(0 )
A__ = CLIPTextConfig(
bos_token_id=0,eos_token_id=2,hidden_size=3_2,intermediate_size=3_7,layer_norm_eps=1E-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=1_0_0_0,hidden_act='gelu',projection_dim=5_1_2,)
A__ = CLIPTextModel(lowercase_ )
A__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
A__ = {
'unet': unet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
}
return components
def snake_case__ ( self : Optional[Any],lowercase_ : Optional[int],lowercase_ : List[Any]=0 )-> Any:
'''simple docstring'''
A__ = floats_tensor((1, 3, 3, 3_2, 3_2),rng=random.Random(lowercase_ ) ).to(lowercase_ )
if str(lowercase_ ).startswith('mps' ):
A__ = torch.manual_seed(lowercase_ )
else:
A__ = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ )
A__ = {
'prompt': 'A painting of a squirrel eating a burger',
'video': video,
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 6.0,
'output_type': 'pt',
}
return inputs
def snake_case__ ( self : List[Any] )-> List[Any]:
'''simple docstring'''
A__ = 'cpu' # ensure determinism for the device-dependent torch.Generator
A__ = self.get_dummy_components()
A__ = VideoToVideoSDPipeline(**lowercase_ )
A__ = sd_pipe.to(lowercase_ )
sd_pipe.set_progress_bar_config(disable=lowercase_ )
A__ = self.get_dummy_inputs(lowercase_ )
A__ = 'np'
A__ = sd_pipe(**lowercase_ ).frames
A__ = frames[0][-3:, -3:, -1]
assert frames[0].shape == (3_2, 3_2, 3)
A__ = np.array([1_0_6, 1_1_7, 1_1_3, 1_7_4, 1_3_7, 1_1_2, 1_4_8, 1_5_1, 1_3_1] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
@unittest.skipIf(
torch_device != 'cuda' or not is_xformers_available(),reason='XFormers attention is only available with CUDA and `xformers` installed',)
def snake_case__ ( self : Optional[Any] )-> int:
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowercase_,expected_max_diff=5E-3 )
@unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' )
def snake_case__ ( self : Any )-> Optional[int]:
'''simple docstring'''
pass
@unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' )
def snake_case__ ( self : int )-> int:
'''simple docstring'''
pass
@unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.' )
def snake_case__ ( self : List[Any] )-> List[str]:
'''simple docstring'''
pass
def snake_case__ ( self : Optional[int] )-> Optional[Any]:
'''simple docstring'''
return super().test_progress_bar()
@slow
@skip_mps
class A ( unittest.TestCase ):
"""simple docstring"""
def snake_case__ ( self : List[str] )-> Dict:
'''simple docstring'''
A__ = VideoToVideoSDPipeline.from_pretrained('cerspense/zeroscope_v2_XL',torch_dtype=torch.floataa )
pipe.enable_model_cpu_offload()
# 10 frames
A__ = torch.Generator(device='cpu' ).manual_seed(0 )
A__ = torch.randn((1, 1_0, 3, 1_0_2_4, 5_7_6),generator=lowercase_ )
A__ = video.to('cuda' )
A__ = 'Spiderman is surfing'
A__ = pipe(lowercase_,video=lowercase_,generator=lowercase_,num_inference_steps=3,output_type='pt' ).frames
A__ = np.array([-1.0_458_984, -1.1_279_297, -0.9_663_086, -0.91_503_906, -0.75_097_656] )
assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1E-2
| 282
|
from __future__ import annotations
from scipy.special import comb # type: ignore
class A :
"""simple docstring"""
def __init__( self : Any,lowercase_ : list[tuple[float, float]] )-> Optional[int]:
'''simple docstring'''
A__ = list_of_points
# Degree determines the flexibility of the curve.
# Degree = 1 will produce a straight line.
A__ = len(lowercase_ ) - 1
def snake_case__ ( self : List[Any],lowercase_ : float )-> list[float]:
'''simple docstring'''
assert 0 <= t <= 1, "Time t must be between 0 and 1."
A__ = []
for i in range(len(self.list_of_points ) ):
# basis function for each i
output_values.append(
comb(self.degree,lowercase_ ) * ((1 - t) ** (self.degree - i)) * (t**i) )
# the basis must sum up to 1 for it to produce a valid Bezier curve.
assert round(sum(lowercase_ ),5 ) == 1
return output_values
def snake_case__ ( self : str,lowercase_ : float )-> tuple[float, float]:
'''simple docstring'''
assert 0 <= t <= 1, "Time t must be between 0 and 1."
A__ = self.basis_function(lowercase_ )
A__ = 0.0
A__ = 0.0
for i in range(len(self.list_of_points ) ):
# For all points, sum up the product of i-th basis function and i-th point.
x += basis_function[i] * self.list_of_points[i][0]
y += basis_function[i] * self.list_of_points[i][1]
return (x, y)
def snake_case__ ( self : str,lowercase_ : float = 0.01 )-> str:
'''simple docstring'''
from matplotlib import pyplot as plt # type: ignore
A__ = [] # x coordinates of points to plot
A__ = [] # y coordinates of points to plot
A__ = 0.0
while t <= 1:
A__ = self.bezier_curve_function(lowercase_ )
to_plot_x.append(value[0] )
to_plot_y.append(value[1] )
t += step_size
A__ = [i[0] for i in self.list_of_points]
A__ = [i[1] for i in self.list_of_points]
plt.plot(
lowercase_,lowercase_,color='blue',label='Curve of Degree ' + str(self.degree ),)
plt.scatter(lowercase_,lowercase_,color='red',label='Control Points' )
plt.legend()
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod()
BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1
BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2
BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
| 282
| 1
|
"""simple docstring"""
import sys
from typing import Tuple
import numpy as np
import torch
from PIL import Image
from torch import nn
from transformers.image_utils import PILImageResampling
from utils import img_tensorize
class snake_case_:
def __init__( self : Optional[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[int]=sys.maxsize ):
lowerCAmelCase : Optional[Any] = "bilinear"
lowerCAmelCase : Dict = max_size
lowerCAmelCase : List[Any] = short_edge_length
def __call__( self : Any , UpperCamelCase_ : int ):
lowerCAmelCase : Any = []
for img in imgs:
lowerCAmelCase : int = img.shape[:2]
# later: provide list and randomly choose index for resize
lowerCAmelCase : Tuple = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 )
if size == 0:
return img
lowerCAmelCase : List[Any] = size * 1.0 / min(UpperCamelCase__ , UpperCamelCase__ )
if h < w:
lowerCAmelCase : Tuple = size, scale * w
else:
lowerCAmelCase : str = scale * h, size
if max(UpperCamelCase__ , UpperCamelCase__ ) > self.max_size:
lowerCAmelCase : Union[str, Any] = self.max_size * 1.0 / max(UpperCamelCase__ , UpperCamelCase__ )
lowerCAmelCase : Optional[int] = newh * scale
lowerCAmelCase : str = neww * scale
lowerCAmelCase : Union[str, Any] = int(neww + 0.5 )
lowerCAmelCase : int = int(newh + 0.5 )
if img.dtype == np.uinta:
lowerCAmelCase : List[Any] = Image.fromarray(UpperCamelCase__ )
lowerCAmelCase : str = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR )
lowerCAmelCase : List[Any] = np.asarray(UpperCamelCase__ )
else:
lowerCAmelCase : int = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw
lowerCAmelCase : Tuple = nn.functional.interpolate(
UpperCamelCase__ , (newh, neww) , mode=self.interp_method , align_corners=UpperCamelCase__ ).squeeze(0 )
img_augs.append(UpperCamelCase__ )
return img_augs
class snake_case_:
def __init__( self : int , UpperCamelCase_ : List[str] ):
lowerCAmelCase : Tuple = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST )
lowerCAmelCase : Optional[int] = cfg.INPUT.FORMAT
lowerCAmelCase : Union[str, Any] = cfg.SIZE_DIVISIBILITY
lowerCAmelCase : Dict = cfg.PAD_VALUE
lowerCAmelCase : List[str] = cfg.INPUT.MAX_SIZE_TEST
lowerCAmelCase : List[Any] = cfg.MODEL.DEVICE
lowerCAmelCase : Any = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 )
lowerCAmelCase : Dict = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 )
lowerCAmelCase : Union[str, Any] = lambda UpperCamelCase_ : (x - self.pixel_mean) / self.pixel_std
def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Optional[Any] ):
lowerCAmelCase : str = tuple(max(UpperCamelCase__ ) for s in zip(*[img.shape for img in images] ) )
lowerCAmelCase : Optional[Any] = [im.shape[-2:] for im in images]
lowerCAmelCase : Optional[Any] = [
nn.functional.pad(
UpperCamelCase__ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , )
for size, im in zip(UpperCamelCase__ , UpperCamelCase__ )
]
return torch.stack(UpperCamelCase__ ), torch.tensor(UpperCamelCase__ )
def __call__( self : Any , UpperCamelCase_ : Dict , UpperCamelCase_ : int=False ):
with torch.no_grad():
if not isinstance(UpperCamelCase__ , UpperCamelCase__ ):
lowerCAmelCase : List[Any] = [images]
if single_image:
assert len(UpperCamelCase__ ) == 1
for i in range(len(UpperCamelCase__ ) ):
if isinstance(images[i] , torch.Tensor ):
images.insert(UpperCamelCase__ , images.pop(UpperCamelCase__ ).to(self.device ).float() )
elif not isinstance(images[i] , torch.Tensor ):
images.insert(
UpperCamelCase__ , torch.as_tensor(img_tensorize(images.pop(UpperCamelCase__ ) , input_format=self.input_format ) )
.to(self.device )
.float() , )
# resize smallest edge
lowerCAmelCase : Tuple = torch.tensor([im.shape[:2] for im in images] )
lowerCAmelCase : Optional[int] = self.aug(UpperCamelCase__ )
# transpose images and convert to torch tensors
# images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images]
# now normalize before pad to avoid useless arithmetic
lowerCAmelCase : Optional[Any] = [self.normalizer(UpperCamelCase__ ) for x in images]
# now pad them to do the following operations
lowerCAmelCase : List[str] = self.pad(UpperCamelCase__ )
# Normalize
if self.size_divisibility > 0:
raise NotImplementedError()
# pad
lowerCAmelCase : str = torch.true_divide(UpperCamelCase__ , UpperCamelCase__ )
if single_image:
return images[0], sizes[0], scales_yx[0]
else:
return images, sizes, scales_yx
def _snake_case ( _snake_case : Optional[int] , _snake_case : Union[str, Any] ):
boxes[:, 0::2] *= scale_yx[:, 1]
boxes[:, 1::2] *= scale_yx[:, 0]
return boxes
def _snake_case ( _snake_case : Dict , _snake_case : Tuple ):
assert torch.isfinite(__SCREAMING_SNAKE_CASE ).all(), "Box tensor contains infinite or NaN!"
lowerCAmelCase : str = box_size
tensor[:, 0].clamp_(min=0 , max=__SCREAMING_SNAKE_CASE )
tensor[:, 1].clamp_(min=0 , max=__SCREAMING_SNAKE_CASE )
tensor[:, 2].clamp_(min=0 , max=__SCREAMING_SNAKE_CASE )
tensor[:, 3].clamp_(min=0 , max=__SCREAMING_SNAKE_CASE )
| 60
|
"""simple docstring"""
import unittest
from datasets import load_dataset
from transformers import BloomTokenizerFast
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class snake_case ( __snake_case, unittest.TestCase ):
SCREAMING_SNAKE_CASE_ : List[str] = None
SCREAMING_SNAKE_CASE_ : Tuple = BloomTokenizerFast
SCREAMING_SNAKE_CASE_ : str = BloomTokenizerFast
SCREAMING_SNAKE_CASE_ : int = True
SCREAMING_SNAKE_CASE_ : Tuple = False
SCREAMING_SNAKE_CASE_ : int = """tokenizer_file"""
SCREAMING_SNAKE_CASE_ : List[str] = {"""bos_token""": """<s>""", """eos_token""": """</s>""", """unk_token""": """<unk>""", """pad_token""": """<pad>"""}
def lowercase_ ( self : List[Any])-> Dict:
'''simple docstring'''
super().setUp()
__lowerCAmelCase: Optional[Any] = BloomTokenizerFast.from_pretrained("bigscience/tokenizer")
tokenizer.save_pretrained(self.tmpdirname)
def lowercase_ ( self : List[Any] , **UpperCamelCase__ : Union[str, Any])-> Optional[Any]:
'''simple docstring'''
kwargs.update(self.special_tokens_map)
return BloomTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase__)
def lowercase_ ( self : Union[str, Any])-> Union[str, Any]:
'''simple docstring'''
__lowerCAmelCase: str = self.get_rust_tokenizer()
__lowerCAmelCase: int = ["The quick brown fox</s>", "jumps over the lazy dog</s>"]
__lowerCAmelCase: List[str] = [[2_1_7_5, 2_3_7_1_4, 7_3_1_7_3, 1_4_4_2_5_2, 2], [7_7, 1_3_2_6_1_9, 3_4_7_8, 3_6_8, 1_0_9_5_8_6, 3_5_4_3_3, 2]]
__lowerCAmelCase: List[str] = tokenizer.batch_encode_plus(UpperCamelCase__)["input_ids"]
self.assertListEqual(UpperCamelCase__ , UpperCamelCase__)
__lowerCAmelCase: List[Any] = tokenizer.batch_decode(UpperCamelCase__)
self.assertListEqual(UpperCamelCase__ , UpperCamelCase__)
def lowercase_ ( self : Optional[Any] , UpperCamelCase__ : Tuple=6)-> Tuple:
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
__lowerCAmelCase: Optional[Any] = self.rust_tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__)
# tokenizer_r.pad_token = None # Hotfixing padding = None
# Simple input
__lowerCAmelCase: Dict = "This is a simple input"
__lowerCAmelCase: str = ["This is a simple input 1", "This is a simple input 2"]
__lowerCAmelCase: int = ("This is a simple input", "This is a pair")
__lowerCAmelCase: Union[str, Any] = [
("This is a simple input 1", "This is a simple input 2"),
("This is a simple pair 1", "This is a simple pair 2"),
]
# Simple input tests
try:
tokenizer_r.encode(UpperCamelCase__ , max_length=UpperCamelCase__)
tokenizer_r.encode_plus(UpperCamelCase__ , max_length=UpperCamelCase__)
tokenizer_r.batch_encode_plus(UpperCamelCase__ , max_length=UpperCamelCase__)
tokenizer_r.encode(UpperCamelCase__ , max_length=UpperCamelCase__)
tokenizer_r.batch_encode_plus(UpperCamelCase__ , max_length=UpperCamelCase__)
except ValueError:
self.fail("Bloom Tokenizer should be able to deal with padding")
__lowerCAmelCase: Tuple = None # Hotfixing padding = None
self.assertRaises(UpperCamelCase__ , tokenizer_r.encode , UpperCamelCase__ , max_length=UpperCamelCase__ , padding="max_length")
# Simple input
self.assertRaises(UpperCamelCase__ , tokenizer_r.encode_plus , UpperCamelCase__ , max_length=UpperCamelCase__ , padding="max_length")
# Simple input
self.assertRaises(
UpperCamelCase__ , tokenizer_r.batch_encode_plus , UpperCamelCase__ , max_length=UpperCamelCase__ , padding="max_length" , )
# Pair input
self.assertRaises(UpperCamelCase__ , tokenizer_r.encode , UpperCamelCase__ , max_length=UpperCamelCase__ , padding="max_length")
# Pair input
self.assertRaises(UpperCamelCase__ , tokenizer_r.encode_plus , UpperCamelCase__ , max_length=UpperCamelCase__ , padding="max_length")
# Pair input
self.assertRaises(
UpperCamelCase__ , tokenizer_r.batch_encode_plus , UpperCamelCase__ , max_length=UpperCamelCase__ , padding="max_length" , )
def lowercase_ ( self : Optional[Any])-> List[str]:
'''simple docstring'''
__lowerCAmelCase: Dict = self.get_rust_tokenizer()
__lowerCAmelCase: List[str] = load_dataset("xnli" , "all_languages" , split="test" , streaming=UpperCamelCase__)
__lowerCAmelCase: Union[str, Any] = next(iter(UpperCamelCase__))["premise"] # pick up one data
__lowerCAmelCase: Any = list(sample_data.values())
__lowerCAmelCase: int = list(map(tokenizer.encode , UpperCamelCase__))
__lowerCAmelCase: str = [tokenizer.decode(UpperCamelCase__ , clean_up_tokenization_spaces=UpperCamelCase__) for x in output_tokens]
self.assertListEqual(UpperCamelCase__ , UpperCamelCase__)
def lowercase_ ( self : Optional[int])-> str:
'''simple docstring'''
self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map) , 1)
self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values())[0]) , 1)
| 217
| 0
|
"""simple docstring"""
def _UpperCAmelCase ( __lowerCamelCase : Tuple , __lowerCamelCase : List[str] ) -> Optional[Any]:
_snake_case = 0
while b > 0:
if b & 1:
res += a
a += a
b >>= 1
return res
def _UpperCAmelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : List[Any] ) -> Optional[int]:
_snake_case = 0
while b > 0:
if b & 1:
_snake_case = ((res % c) + (a % c)) % c
a += a
b >>= 1
return res
| 40
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
UpperCAmelCase__ = {'processing_layoutxlm': ['LayoutXLMProcessor']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = ['LayoutXLMTokenizer']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = ['LayoutXLMTokenizerFast']
if TYPE_CHECKING:
from .processing_layoutxlm import LayoutXLMProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutxlm import LayoutXLMTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast
else:
import sys
UpperCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 40
| 1
|
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__lowercase : List[str] = logging.get_logger(__name__)
__lowercase : Any = {
'''google/pegasus-large''': '''https://huggingface.co/google/pegasus-large/resolve/main/config.json''',
# See all PEGASUS models at https://huggingface.co/models?filter=pegasus
}
class __lowercase ( _lowercase ):
lowerCamelCase : List[Any] = "pegasus"
lowerCamelCase : Union[str, Any] = ["past_key_values"]
lowerCamelCase : Union[str, Any] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__(self , A=5_0_2_6_5 , A=1_0_2_4 , A=1_2 , A=4_0_9_6 , A=1_6 , A=1_2 , A=4_0_9_6 , A=1_6 , A=0.0 , A=0.0 , A=True , A=True , A="gelu" , A=1_0_2_4 , A=0.1 , A=0.0 , A=0.0 , A=0.02 , A=0 , A=False , A=0 , A=1 , A=1 , **A , ):
lowerCamelCase_ : Tuple = vocab_size
lowerCamelCase_ : Union[str, Any] = max_position_embeddings
lowerCamelCase_ : Union[str, Any] = d_model
lowerCamelCase_ : Any = encoder_ffn_dim
lowerCamelCase_ : int = encoder_layers
lowerCamelCase_ : Optional[int] = encoder_attention_heads
lowerCamelCase_ : Union[str, Any] = decoder_ffn_dim
lowerCamelCase_ : Optional[int] = decoder_layers
lowerCamelCase_ : Dict = decoder_attention_heads
lowerCamelCase_ : Optional[Any] = dropout
lowerCamelCase_ : Any = attention_dropout
lowerCamelCase_ : Dict = activation_dropout
lowerCamelCase_ : Optional[int] = activation_function
lowerCamelCase_ : Any = init_std
lowerCamelCase_ : Dict = encoder_layerdrop
lowerCamelCase_ : Union[str, Any] = decoder_layerdrop
lowerCamelCase_ : int = use_cache
lowerCamelCase_ : Dict = encoder_layers
lowerCamelCase_ : int = scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
pad_token_id=A , eos_token_id=A , is_encoder_decoder=A , decoder_start_token_id=A , forced_eos_token_id=A , **A , )
@property
def UpperCAmelCase__ (self ):
return self.encoder_attention_heads
@property
def UpperCAmelCase__ (self ):
return self.d_model
| 318
|
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__lowercase : str = logging.get_logger(__name__)
__lowercase : Tuple = {'''ctrl''': '''https://huggingface.co/ctrl/resolve/main/config.json'''}
class __lowercase ( _lowercase ):
lowerCamelCase : int = "ctrl"
lowerCamelCase : Optional[int] = ["past_key_values"]
lowerCamelCase : Optional[int] = {
"max_position_embeddings": "n_positions",
"hidden_size": "n_embd",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__(self , A=2_4_6_5_3_4 , A=2_5_6 , A=1_2_8_0 , A=8_1_9_2 , A=4_8 , A=1_6 , A=0.1 , A=0.1 , A=1E-6 , A=0.02 , A=True , **A , ):
lowerCamelCase_ : List[str] = vocab_size
lowerCamelCase_ : Optional[Any] = n_positions
lowerCamelCase_ : List[Any] = n_embd
lowerCamelCase_ : Optional[Any] = n_layer
lowerCamelCase_ : Any = n_head
lowerCamelCase_ : int = dff
lowerCamelCase_ : str = resid_pdrop
lowerCamelCase_ : List[Any] = embd_pdrop
lowerCamelCase_ : List[Any] = layer_norm_epsilon
lowerCamelCase_ : Any = initializer_range
lowerCamelCase_ : Dict = use_cache
super().__init__(**A )
| 318
| 1
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
__SCREAMING_SNAKE_CASE ={"configuration_unispeech": ["UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP", "UniSpeechConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE =[
"UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST",
"UniSpeechForCTC",
"UniSpeechForPreTraining",
"UniSpeechForSequenceClassification",
"UniSpeechModel",
"UniSpeechPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_unispeech import (
UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST,
UniSpeechForCTC,
UniSpeechForPreTraining,
UniSpeechForSequenceClassification,
UniSpeechModel,
UniSpeechPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 370
|
"""simple docstring"""
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels
from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features
from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor
from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
| 321
| 0
|
from collections import Counter
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
UpperCAmelCase_ : Optional[int] = datasets.load_iris()
UpperCAmelCase_ : int = np.array(data['data'])
UpperCAmelCase_ : Optional[int] = np.array(data['target'])
UpperCAmelCase_ : Tuple = data['target_names']
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = train_test_split(X, y)
def SCREAMING_SNAKE_CASE_ ( __A : Optional[int] , __A : str ) -> str:
"""simple docstring"""
return np.linalg.norm(np.array(__A ) - np.array(__A ) )
def SCREAMING_SNAKE_CASE_ ( __A : Optional[Any] , __A : Optional[Any] , __A : Union[str, Any] , __A : Tuple , __A : Any=5 ) -> str:
"""simple docstring"""
a_ : str = zip(__A , __A )
# List of distances of all points from the point to be classified
a_ : Tuple = []
for data_point in data:
a_ : int = euclidean_distance(data_point[0] , __A )
distances.append((distance, data_point[1]) )
# Choosing 'k' points with the least distances.
a_ : Tuple = [i[1] for i in sorted(__A )[:k]]
# Most commonly occurring class among them
# is the class into which the point is classified
a_ : Tuple = Counter(__A ).most_common(1 )[0][0]
return classes[result]
if __name__ == "__main__":
print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
| 32
|
'''simple docstring'''
import unittest
from pathlib import Path
from tempfile import NamedTemporaryFile, TemporaryDirectory
from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline
from transformers.convert_graph_to_onnx import (
convert,
ensure_valid_input,
generate_identified_filename,
infer_shapes,
quantize,
)
from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow
class lowerCAmelCase_:
'''simple docstring'''
def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Optional[Any]:
return None
class lowerCAmelCase_:
'''simple docstring'''
def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Tuple:
return None
class lowerCAmelCase_( unittest.TestCase ):
'''simple docstring'''
__lowercase : Dict = [
# (model_name, model_kwargs)
('''bert-base-cased''', {}),
('''gpt2''', {'''use_cache''': False}), # We don't support exporting GPT2 past keys anymore
]
@require_tf
@slow
def UpperCAmelCase_ ( self ) -> int:
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
self._test_export(__UpperCAmelCase ,"""tf""" ,12 ,**__UpperCAmelCase )
@require_torch
@slow
def UpperCAmelCase_ ( self ) -> Union[str, Any]:
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
self._test_export(__UpperCAmelCase ,"""pt""" ,12 ,**__UpperCAmelCase )
@require_torch
@slow
def UpperCAmelCase_ ( self ) -> Any:
from transformers import BertModel
lowerCAmelCase__ : Optional[int] = ["""[UNK]""", """[SEP]""", """[CLS]""", """[PAD]""", """[MASK]""", """some""", """other""", """words"""]
with NamedTemporaryFile(mode="""w+t""" ) as vocab_file:
vocab_file.write("""\n""".join(__UpperCAmelCase ) )
vocab_file.flush()
lowerCAmelCase__ : Dict = BertTokenizerFast(vocab_file.name )
with TemporaryDirectory() as bert_save_dir:
lowerCAmelCase__ : Tuple = BertModel(BertConfig(vocab_size=len(__UpperCAmelCase ) ) )
model.save_pretrained(__UpperCAmelCase )
self._test_export(__UpperCAmelCase ,"""pt""" ,12 ,__UpperCAmelCase )
@require_tf
@slow
def UpperCAmelCase_ ( self ) -> List[str]:
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
lowerCAmelCase__ : Dict = self._test_export(__UpperCAmelCase ,"""tf""" ,12 ,**__UpperCAmelCase )
lowerCAmelCase__ : List[str] = quantize(Path(__UpperCAmelCase ) )
# Ensure the actual quantized model is not bigger than the original one
if quantized_path.stat().st_size >= Path(__UpperCAmelCase ).stat().st_size:
self.fail("""Quantized model is bigger than initial ONNX model""" )
@require_torch
@slow
def UpperCAmelCase_ ( self ) -> List[Any]:
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
lowerCAmelCase__ : Any = self._test_export(__UpperCAmelCase ,"""pt""" ,12 ,**__UpperCAmelCase )
lowerCAmelCase__ : Dict = quantize(__UpperCAmelCase )
# Ensure the actual quantized model is not bigger than the original one
if quantized_path.stat().st_size >= Path(__UpperCAmelCase ).stat().st_size:
self.fail("""Quantized model is bigger than initial ONNX model""" )
def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase=None ,**__UpperCAmelCase ) -> Optional[Any]:
try:
# Compute path
with TemporaryDirectory() as tempdir:
lowerCAmelCase__ : Optional[int] = Path(__UpperCAmelCase ).joinpath("""model.onnx""" )
# Remove folder if exists
if path.parent.exists():
path.parent.rmdir()
# Export
convert(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,**__UpperCAmelCase )
return path
except Exception as e:
self.fail(__UpperCAmelCase )
@require_torch
@require_tokenizers
@slow
def UpperCAmelCase_ ( self ) -> Union[str, Any]:
from transformers import BertModel
lowerCAmelCase__ : List[Any] = BertModel(BertConfig.from_pretrained("""lysandre/tiny-bert-random""" ) )
lowerCAmelCase__ : Union[str, Any] = BertTokenizerFast.from_pretrained("""lysandre/tiny-bert-random""" )
self._test_infer_dynamic_axis(__UpperCAmelCase ,__UpperCAmelCase ,"""pt""" )
@require_tf
@require_tokenizers
@slow
def UpperCAmelCase_ ( self ) -> Optional[int]:
from transformers import TFBertModel
lowerCAmelCase__ : int = TFBertModel(BertConfig.from_pretrained("""lysandre/tiny-bert-random""" ) )
lowerCAmelCase__ : Optional[int] = BertTokenizerFast.from_pretrained("""lysandre/tiny-bert-random""" )
self._test_infer_dynamic_axis(__UpperCAmelCase ,__UpperCAmelCase ,"""tf""" )
def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Tuple:
lowerCAmelCase__ : Any = FeatureExtractionPipeline(__UpperCAmelCase ,__UpperCAmelCase )
lowerCAmelCase__ : List[str] = ["""input_ids""", """token_type_ids""", """attention_mask""", """output_0""", """output_1"""]
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = infer_shapes(__UpperCAmelCase ,__UpperCAmelCase )
# Assert all variables are present
self.assertEqual(len(__UpperCAmelCase ) ,len(__UpperCAmelCase ) )
self.assertTrue(all(var_name in shapes for var_name in variable_names ) )
self.assertSequenceEqual(variable_names[:3] ,__UpperCAmelCase )
self.assertSequenceEqual(variable_names[3:] ,__UpperCAmelCase )
# Assert inputs are {0: batch, 1: sequence}
for var_name in ["input_ids", "token_type_ids", "attention_mask"]:
self.assertDictEqual(shapes[var_name] ,{0: """batch""", 1: """sequence"""} )
# Assert outputs are {0: batch, 1: sequence} and {0: batch}
self.assertDictEqual(shapes["""output_0"""] ,{0: """batch""", 1: """sequence"""} )
self.assertDictEqual(shapes["""output_1"""] ,{0: """batch"""} )
def UpperCAmelCase_ ( self ) -> Optional[int]:
lowerCAmelCase__ : List[str] = ["""input_ids""", """attention_mask""", """token_type_ids"""]
lowerCAmelCase__ : Union[str, Any] = {"""input_ids""": [1, 2, 3, 4], """attention_mask""": [0, 0, 0, 0], """token_type_ids""": [1, 1, 1, 1]}
lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = ensure_valid_input(FuncContiguousArgs() ,__UpperCAmelCase ,__UpperCAmelCase )
# Should have exactly the same number of args (all are valid)
self.assertEqual(len(__UpperCAmelCase ) ,3 )
# Should have exactly the same input names
self.assertEqual(set(__UpperCAmelCase ) ,set(__UpperCAmelCase ) )
# Parameter should be reordered according to their respective place in the function:
# (input_ids, token_type_ids, attention_mask)
self.assertEqual(__UpperCAmelCase ,(tokens["""input_ids"""], tokens["""token_type_ids"""], tokens["""attention_mask"""]) )
# Generated args are interleaved with another args (for instance parameter "past" in GPT2)
lowerCAmelCase__ , lowerCAmelCase__ : int = ensure_valid_input(FuncNonContiguousArgs() ,__UpperCAmelCase ,__UpperCAmelCase )
# Should have exactly the one arg (all before the one not provided "some_other_args")
self.assertEqual(len(__UpperCAmelCase ) ,1 )
self.assertEqual(len(__UpperCAmelCase ) ,1 )
# Should have only "input_ids"
self.assertEqual(inputs_args[0] ,tokens["""input_ids"""] )
self.assertEqual(ordered_input_names[0] ,"""input_ids""" )
def UpperCAmelCase_ ( self ) -> Tuple:
lowerCAmelCase__ : Dict = generate_identified_filename(Path("""/home/something/my_fake_model.onnx""" ) ,"""-test""" )
self.assertEqual("""/home/something/my_fake_model-test.onnx""" ,generated.as_posix() )
| 37
| 0
|
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Audio, Features, Value
from .base import TaskTemplate
@dataclass(frozen=__lowerCAmelCase )
class lowerCamelCase_ ( __lowerCAmelCase ):
SCREAMING_SNAKE_CASE_ = field(default='automatic-speech-recognition' , metadata={'include_in_asdict_even_if_is_default': True} )
SCREAMING_SNAKE_CASE_ = Features({'audio': Audio()} )
SCREAMING_SNAKE_CASE_ = Features({'transcription': Value('string' )} )
SCREAMING_SNAKE_CASE_ = "audio"
SCREAMING_SNAKE_CASE_ = "transcription"
def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : Dict ):
'''simple docstring'''
if self.audio_column not in features:
raise ValueError(F"""Column {self.audio_column} is not present in features.""" )
if not isinstance(features[self.audio_column] ,lowerCamelCase__ ):
raise ValueError(F"""Column {self.audio_column} is not an Audio type.""" )
a = copy.deepcopy(self )
a = self.input_schema.copy()
a = features[self.audio_column]
a = input_schema
return task_template
@property
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ):
'''simple docstring'''
return {self.audio_column: "audio", self.transcription_column: "transcription"}
| 357
|
import os
import time
import pytest
from datasets.utils.filelock import FileLock, Timeout
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Tuple:
"""simple docstring"""
a = FileLock(str(tmpdir / '''foo.lock''' ) )
a = FileLock(str(tmpdir / '''foo.lock''' ) )
a = 0.01
with locka.acquire():
with pytest.raises(snake_case_ ):
a = time.time()
locka.acquire(snake_case_ )
assert time.time() - _start > timeout
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Optional[int]:
"""simple docstring"""
a = '''a''' * 1_0_0_0 + '''.lock'''
a = FileLock(str(tmpdir / filename ) )
assert locka._lock_file.endswith('''.lock''' )
assert not locka._lock_file.endswith(snake_case_ )
assert len(os.path.basename(locka._lock_file ) ) <= 2_5_5
a = FileLock(tmpdir / filename )
with locka.acquire():
with pytest.raises(snake_case_ ):
locka.acquire(0 )
| 330
| 0
|
"""simple docstring"""
import pytest
from datasets.parallel import ParallelBackendConfig, parallel_backend
from datasets.utils.py_utils import map_nested
from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows
def lowerCAmelCase_ ( snake_case_ : Dict ) ->Tuple: # picklable for multiprocessing
return i + 1
@require_dill_gt_0_3_2
@require_joblibspark
@require_not_windows
def lowerCAmelCase_ ( ) ->Any:
with parallel_backend('spark' ):
assert ParallelBackendConfig.backend_name == "spark"
lowerCamelCase__ : Tuple =[1, 2, 3]
with pytest.raises(snake_case_ ):
with parallel_backend('unsupported backend' ):
map_nested(snake_case_ , snake_case_ , num_proc=2 )
with pytest.raises(snake_case_ ):
with parallel_backend('unsupported backend' ):
map_nested(snake_case_ , snake_case_ , num_proc=-1 )
@require_dill_gt_0_3_2
@require_joblibspark
@require_not_windows
@pytest.mark.parametrize('num_proc' , [2, -1] )
def lowerCAmelCase_ ( snake_case_ : Union[str, Any] ) ->Any:
lowerCamelCase__ : Union[str, Any] =[1, 2]
lowerCamelCase__ : str ={'a': 1, 'b': 2}
lowerCamelCase__ : Union[str, Any] ={'a': [1, 2], 'b': [3, 4]}
lowerCamelCase__ : Optional[int] ={'a': {'1': 1}, 'b': 2}
lowerCamelCase__ : List[Any] ={'a': 1, 'b': 2, 'c': 3, 'd': 4}
lowerCamelCase__ : str =[2, 3]
lowerCamelCase__ : Optional[Any] ={'a': 2, 'b': 3}
lowerCamelCase__ : int ={'a': [2, 3], 'b': [4, 5]}
lowerCamelCase__ : Any ={'a': {'1': 2}, 'b': 3}
lowerCamelCase__ : Any ={'a': 2, 'b': 3, 'c': 4, 'd': 5}
with parallel_backend('spark' ):
assert map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) == expected_map_nested_sa
assert map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) == expected_map_nested_sa
assert map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) == expected_map_nested_sa
assert map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) == expected_map_nested_sa
assert map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) == expected_map_nested_sa
| 126
|
"""simple docstring"""
from math import ceil
from typing import List, Optional, Union
import numpy as np
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor
from ...utils import TensorType, logging
lowerCAmelCase = logging.get_logger(__name__)
class A_ ( A__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ = ["""audio_values""", """audio_mask"""]
def __init__( self :List[str] , lowerCamelCase_ :List[str]=2_048 , lowerCamelCase_ :Dict=1 , lowerCamelCase_ :int=[16, 16] , lowerCamelCase_ :str=128 , lowerCamelCase_ :Union[str, Any]=44_100 , lowerCamelCase_ :Optional[Any]=86 , lowerCamelCase_ :Dict=2_048 , lowerCamelCase_ :Union[str, Any]=0.0 , **lowerCamelCase_ :Tuple , ):
"""simple docstring"""
super().__init__(
feature_size=lowerCamelCase_ , sampling_rate=lowerCamelCase_ , padding_value=lowerCamelCase_ , **lowerCamelCase_ , )
lowerCamelCase__ : List[str] =spectrogram_length
lowerCamelCase__ : Dict =num_channels
lowerCamelCase__ : List[Any] =patch_size
lowerCamelCase__ : Union[str, Any] =feature_size // self.patch_size[1]
lowerCamelCase__ : int =n_fft
lowerCamelCase__ : List[str] =sampling_rate // hop_length_to_sampling_rate
lowerCamelCase__ : str =sampling_rate
lowerCamelCase__ : int =padding_value
lowerCamelCase__ : Dict =mel_filter_bank(
num_frequency_bins=1 + n_fft // 2 , num_mel_filters=lowerCamelCase_ , min_frequency=0.0 , max_frequency=2_20_50.0 , sampling_rate=lowerCamelCase_ , norm='slaney' , mel_scale='slaney' , ).T
def UpperCAmelCase__ ( self :Dict , lowerCamelCase_ :np.array ):
"""simple docstring"""
lowerCamelCase__ : List[Any] =spectrogram(
lowerCamelCase_ , window_function(self.n_fft , 'hann' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='dB' , db_range=80.0 , )
lowerCamelCase__ : Any =log_spec[:, :-1]
lowerCamelCase__ : Tuple =log_spec - 20.0
lowerCamelCase__ : List[str] =np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0
return log_spec
def __call__( self :Optional[Any] , lowerCamelCase_ :Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowerCamelCase_ :Optional[Union[str, TensorType]] = None , lowerCamelCase_ :Optional[bool] = True , lowerCamelCase_ :Optional[int] = None , lowerCamelCase_ :bool = False , lowerCamelCase_ :bool = False , **lowerCamelCase_ :Tuple , ):
"""simple docstring"""
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
'This feature extractor is set to support sampling rate'
f""" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled"""
f""" with {self.sampling_rate} and not {sampling_rate}.""" )
else:
logger.warning(
'It is strongly recommended to pass the `sampling_rate` argument to this function. '
'Failing to do so can result in silent errors that might be hard to debug.' )
lowerCamelCase__ : Dict =isinstance(lowerCamelCase_ , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" )
lowerCamelCase__ : Union[str, Any] =is_batched_numpy or (
isinstance(lowerCamelCase_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
lowerCamelCase__ : Optional[Any] =[np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech]
elif not is_batched and not isinstance(lowerCamelCase_ , np.ndarray ):
lowerCamelCase__ : Optional[Any] =np.asarray(lowerCamelCase_ , dtype=np.floataa )
elif isinstance(lowerCamelCase_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
lowerCamelCase__ : Union[str, Any] =raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
lowerCamelCase__ : List[str] =[np.asarray([raw_speech] ).T]
# Convert audio signals to log mel spectrograms, truncate by time axis
lowerCamelCase__ : Any =[
self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech
]
if isinstance(audio_features[0] , lowerCamelCase_ ):
lowerCamelCase__ : Dict =[np.asarray(lowerCamelCase_ , dtype=np.floataa ) for feature in audio_features]
# Create audio attention mask
lowerCamelCase__ : Optional[Any] =max(
[ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch
if return_attention_mask:
lowerCamelCase__ : Any =[
(ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1]
+ (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0]
for feature in audio_features
]
lowerCamelCase__ : Union[str, Any] =np.array(lowerCamelCase_ ).astype(np.floataa )
# convert into correct format for padding
lowerCamelCase__ : Tuple =max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch
lowerCamelCase__ : str =np.ones([len(lowerCamelCase_ ), 1, max_time_len, self.feature_size] ).astype(np.floataa )
lowerCamelCase__ : Dict =padded_audio_features * self.padding_value
for i in range(len(lowerCamelCase_ ) ):
lowerCamelCase__ : Union[str, Any] =audio_features[i]
lowerCamelCase__ : Union[str, Any] =feature
# return as BatchFeature
if return_attention_mask:
lowerCamelCase__ : int ={'audio_values': padded_audio_features, 'audio_mask': audio_mask}
else:
lowerCamelCase__ : Tuple ={'audio_values': padded_audio_features}
lowerCamelCase__ : Union[str, Any] =BatchFeature(data=lowerCamelCase_ , tensor_type=lowerCamelCase_ )
return encoded_inputs
| 126
| 1
|
'''simple docstring'''
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__lowercase : Any = logging.get_logger(__name__)
__lowercase : str = {
'asapp/sew-d-tiny-100k': 'https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json',
# See all SEW-D models at https://huggingface.co/models?filter=sew-d
}
class __UpperCamelCase ( lowerCAmelCase_ ):
A_ = "sew-d"
def __init__( self , __a=32 , __a=768 , __a=12 , __a=12 , __a=3072 , __a=2 , __a=512 , __a=256 , __a=True , __a=True , __a=("p2c", "c2p") , __a="layer_norm" , __a="gelu_python" , __a=0.1 , __a=0.1 , __a=0.1 , __a=0.0 , __a=0.1 , __a=0.02 , __a=1E-7 , __a=1E-5 , __a="group" , __a="gelu" , __a=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , __a=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , __a=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , __a=False , __a=128 , __a=16 , __a=True , __a=0.05 , __a=10 , __a=2 , __a=0.0 , __a=10 , __a=0 , __a="mean" , __a=False , __a=False , __a=256 , __a=0 , __a=1 , __a=2 , **__a , ):
'''simple docstring'''
super().__init__(**__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a )
__a : Any = hidden_size
__a : List[str] = feat_extract_norm
__a : List[Any] = feat_extract_activation
__a : Tuple = list(__a )
__a : Union[str, Any] = list(__a )
__a : List[Any] = list(__a )
__a : Dict = conv_bias
__a : str = num_conv_pos_embeddings
__a : Optional[Any] = num_conv_pos_embedding_groups
__a : List[str] = len(self.conv_dim )
__a : str = num_hidden_layers
__a : Any = intermediate_size
__a : int = squeeze_factor
__a : str = max_position_embeddings
__a : int = position_buckets
__a : Any = share_att_key
__a : Dict = relative_attention
__a : List[Any] = norm_rel_ebd
__a : str = list(__a )
__a : Any = hidden_act
__a : List[Any] = num_attention_heads
__a : Dict = hidden_dropout
__a : Optional[Any] = attention_dropout
__a : List[str] = activation_dropout
__a : Any = feat_proj_dropout
__a : Dict = final_dropout
__a : int = layer_norm_eps
__a : Optional[Any] = feature_layer_norm_eps
__a : Optional[int] = initializer_range
__a : Optional[Any] = vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'Configuration for convolutional layers is incorrect.'
'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,'
f"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)"""
f"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__a : List[Any] = apply_spec_augment
__a : int = mask_time_prob
__a : int = mask_time_length
__a : str = mask_time_min_masks
__a : List[str] = mask_feature_prob
__a : Optional[int] = mask_feature_length
__a : Optional[int] = mask_feature_min_masks
# ctc loss
__a : Optional[Any] = ctc_loss_reduction
__a : int = ctc_zero_infinity
# sequence classification
__a : int = use_weighted_layer_sum
__a : Any = classifier_proj_size
@property
def __UpperCAmelCase ( self ):
'''simple docstring'''
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 294
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__lowercase : Union[str, Any] = {
'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'],
'tokenization_roc_bert': ['RoCBertTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
pass
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowercase : List[str] = [
'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'RoCBertForCausalLM',
'RoCBertForMaskedLM',
'RoCBertForMultipleChoice',
'RoCBertForPreTraining',
'RoCBertForQuestionAnswering',
'RoCBertForSequenceClassification',
'RoCBertForTokenClassification',
'RoCBertLayer',
'RoCBertModel',
'RoCBertPreTrainedModel',
'load_tf_weights_in_roc_bert',
]
if TYPE_CHECKING:
from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig
from .tokenization_roc_bert import RoCBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
raise OptionalDependencyNotAvailable()
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roc_bert import (
ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
RoCBertForCausalLM,
RoCBertForMaskedLM,
RoCBertForMultipleChoice,
RoCBertForPreTraining,
RoCBertForQuestionAnswering,
RoCBertForSequenceClassification,
RoCBertForTokenClassification,
RoCBertLayer,
RoCBertModel,
RoCBertPreTrainedModel,
load_tf_weights_in_roc_bert,
)
else:
import sys
__lowercase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 294
| 1
|
"""simple docstring"""
def __UpperCAmelCase ( ):
__lowercase : int = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
__lowercase : List[str] = 6
__lowercase : Optional[Any] = 1
__lowercase : str = 19_01
__lowercase : Dict = 0
while year < 20_01:
day += 7
if (year % 4 == 0 and year % 1_00 != 0) or (year % 4_00 == 0):
if day > days_per_month[month - 1] and month != 2:
month += 1
__lowercase : Optional[Any] = day - days_per_month[month - 2]
elif day > 29 and month == 2:
month += 1
__lowercase : Dict = day - 29
else:
if day > days_per_month[month - 1]:
month += 1
__lowercase : Any = day - days_per_month[month - 2]
if month > 12:
year += 1
__lowercase : List[Any] = 1
if year < 20_01 and day == 1:
sundays += 1
return sundays
if __name__ == "__main__":
print(solution())
| 249
|
"""simple docstring"""
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import (
AutoProcessor,
BertTokenizerFast,
BlipImageProcessor,
GPTaTokenizer,
InstructBlipProcessor,
PreTrainedTokenizerFast,
)
@require_vision
class UpperCAmelCase_ ( unittest.TestCase ):
def _lowerCamelCase ( self ) -> Union[str, Any]:
__lowercase : Dict = tempfile.mkdtemp()
__lowercase : Any = BlipImageProcessor()
__lowercase : Optional[int] = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''' )
__lowercase : str = BertTokenizerFast.from_pretrained('''hf-internal-testing/tiny-random-bert''' )
__lowercase : str = InstructBlipProcessor(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
processor.save_pretrained(self.tmpdirname )
def _lowerCamelCase ( self , **UpperCamelCase_ ) -> Any:
return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase_ ).tokenizer
def _lowerCamelCase ( self , **UpperCamelCase_ ) -> List[str]:
return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase_ ).image_processor
def _lowerCamelCase ( self , **UpperCamelCase_ ) -> List[Any]:
return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase_ ).qformer_tokenizer
def _lowerCamelCase ( self ) -> Tuple:
shutil.rmtree(self.tmpdirname )
def _lowerCamelCase ( self ) -> Any:
__lowercase : Optional[int] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__lowercase : Any = [Image.fromarray(np.moveaxis(UpperCamelCase_ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def _lowerCamelCase ( self ) -> str:
__lowercase : Any = InstructBlipProcessor(
tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , )
processor.save_pretrained(self.tmpdirname )
__lowercase : List[str] = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
__lowercase : Dict = self.get_image_processor(do_normalize=UpperCamelCase_ , padding_value=1.0 )
__lowercase : int = InstructBlipProcessor.from_pretrained(
self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=UpperCamelCase_ , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , UpperCamelCase_ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , UpperCamelCase_ )
self.assertIsInstance(processor.qformer_tokenizer , UpperCamelCase_ )
def _lowerCamelCase ( self ) -> Any:
__lowercase : Any = self.get_image_processor()
__lowercase : str = self.get_tokenizer()
__lowercase : Any = self.get_qformer_tokenizer()
__lowercase : List[str] = InstructBlipProcessor(
tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ , qformer_tokenizer=UpperCamelCase_ )
__lowercase : int = self.prepare_image_inputs()
__lowercase : Union[str, Any] = image_processor(UpperCamelCase_ , return_tensors='''np''' )
__lowercase : Tuple = processor(images=UpperCamelCase_ , return_tensors='''np''' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def _lowerCamelCase ( self ) -> str:
__lowercase : str = self.get_image_processor()
__lowercase : Dict = self.get_tokenizer()
__lowercase : Optional[Any] = self.get_qformer_tokenizer()
__lowercase : List[str] = InstructBlipProcessor(
tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ , qformer_tokenizer=UpperCamelCase_ )
__lowercase : Dict = '''lower newer'''
__lowercase : int = processor(text=UpperCamelCase_ )
__lowercase : List[str] = tokenizer(UpperCamelCase_ , return_token_type_ids=UpperCamelCase_ )
__lowercase : Union[str, Any] = qformer_tokenizer(UpperCamelCase_ , return_token_type_ids=UpperCamelCase_ )
for key in encoded_tokens.keys():
self.assertListEqual(encoded_tokens[key] , encoded_processor[key] )
for key in encoded_tokens_qformer.keys():
self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['''qformer_''' + key] )
def _lowerCamelCase ( self ) -> List[str]:
__lowercase : Union[str, Any] = self.get_image_processor()
__lowercase : Union[str, Any] = self.get_tokenizer()
__lowercase : Optional[int] = self.get_qformer_tokenizer()
__lowercase : List[str] = InstructBlipProcessor(
tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ , qformer_tokenizer=UpperCamelCase_ )
__lowercase : Optional[int] = '''lower newer'''
__lowercase : Any = self.prepare_image_inputs()
__lowercase : List[Any] = processor(text=UpperCamelCase_ , images=UpperCamelCase_ )
self.assertListEqual(
list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , )
# test if it raises when no input is passed
with pytest.raises(UpperCamelCase_ ):
processor()
def _lowerCamelCase ( self ) -> Dict:
__lowercase : Any = self.get_image_processor()
__lowercase : List[str] = self.get_tokenizer()
__lowercase : Any = self.get_qformer_tokenizer()
__lowercase : Tuple = InstructBlipProcessor(
tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ , qformer_tokenizer=UpperCamelCase_ )
__lowercase : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
__lowercase : List[str] = processor.batch_decode(UpperCamelCase_ )
__lowercase : Union[str, Any] = tokenizer.batch_decode(UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
def _lowerCamelCase ( self ) -> List[str]:
__lowercase : List[str] = self.get_image_processor()
__lowercase : List[str] = self.get_tokenizer()
__lowercase : List[Any] = self.get_qformer_tokenizer()
__lowercase : Optional[Any] = InstructBlipProcessor(
tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ , qformer_tokenizer=UpperCamelCase_ )
__lowercase : Any = '''lower newer'''
__lowercase : Union[str, Any] = self.prepare_image_inputs()
__lowercase : Union[str, Any] = processor(text=UpperCamelCase_ , images=UpperCamelCase_ )
self.assertListEqual(
list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , )
| 249
| 1
|
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
_a : Optional[int] = logging.get_logger(__name__)
class __A ( __lowercase ):
_UpperCamelCase : Union[str, Any] = ["pixel_values"]
def __init__( self , a__ = True , a__ = None , a__ = PIL.Image.BICUBIC , a__ = True , a__ = None , a__ = 1 / 255 , a__ = True , a__ = True , a__ = None , a__ = None , **a__ , ):
super().__init__(**_a )
_lowerCAmelCase : Dict = size if size is not None else {'''height''': 256, '''width''': 256}
_lowerCAmelCase : int = get_size_dict(_a )
_lowerCAmelCase : Tuple = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
_lowerCAmelCase : Dict = get_size_dict(_a , param_name="""crop_size""" )
_lowerCAmelCase : Union[str, Any] = do_resize
_lowerCAmelCase : Any = size
_lowerCAmelCase : List[Any] = resample
_lowerCAmelCase : List[Any] = do_center_crop
_lowerCAmelCase : Union[str, Any] = crop_size
_lowerCAmelCase : str = do_rescale
_lowerCAmelCase : Union[str, Any] = rescale_factor
_lowerCAmelCase : int = do_normalize
_lowerCAmelCase : List[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
_lowerCAmelCase : Optional[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD
def __A ( self , a__ , a__ , a__ = PIL.Image.BICUBIC , a__ = None , **a__ , ):
_lowerCAmelCase : List[Any] = get_size_dict(_a )
if "height" not in size or "width" not in size:
raise ValueError(F"The size dictionary must have keys 'height' and 'width'. Got {size.keys()}" )
return resize(
_a , size=(size["""height"""], size["""width"""]) , resample=_a , data_format=_a , **_a )
def __A ( self , a__ , a__ , a__ = None , **a__ , ):
_lowerCAmelCase : Union[str, Any] = get_size_dict(_a )
if "height" not in size or "width" not in size:
raise ValueError(F"The size dictionary must have keys 'height' and 'width'. Got {size.keys()}" )
return center_crop(_a , size=(size["""height"""], size["""width"""]) , data_format=_a , **_a )
def __A ( self , a__ , a__ , a__ = None , **a__ , ):
return rescale(_a , scale=_a , data_format=_a , **_a )
def __A ( self , a__ , a__ , a__ , a__ = None , **a__ , ):
return normalize(_a , mean=_a , std=_a , data_format=_a , **_a )
def __A ( self , a__ , a__ = None , a__ = None , a__=None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = ChannelDimension.FIRST , **a__ , ):
_lowerCAmelCase : int = do_resize if do_resize is not None else self.do_resize
_lowerCAmelCase : int = resample if resample is not None else self.resample
_lowerCAmelCase : Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop
_lowerCAmelCase : Any = do_rescale if do_rescale is not None else self.do_rescale
_lowerCAmelCase : Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor
_lowerCAmelCase : List[Any] = do_normalize if do_normalize is not None else self.do_normalize
_lowerCAmelCase : Optional[int] = image_mean if image_mean is not None else self.image_mean
_lowerCAmelCase : Tuple = image_std if image_std is not None else self.image_std
_lowerCAmelCase : Any = size if size is not None else self.size
_lowerCAmelCase : str = get_size_dict(_a )
_lowerCAmelCase : List[Any] = crop_size if crop_size is not None else self.crop_size
_lowerCAmelCase : int = get_size_dict(_a , param_name="""crop_size""" )
_lowerCAmelCase : Union[str, Any] = make_list_of_images(_a )
if not valid_images(_a ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None or resample is None:
raise ValueError("""Size and resample must be specified if do_resize is True.""" )
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
# All transformations expect numpy arrays.
_lowerCAmelCase : Dict = [to_numpy_array(_a ) for image in images]
if do_resize:
_lowerCAmelCase : Optional[int] = [self.resize(image=_a , size=_a , resample=_a ) for image in images]
if do_center_crop:
_lowerCAmelCase : Optional[Any] = [self.center_crop(image=_a , size=_a ) for image in images]
if do_rescale:
_lowerCAmelCase : Optional[Any] = [self.rescale(image=_a , scale=_a ) for image in images]
if do_normalize:
_lowerCAmelCase : Dict = [self.normalize(image=_a , mean=_a , std=_a ) for image in images]
_lowerCAmelCase : Tuple = [to_channel_dimension_format(_a , _a ) for image in images]
_lowerCAmelCase : Dict = {'''pixel_values''': images}
return BatchFeature(data=_a , tensor_type=_a )
| 365
|
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
_a : List[Any] = logging.get_logger(__name__)
class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
_UpperCamelCase : Tuple = "maskformer-swin"
_UpperCamelCase : Union[str, Any] = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self , a__=224 , a__=4 , a__=3 , a__=96 , a__=[2, 2, 6, 2] , a__=[3, 6, 12, 24] , a__=7 , a__=4.0 , a__=True , a__=0.0 , a__=0.0 , a__=0.1 , a__="gelu" , a__=False , a__=0.0_2 , a__=1e-5 , a__=None , a__=None , **a__ , ):
super().__init__(**a__ )
_lowerCAmelCase : Dict = image_size
_lowerCAmelCase : List[str] = patch_size
_lowerCAmelCase : Any = num_channels
_lowerCAmelCase : int = embed_dim
_lowerCAmelCase : Optional[Any] = depths
_lowerCAmelCase : List[str] = len(a__ )
_lowerCAmelCase : List[Any] = num_heads
_lowerCAmelCase : Tuple = window_size
_lowerCAmelCase : List[Any] = mlp_ratio
_lowerCAmelCase : Optional[Any] = qkv_bias
_lowerCAmelCase : int = hidden_dropout_prob
_lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob
_lowerCAmelCase : Any = drop_path_rate
_lowerCAmelCase : Optional[Any] = hidden_act
_lowerCAmelCase : Tuple = use_absolute_embeddings
_lowerCAmelCase : str = layer_norm_eps
_lowerCAmelCase : Any = initializer_range
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
_lowerCAmelCase : Union[str, Any] = int(embed_dim * 2 ** (len(a__ ) - 1) )
_lowerCAmelCase : int = ["""stem"""] + [F"stage{idx}" for idx in range(1 , len(a__ ) + 1 )]
_lowerCAmelCase , _lowerCAmelCase : int = get_aligned_output_features_output_indices(
out_features=a__ , out_indices=a__ , stage_names=self.stage_names )
| 126
| 0
|
import inspect
import os
import unittest
import torch
import accelerate
from accelerate import Accelerator
from accelerate.test_utils import execute_subprocess_async, require_multi_gpu
from accelerate.utils import patch_environment
class _lowercase ( unittest.TestCase ):
'''simple docstring'''
def __magic_name__( self :int ) -> Any:
__SCREAMING_SNAKE_CASE : Optional[int] = inspect.getfile(accelerate.test_utils )
__SCREAMING_SNAKE_CASE : Optional[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] )
__SCREAMING_SNAKE_CASE : Optional[Any] = os.path.sep.join(
mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_distributed_data_loop.py'''] )
__SCREAMING_SNAKE_CASE : int = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_ops.py'''] )
@require_multi_gpu
def __magic_name__( self :Optional[int] ) -> Any:
print(f'''Found {torch.cuda.device_count()} devices.''' )
__SCREAMING_SNAKE_CASE : Optional[Any] = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(lowerCAmelCase__ , env=os.environ.copy() )
@require_multi_gpu
def __magic_name__( self :Optional[int] ) -> Tuple:
print(f'''Found {torch.cuda.device_count()} devices.''' )
__SCREAMING_SNAKE_CASE : Union[str, Any] = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', self.operation_file_path]
print(f'''Command: {cmd}''' )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(lowerCAmelCase__ , env=os.environ.copy() )
@require_multi_gpu
def __magic_name__( self :Tuple ) -> Dict:
__SCREAMING_SNAKE_CASE : Optional[Any] = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(lowerCAmelCase__ , env=os.environ.copy() )
@require_multi_gpu
def __magic_name__( self :str ) -> int:
print(f'''Found {torch.cuda.device_count()} devices, using 2 devices only''' )
__SCREAMING_SNAKE_CASE : Dict = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', self.data_loop_file_path]
with patch_environment(omp_num_threads=1 , cuda_visible_devices='''0,1''' ):
execute_subprocess_async(lowerCAmelCase__ , env=os.environ.copy() )
if __name__ == "__main__":
__lowerCAmelCase : Dict =Accelerator()
__lowerCAmelCase : Any =(accelerator.state.process_index + 2, 1_0)
__lowerCAmelCase : List[Any] =torch.randint(0, 1_0, shape).to(accelerator.device)
__lowerCAmelCase : Tuple =''
__lowerCAmelCase : Union[str, Any] =accelerator.pad_across_processes(tensor)
if tensora.shape[0] != accelerator.state.num_processes + 1:
error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0."
if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor):
error_msg += "Tensors have different values."
if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0):
error_msg += "Padding was not done with the right value (0)."
__lowerCAmelCase : Union[str, Any] =accelerator.pad_across_processes(tensor, pad_first=True)
if tensora.shape[0] != accelerator.state.num_processes + 1:
error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0."
__lowerCAmelCase : Optional[int] =accelerator.state.num_processes - accelerator.state.process_index - 1
if not torch.equal(tensora[index:], tensor):
error_msg += "Tensors have different values."
if not torch.all(tensora[:index] == 0):
error_msg += "Padding was not done with the right value (0)."
# Raise error at the end to make sure we don't stop at the first failure.
if len(error_msg) > 0:
raise ValueError(error_msg)
| 9
|
from typing import Dict, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image
from ...image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends
if is_vision_available():
import PIL
# soft dependency
if is_pytesseract_available():
import pytesseract
__lowerCAmelCase : List[str] = logging.get_logger(__name__)
def __magic_name__ ( A : Dict, A : int, A : Optional[int] ):
'''simple docstring'''
return [
int(1000 * (box[0] / width) ),
int(1000 * (box[1] / height) ),
int(1000 * (box[2] / width) ),
int(1000 * (box[3] / height) ),
]
def __magic_name__ ( A : np.ndarray, A : Optional[str], A : Optional[str] = None ):
'''simple docstring'''
a = tesseract_config if tesseract_config is not None else ""
# apply OCR
a = to_pil_image(A )
a , a = pil_image.size
a = pytesseract.image_to_data(A, lang=A, output_type="dict", config=A )
a , a , a , a , a = data["text"], data["left"], data["top"], data["width"], data["height"]
# filter empty words and corresponding coordinates
a = [idx for idx, word in enumerate(A ) if not word.strip()]
a = [word for idx, word in enumerate(A ) if idx not in irrelevant_indices]
a = [coord for idx, coord in enumerate(A ) if idx not in irrelevant_indices]
a = [coord for idx, coord in enumerate(A ) if idx not in irrelevant_indices]
a = [coord for idx, coord in enumerate(A ) if idx not in irrelevant_indices]
a = [coord for idx, coord in enumerate(A ) if idx not in irrelevant_indices]
# turn coordinates into (left, top, left+width, top+height) format
a = []
for x, y, w, h in zip(A, A, A, A ):
a = [x, y, x + w, y + h]
actual_boxes.append(A )
# finally, normalize the bounding boxes
a = []
for box in actual_boxes:
normalized_boxes.append(normalize_box(A, A, A ) )
assert len(A ) == len(A ), "Not as many words as there are bounding boxes"
return words, normalized_boxes
class snake_case__ (_UpperCamelCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Any = ["""pixel_values"""]
def __init__( self : int , __lowerCamelCase : bool = True , __lowerCamelCase : Dict[str, int] = None , __lowerCamelCase : PILImageResampling = PILImageResampling.BILINEAR , __lowerCamelCase : bool = True , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[str] = "" , **__lowerCamelCase : Tuple , ) -> None:
super().__init__(**__lowerCamelCase )
a = size if size is not None else {"height": 2_24, "width": 2_24}
a = get_size_dict(__lowerCamelCase )
a = do_resize
a = size
a = resample
a = apply_ocr
a = ocr_lang
a = tesseract_config
def __UpperCAmelCase ( self : Dict , __lowerCamelCase : np.ndarray , __lowerCamelCase : Dict[str, int] , __lowerCamelCase : PILImageResampling = PILImageResampling.BILINEAR , __lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase : Optional[int] , ) -> np.ndarray:
a = get_size_dict(__lowerCamelCase )
if "height" not in size or "width" not in size:
raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" )
a = (size["height"], size["width"])
return resize(__lowerCamelCase , size=__lowerCamelCase , resample=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase )
def __UpperCAmelCase ( self : List[Any] , __lowerCamelCase : ImageInput , __lowerCamelCase : bool = None , __lowerCamelCase : Dict[str, int] = None , __lowerCamelCase : PILImageResampling = None , __lowerCamelCase : bool = None , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[Union[str, TensorType]] = None , __lowerCamelCase : ChannelDimension = ChannelDimension.FIRST , **__lowerCamelCase : Optional[Any] , ) -> PIL.Image.Image:
a = do_resize if do_resize is not None else self.do_resize
a = size if size is not None else self.size
a = get_size_dict(__lowerCamelCase )
a = resample if resample is not None else self.resample
a = apply_ocr if apply_ocr is not None else self.apply_ocr
a = ocr_lang if ocr_lang is not None else self.ocr_lang
a = tesseract_config if tesseract_config is not None else self.tesseract_config
a = make_list_of_images(__lowerCamelCase )
if not valid_images(__lowerCamelCase ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
if do_resize and size is None:
raise ValueError("Size must be specified if do_resize is True." )
# All transformations expect numpy arrays.
a = [to_numpy_array(__lowerCamelCase ) for image in images]
if apply_ocr:
requires_backends(self , "pytesseract" )
a = []
a = []
for image in images:
a , a = apply_tesseract(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
words_batch.append(__lowerCamelCase )
boxes_batch.append(__lowerCamelCase )
if do_resize:
a = [self.resize(image=__lowerCamelCase , size=__lowerCamelCase , resample=__lowerCamelCase ) for image in images]
# flip color channels from RGB to BGR (as Detectron2 requires this)
a = [flip_channel_order(__lowerCamelCase ) for image in images]
a = [to_channel_dimension_format(__lowerCamelCase , __lowerCamelCase ) for image in images]
a = BatchFeature(data={"pixel_values": images} , tensor_type=__lowerCamelCase )
if apply_ocr:
a = words_batch
a = boxes_batch
return data
| 107
| 0
|
"""simple docstring"""
import gc
import unittest
import numpy as np
import torch
from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel
from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS,
CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class lowerCAmelCase__ ( lowerCAmelCase__ , unittest.TestCase ):
__a = DiTPipeline
__a = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS
__a = PipelineTesterMixin.required_optional_params - {
"latents",
"num_images_per_prompt",
"callback",
"callback_steps",
}
__a = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS
__a = False
def lowercase ( self : int ):
torch.manual_seed(0 )
_snake_case = TransformeraDModel(
sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=a__ , activation_fn='''gelu-approximate''' , num_embeds_ada_norm=1000 , norm_type='''ada_norm_zero''' , norm_elementwise_affine=a__ , )
_snake_case = AutoencoderKL()
_snake_case = DDIMScheduler()
_snake_case = {'''transformer''': transformer.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler}
return components
def lowercase ( self : List[Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[Any]=0 ):
if str(a__ ).startswith('''mps''' ):
_snake_case = torch.manual_seed(a__ )
else:
_snake_case = torch.Generator(device=a__ ).manual_seed(a__ )
_snake_case = {
'''class_labels''': [1],
'''generator''': generator,
'''num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
def lowercase ( self : int ):
_snake_case = '''cpu'''
_snake_case = self.get_dummy_components()
_snake_case = self.pipeline_class(**a__ )
pipe.to(a__ )
pipe.set_progress_bar_config(disable=a__ )
_snake_case = self.get_dummy_inputs(a__ )
_snake_case = pipe(**a__ ).images
_snake_case = image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 16, 16, 3) )
_snake_case = np.array([0.2_9_4_6, 0.6_6_0_1, 0.4_3_2_9, 0.3_2_9_6, 0.4_1_4_4, 0.5_3_1_9, 0.7_2_7_3, 0.5_0_1_3, 0.4_4_5_7] )
_snake_case = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(a__ , 1e-3 )
def lowercase ( self : Any ):
self._test_inference_batch_single_identical(relax_max_difference=a__ , expected_max_diff=1e-3 )
@unittest.skipIf(
torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , )
def lowercase ( self : List[Any] ):
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 )
@require_torch_gpu
@slow
class lowerCAmelCase__ ( unittest.TestCase ):
def lowercase ( self : Dict ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowercase ( self : Optional[int] ):
_snake_case = torch.manual_seed(0 )
_snake_case = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-256''' )
pipe.to('''cuda''' )
_snake_case = ['''vase''', '''umbrella''', '''white shark''', '''white wolf''']
_snake_case = pipe.get_label_ids(a__ )
_snake_case = pipe(a__ , generator=a__ , num_inference_steps=40 , output_type='''np''' ).images
for word, image in zip(a__ , a__ ):
_snake_case = load_numpy(
f'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' )
assert np.abs((expected_image - image).max() ) < 1e-2
def lowercase ( self : str ):
_snake_case = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-512''' )
_snake_case = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.to('''cuda''' )
_snake_case = ['''vase''', '''umbrella''']
_snake_case = pipe.get_label_ids(a__ )
_snake_case = torch.manual_seed(0 )
_snake_case = pipe(a__ , generator=a__ , num_inference_steps=25 , output_type='''np''' ).images
for word, image in zip(a__ , a__ ):
_snake_case = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
f'''/dit/{word}_512.npy''' )
assert np.abs((expected_image - image).max() ) < 1e-1
| 363
|
"""simple docstring"""
from __future__ import annotations
import random
import unittest
from transformers import TransfoXLConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFTransfoXLForSequenceClassification,
TFTransfoXLLMHeadModel,
TFTransfoXLModel,
)
class lowerCAmelCase__ :
def __init__( self : Any , _lowerCamelCase : Optional[Any] , ):
_snake_case = parent
_snake_case = 13
_snake_case = 7
_snake_case = 30
_snake_case = self.seq_length + self.mem_len
_snake_case = 15
_snake_case = True
_snake_case = True
_snake_case = 99
_snake_case = [10, 50, 80]
_snake_case = 32
_snake_case = 32
_snake_case = 4
_snake_case = 8
_snake_case = 128
_snake_case = 2
_snake_case = 2
_snake_case = None
_snake_case = 1
_snake_case = 0
_snake_case = 3
_snake_case = self.vocab_size - 1
_snake_case = 0.0_1
def lowercase ( self : Optional[int] ):
_snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_snake_case = None
if self.use_labels:
_snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_snake_case = TransfoXLConfig(
vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , )
return (config, input_ids_a, input_ids_a, lm_labels)
def lowercase ( self : Any ):
random.seed(self.seed )
tf.random.set_seed(self.seed )
def lowercase ( self : Dict , _lowerCamelCase : int , _lowerCamelCase : List[Any] , _lowerCamelCase : Dict , _lowerCamelCase : List[str] ):
_snake_case = TFTransfoXLModel(_lowerCamelCase )
_snake_case , _snake_case = model(_lowerCamelCase ).to_tuple()
_snake_case = {'''input_ids''': input_ids_a, '''mems''': mems_a}
_snake_case , _snake_case = model(_lowerCamelCase ).to_tuple()
self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertListEqual(
[mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , )
self.parent.assertListEqual(
[mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , )
def lowercase ( self : List[Any] , _lowerCamelCase : Dict , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Tuple ):
_snake_case = TFTransfoXLLMHeadModel(_lowerCamelCase )
_snake_case , _snake_case = model(_lowerCamelCase ).to_tuple()
_snake_case = {'''input_ids''': input_ids_a, '''labels''': lm_labels}
_snake_case , _snake_case = model(_lowerCamelCase ).to_tuple()
_snake_case , _snake_case = model([input_ids_a, mems_a] ).to_tuple()
_snake_case = {'''input_ids''': input_ids_a, '''mems''': mems_a, '''labels''': lm_labels}
_snake_case , _snake_case = model(_lowerCamelCase ).to_tuple()
self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertListEqual(
[mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , )
self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertListEqual(
[mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , )
def lowercase ( self : Any , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[str] ):
_snake_case = TFTransfoXLForSequenceClassification(_lowerCamelCase )
_snake_case = model(_lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowercase ( self : str ):
_snake_case = self.prepare_config_and_inputs()
((_snake_case) , (_snake_case) , (_snake_case) , (_snake_case)) = config_and_inputs
_snake_case = {'''input_ids''': input_ids_a}
return config, inputs_dict
@require_tf
class lowerCAmelCase__ ( A_ , A_ , unittest.TestCase ):
__a = (
(TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else ()
)
__a = () if is_tf_available() else ()
__a = (
{
"""feature-extraction""": TFTransfoXLModel,
"""text-classification""": TFTransfoXLForSequenceClassification,
"""text-generation""": TFTransfoXLLMHeadModel,
"""zero-shot""": TFTransfoXLForSequenceClassification,
}
if is_tf_available()
else {}
)
# TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented
__a = False
__a = False
__a = False
__a = False
def lowercase ( self : List[Any] , _lowerCamelCase : List[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Union[str, Any] ):
if pipeline_test_casse_name == "TextGenerationPipelineTests":
# Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`.
# `TransfoXLConfig` was never used in pipeline tests: cannot create a simple
# tokenizer.
return True
return False
def lowercase ( self : List[Any] ):
_snake_case = TFTransfoXLModelTester(self )
_snake_case = ConfigTester(self , config_class=_lowerCamelCase , d_embed=37 )
def lowercase ( self : List[str] ):
self.config_tester.run_common_tests()
def lowercase ( self : Union[str, Any] ):
self.model_tester.set_seed()
_snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_transfo_xl_model(*_lowerCamelCase )
def lowercase ( self : str ):
self.model_tester.set_seed()
_snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_transfo_xl_lm_head(*_lowerCamelCase )
def lowercase ( self : str ):
_snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*_lowerCamelCase )
def lowercase ( self : str ):
_snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
_snake_case = [TFTransfoXLForSequenceClassification]
for model_class in self.all_model_classes:
_snake_case = model_class(_lowerCamelCase )
assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer )
if model_class in list_other_models_with_output_ebd:
_snake_case = model.get_output_embeddings()
assert isinstance(_lowerCamelCase , tf.keras.layers.Layer )
_snake_case = model.get_bias()
assert name is None
else:
_snake_case = model.get_output_embeddings()
assert x is None
_snake_case = model.get_bias()
assert name is None
def lowercase ( self : Optional[Any] ):
# TODO JP: Make TransfoXL XLA compliant
pass
@slow
def lowercase ( self : int ):
for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_snake_case = TFTransfoXLModel.from_pretrained(_lowerCamelCase )
self.assertIsNotNone(_lowerCamelCase )
@unittest.skip(reason='''This model doesn\'t play well with fit() due to not returning a single loss.''' )
def lowercase ( self : int ):
pass
@require_tf
class lowerCAmelCase__ ( unittest.TestCase ):
@unittest.skip('''Skip test until #12651 is resolved.''' )
@slow
def lowercase ( self : List[Any] ):
_snake_case = TFTransfoXLLMHeadModel.from_pretrained('''transfo-xl-wt103''' )
# fmt: off
_snake_case = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231
# fmt: on
# In 1991 , the remains of Russian Tsar Nicholas II and his family
# ( except for Alexei and Maria ) are discovered .
# The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the
# remainder of the story . 1883 Western Siberia ,
# a young Grigori Rasputin is asked by his father and a group of men to perform magic .
# Rasputin has a vision and denounces one of the men as a horse thief . Although his
# father initially slaps him for making such an accusation , Rasputin watches as the
# man is chased outside and beaten . Twenty years later , Rasputin sees a vision of
# the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous ,
# with people , even a bishop , begging for his blessing . <eod> </s> <eos>
# fmt: off
_snake_case = [33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0,33,1,1857,2,1,1009,4,1109,11739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,0] # noqa: E231
# fmt: on
# In 1991, the remains of Russian Tsar Nicholas II and his family (
# except for Alexei and Maria ) are discovered. The voice of young son,
# Tsarevich Alexei Nikolaevich, narrates the remainder of the story.
# 1883 Western Siberia, a young Grigori Rasputin is asked by his father
# and a group of men to perform magic. Rasputin has a vision and
# denounces one of the men as a horse thief. Although his father initially
# slaps him for making such an accusation, Rasputin watches as the man
# is chased outside and beaten. Twenty years later, Rasputin sees a vision
# of the Virgin Mary, prompting him to become a priest.
# Rasputin quickly becomes famous, with people, even a bishop, begging for
# his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar
# Nicholas II and his family were discovered. The voice of <unk> young son,
# Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos>
_snake_case = model.generate(_lowerCamelCase , max_length=200 , do_sample=_lowerCamelCase )
self.assertListEqual(output_ids[0].numpy().tolist() , _lowerCamelCase )
| 40
| 0
|
from typing import Dict, List, Optional, Union
import numpy as np
from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin
from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy
a : Dict = logging.get_logger(__name__)
class _a ( _lowerCAmelCase ):
def __init__(self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> List[str]:
UpperCAmelCase_: Tuple = feature_size
UpperCAmelCase_: List[str] = sampling_rate
UpperCAmelCase_: str = padding_value
UpperCAmelCase_: List[Any] = kwargs.pop("""padding_side""", """right""" )
UpperCAmelCase_: Optional[int] = kwargs.pop("""return_attention_mask""", SCREAMING_SNAKE_CASE_ )
super().__init__(**SCREAMING_SNAKE_CASE_ )
def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = True, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = False, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, ) -> BatchFeature:
# If we have a list of dicts, let's convert it in a dict of lists
# We do this to allow using this method as a collate_fn function in PyTorch Dataloader
if isinstance(SCREAMING_SNAKE_CASE_, (list, tuple) ) and isinstance(processed_features[0], (dict, BatchFeature) ):
UpperCAmelCase_: Union[str, Any] = {
key: [example[key] for example in processed_features] for key in processed_features[0].keys()
}
# The model's main input name, usually `input_values`, has be passed for padding
if self.model_input_names[0] not in processed_features:
raise ValueError(
"""You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`"""
f' to this method that includes {self.model_input_names[0]}, but you provided'
f' {list(processed_features.keys() )}' )
UpperCAmelCase_: Dict = processed_features[self.model_input_names[0]]
UpperCAmelCase_: str = (
return_attention_mask if return_attention_mask is not None else self.return_attention_mask
)
if len(SCREAMING_SNAKE_CASE_ ) == 0:
if return_attention_mask:
UpperCAmelCase_: Optional[Any] = []
return processed_features
# If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays
# and rebuild them afterwards if no return_tensors is specified
# Note that we lose the specific device the tensor may be on for PyTorch
UpperCAmelCase_: int = required_input[0]
if isinstance(SCREAMING_SNAKE_CASE_, (list, tuple) ):
# first_element might be an empty list/tuple in some edge cases so we grab the first non empty element.
UpperCAmelCase_: int = 0
while len(required_input[index] ) == 0:
index += 1
if index < len(SCREAMING_SNAKE_CASE_ ):
UpperCAmelCase_: Any = required_input[index][0]
if return_tensors is None:
if is_tf_tensor(SCREAMING_SNAKE_CASE_ ):
UpperCAmelCase_: int = """tf"""
elif is_torch_tensor(SCREAMING_SNAKE_CASE_ ):
UpperCAmelCase_: str = """pt"""
elif isinstance(SCREAMING_SNAKE_CASE_, (int, float, list, tuple, np.ndarray) ):
UpperCAmelCase_: Dict = """np"""
else:
raise ValueError(
f'type of {first_element} unknown: {type(SCREAMING_SNAKE_CASE_ )}. '
"""Should be one of a python, numpy, pytorch or tensorflow object.""" )
for key, value in processed_features.items():
if isinstance(value[0], (int, float) ):
UpperCAmelCase_: Optional[Any] = to_numpy(SCREAMING_SNAKE_CASE_ )
else:
UpperCAmelCase_: List[Any] = [to_numpy(SCREAMING_SNAKE_CASE_ ) for v in value]
# Convert padding_strategy in PaddingStrategy
UpperCAmelCase_: List[Any] = self._get_padding_strategies(padding=SCREAMING_SNAKE_CASE_, max_length=SCREAMING_SNAKE_CASE_ )
UpperCAmelCase_: Any = processed_features[self.model_input_names[0]]
UpperCAmelCase_: str = len(SCREAMING_SNAKE_CASE_ )
if not all(len(SCREAMING_SNAKE_CASE_ ) == batch_size for v in processed_features.values() ):
raise ValueError("""Some items in the output dictionary have a different batch size than others.""" )
UpperCAmelCase_: List[str] = []
for i in range(SCREAMING_SNAKE_CASE_ ):
UpperCAmelCase_: Union[str, Any] = {k: v[i] for k, v in processed_features.items()}
# truncation
UpperCAmelCase_: Dict = self._truncate(
SCREAMING_SNAKE_CASE_, max_length=SCREAMING_SNAKE_CASE_, pad_to_multiple_of=SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_, )
truncated_inputs.append(SCREAMING_SNAKE_CASE_ )
if padding_strategy == PaddingStrategy.LONGEST:
# make sure that `max_length` cannot be longer than the longest truncated length
UpperCAmelCase_: List[Any] = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs )
UpperCAmelCase_: Tuple = PaddingStrategy.MAX_LENGTH
UpperCAmelCase_: List[str] = {}
for i in range(SCREAMING_SNAKE_CASE_ ):
# padding
UpperCAmelCase_: List[Any] = self._pad(
truncated_inputs[i], max_length=SCREAMING_SNAKE_CASE_, padding_strategy=SCREAMING_SNAKE_CASE_, pad_to_multiple_of=SCREAMING_SNAKE_CASE_, return_attention_mask=SCREAMING_SNAKE_CASE_, )
for key, value in outputs.items():
if key not in batch_outputs:
UpperCAmelCase_: List[str] = []
if value.dtype is np.dtype(np.floataa ):
UpperCAmelCase_: int = value.astype(np.floataa )
batch_outputs[key].append(SCREAMING_SNAKE_CASE_ )
return BatchFeature(SCREAMING_SNAKE_CASE_, tensor_type=SCREAMING_SNAKE_CASE_ )
def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = PaddingStrategy.DO_NOT_PAD, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, ) -> dict:
UpperCAmelCase_: int = processed_features[self.model_input_names[0]]
if padding_strategy == PaddingStrategy.LONGEST:
UpperCAmelCase_: int = len(SCREAMING_SNAKE_CASE_ )
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
UpperCAmelCase_: Dict = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
UpperCAmelCase_: Union[str, Any] = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(SCREAMING_SNAKE_CASE_ ) < max_length
if return_attention_mask and "attention_mask" not in processed_features:
UpperCAmelCase_: Dict = np.ones(len(SCREAMING_SNAKE_CASE_ ), dtype=np.intaa )
if needs_to_be_padded:
UpperCAmelCase_: List[Any] = max_length - len(SCREAMING_SNAKE_CASE_ )
if self.padding_side == "right":
if return_attention_mask:
UpperCAmelCase_: Tuple = np.pad(
processed_features["""attention_mask"""], (0, difference) )
UpperCAmelCase_: Optional[int] = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference)
UpperCAmelCase_: List[Any] = np.pad(
SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, """constant""", constant_values=self.padding_value )
elif self.padding_side == "left":
if return_attention_mask:
UpperCAmelCase_: Optional[int] = np.pad(
processed_features["""attention_mask"""], (difference, 0) )
UpperCAmelCase_: str = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0)
UpperCAmelCase_: Optional[int] = np.pad(
SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, """constant""", constant_values=self.padding_value )
else:
raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) )
return processed_features
def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, ) -> Union[str, Any]:
if not truncation:
return processed_features
elif truncation and max_length is None:
raise ValueError("""When setting ``truncation=True``, make sure that ``max_length`` is defined.""" )
UpperCAmelCase_: List[Any] = processed_features[self.model_input_names[0]]
# find `max_length` that fits `pad_to_multiple_of`
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
UpperCAmelCase_: Dict = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
UpperCAmelCase_: List[str] = len(SCREAMING_SNAKE_CASE_ ) > max_length
if needs_to_be_truncated:
UpperCAmelCase_: List[str] = processed_features[self.model_input_names[0]][:max_length]
if "attention_mask" in processed_features:
UpperCAmelCase_: Optional[Any] = processed_features["""attention_mask"""][:max_length]
return processed_features
def __snake_case (self, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=None ) -> Optional[int]:
# Get padding strategy
if padding is not False:
if padding is True:
UpperCAmelCase_: Optional[int] = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch
elif not isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ):
UpperCAmelCase_: List[Any] = PaddingStrategy(SCREAMING_SNAKE_CASE_ )
elif isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ):
UpperCAmelCase_: Optional[int] = padding
else:
UpperCAmelCase_: Optional[Any] = PaddingStrategy.DO_NOT_PAD
# Set max length if needed
if max_length is None:
if padding_strategy == PaddingStrategy.MAX_LENGTH:
raise ValueError(
f'When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined' )
# Test if we have a padding value
if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None):
raise ValueError(
"""Asking to pad but the feature_extractor does not have a padding value. Please select a value to use"""
""" as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.""" )
return padding_strategy
| 147
|
from torch import nn
def lowerCAmelCase_ (lowerCAmelCase__: Optional[int] ):
"""simple docstring"""
if act_fn in ["swish", "silu"]:
return nn.SiLU()
elif act_fn == "mish":
return nn.Mish()
elif act_fn == "gelu":
return nn.GELU()
else:
raise ValueError(F'Unsupported activation function: {act_fn}' )
| 147
| 1
|
'''simple docstring'''
import torch
from diffusers import DDIMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class UpperCamelCase__( lowerCAmelCase ):
__magic_name__ : Optional[int] = (DDIMParallelScheduler,)
__magic_name__ : Any = (("eta", 0.0), ("num_inference_steps", 50))
def a__( self : List[Any] , **lowerCAmelCase : Optional[int] )-> Dict:
"""simple docstring"""
UpperCAmelCase = {
'''num_train_timesteps''': 1000,
'''beta_start''': 0.0001,
'''beta_end''': 0.02,
'''beta_schedule''': '''linear''',
'''clip_sample''': True,
}
config.update(**lowerCAmelCase )
return config
def a__( self : Union[str, Any] , **lowerCAmelCase : Optional[Any] )-> Tuple:
"""simple docstring"""
UpperCAmelCase = self.scheduler_classes[0]
UpperCAmelCase = self.get_scheduler_config(**lowerCAmelCase )
UpperCAmelCase = scheduler_class(**lowerCAmelCase )
UpperCAmelCase , UpperCAmelCase = 10, 0.0
UpperCAmelCase = self.dummy_model()
UpperCAmelCase = self.dummy_sample_deter
scheduler.set_timesteps(lowerCAmelCase )
for t in scheduler.timesteps:
UpperCAmelCase = model(lowerCAmelCase , lowerCAmelCase )
UpperCAmelCase = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ).prev_sample
return sample
def a__( self : str )-> str:
"""simple docstring"""
for timesteps in [100, 500, 1000]:
self.check_over_configs(num_train_timesteps=lowerCAmelCase )
def a__( self : Optional[int] )-> List[Any]:
"""simple docstring"""
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=lowerCAmelCase )
UpperCAmelCase = self.scheduler_classes[0]
UpperCAmelCase = self.get_scheduler_config(steps_offset=1 )
UpperCAmelCase = scheduler_class(**lowerCAmelCase )
scheduler.set_timesteps(5 )
assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) )
def a__( self : Union[str, Any] )-> Optional[Any]:
"""simple docstring"""
for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=lowerCAmelCase , beta_end=lowerCAmelCase )
def a__( self : str )-> List[Any]:
"""simple docstring"""
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=lowerCAmelCase )
def a__( self : int )-> str:
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=lowerCAmelCase )
def a__( self : List[Any] )-> Any:
"""simple docstring"""
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=lowerCAmelCase )
def a__( self : Union[str, Any] )-> List[str]:
"""simple docstring"""
for timestep_spacing in ["trailing", "leading"]:
self.check_over_configs(timestep_spacing=lowerCAmelCase )
def a__( self : int )-> Tuple:
"""simple docstring"""
for rescale_betas_zero_snr in [True, False]:
self.check_over_configs(rescale_betas_zero_snr=lowerCAmelCase )
def a__( self : int )-> Tuple:
"""simple docstring"""
self.check_over_configs(thresholding=lowerCAmelCase )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(
thresholding=lowerCAmelCase , prediction_type=lowerCAmelCase , sample_max_value=lowerCAmelCase , )
def a__( self : Union[str, Any] )-> Tuple:
"""simple docstring"""
for t in [1, 10, 49]:
self.check_over_forward(time_step=lowerCAmelCase )
def a__( self : Tuple )-> Dict:
"""simple docstring"""
for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ):
self.check_over_forward(time_step=lowerCAmelCase , num_inference_steps=lowerCAmelCase )
def a__( self : Dict )-> Tuple:
"""simple docstring"""
for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ):
self.check_over_forward(time_step=lowerCAmelCase , eta=lowerCAmelCase )
def a__( self : Optional[int] )-> Optional[int]:
"""simple docstring"""
UpperCAmelCase = self.scheduler_classes[0]
UpperCAmelCase = self.get_scheduler_config()
UpperCAmelCase = scheduler_class(**lowerCAmelCase )
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.14771 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.32460 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.00979 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1E-5
def a__( self : str )-> List[str]:
"""simple docstring"""
UpperCAmelCase = self.scheduler_classes[0]
UpperCAmelCase = self.get_scheduler_config()
UpperCAmelCase = scheduler_class(**lowerCAmelCase )
UpperCAmelCase , UpperCAmelCase = 10, 0.0
scheduler.set_timesteps(lowerCAmelCase )
UpperCAmelCase = self.dummy_model()
UpperCAmelCase = self.dummy_sample_deter
UpperCAmelCase = self.dummy_sample_deter + 0.1
UpperCAmelCase = self.dummy_sample_deter - 0.1
UpperCAmelCase = samplea.shape[0]
UpperCAmelCase = torch.stack([samplea, samplea, samplea] , dim=0 )
UpperCAmelCase = torch.arange(lowerCAmelCase )[0:3, None].repeat(1 , lowerCAmelCase )
UpperCAmelCase = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) )
UpperCAmelCase = scheduler.batch_step_no_noise(lowerCAmelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , lowerCAmelCase )
UpperCAmelCase = torch.sum(torch.abs(lowerCAmelCase ) )
UpperCAmelCase = torch.mean(torch.abs(lowerCAmelCase ) )
assert abs(result_sum.item() - 1147.7904 ) < 1E-2
assert abs(result_mean.item() - 0.4982 ) < 1E-3
def a__( self : Union[str, Any] )-> Optional[Any]:
"""simple docstring"""
UpperCAmelCase = self.full_loop()
UpperCAmelCase = torch.sum(torch.abs(lowerCAmelCase ) )
UpperCAmelCase = torch.mean(torch.abs(lowerCAmelCase ) )
assert abs(result_sum.item() - 172.0067 ) < 1E-2
assert abs(result_mean.item() - 0.223967 ) < 1E-3
def a__( self : Optional[Any] )-> Dict:
"""simple docstring"""
UpperCAmelCase = self.full_loop(prediction_type='''v_prediction''' )
UpperCAmelCase = torch.sum(torch.abs(lowerCAmelCase ) )
UpperCAmelCase = torch.mean(torch.abs(lowerCAmelCase ) )
assert abs(result_sum.item() - 52.5302 ) < 1E-2
assert abs(result_mean.item() - 0.0684 ) < 1E-3
def a__( self : Dict )-> Any:
"""simple docstring"""
UpperCAmelCase = self.full_loop(set_alpha_to_one=lowerCAmelCase , beta_start=0.01 )
UpperCAmelCase = torch.sum(torch.abs(lowerCAmelCase ) )
UpperCAmelCase = torch.mean(torch.abs(lowerCAmelCase ) )
assert abs(result_sum.item() - 149.8295 ) < 1E-2
assert abs(result_mean.item() - 0.1951 ) < 1E-3
def a__( self : Optional[int] )-> int:
"""simple docstring"""
UpperCAmelCase = self.full_loop(set_alpha_to_one=lowerCAmelCase , beta_start=0.01 )
UpperCAmelCase = torch.sum(torch.abs(lowerCAmelCase ) )
UpperCAmelCase = torch.mean(torch.abs(lowerCAmelCase ) )
assert abs(result_sum.item() - 149.0784 ) < 1E-2
assert abs(result_mean.item() - 0.1941 ) < 1E-3
| 357
|
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowercase : int = logging.get_logger(__name__)
_lowercase : Optional[Any] = {"""openai-gpt""": """https://huggingface.co/openai-gpt/resolve/main/config.json"""}
class UpperCamelCase__( lowerCAmelCase ):
__magic_name__ : Union[str, Any] = "openai-gpt"
__magic_name__ : Optional[int] = {
"max_position_embeddings": "n_positions",
"hidden_size": "n_embd",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self : Optional[int] , lowerCAmelCase : Optional[Any]=40478 , lowerCAmelCase : str=512 , lowerCAmelCase : List[Any]=768 , lowerCAmelCase : Tuple=12 , lowerCAmelCase : int=12 , lowerCAmelCase : List[str]="gelu" , lowerCAmelCase : List[str]=0.1 , lowerCAmelCase : List[Any]=0.1 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : Tuple=1E-5 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : Optional[int]="cls_index" , lowerCAmelCase : Dict=True , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Dict=True , lowerCAmelCase : int=0.1 , **lowerCAmelCase : Optional[int] , )-> str:
"""simple docstring"""
UpperCAmelCase = vocab_size
UpperCAmelCase = n_positions
UpperCAmelCase = n_embd
UpperCAmelCase = n_layer
UpperCAmelCase = n_head
UpperCAmelCase = afn
UpperCAmelCase = resid_pdrop
UpperCAmelCase = embd_pdrop
UpperCAmelCase = attn_pdrop
UpperCAmelCase = layer_norm_epsilon
UpperCAmelCase = initializer_range
UpperCAmelCase = summary_type
UpperCAmelCase = summary_use_proj
UpperCAmelCase = summary_activation
UpperCAmelCase = summary_first_dropout
UpperCAmelCase = summary_proj_to_labels
super().__init__(**lowerCAmelCase )
| 91
| 0
|
import numpy as np
import qiskit
def SCREAMING_SNAKE_CASE__ ( __a = 8 , __a = None ):
snake_case_ : str = np.random.default_rng(seed=__a )
# Roughly 25% of the qubits will contribute to the key.
# So we take more than we need.
snake_case_ : Tuple = 6 * key_len
# Measurement basis for Alice's qubits.
snake_case_ : Optional[Any] = rng.integers(2 , size=__a )
# The set of states Alice will prepare.
snake_case_ : str = rng.integers(2 , size=__a )
# Measurement basis for Bob's qubits.
snake_case_ : str = rng.integers(2 , size=__a )
# Quantum Circuit to simulate BB84
snake_case_ : str = qiskit.QuantumCircuit(__a , name='BB84' )
# Alice prepares her qubits according to rules above.
for index, _ in enumerate(__a ):
if alice_state[index] == 1:
bbaa_circ.x(__a )
if alice_basis[index] == 1:
bbaa_circ.h(__a )
bbaa_circ.barrier()
# Bob measures the received qubits according to rules above.
for index, _ in enumerate(__a ):
if bob_basis[index] == 1:
bbaa_circ.h(__a )
bbaa_circ.barrier()
bbaa_circ.measure_all()
# Simulate the quantum circuit.
snake_case_ : Optional[Any] = qiskit.Aer.get_backend('aer_simulator' )
# We only need to run one shot because the key is unique.
# Multiple shots will produce the same key.
snake_case_ : List[str] = qiskit.execute(__a , __a , shots=1 , seed_simulator=__a )
# Returns the result of measurement.
snake_case_ : Union[str, Any] = job.result().get_counts(__a ).most_frequent()
# Extracting the generated key from the simulation results.
# Only keep measurement results where Alice and Bob chose the same basis.
snake_case_ : int = ''.join(
[
result_bit
for alice_basis_bit, bob_basis_bit, result_bit in zip(
__a , __a , __a )
if alice_basis_bit == bob_basis_bit
] )
# Get final key. Pad with 0 if too short, otherwise truncate.
snake_case_ : Dict = gen_key[:key_len] if len(__a ) >= key_len else gen_key.ljust(__a , '0' )
return key
if __name__ == "__main__":
print(F'''The generated key is : {bbaa(8, seed=0)}''')
from doctest import testmod
testmod()
| 327
|
def SCREAMING_SNAKE_CASE__ ( __a , __a ):
while b:
snake_case_ ,snake_case_ : Any = b, a % b
return a
def SCREAMING_SNAKE_CASE__ ( __a , __a ):
return a if b == 0 else euclidean_gcd_recursive(__a , a % b )
def SCREAMING_SNAKE_CASE__ ( ):
print(f"""euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}""" )
print(f"""euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}""" )
print(f"""euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}""" )
print(f"""euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}""" )
print(f"""euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}""" )
print(f"""euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}""" )
print(f"""euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}""" )
print(f"""euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}""" )
print(f"""euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}""" )
print(f"""euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}""" )
if __name__ == "__main__":
main()
| 327
| 1
|
'''simple docstring'''
def a_ ( _UpperCAmelCase : list ,_UpperCAmelCase : int ,_UpperCAmelCase : int = 0 ,_UpperCAmelCase : int = 0 ) -> int:
__snake_case : List[str] = right or len(lowercase__ ) - 1
if left > right:
return -1
elif list_data[left] == key:
return left
elif list_data[right] == key:
return right
else:
return search(lowercase__ ,lowercase__ ,left + 1 ,right - 1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 350
|
'''simple docstring'''
from __future__ import annotations
A__ : str = '''Muhammad Umer Farooq'''
A__ : int = '''MIT'''
A__ : Optional[int] = '''1.0.0'''
A__ : List[Any] = '''Muhammad Umer Farooq'''
A__ : Optional[Any] = '''contact@muhammadumerfarooq.me'''
A__ : Optional[Any] = '''Alpha'''
import re
from html.parser import HTMLParser
from urllib import parse
import requests
class snake_case__ ( SCREAMING_SNAKE_CASE_ ):
def __init__( self : Union[str, Any] , __a : str ) -> None:
'''simple docstring'''
super().__init__()
__snake_case : list[str] = []
__snake_case : Dict = domain
def A_ ( self : Dict , __a : str , __a : list[tuple[str, str | None]] ) -> None:
'''simple docstring'''
# Only parse the 'anchor' tag.
if tag == "a":
# Check the list of defined attributes.
for name, value in attrs:
# If href is defined, and not empty nor # print it.
if name == "href" and value != "#" and value != "":
# If not already in urls.
if value not in self.urls:
__snake_case : Optional[Any] = parse.urljoin(self.domain , __a )
self.urls.append(__a )
def a_ ( _UpperCAmelCase : str ) -> str:
return ".".join(get_sub_domain_name(_UpperCAmelCase ).split('.' )[-2:] )
def a_ ( _UpperCAmelCase : str ) -> str:
return parse.urlparse(_UpperCAmelCase ).netloc
def a_ ( _UpperCAmelCase : str = "https://github.com" ) -> list[str]:
__snake_case : List[Any] = get_domain_name(_UpperCAmelCase )
# Initialize the parser
__snake_case : Tuple = Parser(_UpperCAmelCase )
try:
# Open URL
__snake_case : Any = requests.get(_UpperCAmelCase )
# pass the raw HTML to the parser to get links
parser.feed(r.text )
# Get links and loop through
__snake_case : Dict = set()
for link in parser.urls:
# open URL.
# read = requests.get(link)
try:
__snake_case : List[Any] = requests.get(_UpperCAmelCase )
# Get the valid email.
__snake_case : Optional[Any] = re.findall('[a-zA-Z0-9]+@' + domain ,read.text )
# If not in list then append it.
for email in emails:
valid_emails.add(_UpperCAmelCase )
except ValueError:
pass
except ValueError:
raise SystemExit(1 )
# Finally return a sorted list of email addresses with no duplicates.
return sorted(_UpperCAmelCase )
if __name__ == "__main__":
A__ : Tuple = emails_from_url('''https://github.com''')
print(F"""{len(emails)} emails found:""")
print('''\n'''.join(sorted(emails)))
| 0
| 0
|
"""simple docstring"""
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ChineseCLIPImageProcessor
class _A ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : Optional[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : str=7 , __UpperCAmelCase : str=3 , __UpperCAmelCase : Tuple=18 , __UpperCAmelCase : Dict=30 , __UpperCAmelCase : Any=400 , __UpperCAmelCase : List[Any]=True , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Any=True , __UpperCAmelCase : Optional[Any]=None , __UpperCAmelCase : Tuple=True , __UpperCAmelCase : Tuple=[0.48_145_466, 0.4_578_275, 0.40_821_073] , __UpperCAmelCase : Optional[Any]=[0.26_862_954, 0.26_130_258, 0.27_577_711] , __UpperCAmelCase : Union[str, Any]=True , ):
a : int = size if size is not None else {"height": 224, "width": 224}
a : List[str] = crop_size if crop_size is not None else {"height": 18, "width": 18}
a : List[Any] = parent
a : Any = batch_size
a : str = num_channels
a : Optional[int] = image_size
a : Tuple = min_resolution
a : str = max_resolution
a : Dict = do_resize
a : Any = size
a : Dict = do_center_crop
a : List[str] = crop_size
a : str = do_normalize
a : Optional[int] = image_mean
a : Tuple = image_std
a : Any = do_convert_rgb
def __snake_case ( self : Union[str, Any]):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_convert_rgb": self.do_convert_rgb,
}
def __snake_case ( self : Dict , __UpperCAmelCase : Optional[Any]=False , __UpperCAmelCase : List[Any]=False , __UpperCAmelCase : Any=False):
assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"
if equal_resolution:
a : str = []
for i in range(self.batch_size):
image_inputs.append(
np.random.randint(
255 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta))
else:
a : Tuple = []
for i in range(self.batch_size):
a , a : List[str] = np.random.choice(np.arange(self.min_resolution , self.max_resolution) , 2)
image_inputs.append(np.random.randint(255 , size=(self.num_channels, width, height) , dtype=np.uinta))
if not numpify and not torchify:
# PIL expects the channel dimension as last dimension
a : List[Any] = [Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1)) for x in image_inputs]
if torchify:
a : Optional[Any] = [torch.from_numpy(__UpperCAmelCase) for x in image_inputs]
return image_inputs
@require_torch
@require_vision
class _A ( _a ,unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase : Union[str, Any] = ChineseCLIPImageProcessor if is_vision_available() else None
def __snake_case ( self : List[str]):
a : Dict = ChineseCLIPImageProcessingTester(self , do_center_crop=__UpperCAmelCase)
@property
def __snake_case ( self : Union[str, Any]):
return self.image_processor_tester.prepare_image_processor_dict()
def __snake_case ( self : str):
a : Optional[int] = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(__UpperCAmelCase , "do_resize"))
self.assertTrue(hasattr(__UpperCAmelCase , "size"))
self.assertTrue(hasattr(__UpperCAmelCase , "do_center_crop"))
self.assertTrue(hasattr(__UpperCAmelCase , "center_crop"))
self.assertTrue(hasattr(__UpperCAmelCase , "do_normalize"))
self.assertTrue(hasattr(__UpperCAmelCase , "image_mean"))
self.assertTrue(hasattr(__UpperCAmelCase , "image_std"))
self.assertTrue(hasattr(__UpperCAmelCase , "do_convert_rgb"))
def __snake_case ( self : Any):
a : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict)
self.assertEqual(image_processor.size , {"height": 224, "width": 224})
self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18})
a : int = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84)
self.assertEqual(image_processor.size , {"shortest_edge": 42})
self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84})
def __snake_case ( self : str):
pass
def __snake_case ( self : Tuple):
# Initialize image_processing
a : Union[str, Any] = self.image_processing_class(**self.image_processor_dict)
# create random PIL images
a : Any = self.image_processor_tester.prepare_inputs(equal_resolution=__UpperCAmelCase)
for image in image_inputs:
self.assertIsInstance(__UpperCAmelCase , Image.Image)
# Test not batched input
a : str = image_processing(image_inputs[0] , return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
a : Dict = image_processing(__UpperCAmelCase , return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
def __snake_case ( self : List[Any]):
# Initialize image_processing
a : str = self.image_processing_class(**self.image_processor_dict)
# create random numpy tensors
a : Any = self.image_processor_tester.prepare_inputs(equal_resolution=__UpperCAmelCase , numpify=__UpperCAmelCase)
for image in image_inputs:
self.assertIsInstance(__UpperCAmelCase , np.ndarray)
# Test not batched input
a : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
a : Union[str, Any] = image_processing(__UpperCAmelCase , return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
def __snake_case ( self : List[str]):
# Initialize image_processing
a : str = self.image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
a : Tuple = self.image_processor_tester.prepare_inputs(equal_resolution=__UpperCAmelCase , torchify=__UpperCAmelCase)
for image in image_inputs:
self.assertIsInstance(__UpperCAmelCase , torch.Tensor)
# Test not batched input
a : List[str] = image_processing(image_inputs[0] , return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
a : str = image_processing(__UpperCAmelCase , return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
@require_torch
@require_vision
class _A ( _a ,unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase : Optional[int] = ChineseCLIPImageProcessor if is_vision_available() else None
def __snake_case ( self : Union[str, Any]):
a : str = ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=__UpperCAmelCase)
a : Dict = 3
@property
def __snake_case ( self : Optional[Any]):
return self.image_processor_tester.prepare_image_processor_dict()
def __snake_case ( self : Optional[int]):
a : Tuple = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(__UpperCAmelCase , "do_resize"))
self.assertTrue(hasattr(__UpperCAmelCase , "size"))
self.assertTrue(hasattr(__UpperCAmelCase , "do_center_crop"))
self.assertTrue(hasattr(__UpperCAmelCase , "center_crop"))
self.assertTrue(hasattr(__UpperCAmelCase , "do_normalize"))
self.assertTrue(hasattr(__UpperCAmelCase , "image_mean"))
self.assertTrue(hasattr(__UpperCAmelCase , "image_std"))
self.assertTrue(hasattr(__UpperCAmelCase , "do_convert_rgb"))
def __snake_case ( self : Any):
pass
def __snake_case ( self : Union[str, Any]):
# Initialize image_processing
a : List[Any] = self.image_processing_class(**self.image_processor_dict)
# create random PIL images
a : str = self.image_processor_tester.prepare_inputs(equal_resolution=__UpperCAmelCase)
for image in image_inputs:
self.assertIsInstance(__UpperCAmelCase , Image.Image)
# Test not batched input
a : Tuple = image_processing(image_inputs[0] , return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.expected_encoded_image_num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
a : Optional[Any] = image_processing(__UpperCAmelCase , return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.expected_encoded_image_num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
| 40
|
"""simple docstring"""
from __future__ import annotations
class _A :
"""simple docstring"""
def __init__( self : List[str] , __UpperCAmelCase : int = 0):
a : Tuple = key
def __snake_case ( self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : int):
assert isinstance(__UpperCAmelCase , __UpperCAmelCase) and isinstance(__UpperCAmelCase , __UpperCAmelCase)
a : Dict = key or self.__key or 1
# make sure key is an appropriate size
key %= 255
return [chr(ord(__UpperCAmelCase) ^ key) for ch in content]
def __snake_case ( self : int , __UpperCAmelCase : str , __UpperCAmelCase : int):
assert isinstance(__UpperCAmelCase , __UpperCAmelCase) and isinstance(__UpperCAmelCase , __UpperCAmelCase)
a : Optional[Any] = key or self.__key or 1
# make sure key is an appropriate size
key %= 255
return [chr(ord(__UpperCAmelCase) ^ key) for ch in content]
def __snake_case ( self : Optional[Any] , __UpperCAmelCase : str , __UpperCAmelCase : int = 0):
assert isinstance(__UpperCAmelCase , __UpperCAmelCase) and isinstance(__UpperCAmelCase , __UpperCAmelCase)
a : List[Any] = key or self.__key or 1
# make sure key can be any size
while key > 255:
key -= 255
# This will be returned
a : Any = ""
for ch in content:
ans += chr(ord(__UpperCAmelCase) ^ key)
return ans
def __snake_case ( self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : int = 0):
assert isinstance(__UpperCAmelCase , __UpperCAmelCase) and isinstance(__UpperCAmelCase , __UpperCAmelCase)
a : Dict = key or self.__key or 1
# make sure key can be any size
while key > 255:
key -= 255
# This will be returned
a : str = ""
for ch in content:
ans += chr(ord(__UpperCAmelCase) ^ key)
return ans
def __snake_case ( self : int , __UpperCAmelCase : str , __UpperCAmelCase : int = 0):
assert isinstance(__UpperCAmelCase , __UpperCAmelCase) and isinstance(__UpperCAmelCase , __UpperCAmelCase)
try:
with open(__UpperCAmelCase) as fin, open("encrypt.out" , "w+") as fout:
# actual encrypt-process
for line in fin:
fout.write(self.encrypt_string(__UpperCAmelCase , __UpperCAmelCase))
except OSError:
return False
return True
def __snake_case ( self : Any , __UpperCAmelCase : str , __UpperCAmelCase : int):
assert isinstance(__UpperCAmelCase , __UpperCAmelCase) and isinstance(__UpperCAmelCase , __UpperCAmelCase)
try:
with open(__UpperCAmelCase) as fin, open("decrypt.out" , "w+") as fout:
# actual encrypt-process
for line in fin:
fout.write(self.decrypt_string(__UpperCAmelCase , __UpperCAmelCase))
except OSError:
return False
return True
# Tests
# crypt = XORCipher()
# key = 67
# # test encrypt
# print(crypt.encrypt("hallo welt",key))
# # test decrypt
# print(crypt.decrypt(crypt.encrypt("hallo welt",key), key))
# # test encrypt_string
# print(crypt.encrypt_string("hallo welt",key))
# # test decrypt_string
# print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key))
# if (crypt.encrypt_file("test.txt",key)):
# print("encrypt successful")
# else:
# print("encrypt unsuccessful")
# if (crypt.decrypt_file("encrypt.out",key)):
# print("decrypt successful")
# else:
# print("decrypt unsuccessful")
| 40
| 1
|
import logging
from pathlib import Path
import numpy as np
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.utilities import rank_zero_only
from utils_rag import save_json
def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Any ) -> Optional[int]:
"""simple docstring"""
UpperCamelCase :int = filter(lambda __magic_name__ : p.requires_grad , model.parameters() )
UpperCamelCase :List[str] = sum([np.prod(p.size() ) for p in model_parameters] )
return params
UpperCAmelCase_ : List[Any] = logging.getLogger(__name__)
def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Any , __magic_name__ : Dict ) -> Union[str, Any]:
"""simple docstring"""
if metric == "rouge2":
UpperCamelCase :str = """{val_avg_rouge2:.4f}-{step_count}"""
elif metric == "bleu":
UpperCamelCase :Dict = """{val_avg_bleu:.4f}-{step_count}"""
elif metric == "em":
UpperCamelCase :List[Any] = """{val_avg_em:.4f}-{step_count}"""
else:
raise NotImplementedError(
f"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this"""
""" function.""" )
UpperCamelCase :Any = ModelCheckpoint(
dirpath=__magic_name__ , filename=__magic_name__ , monitor=f"""val_{metric}""" , mode="""max""" , save_top_k=3 , every_n_epochs=1 , )
return checkpoint_callback
def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] ) -> Dict:
"""simple docstring"""
return EarlyStopping(
monitor=f"""val_{metric}""" , mode="""min""" if """loss""" in metric else """max""" , patience=__magic_name__ , verbose=__magic_name__ , )
class _SCREAMING_SNAKE_CASE ( pl.Callback ):
def _A ( self : Tuple , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] ):
UpperCamelCase :List[Any] = {F"""lr_group_{i}""": param["""lr"""] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )}
pl_module.logger.log_metrics(__lowerCamelCase )
@rank_zero_only
def _A ( self : int , __lowerCamelCase : pl.Trainer , __lowerCamelCase : pl.LightningModule , __lowerCamelCase : str , __lowerCamelCase : List[str]=True ):
logger.info(F"""***** {type_path} results at step {trainer.global_step:05d} *****""" )
UpperCamelCase :Optional[Any] = trainer.callback_metrics
trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["""log""", """progress_bar""", """preds"""]} )
# Log results
UpperCamelCase :int = Path(pl_module.hparams.output_dir )
if type_path == "test":
UpperCamelCase :List[Any] = od / """test_results.txt"""
UpperCamelCase :Tuple = od / """test_generations.txt"""
else:
# this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json
# If people want this it will be easy enough to add back.
UpperCamelCase :Optional[int] = od / F"""{type_path}_results/{trainer.global_step:05d}.txt"""
UpperCamelCase :Any = od / F"""{type_path}_generations/{trainer.global_step:05d}.txt"""
results_file.parent.mkdir(exist_ok=__lowerCamelCase )
generations_file.parent.mkdir(exist_ok=__lowerCamelCase )
with open(__lowerCamelCase , """a+""" ) as writer:
for key in sorted(__lowerCamelCase ):
if key in ["log", "progress_bar", "preds"]:
continue
UpperCamelCase :Any = metrics[key]
if isinstance(__lowerCamelCase , torch.Tensor ):
UpperCamelCase :int = val.item()
UpperCamelCase :Union[str, Any] = F"""{key}: {val:.6f}\n"""
writer.write(__lowerCamelCase )
if not save_generations:
return
if "preds" in metrics:
UpperCamelCase :Optional[int] = """\n""".join(metrics["""preds"""] )
generations_file.open("""w+""" ).write(__lowerCamelCase )
@rank_zero_only
def _A ( self : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : str ):
try:
UpperCamelCase :Any = pl_module.model.model.num_parameters()
except AttributeError:
UpperCamelCase :List[str] = pl_module.model.num_parameters()
UpperCamelCase :List[Any] = count_trainable_parameters(__lowerCamelCase )
# mp stands for million parameters
trainer.logger.log_metrics({"""n_params""": npars, """mp""": npars / 1E6, """grad_mp""": n_trainable_pars / 1E6} )
@rank_zero_only
def _A ( self : Dict , __lowerCamelCase : pl.Trainer , __lowerCamelCase : pl.LightningModule ):
save_json(pl_module.metrics , pl_module.metrics_save_path )
return self._write_logs(__lowerCamelCase , __lowerCamelCase , """test""" )
@rank_zero_only
def _A ( self : Any , __lowerCamelCase : pl.Trainer , __lowerCamelCase : Union[str, Any] ):
save_json(pl_module.metrics , pl_module.metrics_save_path )
# Uncommenting this will save val generations
# return self._write_logs(trainer, pl_module, "valid")
| 357
|
def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int = 1000 ) -> int:
"""simple docstring"""
return sum(e for e in range(3 , __magic_name__ ) if e % 3 == 0 or e % 5 == 0 )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 62
| 0
|
'''simple docstring'''
import os
def SCREAMING_SNAKE_CASE__ ( __A = "input.txt" ) -> int:
with open(os.path.join(os.path.dirname(__A ) , __A ) ) as input_file:
_snake_case = [
[int(__A ) for element in line.split(',' )]
for line in input_file.readlines()
]
_snake_case = len(__A )
_snake_case = len(matrix[0] )
_snake_case = [[-1 for _ in range(__A )] for _ in range(__A )]
for i in range(__A ):
_snake_case = matrix[i][0]
for j in range(1 , __A ):
for i in range(__A ):
_snake_case = minimal_path_sums[i][j - 1] + matrix[i][j]
for i in range(1 , __A ):
_snake_case = min(
minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] )
for i in range(rows - 2 , -1 , -1 ):
_snake_case = min(
minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] )
return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 42
|
'''simple docstring'''
import argparse
import os
from io import BytesIO
from pathlib import Path
import requests
from clip_retrieval.clip_client import ClipClient
from PIL import Image
from tqdm import tqdm
def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> List[str]:
UpperCamelCase = 1.5
UpperCamelCase = int(factor * num_class_images )
UpperCamelCase = ClipClient(
url="""https://knn.laion.ai/knn-service""" , indice_name="""laion_400m""" , num_images=__UpperCamelCase , aesthetic_weight=0.1 )
os.makedirs(F"{class_data_dir}/images" , exist_ok=__UpperCamelCase )
if len(list(Path(F"{class_data_dir}/images" ).iterdir() ) ) >= num_class_images:
return
while True:
UpperCamelCase = client.query(text=__UpperCamelCase )
if len(__UpperCamelCase ) >= factor * num_class_images or num_images > 1E4:
break
else:
UpperCamelCase = int(factor * num_images )
UpperCamelCase = ClipClient(
url="""https://knn.laion.ai/knn-service""" , indice_name="""laion_400m""" , num_images=__UpperCamelCase , aesthetic_weight=0.1 , )
UpperCamelCase = 0
UpperCamelCase = 0
UpperCamelCase = tqdm(desc="""downloading real regularization images""" , total=__UpperCamelCase )
with open(F"{class_data_dir}/caption.txt" , """w""" ) as fa, open(F"{class_data_dir}/urls.txt" , """w""" ) as fa, open(
F"{class_data_dir}/images.txt" , """w""" ) as fa:
while total < num_class_images:
UpperCamelCase = class_images[count]
count += 1
try:
UpperCamelCase = requests.get(images["""url"""] )
if img.status_code == 200:
UpperCamelCase = Image.open(BytesIO(img.content ) )
with open(F"{class_data_dir}/images/{total}.jpg" , """wb""" ) as f:
f.write(img.content )
fa.write(images["""caption"""] + """\n""" )
fa.write(images["""url"""] + """\n""" )
fa.write(F"{class_data_dir}/images/{total}.jpg" + """\n""" )
total += 1
pbar.update(1 )
else:
continue
except Exception:
continue
return
def lowercase__ ( )-> str:
UpperCamelCase = argparse.ArgumentParser("""""" , add_help=__UpperCamelCase )
parser.add_argument("""--class_prompt""" , help="""text prompt to retrieve images""" , required=__UpperCamelCase , type=__UpperCamelCase )
parser.add_argument("""--class_data_dir""" , help="""path to save images""" , required=__UpperCamelCase , type=__UpperCamelCase )
parser.add_argument("""--num_class_images""" , help="""number of images to download""" , default=200 , type=__UpperCamelCase )
return parser.parse_args()
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = parse_args()
retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
| 321
| 0
|
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor
from transformers.image_utils import PILImageResampling
from transformers.utils import logging
logging.set_verbosity_info()
__lowercase: Tuple = logging.get_logger(__name__)
def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Tuple , _UpperCamelCase : Optional[int]=False , _UpperCamelCase : str=False ) -> Any:
'''simple docstring'''
UpperCamelCase__ = "backbone." if is_semantic else ""
UpperCamelCase__ = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F'{prefix}blocks.{i}.norm1.weight', F'beit.encoder.layer.{i}.layernorm_before.weight') )
rename_keys.append((F'{prefix}blocks.{i}.norm1.bias', F'beit.encoder.layer.{i}.layernorm_before.bias') )
rename_keys.append(
(F'{prefix}blocks.{i}.attn.proj.weight', F'beit.encoder.layer.{i}.attention.output.dense.weight') )
rename_keys.append(
(F'{prefix}blocks.{i}.attn.proj.bias', F'beit.encoder.layer.{i}.attention.output.dense.bias') )
rename_keys.append((F'{prefix}blocks.{i}.norm2.weight', F'beit.encoder.layer.{i}.layernorm_after.weight') )
rename_keys.append((F'{prefix}blocks.{i}.norm2.bias', F'beit.encoder.layer.{i}.layernorm_after.bias') )
rename_keys.append((F'{prefix}blocks.{i}.mlp.fc1.weight', F'beit.encoder.layer.{i}.intermediate.dense.weight') )
rename_keys.append((F'{prefix}blocks.{i}.mlp.fc1.bias', F'beit.encoder.layer.{i}.intermediate.dense.bias') )
rename_keys.append((F'{prefix}blocks.{i}.mlp.fc2.weight', F'beit.encoder.layer.{i}.output.dense.weight') )
rename_keys.append((F'{prefix}blocks.{i}.mlp.fc2.bias', F'beit.encoder.layer.{i}.output.dense.bias') )
# projection layer + position embeddings
rename_keys.extend(
[
(F'{prefix}cls_token', "beit.embeddings.cls_token"),
(F'{prefix}patch_embed.proj.weight', "beit.embeddings.patch_embeddings.projection.weight"),
(F'{prefix}patch_embed.proj.bias', "beit.embeddings.patch_embeddings.projection.bias"),
(F'{prefix}pos_embed', "beit.embeddings.position_embeddings"),
] )
if has_lm_head:
# mask token + layernorm
rename_keys.extend(
[
("mask_token", "beit.embeddings.mask_token"),
("norm.weight", "layernorm.weight"),
("norm.bias", "layernorm.bias"),
] )
else:
# layernorm + classification head
rename_keys.extend(
[
("fc_norm.weight", "beit.pooler.layernorm.weight"),
("fc_norm.bias", "beit.pooler.layernorm.bias"),
("head.weight", "classifier.weight"),
("head.bias", "classifier.bias"),
] )
return rename_keys
def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Optional[int] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : List[str]=False , _UpperCamelCase : Union[str, Any]=False ) -> Optional[int]:
'''simple docstring'''
for i in range(config.num_hidden_layers ):
UpperCamelCase__ = "backbone." if is_semantic else ""
# queries, keys and values
UpperCamelCase__ = state_dict.pop(F'{prefix}blocks.{i}.attn.qkv.weight' )
UpperCamelCase__ = state_dict.pop(F'{prefix}blocks.{i}.attn.q_bias' )
UpperCamelCase__ = state_dict.pop(F'{prefix}blocks.{i}.attn.v_bias' )
UpperCamelCase__ = in_proj_weight[
: config.hidden_size, :
]
UpperCamelCase__ = q_bias
UpperCamelCase__ = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
UpperCamelCase__ = in_proj_weight[
-config.hidden_size :, :
]
UpperCamelCase__ = v_bias
# gamma_1 and gamma_2
# we call them lambda because otherwise they are renamed when using .from_pretrained
UpperCamelCase__ = state_dict.pop(F'{prefix}blocks.{i}.gamma_1' )
UpperCamelCase__ = state_dict.pop(F'{prefix}blocks.{i}.gamma_2' )
UpperCamelCase__ = gamma_a
UpperCamelCase__ = gamma_a
def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Any , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] ) -> Any:
'''simple docstring'''
UpperCamelCase__ = dct.pop(_UpperCamelCase )
UpperCamelCase__ = val
def SCREAMING_SNAKE_CASE__( ) -> Any:
'''simple docstring'''
UpperCamelCase__ = "http://images.cocodataset.org/val2017/000000039769.jpg"
UpperCamelCase__ = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw )
return im
@torch.no_grad()
def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Tuple , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any]=False ) -> Tuple:
'''simple docstring'''
UpperCamelCase__ = False if "rvlcdip" in checkpoint_url else True
UpperCamelCase__ = BeitConfig(use_absolute_position_embeddings=_UpperCamelCase , use_mask_token=_UpperCamelCase )
# size of the architecture
if "large" in checkpoint_url or "dit-l" in checkpoint_url:
UpperCamelCase__ = 10_24
UpperCamelCase__ = 40_96
UpperCamelCase__ = 24
UpperCamelCase__ = 16
# labels
if "rvlcdip" in checkpoint_url:
UpperCamelCase__ = 16
UpperCamelCase__ = "huggingface/label-files"
UpperCamelCase__ = "rvlcdip-id2label.json"
UpperCamelCase__ = json.load(open(hf_hub_download(_UpperCamelCase , _UpperCamelCase , repo_type="dataset" ) , "r" ) )
UpperCamelCase__ = {int(_UpperCamelCase ): v for k, v in idalabel.items()}
UpperCamelCase__ = idalabel
UpperCamelCase__ = {v: k for k, v in idalabel.items()}
# load state_dict of original model, remove and rename some keys
UpperCamelCase__ = torch.hub.load_state_dict_from_url(_UpperCamelCase , map_location="cpu" )["model"]
UpperCamelCase__ = create_rename_keys(_UpperCamelCase , has_lm_head=_UpperCamelCase )
for src, dest in rename_keys:
rename_key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
read_in_q_k_v(_UpperCamelCase , _UpperCamelCase , has_lm_head=_UpperCamelCase )
# load HuggingFace model
UpperCamelCase__ = BeitForMaskedImageModeling(_UpperCamelCase ) if has_lm_head else BeitForImageClassification(_UpperCamelCase )
model.eval()
model.load_state_dict(_UpperCamelCase )
# Check outputs on an image
UpperCamelCase__ = BeitImageProcessor(
size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=_UpperCamelCase )
UpperCamelCase__ = prepare_img()
UpperCamelCase__ = image_processor(images=_UpperCamelCase , return_tensors="pt" )
UpperCamelCase__ = encoding["pixel_values"]
UpperCamelCase__ = model(_UpperCamelCase )
UpperCamelCase__ = outputs.logits
# verify logits
UpperCamelCase__ = [1, 16] if "rvlcdip" in checkpoint_url else [1, 1_96, 81_92]
assert logits.shape == torch.Size(_UpperCamelCase ), "Shape of logits not as expected"
Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase )
print(F'Saving model to {pytorch_dump_folder_path}' )
model.save_pretrained(_UpperCamelCase )
print(F'Saving image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(_UpperCamelCase )
if push_to_hub:
if has_lm_head:
UpperCamelCase__ = "dit-base" if "base" in checkpoint_url else "dit-large"
else:
UpperCamelCase__ = "dit-base-finetuned-rvlcdip" if "dit-b" in checkpoint_url else "dit-large-finetuned-rvlcdip"
image_processor.push_to_hub(
repo_path_or_name=Path(_UpperCamelCase , _UpperCamelCase ) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=_UpperCamelCase , )
model.push_to_hub(
repo_path_or_name=Path(_UpperCamelCase , _UpperCamelCase ) , organization="nielsr" , commit_message="Add model" , use_temp_dir=_UpperCamelCase , )
if __name__ == "__main__":
__lowercase: Optional[int] = argparse.ArgumentParser()
parser.add_argument(
"--checkpoint_url",
default="https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth",
type=str,
help="URL to the original PyTorch checkpoint (.pth file).",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
)
parser.add_argument(
"--push_to_hub",
action="store_true",
)
__lowercase: int = parser.parse_args()
convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 31
|
'''simple docstring'''
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Audio, ClassLabel, Features
from .base import TaskTemplate
@dataclass(frozen=SCREAMING_SNAKE_CASE__)
class UpperCAmelCase ( SCREAMING_SNAKE_CASE__):
_lowerCamelCase : str = field(default='audio-classification' , metadata={'include_in_asdict_even_if_is_default': True})
_lowerCamelCase : ClassVar[Features] = Features({'audio': Audio()})
_lowerCamelCase : ClassVar[Features] = Features({'labels': ClassLabel})
_lowerCamelCase : str = "audio"
_lowerCamelCase : str = "labels"
def lowercase_ ( self : str, a_ : Union[str, Any] ):
"""simple docstring"""
if self.label_column not in features:
raise ValueError(f'Column {self.label_column} is not present in features.' )
if not isinstance(features[self.label_column], a_ ):
raise ValueError(f'Column {self.label_column} is not a ClassLabel.' )
UpperCamelCase__ = copy.deepcopy(self )
UpperCamelCase__ = self.label_schema.copy()
UpperCamelCase__ = features[self.label_column]
UpperCamelCase__ = label_schema
return task_template
@property
def lowercase_ ( self : Any ):
"""simple docstring"""
return {
self.audio_column: "audio",
self.label_column: "labels",
}
| 31
| 1
|
def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int) -> Optional[int]:
'''simple docstring'''
if collection == []:
return []
# get some information about the collection
__UpperCamelCase : Any = len(_lowerCamelCase)
__UpperCamelCase : Dict = max(_lowerCamelCase)
__UpperCamelCase : List[Any] = min(_lowerCamelCase)
# create the counting array
__UpperCamelCase : str = coll_max + 1 - coll_min
__UpperCamelCase : Tuple = [0] * counting_arr_length
# count how much a number appears in the collection
for number in collection:
counting_arr[number - coll_min] += 1
# sum each position with it's predecessors. now, counting_arr[i] tells
# us how many elements <= i has in the collection
for i in range(1 , _lowerCamelCase):
__UpperCamelCase : List[str] = counting_arr[i] + counting_arr[i - 1]
# create the output collection
__UpperCamelCase : int = [0] * coll_len
# place the elements in the output, respecting the original order (stable
# sort) from end to begin, updating counting_arr
for i in reversed(range(0 , _lowerCamelCase)):
__UpperCamelCase : int = collection[i]
counting_arr[collection[i] - coll_min] -= 1
return ordered
def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[int]) -> Union[str, Any]:
'''simple docstring'''
return "".join([chr(_lowerCamelCase) for i in counting_sort([ord(_lowerCamelCase) for c in string])])
if __name__ == "__main__":
# Test string sort
assert counting_sort_string('thisisthestring') == "eghhiiinrsssttt"
lowercase : List[str] = input('Enter numbers separated by a comma:\n').strip()
lowercase : Tuple = [int(item) for item in user_input.split(',')]
print(counting_sort(unsorted))
| 232
|
class lowerCamelCase__ :
'''simple docstring'''
def __init__( self :int ) -> Dict:
__UpperCamelCase : Union[str, Any] = {}
def _lowerCamelCase ( self :str ) -> None:
print(self.vertex )
for i in self.vertex:
print(a , " -> " , " -> ".join([str(a ) for j in self.vertex[i]] ) )
def _lowerCamelCase ( self :List[Any] , a :int , a :int ) -> None:
# check if vertex is already present,
if from_vertex in self.vertex:
self.vertex[from_vertex].append(a )
else:
# else make a new vertex
__UpperCamelCase : Optional[Any] = [to_vertex]
def _lowerCamelCase ( self :Tuple ) -> None:
# visited array for storing already visited nodes
__UpperCamelCase : Dict = [False] * len(self.vertex )
# call the recursive helper function
for i in range(len(self.vertex ) ):
if not visited[i]:
self.dfs_recursive(a , a )
def _lowerCamelCase ( self :Any , a :int , a :list ) -> None:
# mark start vertex as visited
__UpperCamelCase : int = True
print(a , end=" " )
# Recur for all the vertices that are adjacent to this node
for i in self.vertex:
if not visited[i]:
self.dfs_recursive(a , a )
if __name__ == "__main__":
lowercase : Dict = Graph()
g.add_edge(0, 1)
g.add_edge(0, 2)
g.add_edge(1, 2)
g.add_edge(2, 0)
g.add_edge(2, 3)
g.add_edge(3, 3)
g.print_graph()
print('DFS:')
g.dfs()
# OUTPUT:
# 0 -> 1 -> 2
# 1 -> 2
# 2 -> 0 -> 3
# 3 -> 3
# DFS:
# 0 1 2 3
| 232
| 1
|
'''simple docstring'''
from unittest.mock import patch
import pyspark
from datasets.packaged_modules.spark.spark import (
Spark,
SparkExamplesIterable,
_generate_iterable_examples,
)
from ..utils import (
require_dill_gt_0_3_2,
require_not_windows,
)
def __lowerCamelCase ( _lowercase , _lowercase ) -> Dict:
UpperCAmelCase : Dict = []
for part_id in partition_order:
UpperCAmelCase : List[str] = df.where(F'''SPARK_PARTITION_ID() = {part_id}''' ).collect()
for row_idx, row in enumerate(_lowercase ):
expected_row_ids_and_row_dicts.append((F'''{part_id}_{row_idx}''', row.asDict()) )
return expected_row_ids_and_row_dicts
@require_not_windows
@require_dill_gt_0_3_2
def __lowerCamelCase ( ) -> Any:
UpperCAmelCase : Dict = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate()
UpperCAmelCase : Optional[int] = spark.range(1_0_0 ).repartition(1 )
UpperCAmelCase : Dict = Spark(_lowercase )
# The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means
# that each partition can hold 2 rows.
spark_builder._repartition_df_if_needed(max_shard_size=1_6 )
# Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions.
assert spark_builder.df.rdd.getNumPartitions() == 5_0
@require_not_windows
@require_dill_gt_0_3_2
def __lowerCamelCase ( ) -> List[Any]:
UpperCAmelCase : Optional[int] = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate()
UpperCAmelCase : Dict = spark.range(1_0 ).repartition(2 )
UpperCAmelCase : Optional[int] = [1, 0]
UpperCAmelCase : Any = _generate_iterable_examples(_lowercase , _lowercase ) # Reverse the partitions.
UpperCAmelCase : Optional[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(_lowercase , _lowercase )
for i, (row_id, row_dict) in enumerate(generate_fn() ):
UpperCAmelCase , UpperCAmelCase : int = expected_row_ids_and_row_dicts[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def __lowerCamelCase ( ) -> Tuple:
UpperCAmelCase : Tuple = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate()
UpperCAmelCase : Optional[int] = spark.range(1_0 ).repartition(1 )
UpperCAmelCase : Optional[Any] = SparkExamplesIterable(_lowercase )
assert it.n_shards == 1
for i, (row_id, row_dict) in enumerate(_lowercase ):
assert row_id == F'''0_{i}'''
assert row_dict == {"id": i}
@require_not_windows
@require_dill_gt_0_3_2
def __lowerCamelCase ( ) -> List[str]:
UpperCAmelCase : Optional[int] = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate()
UpperCAmelCase : List[str] = spark.range(3_0 ).repartition(3 )
# Mock the generator so that shuffle reverses the partition indices.
with patch("""numpy.random.Generator""" ) as generator_mock:
UpperCAmelCase : List[str] = lambda _lowercase : x.reverse()
UpperCAmelCase : Dict = _get_expected_row_ids_and_row_dicts_for_partition_order(_lowercase , [2, 1, 0] )
UpperCAmelCase : List[str] = SparkExamplesIterable(_lowercase ).shuffle_data_sources(_lowercase )
assert shuffled_it.n_shards == 3
for i, (row_id, row_dict) in enumerate(_lowercase ):
UpperCAmelCase , UpperCAmelCase : int = expected_row_ids_and_row_dicts[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def __lowerCamelCase ( ) -> Union[str, Any]:
UpperCAmelCase : int = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate()
UpperCAmelCase : str = spark.range(2_0 ).repartition(4 )
# Partitions 0 and 2
UpperCAmelCase : Any = SparkExamplesIterable(_lowercase ).shard_data_sources(worker_id=0 , num_workers=2 )
assert shard_it_a.n_shards == 2
UpperCAmelCase : Any = _get_expected_row_ids_and_row_dicts_for_partition_order(_lowercase , [0, 2] )
for i, (row_id, row_dict) in enumerate(_lowercase ):
UpperCAmelCase , UpperCAmelCase : List[str] = expected_row_ids_and_row_dicts_a[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
# Partitions 1 and 3
UpperCAmelCase : Dict = SparkExamplesIterable(_lowercase ).shard_data_sources(worker_id=1 , num_workers=2 )
assert shard_it_a.n_shards == 2
UpperCAmelCase : Dict = _get_expected_row_ids_and_row_dicts_for_partition_order(_lowercase , [1, 3] )
for i, (row_id, row_dict) in enumerate(_lowercase ):
UpperCAmelCase , UpperCAmelCase : Optional[Any] = expected_row_ids_and_row_dicts_a[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def __lowerCamelCase ( ) -> Optional[int]:
UpperCAmelCase : Dict = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate()
UpperCAmelCase : Tuple = spark.range(1_0_0 ).repartition(1 )
UpperCAmelCase : Dict = Spark(_lowercase )
# Choose a small max_shard_size for maximum partitioning.
spark_builder._repartition_df_if_needed(max_shard_size=1 )
# The new number of partitions should not be greater than the number of rows.
assert spark_builder.df.rdd.getNumPartitions() == 1_0_0
| 338
|
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import AutoTokenizer, MBartConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel
@require_tf
class UpperCamelCase_ :
lowercase = MBartConfig
lowercase = {}
lowercase = 'gelu'
def __init__( self , A , A=13 , A=7 , A=True , A=False , A=99 , A=32 , A=2 , A=4 , A=37 , A=0.1 , A=0.1 , A=20 , A=2 , A=1 , A=0 , ) -> Optional[int]:
UpperCAmelCase : Optional[int] = parent
UpperCAmelCase : Dict = batch_size
UpperCAmelCase : Tuple = seq_length
UpperCAmelCase : str = is_training
UpperCAmelCase : Optional[int] = use_labels
UpperCAmelCase : Optional[Any] = vocab_size
UpperCAmelCase : Union[str, Any] = hidden_size
UpperCAmelCase : Union[str, Any] = num_hidden_layers
UpperCAmelCase : List[Any] = num_attention_heads
UpperCAmelCase : Optional[int] = intermediate_size
UpperCAmelCase : Dict = hidden_dropout_prob
UpperCAmelCase : int = attention_probs_dropout_prob
UpperCAmelCase : Optional[int] = max_position_embeddings
UpperCAmelCase : Optional[Any] = eos_token_id
UpperCAmelCase : List[str] = pad_token_id
UpperCAmelCase : List[Any] = bos_token_id
def _lowercase( self ) -> Union[str, Any]:
UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
UpperCAmelCase : List[str] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
UpperCAmelCase : Union[str, Any] = tf.concat([input_ids, eos_tensor] , axis=1 )
UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase : str = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
UpperCAmelCase : List[Any] = prepare_mbart_inputs_dict(A , A , A )
return config, inputs_dict
def _lowercase( self , A , A ) -> List[str]:
UpperCAmelCase : List[str] = TFMBartModel(config=A ).get_decoder()
UpperCAmelCase : int = inputs_dict["""input_ids"""]
UpperCAmelCase : str = input_ids[:1, :]
UpperCAmelCase : Optional[Any] = inputs_dict["""attention_mask"""][:1, :]
UpperCAmelCase : List[str] = inputs_dict["""head_mask"""]
UpperCAmelCase : List[Any] = 1
# first forward pass
UpperCAmelCase : List[str] = model(A , attention_mask=A , head_mask=A , use_cache=A )
UpperCAmelCase , UpperCAmelCase : Optional[Any] = outputs.to_tuple()
UpperCAmelCase : int = past_key_values[1]
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , ) -> List[str]:
if attention_mask is None:
UpperCAmelCase : Tuple = tf.cast(tf.math.not_equal(_lowercase , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
UpperCAmelCase : int = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
UpperCAmelCase : List[Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
UpperCAmelCase : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
UpperCAmelCase : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ):
lowercase = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else ()
lowercase = (TFMBartForConditionalGeneration,) if is_tf_available() else ()
lowercase = (
{
'conversational': TFMBartForConditionalGeneration,
'feature-extraction': TFMBartModel,
'summarization': TFMBartForConditionalGeneration,
'text2text-generation': TFMBartForConditionalGeneration,
'translation': TFMBartForConditionalGeneration,
}
if is_tf_available()
else {}
)
lowercase = True
lowercase = False
lowercase = False
def _lowercase( self , A , A , A , A , A ) -> int:
if pipeline_test_casse_name != "FeatureExtractionPipelineTests":
# Exception encountered when calling layer '...'
return True
return False
def _lowercase( self ) -> Optional[Any]:
UpperCAmelCase : int = TFMBartModelTester(self )
UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=A )
def _lowercase( self ) -> Optional[int]:
self.config_tester.run_common_tests()
def _lowercase( self ) -> Dict:
UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*A )
@require_sentencepiece
@require_tokenizers
@require_tf
class UpperCamelCase_ ( unittest.TestCase ):
lowercase = [
' UN Chief Says There Is No Military Solution in Syria',
]
lowercase = [
'Şeful ONU declară că nu există o soluţie militară în Siria',
]
lowercase = 'facebook/mbart-large-en-ro'
@cached_property
def _lowercase( self ) -> Any:
return AutoTokenizer.from_pretrained(self.model_name )
@cached_property
def _lowercase( self ) -> List[Any]:
UpperCAmelCase : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
def _lowercase( self , **A ) -> Any:
UpperCAmelCase : Optional[int] = self.translate_src_text(**A )
self.assertListEqual(self.expected_text , A )
def _lowercase( self , **A ) -> Optional[Any]:
UpperCAmelCase : List[str] = self.tokenizer(self.src_text , **A , return_tensors="""tf""" )
UpperCAmelCase : int = self.model.generate(
model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 )
UpperCAmelCase : Any = self.tokenizer.batch_decode(A , skip_special_tokens=A )
return generated_words
@slow
def _lowercase( self ) -> List[Any]:
self._assert_generated_batch_equal_expected()
| 338
| 1
|
import unittest
from transformers import (
MODEL_FOR_OBJECT_DETECTION_MAPPING,
AutoFeatureExtractor,
AutoModelForObjectDetection,
ObjectDetectionPipeline,
is_vision_available,
pipeline,
)
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_pytesseract,
require_tf,
require_timm,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class lowerCAmelCase__ :
'''simple docstring'''
@staticmethod
def _lowerCamelCase ( *__lowerCamelCase , **__lowerCamelCase) -> Union[str, Any]:
pass
@is_pipeline_test
@require_vision
@require_timm
@require_torch
class lowerCAmelCase__ ( unittest.TestCase):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = MODEL_FOR_OBJECT_DETECTION_MAPPING
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> Optional[Any]:
_A : Dict = ObjectDetectionPipeline(model=__lowerCamelCase , image_processor=__lowerCamelCase)
return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"]
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase) -> Tuple:
_A : Optional[int] = object_detector("./tests/fixtures/tests_samples/COCO/000000039769.png" , threshold=0.0)
self.assertGreater(len(__lowerCamelCase) , 0)
for detected_object in outputs:
self.assertEqual(
__lowerCamelCase , {
"score": ANY(__lowerCamelCase),
"label": ANY(__lowerCamelCase),
"box": {"xmin": ANY(__lowerCamelCase), "ymin": ANY(__lowerCamelCase), "xmax": ANY(__lowerCamelCase), "ymax": ANY(__lowerCamelCase)},
} , )
import datasets
_A : str = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test")
_A : str = [
Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"),
"http://images.cocodataset.org/val2017/000000039769.jpg",
# RGBA
dataset[0]["file"],
# LA
dataset[1]["file"],
# L
dataset[2]["file"],
]
_A : str = object_detector(__lowerCamelCase , threshold=0.0)
self.assertEqual(len(__lowerCamelCase) , len(__lowerCamelCase))
for outputs in batch_outputs:
self.assertGreater(len(__lowerCamelCase) , 0)
for detected_object in outputs:
self.assertEqual(
__lowerCamelCase , {
"score": ANY(__lowerCamelCase),
"label": ANY(__lowerCamelCase),
"box": {"xmin": ANY(__lowerCamelCase), "ymin": ANY(__lowerCamelCase), "xmax": ANY(__lowerCamelCase), "ymax": ANY(__lowerCamelCase)},
} , )
@require_tf
@unittest.skip("Object detection not implemented in TF")
def _lowerCamelCase ( self) -> List[Any]:
pass
@require_torch
def _lowerCamelCase ( self) -> List[Any]:
_A : Optional[Any] = "hf-internal-testing/tiny-detr-mobilenetsv3"
_A : Optional[int] = AutoModelForObjectDetection.from_pretrained(__lowerCamelCase)
_A : int = AutoFeatureExtractor.from_pretrained(__lowerCamelCase)
_A : Optional[Any] = ObjectDetectionPipeline(model=__lowerCamelCase , feature_extractor=__lowerCamelCase)
_A : Union[str, Any] = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=0.0)
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4) , [
{"score": 0.3_3_7_6, "label": "LABEL_0", "box": {"xmin": 1_5_9, "ymin": 1_2_0, "xmax": 4_8_0, "ymax": 3_5_9}},
{"score": 0.3_3_7_6, "label": "LABEL_0", "box": {"xmin": 1_5_9, "ymin": 1_2_0, "xmax": 4_8_0, "ymax": 3_5_9}},
] , )
_A : Any = object_detector(
[
"http://images.cocodataset.org/val2017/000000039769.jpg",
"http://images.cocodataset.org/val2017/000000039769.jpg",
] , threshold=0.0 , )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4) , [
[
{"score": 0.3_3_7_6, "label": "LABEL_0", "box": {"xmin": 1_5_9, "ymin": 1_2_0, "xmax": 4_8_0, "ymax": 3_5_9}},
{"score": 0.3_3_7_6, "label": "LABEL_0", "box": {"xmin": 1_5_9, "ymin": 1_2_0, "xmax": 4_8_0, "ymax": 3_5_9}},
],
[
{"score": 0.3_3_7_6, "label": "LABEL_0", "box": {"xmin": 1_5_9, "ymin": 1_2_0, "xmax": 4_8_0, "ymax": 3_5_9}},
{"score": 0.3_3_7_6, "label": "LABEL_0", "box": {"xmin": 1_5_9, "ymin": 1_2_0, "xmax": 4_8_0, "ymax": 3_5_9}},
],
] , )
@require_torch
@slow
def _lowerCamelCase ( self) -> Optional[Any]:
_A : List[Any] = "facebook/detr-resnet-50"
_A : Union[str, Any] = AutoModelForObjectDetection.from_pretrained(__lowerCamelCase)
_A : Optional[int] = AutoFeatureExtractor.from_pretrained(__lowerCamelCase)
_A : Union[str, Any] = ObjectDetectionPipeline(model=__lowerCamelCase , feature_extractor=__lowerCamelCase)
_A : Optional[Any] = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg")
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4) , [
{"score": 0.9_9_8_2, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_0, "xmax": 1_7_5, "ymax": 1_1_7}},
{"score": 0.9_9_6_0, "label": "remote", "box": {"xmin": 3_3_3, "ymin": 7_2, "xmax": 3_6_8, "ymax": 1_8_7}},
{"score": 0.9_9_5_5, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_3_9, "ymax": 4_7_3}},
{"score": 0.9_9_8_8, "label": "cat", "box": {"xmin": 1_3, "ymin": 5_2, "xmax": 3_1_4, "ymax": 4_7_0}},
{"score": 0.9_9_8_7, "label": "cat", "box": {"xmin": 3_4_5, "ymin": 2_3, "xmax": 6_4_0, "ymax": 3_6_8}},
] , )
_A : Any = object_detector(
[
"http://images.cocodataset.org/val2017/000000039769.jpg",
"http://images.cocodataset.org/val2017/000000039769.jpg",
])
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4) , [
[
{"score": 0.9_9_8_2, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_0, "xmax": 1_7_5, "ymax": 1_1_7}},
{"score": 0.9_9_6_0, "label": "remote", "box": {"xmin": 3_3_3, "ymin": 7_2, "xmax": 3_6_8, "ymax": 1_8_7}},
{"score": 0.9_9_5_5, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_3_9, "ymax": 4_7_3}},
{"score": 0.9_9_8_8, "label": "cat", "box": {"xmin": 1_3, "ymin": 5_2, "xmax": 3_1_4, "ymax": 4_7_0}},
{"score": 0.9_9_8_7, "label": "cat", "box": {"xmin": 3_4_5, "ymin": 2_3, "xmax": 6_4_0, "ymax": 3_6_8}},
],
[
{"score": 0.9_9_8_2, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_0, "xmax": 1_7_5, "ymax": 1_1_7}},
{"score": 0.9_9_6_0, "label": "remote", "box": {"xmin": 3_3_3, "ymin": 7_2, "xmax": 3_6_8, "ymax": 1_8_7}},
{"score": 0.9_9_5_5, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_3_9, "ymax": 4_7_3}},
{"score": 0.9_9_8_8, "label": "cat", "box": {"xmin": 1_3, "ymin": 5_2, "xmax": 3_1_4, "ymax": 4_7_0}},
{"score": 0.9_9_8_7, "label": "cat", "box": {"xmin": 3_4_5, "ymin": 2_3, "xmax": 6_4_0, "ymax": 3_6_8}},
],
] , )
@require_torch
@slow
def _lowerCamelCase ( self) -> Optional[Any]:
_A : int = "facebook/detr-resnet-50"
_A : str = pipeline("object-detection" , model=__lowerCamelCase)
_A : str = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg")
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4) , [
{"score": 0.9_9_8_2, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_0, "xmax": 1_7_5, "ymax": 1_1_7}},
{"score": 0.9_9_6_0, "label": "remote", "box": {"xmin": 3_3_3, "ymin": 7_2, "xmax": 3_6_8, "ymax": 1_8_7}},
{"score": 0.9_9_5_5, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_3_9, "ymax": 4_7_3}},
{"score": 0.9_9_8_8, "label": "cat", "box": {"xmin": 1_3, "ymin": 5_2, "xmax": 3_1_4, "ymax": 4_7_0}},
{"score": 0.9_9_8_7, "label": "cat", "box": {"xmin": 3_4_5, "ymin": 2_3, "xmax": 6_4_0, "ymax": 3_6_8}},
] , )
_A : List[Any] = object_detector(
[
"http://images.cocodataset.org/val2017/000000039769.jpg",
"http://images.cocodataset.org/val2017/000000039769.jpg",
])
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4) , [
[
{"score": 0.9_9_8_2, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_0, "xmax": 1_7_5, "ymax": 1_1_7}},
{"score": 0.9_9_6_0, "label": "remote", "box": {"xmin": 3_3_3, "ymin": 7_2, "xmax": 3_6_8, "ymax": 1_8_7}},
{"score": 0.9_9_5_5, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_3_9, "ymax": 4_7_3}},
{"score": 0.9_9_8_8, "label": "cat", "box": {"xmin": 1_3, "ymin": 5_2, "xmax": 3_1_4, "ymax": 4_7_0}},
{"score": 0.9_9_8_7, "label": "cat", "box": {"xmin": 3_4_5, "ymin": 2_3, "xmax": 6_4_0, "ymax": 3_6_8}},
],
[
{"score": 0.9_9_8_2, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_0, "xmax": 1_7_5, "ymax": 1_1_7}},
{"score": 0.9_9_6_0, "label": "remote", "box": {"xmin": 3_3_3, "ymin": 7_2, "xmax": 3_6_8, "ymax": 1_8_7}},
{"score": 0.9_9_5_5, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_3_9, "ymax": 4_7_3}},
{"score": 0.9_9_8_8, "label": "cat", "box": {"xmin": 1_3, "ymin": 5_2, "xmax": 3_1_4, "ymax": 4_7_0}},
{"score": 0.9_9_8_7, "label": "cat", "box": {"xmin": 3_4_5, "ymin": 2_3, "xmax": 6_4_0, "ymax": 3_6_8}},
],
] , )
@require_torch
@slow
def _lowerCamelCase ( self) -> int:
_A : Any = 0.9_9_8_5
_A : List[str] = "facebook/detr-resnet-50"
_A : Dict = pipeline("object-detection" , model=__lowerCamelCase)
_A : List[Any] = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=__lowerCamelCase)
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4) , [
{"score": 0.9_9_8_8, "label": "cat", "box": {"xmin": 1_3, "ymin": 5_2, "xmax": 3_1_4, "ymax": 4_7_0}},
{"score": 0.9_9_8_7, "label": "cat", "box": {"xmin": 3_4_5, "ymin": 2_3, "xmax": 6_4_0, "ymax": 3_6_8}},
] , )
@require_torch
@require_pytesseract
@slow
def _lowerCamelCase ( self) -> Tuple:
_A : str = "Narsil/layoutlmv3-finetuned-funsd"
_A : Optional[Any] = 0.9_9_9_3
_A : Any = pipeline("object-detection" , model=__lowerCamelCase , threshold=__lowerCamelCase)
_A : List[str] = object_detector(
"https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png")
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4) , [
{"score": 0.9_9_9_3, "label": "I-ANSWER", "box": {"xmin": 2_9_4, "ymin": 2_5_4, "xmax": 3_4_3, "ymax": 2_6_4}},
{"score": 0.9_9_9_3, "label": "I-ANSWER", "box": {"xmin": 2_9_4, "ymin": 2_5_4, "xmax": 3_4_3, "ymax": 2_6_4}},
] , )
| 11
|
"""simple docstring"""
def A ( snake_case__ = 10_00 ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 1, 1
SCREAMING_SNAKE_CASE__ = 2
while True:
SCREAMING_SNAKE_CASE__ = 0
SCREAMING_SNAKE_CASE__ = fa + fa
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = fa, f
index += 1
for _ in str(snake_case__ ):
i += 1
if i == n:
break
return index
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 165
| 0
|
def _a ( a :float , a :int ) -> float:
if digit_amount > 0:
return round(number - int(a ) , a )
return number - int(a )
if __name__ == "__main__":
print(decimal_isolate(1.53, 0))
print(decimal_isolate(35.345, 1))
print(decimal_isolate(35.345, 2))
print(decimal_isolate(35.345, 3))
print(decimal_isolate(-14.789, 3))
print(decimal_isolate(0, 2))
print(decimal_isolate(-14.123, 1))
print(decimal_isolate(-14.123, 2))
print(decimal_isolate(-14.123, 3))
| 26
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
UpperCAmelCase__ = {
"configuration_gpt_bigcode": ["GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTBigCodeConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = [
"GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST",
"GPTBigCodeForSequenceClassification",
"GPTBigCodeForTokenClassification",
"GPTBigCodeForCausalLM",
"GPTBigCodeModel",
"GPTBigCodePreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt_bigcode import (
GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTBigCodeForCausalLM,
GPTBigCodeForSequenceClassification,
GPTBigCodeForTokenClassification,
GPTBigCodeModel,
GPTBigCodePreTrainedModel,
)
else:
import sys
UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 26
| 1
|
'''simple docstring'''
import os
from pathlib import Path
def lowercase ( ):
'''simple docstring'''
from torch.utils.cpp_extension import load
UpperCAmelCase : Optional[Any] = Path(__magic_name__ ).resolve().parent.parent.parent / "kernels" / "deformable_detr"
UpperCAmelCase : List[str] = [
root / filename
for filename in [
"vision.cpp",
os.path.join("cpu" , "ms_deform_attn_cpu.cpp" ),
os.path.join("cuda" , "ms_deform_attn_cuda.cu" ),
]
]
load(
"MultiScaleDeformableAttention" , __magic_name__ , with_cuda=__magic_name__ , extra_include_paths=[str(__magic_name__ )] , extra_cflags=["-DWITH_CUDA=1"] , extra_cuda_cflags=[
"-DCUDA_HAS_FP16=1",
"-D__CUDA_NO_HALF_OPERATORS__",
"-D__CUDA_NO_HALF_CONVERSIONS__",
"-D__CUDA_NO_HALF2_OPERATORS__",
] , )
import MultiScaleDeformableAttention as MSDA
return MSDA
| 311
|
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
a : Dict = logging.get_logger(__name__)
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : List[str] = YolosConfig()
# size of the architecture
if "yolos_ti" in yolos_name:
UpperCAmelCase : Tuple = 192
UpperCAmelCase : str = 768
UpperCAmelCase : List[Any] = 12
UpperCAmelCase : List[Any] = 3
UpperCAmelCase : List[Any] = [800, 1333]
UpperCAmelCase : List[str] = False
elif yolos_name == "yolos_s_dWr":
UpperCAmelCase : Union[str, Any] = 330
UpperCAmelCase : Union[str, Any] = 14
UpperCAmelCase : Any = 6
UpperCAmelCase : int = 1320
elif "yolos_s" in yolos_name:
UpperCAmelCase : Union[str, Any] = 384
UpperCAmelCase : Dict = 1536
UpperCAmelCase : str = 12
UpperCAmelCase : List[str] = 6
elif "yolos_b" in yolos_name:
UpperCAmelCase : int = [800, 1344]
UpperCAmelCase : Optional[int] = 91
UpperCAmelCase : int = "huggingface/label-files"
UpperCAmelCase : Union[str, Any] = "coco-detection-id2label.json"
UpperCAmelCase : Optional[Any] = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ , repo_type="dataset" ) , "r" ) )
UpperCAmelCase : str = {int(__magic_name__ ): v for k, v in idalabel.items()}
UpperCAmelCase : str = idalabel
UpperCAmelCase : Union[str, Any] = {v: k for k, v in idalabel.items()}
return config
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ = False ):
'''simple docstring'''
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
UpperCAmelCase : Tuple = state_dict.pop(F"blocks.{i}.attn.qkv.weight" )
UpperCAmelCase : List[Any] = state_dict.pop(F"blocks.{i}.attn.qkv.bias" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase : str = in_proj_weight[: config.hidden_size, :]
UpperCAmelCase : Optional[int] = in_proj_bias[: config.hidden_size]
UpperCAmelCase : Optional[Any] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
UpperCAmelCase : int = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
UpperCAmelCase : str = in_proj_weight[-config.hidden_size :, :]
UpperCAmelCase : Tuple = in_proj_bias[-config.hidden_size :]
def lowercase ( __magic_name__ ):
'''simple docstring'''
if "backbone" in name:
UpperCAmelCase : int = name.replace("backbone" , "vit" )
if "cls_token" in name:
UpperCAmelCase : Dict = name.replace("cls_token" , "embeddings.cls_token" )
if "det_token" in name:
UpperCAmelCase : int = name.replace("det_token" , "embeddings.detection_tokens" )
if "mid_pos_embed" in name:
UpperCAmelCase : Tuple = name.replace("mid_pos_embed" , "encoder.mid_position_embeddings" )
if "pos_embed" in name:
UpperCAmelCase : int = name.replace("pos_embed" , "embeddings.position_embeddings" )
if "patch_embed.proj" in name:
UpperCAmelCase : str = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" )
if "blocks" in name:
UpperCAmelCase : Tuple = name.replace("blocks" , "encoder.layer" )
if "attn.proj" in name:
UpperCAmelCase : Tuple = name.replace("attn.proj" , "attention.output.dense" )
if "attn" in name:
UpperCAmelCase : Any = name.replace("attn" , "attention.self" )
if "norm1" in name:
UpperCAmelCase : int = name.replace("norm1" , "layernorm_before" )
if "norm2" in name:
UpperCAmelCase : List[str] = name.replace("norm2" , "layernorm_after" )
if "mlp.fc1" in name:
UpperCAmelCase : List[str] = name.replace("mlp.fc1" , "intermediate.dense" )
if "mlp.fc2" in name:
UpperCAmelCase : Dict = name.replace("mlp.fc2" , "output.dense" )
if "class_embed" in name:
UpperCAmelCase : Any = name.replace("class_embed" , "class_labels_classifier" )
if "bbox_embed" in name:
UpperCAmelCase : Optional[int] = name.replace("bbox_embed" , "bbox_predictor" )
if "vit.norm" in name:
UpperCAmelCase : Tuple = name.replace("vit.norm" , "vit.layernorm" )
return name
def lowercase ( __magic_name__ , __magic_name__ ):
'''simple docstring'''
for key in orig_state_dict.copy().keys():
UpperCAmelCase : Optional[int] = orig_state_dict.pop(__magic_name__ )
if "qkv" in key:
UpperCAmelCase : str = key.split("." )
UpperCAmelCase : List[Any] = int(key_split[2] )
UpperCAmelCase : int = model.vit.encoder.layer[layer_num].attention.attention.all_head_size
if "weight" in key:
UpperCAmelCase : Optional[int] = val[:dim, :]
UpperCAmelCase : Union[str, Any] = val[
dim : dim * 2, :
]
UpperCAmelCase : Any = val[-dim:, :]
else:
UpperCAmelCase : Tuple = val[:dim]
UpperCAmelCase : List[str] = val[dim : dim * 2]
UpperCAmelCase : Any = val[-dim:]
else:
UpperCAmelCase : Union[str, Any] = val
return orig_state_dict
def lowercase ( ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg"
UpperCAmelCase : Tuple = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw )
return im
@torch.no_grad()
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = False ):
'''simple docstring'''
UpperCAmelCase : Tuple = get_yolos_config(__magic_name__ )
# load original state_dict
UpperCAmelCase : int = torch.load(__magic_name__ , map_location="cpu" )["model"]
# load 🤗 model
UpperCAmelCase : int = YolosForObjectDetection(__magic_name__ )
model.eval()
UpperCAmelCase : Dict = convert_state_dict(__magic_name__ , __magic_name__ )
model.load_state_dict(__magic_name__ )
# Check outputs on an image, prepared by YolosImageProcessor
UpperCAmelCase : Dict = 800 if yolos_name != "yolos_ti" else 512
UpperCAmelCase : int = YolosImageProcessor(format="coco_detection" , size=__magic_name__ )
UpperCAmelCase : List[Any] = image_processor(images=prepare_img() , return_tensors="pt" )
UpperCAmelCase : List[str] = model(**__magic_name__ )
UpperCAmelCase , UpperCAmelCase : Optional[int] = outputs.logits, outputs.pred_boxes
UpperCAmelCase , UpperCAmelCase : Optional[Any] = None, None
if yolos_name == "yolos_ti":
UpperCAmelCase : str = torch.tensor(
[[-3_9.5_0_2_2, -1_1.9_8_2_0, -1_7.6_8_8_8], [-2_9.9_5_7_4, -9.9_7_6_9, -1_7.7_6_9_1], [-4_2.3_2_8_1, -2_0.7_2_0_0, -3_0.6_2_9_4]] )
UpperCAmelCase : Tuple = torch.tensor(
[[0.4_0_2_1, 0.0_8_3_6, 0.7_9_7_9], [0.0_1_8_4, 0.2_6_0_9, 0.0_3_6_4], [0.1_7_8_1, 0.2_0_0_4, 0.2_0_9_5]] )
elif yolos_name == "yolos_s_200_pre":
UpperCAmelCase : Union[str, Any] = torch.tensor(
[[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] )
UpperCAmelCase : List[str] = torch.tensor(
[[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] )
elif yolos_name == "yolos_s_300_pre":
UpperCAmelCase : List[str] = torch.tensor(
[[-3_6.2_2_2_0, -1_4.4_3_8_5, -2_3.5_4_5_7], [-3_5.6_9_7_0, -1_4.7_5_8_3, -2_1.3_9_3_5], [-3_1.5_9_3_9, -1_3.6_0_4_2, -1_6.8_0_4_9]] )
UpperCAmelCase : Dict = torch.tensor(
[[0.7_6_1_4, 0.2_3_1_6, 0.4_7_2_8], [0.7_1_6_8, 0.4_4_9_5, 0.3_8_5_5], [0.4_9_9_6, 0.1_4_6_6, 0.9_9_9_6]] )
elif yolos_name == "yolos_s_dWr":
UpperCAmelCase : Dict = torch.tensor(
[[-4_2.8_6_6_8, -2_4.1_0_4_9, -4_1.1_6_9_0], [-3_4.7_4_5_6, -1_4.1_2_7_4, -2_4.9_1_9_4], [-3_3.7_8_9_8, -1_2.1_9_4_6, -2_5.6_4_9_5]] )
UpperCAmelCase : List[Any] = torch.tensor(
[[0.5_5_8_7, 0.2_7_7_3, 0.0_6_0_5], [0.5_0_0_4, 0.3_0_1_4, 0.9_9_9_4], [0.4_9_9_9, 0.1_5_4_8, 0.9_9_9_4]] )
elif yolos_name == "yolos_base":
UpperCAmelCase : str = torch.tensor(
[[-4_0.6_0_6_4, -2_4.3_0_8_4, -3_2.6_4_4_7], [-5_5.1_9_9_0, -3_0.7_7_1_9, -3_5.5_8_7_7], [-5_1.4_3_1_1, -3_3.3_5_0_7, -3_5.6_4_6_2]] )
UpperCAmelCase : Union[str, Any] = torch.tensor(
[[0.5_5_5_5, 0.2_7_9_4, 0.0_6_5_5], [0.9_0_4_9, 0.2_6_6_4, 0.1_8_9_4], [0.9_1_8_3, 0.1_9_8_4, 0.1_6_3_5]] )
else:
raise ValueError(F"Unknown yolos_name: {yolos_name}" )
assert torch.allclose(logits[0, :3, :3] , __magic_name__ , atol=1e-4 )
assert torch.allclose(pred_boxes[0, :3, :3] , __magic_name__ , atol=1e-4 )
Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ )
print(F"Saving model {yolos_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(__magic_name__ )
print(F"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(__magic_name__ )
if push_to_hub:
UpperCAmelCase : int = {
"yolos_ti": "yolos-tiny",
"yolos_s_200_pre": "yolos-small",
"yolos_s_300_pre": "yolos-small-300",
"yolos_s_dWr": "yolos-small-dwr",
"yolos_base": "yolos-base",
}
print("Pushing to the hub..." )
UpperCAmelCase : Tuple = model_mapping[yolos_name]
image_processor.push_to_hub(__magic_name__ , organization="hustvl" )
model.push_to_hub(__magic_name__ , organization="hustvl" )
if __name__ == "__main__":
a : List[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--yolos_name",
default="yolos_s_200_pre",
type=str,
help=(
"Name of the YOLOS model you'd like to convert. Should be one of 'yolos_ti', 'yolos_s_200_pre',"
" 'yolos_s_300_pre', 'yolos_s_dWr', 'yolos_base'."
),
)
parser.add_argument(
"--checkpoint_path", default=None, type=str, help="Path to the original state dict (.pth file)."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
a : str = parser.parse_args()
convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
| 311
| 1
|
"""simple docstring"""
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__UpperCamelCase : Any = '''▁'''
__UpperCamelCase : int = {'''vocab_file''': '''spiece.model'''}
__UpperCamelCase : Tuple = {
'''vocab_file''': {'''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'''}
}
__UpperCamelCase : Tuple = {
'''google/pegasus-xsum''': 5_1_2,
}
__UpperCamelCase : Optional[int] = logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE ( a_ ):
"""simple docstring"""
lowercase__ = VOCAB_FILES_NAMES
lowercase__ = VOCAB_FILES_NAMES
lowercase__ = PRETRAINED_VOCAB_FILES_MAP
lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase__ = ["input_ids", "attention_mask"]
def __init__( self : Tuple ,lowercase_ : str ,lowercase_ : Optional[int]="<pad>" ,lowercase_ : Dict="</s>" ,lowercase_ : str="<unk>" ,lowercase_ : Optional[Any]="<mask_2>" ,lowercase_ : Any="<mask_1>" ,lowercase_ : Optional[int]=None ,lowercase_ : Tuple=1_0_3 ,lowercase_ : Optional[Dict[str, Any]] = None ,**lowercase_ : int ,):
lowerCAmelCase__ : Tuple = offset
if additional_special_tokens is not None:
if not isinstance(lowercase_ ,lowercase_ ):
raise TypeError(
F'additional_special_tokens should be of type {type(lowercase_ )}, but is'
F' {type(lowercase_ )}' )
lowerCAmelCase__ : Dict = (
([mask_token_sent] + additional_special_tokens)
if mask_token_sent not in additional_special_tokens and mask_token_sent is not None
else additional_special_tokens
)
# fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken
additional_special_tokens_extended += [
F'<unk_{i}>' for i in range(len(lowercase_ ) ,self.offset - 1 )
]
if len(set(lowercase_ ) ) != len(lowercase_ ):
raise ValueError(
'''Please make sure that the provided additional_special_tokens do not contain an incorrectly'''
F' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.' )
lowerCAmelCase__ : Tuple = additional_special_tokens_extended
else:
lowerCAmelCase__ : Optional[Any] = [mask_token_sent] if mask_token_sent is not None else []
additional_special_tokens += [F'<unk_{i}>' for i in range(2 ,self.offset )]
lowerCAmelCase__ : str = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
eos_token=lowercase_ ,unk_token=lowercase_ ,mask_token=lowercase_ ,pad_token=lowercase_ ,mask_token_sent=lowercase_ ,offset=lowercase_ ,additional_special_tokens=lowercase_ ,sp_model_kwargs=self.sp_model_kwargs ,**lowercase_ ,)
lowerCAmelCase__ : List[Any] = mask_token_sent
lowerCAmelCase__ : Any = vocab_file
lowerCAmelCase__ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(lowercase_ )
# add special tokens to encoder dict
lowerCAmelCase__ : Dict[int, str] = {
0: self.pad_token,
1: self.eos_token,
}
if self.mask_token_sent is not None:
self.encoder.update(
{
2: self.mask_token_sent,
3: self.mask_token,
} )
if self.offset > 0:
# entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102
# mask_token_sent is already added to list -> so start at 1
self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 ,self.offset - 1 )} )
lowerCAmelCase__ : Dict[str, int] = {v: k for k, v in self.encoder.items()}
@property
def __lowerCAmelCase ( self : str ):
return len(self.sp_model ) + self.offset
def __lowerCAmelCase ( self : Tuple ):
lowerCAmelCase__ : Optional[Any] = {self.convert_ids_to_tokens(lowercase_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Union[str, Any] ):
lowerCAmelCase__ : List[str] = self.__dict__.copy()
lowerCAmelCase__ : Tuple = None
return state
def __setstate__( self : int ,lowercase_ : Any ):
lowerCAmelCase__ : int = d
# for backward compatibility
if not hasattr(self ,'''sp_model_kwargs''' ):
lowerCAmelCase__ : Union[str, Any] = {}
lowerCAmelCase__ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def __lowerCAmelCase ( self : Union[str, Any] ,lowercase_ : str ):
return self.sp_model.encode(lowercase_ ,out_type=lowercase_ )
def __lowerCAmelCase ( self : int ,lowercase_ : str ):
if token in self.decoder:
return self.decoder[token]
elif token in self.added_tokens_decoder:
return self.added_tokens_decoder[token]
lowerCAmelCase__ : Any = self.sp_model.piece_to_id(lowercase_ )
return sp_id + self.offset
def __lowerCAmelCase ( self : Union[str, Any] ,lowercase_ : int ):
if index in self.encoder:
return self.encoder[index]
elif index in self.added_tokens_encoder:
return self.added_tokens_encoder[index]
else:
lowerCAmelCase__ : Optional[int] = self.sp_model.IdToPiece(index - self.offset )
return token
def __lowerCAmelCase ( self : Tuple ,lowercase_ : Dict ):
lowerCAmelCase__ : List[Any] = []
lowerCAmelCase__ : int = ''''''
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
out_string += self.sp_model.decode(lowercase_ ) + token
lowerCAmelCase__ : Union[str, Any] = []
else:
current_sub_tokens.append(lowercase_ )
out_string += self.sp_model.decode(lowercase_ )
return out_string.strip()
def __lowerCAmelCase ( self : str ,lowercase_ : Union[str, Any]=False ):
return 1
def __lowerCAmelCase ( self : int ,lowercase_ : int ):
lowerCAmelCase__ : Any = set(self.all_special_ids ) # call it once instead of inside list comp
all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special
return [1 if x in all_special_ids else 0 for x in seq]
def __lowerCAmelCase ( self : Optional[int] ,lowercase_ : List ,lowercase_ : Optional[List] = None ,lowercase_ : bool = False ):
if already_has_special_tokens:
return self._special_token_mask(lowercase_ )
elif token_ids_a is None:
return self._special_token_mask(lowercase_ ) + [1]
else:
return self._special_token_mask(token_ids_a + token_ids_a ) + [1]
def __lowerCAmelCase ( self : str ,lowercase_ : str ,lowercase_ : str=None ):
if token_ids_a is None:
return token_ids_a + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return token_ids_a + token_ids_a + [self.eos_token_id]
def __lowerCAmelCase ( self : Tuple ,lowercase_ : str ,lowercase_ : Optional[str] = None ):
if not os.path.isdir(lowercase_ ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory' )
return
lowerCAmelCase__ : Any = os.path.join(
lowercase_ ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file ,lowercase_ )
elif not os.path.isfile(self.vocab_file ):
with open(lowercase_ ,'''wb''' ) as fi:
lowerCAmelCase__ : int = self.sp_model.serialized_model_proto()
fi.write(lowercase_ )
return (out_vocab_file,)
| 74
|
"""simple docstring"""
__UpperCamelCase : Optional[Any] = '''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/'''
def __SCREAMING_SNAKE_CASE ( A_ ):
# Make sure the supplied data is a bytes-like object
if not isinstance(A_ , A_ ):
lowerCAmelCase__ : Dict = f'a bytes-like object is required, not \'{data.__class__.__name__}\''
raise TypeError(A_ )
lowerCAmelCase__ : Any = ''''''.join(bin(A_ )[2:].zfill(8 ) for byte in data )
lowerCAmelCase__ : List[str] = len(A_ ) % 6 != 0
if padding_needed:
# The padding that will be added later
lowerCAmelCase__ : List[str] = b'''=''' * ((6 - len(A_ ) % 6) // 2)
# Append binary_stream with arbitrary binary digits (0's by default) to make its
# length a multiple of 6.
binary_stream += "0" * (6 - len(A_ ) % 6)
else:
lowerCAmelCase__ : Tuple = b''''''
# Encode every 6 binary digits to their corresponding Base64 character
return (
"".join(
B64_CHARSET[int(binary_stream[index : index + 6] , 2 )]
for index in range(0 , len(A_ ) , 6 ) ).encode()
+ padding
)
def __SCREAMING_SNAKE_CASE ( A_ ):
# Make sure encoded_data is either a string or a bytes-like object
if not isinstance(A_ , A_ ) and not isinstance(A_ , A_ ):
lowerCAmelCase__ : str = (
'''argument should be a bytes-like object or ASCII string, '''
f'not \'{encoded_data.__class__.__name__}\''
)
raise TypeError(A_ )
# In case encoded_data is a bytes-like object, make sure it contains only
# ASCII characters so we convert it to a string object
if isinstance(A_ , A_ ):
try:
lowerCAmelCase__ : Union[str, Any] = encoded_data.decode('''utf-8''' )
except UnicodeDecodeError:
raise ValueError('''base64 encoded data should only contain ASCII characters''' )
lowerCAmelCase__ : Union[str, Any] = encoded_data.count('''=''' )
# Check if the encoded string contains non base64 characters
if padding:
assert all(
char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found."
else:
assert all(
char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found."
# Check the padding
assert len(A_ ) % 4 == 0 and padding < 3, "Incorrect padding"
if padding:
# Remove padding if there is one
lowerCAmelCase__ : List[str] = encoded_data[:-padding]
lowerCAmelCase__ : Tuple = ''''''.join(
bin(B64_CHARSET.index(A_ ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2]
else:
lowerCAmelCase__ : Any = ''''''.join(
bin(B64_CHARSET.index(A_ ) )[2:].zfill(6 ) for char in encoded_data )
lowerCAmelCase__ : List[Any] = [
int(binary_stream[index : index + 8] , 2 )
for index in range(0 , len(A_ ) , 8 )
]
return bytes(A_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 74
| 1
|
'''simple docstring'''
import argparse
from argparse import Namespace
import torch
from torch import nn
from transformers import XGLMConfig, XGLMForCausalLM
def __lowercase ( __lowercase ) -> Optional[Any]:
'''simple docstring'''
_A = [
"decoder.version",
"decoder.output_projection.weight",
"_float_tensor",
"decoder.embed_positions._float_tensor",
]
for k in ignore_keys:
state_dict.pop(__lowercase , __lowercase )
def __lowercase ( __lowercase ) -> Any:
'''simple docstring'''
_A , _A = emb.weight.shape
_A = nn.Linear(__lowercase , __lowercase , bias=__lowercase )
_A = emb.weight.data
return lin_layer
def __lowercase ( __lowercase ) -> Optional[int]:
'''simple docstring'''
_A = torch.load(__lowercase , map_location="cpu" )
_A = Namespace(**checkpoint["cfg"]["model"] )
_A = checkpoint["model"]
remove_ignore_keys_(__lowercase )
_A = state_dict["decoder.embed_tokens.weight"].shape[0]
_A = {key.replace("decoder" , "model" ): val for key, val in state_dict.items()}
_A = XGLMConfig(
vocab_size=__lowercase , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="gelu" , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , )
_A = XGLMForCausalLM(__lowercase )
_A = model.load_state_dict(__lowercase , strict=__lowercase )
print(__lowercase )
_A = make_linear_from_emb(model.model.embed_tokens )
return model
if __name__ == "__main__":
lowerCamelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''')
parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
lowerCamelCase_ = parser.parse_args()
lowerCamelCase_ = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path)
model.save_pretrained(args.pytorch_dump_folder_path)
| 79
|
"""simple docstring"""
def lowercase ( A_ , A_ )-> float:
'''simple docstring'''
if mass < 0:
raise ValueError("The mass of a body cannot be negative" )
return 0.5 * mass * abs(A_ ) * abs(A_ )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 40
| 0
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowerCamelCase_ = {"""configuration_mbart""": ["""MBART_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MBartConfig""", """MBartOnnxConfig"""]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase_ = ["""MBartTokenizer"""]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase_ = ["""MBartTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase_ = [
"""MBART_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""MBartForCausalLM""",
"""MBartForConditionalGeneration""",
"""MBartForQuestionAnswering""",
"""MBartForSequenceClassification""",
"""MBartModel""",
"""MBartPreTrainedModel""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase_ = [
"""TFMBartForConditionalGeneration""",
"""TFMBartModel""",
"""TFMBartPreTrainedModel""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase_ = [
"""FlaxMBartForConditionalGeneration""",
"""FlaxMBartForQuestionAnswering""",
"""FlaxMBartForSequenceClassification""",
"""FlaxMBartModel""",
"""FlaxMBartPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mbart import MBartTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mbart_fast import MBartTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mbart import (
MBART_PRETRAINED_MODEL_ARCHIVE_LIST,
MBartForCausalLM,
MBartForConditionalGeneration,
MBartForQuestionAnswering,
MBartForSequenceClassification,
MBartModel,
MBartPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_mbart import (
FlaxMBartForConditionalGeneration,
FlaxMBartForQuestionAnswering,
FlaxMBartForSequenceClassification,
FlaxMBartModel,
FlaxMBartPreTrainedModel,
)
else:
import sys
lowerCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 352
|
import warnings
from ...utils import logging
from .image_processing_poolformer import PoolFormerImageProcessor
lowerCamelCase_ = logging.get_logger(__name__)
class a_ ( a_ ):
'''simple docstring'''
def __init__( self , *lowercase_ , **lowercase_ ) -> None:
'''simple docstring'''
warnings.warn(
'The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'
' Please use PoolFormerImageProcessor instead.' , lowercase_ , )
super().__init__(*lowercase_ , **lowercase_ )
| 14
| 0
|
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__A = logging.get_logger(__name__)
__A = {
'''xlm-mlm-en-2048''': '''https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json''',
'''xlm-mlm-ende-1024''': '''https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json''',
'''xlm-mlm-enfr-1024''': '''https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json''',
'''xlm-mlm-enro-1024''': '''https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json''',
'''xlm-mlm-tlm-xnli15-1024''': '''https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json''',
'''xlm-mlm-xnli15-1024''': '''https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json''',
'''xlm-clm-enfr-1024''': '''https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json''',
'''xlm-clm-ende-1024''': '''https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json''',
'''xlm-mlm-17-1280''': '''https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json''',
'''xlm-mlm-100-1280''': '''https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json''',
}
class _snake_case ( a__ ):
snake_case__ = "xlm"
snake_case__ = {
"hidden_size": "emb_dim",
"num_attention_heads": "n_heads",
"num_hidden_layers": "n_layers",
"n_words": "vocab_size", # For backward compatibility
}
def __init__( self : str , UpperCAmelCase : str=30145 , UpperCAmelCase : Optional[Any]=2048 , UpperCAmelCase : Tuple=12 , UpperCAmelCase : List[Any]=16 , UpperCAmelCase : Any=0.1 , UpperCAmelCase : Any=0.1 , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : List[str]=False , UpperCAmelCase : int=False , UpperCAmelCase : List[str]=False , UpperCAmelCase : Dict=1 , UpperCAmelCase : List[Any]=True , UpperCAmelCase : int=512 , UpperCAmelCase : Optional[Any]=2048**-0.5 , UpperCAmelCase : Union[str, Any]=1E-12 , UpperCAmelCase : Tuple=0.0_2 , UpperCAmelCase : Dict=0 , UpperCAmelCase : List[Any]=1 , UpperCAmelCase : List[Any]=2 , UpperCAmelCase : Optional[Any]=3 , UpperCAmelCase : str=5 , UpperCAmelCase : List[Any]=True , UpperCAmelCase : List[str]="first" , UpperCAmelCase : int=True , UpperCAmelCase : List[Any]=None , UpperCAmelCase : str=True , UpperCAmelCase : Any=0.1 , UpperCAmelCase : List[str]=5 , UpperCAmelCase : Union[str, Any]=5 , UpperCAmelCase : str=0 , UpperCAmelCase : Union[str, Any]=0 , UpperCAmelCase : int=2 , UpperCAmelCase : Dict=0 , **UpperCAmelCase : int , ):
__lowerCamelCase : List[str] = vocab_size
__lowerCamelCase : Union[str, Any] = emb_dim
__lowerCamelCase : Dict = n_layers
__lowerCamelCase : Dict = n_heads
__lowerCamelCase : Optional[int] = dropout
__lowerCamelCase : str = attention_dropout
__lowerCamelCase : Tuple = gelu_activation
__lowerCamelCase : Any = sinusoidal_embeddings
__lowerCamelCase : List[Any] = causal
__lowerCamelCase : List[Any] = asm
__lowerCamelCase : Tuple = n_langs
__lowerCamelCase : Any = use_lang_emb
__lowerCamelCase : Union[str, Any] = layer_norm_eps
__lowerCamelCase : int = bos_index
__lowerCamelCase : Dict = eos_index
__lowerCamelCase : Optional[int] = pad_index
__lowerCamelCase : Dict = unk_index
__lowerCamelCase : str = mask_index
__lowerCamelCase : Tuple = is_encoder
__lowerCamelCase : int = max_position_embeddings
__lowerCamelCase : Union[str, Any] = embed_init_std
__lowerCamelCase : List[str] = init_std
__lowerCamelCase : Dict = summary_type
__lowerCamelCase : int = summary_use_proj
__lowerCamelCase : Optional[int] = summary_activation
__lowerCamelCase : List[Any] = summary_proj_to_labels
__lowerCamelCase : Any = summary_first_dropout
__lowerCamelCase : int = start_n_top
__lowerCamelCase : str = end_n_top
__lowerCamelCase : int = mask_token_id
__lowerCamelCase : int = lang_id
if "n_words" in kwargs:
__lowerCamelCase : int = kwargs["n_words"]
super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , **UpperCAmelCase )
class _snake_case ( a__ ):
@property
def lowerCamelCase__ ( self : Any ):
if self.task == "multiple-choice":
__lowerCamelCase : Any = {0: "batch", 1: "choice", 2: "sequence"}
else:
__lowerCamelCase : Tuple = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
("token_type_ids", dynamic_axis),
] )
| 135
|
"""simple docstring"""
import math
import random
def lowercase_ ( _lowerCamelCase: float , _lowerCamelCase: bool = False ) -> float:
'''simple docstring'''
if deriv:
return value * (1 - value)
return 1 / (1 + math.exp(-value ))
# Initial Value
__A = 0.02
def lowercase_ ( _lowerCamelCase: int , _lowerCamelCase: int ) -> float:
'''simple docstring'''
__lowerCamelCase : Tuple = float(2 * (random.randint(1 , 100 )) - 1 )
for _ in range(_lowerCamelCase ):
# Forward propagation
__lowerCamelCase : List[Any] = sigmoid_function(INITIAL_VALUE * weight )
# How much did we miss?
__lowerCamelCase : Any = (expected / 100) - layer_a
# Error delta
__lowerCamelCase : Dict = layer_1_error * sigmoid_function(_lowerCamelCase , _lowerCamelCase )
# Update weight
weight += INITIAL_VALUE * layer_1_delta
return layer_a * 100
if __name__ == "__main__":
import doctest
doctest.testmod()
__A = int(input('''Expected value: '''))
__A = int(input('''Number of propagations: '''))
print(forward_propagation(expected, number_propagations))
| 135
| 1
|
'''simple docstring'''
import re
import string
import numpy as np
import datasets
lowerCAmelCase : List[str] = """
Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.
"""
lowerCAmelCase : Any = """
Args:
predictions: List of predicted texts.
references: List of reference texts.
regexes_to_ignore: List, defaults to None. Regex expressions of characters to
ignore when calculating the exact matches. Note: these regexes are removed
from the input data before the changes based on the options below (e.g. ignore_case,
ignore_punctuation, ignore_numbers) are applied.
ignore_case: Boolean, defaults to False. If true, turns everything
to lowercase so that capitalization differences are ignored.
ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before
comparing predictions and references.
ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before
comparing predictions and references.
Returns:
exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.
Examples:
>>> exact_match = datasets.load_metric(\"exact_match\")
>>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]
>>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]
>>> results = exact_match.compute(references=refs, predictions=preds)
>>> print(round(results[\"exact_match\"], 1))
25.0
>>> exact_match = datasets.load_metric(\"exact_match\")
>>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]
>>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]
>>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True)
>>> print(round(results[\"exact_match\"], 1))
50.0
>>> exact_match = datasets.load_metric(\"exact_match\")
>>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]
>>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]
>>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True)
>>> print(round(results[\"exact_match\"], 1))
75.0
>>> exact_match = datasets.load_metric(\"exact_match\")
>>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]
>>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]
>>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)
>>> print(round(results[\"exact_match\"], 1))
100.0
>>> exact_match = datasets.load_metric(\"exact_match\")
>>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"]
>>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"]
>>> results = exact_match.compute(references=refs, predictions=preds)
>>> print(round(results[\"exact_match\"], 1))
33.3
"""
lowerCAmelCase : Any = """
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCamelCase__ ( datasets.Metric ):
"""simple docstring"""
def a ( self ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Value('string' , id='sequence' ),
'references': datasets.Value('string' , id='sequence' ),
} ) , reference_urls=[] , )
def a ( self , snake_case__ , snake_case__ , snake_case__=None , snake_case__=False , snake_case__=False , snake_case__=False , ):
'''simple docstring'''
if regexes_to_ignore is not None:
for s in regexes_to_ignore:
_lowerCAmelCase : Optional[Any] = np.array([re.sub(snake_case__ , '' , snake_case__ ) for x in predictions] )
_lowerCAmelCase : Tuple = np.array([re.sub(snake_case__ , '' , snake_case__ ) for x in references] )
else:
_lowerCAmelCase : str = np.asarray(snake_case__ )
_lowerCAmelCase : Any = np.asarray(snake_case__ )
if ignore_case:
_lowerCAmelCase : Dict = np.char.lower(snake_case__ )
_lowerCAmelCase : List[Any] = np.char.lower(snake_case__ )
if ignore_punctuation:
_lowerCAmelCase : Optional[Any] = string.punctuation.maketrans('' , '' , string.punctuation )
_lowerCAmelCase : Dict = np.char.translate(snake_case__ , table=snake_case__ )
_lowerCAmelCase : Tuple = np.char.translate(snake_case__ , table=snake_case__ )
if ignore_numbers:
_lowerCAmelCase : Optional[Any] = string.digits.maketrans('' , '' , string.digits )
_lowerCAmelCase : Dict = np.char.translate(snake_case__ , table=snake_case__ )
_lowerCAmelCase : int = np.char.translate(snake_case__ , table=snake_case__ )
_lowerCAmelCase : int = predictions == references
return {"exact_match": np.mean(snake_case__ ) * 100}
| 25
|
'''simple docstring'''
lowerCAmelCase : Union[str, Any] = 0 # The first color of the flag.
lowerCAmelCase : Optional[int] = 1 # The second color of the flag.
lowerCAmelCase : int = 2 # The third color of the flag.
lowerCAmelCase : Any = (red, white, blue)
def lowercase (_A ):
"""simple docstring"""
if not sequence:
return []
if len(_A ) == 1:
return list(_A )
_lowerCAmelCase : Optional[int] = 0
_lowerCAmelCase : List[str] = len(_A ) - 1
_lowerCAmelCase : Optional[Any] = 0
while mid <= high:
if sequence[mid] == colors[0]:
_lowerCAmelCase , _lowerCAmelCase : Tuple = sequence[mid], sequence[low]
low += 1
mid += 1
elif sequence[mid] == colors[1]:
mid += 1
elif sequence[mid] == colors[2]:
_lowerCAmelCase , _lowerCAmelCase : Tuple = sequence[high], sequence[mid]
high -= 1
else:
_lowerCAmelCase : Optional[int] = f'The elements inside the sequence must contains only {colors} values'
raise ValueError(_A )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCAmelCase : str = input("""Enter numbers separated by commas:\n""").strip()
lowerCAmelCase : Dict = [int(item.strip()) for item in user_input.split(""",""")]
print(F'''{dutch_national_flag_sort(unsorted)}''')
| 25
| 1
|
'''simple docstring'''
def lowerCAmelCase_ ( snake_case_ : Tuple ) -> List[str]:
'''simple docstring'''
if collection == []:
return []
# get some information about the collection
UpperCAmelCase_ = len(snake_case_ )
UpperCAmelCase_ = max(snake_case_ )
UpperCAmelCase_ = min(snake_case_ )
# create the counting array
UpperCAmelCase_ = coll_max + 1 - coll_min
UpperCAmelCase_ = [0] * counting_arr_length
# count how much a number appears in the collection
for number in collection:
counting_arr[number - coll_min] += 1
# sum each position with it's predecessors. now, counting_arr[i] tells
# us how many elements <= i has in the collection
for i in range(1 , snake_case_ ):
UpperCAmelCase_ = counting_arr[i] + counting_arr[i - 1]
# create the output collection
UpperCAmelCase_ = [0] * coll_len
# place the elements in the output, respecting the original order (stable
# sort) from end to begin, updating counting_arr
for i in reversed(range(0 , snake_case_ ) ):
UpperCAmelCase_ = collection[i]
counting_arr[collection[i] - coll_min] -= 1
return ordered
def lowerCAmelCase_ ( snake_case_ : List[Any] ) -> Tuple:
'''simple docstring'''
return "".join([chr(snake_case_ ) for i in counting_sort([ord(snake_case_ ) for c in string] )] )
if __name__ == "__main__":
# Test string sort
assert counting_sort_string('thisisthestring') == "eghhiiinrsssttt"
SCREAMING_SNAKE_CASE_: List[Any] =input('Enter numbers separated by a comma:\n').strip()
SCREAMING_SNAKE_CASE_: Union[str, Any] =[int(item) for item in user_input.split(',')]
print(counting_sort(unsorted))
| 1
|
from __future__ import annotations
UpperCAmelCase__ = "Muhammad Umer Farooq"
UpperCAmelCase__ = "MIT"
UpperCAmelCase__ = "1.0.0"
UpperCAmelCase__ = "Muhammad Umer Farooq"
UpperCAmelCase__ = "contact@muhammadumerfarooq.me"
UpperCAmelCase__ = "Alpha"
import re
from html.parser import HTMLParser
from urllib import parse
import requests
class lowercase_ ( lowercase ):
'''simple docstring'''
def __init__( self : Union[str, Any] , __UpperCAmelCase : str ) ->None:
"""simple docstring"""
super().__init__()
a = []
a = domain
def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : list[tuple[str, str | None]] ) ->None:
"""simple docstring"""
if tag == "a":
# Check the list of defined attributes.
for name, value in attrs:
# If href is defined, and not empty nor # print it.
if name == "href" and value != "#" and value != "":
# If not already in urls.
if value not in self.urls:
a = parse.urljoin(self.domain , __UpperCAmelCase )
self.urls.append(__UpperCAmelCase )
def _a ( a :str ) -> str:
return ".".join(get_sub_domain_name(a ).split('''.''' )[-2:] )
def _a ( a :str ) -> str:
return parse.urlparse(a ).netloc
def _a ( a :str = "https://github.com" ) -> list[str]:
a = get_domain_name(a )
# Initialize the parser
a = Parser(a )
try:
# Open URL
a = requests.get(a )
# pass the raw HTML to the parser to get links
parser.feed(r.text )
# Get links and loop through
a = set()
for link in parser.urls:
# open URL.
# read = requests.get(link)
try:
a = requests.get(a )
# Get the valid email.
a = re.findall('''[a-zA-Z0-9]+@''' + domain , read.text )
# If not in list then append it.
for email in emails:
valid_emails.add(a )
except ValueError:
pass
except ValueError:
raise SystemExit(1 )
# Finally return a sorted list of email addresses with no duplicates.
return sorted(a )
if __name__ == "__main__":
UpperCAmelCase__ = emails_from_url("https://github.com")
print(f"""{len(emails)} emails found:""")
print("\n".join(sorted(emails)))
| 0
| 0
|
import tempfile
import unittest
import numpy as np
from diffusers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
OnnxStableDiffusionPipeline,
PNDMScheduler,
)
from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class a__ ( UpperCamelCase__ , unittest.TestCase ):
a : int = """hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline"""
def lowerCAmelCase_ ( self , A=0 ) -> List[Any]:
'''simple docstring'''
a = np.random.RandomState(A )
a = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 7.5,
"output_type": "numpy",
}
return inputs
def lowerCAmelCase_ ( self ) -> List[str]:
'''simple docstring'''
a = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" )
pipe.set_progress_bar_config(disable=A )
a = self.get_dummy_inputs()
a = pipe(**A ).images
a = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
a = np.array([0.6_5_0_7_2, 0.5_8_4_9_2, 0.4_8_2_1_9, 0.5_5_5_2_1, 0.5_3_1_8_0, 0.5_5_9_3_9, 0.5_0_6_9_7, 0.3_9_8_0_0, 0.4_6_4_5_5] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def lowerCAmelCase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
a = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" )
a = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=A )
pipe.set_progress_bar_config(disable=A )
a = self.get_dummy_inputs()
a = pipe(**A ).images
a = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
a = np.array([0.6_5_8_6_3, 0.5_9_4_2_5, 0.4_9_3_2_6, 0.5_6_3_1_3, 0.5_3_8_7_5, 0.5_6_6_2_7, 0.5_1_0_6_5, 0.3_9_7_7_7, 0.4_6_3_3_0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def lowerCAmelCase_ ( self ) -> Any:
'''simple docstring'''
a = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" )
a = LMSDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=A )
a = self.get_dummy_inputs()
a = pipe(**A ).images
a = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
a = np.array([0.5_3_7_5_5, 0.6_0_7_8_6, 0.4_7_4_0_2, 0.4_9_4_8_8, 0.5_1_8_6_9, 0.4_9_8_1_9, 0.4_7_9_8_5, 0.3_8_9_5_7, 0.4_4_2_7_9] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def lowerCAmelCase_ ( self ) -> Tuple:
'''simple docstring'''
a = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" )
a = EulerDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=A )
a = self.get_dummy_inputs()
a = pipe(**A ).images
a = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
a = np.array([0.5_3_7_5_5, 0.6_0_7_8_6, 0.4_7_4_0_2, 0.4_9_4_8_8, 0.5_1_8_6_9, 0.4_9_8_1_9, 0.4_7_9_8_5, 0.3_8_9_5_7, 0.4_4_2_7_9] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def lowerCAmelCase_ ( self ) -> Any:
'''simple docstring'''
a = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" )
a = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=A )
a = self.get_dummy_inputs()
a = pipe(**A ).images
a = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
a = np.array([0.5_3_8_1_7, 0.6_0_8_1_2, 0.4_7_3_8_4, 0.4_9_5_3_0, 0.5_1_8_9_4, 0.4_9_8_1_4, 0.4_7_9_8_4, 0.3_8_9_5_8, 0.4_4_2_7_1] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def lowerCAmelCase_ ( self ) -> str:
'''simple docstring'''
a = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" )
a = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=A )
a = self.get_dummy_inputs()
a = pipe(**A ).images
a = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
a = np.array([0.5_3_8_9_5, 0.6_0_8_0_8, 0.4_7_9_3_3, 0.4_9_6_0_8, 0.5_1_8_8_6, 0.4_9_9_5_0, 0.4_8_0_5_3, 0.3_8_9_5_7, 0.4_4_2_0_0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def lowerCAmelCase_ ( self ) -> Dict:
'''simple docstring'''
a = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" )
pipe.set_progress_bar_config(disable=A )
a = self.get_dummy_inputs()
a = 3 * [inputs["prompt"]]
# forward
a = pipe(**A )
a = output.images[0, -3:, -3:, -1]
a = self.get_dummy_inputs()
a = 3 * [inputs.pop("prompt" )]
a = pipe.tokenizer(
A , padding="max_length" , max_length=pipe.tokenizer.model_max_length , truncation=A , return_tensors="np" , )
a = text_inputs["input_ids"]
a = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0]
a = prompt_embeds
# forward
a = pipe(**A )
a = output.images[0, -3:, -3:, -1]
assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4
def lowerCAmelCase_ ( self ) -> str:
'''simple docstring'''
a = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" )
pipe.set_progress_bar_config(disable=A )
a = self.get_dummy_inputs()
a = 3 * ["this is a negative prompt"]
a = negative_prompt
a = 3 * [inputs["prompt"]]
# forward
a = pipe(**A )
a = output.images[0, -3:, -3:, -1]
a = self.get_dummy_inputs()
a = 3 * [inputs.pop("prompt" )]
a = []
for p in [prompt, negative_prompt]:
a = pipe.tokenizer(
A , padding="max_length" , max_length=pipe.tokenizer.model_max_length , truncation=A , return_tensors="np" , )
a = text_inputs["input_ids"]
embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] )
a , a = embeds
# forward
a = pipe(**A )
a = output.images[0, -3:, -3:, -1]
assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4
@nightly
@require_onnxruntime
@require_torch_gpu
class a__ ( unittest.TestCase ):
@property
def lowerCAmelCase_ ( self ) -> Tuple:
'''simple docstring'''
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def lowerCAmelCase_ ( self ) -> str:
'''simple docstring'''
a = ort.SessionOptions()
a = False
return options
def lowerCAmelCase_ ( self ) -> List[str]:
'''simple docstring'''
a = OnnxStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4" , revision="onnx" , safety_checker=A , feature_extractor=A , provider=self.gpu_provider , sess_options=self.gpu_options , )
sd_pipe.set_progress_bar_config(disable=A )
a = "A painting of a squirrel eating a burger"
np.random.seed(0 )
a = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type="np" )
a = output.images
a = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
a = np.array([0.0_4_5_2, 0.0_3_9_0, 0.0_0_8_7, 0.0_3_5_0, 0.0_6_1_7, 0.0_3_6_4, 0.0_5_4_4, 0.0_5_2_3, 0.0_7_2_0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def lowerCAmelCase_ ( self ) -> str:
'''simple docstring'''
a = DDIMScheduler.from_pretrained(
"runwayml/stable-diffusion-v1-5" , subfolder="scheduler" , revision="onnx" )
a = OnnxStableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5" , revision="onnx" , scheduler=A , safety_checker=A , feature_extractor=A , provider=self.gpu_provider , sess_options=self.gpu_options , )
sd_pipe.set_progress_bar_config(disable=A )
a = "open neural network exchange"
a = np.random.RandomState(0 )
a = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=A , output_type="np" )
a = output.images
a = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
a = np.array([0.2_8_6_7, 0.1_9_7_4, 0.1_4_8_1, 0.7_2_9_4, 0.7_2_5_1, 0.6_6_6_7, 0.4_1_9_4, 0.5_6_4_2, 0.6_4_8_6] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def lowerCAmelCase_ ( self ) -> Dict:
'''simple docstring'''
a = LMSDiscreteScheduler.from_pretrained(
"runwayml/stable-diffusion-v1-5" , subfolder="scheduler" , revision="onnx" )
a = OnnxStableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5" , revision="onnx" , scheduler=A , safety_checker=A , feature_extractor=A , provider=self.gpu_provider , sess_options=self.gpu_options , )
sd_pipe.set_progress_bar_config(disable=A )
a = "open neural network exchange"
a = np.random.RandomState(0 )
a = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=A , output_type="np" )
a = output.images
a = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
a = np.array([0.2_3_0_6, 0.1_9_5_9, 0.1_5_9_3, 0.6_5_4_9, 0.6_3_9_4, 0.5_4_0_8, 0.5_0_6_5, 0.6_0_1_0, 0.6_1_6_1] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def lowerCAmelCase_ ( self ) -> str:
'''simple docstring'''
a = 0
def test_callback_fn(A , A , A ) -> None:
a = True
nonlocal number_of_steps
number_of_steps += 1
if step == 0:
assert latents.shape == (1, 4, 64, 64)
a = latents[0, -3:, -3:, -1]
a = np.array(
[-0.6_7_7_2, -0.3_8_3_5, -1.2_4_5_6, 0.1_9_0_5, -1.0_9_7_4, 0.6_9_6_7, -1.9_3_5_3, 0.0_1_7_8, 1.0_1_6_7] )
assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3
elif step == 5:
assert latents.shape == (1, 4, 64, 64)
a = latents[0, -3:, -3:, -1]
a = np.array(
[-0.3_3_5_1, 0.2_2_4_1, -0.1_8_3_7, -0.2_3_2_5, -0.6_5_7_7, 0.3_3_9_3, -0.0_2_4_1, 0.5_8_9_9, 1.3_8_7_5] )
assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3
a = False
a = OnnxStableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5" , revision="onnx" , safety_checker=A , feature_extractor=A , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=A )
a = "Andromeda galaxy in a bottle"
a = np.random.RandomState(0 )
pipe(
prompt=A , num_inference_steps=5 , guidance_scale=7.5 , generator=A , callback=A , callback_steps=1 , )
assert test_callback_fn.has_been_called
assert number_of_steps == 6
def lowerCAmelCase_ ( self ) -> int:
'''simple docstring'''
a = OnnxStableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5" , revision="onnx" , safety_checker=A , feature_extractor=A , provider=self.gpu_provider , sess_options=self.gpu_options , )
assert isinstance(A , A )
assert pipe.safety_checker is None
a = pipe("example prompt" , num_inference_steps=2 ).images[0]
assert image is not None
# check that there's no error when saving a pipeline with one of the models being None
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(A )
a = OnnxStableDiffusionPipeline.from_pretrained(A )
# sanity check that the pipeline still works
assert pipe.safety_checker is None
a = pipe("example prompt" , num_inference_steps=2 ).images[0]
assert image is not None
| 180
|
lowercase__ : str = "\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n"
lowercase__ : Any = [{"type": "code", "content": INSTALL_CONTENT}]
lowercase__ : Any = {
"{processor_class}": "FakeProcessorClass",
"{model_class}": "FakeModelClass",
"{object_class}": "FakeObjectClass",
}
| 180
| 1
|
import pytest
from datasets import inspect_metric, list_metrics, load_metric
@pytest.fixture
def lowerCamelCase_ ( _UpperCamelCase ) -> List[Any]:
"""simple docstring"""
monkeypatch.setattr('''datasets.utils.deprecation_utils._emitted_deprecation_warnings''' , set() )
@pytest.fixture
def lowerCamelCase_ ( _UpperCamelCase ) -> List[str]:
"""simple docstring"""
class __lowerCAmelCase :
def __init__(self , __magic_name__ ) -> Optional[Any]:
'''simple docstring'''
snake_case_ : Union[str, Any] = metric_id
class __lowerCAmelCase :
lowerCamelCase_ : Optional[Any] = [MetricMock(_a ) for metric_id in ['''accuracy''', '''mse''', '''precision''', '''codeparrot/apps_metric''']]
def lowerCamelCase (self ) -> str:
'''simple docstring'''
return self._metrics
monkeypatch.setattr('''datasets.inspect.huggingface_hub''' , HfhMock() )
@pytest.mark.parametrize(
'''func, args''' , [(load_metric, ('''metrics/mse''',)), (list_metrics, ()), (inspect_metric, ('''metrics/mse''', '''tmp_path'''))] )
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> str:
"""simple docstring"""
if "tmp_path" in args:
snake_case_ : Any = tuple(arg if arg != '''tmp_path''' else tmp_path for arg in args )
with pytest.warns(lowerCamelCase__ , match='''https://huggingface.co/docs/evaluate''' ):
func(*lowerCamelCase__ )
| 279
|
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized, parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , )
@pytest.mark.usefixtures('''sm_env''' )
@parameterized_class(
[
{
'''framework''': '''pytorch''',
'''script''': '''run_glue_model_parallelism.py''',
'''model_name_or_path''': '''roberta-large''',
'''instance_type''': '''ml.p3dn.24xlarge''',
'''results''': {'''train_runtime''': 1_600, '''eval_accuracy''': 0.3, '''eval_loss''': 1.2},
},
{
'''framework''': '''pytorch''',
'''script''': '''run_glue.py''',
'''model_name_or_path''': '''roberta-large''',
'''instance_type''': '''ml.p3dn.24xlarge''',
'''results''': {'''train_runtime''': 1_600, '''eval_accuracy''': 0.3, '''eval_loss''': 1.2},
},
] )
class A_ ( unittest.TestCase ):
def lowerCAmelCase ( self : Union[str, Any]):
if self.framework == "pytorch":
subprocess.run(
F"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split() ,encoding='utf-8' ,check=SCREAMING_SNAKE_CASE__ ,)
assert hasattr(self ,'env')
def lowerCAmelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : int):
# configuration for running training on smdistributed Model Parallel
__lowerCamelCase : Any = {
'enabled': True,
'processes_per_host': 8,
}
__lowerCamelCase : List[Any] = {
'enabled': True,
'parameters': {
'microbatches': 4,
'placement_strategy': 'spread',
'pipeline': 'interleaved',
'optimize': 'speed',
'partitions': 4,
'ddp': True,
},
}
__lowerCamelCase : str = {'smdistributed': {'modelparallel': smp_options}, 'mpi': mpi_options}
__lowerCamelCase : List[str] = 'trainer' if self.script == 'run_glue.py' else 'smtrainer'
# creates estimator
return HuggingFace(
entry_point=self.script ,source_dir=self.env.test_path ,role=self.env.role ,image_uri=self.env.image_uri ,base_job_name=F"{self.env.base_job_name}-{instance_count}-smp-{name_extension}" ,instance_count=SCREAMING_SNAKE_CASE__ ,instance_type=self.instance_type ,debugger_hook_config=SCREAMING_SNAKE_CASE__ ,hyperparameters={
**self.env.hyperparameters,
'model_name_or_path': self.model_name_or_path,
'max_steps': 5_0_0,
} ,metric_definitions=self.env.metric_definitions ,distribution=SCREAMING_SNAKE_CASE__ ,py_version='py36' ,)
def lowerCAmelCase ( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : Any):
TrainingJobAnalytics(SCREAMING_SNAKE_CASE__).export_csv(F"{self.env.test_path}/{job_name}_metrics.csv")
@parameterized.expand([(1,)])
def lowerCAmelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : Optional[Any]):
# create estimator
__lowerCamelCase : str = self.create_estimator(SCREAMING_SNAKE_CASE__)
# run training
estimator.fit()
# result dataframe
__lowerCamelCase : List[str] = TrainingJobAnalytics(estimator.latest_training_job.name).dataframe()
# extract kpis
__lowerCamelCase : Optional[int] = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'])
__lowerCamelCase : Any = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'])
# get train time from SageMaker job, this includes starting, preprocessing, stopping
__lowerCamelCase : str = (
Session().describe_training_job(estimator.latest_training_job.name).get('TrainingTimeInSeconds' ,9_9_9_9_9_9)
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy)
assert all(t <= self.results['eval_loss'] for t in eval_loss)
# dump tests result into json file to share in PR
with open(F"{estimator.latest_training_job.name}.json" ,'w') as outfile:
json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} ,SCREAMING_SNAKE_CASE__)
| 73
| 0
|
import unittest
from transformers import EsmConfig, is_torch_available
from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel
from transformers.models.esm.modeling_esm import (
ESM_PRETRAINED_MODEL_ARCHIVE_LIST,
EsmEmbeddings,
create_position_ids_from_input_ids,
)
class A :
def __init__(self : Dict , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[Any]=1_3 , __UpperCAmelCase : Union[str, Any]=7 , __UpperCAmelCase : Union[str, Any]=False , __UpperCAmelCase : List[str]=True , __UpperCAmelCase : Optional[Any]=False , __UpperCAmelCase : int=True , __UpperCAmelCase : Any=3_3 , __UpperCAmelCase : List[Any]=3_2 , __UpperCAmelCase : Union[str, Any]=5 , __UpperCAmelCase : Optional[int]=4 , __UpperCAmelCase : int=3_7 , __UpperCAmelCase : Any="gelu" , __UpperCAmelCase : Union[str, Any]=0.1 , __UpperCAmelCase : Optional[int]=0.1 , __UpperCAmelCase : Optional[int]=5_1_2 , __UpperCAmelCase : int=1_6 , __UpperCAmelCase : List[Any]=2 , __UpperCAmelCase : int=0.02 , __UpperCAmelCase : Dict=3 , __UpperCAmelCase : List[str]=4 , __UpperCAmelCase : Dict=None , ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = parent
UpperCAmelCase__ = batch_size
UpperCAmelCase__ = seq_length
UpperCAmelCase__ = is_training
UpperCAmelCase__ = use_input_mask
UpperCAmelCase__ = use_token_type_ids
UpperCAmelCase__ = use_labels
UpperCAmelCase__ = vocab_size
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = intermediate_size
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = max_position_embeddings
UpperCAmelCase__ = type_vocab_size
UpperCAmelCase__ = type_sequence_label_size
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = num_labels
UpperCAmelCase__ = num_choices
UpperCAmelCase__ = scope
def lowercase_ (self : Tuple ) -> str:
"""simple docstring"""
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase__ = None
if self.use_input_mask:
UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase__ = None
UpperCAmelCase__ = None
UpperCAmelCase__ = None
if self.use_labels:
UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase__ = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def lowercase_ (self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
return EsmConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
def lowercase_ (self : Optional[int] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[str] ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = EsmModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
UpperCAmelCase__ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )
UpperCAmelCase__ = model(__UpperCAmelCase )
UpperCAmelCase__ = model(__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def lowercase_ (self : List[str] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Dict ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = EsmForMaskedLM(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
UpperCAmelCase__ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowercase_ (self : Dict , __UpperCAmelCase : int , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Any , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = self.num_labels
UpperCAmelCase__ = EsmForTokenClassification(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
UpperCAmelCase__ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowercase_ (self : Optional[int] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = self.prepare_config_and_inputs()
(
(
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) ,
) = config_and_inputs
UpperCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class A ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
__UpperCAmelCase : str = False
__UpperCAmelCase : Dict = (
(
EsmForMaskedLM,
EsmModel,
EsmForSequenceClassification,
EsmForTokenClassification,
)
if is_torch_available()
else ()
)
__UpperCAmelCase : List[str] = ()
__UpperCAmelCase : List[str] = (
{
'feature-extraction': EsmModel,
'fill-mask': EsmForMaskedLM,
'text-classification': EsmForSequenceClassification,
'token-classification': EsmForTokenClassification,
'zero-shot': EsmForSequenceClassification,
}
if is_torch_available()
else {}
)
__UpperCAmelCase : str = True
def lowercase_ (self : str ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = EsmModelTester(self )
UpperCAmelCase__ = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=3_7 )
def lowercase_ (self : int ) -> Union[str, Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def lowercase_ (self : List[Any] ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def lowercase_ (self : List[Any] ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
UpperCAmelCase__ = type
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def lowercase_ (self : str ) -> int:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase )
def lowercase_ (self : int ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase )
@slow
def lowercase_ (self : List[Any] ) -> str:
"""simple docstring"""
for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase__ = EsmModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
def lowercase_ (self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()[0]
UpperCAmelCase__ = EsmEmbeddings(config=__UpperCAmelCase )
UpperCAmelCase__ = torch.as_tensor([[1_2, 3_1, 1_3, model.padding_idx]] )
UpperCAmelCase__ = torch.as_tensor(
[
[
0 + model.padding_idx + 1,
1 + model.padding_idx + 1,
2 + model.padding_idx + 1,
model.padding_idx,
]
] )
UpperCAmelCase__ = create_position_ids_from_input_ids(__UpperCAmelCase , model.padding_idx )
self.assertEqual(position_ids.shape , expected_positions.shape )
self.assertTrue(torch.all(torch.eq(__UpperCAmelCase , __UpperCAmelCase ) ) )
def lowercase_ (self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()[0]
UpperCAmelCase__ = EsmEmbeddings(config=__UpperCAmelCase )
UpperCAmelCase__ = torch.empty(2 , 4 , 3_0 )
UpperCAmelCase__ = [
0 + embeddings.padding_idx + 1,
1 + embeddings.padding_idx + 1,
2 + embeddings.padding_idx + 1,
3 + embeddings.padding_idx + 1,
]
UpperCAmelCase__ = torch.as_tensor([expected_single_positions, expected_single_positions] )
UpperCAmelCase__ = embeddings.create_position_ids_from_inputs_embeds(__UpperCAmelCase )
self.assertEqual(position_ids.shape , expected_positions.shape )
self.assertTrue(torch.all(torch.eq(__UpperCAmelCase , __UpperCAmelCase ) ) )
@unittest.skip("Esm does not support embedding resizing" )
def lowercase_ (self : Tuple ) -> Any:
"""simple docstring"""
pass
@unittest.skip("Esm does not support embedding resizing" )
def lowercase_ (self : List[Any] ) -> List[Any]:
"""simple docstring"""
pass
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." )
def lowercase_ (self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
pass
@require_torch
class A ( UpperCAmelCase_ ):
@slow
def lowercase_ (self : str ) -> int:
"""simple docstring"""
with torch.no_grad():
UpperCAmelCase__ = EsmForMaskedLM.from_pretrained("facebook/esm2_t6_8M_UR50D" )
model.eval()
UpperCAmelCase__ = torch.tensor([[0, 1, 2, 3, 4, 5]] )
UpperCAmelCase__ = model(__UpperCAmelCase )[0]
UpperCAmelCase__ = 3_3
UpperCAmelCase__ = torch.Size((1, 6, vocab_size) )
self.assertEqual(output.shape , __UpperCAmelCase )
UpperCAmelCase__ = torch.tensor(
[[[8.9215, -10.5898, -6.4671], [-6.3967, -13.9114, -1.1212], [-7.7812, -13.9516, -3.7406]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
@slow
def lowercase_ (self : Dict ) -> List[Any]:
"""simple docstring"""
with torch.no_grad():
UpperCAmelCase__ = EsmModel.from_pretrained("facebook/esm2_t6_8M_UR50D" )
model.eval()
UpperCAmelCase__ = torch.tensor([[0, 6, 4, 1_3, 5, 4, 1_6, 1_2, 1_1, 7, 2]] )
UpperCAmelCase__ = model(__UpperCAmelCase )[0]
# compare the actual values for a slice.
UpperCAmelCase__ = torch.tensor(
[[[0.1444, 0.5413, 0.3248], [0.3034, 0.0053, 0.3108], [0.3228, -0.2499, 0.3415]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
| 143
|
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from .config import config_command_parser
from .config_args import default_config_file, load_config_from_file # noqa: F401
from .default import default_command_parser
from .update import update_command_parser
def lowerCAmelCase_ ( __A=None ) -> str:
'''simple docstring'''
UpperCAmelCase__ = argparse.ArgumentParser(add_help=__A, allow_abbrev=__A )
# The main config parser
UpperCAmelCase__ = config_command_parser(__A )
# The subparser to add commands to
UpperCAmelCase__ = config_parser.add_subparsers(title="subcommands", dest="subcommand" )
# Then add other parsers with the parent parser
default_command_parser(__A, parents=[parent_parser] )
update_command_parser(__A, parents=[parent_parser] )
return config_parser
def lowerCAmelCase_ ( ) -> Any:
'''simple docstring'''
UpperCAmelCase__ = get_config_parser()
UpperCAmelCase__ = config_parser.parse_args()
if not hasattr(__A, "func" ):
config_parser.print_help()
exit(1 )
# Run
args.func(__A )
if __name__ == "__main__":
main()
| 143
| 1
|
'''simple docstring'''
import math
import os
import sys
def UpperCamelCase_ ( _UpperCAmelCase : str ) -> str:
"""simple docstring"""
_UpperCAmelCase : List[str] = ""
try:
with open(_UpperCAmelCase , "rb" ) as binary_file:
_UpperCAmelCase : Tuple = binary_file.read()
for dat in data:
_UpperCAmelCase : int = F"""{dat:08b}"""
result += curr_byte
return result
except OSError:
print("File not accessible" )
sys.exit()
def UpperCamelCase_ ( _UpperCAmelCase : dict[str, str] , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : str ) -> None:
"""simple docstring"""
lexicon.pop(_UpperCAmelCase )
_UpperCAmelCase : int = last_match_id
if math.loga(_UpperCAmelCase ).is_integer():
for curr_key in lexicon:
_UpperCAmelCase : Optional[int] = "0" + lexicon[curr_key]
_UpperCAmelCase : Union[str, Any] = bin(_UpperCAmelCase )[2:]
def UpperCamelCase_ ( _UpperCAmelCase : str ) -> str:
"""simple docstring"""
_UpperCAmelCase : List[Any] = {"0": "0", "1": "1"}
_UpperCAmelCase , _UpperCAmelCase : str = "", ""
_UpperCAmelCase : List[Any] = len(_UpperCAmelCase )
for i in range(len(_UpperCAmelCase ) ):
curr_string += data_bits[i]
if curr_string not in lexicon:
continue
_UpperCAmelCase : Union[str, Any] = lexicon[curr_string]
result += last_match_id
add_key_to_lexicon(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
index += 1
_UpperCAmelCase : int = ""
while curr_string != "" and curr_string not in lexicon:
curr_string += "0"
if curr_string != "":
_UpperCAmelCase : Any = lexicon[curr_string]
result += last_match_id
return result
def UpperCamelCase_ ( _UpperCAmelCase : str , _UpperCAmelCase : str ) -> str:
"""simple docstring"""
_UpperCAmelCase : List[Any] = os.path.getsize(_UpperCAmelCase )
_UpperCAmelCase : Tuple = bin(_UpperCAmelCase )[2:]
_UpperCAmelCase : int = len(_UpperCAmelCase )
return "0" * (length_length - 1) + file_length_binary + compressed
def UpperCamelCase_ ( _UpperCAmelCase : str , _UpperCAmelCase : str ) -> None:
"""simple docstring"""
_UpperCAmelCase : List[str] = 8
try:
with open(_UpperCAmelCase , "wb" ) as opened_file:
_UpperCAmelCase : Optional[int] = [
to_write[i : i + byte_length]
for i in range(0 , len(_UpperCAmelCase ) , _UpperCAmelCase )
]
if len(result_byte_array[-1] ) % byte_length == 0:
result_byte_array.append("10000000" )
else:
result_byte_array[-1] += "1" + "0" * (
byte_length - len(result_byte_array[-1] ) - 1
)
for elem in result_byte_array:
opened_file.write(int(_UpperCAmelCase , 2 ).to_bytes(1 , byteorder="big" ) )
except OSError:
print("File not accessible" )
sys.exit()
def UpperCamelCase_ ( _UpperCAmelCase : str , _UpperCAmelCase : str ) -> None:
"""simple docstring"""
_UpperCAmelCase : int = read_file_binary(_UpperCAmelCase )
_UpperCAmelCase : Tuple = compress_data(_UpperCAmelCase )
_UpperCAmelCase : Optional[Any] = add_file_length(_UpperCAmelCase , _UpperCAmelCase )
write_file_binary(_UpperCAmelCase , _UpperCAmelCase )
if __name__ == "__main__":
compress(sys.argv[1], sys.argv[2])
| 31
|
'''simple docstring'''
import math
import unittest
from transformers import BioGptConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptTokenizer,
)
from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST
class lowerCamelCase_ :
'''simple docstring'''
def __init__( self : List[Any] , A : Dict , A : Optional[Any]=13 , A : Optional[Any]=7 , A : Union[str, Any]=True , A : Optional[Any]=True , A : int=False , A : str=True , A : Optional[Any]=99 , A : Union[str, Any]=32 , A : int=5 , A : Tuple=4 , A : Union[str, Any]=37 , A : Dict="gelu" , A : Union[str, Any]=0.1 , A : str=0.1 , A : Union[str, Any]=512 , A : int=16 , A : List[str]=2 , A : Tuple=0.02 , A : int=3 , A : List[str]=4 , A : str=None , ):
_UpperCAmelCase : List[Any] = parent
_UpperCAmelCase : Any = batch_size
_UpperCAmelCase : int = seq_length
_UpperCAmelCase : Union[str, Any] = is_training
_UpperCAmelCase : Any = use_input_mask
_UpperCAmelCase : Optional[Any] = use_token_type_ids
_UpperCAmelCase : str = use_labels
_UpperCAmelCase : Union[str, Any] = vocab_size
_UpperCAmelCase : Tuple = hidden_size
_UpperCAmelCase : Union[str, Any] = num_hidden_layers
_UpperCAmelCase : Optional[Any] = num_attention_heads
_UpperCAmelCase : Union[str, Any] = intermediate_size
_UpperCAmelCase : Union[str, Any] = hidden_act
_UpperCAmelCase : List[Any] = hidden_dropout_prob
_UpperCAmelCase : List[Any] = attention_probs_dropout_prob
_UpperCAmelCase : Optional[int] = max_position_embeddings
_UpperCAmelCase : str = type_vocab_size
_UpperCAmelCase : str = type_sequence_label_size
_UpperCAmelCase : int = initializer_range
_UpperCAmelCase : Optional[Any] = num_labels
_UpperCAmelCase : List[str] = num_choices
_UpperCAmelCase : List[str] = scope
def _A ( self : Optional[int] ):
_UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCAmelCase : Union[str, Any] = None
if self.use_input_mask:
_UpperCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] )
_UpperCAmelCase : Any = None
if self.use_token_type_ids:
_UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_UpperCAmelCase : Optional[int] = None
_UpperCAmelCase : Any = None
_UpperCAmelCase : Optional[int] = None
if self.use_labels:
_UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices )
_UpperCAmelCase : List[Any] = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _A ( self : Dict ):
return BioGptConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , )
def _A ( self : int , A : List[Any] , A : Any , A : int , A : Union[str, Any] , A : Dict , A : List[Any] , A : Dict ):
_UpperCAmelCase : List[str] = BioGptModel(config=A )
model.to(A )
model.eval()
_UpperCAmelCase : Tuple = model(A , attention_mask=A )
_UpperCAmelCase : int = model(A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _A ( self : List[Any] , A : str , A : List[Any] , A : Dict , A : List[Any] , A : List[str] , A : Union[str, Any] , A : int , A : List[str] , A : Dict , ):
_UpperCAmelCase : Optional[int] = BioGptForCausalLM(config=A )
model.to(A )
model.eval()
_UpperCAmelCase : Optional[int] = model(A , attention_mask=A , token_type_ids=A , labels=A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _A ( self : List[Any] , A : str , A : str , A : str , A : Any , A : List[str] , *A : Optional[int] ):
_UpperCAmelCase : str = BioGptModel(config=A )
model.to(A )
model.eval()
# create attention mask
_UpperCAmelCase : List[Any] = torch.ones(input_ids.shape , dtype=torch.long , device=A )
_UpperCAmelCase : Optional[int] = self.seq_length // 2
_UpperCAmelCase : List[Any] = 0
# first forward pass
_UpperCAmelCase , _UpperCAmelCase : List[str] = model(A , attention_mask=A ).to_tuple()
# create hypothetical next token and extent to next_input_ids
_UpperCAmelCase : List[str] = ids_tensor((self.batch_size, 1) , config.vocab_size )
# change a random masked slice from input_ids
_UpperCAmelCase : List[str] = ids_tensor((1,) , A ).item() + 1
_UpperCAmelCase : str = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 )
_UpperCAmelCase : Any = random_other_next_tokens
# append to next input_ids and attn_mask
_UpperCAmelCase : List[Any] = torch.cat([input_ids, next_tokens] , dim=-1 )
_UpperCAmelCase : Optional[int] = torch.cat(
[attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=A )] , dim=1 , )
# get two different outputs
_UpperCAmelCase : List[Any] = model(A , attention_mask=A )["last_hidden_state"]
_UpperCAmelCase : Optional[Any] = model(A , past_key_values=A , attention_mask=A )["last_hidden_state"]
# select random slice
_UpperCAmelCase : Any = ids_tensor((1,) , output_from_past.shape[-1] ).item()
_UpperCAmelCase : Optional[Any] = output_from_no_past[:, -1, random_slice_idx].detach()
_UpperCAmelCase : Any = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(A , A , atol=1E-3 ) )
def _A ( self : int , A : Dict , A : str , A : Dict , A : Union[str, Any] , A : Any , *A : Union[str, Any] ):
_UpperCAmelCase : Optional[Any] = BioGptModel(config=A ).to(A ).eval()
_UpperCAmelCase : List[Any] = torch.ones(input_ids.shape , dtype=torch.long , device=A )
# first forward pass
_UpperCAmelCase : Union[str, Any] = model(A , attention_mask=A , use_cache=A )
_UpperCAmelCase , _UpperCAmelCase : Dict = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
_UpperCAmelCase : str = ids_tensor((self.batch_size, 3) , config.vocab_size )
_UpperCAmelCase : Any = ids_tensor((self.batch_size, 3) , 2 )
# append to next input_ids and
_UpperCAmelCase : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1 )
_UpperCAmelCase : Dict = torch.cat([attention_mask, next_attn_mask] , dim=-1 )
_UpperCAmelCase : Any = model(A , attention_mask=A )["last_hidden_state"]
_UpperCAmelCase : Dict = model(A , attention_mask=A , past_key_values=A )[
"last_hidden_state"
]
# select random slice
_UpperCAmelCase : Dict = ids_tensor((1,) , output_from_past.shape[-1] ).item()
_UpperCAmelCase : Dict = output_from_no_past[:, -3:, random_slice_idx].detach()
_UpperCAmelCase : Any = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(A , A , atol=1E-3 ) )
def _A ( self : Optional[Any] , A : Tuple , A : List[str] , A : Tuple , A : Dict , A : List[Any] , *A : Tuple , A : List[str]=False ):
_UpperCAmelCase : Optional[int] = BioGptForCausalLM(A )
model.to(A )
if gradient_checkpointing:
model.gradient_checkpointing_enable()
_UpperCAmelCase : Union[str, Any] = model(A , labels=A )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
result.loss.backward()
def _A ( self : Optional[Any] , A : Any , *A : Optional[Any] ):
_UpperCAmelCase : Tuple = BioGptModel(A )
_UpperCAmelCase : int = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers )
for key in model.state_dict().keys():
if "c_proj" in key and "weight" in key:
self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 )
self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 )
def _A ( self : Optional[int] , A : Dict , A : Tuple , A : Optional[int] , A : int , A : List[str] , *A : Dict ):
_UpperCAmelCase : Any = self.num_labels
_UpperCAmelCase : Any = BioGptForTokenClassification(A )
model.to(A )
model.eval()
_UpperCAmelCase : Optional[int] = model(A , attention_mask=A , token_type_ids=A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _A ( self : int ):
_UpperCAmelCase : Dict = self.prepare_config_and_inputs()
(
(
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) ,
) : List[str] = config_and_inputs
_UpperCAmelCase : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class lowerCamelCase_ (snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ):
'''simple docstring'''
__UpperCamelCase: List[str] = (
(BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification)
if is_torch_available()
else ()
)
__UpperCamelCase: List[str] = (BioGptForCausalLM,) if is_torch_available() else ()
__UpperCamelCase: str = (
{
"feature-extraction": BioGptModel,
"text-classification": BioGptForSequenceClassification,
"text-generation": BioGptForCausalLM,
"token-classification": BioGptForTokenClassification,
"zero-shot": BioGptForSequenceClassification,
}
if is_torch_available()
else {}
)
__UpperCamelCase: Union[str, Any] = False
def _A ( self : Optional[Any] ):
_UpperCAmelCase : List[Any] = BioGptModelTester(self )
_UpperCAmelCase : str = ConfigTester(self , config_class=A , hidden_size=37 )
def _A ( self : Union[str, Any] ):
self.config_tester.run_common_tests()
def _A ( self : Any ):
_UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def _A ( self : Any ):
_UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
_UpperCAmelCase : Tuple = type
self.model_tester.create_and_check_model(*A )
def _A ( self : int ):
_UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_attention_mask_past(*A )
def _A ( self : Union[str, Any] ):
_UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_forward_and_backwards(*A , gradient_checkpointing=A )
def _A ( self : Union[str, Any] ):
_UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_past_large_inputs(*A )
def _A ( self : Dict ):
_UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_weight_initialization(*A )
def _A ( self : Dict ):
_UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_for_token_classification(*A )
@slow
def _A ( self : List[str] ):
_UpperCAmelCase : Optional[Any] = BioGptForCausalLM.from_pretrained("microsoft/biogpt" )
model.to(A )
_UpperCAmelCase : Tuple = BioGptTokenizer.from_pretrained("microsoft/biogpt" )
_UpperCAmelCase : str = "left"
# Define PAD Token = EOS Token = 50256
_UpperCAmelCase : Any = tokenizer.eos_token
_UpperCAmelCase : int = model.config.eos_token_id
# use different length sentences to test batching
_UpperCAmelCase : Any = [
"Hello, my dog is a little",
"Today, I",
]
_UpperCAmelCase : Tuple = tokenizer(A , return_tensors="pt" , padding=A )
_UpperCAmelCase : Optional[Any] = inputs["input_ids"].to(A )
_UpperCAmelCase : Any = model.generate(
input_ids=A , attention_mask=inputs["attention_mask"].to(A ) , )
_UpperCAmelCase : int = tokenizer(sentences[0] , return_tensors="pt" ).input_ids.to(A )
_UpperCAmelCase : List[Any] = model.generate(input_ids=A )
_UpperCAmelCase : List[Any] = inputs_non_padded.shape[-1] - inputs["attention_mask"][-1].long().sum().cpu().item()
_UpperCAmelCase : int = tokenizer(sentences[1] , return_tensors="pt" ).input_ids.to(A )
_UpperCAmelCase : int = model.generate(input_ids=A , max_length=model.config.max_length - num_paddings )
_UpperCAmelCase : Dict = tokenizer.batch_decode(A , skip_special_tokens=A )
_UpperCAmelCase : Any = tokenizer.decode(output_non_padded[0] , skip_special_tokens=A )
_UpperCAmelCase : Optional[int] = tokenizer.decode(output_padded[0] , skip_special_tokens=A )
_UpperCAmelCase : str = [
"Hello, my dog is a little bit bigger than a little bit.",
"Today, I have a good idea of how to use the information",
]
self.assertListEqual(A , A )
self.assertListEqual(A , [non_padded_sentence, padded_sentence] )
@slow
def _A ( self : str ):
for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_UpperCAmelCase : Optional[Any] = BioGptModel.from_pretrained(A )
self.assertIsNotNone(A )
def _A ( self : List[str] ):
_UpperCAmelCase , _UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCAmelCase : str = 3
_UpperCAmelCase : List[str] = input_dict["input_ids"]
_UpperCAmelCase : Dict = input_ids.ne(1 ).to(A )
_UpperCAmelCase : List[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
_UpperCAmelCase : List[str] = BioGptForSequenceClassification(A )
model.to(A )
model.eval()
_UpperCAmelCase : List[str] = model(A , attention_mask=A , labels=A )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def _A ( self : int ):
_UpperCAmelCase , _UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCAmelCase : int = 3
_UpperCAmelCase : Dict = "multi_label_classification"
_UpperCAmelCase : Optional[Any] = input_dict["input_ids"]
_UpperCAmelCase : Optional[int] = input_ids.ne(1 ).to(A )
_UpperCAmelCase : Tuple = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
_UpperCAmelCase : Optional[Any] = BioGptForSequenceClassification(A )
model.to(A )
model.eval()
_UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@require_torch
class lowerCamelCase_ (unittest.TestCase ):
'''simple docstring'''
@slow
def _A ( self : List[Any] ):
_UpperCAmelCase : Optional[Any] = BioGptForCausalLM.from_pretrained("microsoft/biogpt" )
_UpperCAmelCase : List[str] = torch.tensor([[2, 4805, 9, 656, 21]] )
_UpperCAmelCase : List[Any] = model(A )[0]
_UpperCAmelCase : int = 42384
_UpperCAmelCase : int = torch.Size((1, 5, vocab_size) )
self.assertEqual(output.shape , A )
_UpperCAmelCase : Any = torch.tensor(
[[[-9.5_236, -9.8_918, 10.4_557], [-11.0_469, -9.6_423, 8.1_022], [-8.8_664, -7.8_826, 5.5_325]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , A , atol=1E-4 ) )
@slow
def _A ( self : Any ):
_UpperCAmelCase : str = BioGptTokenizer.from_pretrained("microsoft/biogpt" )
_UpperCAmelCase : Tuple = BioGptForCausalLM.from_pretrained("microsoft/biogpt" )
model.to(A )
torch.manual_seed(0 )
_UpperCAmelCase : Optional[Any] = tokenizer("COVID-19 is" , return_tensors="pt" ).to(A )
_UpperCAmelCase : Dict = model.generate(
**A , min_length=100 , max_length=1024 , num_beams=5 , early_stopping=A , )
_UpperCAmelCase : Optional[Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=A )
_UpperCAmelCase : List[str] = (
"COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the"
" causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and"
" territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),"
" and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and"
" more than 800,000 deaths."
)
self.assertEqual(A , A )
| 31
| 1
|
SCREAMING_SNAKE_CASE__ = 8.3144598
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: float , __lowerCamelCase: float ):
'''simple docstring'''
if temperature < 0:
raise Exception("Temperature cannot be less than 0 K" )
if molar_mass <= 0:
raise Exception("Molar mass cannot be less than or equal to 0 kg/mol" )
else:
return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5
if __name__ == "__main__":
import doctest
# run doctest
doctest.testmod()
# example
SCREAMING_SNAKE_CASE__ = 3_0_0
SCREAMING_SNAKE_CASE__ = 2_8
SCREAMING_SNAKE_CASE__ = rms_speed_of_molecule(temperature, molar_mass)
print(f"""Vrms of Nitrogen gas at 300 K is {vrms} m/s""")
| 360
|
import math
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils import SchedulerMixin, SchedulerOutput
class __lowerCamelCase ( snake_case_ , snake_case_ ):
"""simple docstring"""
lowerCAmelCase__ = 1
@register_to_config
def __init__( self , UpperCAmelCase = 1000 , UpperCAmelCase = None ) -> List[Any]:
'''simple docstring'''
self.set_timesteps(UpperCAmelCase )
# standard deviation of the initial noise distribution
lowercase_ = 1.0
# For now we only support F-PNDM, i.e. the runge-kutta method
# For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf
# mainly at formula (9), (12), (13) and the Algorithm 2.
lowercase_ = 4
# running values
lowercase_ = []
def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Optional[int]:
'''simple docstring'''
lowercase_ = num_inference_steps
lowercase_ = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1]
lowercase_ = torch.cat([steps, torch.tensor([0.0] )] )
if self.config.trained_betas is not None:
lowercase_ = torch.tensor(self.config.trained_betas , dtype=torch.floataa )
else:
lowercase_ = torch.sin(steps * math.pi / 2 ) ** 2
lowercase_ = (1.0 - self.betas**2) ** 0.5
lowercase_ = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1]
lowercase_ = timesteps.to(UpperCAmelCase )
lowercase_ = []
def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = True , ) -> Union[SchedulerOutput, Tuple]:
'''simple docstring'''
if self.num_inference_steps is None:
raise ValueError(
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" )
lowercase_ = (self.timesteps == timestep).nonzero().item()
lowercase_ = timestep_index + 1
lowercase_ = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index]
self.ets.append(UpperCAmelCase )
if len(self.ets ) == 1:
lowercase_ = self.ets[-1]
elif len(self.ets ) == 2:
lowercase_ = (3 * self.ets[-1] - self.ets[-2]) / 2
elif len(self.ets ) == 3:
lowercase_ = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12
else:
lowercase_ = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4])
lowercase_ = self._get_prev_sample(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=UpperCAmelCase )
def A__ ( self , UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase ) -> torch.FloatTensor:
'''simple docstring'''
return sample
def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict:
'''simple docstring'''
lowercase_ = self.alphas[timestep_index]
lowercase_ = self.betas[timestep_index]
lowercase_ = self.alphas[prev_timestep_index]
lowercase_ = self.betas[prev_timestep_index]
lowercase_ = (sample - sigma * ets) / max(UpperCAmelCase , 1e-8 )
lowercase_ = next_alpha * pred + ets * next_sigma
return prev_sample
def __len__( self ) -> List[str]:
'''simple docstring'''
return self.config.num_train_timesteps
| 297
| 0
|
"""simple docstring"""
import tempfile
import unittest
from make_student import create_student_by_copying_alternating_layers
from transformers import AutoConfig
from transformers.file_utils import cached_property
from transformers.testing_utils import require_torch
__UpperCamelCase : Any = '''sshleifer/bart-tiny-random'''
__UpperCamelCase : List[Any] = '''patrickvonplaten/t5-tiny-random'''
@require_torch
class SCREAMING_SNAKE_CASE ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def __lowerCAmelCase ( self : Optional[Any] ):
return AutoConfig.from_pretrained(lowercase_ )
def __lowerCAmelCase ( self : Union[str, Any] ):
lowerCAmelCase__ ,*lowerCAmelCase__ : Tuple = create_student_by_copying_alternating_layers(lowercase_ ,tempfile.mkdtemp() ,e=1 ,d=1 )
self.assertEqual(student.config.num_hidden_layers ,1 )
def __lowerCAmelCase ( self : int ):
lowerCAmelCase__ ,*lowerCAmelCase__ : Any = create_student_by_copying_alternating_layers(lowercase_ ,tempfile.mkdtemp() ,e=1 ,d=lowercase_ )
def __lowerCAmelCase ( self : List[Any] ):
lowerCAmelCase__ ,*lowerCAmelCase__ : List[Any] = create_student_by_copying_alternating_layers(lowercase_ ,tempfile.mkdtemp() ,e=1 ,d=lowercase_ )
self.assertEqual(student.config.encoder_layers ,1 )
self.assertEqual(student.config.decoder_layers ,self.teacher_config.encoder_layers )
def __lowerCAmelCase ( self : List[str] ):
lowerCAmelCase__ ,*lowerCAmelCase__ : List[str] = create_student_by_copying_alternating_layers(lowercase_ ,tempfile.mkdtemp() ,e=1 ,d=1 )
self.assertEqual(student.config.encoder_layers ,1 )
self.assertEqual(student.config.decoder_layers ,1 )
def __lowerCAmelCase ( self : Optional[Any] ):
with self.assertRaises(lowercase_ ):
create_student_by_copying_alternating_layers(lowercase_ ,tempfile.mkdtemp() ,e=lowercase_ ,d=lowercase_ )
| 106
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
__UpperCamelCase : Dict = {
'''configuration_clip''': [
'''CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''CLIPConfig''',
'''CLIPOnnxConfig''',
'''CLIPTextConfig''',
'''CLIPVisionConfig''',
],
'''processing_clip''': ['''CLIPProcessor'''],
'''tokenization_clip''': ['''CLIPTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : int = ['''CLIPTokenizerFast''']
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Optional[int] = ['''CLIPFeatureExtractor''']
__UpperCamelCase : Optional[Any] = ['''CLIPImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Tuple = [
'''CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''CLIPModel''',
'''CLIPPreTrainedModel''',
'''CLIPTextModel''',
'''CLIPTextModelWithProjection''',
'''CLIPVisionModel''',
'''CLIPVisionModelWithProjection''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Optional[int] = [
'''TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFCLIPModel''',
'''TFCLIPPreTrainedModel''',
'''TFCLIPTextModel''',
'''TFCLIPVisionModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Optional[Any] = [
'''FlaxCLIPModel''',
'''FlaxCLIPPreTrainedModel''',
'''FlaxCLIPTextModel''',
'''FlaxCLIPTextPreTrainedModel''',
'''FlaxCLIPVisionModel''',
'''FlaxCLIPVisionPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_clip import (
CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
CLIPConfig,
CLIPOnnxConfig,
CLIPTextConfig,
CLIPVisionConfig,
)
from .processing_clip import CLIPProcessor
from .tokenization_clip import CLIPTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_clip_fast import CLIPTokenizerFast
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_clip import CLIPFeatureExtractor
from .image_processing_clip import CLIPImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_clip import (
CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
CLIPModel,
CLIPPreTrainedModel,
CLIPTextModel,
CLIPTextModelWithProjection,
CLIPVisionModel,
CLIPVisionModelWithProjection,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_clip import (
TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
TFCLIPModel,
TFCLIPPreTrainedModel,
TFCLIPTextModel,
TFCLIPVisionModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_clip import (
FlaxCLIPModel,
FlaxCLIPPreTrainedModel,
FlaxCLIPTextModel,
FlaxCLIPTextPreTrainedModel,
FlaxCLIPVisionModel,
FlaxCLIPVisionPreTrainedModel,
)
else:
import sys
__UpperCamelCase : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 106
| 1
|
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ConditionalDetrImageProcessor
class lowerCAmelCase ( unittest.TestCase ):
def __init__( self : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str]=7 , UpperCAmelCase : List[Any]=3 , UpperCAmelCase : int=30 , UpperCAmelCase : Any=400 , UpperCAmelCase : List[str]=True , UpperCAmelCase : Any=None , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : Union[str, Any]=[0.5, 0.5, 0.5] , UpperCAmelCase : List[Any]=[0.5, 0.5, 0.5] , UpperCAmelCase : str=True , UpperCAmelCase : Optional[int]=1 / 255 , UpperCAmelCase : Dict=True , ) -> Tuple:
# by setting size["longest_edge"] > max_resolution we're effectively not testing this :p
lowerCamelCase__ : Dict = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333}
lowerCamelCase__ : str = parent
lowerCamelCase__ : Optional[int] = batch_size
lowerCamelCase__ : int = num_channels
lowerCamelCase__ : int = min_resolution
lowerCamelCase__ : Dict = max_resolution
lowerCamelCase__ : Dict = do_resize
lowerCamelCase__ : Any = size
lowerCamelCase__ : Any = do_normalize
lowerCamelCase__ : int = image_mean
lowerCamelCase__ : Tuple = image_std
lowerCamelCase__ : Optional[int] = do_rescale
lowerCamelCase__ : str = rescale_factor
lowerCamelCase__ : Optional[int] = do_pad
def A_ ( self : List[str] ) -> Union[str, Any]:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def A_ ( self : Optional[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any]=False ) -> Tuple:
if not batched:
lowerCamelCase__ : Dict = image_inputs[0]
if isinstance(UpperCAmelCase , Image.Image ):
lowerCamelCase__ , lowerCamelCase__ : Tuple = image.size
else:
lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = image.shape[1], image.shape[2]
if w < h:
lowerCamelCase__ : str = int(self.size['shortest_edge'] * h / w )
lowerCamelCase__ : str = self.size['shortest_edge']
elif w > h:
lowerCamelCase__ : int = self.size['shortest_edge']
lowerCamelCase__ : Optional[int] = int(self.size['shortest_edge'] * w / h )
else:
lowerCamelCase__ : List[Any] = self.size['shortest_edge']
lowerCamelCase__ : int = self.size['shortest_edge']
else:
lowerCamelCase__ : List[Any] = []
for image in image_inputs:
lowerCamelCase__ , lowerCamelCase__ : Dict = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
lowerCamelCase__ : List[str] = max(UpperCAmelCase , key=lambda UpperCAmelCase : item[0] )[0]
lowerCamelCase__ : List[Any] = max(UpperCAmelCase , key=lambda UpperCAmelCase : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class lowerCAmelCase ( __UpperCamelCase, unittest.TestCase ):
UpperCAmelCase__ = ConditionalDetrImageProcessor if is_vision_available() else None
def A_ ( self : Any ) -> Dict:
lowerCamelCase__ : Any = ConditionalDetrImageProcessingTester(self )
@property
def A_ ( self : Union[str, Any] ) -> List[Any]:
return self.image_processor_tester.prepare_image_processor_dict()
def A_ ( self : str ) -> Dict:
lowerCamelCase__ : List[str] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(UpperCAmelCase , 'image_mean' ) )
self.assertTrue(hasattr(UpperCAmelCase , 'image_std' ) )
self.assertTrue(hasattr(UpperCAmelCase , 'do_normalize' ) )
self.assertTrue(hasattr(UpperCAmelCase , 'do_resize' ) )
self.assertTrue(hasattr(UpperCAmelCase , 'size' ) )
def A_ ( self : List[Any] ) -> int:
lowerCamelCase__ : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333} )
self.assertEqual(image_processor.do_pad , UpperCAmelCase )
lowerCamelCase__ : Dict = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCAmelCase )
self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} )
self.assertEqual(image_processor.do_pad , UpperCAmelCase )
def A_ ( self : Union[str, Any] ) -> Optional[int]:
pass
def A_ ( self : Tuple ) -> List[Any]:
# Initialize image_processing
lowerCamelCase__ : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowerCamelCase__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase , Image.Image )
# Test not batched input
lowerCamelCase__ : Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = self.image_processor_tester.get_expected_values(UpperCAmelCase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
lowerCamelCase__ , lowerCamelCase__ : Optional[int] = self.image_processor_tester.get_expected_values(UpperCAmelCase , batched=UpperCAmelCase )
lowerCamelCase__ : Optional[Any] = image_processing(UpperCAmelCase , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def A_ ( self : int ) -> int:
# Initialize image_processing
lowerCamelCase__ : Dict = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
lowerCamelCase__ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , numpify=UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase , np.ndarray )
# Test not batched input
lowerCamelCase__ : Dict = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
lowerCamelCase__ , lowerCamelCase__ : Tuple = self.image_processor_tester.get_expected_values(UpperCAmelCase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
lowerCamelCase__ : List[Any] = image_processing(UpperCAmelCase , return_tensors='pt' ).pixel_values
lowerCamelCase__ , lowerCamelCase__ : Dict = self.image_processor_tester.get_expected_values(UpperCAmelCase , batched=UpperCAmelCase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def A_ ( self : Optional[Any] ) -> Tuple:
# Initialize image_processing
lowerCamelCase__ : Any = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
lowerCamelCase__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , torchify=UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase , torch.Tensor )
# Test not batched input
lowerCamelCase__ : Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
lowerCamelCase__ , lowerCamelCase__ : int = self.image_processor_tester.get_expected_values(UpperCAmelCase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
lowerCamelCase__ : List[str] = image_processing(UpperCAmelCase , return_tensors='pt' ).pixel_values
lowerCamelCase__ , lowerCamelCase__ : Any = self.image_processor_tester.get_expected_values(UpperCAmelCase , batched=UpperCAmelCase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def A_ ( self : Tuple ) -> int:
# prepare image and target
lowerCamelCase__ : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f:
lowerCamelCase__ : int = json.loads(f.read() )
lowerCamelCase__ : Any = {'image_id': 39769, 'annotations': target}
# encode them
lowerCamelCase__ : Any = ConditionalDetrImageProcessor.from_pretrained('microsoft/conditional-detr-resnet-50' )
lowerCamelCase__ : Union[str, Any] = image_processing(images=UpperCAmelCase , annotations=UpperCAmelCase , return_tensors='pt' )
# verify pixel values
lowerCamelCase__ : List[str] = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding['pixel_values'].shape , UpperCAmelCase )
lowerCamelCase__ : Optional[Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , UpperCAmelCase , atol=1e-4 ) )
# verify area
lowerCamelCase__ : Optional[int] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , UpperCAmelCase ) )
# verify boxes
lowerCamelCase__ : str = torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape , UpperCAmelCase )
lowerCamelCase__ : Optional[int] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , UpperCAmelCase , atol=1e-3 ) )
# verify image_id
lowerCamelCase__ : Any = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , UpperCAmelCase ) )
# verify is_crowd
lowerCamelCase__ : List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , UpperCAmelCase ) )
# verify class_labels
lowerCamelCase__ : Dict = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , UpperCAmelCase ) )
# verify orig_size
lowerCamelCase__ : Union[str, Any] = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , UpperCAmelCase ) )
# verify size
lowerCamelCase__ : Union[str, Any] = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , UpperCAmelCase ) )
@slow
def A_ ( self : int ) -> Union[str, Any]:
# prepare image, target and masks_path
lowerCamelCase__ : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f:
lowerCamelCase__ : Dict = json.loads(f.read() )
lowerCamelCase__ : Optional[int] = {'file_name': '000000039769.png', 'image_id': 39769, 'segments_info': target}
lowerCamelCase__ : Tuple = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' )
# encode them
lowerCamelCase__ : Union[str, Any] = ConditionalDetrImageProcessor(format='coco_panoptic' )
lowerCamelCase__ : Optional[Any] = image_processing(images=UpperCAmelCase , annotations=UpperCAmelCase , masks_path=UpperCAmelCase , return_tensors='pt' )
# verify pixel values
lowerCamelCase__ : Dict = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding['pixel_values'].shape , UpperCAmelCase )
lowerCamelCase__ : Optional[Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , UpperCAmelCase , atol=1e-4 ) )
# verify area
lowerCamelCase__ : str = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , UpperCAmelCase ) )
# verify boxes
lowerCamelCase__ : Any = torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape , UpperCAmelCase )
lowerCamelCase__ : Optional[Any] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , UpperCAmelCase , atol=1e-3 ) )
# verify image_id
lowerCamelCase__ : Tuple = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , UpperCAmelCase ) )
# verify is_crowd
lowerCamelCase__ : int = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , UpperCAmelCase ) )
# verify class_labels
lowerCamelCase__ : Dict = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , UpperCAmelCase ) )
# verify masks
lowerCamelCase__ : List[Any] = 822873
self.assertEqual(encoding['labels'][0]['masks'].sum().item() , UpperCAmelCase )
# verify orig_size
lowerCamelCase__ : Tuple = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , UpperCAmelCase ) )
# verify size
lowerCamelCase__ : Union[str, Any] = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , UpperCAmelCase ) )
| 45
|
from collections import OrderedDict
from typing import List, Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_UpperCAmelCase : List[Any] = logging.get_logger(__name__)
_UpperCAmelCase : Union[str, Any] = {
"""google/efficientnet-b7""": """https://huggingface.co/google/efficientnet-b7/resolve/main/config.json""",
}
class lowerCAmelCase ( __UpperCamelCase ):
UpperCAmelCase__ = """efficientnet"""
def __init__( self : Tuple , UpperCAmelCase : int = 3 , UpperCAmelCase : int = 600 , UpperCAmelCase : float = 2.0 , UpperCAmelCase : float = 3.1 , UpperCAmelCase : int = 8 , UpperCAmelCase : List[int] = [3, 3, 5, 3, 5, 5, 3] , UpperCAmelCase : List[int] = [32, 16, 24, 40, 80, 112, 192] , UpperCAmelCase : List[int] = [16, 24, 40, 80, 112, 192, 320] , UpperCAmelCase : List[int] = [] , UpperCAmelCase : List[int] = [1, 2, 2, 2, 1, 2, 1] , UpperCAmelCase : List[int] = [1, 2, 2, 3, 3, 4, 1] , UpperCAmelCase : List[int] = [1, 6, 6, 6, 6, 6, 6] , UpperCAmelCase : float = 0.2_5 , UpperCAmelCase : str = "swish" , UpperCAmelCase : int = 2560 , UpperCAmelCase : str = "mean" , UpperCAmelCase : float = 0.0_2 , UpperCAmelCase : float = 0.0_0_1 , UpperCAmelCase : float = 0.9_9 , UpperCAmelCase : float = 0.5 , UpperCAmelCase : float = 0.2 , **UpperCAmelCase : int , ) -> Any:
super().__init__(**UpperCAmelCase )
lowerCamelCase__ : List[Any] = num_channels
lowerCamelCase__ : List[str] = image_size
lowerCamelCase__ : Union[str, Any] = width_coefficient
lowerCamelCase__ : Optional[Any] = depth_coefficient
lowerCamelCase__ : Union[str, Any] = depth_divisor
lowerCamelCase__ : Dict = kernel_sizes
lowerCamelCase__ : Union[str, Any] = in_channels
lowerCamelCase__ : Dict = out_channels
lowerCamelCase__ : Dict = depthwise_padding
lowerCamelCase__ : int = strides
lowerCamelCase__ : List[str] = num_block_repeats
lowerCamelCase__ : Optional[Any] = expand_ratios
lowerCamelCase__ : List[str] = squeeze_expansion_ratio
lowerCamelCase__ : int = hidden_act
lowerCamelCase__ : int = hidden_dim
lowerCamelCase__ : int = pooling_type
lowerCamelCase__ : Optional[Any] = initializer_range
lowerCamelCase__ : Any = batch_norm_eps
lowerCamelCase__ : List[Any] = batch_norm_momentum
lowerCamelCase__ : int = dropout_rate
lowerCamelCase__ : int = drop_connect_rate
lowerCamelCase__ : List[Any] = sum(UpperCAmelCase ) * 4
class lowerCAmelCase ( __UpperCamelCase ):
UpperCAmelCase__ = version.parse("""1.11""" )
@property
def A_ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
@property
def A_ ( self : List[Any] ) -> float:
return 1e-5
| 45
| 1
|
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import (
AutoProcessor,
BertTokenizerFast,
BlipImageProcessor,
GPTaTokenizer,
InstructBlipProcessor,
PreTrainedTokenizerFast,
)
@require_vision
class lowercase ( unittest.TestCase ):
def a__ ( self ) -> Optional[Any]:
_A : str = tempfile.mkdtemp()
_A : List[Any] = BlipImageProcessor()
_A : Optional[Any] = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" )
_A : Tuple = BertTokenizerFast.from_pretrained("""hf-internal-testing/tiny-random-bert""" )
_A : Any = InstructBlipProcessor(_a , _a , _a )
processor.save_pretrained(self.tmpdirname )
def a__ ( self , **_a ) -> Optional[Any]:
return AutoProcessor.from_pretrained(self.tmpdirname , **_a ).tokenizer
def a__ ( self , **_a ) -> int:
return AutoProcessor.from_pretrained(self.tmpdirname , **_a ).image_processor
def a__ ( self , **_a ) -> Any:
return AutoProcessor.from_pretrained(self.tmpdirname , **_a ).qformer_tokenizer
def a__ ( self ) -> int:
shutil.rmtree(self.tmpdirname )
def a__ ( self ) -> Optional[Any]:
_A : int = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
_A : Any = [Image.fromarray(np.moveaxis(_a , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def a__ ( self ) -> Union[str, Any]:
_A : Tuple = InstructBlipProcessor(
tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , )
processor.save_pretrained(self.tmpdirname )
_A : Union[str, Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
_A : Tuple = self.get_image_processor(do_normalize=_a , padding_value=1.0 )
_A : Tuple = InstructBlipProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_a , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , _a )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , _a )
self.assertIsInstance(processor.qformer_tokenizer , _a )
def a__ ( self ) -> Dict:
_A : int = self.get_image_processor()
_A : Dict = self.get_tokenizer()
_A : Dict = self.get_qformer_tokenizer()
_A : int = InstructBlipProcessor(
tokenizer=_a , image_processor=_a , qformer_tokenizer=_a )
_A : Optional[Any] = self.prepare_image_inputs()
_A : List[Any] = image_processor(_a , return_tensors="""np""" )
_A : str = processor(images=_a , return_tensors="""np""" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def a__ ( self ) -> Union[str, Any]:
_A : Optional[int] = self.get_image_processor()
_A : Optional[int] = self.get_tokenizer()
_A : List[Any] = self.get_qformer_tokenizer()
_A : List[Any] = InstructBlipProcessor(
tokenizer=_a , image_processor=_a , qformer_tokenizer=_a )
_A : Optional[int] = """lower newer"""
_A : List[str] = processor(text=_a )
_A : str = tokenizer(_a , return_token_type_ids=_a )
_A : List[str] = qformer_tokenizer(_a , return_token_type_ids=_a )
for key in encoded_tokens.keys():
self.assertListEqual(encoded_tokens[key] , encoded_processor[key] )
for key in encoded_tokens_qformer.keys():
self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor["""qformer_""" + key] )
def a__ ( self ) -> List[str]:
_A : Any = self.get_image_processor()
_A : List[str] = self.get_tokenizer()
_A : Dict = self.get_qformer_tokenizer()
_A : List[str] = InstructBlipProcessor(
tokenizer=_a , image_processor=_a , qformer_tokenizer=_a )
_A : Tuple = """lower newer"""
_A : Optional[int] = self.prepare_image_inputs()
_A : Any = processor(text=_a , images=_a )
self.assertListEqual(
list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , )
# test if it raises when no input is passed
with pytest.raises(_a ):
processor()
def a__ ( self ) -> Dict:
_A : Dict = self.get_image_processor()
_A : Any = self.get_tokenizer()
_A : str = self.get_qformer_tokenizer()
_A : int = InstructBlipProcessor(
tokenizer=_a , image_processor=_a , qformer_tokenizer=_a )
_A : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
_A : List[str] = processor.batch_decode(_a )
_A : Optional[Any] = tokenizer.batch_decode(_a )
self.assertListEqual(_a , _a )
def a__ ( self ) -> str:
_A : List[Any] = self.get_image_processor()
_A : Optional[int] = self.get_tokenizer()
_A : int = self.get_qformer_tokenizer()
_A : List[Any] = InstructBlipProcessor(
tokenizer=_a , image_processor=_a , qformer_tokenizer=_a )
_A : Dict = """lower newer"""
_A : int = self.prepare_image_inputs()
_A : int = processor(text=_a , images=_a )
self.assertListEqual(
list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , )
| 26
|
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_snake_case = logging.get_logger(__name__)
_snake_case = {
"facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json",
"facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json",
"facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json",
"facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json",
"facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json",
"facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json",
"facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json",
"facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json",
"facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json",
}
class lowercase ( UpperCamelCase__ ):
_a = "xmod"
def __init__( self , _a=3_0522 , _a=768 , _a=12 , _a=12 , _a=3072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=2 , _a=0.02 , _a=1e-12 , _a=1 , _a=0 , _a=2 , _a="absolute" , _a=True , _a=None , _a=False , _a=2 , _a=False , _a=True , _a=True , _a=("en_XX",) , _a=None , **_a , ) -> str:
super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a )
_A : Tuple = vocab_size
_A : Union[str, Any] = hidden_size
_A : Dict = num_hidden_layers
_A : Dict = num_attention_heads
_A : List[Any] = hidden_act
_A : Optional[Any] = intermediate_size
_A : Any = hidden_dropout_prob
_A : str = attention_probs_dropout_prob
_A : Dict = max_position_embeddings
_A : Any = type_vocab_size
_A : List[Any] = initializer_range
_A : int = layer_norm_eps
_A : int = position_embedding_type
_A : Any = use_cache
_A : int = classifier_dropout
_A : int = pre_norm
_A : Optional[Any] = adapter_reduction_factor
_A : List[Any] = adapter_layer_norm
_A : Optional[int] = adapter_reuse_layer_norm
_A : Any = ln_before_adapter
_A : Union[str, Any] = list(_a )
_A : List[Any] = default_language
class lowercase ( UpperCamelCase__ ):
@property
def a__ ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
_A : Dict = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
_A : Dict = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
] )
| 26
| 1
|
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> List[str]:
"""simple docstring"""
snake_case_ : Tuple = [False] * len(_UpperCamelCase )
snake_case_ : Dict = []
queue.append(_UpperCamelCase )
snake_case_ : Union[str, Any] = True
while queue:
snake_case_ : Optional[int] = queue.pop(0 )
for ind in range(len(graph[u] ) ):
if visited[ind] is False and graph[u][ind] > 0:
queue.append(_UpperCamelCase )
snake_case_ : Any = True
snake_case_ : Optional[int] = u
return visited[t]
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Union[str, Any]:
"""simple docstring"""
snake_case_ : Tuple = [-1] * (len(_UpperCamelCase ))
snake_case_ : Optional[int] = 0
while bfs(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ):
snake_case_ : Tuple = float('''Inf''' )
snake_case_ : List[Any] = sink
while s != source:
# Find the minimum value in select path
snake_case_ : Any = min(_UpperCamelCase , graph[parent[s]][s] )
snake_case_ : Union[str, Any] = parent[s]
max_flow += path_flow
snake_case_ : str = sink
while v != source:
snake_case_ : int = parent[v]
graph[u][v] -= path_flow
graph[v][u] += path_flow
snake_case_ : int = parent[v]
return max_flow
lowerCAmelCase_ = [
[0, 1_6, 1_3, 0, 0, 0],
[0, 0, 1_0, 1_2, 0, 0],
[0, 4, 0, 0, 1_4, 0],
[0, 0, 9, 0, 0, 2_0],
[0, 0, 0, 7, 0, 4],
[0, 0, 0, 0, 0, 0],
]
lowerCAmelCase_ , lowerCAmelCase_ = 0, 5
print(ford_fulkerson(graph, source, sink))
| 368
|
import unittest
import numpy as np
import torch
from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class __lowerCAmelCase ( unittest.TestCase ):
@property
def lowerCamelCase (self ) -> Union[str, Any]:
'''simple docstring'''
torch.manual_seed(0 )
snake_case_ : int = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , )
return model
def lowerCamelCase (self ) -> Dict:
'''simple docstring'''
snake_case_ : Any = self.dummy_uncond_unet
snake_case_ : Optional[Any] = PNDMScheduler()
snake_case_ : Optional[Any] = PNDMPipeline(unet=__magic_name__ , scheduler=__magic_name__ )
pndm.to(__magic_name__ )
pndm.set_progress_bar_config(disable=__magic_name__ )
snake_case_ : str = torch.manual_seed(0 )
snake_case_ : Dict = pndm(generator=__magic_name__ , num_inference_steps=20 , output_type='''numpy''' ).images
snake_case_ : str = torch.manual_seed(0 )
snake_case_ : str = pndm(generator=__magic_name__ , num_inference_steps=20 , output_type='''numpy''' , return_dict=__magic_name__ )[0]
snake_case_ : Any = image[0, -3:, -3:, -1]
snake_case_ : str = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
snake_case_ : str = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
@slow
@require_torch
class __lowerCAmelCase ( unittest.TestCase ):
def lowerCamelCase (self ) -> Any:
'''simple docstring'''
snake_case_ : Tuple = '''google/ddpm-cifar10-32'''
snake_case_ : Tuple = UNetaDModel.from_pretrained(__magic_name__ )
snake_case_ : Optional[Any] = PNDMScheduler()
snake_case_ : Any = PNDMPipeline(unet=__magic_name__ , scheduler=__magic_name__ )
pndm.to(__magic_name__ )
pndm.set_progress_bar_config(disable=__magic_name__ )
snake_case_ : int = torch.manual_seed(0 )
snake_case_ : Tuple = pndm(generator=__magic_name__ , output_type='''numpy''' ).images
snake_case_ : List[str] = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
snake_case_ : str = np.array([0.1_564, 0.14_645, 0.1_406, 0.14_715, 0.12_425, 0.14_045, 0.13_115, 0.12_175, 0.125] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 279
| 0
|
import os
import random
import sys
from . import cryptomath_module as cryptomath
from . import rabin_miller
a_ :List[str] = 3
def lowercase_ (A : int ):
print('Generating primitive root of p' )
while True:
snake_case__ : Optional[int] = random.randrange(3 , A )
if pow(A , 2 , A ) == 1:
continue
if pow(A , A , A ) == 1:
continue
return g
def lowercase_ (A : int ):
print('Generating prime p...' )
snake_case__ : Dict = rabin_miller.generate_large_prime(A ) # select large prime number.
snake_case__ : Union[str, Any] = primitive_root(A ) # one primitive root on modulo p.
snake_case__ : Dict = random.randrange(3 , A ) # private_key -> have to be greater than 2 for safety.
snake_case__ : Any = cryptomath.find_mod_inverse(pow(A , A , A ) , A )
snake_case__ : str = (key_size, e_a, e_a, p)
snake_case__ : Union[str, Any] = (key_size, d)
return public_key, private_key
def lowercase_ (A : str , A : int ):
if os.path.exists(F'''{name}_pubkey.txt''' ) or os.path.exists(F'''{name}_privkey.txt''' ):
print('\nWARNING:' )
print(
F'''"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n'''
'Use a different name or delete these files and re-run this program.' )
sys.exit()
snake_case__ , snake_case__ : List[Any] = generate_key(A )
print(F'''\nWriting public key to file {name}_pubkey.txt...''' )
with open(F'''{name}_pubkey.txt''' , 'w' ) as fo:
fo.write(F'''{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}''' )
print(F'''Writing private key to file {name}_privkey.txt...''' )
with open(F'''{name}_privkey.txt''' , 'w' ) as fo:
fo.write(F'''{private_key[0]},{private_key[1]}''' )
def lowercase_ ():
print('Making key files...' )
make_key_files('elgamal' , 2_0_4_8 )
print('Key files generation successful' )
if __name__ == "__main__":
main()
| 277
|
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SegformerConfig,
SegformerForImageClassification,
SegformerForSemanticSegmentation,
SegformerImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
a_ :Dict = logging.get_logger(__name__)
def lowercase_ (A : Optional[Any] , A : Any=False ):
snake_case__ : List[Any] = OrderedDict()
for key, value in state_dict.items():
if encoder_only and not key.startswith('head' ):
snake_case__ : str = 'segformer.encoder.' + key
if key.startswith('backbone' ):
snake_case__ : str = key.replace('backbone' , 'segformer.encoder' )
if "patch_embed" in key:
# replace for example patch_embed1 by patch_embeddings.0
snake_case__ : Optional[int] = key[key.find('patch_embed' ) + len('patch_embed' )]
snake_case__ : int = key.replace(F'''patch_embed{idx}''' , F'''patch_embeddings.{int(A )-1}''' )
if "norm" in key:
snake_case__ : Optional[int] = key.replace('norm' , 'layer_norm' )
if "segformer.encoder.layer_norm" in key:
# replace for example layer_norm1 by layer_norm.0
snake_case__ : Tuple = key[key.find('segformer.encoder.layer_norm' ) + len('segformer.encoder.layer_norm' )]
snake_case__ : Union[str, Any] = key.replace(F'''layer_norm{idx}''' , F'''layer_norm.{int(A )-1}''' )
if "layer_norm1" in key:
snake_case__ : List[Any] = key.replace('layer_norm1' , 'layer_norm_1' )
if "layer_norm2" in key:
snake_case__ : List[Any] = key.replace('layer_norm2' , 'layer_norm_2' )
if "block" in key:
# replace for example block1 by block.0
snake_case__ : List[Any] = key[key.find('block' ) + len('block' )]
snake_case__ : List[Any] = key.replace(F'''block{idx}''' , F'''block.{int(A )-1}''' )
if "attn.q" in key:
snake_case__ : int = key.replace('attn.q' , 'attention.self.query' )
if "attn.proj" in key:
snake_case__ : str = key.replace('attn.proj' , 'attention.output.dense' )
if "attn" in key:
snake_case__ : Optional[int] = key.replace('attn' , 'attention.self' )
if "fc1" in key:
snake_case__ : str = key.replace('fc1' , 'dense1' )
if "fc2" in key:
snake_case__ : Dict = key.replace('fc2' , 'dense2' )
if "linear_pred" in key:
snake_case__ : Union[str, Any] = key.replace('linear_pred' , 'classifier' )
if "linear_fuse" in key:
snake_case__ : List[str] = key.replace('linear_fuse.conv' , 'linear_fuse' )
snake_case__ : List[Any] = key.replace('linear_fuse.bn' , 'batch_norm' )
if "linear_c" in key:
# replace for example linear_c4 by linear_c.3
snake_case__ : Optional[int] = key[key.find('linear_c' ) + len('linear_c' )]
snake_case__ : Tuple = key.replace(F'''linear_c{idx}''' , F'''linear_c.{int(A )-1}''' )
if key.startswith('head' ):
snake_case__ : Tuple = key.replace('head' , 'classifier' )
snake_case__ : Optional[int] = value
return new_state_dict
def lowercase_ (A : Tuple , A : Optional[int] ):
# for each of the encoder blocks:
for i in range(config.num_encoder_blocks ):
for j in range(config.depths[i] ):
# read in weights + bias of keys and values (which is a single matrix in the original implementation)
snake_case__ : List[str] = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.weight''' )
snake_case__ : Optional[Any] = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.bias''' )
# next, add keys and values (in that order) to the state dict
snake_case__ : str = kv_weight[
: config.hidden_sizes[i], :
]
snake_case__ : Dict = kv_bias[: config.hidden_sizes[i]]
snake_case__ : List[str] = kv_weight[
config.hidden_sizes[i] :, :
]
snake_case__ : List[Any] = kv_bias[
config.hidden_sizes[i] :
]
def lowercase_ ():
snake_case__ : Union[str, Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg'
snake_case__ : Dict = Image.open(requests.get(A , stream=A ).raw )
return image
@torch.no_grad()
def lowercase_ (A : Any , A : Union[str, Any] , A : Optional[Any] ):
snake_case__ : List[str] = SegformerConfig()
snake_case__ : Dict = False
# set attributes based on model_name
snake_case__ : Optional[int] = 'huggingface/label-files'
if "segformer" in model_name:
snake_case__ : str = model_name[len('segformer.' ) : len('segformer.' ) + 2]
if "ade" in model_name:
snake_case__ : Optional[int] = 1_5_0
snake_case__ : int = 'ade20k-id2label.json'
snake_case__ : List[Any] = (1, 1_5_0, 1_2_8, 1_2_8)
elif "city" in model_name:
snake_case__ : str = 1_9
snake_case__ : List[str] = 'cityscapes-id2label.json'
snake_case__ : Optional[Any] = (1, 1_9, 1_2_8, 1_2_8)
else:
raise ValueError(F'''Model {model_name} not supported''' )
elif "mit" in model_name:
snake_case__ : str = True
snake_case__ : Union[str, Any] = model_name[4:6]
snake_case__ : Optional[Any] = 1_0_0_0
snake_case__ : Optional[int] = 'imagenet-1k-id2label.json'
snake_case__ : List[Any] = (1, 1_0_0_0)
else:
raise ValueError(F'''Model {model_name} not supported''' )
# set config attributes
snake_case__ : str = json.load(open(hf_hub_download(A , A , repo_type='dataset' ) , 'r' ) )
snake_case__ : List[Any] = {int(A ): v for k, v in idalabel.items()}
snake_case__ : Union[str, Any] = idalabel
snake_case__ : Tuple = {v: k for k, v in idalabel.items()}
if size == "b0":
pass
elif size == "b1":
snake_case__ : List[Any] = [6_4, 1_2_8, 3_2_0, 5_1_2]
snake_case__ : Tuple = 2_5_6
elif size == "b2":
snake_case__ : List[str] = [6_4, 1_2_8, 3_2_0, 5_1_2]
snake_case__ : int = 7_6_8
snake_case__ : List[Any] = [3, 4, 6, 3]
elif size == "b3":
snake_case__ : Optional[Any] = [6_4, 1_2_8, 3_2_0, 5_1_2]
snake_case__ : int = 7_6_8
snake_case__ : Optional[Any] = [3, 4, 1_8, 3]
elif size == "b4":
snake_case__ : str = [6_4, 1_2_8, 3_2_0, 5_1_2]
snake_case__ : Optional[Any] = 7_6_8
snake_case__ : Union[str, Any] = [3, 8, 2_7, 3]
elif size == "b5":
snake_case__ : List[str] = [6_4, 1_2_8, 3_2_0, 5_1_2]
snake_case__ : Optional[Any] = 7_6_8
snake_case__ : Any = [3, 6, 4_0, 3]
else:
raise ValueError(F'''Size {size} not supported''' )
# load image processor (only resize + normalize)
snake_case__ : Dict = SegformerImageProcessor(
image_scale=(5_1_2, 5_1_2) , keep_ratio=A , align=A , do_random_crop=A )
# prepare image
snake_case__ : List[str] = prepare_img()
snake_case__ : Dict = image_processor(images=A , return_tensors='pt' ).pixel_values
logger.info(F'''Converting model {model_name}...''' )
# load original state dict
if encoder_only:
snake_case__ : Tuple = torch.load(A , map_location=torch.device('cpu' ) )
else:
snake_case__ : int = torch.load(A , map_location=torch.device('cpu' ) )['state_dict']
# rename keys
snake_case__ : List[Any] = rename_keys(A , encoder_only=A )
if not encoder_only:
del state_dict["decode_head.conv_seg.weight"]
del state_dict["decode_head.conv_seg.bias"]
# key and value matrices need special treatment
read_in_k_v(A , A )
# create HuggingFace model and load state dict
if encoder_only:
snake_case__ : str = False
snake_case__ : List[Any] = SegformerForImageClassification(A )
else:
snake_case__ : Dict = SegformerForSemanticSegmentation(A )
model.load_state_dict(A )
model.eval()
# forward pass
snake_case__ : int = model(A )
snake_case__ : Any = outputs.logits
# set expected_slice based on model name
# ADE20k checkpoints
if model_name == "segformer.b0.512x512.ade.160k":
snake_case__ : Dict = torch.tensor(
[
[[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]],
[[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]],
[[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]],
] )
elif model_name == "segformer.b1.512x512.ade.160k":
snake_case__ : Optional[int] = torch.tensor(
[
[[-7.5820, -8.7231, -8.3215], [-8.0600, -10.3529, -10.0304], [-7.5208, -9.4103, -9.6239]],
[[-12.6918, -13.8994, -13.7137], [-13.3196, -15.7523, -15.4789], [-12.9343, -14.8757, -14.9689]],
[[-11.1911, -11.9421, -11.3243], [-11.3342, -13.6839, -13.3581], [-10.3909, -12.1832, -12.4858]],
] )
elif model_name == "segformer.b2.512x512.ade.160k":
snake_case__ : List[Any] = torch.tensor(
[
[[-11.8173, -14.3850, -16.3128], [-14.5648, -16.5804, -18.6568], [-14.7223, -15.7387, -18.4218]],
[[-15.7290, -17.9171, -19.4423], [-18.3105, -19.9448, -21.4661], [-17.9296, -18.6497, -20.7910]],
[[-15.0783, -17.0336, -18.2789], [-16.8771, -18.6870, -20.1612], [-16.2454, -17.1426, -19.5055]],
] )
elif model_name == "segformer.b3.512x512.ade.160k":
snake_case__ : Union[str, Any] = torch.tensor(
[
[[-9.0878, -10.2081, -10.1891], [-9.3144, -10.7941, -10.9843], [-9.2294, -10.3855, -10.5704]],
[[-12.2316, -13.9068, -13.6102], [-12.9161, -14.3702, -14.3235], [-12.5233, -13.7174, -13.7932]],
[[-14.6275, -15.2490, -14.9727], [-14.3400, -15.9687, -16.2827], [-14.1484, -15.4033, -15.8937]],
] )
elif model_name == "segformer.b4.512x512.ade.160k":
snake_case__ : Dict = torch.tensor(
[
[[-12.3144, -13.2447, -14.0802], [-13.3614, -14.5816, -15.6117], [-13.3340, -14.4433, -16.2219]],
[[-19.2781, -20.4128, -20.7506], [-20.6153, -21.6566, -22.0998], [-19.9800, -21.0430, -22.1494]],
[[-18.8739, -19.7804, -21.1834], [-20.1233, -21.6765, -23.2944], [-20.0315, -21.2641, -23.6944]],
] )
elif model_name == "segformer.b5.640x640.ade.160k":
snake_case__ : List[Any] = torch.tensor(
[
[[-9.5524, -12.0835, -11.7348], [-10.5229, -13.6446, -14.5662], [-9.5842, -12.8851, -13.9414]],
[[-15.3432, -17.5323, -17.0818], [-16.3330, -18.9255, -19.2101], [-15.1340, -17.7848, -18.3971]],
[[-12.6072, -14.9486, -14.6631], [-13.7629, -17.0907, -17.7745], [-12.7899, -16.1695, -17.1671]],
] )
# Cityscapes checkpoints
elif model_name == "segformer.b0.1024x1024.city.160k":
snake_case__ : str = torch.tensor(
[
[[-11.9295, -13.4057, -14.8106], [-13.3431, -14.8179, -15.3781], [-14.2836, -15.5942, -16.1588]],
[[-11.4906, -12.8067, -13.6564], [-13.1189, -14.0500, -14.1543], [-13.8748, -14.5136, -14.8789]],
[[0.5374, 0.1067, -0.4742], [0.1141, -0.2255, -0.7099], [-0.3000, -0.5924, -1.3105]],
] )
elif model_name == "segformer.b0.512x1024.city.160k":
snake_case__ : Tuple = torch.tensor(
[
[[-7.8217, -9.8767, -10.1717], [-9.4438, -10.9058, -11.4047], [-9.7939, -12.3495, -12.1079]],
[[-7.1514, -9.5336, -10.0860], [-9.7776, -11.6822, -11.8439], [-10.1411, -12.7655, -12.8972]],
[[0.3021, 0.0805, -0.2310], [-0.0328, -0.1605, -0.2714], [-0.1408, -0.5477, -0.6976]],
] )
elif model_name == "segformer.b0.640x1280.city.160k":
snake_case__ : Any = torch.tensor(
[
[
[-1.1_372e01, -1.2_787e01, -1.3_477e01],
[-1.2_536e01, -1.4_194e01, -1.4_409e01],
[-1.3_217e01, -1.4_888e01, -1.5_327e01],
],
[
[-1.4_791e01, -1.7_122e01, -1.8_277e01],
[-1.7_163e01, -1.9_192e01, -1.9_533e01],
[-1.7_897e01, -1.9_991e01, -2.0_315e01],
],
[
[7.6_723e-01, 4.1_921e-01, -7.7_878e-02],
[4.7_772e-01, 9.5_557e-03, -2.8_082e-01],
[3.6_032e-01, -2.4_826e-01, -5.1_168e-01],
],
] )
elif model_name == "segformer.b0.768x768.city.160k":
snake_case__ : Optional[int] = torch.tensor(
[
[[-9.4959, -11.3087, -11.7479], [-11.0025, -12.6540, -12.3319], [-11.4064, -13.0487, -12.9905]],
[[-9.8905, -11.3084, -12.0854], [-11.1726, -12.7698, -12.9583], [-11.5985, -13.3278, -14.1774]],
[[0.2213, 0.0192, -0.2466], [-0.1731, -0.4213, -0.4874], [-0.3126, -0.6541, -1.1389]],
] )
elif model_name == "segformer.b1.1024x1024.city.160k":
snake_case__ : Union[str, Any] = torch.tensor(
[
[[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]],
[[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]],
[[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]],
] )
elif model_name == "segformer.b2.1024x1024.city.160k":
snake_case__ : List[str] = torch.tensor(
[
[[-16.0976, -16.4856, -17.3962], [-16.6234, -19.0342, -19.7685], [-16.0900, -18.0661, -19.1180]],
[[-18.4750, -18.8488, -19.5074], [-19.4030, -22.1570, -22.5977], [-19.1191, -20.8486, -22.3783]],
[[-4.5178, -5.5037, -6.5109], [-5.0884, -7.2174, -8.0334], [-4.4156, -5.8117, -7.2970]],
] )
elif model_name == "segformer.b3.1024x1024.city.160k":
snake_case__ : List[Any] = torch.tensor(
[
[[-14.2081, -14.4732, -14.1977], [-14.5867, -16.4423, -16.6356], [-13.4441, -14.9685, -16.8696]],
[[-14.4576, -14.7073, -15.0451], [-15.0816, -17.6237, -17.9873], [-14.4213, -16.0199, -18.5992]],
[[-4.7349, -4.9588, -5.0966], [-4.3210, -6.9325, -7.2591], [-3.4312, -4.7484, -7.1917]],
] )
elif model_name == "segformer.b4.1024x1024.city.160k":
snake_case__ : str = torch.tensor(
[
[[-11.7737, -11.9526, -11.3273], [-13.6692, -14.4574, -13.8878], [-13.8937, -14.6924, -15.9345]],
[[-14.6706, -14.5330, -14.1306], [-16.1502, -16.8180, -16.4269], [-16.8338, -17.8939, -20.1746]],
[[1.0491, 0.8289, 1.0310], [1.1044, 0.5219, 0.8055], [1.0899, 0.6926, 0.5590]],
] )
elif model_name == "segformer.b5.1024x1024.city.160k":
snake_case__ : List[str] = torch.tensor(
[
[[-12.5641, -13.4777, -13.0684], [-13.9587, -15.8983, -16.6557], [-13.3109, -15.7350, -16.3141]],
[[-14.7074, -15.4352, -14.5944], [-16.6353, -18.1663, -18.6120], [-15.1702, -18.0329, -18.1547]],
[[-1.7990, -2.0951, -1.7784], [-2.6397, -3.8245, -3.9686], [-1.5264, -2.8126, -2.9316]],
] )
else:
snake_case__ : Tuple = logits.argmax(-1 ).item()
print('Predicted class:' , model.config.idalabel[predicted_class_idx] )
# verify logits
if not encoder_only:
assert logits.shape == expected_shape
assert torch.allclose(logits[0, :3, :3, :3] , A , atol=1e-2 )
# finally, save model and image processor
logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' )
Path(A ).mkdir(exist_ok=A )
model.save_pretrained(A )
image_processor.save_pretrained(A )
if __name__ == "__main__":
a_ :Optional[int] = argparse.ArgumentParser()
parser.add_argument(
"--model_name",
default="segformer.b0.512x512.ade.160k",
type=str,
help="Name of the model you'd like to convert.",
)
parser.add_argument(
"--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file)."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
)
a_ :Union[str, Any] = parser.parse_args()
convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
| 277
| 1
|
import copy
from typing import Any, Dict, List, Optional, Union
import numpy as np
import torch
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import TensorType, logging
UpperCAmelCase__ : str =logging.get_logger(__name__)
class __A ( a ):
__A = ["""input_features""", """is_longer"""]
def __init__( self , UpperCAmelCase_=64 , UpperCAmelCase_=48000 , UpperCAmelCase_=480 , UpperCAmelCase_=10 , UpperCAmelCase_=1024 , UpperCAmelCase_=0.0 , UpperCAmelCase_=False , UpperCAmelCase_ = 0 , UpperCAmelCase_ = 14000 , UpperCAmelCase_ = None , UpperCAmelCase_ = "fusion" , UpperCAmelCase_ = "repeatpad" , **UpperCAmelCase_ , ):
super().__init__(
feature_size=UpperCAmelCase_ , sampling_rate=UpperCAmelCase_ , padding_value=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , **UpperCAmelCase_ , )
lowerCamelCase =top_db
lowerCamelCase =truncation
lowerCamelCase =padding
lowerCamelCase =fft_window_size
lowerCamelCase =(fft_window_size >> 1) + 1
lowerCamelCase =hop_length
lowerCamelCase =max_length_s
lowerCamelCase =max_length_s * sampling_rate
lowerCamelCase =sampling_rate
lowerCamelCase =frequency_min
lowerCamelCase =frequency_max
lowerCamelCase =mel_filter_bank(
num_frequency_bins=self.nb_frequency_bins , num_mel_filters=UpperCAmelCase_ , min_frequency=UpperCAmelCase_ , max_frequency=UpperCAmelCase_ , sampling_rate=UpperCAmelCase_ , norm=UpperCAmelCase_ , mel_scale="""htk""" , )
lowerCamelCase =mel_filter_bank(
num_frequency_bins=self.nb_frequency_bins , num_mel_filters=UpperCAmelCase_ , min_frequency=UpperCAmelCase_ , max_frequency=UpperCAmelCase_ , sampling_rate=UpperCAmelCase_ , norm="""slaney""" , mel_scale="""slaney""" , )
def _snake_case ( self ):
lowerCamelCase =copy.deepcopy(self.__dict__ )
lowerCamelCase =self.__class__.__name__
if "mel_filters" in output:
del output["mel_filters"]
if "mel_filters_slaney" in output:
del output["mel_filters_slaney"]
return output
def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ = None ):
lowerCamelCase =spectrogram(
UpperCAmelCase_ , window_function(self.fft_window_size , """hann""" ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=UpperCAmelCase_ , log_mel="""dB""" , )
return log_mel_spectrogram.T
def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ):
lowerCamelCase =np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 )
if len(ranges[1] ) == 0:
# if the audio is too short, we just use the first chunk
lowerCamelCase =[0]
if len(ranges[2] ) == 0:
# if the audio is too short, we just use the first chunk
lowerCamelCase =[0]
# randomly choose index for each part
lowerCamelCase =np.random.choice(ranges[0] )
lowerCamelCase =np.random.choice(ranges[1] )
lowerCamelCase =np.random.choice(ranges[2] )
lowerCamelCase =mel[idx_front : idx_front + chunk_frames, :]
lowerCamelCase =mel[idx_middle : idx_middle + chunk_frames, :]
lowerCamelCase =mel[idx_back : idx_back + chunk_frames, :]
lowerCamelCase =torch.tensor(mel[None, None, :] )
lowerCamelCase =torch.nn.functional.interpolate(
UpperCAmelCase_ , size=[chunk_frames, 64] , mode="""bilinear""" , align_corners=UpperCAmelCase_ )
lowerCamelCase =mel_shrink[0][0].numpy()
lowerCamelCase =np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 )
return mel_fusion
def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ):
if waveform.shape[0] > max_length:
if truncation == "rand_trunc":
lowerCamelCase =True
# random crop to max_length (for compatibility) -> this should be handled by self.pad
lowerCamelCase =len(UpperCAmelCase_ ) - max_length
lowerCamelCase =np.random.randint(0 , overflow + 1 )
lowerCamelCase =waveform[idx : idx + max_length]
lowerCamelCase =self._np_extract_fbank_features(UpperCAmelCase_ , self.mel_filters_slaney )[None, :]
elif truncation == "fusion":
lowerCamelCase =self._np_extract_fbank_features(UpperCAmelCase_ , self.mel_filters )
lowerCamelCase =max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed
lowerCamelCase =mel.shape[0]
if chunk_frames == total_frames:
# there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length.
# In this case, we just use the whole audio.
lowerCamelCase =np.stack([mel, mel, mel, mel] , axis=0 )
lowerCamelCase =False
else:
lowerCamelCase =self._random_mel_fusion(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
lowerCamelCase =True
else:
raise NotImplementedError(f"""data_truncating {truncation} not implemented""" )
else:
lowerCamelCase =False
# only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding
if waveform.shape[0] < max_length:
if padding == "repeat":
lowerCamelCase =int(max_length / len(UpperCAmelCase_ ) )
lowerCamelCase =np.stack(np.tile(UpperCAmelCase_ , n_repeat + 1 ) )[:max_length]
if padding == "repeatpad":
lowerCamelCase =int(max_length / len(UpperCAmelCase_ ) )
lowerCamelCase =np.stack(np.tile(UpperCAmelCase_ , UpperCAmelCase_ ) )
lowerCamelCase =np.pad(UpperCAmelCase_ , (0, max_length - waveform.shape[0]) , mode="""constant""" , constant_values=0 )
if truncation == "fusion":
lowerCamelCase =self._np_extract_fbank_features(UpperCAmelCase_ , self.mel_filters )
lowerCamelCase =np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 )
else:
lowerCamelCase =self._np_extract_fbank_features(UpperCAmelCase_ , self.mel_filters_slaney )[None, :]
return input_mel, longer
def __call__( self , UpperCAmelCase_ , UpperCAmelCase_ = None , UpperCAmelCase_ = None , UpperCAmelCase_ = None , UpperCAmelCase_ = None , UpperCAmelCase_ = None , **UpperCAmelCase_ , ):
lowerCamelCase =truncation if truncation is not None else self.truncation
lowerCamelCase =padding if padding else self.padding
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
f"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a"""
f""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input"""
f""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" )
else:
logger.warning(
"""It is strongly recommended to pass the `sampling_rate` argument to this function. """
"""Failing to do so can result in silent errors that might be hard to debug.""" )
lowerCamelCase =isinstance(UpperCAmelCase_ , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" )
lowerCamelCase =is_batched_numpy or (
isinstance(UpperCAmelCase_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
lowerCamelCase =[np.asarray(UpperCAmelCase_ , dtype=np.floataa ) for speech in raw_speech]
elif not is_batched and not isinstance(UpperCAmelCase_ , np.ndarray ):
lowerCamelCase =np.asarray(UpperCAmelCase_ , dtype=np.floataa )
elif isinstance(UpperCAmelCase_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
lowerCamelCase =raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
lowerCamelCase =[np.asarray(UpperCAmelCase_ )]
# convert to mel spectrogram, truncate and pad if needed.
lowerCamelCase =[
self._get_input_mel(UpperCAmelCase_ , max_length if max_length else self.nb_max_samples , UpperCAmelCase_ , UpperCAmelCase_ )
for waveform in raw_speech
]
lowerCamelCase =[]
lowerCamelCase =[]
for mel, longer in padded_inputs:
input_mel.append(UpperCAmelCase_ )
is_longer.append(UpperCAmelCase_ )
if truncation == "fusion" and sum(UpperCAmelCase_ ) == 0:
# if no audio is longer than 10s, then randomly select one audio to be longer
lowerCamelCase =np.random.randint(0 , len(UpperCAmelCase_ ) )
lowerCamelCase =True
if isinstance(input_mel[0] , UpperCAmelCase_ ):
lowerCamelCase =[np.asarray(UpperCAmelCase_ , dtype=np.floataa ) for feature in input_mel]
# is_longer is a list of bool
lowerCamelCase =[[longer] for longer in is_longer]
lowerCamelCase ={"""input_features""": input_mel, """is_longer""": is_longer}
lowerCamelCase =BatchFeature(UpperCAmelCase_ )
if return_tensors is not None:
lowerCamelCase =input_features.convert_to_tensors(UpperCAmelCase_ )
return input_features
| 262
|
import logging
import re
import pytorch_quantization
import pytorch_quantization.nn as quant_nn
import torch
from pytorch_quantization import calib
from pytorch_quantization.tensor_quant import QuantDescriptor
UpperCAmelCase__ : Optional[int] =logging.getLogger(__name__)
UpperCAmelCase__ : Tuple =50 # max width of layer names
UpperCAmelCase__ : List[str] =70 # max width of quantizer names
def _lowercase ( _UpperCAmelCase ) -> List[str]:
lowerCamelCase =parser.add_argument_group("""quant_trainer arguments""" )
group.add_argument("""--wprec""" , type=_UpperCAmelCase , default=8 , help="""weight precision""" )
group.add_argument("""--aprec""" , type=_UpperCAmelCase , default=8 , help="""activation precision""" )
group.add_argument("""--quant-per-tensor""" , action="""store_true""" , help="""per tensor weight scaling""" )
group.add_argument("""--quant-disable""" , action="""store_true""" , help="""disable all quantizers""" )
group.add_argument("""--quant-disable-embeddings""" , action="""store_true""" , help="""disable all embeddings quantizers""" )
group.add_argument("""--quant-disable-keyword""" , type=_UpperCAmelCase , nargs="""+""" , help="""disable quantizers by keyword""" )
group.add_argument("""--quant-disable-layer-module""" , type=_UpperCAmelCase , help="""disable quantizers by keyword under layer.""" )
group.add_argument("""--quant-enable-layer-module""" , type=_UpperCAmelCase , help="""enable quantizers by keyword under layer""" )
group.add_argument("""--calibrator""" , default="""max""" , help="""which quantization range calibrator to use""" )
group.add_argument("""--percentile""" , default=_UpperCAmelCase , type=_UpperCAmelCase , help="""percentile for PercentileCalibrator""" )
group.add_argument("""--fuse-qkv""" , action="""store_true""" , help="""use the same scale factor for qkv""" )
group.add_argument("""--clip-gelu""" , metavar="""N""" , type=_UpperCAmelCase , help="""clip gelu output maximum value to N""" )
group.add_argument(
"""--recalibrate-weights""" , action="""store_true""" , help=(
"""recalibrate weight amaxes by taking the max of the weights."""
""" amaxes will be computed with the current quantization granularity (axis)."""
) , )
def _lowercase ( _UpperCAmelCase ) -> Dict:
if args.calibrator == "max":
lowerCamelCase ="""max"""
elif args.calibrator == "percentile":
if args.percentile is None:
raise ValueError("""Specify --percentile when using percentile calibrator""" )
lowerCamelCase ="""histogram"""
elif args.calibrator == "mse":
lowerCamelCase ="""histogram"""
else:
raise ValueError(F"""Invalid calibrator {args.calibrator}""" )
lowerCamelCase =QuantDescriptor(num_bits=args.aprec , calib_method=_UpperCAmelCase )
lowerCamelCase =QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) )
quant_nn.QuantLinear.set_default_quant_desc_input(_UpperCAmelCase )
quant_nn.QuantLinear.set_default_quant_desc_weight(_UpperCAmelCase )
def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=False ) -> int:
logger.info("""Configuring Model for Quantization""" )
logger.info(F"""using quantization package {pytorch_quantization.__file__}""" )
if not calib:
if args.quant_disable_embeddings:
set_quantizer_by_name(_UpperCAmelCase , ["""embeddings"""] , which="""weight""" , _disabled=_UpperCAmelCase )
if args.quant_disable:
set_quantizer_by_name(_UpperCAmelCase , [""""""] , _disabled=_UpperCAmelCase )
if args.quant_disable_keyword:
set_quantizer_by_name(_UpperCAmelCase , args.quant_disable_keyword , _disabled=_UpperCAmelCase )
if args.quant_disable_layer_module:
set_quantizer_by_name(_UpperCAmelCase , [r"""layer.\d+.""" + args.quant_disable_layer_module] , _disabled=_UpperCAmelCase )
if args.quant_enable_layer_module:
set_quantizer_by_name(_UpperCAmelCase , [r"""layer.\d+.""" + args.quant_enable_layer_module] , _disabled=_UpperCAmelCase )
if args.recalibrate_weights:
recalibrate_weights(_UpperCAmelCase )
if args.fuse_qkv:
fuse_qkv(_UpperCAmelCase , _UpperCAmelCase )
if args.clip_gelu:
clip_gelu(_UpperCAmelCase , args.clip_gelu )
# if args.local_rank in [-1, 0] and not calib:
print_quant_summary(_UpperCAmelCase )
def _lowercase ( _UpperCAmelCase ) -> Optional[Any]:
logger.info("""Enabling Calibration""" )
for name, module in model.named_modules():
if name.endswith("""_quantizer""" ):
if module._calibrator is not None:
module.disable_quant()
module.enable_calib()
else:
module.disable()
logger.info(F"""{name:80}: {module}""" )
def _lowercase ( _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]:
logger.info("""Loading calibrated amax""" )
for name, module in model.named_modules():
if name.endswith("""_quantizer""" ):
if module._calibrator is not None:
if isinstance(module._calibrator , calib.MaxCalibrator ):
module.load_calib_amax()
else:
module.load_calib_amax("""percentile""" , percentile=args.percentile )
module.enable_quant()
module.disable_calib()
else:
module.enable()
model.cuda()
print_quant_summary(_UpperCAmelCase )
def _lowercase ( _UpperCAmelCase , _UpperCAmelCase ) -> Tuple:
def fusea(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
for mod in [qq, qk, qv]:
if not hasattr(_UpperCAmelCase , """_amax""" ):
print(""" WARNING: NO AMAX BUFFER""" )
return
lowerCamelCase =qq._amax.detach().item()
lowerCamelCase =qk._amax.detach().item()
lowerCamelCase =qv._amax.detach().item()
lowerCamelCase =max(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
qq._amax.fill_(_UpperCAmelCase )
qk._amax.fill_(_UpperCAmelCase )
qv._amax.fill_(_UpperCAmelCase )
logger.info(F""" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}""" )
for name, mod in model.named_modules():
if name.endswith(""".attention.self""" ):
logger.info(F"""FUSE_QKV: {name:{name_width}}""" )
fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer )
if args.quant_per_tensor:
fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer )
def _lowercase ( _UpperCAmelCase , _UpperCAmelCase ) -> int:
for name, mod in model.named_modules():
if name.endswith(""".output.dense""" ) and not name.endswith("""attention.output.dense""" ):
lowerCamelCase =mod._input_quantizer._amax.data.detach().item()
mod._input_quantizer._amax.data.detach().clamp_(max=_UpperCAmelCase )
lowerCamelCase =mod._input_quantizer._amax.data.detach().item()
logger.info(F"""CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}""" )
def _lowercase ( _UpperCAmelCase ) -> Dict:
for name, mod in model.named_modules():
if hasattr(_UpperCAmelCase , """_weight_quantizer""" ) and mod._weight_quantizer.axis is not None:
lowerCamelCase =mod.weight.shape[0]
lowerCamelCase =mod._weight_quantizer._amax.detach()
lowerCamelCase =torch.ones(_UpperCAmelCase , dtype=amax.dtype , device=amax.device ) * amax
print(F"""expanding {name} {amax} -> {mod._weight_quantizer._amax}""" )
def _lowercase ( _UpperCAmelCase ) -> List[str]:
for name, mod in model.named_modules():
if hasattr(_UpperCAmelCase , """_weight_quantizer""" ):
if not hasattr(mod.weight_quantizer , """_amax""" ):
print("""RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER""" )
continue
# determine which axes to reduce across
# e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3)
lowerCamelCase =set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis )
lowerCamelCase =set(range(len(mod.weight.size() ) ) ) - axis_set
lowerCamelCase =pytorch_quantization.utils.reduce_amax(mod.weight , axis=_UpperCAmelCase , keepdims=_UpperCAmelCase ).detach()
logger.info(F"""RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}""" )
lowerCamelCase =amax
def _lowercase ( _UpperCAmelCase , _UpperCAmelCase=25 , _UpperCAmelCase=1_80 , _UpperCAmelCase=None ) -> Dict:
if ignore is None:
lowerCamelCase =[]
elif not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
lowerCamelCase =[ignore]
lowerCamelCase =0
for name, mod in model.named_modules():
if not hasattr(_UpperCAmelCase , """weight""" ):
continue
lowerCamelCase =max(_UpperCAmelCase , len(_UpperCAmelCase ) )
for name, mod in model.named_modules():
lowerCamelCase =getattr(_UpperCAmelCase , """_input_quantizer""" , _UpperCAmelCase )
lowerCamelCase =getattr(_UpperCAmelCase , """_weight_quantizer""" , _UpperCAmelCase )
if not hasattr(_UpperCAmelCase , """weight""" ):
continue
if type(_UpperCAmelCase ) in ignore:
continue
if [True for s in ignore if type(_UpperCAmelCase ) is str and s in name]:
continue
lowerCamelCase =F"""Act:{input_q.extra_repr()}"""
lowerCamelCase =F"""Wgt:{weight_q.extra_repr()}"""
lowerCamelCase =F"""{name:{name_width}} {act_str} {wgt_str}"""
if len(_UpperCAmelCase ) <= line_width:
logger.info(_UpperCAmelCase )
else:
logger.info(F"""{name:{name_width}} {act_str}""" )
logger.info(F"""{" ":{name_width}} {wgt_str}""" )
def _lowercase ( _UpperCAmelCase ) -> Dict:
lowerCamelCase =0
for name, mod in model.named_modules():
if isinstance(_UpperCAmelCase , pytorch_quantization.nn.TensorQuantizer ):
print(F"""{name:80} {mod}""" )
count += 1
print(F"""{count} TensorQuantizers found in model""" )
def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]:
lowerCamelCase =getattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
if quantizer_mod is not None:
assert hasattr(_UpperCAmelCase , _UpperCAmelCase )
setattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
else:
logger.warning(F"""{name} has no {quantizer}""" )
def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase="both" , **_UpperCAmelCase ) -> List[str]:
lowerCamelCase =F"""Warning: changing {which} quantizers of {name:{qname_width}}"""
for k, v in kwargs.items():
s += F""" {k}={v}"""
if which in ["input", "both"]:
set_quantizer(_UpperCAmelCase , _UpperCAmelCase , """_input_quantizer""" , _UpperCAmelCase , _UpperCAmelCase )
if which in ["weight", "both"]:
set_quantizer(_UpperCAmelCase , _UpperCAmelCase , """_weight_quantizer""" , _UpperCAmelCase , _UpperCAmelCase )
logger.info(_UpperCAmelCase )
def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) -> int:
for name, mod in model.named_modules():
if hasattr(_UpperCAmelCase , """_input_quantizer""" ) or hasattr(_UpperCAmelCase , """_weight_quantizer""" ):
for n in names:
if re.search(_UpperCAmelCase , _UpperCAmelCase ):
set_quantizers(_UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase )
elif name.endswith("""_quantizer""" ):
for n in names:
if re.search(_UpperCAmelCase , _UpperCAmelCase ):
lowerCamelCase =F"""Warning: changing {name:{name_width}}"""
for k, v in kwargs.items():
s += F""" {k}={v}"""
setattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
logger.info(_UpperCAmelCase )
| 262
| 1
|
'''simple docstring'''
from unittest import TestCase
from datasets import Sequence, Value
from datasets.arrow_dataset import Dataset
class A__ ( A__ ):
def A ( self : Optional[Any] ) -> str:
'''simple docstring'''
return [
{"col_1": 3, "col_2": "a"},
{"col_1": 2, "col_2": "b"},
{"col_1": 1, "col_2": "c"},
{"col_1": 0, "col_2": "d"},
]
def A ( self : Any ) -> Tuple:
'''simple docstring'''
_SCREAMING_SNAKE_CASE ={'col_1': [3, 2, 1, 0], 'col_2': ['a', 'b', 'c', 'd']}
return Dataset.from_dict(_a )
def A ( self : Union[str, Any] ) -> Tuple:
'''simple docstring'''
_SCREAMING_SNAKE_CASE =self._create_example_records()
_SCREAMING_SNAKE_CASE =Dataset.from_list(_a )
self.assertListEqual(dset.column_names , ['col_1', 'col_2'] )
for i, r in enumerate(_a ):
self.assertDictEqual(_a , example_records[i] )
def A ( self : Union[str, Any] ) -> List[Any]:
'''simple docstring'''
_SCREAMING_SNAKE_CASE =self._create_example_records()
_SCREAMING_SNAKE_CASE =Dataset.from_list(_a )
_SCREAMING_SNAKE_CASE =Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} )
self.assertEqual(dset.info , dset_from_dict.info )
def A ( self : Any ) -> List[Any]: # checks what happens with missing columns
'''simple docstring'''
_SCREAMING_SNAKE_CASE =[{'col_1': 1}, {'col_2': 'x'}]
_SCREAMING_SNAKE_CASE =Dataset.from_list(_a )
self.assertDictEqual(dset[0] , {'col_1': 1} )
self.assertDictEqual(dset[1] , {'col_1': None} ) # NB: first record is used for columns
def A ( self : str ) -> int: # checks if the type can be inferred from the second record
'''simple docstring'''
_SCREAMING_SNAKE_CASE =[{'col_1': []}, {'col_1': [1, 2]}]
_SCREAMING_SNAKE_CASE =Dataset.from_list(_a )
self.assertEqual(dset.info.features['col_1'] , Sequence(Value('int64' ) ) )
def A ( self : Optional[Any] ) -> Tuple:
'''simple docstring'''
_SCREAMING_SNAKE_CASE =Dataset.from_list([] )
self.assertEqual(len(_a ) , 0 )
self.assertListEqual(dset.column_names , [] )
| 47
|
_lowerCamelCase : Optional[int] = 65521
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> int:
"""simple docstring"""
A__ = 1
A__ = 0
for plain_chr in plain_text:
A__ = (a + ord(lowercase_ )) % MOD_ADLER
A__ = (b + a) % MOD_ADLER
return (b << 16) | a
| 14
| 0
|
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase = logging.get_logger(__name__)
lowerCamelCase = {
'''BAAI/AltCLIP''': '''https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json''',
# See all AltCLIP models at https://huggingface.co/models?filter=altclip
}
class _a ( _lowercase):
_a : Union[str, Any] = '''altclip_text_model'''
def __init__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[Any]=25_0002 , _SCREAMING_SNAKE_CASE : Union[str, Any]=1024 , _SCREAMING_SNAKE_CASE : List[str]=24 , _SCREAMING_SNAKE_CASE : List[Any]=16 , _SCREAMING_SNAKE_CASE : Dict=4096 , _SCREAMING_SNAKE_CASE : List[Any]="gelu" , _SCREAMING_SNAKE_CASE : List[Any]=0.1 , _SCREAMING_SNAKE_CASE : int=0.1 , _SCREAMING_SNAKE_CASE : Optional[Any]=514 , _SCREAMING_SNAKE_CASE : List[Any]=1 , _SCREAMING_SNAKE_CASE : Dict=0.02 , _SCREAMING_SNAKE_CASE : str=0.02 , _SCREAMING_SNAKE_CASE : Any=1E-05 , _SCREAMING_SNAKE_CASE : List[str]=1 , _SCREAMING_SNAKE_CASE : Union[str, Any]=0 , _SCREAMING_SNAKE_CASE : Dict=2 , _SCREAMING_SNAKE_CASE : Dict="absolute" , _SCREAMING_SNAKE_CASE : List[Any]=True , _SCREAMING_SNAKE_CASE : int=768 , **_SCREAMING_SNAKE_CASE : Any , )-> Any:
super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
lowerCAmelCase__ : Optional[int] = vocab_size
lowerCAmelCase__ : Optional[Any] = hidden_size
lowerCAmelCase__ : Union[str, Any] = num_hidden_layers
lowerCAmelCase__ : Dict = num_attention_heads
lowerCAmelCase__ : Optional[int] = hidden_act
lowerCAmelCase__ : List[str] = intermediate_size
lowerCAmelCase__ : Dict = hidden_dropout_prob
lowerCAmelCase__ : Dict = attention_probs_dropout_prob
lowerCAmelCase__ : Optional[Any] = max_position_embeddings
lowerCAmelCase__ : Dict = type_vocab_size
lowerCAmelCase__ : Optional[Any] = initializer_range
lowerCAmelCase__ : Any = initializer_factor
lowerCAmelCase__ : List[str] = layer_norm_eps
lowerCAmelCase__ : List[Any] = position_embedding_type
lowerCAmelCase__ : Tuple = use_cache
lowerCAmelCase__ : List[str] = project_dim
class _a ( _lowercase):
_a : Optional[Any] = '''altclip_vision_model'''
def __init__( self : List[Any] , _SCREAMING_SNAKE_CASE : List[str]=768 , _SCREAMING_SNAKE_CASE : Any=3072 , _SCREAMING_SNAKE_CASE : Dict=512 , _SCREAMING_SNAKE_CASE : Dict=12 , _SCREAMING_SNAKE_CASE : Optional[int]=12 , _SCREAMING_SNAKE_CASE : List[str]=3 , _SCREAMING_SNAKE_CASE : Union[str, Any]=224 , _SCREAMING_SNAKE_CASE : Optional[int]=32 , _SCREAMING_SNAKE_CASE : Dict="quick_gelu" , _SCREAMING_SNAKE_CASE : Union[str, Any]=1E-5 , _SCREAMING_SNAKE_CASE : int=0.0 , _SCREAMING_SNAKE_CASE : Dict=0.02 , _SCREAMING_SNAKE_CASE : List[str]=1.0 , **_SCREAMING_SNAKE_CASE : str , )-> int:
super().__init__(**_SCREAMING_SNAKE_CASE )
lowerCAmelCase__ : Tuple = hidden_size
lowerCAmelCase__ : List[str] = intermediate_size
lowerCAmelCase__ : Optional[Any] = projection_dim
lowerCAmelCase__ : Tuple = num_hidden_layers
lowerCAmelCase__ : Dict = num_attention_heads
lowerCAmelCase__ : Any = num_channels
lowerCAmelCase__ : int = patch_size
lowerCAmelCase__ : str = image_size
lowerCAmelCase__ : Dict = initializer_range
lowerCAmelCase__ : Optional[Any] = initializer_factor
lowerCAmelCase__ : Dict = attention_dropout
lowerCAmelCase__ : Optional[Any] = layer_norm_eps
lowerCAmelCase__ : Optional[int] = hidden_act
@classmethod
def UpperCAmelCase__( cls : Tuple , _SCREAMING_SNAKE_CASE : Union[str, os.PathLike] , **_SCREAMING_SNAKE_CASE : List[str] )-> "PretrainedConfig":
cls._set_token_in_kwargs(_SCREAMING_SNAKE_CASE )
lowerCAmelCase__ : List[Any] = cls.get_config_dict(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
# get the vision config dict if we are loading from AltCLIPConfig
if config_dict.get('''model_type''' ) == "altclip":
lowerCAmelCase__ : List[Any] = config_dict['''vision_config''']
if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
class _a ( _lowercase):
_a : str = '''altclip'''
_a : int = True
def __init__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : Any=None , _SCREAMING_SNAKE_CASE : Optional[int]=None , _SCREAMING_SNAKE_CASE : Any=768 , _SCREAMING_SNAKE_CASE : Optional[int]=2.6592 , **_SCREAMING_SNAKE_CASE : int )-> List[Any]:
# If `_config_dict` exist, we use them for the backward compatibility.
# We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot
# of confusion!).
lowerCAmelCase__ : List[Any] = kwargs.pop('''text_config_dict''' , _SCREAMING_SNAKE_CASE )
lowerCAmelCase__ : int = kwargs.pop('''vision_config_dict''' , _SCREAMING_SNAKE_CASE )
super().__init__(**_SCREAMING_SNAKE_CASE )
# Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in
# `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most
# cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`.
if text_config_dict is not None:
if text_config is None:
lowerCAmelCase__ : Optional[int] = {}
# This is the complete result when using `text_config_dict`.
lowerCAmelCase__ : Optional[int] = AltCLIPTextConfig(**_SCREAMING_SNAKE_CASE ).to_dict()
# Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different.
for key, value in _text_config_dict.items():
if key in text_config and value != text_config[key] and key not in ["transformers_version"]:
# If specified in `text_config_dict`
if key in text_config_dict:
lowerCAmelCase__ : List[Any] = (
F'`{key}` is found in both `text_config_dict` and `text_config` but with different values. '
F'The value `text_config_dict["{key}"]` will be used instead.'
)
# If inferred from default argument values (just to be super careful)
else:
lowerCAmelCase__ : List[Any] = (
F'`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The '
F'value `text_config["{key}"]` will be overriden.'
)
logger.warning(_SCREAMING_SNAKE_CASE )
# Update all values in `text_config` with the ones in `_text_config_dict`.
text_config.update(_text_config_dict )
if vision_config_dict is not None:
if vision_config is None:
lowerCAmelCase__ : List[Any] = {}
# This is the complete result when using `vision_config_dict`.
lowerCAmelCase__ : List[Any] = AltCLIPVisionConfig(**_SCREAMING_SNAKE_CASE ).to_dict()
# convert keys to string instead of integer
if "id2label" in _vision_config_dict:
lowerCAmelCase__ : Union[str, Any] = {
str(_SCREAMING_SNAKE_CASE ): value for key, value in _vision_config_dict['''id2label'''].items()
}
# Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different.
for key, value in _vision_config_dict.items():
if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]:
# If specified in `vision_config_dict`
if key in vision_config_dict:
lowerCAmelCase__ : Tuple = (
F'`{key}` is found in both `vision_config_dict` and `vision_config` but with different '
F'values. The value `vision_config_dict["{key}"]` will be used instead.'
)
# If inferred from default argument values (just to be super careful)
else:
lowerCAmelCase__ : List[str] = (
F'`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. '
F'The value `vision_config["{key}"]` will be overriden.'
)
logger.warning(_SCREAMING_SNAKE_CASE )
# Update all values in `vision_config` with the ones in `_vision_config_dict`.
vision_config.update(_vision_config_dict )
if text_config is None:
lowerCAmelCase__ : Tuple = {}
logger.info('''`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values.''' )
if vision_config is None:
lowerCAmelCase__ : Optional[int] = {}
logger.info('''`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values.''' )
lowerCAmelCase__ : List[Any] = AltCLIPTextConfig(**_SCREAMING_SNAKE_CASE )
lowerCAmelCase__ : Dict = AltCLIPVisionConfig(**_SCREAMING_SNAKE_CASE )
lowerCAmelCase__ : Tuple = projection_dim
lowerCAmelCase__ : Tuple = logit_scale_init_value
lowerCAmelCase__ : Any = 1.0
@classmethod
def UpperCAmelCase__( cls : int , _SCREAMING_SNAKE_CASE : AltCLIPTextConfig , _SCREAMING_SNAKE_CASE : AltCLIPVisionConfig , **_SCREAMING_SNAKE_CASE : str )-> Dict:
return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_SCREAMING_SNAKE_CASE )
def UpperCAmelCase__( self : int )-> Optional[int]:
lowerCAmelCase__ : Dict = copy.deepcopy(self.__dict__ )
lowerCAmelCase__ : str = self.text_config.to_dict()
lowerCAmelCase__ : List[Any] = self.vision_config.to_dict()
lowerCAmelCase__ : List[Any] = self.__class__.model_type
return output
| 366
|
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase = logging.get_logger(__name__)
lowerCamelCase = {
'''facebook/dpr-ctx_encoder-single-nq-base''': (
'''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json'''
),
'''facebook/dpr-question_encoder-single-nq-base''': (
'''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json'''
),
'''facebook/dpr-reader-single-nq-base''': (
'''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json'''
),
'''facebook/dpr-ctx_encoder-multiset-base''': (
'''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json'''
),
'''facebook/dpr-question_encoder-multiset-base''': (
'''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json'''
),
'''facebook/dpr-reader-multiset-base''': (
'''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json'''
),
}
class _a ( _lowercase):
_a : List[Any] = '''dpr'''
def __init__( self : List[str] , _SCREAMING_SNAKE_CASE : List[str]=3_0522 , _SCREAMING_SNAKE_CASE : Optional[int]=768 , _SCREAMING_SNAKE_CASE : List[str]=12 , _SCREAMING_SNAKE_CASE : Tuple=12 , _SCREAMING_SNAKE_CASE : str=3072 , _SCREAMING_SNAKE_CASE : Optional[Any]="gelu" , _SCREAMING_SNAKE_CASE : Dict=0.1 , _SCREAMING_SNAKE_CASE : Optional[int]=0.1 , _SCREAMING_SNAKE_CASE : List[str]=512 , _SCREAMING_SNAKE_CASE : int=2 , _SCREAMING_SNAKE_CASE : Optional[Any]=0.02 , _SCREAMING_SNAKE_CASE : Tuple=1E-12 , _SCREAMING_SNAKE_CASE : Union[str, Any]=0 , _SCREAMING_SNAKE_CASE : List[str]="absolute" , _SCREAMING_SNAKE_CASE : int = 0 , **_SCREAMING_SNAKE_CASE : Optional[Any] , )-> Optional[int]:
super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
lowerCAmelCase__ : Union[str, Any] = vocab_size
lowerCAmelCase__ : Tuple = hidden_size
lowerCAmelCase__ : Union[str, Any] = num_hidden_layers
lowerCAmelCase__ : List[Any] = num_attention_heads
lowerCAmelCase__ : Optional[int] = hidden_act
lowerCAmelCase__ : Optional[Any] = intermediate_size
lowerCAmelCase__ : Optional[Any] = hidden_dropout_prob
lowerCAmelCase__ : int = attention_probs_dropout_prob
lowerCAmelCase__ : str = max_position_embeddings
lowerCAmelCase__ : List[Any] = type_vocab_size
lowerCAmelCase__ : Optional[int] = initializer_range
lowerCAmelCase__ : List[str] = layer_norm_eps
lowerCAmelCase__ : Dict = projection_dim
lowerCAmelCase__ : int = position_embedding_type
| 211
| 0
|
"""simple docstring"""
import contextlib
import os
import sqlitea
import pytest
from datasets import Dataset, Features, Value
from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy
def lowercase_ ( _snake_case ,_snake_case ):
assert isinstance(_snake_case ,_snake_case )
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@require_sqlalchemy
@pytest.mark.parametrize("""keep_in_memory""" ,[False, True] )
def lowercase_ ( _snake_case ,_snake_case ,_snake_case ,_snake_case ):
SCREAMING_SNAKE_CASE__ : List[str] = tmp_path / """cache"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
SCREAMING_SNAKE_CASE__ : Optional[int] = SqlDatasetReader(
"""dataset""" ,"""sqlite:///""" + sqlite_path ,cache_dir=_snake_case ,keep_in_memory=_snake_case ).read()
_check_sql_dataset(_snake_case ,_snake_case )
@require_sqlalchemy
@pytest.mark.parametrize(
"""features""" ,[
None,
{"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""},
{"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""},
{"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""},
{"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""},
] ,)
def lowercase_ ( _snake_case ,_snake_case ,_snake_case ,_snake_case ):
SCREAMING_SNAKE_CASE__ : Any = tmp_path / """cache"""
SCREAMING_SNAKE_CASE__ : Tuple = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
SCREAMING_SNAKE_CASE__ : Dict = features.copy() if features else default_expected_features
SCREAMING_SNAKE_CASE__ : Any = (
Features({feature: Value(_snake_case ) for feature, dtype in features.items()} ) if features is not None else None
)
SCREAMING_SNAKE_CASE__ : int = SqlDatasetReader("""dataset""" ,"""sqlite:///""" + sqlite_path ,features=_snake_case ,cache_dir=_snake_case ).read()
_check_sql_dataset(_snake_case ,_snake_case )
def lowercase_ ( _snake_case ):
with contextlib.closing(sqlitea.connect(_snake_case ) ) as con:
SCREAMING_SNAKE_CASE__ : Optional[int] = con.cursor()
cur.execute("""SELECT * FROM dataset""" )
for row in cur:
yield row
@require_sqlalchemy
def lowercase_ ( _snake_case ,_snake_case ,_snake_case ):
SCREAMING_SNAKE_CASE__ : List[str] = tmp_path / """cache"""
SCREAMING_SNAKE_CASE__ : Any = os.path.join(_snake_case ,"""tmp.sql""" )
SCREAMING_SNAKE_CASE__ : Dict = SqlDatasetReader("""dataset""" ,"""sqlite:///""" + sqlite_path ,cache_dir=_snake_case ).read()
SqlDatasetWriter(_snake_case ,"""dataset""" ,"""sqlite:///""" + output_sqlite_path ,num_proc=1 ).write()
SCREAMING_SNAKE_CASE__ : List[str] = iter_sql_file(_snake_case )
SCREAMING_SNAKE_CASE__ : int = iter_sql_file(_snake_case )
for rowa, rowa in zip(_snake_case ,_snake_case ):
assert rowa == rowa
@require_sqlalchemy
def lowercase_ ( _snake_case ,_snake_case ,_snake_case ):
SCREAMING_SNAKE_CASE__ : List[str] = tmp_path / """cache"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = os.path.join(_snake_case ,"""tmp.sql""" )
SCREAMING_SNAKE_CASE__ : int = SqlDatasetReader("""dataset""" ,"""sqlite:///""" + sqlite_path ,cache_dir=_snake_case ).read()
SqlDatasetWriter(_snake_case ,"""dataset""" ,"""sqlite:///""" + output_sqlite_path ,num_proc=2 ).write()
SCREAMING_SNAKE_CASE__ : Any = iter_sql_file(_snake_case )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = iter_sql_file(_snake_case )
for rowa, rowa in zip(_snake_case ,_snake_case ):
assert rowa == rowa
@require_sqlalchemy
def lowercase_ ( _snake_case ,_snake_case ,_snake_case ):
SCREAMING_SNAKE_CASE__ : List[str] = tmp_path / """cache"""
SCREAMING_SNAKE_CASE__ : Tuple = os.path.join(_snake_case ,"""tmp.sql""" )
SCREAMING_SNAKE_CASE__ : Any = SqlDatasetReader("""dataset""" ,"""sqlite:///""" + sqlite_path ,cache_dir=_snake_case ).read()
with pytest.raises(_snake_case ):
SqlDatasetWriter(_snake_case ,"""dataset""" ,"""sqlite:///""" + output_sqlite_path ,num_proc=0 ).write()
| 25
|
"""simple docstring"""
import mpmath # for roots of unity
import numpy as np
class lowerCAmelCase_ :
"""simple docstring"""
def __init__(self , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = list(poly_a or [0] )[:]
SCREAMING_SNAKE_CASE__ : Tuple = list(poly_b or [0] )[:]
# Remove leading zero coefficients
while self.polyA[-1] == 0:
self.polyA.pop()
SCREAMING_SNAKE_CASE__ : int = len(self.polyA )
while self.polyB[-1] == 0:
self.polyB.pop()
SCREAMING_SNAKE_CASE__ : List[str] = len(self.polyB )
# Add 0 to make lengths equal a power of 2
SCREAMING_SNAKE_CASE__ : Optional[int] = int(
2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) )
while len(self.polyA ) < self.c_max_length:
self.polyA.append(0 )
while len(self.polyB ) < self.c_max_length:
self.polyB.append(0 )
# A complex root used for the fourier transform
SCREAMING_SNAKE_CASE__ : List[str] = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) )
# The product
SCREAMING_SNAKE_CASE__ : Tuple = self.__multiply()
def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = [[x] for x in self.polyA] if which == """A""" else [[x] for x in self.polyB]
# Corner case
if len(SCREAMING_SNAKE_CASE__ ) <= 1:
return dft[0]
#
SCREAMING_SNAKE_CASE__ : Optional[Any] = self.c_max_length // 2
while next_ncol > 0:
SCREAMING_SNAKE_CASE__ : Any = [[] for i in range(SCREAMING_SNAKE_CASE__ )]
SCREAMING_SNAKE_CASE__ : Tuple = self.root**next_ncol
# First half of next step
SCREAMING_SNAKE_CASE__ : str = 1
for j in range(self.c_max_length // (next_ncol * 2) ):
for i in range(SCREAMING_SNAKE_CASE__ ):
new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] )
current_root *= root
# Second half of next step
SCREAMING_SNAKE_CASE__ : int = 1
for j in range(self.c_max_length // (next_ncol * 2) ):
for i in range(SCREAMING_SNAKE_CASE__ ):
new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] )
current_root *= root
# Update
SCREAMING_SNAKE_CASE__ : Union[str, Any] = new_dft
SCREAMING_SNAKE_CASE__ : Tuple = next_ncol // 2
return dft[0]
def __magic_name__ (self ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.__dft("""A""" )
SCREAMING_SNAKE_CASE__ : Dict = self.__dft("""B""" )
SCREAMING_SNAKE_CASE__ : List[Any] = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]]
del dft_a
del dft_b
# Corner Case
if len(inverce_c[0] ) <= 1:
return inverce_c[0]
# Inverse DFT
SCREAMING_SNAKE_CASE__ : Optional[Any] = 2
while next_ncol <= self.c_max_length:
SCREAMING_SNAKE_CASE__ : List[str] = [[] for i in range(SCREAMING_SNAKE_CASE__ )]
SCREAMING_SNAKE_CASE__ : Tuple = self.root ** (next_ncol // 2)
SCREAMING_SNAKE_CASE__ : Any = 1
# First half of next step
for j in range(self.c_max_length // next_ncol ):
for i in range(next_ncol // 2 ):
# Even positions
new_inverse_c[i].append(
(
inverce_c[i][j]
+ inverce_c[i][j + self.c_max_length // next_ncol]
)
/ 2 )
# Odd positions
new_inverse_c[i + next_ncol // 2].append(
(
inverce_c[i][j]
- inverce_c[i][j + self.c_max_length // next_ncol]
)
/ (2 * current_root) )
current_root *= root
# Update
SCREAMING_SNAKE_CASE__ : Optional[Any] = new_inverse_c
next_ncol *= 2
# Unpack
SCREAMING_SNAKE_CASE__ : Optional[Any] = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1j for x in inverce_c]
# Remove leading 0's
while inverce_c[-1] == 0:
inverce_c.pop()
return inverce_c
def __str__(self ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[str] = """A = """ + """ + """.join(
F'''{coef}*x^{i}''' for coef, i in enumerate(self.polyA[: self.len_A] ) )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = """B = """ + """ + """.join(
F'''{coef}*x^{i}''' for coef, i in enumerate(self.polyB[: self.len_B] ) )
SCREAMING_SNAKE_CASE__ : int = """A*B = """ + """ + """.join(
F'''{coef}*x^{i}''' for coef, i in enumerate(self.product ) )
return F'''{a}\n{b}\n{c}'''
# Unit tests
if __name__ == "__main__":
import doctest
doctest.testmod()
| 25
| 1
|
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification
def _lowerCAmelCase ( UpperCamelCase_ ):
__SCREAMING_SNAKE_CASE = SwinvaConfig()
__SCREAMING_SNAKE_CASE = swinva_name.split("""_""" )
__SCREAMING_SNAKE_CASE = name_split[1]
if "to" in name_split[3]:
__SCREAMING_SNAKE_CASE = int(name_split[3][-3:] )
else:
__SCREAMING_SNAKE_CASE = int(name_split[3] )
if "to" in name_split[2]:
__SCREAMING_SNAKE_CASE = int(name_split[2][-2:] )
else:
__SCREAMING_SNAKE_CASE = int(name_split[2][6:] )
if model_size == "tiny":
__SCREAMING_SNAKE_CASE = 96
__SCREAMING_SNAKE_CASE = (2, 2, 6, 2)
__SCREAMING_SNAKE_CASE = (3, 6, 12, 24)
elif model_size == "small":
__SCREAMING_SNAKE_CASE = 96
__SCREAMING_SNAKE_CASE = (2, 2, 18, 2)
__SCREAMING_SNAKE_CASE = (3, 6, 12, 24)
elif model_size == "base":
__SCREAMING_SNAKE_CASE = 128
__SCREAMING_SNAKE_CASE = (2, 2, 18, 2)
__SCREAMING_SNAKE_CASE = (4, 8, 16, 32)
else:
__SCREAMING_SNAKE_CASE = 192
__SCREAMING_SNAKE_CASE = (2, 2, 18, 2)
__SCREAMING_SNAKE_CASE = (6, 12, 24, 48)
if "to" in swinva_name:
__SCREAMING_SNAKE_CASE = (12, 12, 12, 6)
if ("22k" in swinva_name) and ("to" not in swinva_name):
__SCREAMING_SNAKE_CASE = 2_1841
__SCREAMING_SNAKE_CASE = '''huggingface/label-files'''
__SCREAMING_SNAKE_CASE = '''imagenet-22k-id2label.json'''
__SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(__a , __a , repo_type="""dataset""" ) , """r""" ) )
__SCREAMING_SNAKE_CASE = {int(__a ): v for k, v in idalabel.items()}
__SCREAMING_SNAKE_CASE = idalabel
__SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()}
else:
__SCREAMING_SNAKE_CASE = 1000
__SCREAMING_SNAKE_CASE = '''huggingface/label-files'''
__SCREAMING_SNAKE_CASE = '''imagenet-1k-id2label.json'''
__SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(__a , __a , repo_type="""dataset""" ) , """r""" ) )
__SCREAMING_SNAKE_CASE = {int(__a ): v for k, v in idalabel.items()}
__SCREAMING_SNAKE_CASE = idalabel
__SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()}
__SCREAMING_SNAKE_CASE = img_size
__SCREAMING_SNAKE_CASE = num_classes
__SCREAMING_SNAKE_CASE = embed_dim
__SCREAMING_SNAKE_CASE = depths
__SCREAMING_SNAKE_CASE = num_heads
__SCREAMING_SNAKE_CASE = window_size
return config
def _lowerCAmelCase ( UpperCamelCase_ ):
if "patch_embed.proj" in name:
__SCREAMING_SNAKE_CASE = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" )
if "patch_embed.norm" in name:
__SCREAMING_SNAKE_CASE = name.replace("""patch_embed.norm""" , """embeddings.norm""" )
if "layers" in name:
__SCREAMING_SNAKE_CASE = '''encoder.''' + name
if "attn.proj" in name:
__SCREAMING_SNAKE_CASE = name.replace("""attn.proj""" , """attention.output.dense""" )
if "attn" in name:
__SCREAMING_SNAKE_CASE = name.replace("""attn""" , """attention.self""" )
if "norm1" in name:
__SCREAMING_SNAKE_CASE = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name:
__SCREAMING_SNAKE_CASE = name.replace("""norm2""" , """layernorm_after""" )
if "mlp.fc1" in name:
__SCREAMING_SNAKE_CASE = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
__SCREAMING_SNAKE_CASE = name.replace("""mlp.fc2""" , """output.dense""" )
if "q_bias" in name:
__SCREAMING_SNAKE_CASE = name.replace("""q_bias""" , """query.bias""" )
if "k_bias" in name:
__SCREAMING_SNAKE_CASE = name.replace("""k_bias""" , """key.bias""" )
if "v_bias" in name:
__SCREAMING_SNAKE_CASE = name.replace("""v_bias""" , """value.bias""" )
if "cpb_mlp" in name:
__SCREAMING_SNAKE_CASE = name.replace("""cpb_mlp""" , """continuous_position_bias_mlp""" )
if name == "norm.weight":
__SCREAMING_SNAKE_CASE = '''layernorm.weight'''
if name == "norm.bias":
__SCREAMING_SNAKE_CASE = '''layernorm.bias'''
if "head" in name:
__SCREAMING_SNAKE_CASE = name.replace("""head""" , """classifier""" )
else:
__SCREAMING_SNAKE_CASE = '''swinv2.''' + name
return name
def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ):
for key in orig_state_dict.copy().keys():
__SCREAMING_SNAKE_CASE = orig_state_dict.pop(__a )
if "mask" in key:
continue
elif "qkv" in key:
__SCREAMING_SNAKE_CASE = key.split(""".""" )
__SCREAMING_SNAKE_CASE = int(key_split[1] )
__SCREAMING_SNAKE_CASE = int(key_split[3] )
__SCREAMING_SNAKE_CASE = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
__SCREAMING_SNAKE_CASE = val[:dim, :]
__SCREAMING_SNAKE_CASE = val[dim : dim * 2, :]
__SCREAMING_SNAKE_CASE = val[-dim:, :]
else:
__SCREAMING_SNAKE_CASE = val[:dim]
__SCREAMING_SNAKE_CASE = val[
dim : dim * 2
]
__SCREAMING_SNAKE_CASE = val[-dim:]
else:
__SCREAMING_SNAKE_CASE = val
return orig_state_dict
def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ):
__SCREAMING_SNAKE_CASE = timm.create_model(__a , pretrained=__a )
timm_model.eval()
__SCREAMING_SNAKE_CASE = get_swinva_config(__a )
__SCREAMING_SNAKE_CASE = SwinvaForImageClassification(__a )
model.eval()
__SCREAMING_SNAKE_CASE = convert_state_dict(timm_model.state_dict() , __a )
model.load_state_dict(__a )
__SCREAMING_SNAKE_CASE = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained("""microsoft/{}""".format(swinva_name.replace("""_""" , """-""" ) ) )
__SCREAMING_SNAKE_CASE = Image.open(requests.get(__a , stream=__a ).raw )
__SCREAMING_SNAKE_CASE = image_processor(images=__a , return_tensors="""pt""" )
__SCREAMING_SNAKE_CASE = timm_model(inputs["""pixel_values"""] )
__SCREAMING_SNAKE_CASE = model(**__a ).logits
assert torch.allclose(__a , __a , atol=1e-3 )
print(f"Saving model {swinva_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(__a )
print(f"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(__a )
model.push_to_hub(
repo_path_or_name=Path(__a , __a ) , organization="""nandwalritik""" , commit_message="""Add model""" , )
if __name__ == "__main__":
__magic_name__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--swinv2_name",
default="swinv2_tiny_patch4_window8_256",
type=str,
help="Name of the Swinv2 timm model you\'d like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
__magic_name__ = parser.parse_args()
convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
| 365
|
"""simple docstring"""
import importlib.metadata
import operator
import re
import sys
from typing import Optional
from packaging import version
__magic_name__ = {
"<": operator.lt,
"<=": operator.le,
"==": operator.eq,
"!=": operator.ne,
">=": operator.ge,
">": operator.gt,
}
def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ):
if got_ver is None or want_ver is None:
raise ValueError(
f"Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider"
f" reinstalling {pkg}." )
if not ops[op](version.parse(UpperCamelCase_ ) , version.parse(UpperCamelCase_ ) ):
raise ImportError(
f"{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}" )
def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ = None ):
__SCREAMING_SNAKE_CASE = f"\n{hint}" if hint is not None else """"""
# non-versioned check
if re.match(r"""^[\w_\-\d]+$""" , UpperCamelCase_ ):
__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = requirement, None, None
else:
__SCREAMING_SNAKE_CASE = re.findall(r"""^([^!=<>\s]+)([\s!=<>]{1,2}.+)""" , UpperCamelCase_ )
if not match:
raise ValueError(
"""requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but"""
f" got {requirement}" )
__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = match[0]
__SCREAMING_SNAKE_CASE = want_full.split(""",""" ) # there could be multiple requirements
__SCREAMING_SNAKE_CASE = {}
for w in want_range:
__SCREAMING_SNAKE_CASE = re.findall(r"""^([\s!=<>]{1,2})(.+)""" , UpperCamelCase_ )
if not match:
raise ValueError(
"""requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,"""
f" but got {requirement}" )
__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = match[0]
__SCREAMING_SNAKE_CASE = want_ver
if op not in ops:
raise ValueError(f"{requirement}: need one of {list(ops.keys() )}, but got {op}" )
# special case
if pkg == "python":
__SCREAMING_SNAKE_CASE = """.""".join([str(UpperCamelCase_ ) for x in sys.version_info[:3]] )
for op, want_ver in wanted.items():
_compare_versions(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
return
# check if any version is installed
try:
__SCREAMING_SNAKE_CASE = importlib.metadata.version(UpperCamelCase_ )
except importlib.metadata.PackageNotFoundError:
raise importlib.metadata.PackageNotFoundError(
f"The '{requirement}' distribution was not found and is required by this application. {hint}" )
# check that the right version is installed if version number or a range was provided
if want_ver is not None:
for op, want_ver in wanted.items():
_compare_versions(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
def _lowerCAmelCase ( UpperCamelCase_ ):
__SCREAMING_SNAKE_CASE = """Try: pip install transformers -U or pip install -e '.[dev]' if you're working with git main"""
return require_version(UpperCamelCase_ , UpperCamelCase_ )
| 255
| 0
|
"""simple docstring"""
from functools import reduce
__snake_case : Any = (
'73167176531330624919225119674426574742355349194934'
'96983520312774506326239578318016984801869478851843'
'85861560789112949495459501737958331952853208805511'
'12540698747158523863050715693290963295227443043557'
'66896648950445244523161731856403098711121722383113'
'62229893423380308135336276614282806444486645238749'
'30358907296290491560440772390713810515859307960866'
'70172427121883998797908792274921901699720888093776'
'65727333001053367881220235421809751254540594752243'
'52584907711670556013604839586446706324415722155397'
'53697817977846174064955149290862569321978468622482'
'83972241375657056057490261407972968652414535100474'
'82166370484403199890008895243450658541227588666881'
'16427171479924442928230863465674813919123162824586'
'17866458359124566529476545682848912883142607690042'
'24219022671055626321111109370544217506941658960408'
'07198403850962455444362981230987879927244284909188'
'84580156166097919133875499200524063689912560717606'
'05886116467109405077541002256983155200055935729725'
'71636269561882670428252483600823257530420752963450'
)
def _lowercase ( __snake_case = N ) -> int:
return max(
# mypy cannot properly interpret reduce
int(reduce(lambda __snake_case ,__snake_case : str(int(__snake_case ) * int(__snake_case ) ) ,n[i : i + 13] ) )
for i in range(len(__snake_case ) - 12 ) )
if __name__ == "__main__":
print(F"""{solution() = }""")
| 269
|
"""simple docstring"""
import os
from math import logaa
def _lowercase ( __snake_case = "base_exp.txt" ) -> int:
__lowerCAmelCase : float = 0
__lowerCAmelCase : Any = 0
for i, line in enumerate(open(os.path.join(os.path.dirname(__snake_case ) ,__snake_case ) ) ):
__lowerCAmelCase , __lowerCAmelCase : List[str] = list(map(__snake_case ,line.split("," ) ) )
if x * logaa(__snake_case ) > largest:
__lowerCAmelCase : Tuple = x * logaa(__snake_case )
__lowerCAmelCase : Optional[Any] = i + 1
return result
if __name__ == "__main__":
print(solution())
| 269
| 1
|
'''simple docstring'''
def lowerCamelCase__ ( _A ):
a : Dict = 1
a : Optional[int] = 2
while i * i <= n:
a : Tuple = 0
while n % i == 0:
n //= i
multiplicity += 1
n_divisors *= multiplicity + 1
i += 1
if n > 1:
n_divisors *= 2
return n_divisors
def lowerCamelCase__ ( ):
a : int = 1
a : int = 1
while True:
i += 1
t_num += i
if count_divisors(_A ) > 500:
break
return t_num
if __name__ == "__main__":
print(solution())
| 350
|
'''simple docstring'''
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
####################################################################################################
#
# Note: If when running this conversion script you're getting an exception:
# ModuleNotFoundError: No module named 'megatron.model.enums'
# you need to tell python where to find the clone of Megatron-LM, e.g.:
#
# cd /tmp
# git clone https://github.com/NVIDIA/Megatron-LM
# PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ...
#
# if you already have it cloned elsewhere, simply adjust the path to the existing path
#
# If the training was done using a Megatron-LM fork, e.g.,
# https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one
# in your path, i.e., /path/to/Megatron-DeepSpeed/
#
import argparse
import os
import re
import zipfile
import torch
from transformers import AutoTokenizer, GPTaConfig
def lowerCamelCase__ ( _A , _A , _A=0 ):
# Format the message.
if name is None:
a : Tuple = None
else:
a : Dict = '.' * max(0 , spaces - 2 ) + '# {:' + str(50 - spaces ) + 's}'
a : Tuple = fmt.format(_A )
# Print and recurse (if needed).
if isinstance(_A , _A ):
if msg is not None:
print(_A )
for k in val.keys():
recursive_print(_A , val[k] , spaces + 2 )
elif isinstance(_A , torch.Tensor ):
print(_A , ':' , val.size() )
else:
print(_A , ':' , _A )
def lowerCamelCase__ ( _A , _A , _A , _A , _A ):
# Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :]
# for compatibility with later versions of NVIDIA Megatron-LM.
# The inverse operation is performed inside Megatron-LM to read checkpoints:
# https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209
# If param is the weight tensor of the self-attention block, the returned tensor
# will have to be transposed one more time to be read by HuggingFace GPT2.
a : str = param.size()
if checkpoint_version == 1.0:
# version 1.0 stores [num_heads * hidden_size * num_splits, :]
a : List[Any] = (num_heads, hidden_size, num_splits) + input_shape[1:]
a : int = param.view(*_A )
a : List[str] = param.transpose(0 , 2 )
a : Union[str, Any] = param.transpose(1 , 2 ).contiguous()
elif checkpoint_version >= 2.0:
# other versions store [num_heads * num_splits * hidden_size, :]
a : Union[str, Any] = (num_heads, num_splits, hidden_size) + input_shape[1:]
a : List[str] = param.view(*_A )
a : Union[str, Any] = param.transpose(0 , 1 ).contiguous()
a : List[Any] = param.view(*_A )
return param
def lowerCamelCase__ ( _A , _A , _A ):
# The converted output model.
a : Optional[Any] = {}
# old versions did not store training args
a : Dict = input_state_dict.get('args' , _A )
if ds_args is not None:
# do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint
# from pprint import pprint
# pprint(vars(ds_args))
a : Union[str, Any] = ds_args.padded_vocab_size
a : str = ds_args.max_position_embeddings
a : Dict = ds_args.hidden_size
a : Union[str, Any] = ds_args.num_layers
a : Dict = ds_args.num_attention_heads
a : int = ds_args.ffn_hidden_size
# pprint(config)
# The number of heads.
a : Any = config.n_head
# The hidden_size per head.
a : Tuple = config.n_embd // config.n_head
# Megatron-LM checkpoint version
if "checkpoint_version" in input_state_dict.keys():
a : Any = input_state_dict['checkpoint_version']
else:
a : Any = 0.0
# The model.
a : Optional[int] = input_state_dict['model']
# The language model.
a : Optional[Any] = model['language_model']
# The embeddings.
a : List[str] = lm['embedding']
# The word embeddings.
a : List[Any] = embeddings['word_embeddings']['weight']
# Truncate the embedding table to vocab_size rows.
a : Dict = word_embeddings[: config.vocab_size, :]
a : int = word_embeddings
# The position embeddings.
a : Tuple = embeddings['position_embeddings']['weight']
# Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size]
a : List[str] = pos_embeddings.size(0 )
if n_positions != config.n_positions:
raise ValueError(
f"""pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don't match""" )
# Store the position embeddings.
a : Optional[Any] = pos_embeddings
# The transformer.
a : Union[str, Any] = lm['transformer'] if 'transformer' in lm.keys() else lm['encoder']
# The regex to extract layer names.
a : List[Any] = re.compile(r'layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)' )
# The simple map of names for "automated" rules.
a : Optional[Any] = {
'attention.dense': '.attn.c_proj.',
'self_attention.dense': '.attn.c_proj.',
'mlp.dense_h_to_4h': '.mlp.c_fc.',
'mlp.dense_4h_to_h': '.mlp.c_proj.',
}
# Extract the layers.
for key, val in transformer.items():
# Match the name.
a : Tuple = layer_re.match(_A )
# Stop if that's not a layer
if m is None:
break
# The index of the layer.
a : Union[str, Any] = int(m.group(1 ) )
# The name of the operation.
a : Optional[int] = m.group(2 )
# Is it a weight or a bias?
a : Optional[int] = m.group(3 )
# The name of the layer.
a : Any = f"""transformer.h.{layer_idx}"""
# For layernorm(s), simply store the layer norm.
if op_name.endswith('layernorm' ):
a : str = 'ln_1' if op_name.startswith('input' ) else 'ln_2'
a : Tuple = val
# Transpose the QKV matrix.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "weight":
# Insert a tensor of 1x1xDxD bias.
a : Dict = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view(
1 , 1 , _A , _A )
a : Optional[Any] = causal_mask
# Insert a "dummy" tensor for masked_bias.
a : List[Any] = torch.tensor(-1E4 , dtype=torch.floataa )
a : List[str] = masked_bias
a : Union[str, Any] = fix_query_key_value_ordering(_A , _A , 3 , _A , _A )
# Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D.
a : int = out_val.transpose(0 , 1 ).contiguous()
# Store.
a : int = out_val
# Transpose the bias.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "bias":
a : str = fix_query_key_value_ordering(_A , _A , 3 , _A , _A )
# Store. No change of shape.
a : List[str] = out_val
# Transpose the weights.
elif weight_or_bias == "weight":
a : Tuple = megatron_to_transformers[op_name]
a : List[str] = val.transpose(0 , 1 )
# Copy the bias.
elif weight_or_bias == "bias":
a : Dict = megatron_to_transformers[op_name]
a : Optional[Any] = val
# DEBUG.
assert config.n_layer == layer_idx + 1
# The final layernorm.
a : str = transformer['final_layernorm.weight']
a : List[str] = transformer['final_layernorm.bias']
# For LM head, transformers' wants the matrix to weight embeddings.
a : Optional[int] = word_embeddings
# It should be done!
return output_state_dict
def lowerCamelCase__ ( ):
# Create the argument parser.
a : Dict = argparse.ArgumentParser()
parser.add_argument('--print-checkpoint-structure' , action='store_true' )
parser.add_argument(
'path_to_checkpoint' , type=_A , help='Path to the checkpoint file (.zip archive or direct .pt file)' , )
parser.add_argument(
'--config_file' , default='' , type=_A , help='An optional config json file describing the pre-trained model.' , )
a : Union[str, Any] = parser.parse_args()
# Extract the basename.
a : Optional[Any] = os.path.dirname(args.path_to_checkpoint )
# Load the model.
# the .zip is very optional, let's keep it for backward compatibility
print(f"""Extracting PyTorch state dictionary from {args.path_to_checkpoint}""" )
if args.path_to_checkpoint.endswith('.zip' ):
with zipfile.ZipFile(args.path_to_checkpoint , 'r' ) as checkpoint:
with checkpoint.open('release/mp_rank_00/model_optim_rng.pt' ) as pytorch_dict:
a : Union[str, Any] = torch.load(_A , map_location='cpu' )
else:
a : Any = torch.load(args.path_to_checkpoint , map_location='cpu' )
a : List[Any] = input_state_dict.get('args' , _A )
# Read the config, or default to the model released by NVIDIA.
if args.config_file == "":
if ds_args is not None:
if ds_args.bias_gelu_fusion:
a : int = 'gelu_fast'
elif ds_args.openai_gelu:
a : Dict = 'gelu_new'
else:
a : Any = 'gelu'
else:
# in the very early days this used to be "gelu_new"
a : Any = 'gelu_new'
# Spell out all parameters in case the defaults change.
a : Tuple = GPTaConfig(
vocab_size=5_0257 , n_positions=1024 , n_embd=1024 , n_layer=24 , n_head=16 , n_inner=4096 , activation_function=_A , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.02 , summary_type='cls_index' , summary_use_proj=_A , summary_activation=_A , summary_proj_to_labels=_A , summary_first_dropout=0.1 , scale_attn_weights=_A , use_cache=_A , bos_token_id=5_0256 , eos_token_id=5_0256 , )
else:
a : str = GPTaConfig.from_json_file(args.config_file )
a : Any = ['GPT2LMHeadModel']
# Convert.
print('Converting' )
a : Union[str, Any] = convert_megatron_checkpoint(_A , _A , _A )
# Print the structure of converted state dict.
if args.print_checkpoint_structure:
recursive_print(_A , _A )
# Add tokenizer class info to config
# see https://github.com/huggingface/transformers/issues/13906)
if ds_args is not None:
a : Union[str, Any] = ds_args.tokenizer_type
if tokenizer_type == "GPT2BPETokenizer":
a : Tuple = 'gpt2'
elif tokenizer_type == "PretrainedFromHF":
a : List[str] = ds_args.tokenizer_name_or_path
else:
raise ValueError(f"""Unrecognized tokenizer_type {tokenizer_type}""" )
else:
a : Optional[Any] = 'gpt2'
a : Tuple = AutoTokenizer.from_pretrained(_A )
a : str = type(_A ).__name__
a : List[str] = tokenizer_class
# Store the config to file.
print('Saving config' )
config.save_pretrained(_A )
# Save tokenizer based on args
print(f"""Adding {tokenizer_class} tokenizer files""" )
tokenizer.save_pretrained(_A )
# Store the state_dict to file.
a : Optional[int] = os.path.join(_A , 'pytorch_model.bin' )
print(f"""Saving checkpoint to \"{output_checkpoint_file}\"""" )
torch.save(_A , _A )
####################################################################################################
if __name__ == "__main__":
main()
####################################################################################################
| 96
| 0
|
import os
import zipfile
import pytest
from datasets.utils.extract import (
BzipaExtractor,
Extractor,
GzipExtractor,
LzaExtractor,
SevenZipExtractor,
TarExtractor,
XzExtractor,
ZipExtractor,
ZstdExtractor,
)
from .utils import require_lza, require_pyazr, require_zstandard
@pytest.mark.parametrize(
'compression_format, is_archive' , [
('7z', True),
('bz2', False),
('gzip', False),
('lz4', False),
('tar', True),
('xz', False),
('zip', True),
('zstd', False),
] , )
def UpperCamelCase__ ( A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , ) -> Optional[Any]:
snake_case__ : Union[str, Any] = {
'7z': (seven_zip_file, SevenZipExtractor),
'bz2': (bza_file, BzipaExtractor),
'gzip': (gz_file, GzipExtractor),
'lz4': (lza_file, LzaExtractor),
'tar': (tar_file, TarExtractor),
'xz': (xz_file, XzExtractor),
'zip': (zip_file, ZipExtractor),
'zstd': (zstd_file, ZstdExtractor),
}
snake_case__ , snake_case__ : Union[str, Any] = input_paths_and_base_extractors[compression_format]
if input_path is None:
snake_case__ : Optional[int] = F"""for '{compression_format}' compression_format, """
if compression_format == "7z":
reason += require_pyazr.kwargs["reason"]
elif compression_format == "lz4":
reason += require_lza.kwargs["reason"]
elif compression_format == "zstd":
reason += require_zstandard.kwargs["reason"]
pytest.skip(A__ )
assert base_extractor.is_extractable(A__ )
snake_case__ : Tuple = tmp_path / ('extracted' if is_archive else 'extracted.txt')
base_extractor.extract(A__ , A__ )
if is_archive:
assert output_path.is_dir()
for file_path in output_path.iterdir():
assert file_path.name == text_file.name
snake_case__ : int = file_path.read_text(encoding='utf-8' )
else:
snake_case__ : str = output_path.read_text(encoding='utf-8' )
snake_case__ : Dict = text_file.read_text(encoding='utf-8' )
assert extracted_file_content == expected_file_content
@pytest.mark.parametrize(
'compression_format, is_archive' , [
('7z', True),
('bz2', False),
('gzip', False),
('lz4', False),
('tar', True),
('xz', False),
('zip', True),
('zstd', False),
] , )
def UpperCamelCase__ ( A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , ) -> Dict:
snake_case__ : Tuple = {
'7z': seven_zip_file,
'bz2': bza_file,
'gzip': gz_file,
'lz4': lza_file,
'tar': tar_file,
'xz': xz_file,
'zip': zip_file,
'zstd': zstd_file,
}
snake_case__ : List[Any] = input_paths[compression_format]
if input_path is None:
snake_case__ : List[Any] = F"""for '{compression_format}' compression_format, """
if compression_format == "7z":
reason += require_pyazr.kwargs["reason"]
elif compression_format == "lz4":
reason += require_lza.kwargs["reason"]
elif compression_format == "zstd":
reason += require_zstandard.kwargs["reason"]
pytest.skip(A__ )
snake_case__ : Union[str, Any] = Extractor.infer_extractor_format(A__ )
assert extractor_format is not None
snake_case__ : Any = tmp_path / ('extracted' if is_archive else 'extracted.txt')
Extractor.extract(A__ , A__ , A__ )
if is_archive:
assert output_path.is_dir()
for file_path in output_path.iterdir():
assert file_path.name == text_file.name
snake_case__ : Any = file_path.read_text(encoding='utf-8' )
else:
snake_case__ : List[Any] = output_path.read_text(encoding='utf-8' )
snake_case__ : Optional[int] = text_file.read_text(encoding='utf-8' )
assert extracted_file_content == expected_file_content
@pytest.fixture
def UpperCamelCase__ ( A__ , A__ ) -> Optional[Any]:
import tarfile
snake_case__ : Optional[Any] = tmp_path / 'data_dot_dot'
directory.mkdir()
snake_case__ : Union[str, Any] = directory / 'tar_file_with_dot_dot.tar'
with tarfile.TarFile(A__ , 'w' ) as f:
f.add(A__ , arcname=os.path.join('..' , text_file.name ) )
return path
@pytest.fixture
def UpperCamelCase__ ( A__ ) -> Union[str, Any]:
import tarfile
snake_case__ : str = tmp_path / 'data_sym_link'
directory.mkdir()
snake_case__ : List[str] = directory / 'tar_file_with_sym_link.tar'
os.symlink('..' , directory / 'subdir' , target_is_directory=A__ )
with tarfile.TarFile(A__ , 'w' ) as f:
f.add(str(directory / 'subdir' ) , arcname='subdir' ) # str required by os.readlink on Windows and Python < 3.8
return path
@pytest.mark.parametrize(
'insecure_tar_file, error_log' , [('tar_file_with_dot_dot', 'illegal path'), ('tar_file_with_sym_link', 'Symlink')] , )
def UpperCamelCase__ ( A__ , A__ , A__ , A__ , A__ , A__ ) -> List[Any]:
snake_case__ : Optional[int] = {
'tar_file_with_dot_dot': tar_file_with_dot_dot,
'tar_file_with_sym_link': tar_file_with_sym_link,
}
snake_case__ : List[Any] = insecure_tar_files[insecure_tar_file]
snake_case__ : int = tmp_path / 'extracted'
TarExtractor.extract(A__ , A__ )
assert caplog.text
for record in caplog.records:
assert record.levelname == "ERROR"
assert error_log in record.msg
def UpperCamelCase__ ( A__ ) -> List[str]:
# We should have less false positives than zipfile.is_zipfile
# We do that by checking only the magic number
snake_case__ : int = tmpdir / 'not_a_zip_file'
# From: https://github.com/python/cpython/pull/5053
snake_case__ : Union[str, Any] = (
b'\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00'
b'\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6\'\x00\x00\x00\x15I'
b'DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07'
b'\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82'
)
with not_a_zip_file.open('wb' ) as f:
f.write(A__ )
assert zipfile.is_zipfile(str(A__ ) ) # is a false positive for `zipfile`
assert not ZipExtractor.is_extractable(A__ ) # but we're right
| 143
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_torch_available,
)
lowerCAmelCase__ : List[str] = {
'''configuration_speecht5''': [
'''SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP''',
'''SpeechT5Config''',
'''SpeechT5HifiGanConfig''',
],
'''feature_extraction_speecht5''': ['''SpeechT5FeatureExtractor'''],
'''processing_speecht5''': ['''SpeechT5Processor'''],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ : str = ['''SpeechT5Tokenizer''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ : str = [
'''SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''SpeechT5ForSpeechToText''',
'''SpeechT5ForSpeechToSpeech''',
'''SpeechT5ForTextToSpeech''',
'''SpeechT5Model''',
'''SpeechT5PreTrainedModel''',
'''SpeechT5HifiGan''',
]
if TYPE_CHECKING:
from .configuration_speechta import (
SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP,
SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP,
SpeechTaConfig,
SpeechTaHifiGanConfig,
)
from .feature_extraction_speechta import SpeechTaFeatureExtractor
from .processing_speechta import SpeechTaProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_speechta import SpeechTaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speechta import (
SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST,
SpeechTaForSpeechToSpeech,
SpeechTaForSpeechToText,
SpeechTaForTextToSpeech,
SpeechTaHifiGan,
SpeechTaModel,
SpeechTaPreTrainedModel,
)
else:
import sys
lowerCAmelCase__ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 143
| 1
|
from ...processing_utils import ProcessorMixin
class lowercase__ ( UpperCamelCase_):
UpperCamelCase_ = """SpeechT5FeatureExtractor"""
UpperCamelCase_ = """SpeechT5Tokenizer"""
def __init__( self : Tuple , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] ):
'''simple docstring'''
super().__init__(UpperCamelCase__ , UpperCamelCase__ )
def __call__( self : str , *UpperCamelCase__ : Union[str, Any] , **UpperCamelCase__ : Optional[Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = kwargs.pop('''audio''' , UpperCamelCase__ )
SCREAMING_SNAKE_CASE : str = kwargs.pop('''text''' , UpperCamelCase__ )
SCREAMING_SNAKE_CASE : List[str] = kwargs.pop('''text_target''' , UpperCamelCase__ )
SCREAMING_SNAKE_CASE : Tuple = kwargs.pop('''audio_target''' , UpperCamelCase__ )
SCREAMING_SNAKE_CASE : str = kwargs.pop('''sampling_rate''' , UpperCamelCase__ )
if audio is not None and text is not None:
raise ValueError(
'''Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?''' )
if audio_target is not None and text_target is not None:
raise ValueError(
'''Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?''' )
if audio is None and audio_target is None and text is None and text_target is None:
raise ValueError(
'''You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.''' )
if audio is not None:
SCREAMING_SNAKE_CASE : Dict = self.feature_extractor(UpperCamelCase__ , *UpperCamelCase__ , sampling_rate=UpperCamelCase__ , **UpperCamelCase__ )
elif text is not None:
SCREAMING_SNAKE_CASE : Optional[Any] = self.tokenizer(UpperCamelCase__ , **UpperCamelCase__ )
else:
SCREAMING_SNAKE_CASE : Optional[Any] = None
if audio_target is not None:
SCREAMING_SNAKE_CASE : List[Any] = self.feature_extractor(audio_target=UpperCamelCase__ , *UpperCamelCase__ , sampling_rate=UpperCamelCase__ , **UpperCamelCase__ )
SCREAMING_SNAKE_CASE : List[str] = targets['''input_values''']
elif text_target is not None:
SCREAMING_SNAKE_CASE : Optional[Any] = self.tokenizer(UpperCamelCase__ , **UpperCamelCase__ )
SCREAMING_SNAKE_CASE : Tuple = targets['''input_ids''']
else:
SCREAMING_SNAKE_CASE : List[str] = None
if inputs is None:
return targets
if targets is not None:
SCREAMING_SNAKE_CASE : Tuple = labels
SCREAMING_SNAKE_CASE : Optional[Any] = targets.get('''attention_mask''' )
if decoder_attention_mask is not None:
SCREAMING_SNAKE_CASE : Any = decoder_attention_mask
return inputs
def __A ( self : Dict , *UpperCamelCase__ : Any , **UpperCamelCase__ : Dict ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = kwargs.pop('''input_values''' , UpperCamelCase__ )
SCREAMING_SNAKE_CASE : Optional[int] = kwargs.pop('''input_ids''' , UpperCamelCase__ )
SCREAMING_SNAKE_CASE : Any = kwargs.pop('''labels''' , UpperCamelCase__ )
if input_values is not None and input_ids is not None:
raise ValueError('''Cannot process both `input_values` and `input_ids` inputs.''' )
if input_values is None and input_ids is None and labels is None:
raise ValueError(
'''You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.''' )
if input_values is not None:
SCREAMING_SNAKE_CASE : int = self.feature_extractor.pad(UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ )
elif input_ids is not None:
SCREAMING_SNAKE_CASE : Any = self.tokenizer.pad(UpperCamelCase__ , **UpperCamelCase__ )
else:
SCREAMING_SNAKE_CASE : Dict = None
if labels is not None:
if "input_ids" in labels or (isinstance(UpperCamelCase__ , UpperCamelCase__ ) and "input_ids" in labels[0]):
SCREAMING_SNAKE_CASE : int = self.tokenizer.pad(UpperCamelCase__ , **UpperCamelCase__ )
SCREAMING_SNAKE_CASE : List[Any] = targets['''input_ids''']
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = self.feature_extractor.feature_size
SCREAMING_SNAKE_CASE : Union[str, Any] = self.feature_extractor.num_mel_bins
SCREAMING_SNAKE_CASE : List[Any] = self.feature_extractor.pad(UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ )
SCREAMING_SNAKE_CASE : Optional[Any] = feature_size_hack
SCREAMING_SNAKE_CASE : Any = targets['''input_values''']
else:
SCREAMING_SNAKE_CASE : List[str] = None
if inputs is None:
return targets
if targets is not None:
SCREAMING_SNAKE_CASE : List[Any] = labels
SCREAMING_SNAKE_CASE : Dict = targets.get('''attention_mask''' )
if decoder_attention_mask is not None:
SCREAMING_SNAKE_CASE : Any = decoder_attention_mask
return inputs
def __A ( self : Dict , *UpperCamelCase__ : str , **UpperCamelCase__ : str ):
'''simple docstring'''
return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ )
def __A ( self : Any , *UpperCamelCase__ : str , **UpperCamelCase__ : Any ):
'''simple docstring'''
return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ )
| 258
|
import argparse
import torch
from transformers import (
UniSpeechSatConfig,
UniSpeechSatForAudioFrameClassification,
UniSpeechSatForSequenceClassification,
UniSpeechSatForXVector,
WavaVecaFeatureExtractor,
logging,
)
logging.set_verbosity_info()
__UpperCamelCase : Dict = logging.get_logger(__name__)
def A ( _lowercase , _lowercase , _lowercase ):
SCREAMING_SNAKE_CASE : Optional[int] = UniSpeechSatForSequenceClassification.from_pretrained(_lowercase , config=_lowercase )
SCREAMING_SNAKE_CASE : Any = downstream_dict['''projector.weight''']
SCREAMING_SNAKE_CASE : Optional[int] = downstream_dict['''projector.bias''']
SCREAMING_SNAKE_CASE : Optional[Any] = downstream_dict['''model.post_net.linear.weight''']
SCREAMING_SNAKE_CASE : int = downstream_dict['''model.post_net.linear.bias''']
return model
def A ( _lowercase , _lowercase , _lowercase ):
SCREAMING_SNAKE_CASE : Optional[int] = UniSpeechSatForAudioFrameClassification.from_pretrained(_lowercase , config=_lowercase )
SCREAMING_SNAKE_CASE : Union[str, Any] = downstream_dict['''model.linear.weight''']
SCREAMING_SNAKE_CASE : str = downstream_dict['''model.linear.bias''']
return model
def A ( _lowercase , _lowercase , _lowercase ):
SCREAMING_SNAKE_CASE : str = UniSpeechSatForXVector.from_pretrained(_lowercase , config=_lowercase )
SCREAMING_SNAKE_CASE : str = downstream_dict['''connector.weight''']
SCREAMING_SNAKE_CASE : Dict = downstream_dict['''connector.bias''']
for i, kernel_size in enumerate(hf_config.tdnn_kernel ):
SCREAMING_SNAKE_CASE : Optional[Any] = downstream_dict[
f"""model.framelevel_feature_extractor.module.{i}.kernel.weight"""
]
SCREAMING_SNAKE_CASE : List[str] = downstream_dict[f"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""]
SCREAMING_SNAKE_CASE : int = downstream_dict['''model.utterancelevel_feature_extractor.linear1.weight''']
SCREAMING_SNAKE_CASE : Any = downstream_dict['''model.utterancelevel_feature_extractor.linear1.bias''']
SCREAMING_SNAKE_CASE : Tuple = downstream_dict['''model.utterancelevel_feature_extractor.linear2.weight''']
SCREAMING_SNAKE_CASE : List[str] = downstream_dict['''model.utterancelevel_feature_extractor.linear2.bias''']
SCREAMING_SNAKE_CASE : Any = downstream_dict['''objective.W''']
return model
@torch.no_grad()
def A ( _lowercase , _lowercase , _lowercase , _lowercase ):
SCREAMING_SNAKE_CASE : List[Any] = torch.load(_lowercase , map_location='''cpu''' )
SCREAMING_SNAKE_CASE : Any = checkpoint['''Downstream''']
SCREAMING_SNAKE_CASE : List[Any] = UniSpeechSatConfig.from_pretrained(_lowercase )
SCREAMING_SNAKE_CASE : int = WavaVecaFeatureExtractor.from_pretrained(
_lowercase , return_attention_mask=_lowercase , do_normalize=_lowercase )
SCREAMING_SNAKE_CASE : Tuple = hf_config.architectures[0]
if arch.endswith('''ForSequenceClassification''' ):
SCREAMING_SNAKE_CASE : str = convert_classification(_lowercase , _lowercase , _lowercase )
elif arch.endswith('''ForAudioFrameClassification''' ):
SCREAMING_SNAKE_CASE : List[Any] = convert_diarization(_lowercase , _lowercase , _lowercase )
elif arch.endswith('''ForXVector''' ):
SCREAMING_SNAKE_CASE : int = convert_xvector(_lowercase , _lowercase , _lowercase )
else:
raise NotImplementedError(f"""S3PRL weights conversion is not supported for {arch}""" )
if hf_config.use_weighted_layer_sum:
SCREAMING_SNAKE_CASE : int = checkpoint['''Featurizer''']['''weights''']
hf_feature_extractor.save_pretrained(_lowercase )
hf_model.save_pretrained(_lowercase )
if __name__ == "__main__":
__UpperCamelCase : Optional[int] = argparse.ArgumentParser()
parser.add_argument(
'--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.'
)
parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.')
parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.')
__UpperCamelCase : Union[str, Any] = parser.parse_args()
convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
| 258
| 1
|
from __future__ import annotations
import unittest
import numpy as np
from transformers import BlipTextConfig
from transformers.testing_utils import require_tf, slow
from transformers.utils import is_tf_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
if is_tf_available():
import tensorflow as tf
from transformers import TFBlipTextModel
from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST
class lowerCamelCase :
'''simple docstring'''
def __init__( self , _UpperCamelCase , _UpperCamelCase=1_2 , _UpperCamelCase=7 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=9_9 , _UpperCamelCase=3_2 , _UpperCamelCase=3_2 , _UpperCamelCase=2 , _UpperCamelCase=4 , _UpperCamelCase=3_7 , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=5_1_2 , _UpperCamelCase=0.02 , _UpperCamelCase=0 , _UpperCamelCase=None , ) -> int:
UpperCAmelCase_ : Dict = parent
UpperCAmelCase_ : int = batch_size
UpperCAmelCase_ : Optional[Any] = seq_length
UpperCAmelCase_ : List[str] = is_training
UpperCAmelCase_ : Tuple = use_input_mask
UpperCAmelCase_ : List[str] = use_labels
UpperCAmelCase_ : Union[str, Any] = vocab_size
UpperCAmelCase_ : List[Any] = hidden_size
UpperCAmelCase_ : Any = projection_dim
UpperCAmelCase_ : Optional[int] = num_hidden_layers
UpperCAmelCase_ : Any = num_attention_heads
UpperCAmelCase_ : Tuple = intermediate_size
UpperCAmelCase_ : Dict = dropout
UpperCAmelCase_ : Tuple = attention_dropout
UpperCAmelCase_ : Optional[Any] = max_position_embeddings
UpperCAmelCase_ : Any = initializer_range
UpperCAmelCase_ : List[Any] = scope
UpperCAmelCase_ : int = bos_token_id
def __UpperCAmelCase ( self ) -> Optional[Any]:
UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase_ : Tuple = None
if self.use_input_mask:
UpperCAmelCase_ : Any = random_attention_mask([self.batch_size, self.seq_length] )
if input_mask is not None:
UpperCAmelCase_ : List[str] = input_mask.numpy()
UpperCAmelCase_ , UpperCAmelCase_ : Any = input_mask.shape
UpperCAmelCase_ : int = np.random.randint(1 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(__UpperCamelCase ):
UpperCAmelCase_ : str = 1
UpperCAmelCase_ : Optional[Any] = 0
UpperCAmelCase_ : Tuple = self.get_config()
return config, input_ids, tf.convert_to_tensor(__UpperCamelCase )
def __UpperCAmelCase ( self ) -> List[str]:
return BlipTextConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , )
def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Tuple:
UpperCAmelCase_ : Dict = TFBlipTextModel(config=__UpperCamelCase )
UpperCAmelCase_ : str = model(__UpperCamelCase , attention_mask=__UpperCamelCase , training=__UpperCamelCase )
UpperCAmelCase_ : int = model(__UpperCamelCase , training=__UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def __UpperCAmelCase ( self ) -> List[Any]:
UpperCAmelCase_ : List[str] = self.prepare_config_and_inputs()
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = config_and_inputs
UpperCAmelCase_ : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_tf
class lowerCamelCase (_lowercase , unittest.TestCase ):
'''simple docstring'''
_snake_case : str = (TFBlipTextModel,) if is_tf_available() else ()
_snake_case : int = False
_snake_case : Optional[Any] = False
_snake_case : int = False
def __UpperCAmelCase ( self ) -> List[str]:
UpperCAmelCase_ : List[Any] = BlipTextModelTester(self )
UpperCAmelCase_ : str = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=3_7 )
def __UpperCAmelCase ( self ) -> Dict:
self.config_tester.run_common_tests()
def __UpperCAmelCase ( self ) -> str:
UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCamelCase )
def __UpperCAmelCase ( self ) -> Tuple:
pass
def __UpperCAmelCase ( self ) -> Optional[int]:
pass
@unittest.skip(reason='Blip does not use inputs_embeds' )
def __UpperCAmelCase ( self ) -> List[Any]:
pass
@unittest.skip(reason='BlipTextModel has no base class and is not available in MODEL_MAPPING' )
def __UpperCAmelCase ( self ) -> Optional[Any]:
pass
@unittest.skip(reason='BlipTextModel has no base class and is not available in MODEL_MAPPING' )
def __UpperCAmelCase ( self ) -> Any:
pass
@slow
def __UpperCAmelCase ( self ) -> Optional[int]:
for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ : str = TFBlipTextModel.from_pretrained(__UpperCamelCase )
self.assertIsNotNone(__UpperCamelCase )
def __UpperCAmelCase ( self , _UpperCamelCase=True ) -> Union[str, Any]:
super().test_pt_tf_model_equivalence(allow_missing_keys=__UpperCamelCase )
| 29
|
"""simple docstring"""
def lowercase ( a__ : float , a__ : float ) -> float:
if density <= 0:
raise ValueError('''Impossible fluid density''' )
if bulk_modulus <= 0:
raise ValueError('''Impossible bulk modulus''' )
return (bulk_modulus / density) ** 0.5
if __name__ == "__main__":
import doctest
doctest.testmod()
| 256
| 0
|
"""simple docstring"""
def lowerCamelCase_ (UpperCamelCase__ : Optional[int] = 100_0000 ):
_UpperCAmelCase : str = 1
_UpperCAmelCase : Dict = 1
_UpperCAmelCase : Dict = {1: 1}
for inputa in range(2 , _lowerCAmelCase ):
_UpperCAmelCase : Optional[int] = 0
_UpperCAmelCase : Any = inputa
while True:
if number in counters:
counter += counters[number]
break
if number % 2 == 0:
number //= 2
counter += 1
else:
_UpperCAmelCase : Optional[int] = (3 * number) + 1
counter += 1
if inputa not in counters:
_UpperCAmelCase : Tuple = counter
if counter > pre_counter:
_UpperCAmelCase : Optional[Any] = inputa
_UpperCAmelCase : List[Any] = counter
return largest_number
if __name__ == "__main__":
print(solution(int(input().strip())))
| 354
|
"""simple docstring"""
import enum
import os
from hashlib import shaaaa
from typing import Optional
from .. import config
from .logging import get_logger
_lowerCAmelCase :int = get_logger(__name__)
class _UpperCAmelCase ( enum.Enum ):
'''simple docstring'''
a__ ='''all_checks'''
a__ ='''basic_checks'''
a__ ='''no_checks'''
class _UpperCAmelCase ( a ):
'''simple docstring'''
class _UpperCAmelCase ( a ):
'''simple docstring'''
class _UpperCAmelCase ( a ):
'''simple docstring'''
class _UpperCAmelCase ( a ):
'''simple docstring'''
def lowerCamelCase_ (UpperCamelCase__ : Optional[dict] , UpperCamelCase__ : dict , UpperCamelCase__ : Tuple=None ):
if expected_checksums is None:
logger.info('''Unable to verify checksums.''' )
return
if len(set(UpperCamelCase__ ) - set(UpperCamelCase__ ) ) > 0:
raise ExpectedMoreDownloadedFiles(str(set(UpperCamelCase__ ) - set(UpperCamelCase__ ) ) )
if len(set(UpperCamelCase__ ) - set(UpperCamelCase__ ) ) > 0:
raise UnexpectedDownloadedFile(str(set(UpperCamelCase__ ) - set(UpperCamelCase__ ) ) )
_UpperCAmelCase : Optional[Any] = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]]
_UpperCAmelCase : str = ''' for ''' + verification_name if verification_name is not None else ''''''
if len(UpperCamelCase__ ) > 0:
raise NonMatchingChecksumError(
F'Checksums didn\'t match{for_verification_name}:\n'
F'{bad_urls}\n'
'''Set `verification_mode=\'no_checks\'` to skip checksums verification and ignore this error''' )
logger.info('''All the checksums matched successfully''' + for_verification_name )
class _UpperCAmelCase ( a ):
'''simple docstring'''
class _UpperCAmelCase ( a ):
'''simple docstring'''
class _UpperCAmelCase ( a ):
'''simple docstring'''
class _UpperCAmelCase ( a ):
'''simple docstring'''
def lowerCamelCase_ (UpperCamelCase__ : Optional[dict] , UpperCamelCase__ : dict ):
if expected_splits is None:
logger.info('''Unable to verify splits sizes.''' )
return
if len(set(UpperCamelCase__ ) - set(UpperCamelCase__ ) ) > 0:
raise ExpectedMoreSplits(str(set(UpperCamelCase__ ) - set(UpperCamelCase__ ) ) )
if len(set(UpperCamelCase__ ) - set(UpperCamelCase__ ) ) > 0:
raise UnexpectedSplits(str(set(UpperCamelCase__ ) - set(UpperCamelCase__ ) ) )
_UpperCAmelCase : Dict = [
{'''expected''': expected_splits[name], '''recorded''': recorded_splits[name]}
for name in expected_splits
if expected_splits[name].num_examples != recorded_splits[name].num_examples
]
if len(UpperCamelCase__ ) > 0:
raise NonMatchingSplitsSizesError(str(UpperCamelCase__ ) )
logger.info('''All the splits matched successfully.''' )
def lowerCamelCase_ (UpperCamelCase__ : str , UpperCamelCase__ : bool = True ):
if record_checksum:
_UpperCAmelCase : Any = shaaaa()
with open(UpperCamelCase__ , '''rb''' ) as f:
for chunk in iter(lambda: f.read(1 << 20 ) , B'''''' ):
m.update(UpperCamelCase__ )
_UpperCAmelCase : int = m.hexdigest()
else:
_UpperCAmelCase : Union[str, Any] = None
return {"num_bytes": os.path.getsize(UpperCamelCase__ ), "checksum": checksum}
def lowerCamelCase_ (UpperCamelCase__ : List[str] ):
if dataset_size and config.IN_MEMORY_MAX_SIZE:
return dataset_size < config.IN_MEMORY_MAX_SIZE
else:
return False
| 68
| 0
|
"""simple docstring"""
def lowercase ( lowerCAmelCase__ : str ) -> list[int]:
__a = [0 for i in range(len(lowerCAmelCase__ ) )]
# initialize interval's left pointer and right pointer
__a , __a = 0, 0
for i in range(1 , len(lowerCAmelCase__ ) ):
# case when current index is inside the interval
if i <= right_pointer:
__a = min(right_pointer - i + 1 , z_result[i - left_pointer] )
__a = min_edge
while go_next(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
z_result[i] += 1
# if new index's result gives us more right interval,
# we've to update left_pointer and right_pointer
if i + z_result[i] - 1 > right_pointer:
__a , __a = i, i + z_result[i] - 1
return z_result
def lowercase ( lowerCAmelCase__ : int , lowerCAmelCase__ : list[int] , lowerCAmelCase__ : str ) -> bool:
return i + z_result[i] < len(lowerCAmelCase__ ) and s[z_result[i]] == s[i + z_result[i]]
def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : str ) -> int:
__a = 0
# concatenate 'pattern' and 'input_str' and call z_function
# with concatenated string
__a = z_function(pattern + input_str )
for val in z_result:
# if value is greater then length of the pattern string
# that means this index is starting position of substring
# which is equal to pattern string
if val >= len(lowerCAmelCase__ ):
answer += 1
return answer
if __name__ == "__main__":
import doctest
doctest.testmod()
| 45
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
lowercase_ = {"configuration_unispeech": ["UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP", "UniSpeechConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST",
"UniSpeechForCTC",
"UniSpeechForPreTraining",
"UniSpeechForSequenceClassification",
"UniSpeechModel",
"UniSpeechPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_unispeech import (
UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST,
UniSpeechForCTC,
UniSpeechForPreTraining,
UniSpeechForSequenceClassification,
UniSpeechModel,
UniSpeechPreTrainedModel,
)
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 45
| 1
|
from __future__ import annotations
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : list[int] , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ) -> None:
if (direction == 1 and array[indexa] > array[indexa]) or (
direction == 0 and array[indexa] < array[indexa]
):
UpperCAmelCase_ , UpperCAmelCase_ = array[indexa], array[indexa]
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : list[int] , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ) -> None:
if length > 1:
UpperCAmelCase_ = int(length / 2 )
for i in range(__UpperCamelCase , low + middle ):
comp_and_swap(__UpperCamelCase , __UpperCamelCase , i + middle , __UpperCamelCase )
bitonic_merge(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
bitonic_merge(__UpperCamelCase , low + middle , __UpperCamelCase , __UpperCamelCase )
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : list[int] , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ) -> None:
if length > 1:
UpperCAmelCase_ = int(length / 2 )
bitonic_sort(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , 1 )
bitonic_sort(__UpperCamelCase , low + middle , __UpperCamelCase , 0 )
bitonic_merge(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
if __name__ == "__main__":
_lowerCamelCase = input('Enter numbers separated by a comma:\n').strip()
_lowerCamelCase = [int(item.strip()) for item in user_input.split(',')]
bitonic_sort(unsorted, 0, len(unsorted), 1)
print('\nSorted array in ascending order is: ', end='')
print(*unsorted, sep=', ')
bitonic_merge(unsorted, 0, len(unsorted), 0)
print('Sorted array in descending order is: ', end='')
print(*unsorted, sep=', ')
| 353
|
from __future__ import annotations
import os
from collections.abc import Mapping
_lowerCamelCase = tuple[int, int]
class a :
'''simple docstring'''
def __init__( self : str , __snake_case : set[int] , __snake_case : Mapping[EdgeT, int] ):
UpperCAmelCase_ = vertices
UpperCAmelCase_ = {
(min(__snake_case ), max(__snake_case )): weight for edge, weight in edges.items()
}
def lowerCamelCase_ ( self : Any , __snake_case : EdgeT , __snake_case : int ):
self.vertices.add(edge[0] )
self.vertices.add(edge[1] )
UpperCAmelCase_ = weight
def lowerCamelCase_ ( self : Union[str, Any] ):
UpperCAmelCase_ = Graph({min(self.vertices )} , {} )
UpperCAmelCase_ = 42
UpperCAmelCase_ = 42
UpperCAmelCase_ = 42
UpperCAmelCase_ = 42
while len(subgraph.vertices ) < len(self.vertices ):
UpperCAmelCase_ = max(self.edges.values() ) + 1
for edge, weight in self.edges.items():
if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices):
if weight < min_weight:
UpperCAmelCase_ = edge
UpperCAmelCase_ = weight
subgraph.add_edge(__snake_case , __snake_case )
return subgraph
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str = "p107_network.txt" ) -> int:
UpperCAmelCase_ = os.path.abspath(os.path.dirname(__UpperCamelCase ) )
UpperCAmelCase_ = os.path.join(__UpperCamelCase , __UpperCamelCase )
UpperCAmelCase_ = {}
UpperCAmelCase_ = 42
UpperCAmelCase_ = 42
UpperCAmelCase_ = 42
with open(__UpperCamelCase ) as f:
UpperCAmelCase_ = f.read().strip().split('''\n''' )
UpperCAmelCase_ = [line.split(''',''' ) for line in data]
for edgea in range(1 , len(__UpperCamelCase ) ):
for edgea in range(__UpperCamelCase ):
if adjaceny_matrix[edgea][edgea] != "-":
UpperCAmelCase_ = int(adjaceny_matrix[edgea][edgea] )
UpperCAmelCase_ = Graph(set(range(len(__UpperCamelCase ) ) ) , __UpperCamelCase )
UpperCAmelCase_ = graph.prims_algorithm()
UpperCAmelCase_ = sum(graph.edges.values() )
UpperCAmelCase_ = sum(subgraph.edges.values() )
return initial_total - optimal_total
if __name__ == "__main__":
print(F"{solution() = }")
| 177
| 0
|
from dataclasses import dataclass
from typing import Dict, Optional, Union
import torch
import torch.nn.functional as F
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .attention import BasicTransformerBlock
from .attention_processor import AttentionProcessor, AttnProcessor
from .embeddings import TimestepEmbedding, Timesteps
from .modeling_utils import ModelMixin
@dataclass
class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
__lowerCamelCase : torch.FloatTensor
class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
@register_to_config
def __init__( self, lowerCamelCase__ = 32, lowerCamelCase__ = 64, lowerCamelCase__ = 20, lowerCamelCase__ = 768, lowerCamelCase__=77, lowerCamelCase__=4, lowerCamelCase__ = 0.0, lowerCamelCase__ = "silu", lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = "linear", lowerCamelCase__ = "prd", lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, ):
super().__init__()
A : int = num_attention_heads
A : Tuple = attention_head_dim
A : Optional[int] = num_attention_heads * attention_head_dim
A : List[str] = additional_embeddings
A : int = time_embed_dim or inner_dim
A : Tuple = embedding_proj_dim or embedding_dim
A : Dict = clip_embed_dim or embedding_dim
A : List[str] = Timesteps(lowerCamelCase__, lowerCamelCase__, 0 )
A : Any = TimestepEmbedding(lowerCamelCase__, lowerCamelCase__, out_dim=lowerCamelCase__, act_fn=lowerCamelCase__ )
A : List[Any] = nn.Linear(lowerCamelCase__, lowerCamelCase__ )
if embedding_proj_norm_type is None:
A : Union[str, Any] = None
elif embedding_proj_norm_type == "layer":
A : str = nn.LayerNorm(lowerCamelCase__ )
else:
raise ValueError(f'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' )
A : Optional[Any] = nn.Linear(lowerCamelCase__, lowerCamelCase__ )
if encoder_hid_proj_type is None:
A : Dict = None
elif encoder_hid_proj_type == "linear":
A : Union[str, Any] = nn.Linear(lowerCamelCase__, lowerCamelCase__ )
else:
raise ValueError(f'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' )
A : List[str] = nn.Parameter(torch.zeros(1, num_embeddings + additional_embeddings, lowerCamelCase__ ) )
if added_emb_type == "prd":
A : Union[str, Any] = nn.Parameter(torch.zeros(1, 1, lowerCamelCase__ ) )
elif added_emb_type is None:
A : int = None
else:
raise ValueError(
f'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' )
A : int = nn.ModuleList(
[
BasicTransformerBlock(
lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, dropout=lowerCamelCase__, activation_fn="""gelu""", attention_bias=lowerCamelCase__, )
for d in range(lowerCamelCase__ )
] )
if norm_in_type == "layer":
A : int = nn.LayerNorm(lowerCamelCase__ )
elif norm_in_type is None:
A : Tuple = None
else:
raise ValueError(f'''Unsupported norm_in_type: {norm_in_type}.''' )
A : Optional[Any] = nn.LayerNorm(lowerCamelCase__ )
A : str = nn.Linear(lowerCamelCase__, lowerCamelCase__ )
A : Union[str, Any] = torch.full(
[num_embeddings + additional_embeddings, num_embeddings + additional_embeddings], -1_0000.0 )
causal_attention_mask.triu_(1 )
A : Optional[Any] = causal_attention_mask[None, ...]
self.register_buffer("""causal_attention_mask""", lowerCamelCase__, persistent=lowerCamelCase__ )
A : Dict = nn.Parameter(torch.zeros(1, lowerCamelCase__ ) )
A : Tuple = nn.Parameter(torch.zeros(1, lowerCamelCase__ ) )
@property
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
def _lowerCAmelCase ( self ):
A : Optional[int] = {}
def fn_recursive_add_processors(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ):
if hasattr(lowerCamelCase__, """set_processor""" ):
A : Tuple = module.processor
for sub_name, child in module.named_children():
fn_recursive_add_processors(f'''{name}.{sub_name}''', lowerCamelCase__, lowerCamelCase__ )
return processors
for name, module in self.named_children():
fn_recursive_add_processors(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ )
return processors
def _lowerCAmelCase ( self, lowerCamelCase__ ):
A : Optional[Any] = len(self.attn_processors.keys() )
if isinstance(lowerCamelCase__, lowerCamelCase__ ) and len(lowerCamelCase__ ) != count:
raise ValueError(
f'''A dict of processors was passed, but the number of processors {len(lowerCamelCase__ )} does not match the'''
f''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' )
def fn_recursive_attn_processor(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ):
if hasattr(lowerCamelCase__, """set_processor""" ):
if not isinstance(lowerCamelCase__, lowerCamelCase__ ):
module.set_processor(lowerCamelCase__ )
else:
module.set_processor(processor.pop(f'''{name}.processor''' ) )
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f'''{name}.{sub_name}''', lowerCamelCase__, lowerCamelCase__ )
for name, module in self.named_children():
fn_recursive_attn_processor(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ )
def _lowerCAmelCase ( self ):
self.set_attn_processor(AttnProcessor() )
def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = True, ):
A : Optional[int] = hidden_states.shape[0]
A : Tuple = timestep
if not torch.is_tensor(lowerCamelCase__ ):
A : List[Any] = torch.tensor([timesteps], dtype=torch.long, device=hidden_states.device )
elif torch.is_tensor(lowerCamelCase__ ) and len(timesteps.shape ) == 0:
A : Optional[int] = timesteps[None].to(hidden_states.device )
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
A : Optional[Any] = timesteps * torch.ones(lowerCamelCase__, dtype=timesteps.dtype, device=timesteps.device )
A : str = self.time_proj(lowerCamelCase__ )
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might be fp16, so we need to cast here.
A : Union[str, Any] = timesteps_projected.to(dtype=self.dtype )
A : Tuple = self.time_embedding(lowerCamelCase__ )
if self.embedding_proj_norm is not None:
A : Optional[Any] = self.embedding_proj_norm(lowerCamelCase__ )
A : Any = self.embedding_proj(lowerCamelCase__ )
if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None:
A : List[str] = self.encoder_hidden_states_proj(lowerCamelCase__ )
elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None:
raise ValueError("""`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set""" )
A : Tuple = self.proj_in(lowerCamelCase__ )
A : Dict = self.positional_embedding.to(hidden_states.dtype )
A : List[str] = []
A : Optional[Any] = 0
if encoder_hidden_states is not None:
additional_embeds.append(lowerCamelCase__ )
additional_embeddings_len += encoder_hidden_states.shape[1]
if len(proj_embeddings.shape ) == 2:
A : Optional[Any] = proj_embeddings[:, None, :]
if len(hidden_states.shape ) == 2:
A : List[str] = hidden_states[:, None, :]
A : Dict = additional_embeds + [
proj_embeddings,
time_embeddings[:, None, :],
hidden_states,
]
if self.prd_embedding is not None:
A : List[Any] = self.prd_embedding.to(hidden_states.dtype ).expand(lowerCamelCase__, -1, -1 )
additional_embeds.append(lowerCamelCase__ )
A : Union[str, Any] = torch.cat(
lowerCamelCase__, dim=1, )
# Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens
A : Dict = additional_embeddings_len + proj_embeddings.shape[1] + 1
if positional_embeddings.shape[1] < hidden_states.shape[1]:
A : Any = F.pad(
lowerCamelCase__, (
0,
0,
additional_embeddings_len,
self.prd_embedding.shape[1] if self.prd_embedding is not None else 0,
), value=0.0, )
A : Union[str, Any] = hidden_states + positional_embeddings
if attention_mask is not None:
A : List[Any] = (1 - attention_mask.to(hidden_states.dtype )) * -1_0000.0
A : Tuple = F.pad(lowerCamelCase__, (0, self.additional_embeddings), value=0.0 )
A : List[Any] = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype )
A : Any = attention_mask.repeat_interleave(self.config.num_attention_heads, dim=0 )
if self.norm_in is not None:
A : str = self.norm_in(lowerCamelCase__ )
for block in self.transformer_blocks:
A : Optional[Any] = block(lowerCamelCase__, attention_mask=lowerCamelCase__ )
A : Optional[int] = self.norm_out(lowerCamelCase__ )
if self.prd_embedding is not None:
A : Dict = hidden_states[:, -1]
else:
A : Optional[int] = hidden_states[:, additional_embeddings_len:]
A : Optional[Any] = self.proj_to_clip_embeddings(lowerCamelCase__ )
if not return_dict:
return (predicted_image_embedding,)
return PriorTransformerOutput(predicted_image_embedding=lowerCamelCase__ )
def _lowerCAmelCase ( self, lowerCamelCase__ ):
A : str = (prior_latents * self.clip_std) + self.clip_mean
return prior_latents
| 116
|
import re
from typing import Callable, List, Optional, Union
import tensorflow as tf
try:
from tensorflow.keras.optimizers.legacy import Adam
except ImportError:
from tensorflow.keras.optimizers import Adam
class SCREAMING_SNAKE_CASE__ ( tf.keras.optimizers.schedules.LearningRateSchedule ):
'''simple docstring'''
def __init__( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ = 1.0, lowerCamelCase__ = None, ):
super().__init__()
A : Union[str, Any] = initial_learning_rate
A : List[Any] = warmup_steps
A : int = power
A : Optional[int] = decay_schedule_fn
A : int = name
def __call__( self, lowerCamelCase__ ):
with tf.name_scope(self.name or """WarmUp""" ) as name:
# Implements polynomial warmup. i.e., if global_step < warmup_steps, the
# learning rate will be `global_step/num_warmup_steps * init_lr`.
A : str = tf.cast(lowerCamelCase__, tf.floataa )
A : List[Any] = tf.cast(self.warmup_steps, tf.floataa )
A : Dict = global_step_float / warmup_steps_float
A : Union[str, Any] = self.initial_learning_rate * tf.math.pow(lowerCamelCase__, self.power )
return tf.cond(
global_step_float < warmup_steps_float, lambda: warmup_learning_rate, lambda: self.decay_schedule_fn(step - self.warmup_steps ), name=lowerCamelCase__, )
def _lowerCAmelCase ( self ):
return {
"initial_learning_rate": self.initial_learning_rate,
"decay_schedule_fn": self.decay_schedule_fn,
"warmup_steps": self.warmup_steps,
"power": self.power,
"name": self.name,
}
def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 0.0 , _lowerCAmelCase = 0.9 , _lowerCAmelCase = 0.999 , _lowerCAmelCase = 1e-8 , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = 0.0 , _lowerCAmelCase = 1.0 , _lowerCAmelCase = None , ) -> Union[str, Any]:
"""simple docstring"""
A : Optional[int] = tf.keras.optimizers.schedules.PolynomialDecay(
initial_learning_rate=_lowerCAmelCase , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=_lowerCAmelCase , )
if num_warmup_steps:
A : Dict = WarmUp(
initial_learning_rate=_lowerCAmelCase , decay_schedule_fn=_lowerCAmelCase , warmup_steps=_lowerCAmelCase , )
if weight_decay_rate > 0.0:
A : str = AdamWeightDecay(
learning_rate=_lowerCAmelCase , weight_decay_rate=_lowerCAmelCase , beta_a=_lowerCAmelCase , beta_a=_lowerCAmelCase , epsilon=_lowerCAmelCase , clipnorm=_lowerCAmelCase , global_clipnorm=_lowerCAmelCase , exclude_from_weight_decay=["""LayerNorm""", """layer_norm""", """bias"""] , include_in_weight_decay=_lowerCAmelCase , )
else:
A : Optional[int] = tf.keras.optimizers.Adam(
learning_rate=_lowerCAmelCase , beta_a=_lowerCAmelCase , beta_a=_lowerCAmelCase , epsilon=_lowerCAmelCase , clipnorm=_lowerCAmelCase , global_clipnorm=_lowerCAmelCase , )
# We return the optimizer and the LR scheduler in order to better track the
# evolution of the LR independently of the optimizer.
return optimizer, lr_schedule
class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
def __init__( self, lowerCamelCase__ = 0.001, lowerCamelCase__ = 0.9, lowerCamelCase__ = 0.999, lowerCamelCase__ = 1e-7, lowerCamelCase__ = False, lowerCamelCase__ = 0.0, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = "AdamWeightDecay", **lowerCamelCase__, ):
super().__init__(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, **lowerCamelCase__ )
A : int = weight_decay_rate
A : Any = include_in_weight_decay
A : Dict = exclude_from_weight_decay
@classmethod
def _lowerCAmelCase ( cls, lowerCamelCase__ ):
A : Tuple = {"""WarmUp""": WarmUp}
return super(lowerCamelCase__, cls ).from_config(lowerCamelCase__, custom_objects=lowerCamelCase__ )
def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ):
super(lowerCamelCase__, self )._prepare_local(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ )
A : List[str] = tf.constant(
self.weight_decay_rate, name="""adam_weight_decay_rate""" )
def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ):
A : Any = self._do_use_weight_decay(var.name )
if do_decay:
return var.assign_sub(
learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]["""weight_decay_rate"""], use_locking=self._use_locking, )
return tf.no_op()
def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__=None, **lowerCamelCase__ ):
A , A : Dict = list(zip(*lowerCamelCase__ ) )
return super(lowerCamelCase__, self ).apply_gradients(zip(lowerCamelCase__, lowerCamelCase__ ), name=lowerCamelCase__, **lowerCamelCase__ )
def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ):
if apply_state is None:
return self._decayed_lr_t[var_dtype], {}
A : Union[str, Any] = apply_state or {}
A : Optional[int] = apply_state.get((var_device, var_dtype) )
if coefficients is None:
A : Dict = self._fallback_apply_state(lowerCamelCase__, lowerCamelCase__ )
A : List[Any] = coefficients
return coefficients["lr_t"], {"apply_state": apply_state}
def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__=None ):
A , A : str = self._get_lr(var.device, var.dtype.base_dtype, lowerCamelCase__ )
A : Any = self._decay_weights_op(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ )
with tf.control_dependencies([decay] ):
return super(lowerCamelCase__, self )._resource_apply_dense(lowerCamelCase__, lowerCamelCase__, **lowerCamelCase__ )
def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__=None ):
A , A : Tuple = self._get_lr(var.device, var.dtype.base_dtype, lowerCamelCase__ )
A : Optional[Any] = self._decay_weights_op(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ )
with tf.control_dependencies([decay] ):
return super(lowerCamelCase__, self )._resource_apply_sparse(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, **lowerCamelCase__ )
def _lowerCAmelCase ( self ):
A : Dict = super().get_config()
config.update({"""weight_decay_rate""": self.weight_decay_rate} )
return config
def _lowerCAmelCase ( self, lowerCamelCase__ ):
if self.weight_decay_rate == 0:
return False
if self._include_in_weight_decay:
for r in self._include_in_weight_decay:
if re.search(lowerCamelCase__, lowerCamelCase__ ) is not None:
return True
if self._exclude_from_weight_decay:
for r in self._exclude_from_weight_decay:
if re.search(lowerCamelCase__, lowerCamelCase__ ) is not None:
return False
return True
class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
def __init__( self ):
A : List[str] = []
A : List[str] = None
@property
def _lowerCAmelCase ( self ):
if self._accum_steps is None:
A : str = tf.Variable(
tf.constant(0, dtype=tf.intaa ), trainable=lowerCamelCase__, synchronization=tf.VariableSynchronization.ON_READ, aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA, )
return self._accum_steps.value()
@property
def _lowerCAmelCase ( self ):
if not self._gradients:
raise ValueError("""The accumulator should be called first to initialize the gradients""" )
return [gradient.value() if gradient is not None else gradient for gradient in self._gradients]
def __call__( self, lowerCamelCase__ ):
if not self._gradients:
A : int = self.step # Create the step variable.
self._gradients.extend(
[
tf.Variable(
tf.zeros_like(lowerCamelCase__ ), trainable=lowerCamelCase__, synchronization=tf.VariableSynchronization.ON_READ, aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA, )
if gradient is not None
else gradient
for gradient in gradients
] )
if len(lowerCamelCase__ ) != len(self._gradients ):
raise ValueError(f'''Expected {len(self._gradients )} gradients, but got {len(lowerCamelCase__ )}''' )
for accum_gradient, gradient in zip(self._gradients, lowerCamelCase__ ):
if accum_gradient is not None and gradient is not None:
accum_gradient.assign_add(lowerCamelCase__ )
self._accum_steps.assign_add(1 )
def _lowerCAmelCase ( self ):
if not self._gradients:
return
self._accum_steps.assign(0 )
for gradient in self._gradients:
if gradient is not None:
gradient.assign(tf.zeros_like(lowerCamelCase__ ) )
| 116
| 1
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_SCREAMING_SNAKE_CASE : str = {
"configuration_convbert": ["CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvBertConfig", "ConvBertOnnxConfig"],
"tokenization_convbert": ["ConvBertTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["ConvBertTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE : Optional[Any] = [
"CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"ConvBertForMaskedLM",
"ConvBertForMultipleChoice",
"ConvBertForQuestionAnswering",
"ConvBertForSequenceClassification",
"ConvBertForTokenClassification",
"ConvBertLayer",
"ConvBertModel",
"ConvBertPreTrainedModel",
"load_tf_weights_in_convbert",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE : Optional[int] = [
"TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFConvBertForMaskedLM",
"TFConvBertForMultipleChoice",
"TFConvBertForQuestionAnswering",
"TFConvBertForSequenceClassification",
"TFConvBertForTokenClassification",
"TFConvBertLayer",
"TFConvBertModel",
"TFConvBertPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig
from .tokenization_convbert import ConvBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_convbert_fast import ConvBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_convbert import (
CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
ConvBertForMaskedLM,
ConvBertForMultipleChoice,
ConvBertForQuestionAnswering,
ConvBertForSequenceClassification,
ConvBertForTokenClassification,
ConvBertLayer,
ConvBertModel,
ConvBertPreTrainedModel,
load_tf_weights_in_convbert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_convbert import (
TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertLayer,
TFConvBertModel,
TFConvBertPreTrainedModel,
)
else:
import sys
_SCREAMING_SNAKE_CASE : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 92
|
'''simple docstring'''
import logging
import os
from .state import PartialState
class _snake_case ( logging.LoggerAdapter ):
@staticmethod
def lowerCAmelCase__ ( a__ ) -> Optional[Any]:
'''simple docstring'''
snake_case_ = PartialState()
return not main_process_only or (main_process_only and state.is_main_process)
def lowerCAmelCase__ ( self , a__ , a__ , *a__ , **a__ ) -> List[Any]:
'''simple docstring'''
if PartialState._shared_state == {}:
raise RuntimeError(
"You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility." )
snake_case_ = kwargs.pop("main_process_only" , a__ )
snake_case_ = kwargs.pop("in_order" , a__ )
if self.isEnabledFor(a__ ):
if self._should_log(a__ ):
snake_case_ , snake_case_ = self.process(a__ , a__ )
self.logger.log(a__ , a__ , *a__ , **a__ )
elif in_order:
snake_case_ = PartialState()
for i in range(state.num_processes ):
if i == state.process_index:
snake_case_ , snake_case_ = self.process(a__ , a__ )
self.logger.log(a__ , a__ , *a__ , **a__ )
state.wait_for_everyone()
def UpperCamelCase_( snake_case : str , snake_case : str = None ):
'''simple docstring'''
if log_level is None:
snake_case_ = os.environ.get("ACCELERATE_LOG_LEVEL" , snake_case )
snake_case_ = logging.getLogger(snake_case )
if log_level is not None:
logger.setLevel(log_level.upper() )
logger.root.setLevel(log_level.upper() )
return MultiProcessAdapter(snake_case , {} )
| 92
| 1
|
"""simple docstring"""
import math
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> bool:
'''simple docstring'''
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(__lowerCAmelCase ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = 0.1 ) -> int:
'''simple docstring'''
lowercase_ = 3
lowercase_ = 3
while primes / (2 * j - 1) >= ratio:
for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ):
primes += is_prime(__lowerCAmelCase )
j += 2
return j
if __name__ == "__main__":
import doctest
doctest.testmod()
| 136
|
"""simple docstring"""
from math import pi, sqrt, tan
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> float:
'''simple docstring'''
if side_length < 0:
raise ValueError("""surface_area_cube() only accepts non-negative values""" )
return 6 * side_length**2
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> float:
'''simple docstring'''
if length < 0 or breadth < 0 or height < 0:
raise ValueError("""surface_area_cuboid() only accepts non-negative values""" )
return 2 * ((length * breadth) + (breadth * height) + (length * height))
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> float:
'''simple docstring'''
if radius < 0:
raise ValueError("""surface_area_sphere() only accepts non-negative values""" )
return 4 * pi * radius**2
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> float:
'''simple docstring'''
if radius < 0:
raise ValueError("""surface_area_hemisphere() only accepts non-negative values""" )
return 3 * pi * radius**2
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> float:
'''simple docstring'''
if radius < 0 or height < 0:
raise ValueError("""surface_area_cone() only accepts non-negative values""" )
return pi * radius * (radius + (height**2 + radius**2) ** 0.5)
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> float:
'''simple docstring'''
if radius_a < 0 or radius_a < 0 or height < 0:
raise ValueError(
"""surface_area_conical_frustum() only accepts non-negative values""" )
lowercase_ = (height**2 + (radius_a - radius_a) ** 2) ** 0.5
return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2)
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> float:
'''simple docstring'''
if radius < 0 or height < 0:
raise ValueError("""surface_area_cylinder() only accepts non-negative values""" )
return 2 * pi * radius * (height + radius)
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> float:
'''simple docstring'''
if torus_radius < 0 or tube_radius < 0:
raise ValueError("""surface_area_torus() only accepts non-negative values""" )
if torus_radius < tube_radius:
raise ValueError(
"""surface_area_torus() does not support spindle or self intersecting tori""" )
return 4 * pow(__lowerCAmelCase , 2 ) * torus_radius * tube_radius
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> float:
'''simple docstring'''
if length < 0 or width < 0:
raise ValueError("""area_rectangle() only accepts non-negative values""" )
return length * width
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> float:
'''simple docstring'''
if side_length < 0:
raise ValueError("""area_square() only accepts non-negative values""" )
return side_length**2
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> float:
'''simple docstring'''
if base < 0 or height < 0:
raise ValueError("""area_triangle() only accepts non-negative values""" )
return (base * height) / 2
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> float:
'''simple docstring'''
if sidea < 0 or sidea < 0 or sidea < 0:
raise ValueError("""area_triangle_three_sides() only accepts non-negative values""" )
elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea:
raise ValueError("""Given three sides do not form a triangle""" )
lowercase_ = (sidea + sidea + sidea) / 2
lowercase_ = sqrt(
semi_perimeter
* (semi_perimeter - sidea)
* (semi_perimeter - sidea)
* (semi_perimeter - sidea) )
return area
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> float:
'''simple docstring'''
if base < 0 or height < 0:
raise ValueError("""area_parallelogram() only accepts non-negative values""" )
return base * height
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> float:
'''simple docstring'''
if basea < 0 or basea < 0 or height < 0:
raise ValueError("""area_trapezium() only accepts non-negative values""" )
return 1 / 2 * (basea + basea) * height
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> float:
'''simple docstring'''
if radius < 0:
raise ValueError("""area_circle() only accepts non-negative values""" )
return pi * radius**2
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> float:
'''simple docstring'''
if radius_x < 0 or radius_y < 0:
raise ValueError("""area_ellipse() only accepts non-negative values""" )
return pi * radius_x * radius_y
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> float:
'''simple docstring'''
if diagonal_a < 0 or diagonal_a < 0:
raise ValueError("""area_rhombus() only accepts non-negative values""" )
return 1 / 2 * diagonal_a * diagonal_a
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> float:
'''simple docstring'''
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or sides < 3:
raise ValueError(
"""area_reg_polygon() only accepts integers greater than or \
equal to three as number of sides""" )
elif length < 0:
raise ValueError(
"""area_reg_polygon() only accepts non-negative values as \
length of a side""" )
return (sides * length**2) / (4 * tan(pi / sides ))
return (sides * length**2) / (4 * tan(pi / sides ))
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True) # verbose so we can see methods missing tests
print("[DEMO] Areas of various geometric shapes: \n")
print(F"Rectangle: {area_rectangle(10, 20) = }")
print(F"Square: {area_square(10) = }")
print(F"Triangle: {area_triangle(10, 10) = }")
print(F"Triangle: {area_triangle_three_sides(5, 12, 13) = }")
print(F"Parallelogram: {area_parallelogram(10, 20) = }")
print(F"Rhombus: {area_rhombus(10, 20) = }")
print(F"Trapezium: {area_trapezium(10, 20, 30) = }")
print(F"Circle: {area_circle(20) = }")
print(F"Ellipse: {area_ellipse(10, 20) = }")
print("\nSurface Areas of various geometric shapes: \n")
print(F"Cube: {surface_area_cube(20) = }")
print(F"Cuboid: {surface_area_cuboid(10, 20, 30) = }")
print(F"Sphere: {surface_area_sphere(20) = }")
print(F"Hemisphere: {surface_area_hemisphere(20) = }")
print(F"Cone: {surface_area_cone(10, 20) = }")
print(F"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }")
print(F"Cylinder: {surface_area_cylinder(10, 20) = }")
print(F"Torus: {surface_area_torus(20, 10) = }")
print(F"Equilateral Triangle: {area_reg_polygon(3, 10) = }")
print(F"Square: {area_reg_polygon(4, 10) = }")
print(F"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
| 136
| 1
|
import torch
from diffusers import KDPMaDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class lowerCamelCase ( A_ ):
UpperCAmelCase__ : Any = (KDPMaDiscreteScheduler,)
UpperCAmelCase__ : Any = 10
def UpperCAmelCase(self : int , **_A : Tuple ) -> str:
snake_case = {
"num_train_timesteps": 1_1_0_0,
"beta_start": 0.00_01,
"beta_end": 0.02,
"beta_schedule": "linear",
}
config.update(**_A )
return config
def UpperCAmelCase(self : Union[str, Any] ) -> Optional[Any]:
for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]:
self.check_over_configs(num_train_timesteps=_A )
def UpperCAmelCase(self : Optional[int] ) -> Any:
for beta_start, beta_end in zip([0.0_00_01, 0.00_01, 0.0_01] , [0.00_02, 0.0_02, 0.02] ):
self.check_over_configs(beta_start=_A , beta_end=_A )
def UpperCAmelCase(self : int ) -> Union[str, Any]:
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=_A )
def UpperCAmelCase(self : int ) -> Union[str, Any]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_A )
def UpperCAmelCase(self : List[Any] ) -> str:
snake_case = self.scheduler_classes[0]
snake_case = self.get_scheduler_config(prediction_type="v_prediction" )
snake_case = scheduler_class(**_A )
scheduler.set_timesteps(self.num_inference_steps )
snake_case = self.dummy_model()
snake_case = self.dummy_sample_deter * scheduler.init_noise_sigma
snake_case = sample.to(_A )
for i, t in enumerate(scheduler.timesteps ):
snake_case = scheduler.scale_model_input(_A , _A )
snake_case = model(_A , _A )
snake_case = scheduler.step(_A , _A , _A )
snake_case = output.prev_sample
snake_case = torch.sum(torch.abs(_A ) )
snake_case = torch.mean(torch.abs(_A ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 4.69_34E-07 ) < 1E-2
assert abs(result_mean.item() - 6.11_12E-10 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 4.6_93_42_86_50_17_09_72E-07 ) < 1E-2
assert abs(result_mean.item() - 0.00_02 ) < 1E-3
def UpperCAmelCase(self : Union[str, Any] ) -> Optional[Any]:
if torch_device == "mps":
return
snake_case = self.scheduler_classes[0]
snake_case = self.get_scheduler_config()
snake_case = scheduler_class(**_A )
scheduler.set_timesteps(self.num_inference_steps )
snake_case = self.dummy_model()
snake_case = self.dummy_sample_deter * scheduler.init_noise_sigma
snake_case = sample.to(_A )
for i, t in enumerate(scheduler.timesteps ):
snake_case = scheduler.scale_model_input(_A , _A )
snake_case = model(_A , _A )
snake_case = scheduler.step(_A , _A , _A )
snake_case = output.prev_sample
snake_case = torch.sum(torch.abs(_A ) )
snake_case = torch.mean(torch.abs(_A ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 20.41_25 ) < 1E-2
assert abs(result_mean.item() - 0.02_66 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 20.41_25 ) < 1E-2
assert abs(result_mean.item() - 0.02_66 ) < 1E-3
def UpperCAmelCase(self : Optional[int] ) -> Tuple:
if torch_device == "mps":
return
snake_case = self.scheduler_classes[0]
snake_case = self.get_scheduler_config()
snake_case = scheduler_class(**_A )
scheduler.set_timesteps(self.num_inference_steps , device=_A )
snake_case = self.dummy_model()
snake_case = self.dummy_sample_deter.to(_A ) * scheduler.init_noise_sigma
for t in scheduler.timesteps:
snake_case = scheduler.scale_model_input(_A , _A )
snake_case = model(_A , _A )
snake_case = scheduler.step(_A , _A , _A )
snake_case = output.prev_sample
snake_case = torch.sum(torch.abs(_A ) )
snake_case = torch.mean(torch.abs(_A ) )
if str(_A ).startswith("cpu" ):
# The following sum varies between 148 and 156 on mps. Why?
assert abs(result_sum.item() - 20.41_25 ) < 1E-2
assert abs(result_mean.item() - 0.02_66 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 20.41_25 ) < 1E-2
assert abs(result_mean.item() - 0.02_66 ) < 1E-3
| 137
|
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_mobilebert import MobileBertTokenizer
_A = logging.get_logger(__name__)
_A = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
_A = {
"vocab_file": {"mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt"},
"tokenizer_file": {
"mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json"
},
}
_A = {"mobilebert-uncased": 5_12}
_A = {}
class lowerCamelCase ( A_ ):
UpperCAmelCase__ : Tuple = VOCAB_FILES_NAMES
UpperCAmelCase__ : Any = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ : Tuple = PRETRAINED_INIT_CONFIGURATION
UpperCAmelCase__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ : Optional[Any] = MobileBertTokenizer
def __init__(self : Any , _A : str=None , _A : str=None , _A : Union[str, Any]=True , _A : Optional[Any]="[UNK]" , _A : int="[SEP]" , _A : Dict="[PAD]" , _A : int="[CLS]" , _A : Union[str, Any]="[MASK]" , _A : Any=True , _A : Dict=None , **_A : List[str] , ) -> List[str]:
super().__init__(
_A , tokenizer_file=_A , do_lower_case=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , tokenize_chinese_chars=_A , strip_accents=_A , **_A , )
snake_case = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("lowercase" , _A ) != do_lower_case
or normalizer_state.get("strip_accents" , _A ) != strip_accents
or normalizer_state.get("handle_chinese_chars" , _A ) != tokenize_chinese_chars
):
snake_case = getattr(_A , normalizer_state.pop("type" ) )
snake_case = do_lower_case
snake_case = strip_accents
snake_case = tokenize_chinese_chars
snake_case = normalizer_class(**_A )
snake_case = do_lower_case
def UpperCAmelCase(self : List[str] , _A : Union[str, Any] , _A : Dict=None ) -> Optional[Any]:
snake_case = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def UpperCAmelCase(self : Union[str, Any] , _A : List[int] , _A : Optional[List[int]] = None ) -> List[int]:
snake_case = [self.sep_token_id]
snake_case = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCAmelCase(self : int , _A : str , _A : Optional[str] = None ) -> Tuple[str]:
snake_case = self._tokenizer.model.save(_A , name=_A )
return tuple(_A )
| 137
| 1
|
import argparse
import shutil
from pathlib import Path
from tqdm import tqdm
from transformers import AutoTokenizer
def a__ ( snake_case , snake_case , snake_case , snake_case=1_024 ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Any = [], []
__SCREAMING_SNAKE_CASE : List[str] = list(zip(snake_case_ , snake_case_ ) )
__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : List[Any] = sorted_examples[0]
def is_too_big(snake_case ):
return tok(snake_case_ , return_tensors='''pt''' ).input_ids.shape[1] > max_tokens
for src, tgt in tqdm(sorted_examples[1:] ):
__SCREAMING_SNAKE_CASE : str = new_src + ''' ''' + src
__SCREAMING_SNAKE_CASE : List[str] = new_tgt + ''' ''' + tgt
if is_too_big(snake_case_ ) or is_too_big(snake_case_ ): # cant fit, finalize example
finished_src.append(snake_case_ )
finished_tgt.append(snake_case_ )
__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[int] = src, tgt
else: # can fit, keep adding
__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Dict = cand_src, cand_tgt
# cleanup
if new_src:
assert new_tgt
finished_src.append(snake_case_ )
finished_tgt.append(snake_case_ )
return finished_src, finished_tgt
def a__ ( snake_case , snake_case , snake_case , snake_case ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : List[Any] = Path(snake_case_ )
save_path.mkdir(exist_ok=snake_case_ )
for split in ["train"]:
__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Union[str, Any] = data_dir / F'''{split}.source''', data_dir / F'''{split}.target'''
__SCREAMING_SNAKE_CASE : Any = [x.rstrip() for x in Path(snake_case_ ).open().readlines()]
__SCREAMING_SNAKE_CASE : List[Any] = [x.rstrip() for x in Path(snake_case_ ).open().readlines()]
__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : int = pack_examples(snake_case_ , snake_case_ , snake_case_ , snake_case_ )
print(F'''packed {split} split from {len(snake_case_ )} examples -> {len(snake_case_ )}.''' )
Path(save_path / F'''{split}.source''' ).open('''w''' ).write('''\n'''.join(snake_case_ ) )
Path(save_path / F'''{split}.target''' ).open('''w''' ).write('''\n'''.join(snake_case_ ) )
for split in ["val", "test"]:
__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Any = data_dir / F'''{split}.source''', data_dir / F'''{split}.target'''
shutil.copyfile(snake_case_ , save_path / F'''{split}.source''' )
shutil.copyfile(snake_case_ , save_path / F'''{split}.target''' )
def a__ ( ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : List[str] = argparse.ArgumentParser()
parser.add_argument('''--tok_name''' , type=snake_case_ , help='''like facebook/bart-large-cnn,t5-base, etc.''' )
parser.add_argument('''--max_seq_len''' , type=snake_case_ , default=128 )
parser.add_argument('''--data_dir''' , type=snake_case_ )
parser.add_argument('''--save_path''' , type=snake_case_ )
__SCREAMING_SNAKE_CASE : List[Any] = parser.parse_args()
__SCREAMING_SNAKE_CASE : int = AutoTokenizer.from_pretrained(args.tok_name )
return pack_data_dir(snake_case_ , Path(args.data_dir ) , args.max_seq_len , args.save_path )
if __name__ == "__main__":
packer_cli()
| 303
|
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers
from ...tokenization_utils_base import BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_gpta import GPTaTokenizer
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
lowercase_ : str = logging.get_logger(__name__)
lowercase_ : Union[str, Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'}
lowercase_ : Optional[Any] = {
'vocab_file': {
'gpt2': 'https://huggingface.co/gpt2/resolve/main/vocab.json',
'gpt2-medium': 'https://huggingface.co/gpt2-medium/resolve/main/vocab.json',
'gpt2-large': 'https://huggingface.co/gpt2-large/resolve/main/vocab.json',
'gpt2-xl': 'https://huggingface.co/gpt2-xl/resolve/main/vocab.json',
'distilgpt2': 'https://huggingface.co/distilgpt2/resolve/main/vocab.json',
},
'merges_file': {
'gpt2': 'https://huggingface.co/gpt2/resolve/main/merges.txt',
'gpt2-medium': 'https://huggingface.co/gpt2-medium/resolve/main/merges.txt',
'gpt2-large': 'https://huggingface.co/gpt2-large/resolve/main/merges.txt',
'gpt2-xl': 'https://huggingface.co/gpt2-xl/resolve/main/merges.txt',
'distilgpt2': 'https://huggingface.co/distilgpt2/resolve/main/merges.txt',
},
'tokenizer_file': {
'gpt2': 'https://huggingface.co/gpt2/resolve/main/tokenizer.json',
'gpt2-medium': 'https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json',
'gpt2-large': 'https://huggingface.co/gpt2-large/resolve/main/tokenizer.json',
'gpt2-xl': 'https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json',
'distilgpt2': 'https://huggingface.co/distilgpt2/resolve/main/tokenizer.json',
},
}
lowercase_ : int = {
'gpt2': 10_24,
'gpt2-medium': 10_24,
'gpt2-large': 10_24,
'gpt2-xl': 10_24,
'distilgpt2': 10_24,
}
class __lowerCAmelCase ( UpperCAmelCase__ ):
snake_case_ : Optional[int] = VOCAB_FILES_NAMES
snake_case_ : List[str] = PRETRAINED_VOCAB_FILES_MAP
snake_case_ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ : Tuple = ["input_ids", "attention_mask"]
snake_case_ : str = GPTaTokenizer
def __init__( self : List[str] , snake_case__ : Any=None , snake_case__ : List[Any]=None , snake_case__ : Union[str, Any]=None , snake_case__ : List[str]="<|endoftext|>" , snake_case__ : str="<|endoftext|>" , snake_case__ : Optional[int]="<|endoftext|>" , snake_case__ : str=False , **snake_case__ : Dict , ):
"""simple docstring"""
super().__init__(
snake_case__ , snake_case__ , tokenizer_file=snake_case__ , unk_token=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , add_prefix_space=snake_case__ , **snake_case__ , )
_UpperCAmelCase = kwargs.pop("add_bos_token" , snake_case__ )
_UpperCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get("add_prefix_space" , snake_case__ ) != add_prefix_space:
_UpperCAmelCase = getattr(snake_case__ , pre_tok_state.pop("type" ) )
_UpperCAmelCase = add_prefix_space
_UpperCAmelCase = pre_tok_class(**snake_case__ )
_UpperCAmelCase = add_prefix_space
def UpperCamelCase ( self : Union[str, Any] , *snake_case__ : int , **snake_case__ : Union[str, Any] ):
"""simple docstring"""
_UpperCAmelCase = kwargs.get("is_split_into_words" , snake_case__ )
assert self.add_prefix_space or not is_split_into_words, (
F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*snake_case__ , **snake_case__ )
def UpperCamelCase ( self : int , *snake_case__ : Optional[Any] , **snake_case__ : List[str] ):
"""simple docstring"""
_UpperCAmelCase = kwargs.get("is_split_into_words" , snake_case__ )
assert self.add_prefix_space or not is_split_into_words, (
F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """
"to use it with pretokenized inputs."
)
return super()._encode_plus(*snake_case__ , **snake_case__ )
def UpperCamelCase ( self : Tuple , snake_case__ : str , snake_case__ : Optional[str] = None ):
"""simple docstring"""
_UpperCAmelCase = self._tokenizer.model.save(snake_case__ , name=snake_case__ )
return tuple(snake_case__ )
def UpperCamelCase ( self : Dict , snake_case__ : "Conversation" ):
"""simple docstring"""
_UpperCAmelCase = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(snake_case__ , add_special_tokens=snake_case__ ) + [self.eos_token_id] )
if len(snake_case__ ) > self.model_max_length:
_UpperCAmelCase = input_ids[-self.model_max_length :]
return input_ids
| 133
| 0
|
"""simple docstring"""
import io
import os
import unicodedata
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
_A = logging.get_logger(__name__)
_A = '▁'
_A = {'vocab_file': 'vocab.txt', 'sentencepiece_model_ckpt': 'sentencepiece.bpe.model'}
_A = {
'sentencepiece_model_file': 'sentencepiece.bpe.model',
'vocab_file': 'vocab.txt',
}
_A = {
'vocab_file': {
'ernie-m-base': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt',
'ernie-m-large': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt',
},
'sentencepiece_model_file': {
'ernie-m-base': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model',
'ernie-m-large': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model',
},
}
_A = {
'ernie-m-base': 5_1_4,
'ernie-m-large': 5_1_4,
}
_A = {
'ernie-m-base': {'do_lower_case': False},
'ernie-m-large': {'do_lower_case': False},
}
class _lowercase ( __UpperCAmelCase ):
lowercase_ = ["input_ids"]
lowercase_ = VOCAB_FILES_NAMES
lowercase_ = PRETRAINED_INIT_CONFIGURATION
lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase_ = PRETRAINED_VOCAB_FILES_MAP
lowercase_ = RESOURCE_FILES_NAMES
def __init__( self , UpperCAmelCase_ , UpperCAmelCase_=None , UpperCAmelCase_=False , UpperCAmelCase_="utf8" , UpperCAmelCase_="[UNK]" , UpperCAmelCase_="[SEP]" , UpperCAmelCase_="[PAD]" , UpperCAmelCase_="[CLS]" , UpperCAmelCase_="[MASK]" , UpperCAmelCase_ = None , **UpperCAmelCase_ , ) -> None:
# Mask token behave like a normal word, i.e. include the space before it and
# is included in the raw text, there should be a match in a non-normalized sentence.
lowerCamelCase : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , vocab_file=UpperCAmelCase_ , encoding=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , )
lowerCamelCase : int = do_lower_case
lowerCamelCase : Union[str, Any] = sentencepiece_model_ckpt
lowerCamelCase : str = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(UpperCAmelCase_ )
# to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning
if vocab_file is not None:
lowerCamelCase : Tuple = self.load_vocab(filepath=UpperCAmelCase_ )
else:
lowerCamelCase : Tuple = {self.sp_model.id_to_piece(UpperCAmelCase_ ): id for id in range(self.sp_model.get_piece_size() )}
lowerCamelCase : Union[str, Any] = {v: k for k, v in self.vocab.items()}
def _UpperCamelCase ( self , UpperCAmelCase_ ) -> int:
if text is None:
return None
lowerCamelCase : Union[str, Any] = self.tokenize(UpperCAmelCase_ )
lowerCamelCase , lowerCamelCase : Tuple = '', []
for i, ch in enumerate(UpperCAmelCase_ ):
if ch in self.SP_CHAR_MAPPING:
lowerCamelCase : Dict = self.SP_CHAR_MAPPING.get(UpperCAmelCase_ )
else:
lowerCamelCase : Tuple = unicodedata.normalize('NFKC' , UpperCAmelCase_ )
if self.is_whitespace(UpperCAmelCase_ ):
continue
normalized_text += ch
char_mapping.extend([i] * len(UpperCAmelCase_ ) )
lowerCamelCase , lowerCamelCase , lowerCamelCase : int = normalized_text, [], 0
if self.do_lower_case:
lowerCamelCase : Tuple = text.lower()
for token in split_tokens:
if token[:1] == "▁":
lowerCamelCase : Tuple = token[1:]
lowerCamelCase : str = text[offset:].index(UpperCAmelCase_ ) + offset
lowerCamelCase : List[Any] = start + len(UpperCAmelCase_ )
token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) )
lowerCamelCase : List[Any] = end
return token_mapping
@property
def _UpperCamelCase ( self ) -> Optional[int]:
return len(self.vocab )
def _UpperCamelCase ( self ) -> List[Any]:
return dict(self.vocab , **self.added_tokens_encoder )
def __getstate__( self ) -> List[Any]:
lowerCamelCase : Dict = self.__dict__.copy()
lowerCamelCase : Optional[Any] = None
return state
def __setstate__( self , UpperCAmelCase_ ) -> List[str]:
lowerCamelCase : Tuple = d
# for backward compatibility
if not hasattr(self , 'sp_model_kwargs' ):
lowerCamelCase : Any = {}
lowerCamelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.sentencepiece_model_ckpt )
def _UpperCamelCase ( self , UpperCAmelCase_ ) -> Optional[int]:
return "".join((self.SP_CHAR_MAPPING.get(UpperCAmelCase_ , UpperCAmelCase_ ) for c in text) )
def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_=False , UpperCAmelCase_=64 , UpperCAmelCase_=0.1 ) -> Union[str, Any]:
if self.sp_model_kwargs.get('enable_sampling' ) is True:
lowerCamelCase : Optional[int] = True
if self.sp_model_kwargs.get('alpha' ) is not None:
lowerCamelCase : str = self.sp_model_kwargs.get('alpha' )
if self.sp_model_kwargs.get('nbest_size' ) is not None:
lowerCamelCase : Dict = self.sp_model_kwargs.get('nbest_size' )
if not enable_sampling:
lowerCamelCase : str = self.sp_model.EncodeAsPieces(UpperCAmelCase_ )
else:
lowerCamelCase : int = self.sp_model.SampleEncodeAsPieces(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
lowerCamelCase : Optional[int] = []
for pi, piece in enumerate(UpperCAmelCase_ ):
if piece == SPIECE_UNDERLINE:
if not pieces[pi + 1].startswith(UpperCAmelCase_ ) and pi != 0:
new_pieces.append(UpperCAmelCase_ )
continue
else:
continue
lowerCamelCase : List[Any] = 0
for i, chunk in enumerate(UpperCAmelCase_ ):
if chunk == SPIECE_UNDERLINE:
continue
if self.is_ch_char(UpperCAmelCase_ ) or self.is_punct(UpperCAmelCase_ ):
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
new_pieces.append(UpperCAmelCase_ )
lowerCamelCase : int = i + 1
elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
lowerCamelCase : int = i
elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
lowerCamelCase : str = i
if len(UpperCAmelCase_ ) > lst_i:
new_pieces.append(piece[lst_i:] )
return new_pieces
def _UpperCamelCase ( self , UpperCAmelCase_ ) -> List[str]:
lowerCamelCase : int = ''.join(UpperCAmelCase_ ).replace(UpperCAmelCase_ , ' ' ).strip()
return out_string
def _UpperCamelCase ( self , UpperCAmelCase_ ) -> Any:
lowerCamelCase : Any = self.convert_ids_to_tokens(UpperCAmelCase_ )
lowerCamelCase : Optional[Any] = ''.join(UpperCAmelCase_ ).replace(UpperCAmelCase_ , ' ' ).strip()
return out_string
def _UpperCamelCase ( self , UpperCAmelCase_ ) -> Union[str, Any]:
return self.vocab.get(UpperCAmelCase_ , self.vocab.get(self.unk_token ) )
def _UpperCamelCase ( self , UpperCAmelCase_ ) -> int:
return self.reverse_vocab.get(UpperCAmelCase_ , self.unk_token )
def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_=None ) -> Optional[int]:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
lowerCamelCase : List[str] = [self.cls_token_id]
lowerCamelCase : List[Any] = [self.sep_token_id]
return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep
def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_=None ) -> int:
if offset_mapping_a is None:
return [(0, 0)] + offset_mapping_a + [(0, 0)]
return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)]
def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_=None , UpperCAmelCase_=False ) -> List[str]:
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'You should not supply a second sequence if the provided sequence of '
'ids is already formatted with special tokens for the model.' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(UpperCAmelCase_ )) + [1, 1] + ([0] * len(UpperCAmelCase_ )) + [1]
return [1] + ([0] * len(UpperCAmelCase_ )) + [1]
def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_ = None ) -> List[int]:
# called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method
if token_ids_a is None:
# [CLS] X [SEP]
return (len(UpperCAmelCase_ ) + 2) * [0]
# [CLS] A [SEP] [SEP] B [SEP]
return [0] * (len(UpperCAmelCase_ ) + 1) + [1] * (len(UpperCAmelCase_ ) + 3)
def _UpperCamelCase ( self , UpperCAmelCase_ ) -> Optional[int]:
if "\u4e00" <= char <= "\u9fff":
return True
return False
def _UpperCamelCase ( self , UpperCAmelCase_ ) -> Optional[int]:
if ("a" <= char <= "z") or ("A" <= char <= "Z"):
return True
return False
def _UpperCamelCase ( self , UpperCAmelCase_ ) -> int:
if char in ",;:.?!~,;:。?!《》【】":
return True
return False
def _UpperCamelCase ( self , UpperCAmelCase_ ) -> List[Any]:
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
if len(UpperCAmelCase_ ) == 1:
lowerCamelCase : Dict = unicodedata.category(UpperCAmelCase_ )
if cat == "Zs":
return True
return False
def _UpperCamelCase ( self , UpperCAmelCase_ ) -> Optional[Any]:
lowerCamelCase : Optional[Any] = {}
with io.open(UpperCAmelCase_ , 'r' , encoding='utf-8' ) as f:
for index, line in enumerate(UpperCAmelCase_ ):
lowerCamelCase : List[str] = line.rstrip('\n' )
lowerCamelCase : Any = int(UpperCAmelCase_ )
return token_to_idx
def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_ = None ) -> Tuple[str]:
lowerCamelCase : str = 0
if os.path.isdir(UpperCAmelCase_ ):
lowerCamelCase : Optional[Any] = os.path.join(
UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
else:
lowerCamelCase : Tuple = (filename_prefix + '-' if filename_prefix else '') + save_directory
with open(UpperCAmelCase_ , 'w' , encoding='utf-8' ) as writer:
for token, token_index in sorted(self.vocab.items() , key=lambda UpperCAmelCase_ : kv[1] ):
if index != token_index:
logger.warning(
F"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."""
' Please check that the vocabulary is not corrupted!' )
lowerCamelCase : Optional[int] = token_index
writer.write(token + '\n' )
index += 1
lowerCamelCase : Dict = os.path.join(UpperCAmelCase_ , 'sentencepiece.bpe.model' )
with open(UpperCAmelCase_ , 'wb' ) as fi:
lowerCamelCase : int = self.sp_model.serialized_model_proto()
fi.write(UpperCAmelCase_ )
return (vocab_file,)
| 205
|
"""simple docstring"""
import argparse
import numpy as np
import torch
from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging
logging.set_verbosity_info()
_A = logging.get_logger('transformers.models.speecht5')
def UpperCAmelCase ( a_, a_, a_ ):
'''simple docstring'''
hf_model.apply_weight_norm()
lowerCamelCase : str = checkpoint['input_conv.weight_g']
lowerCamelCase : int = checkpoint['input_conv.weight_v']
lowerCamelCase : Optional[Any] = checkpoint['input_conv.bias']
for i in range(len(config.upsample_rates ) ):
lowerCamelCase : Tuple = checkpoint[F"""upsamples.{i}.1.weight_g"""]
lowerCamelCase : Any = checkpoint[F"""upsamples.{i}.1.weight_v"""]
lowerCamelCase : List[str] = checkpoint[F"""upsamples.{i}.1.bias"""]
for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ):
for j in range(len(config.resblock_dilation_sizes ) ):
lowerCamelCase : Optional[Any] = checkpoint[F"""blocks.{i}.convs1.{j}.1.weight_g"""]
lowerCamelCase : Tuple = checkpoint[F"""blocks.{i}.convs1.{j}.1.weight_v"""]
lowerCamelCase : Union[str, Any] = checkpoint[F"""blocks.{i}.convs1.{j}.1.bias"""]
lowerCamelCase : Dict = checkpoint[F"""blocks.{i}.convs2.{j}.1.weight_g"""]
lowerCamelCase : str = checkpoint[F"""blocks.{i}.convs2.{j}.1.weight_v"""]
lowerCamelCase : Optional[Any] = checkpoint[F"""blocks.{i}.convs2.{j}.1.bias"""]
lowerCamelCase : Any = checkpoint['output_conv.1.weight_g']
lowerCamelCase : Tuple = checkpoint['output_conv.1.weight_v']
lowerCamelCase : int = checkpoint['output_conv.1.bias']
hf_model.remove_weight_norm()
@torch.no_grad()
def UpperCAmelCase ( a_, a_, a_, a_=None, a_=None, ):
'''simple docstring'''
if config_path is not None:
lowerCamelCase : str = SpeechTaHifiGanConfig.from_pretrained(a_ )
else:
lowerCamelCase : Dict = SpeechTaHifiGanConfig()
lowerCamelCase : int = SpeechTaHifiGan(a_ )
lowerCamelCase : Optional[Any] = torch.load(a_ )
load_weights(orig_checkpoint['model']['generator'], a_, a_ )
lowerCamelCase : Tuple = np.load(a_ )
lowerCamelCase : str = stats[0].reshape(-1 )
lowerCamelCase : Optional[int] = stats[1].reshape(-1 )
lowerCamelCase : Dict = torch.from_numpy(a_ ).float()
lowerCamelCase : Optional[int] = torch.from_numpy(a_ ).float()
model.save_pretrained(a_ )
if repo_id:
print('Pushing to the hub...' )
model.push_to_hub(a_ )
if __name__ == "__main__":
_A = argparse.ArgumentParser()
parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint')
parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument(
'--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.'
)
_A = parser.parse_args()
convert_hifigan_checkpoint(
args.checkpoint_path,
args.stats_path,
args.pytorch_dump_folder_path,
args.config_path,
args.push_to_hub,
)
| 205
| 1
|
import math
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int ):
"""simple docstring"""
if not isinstance(snake_case__ , snake_case__ ):
__a = f"Input value of [number={number}] must be an integer"
raise TypeError(snake_case__ )
if number < 1:
__a = f"Input value of [number={number}] must be > 0"
raise ValueError(snake_case__ )
elif number == 1:
return 3
elif number == 2:
return 5
else:
__a = int(math.log(number // 3 , 2 ) ) + 2
__a = [3, 5]
__a = 2
__a = 3
for block in range(1 , snake_case__ ):
for _ in range(snake_case__ ):
proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] )
proth_index += 1
increment *= 2
return proth_list[number - 1]
if __name__ == "__main__":
import doctest
doctest.testmod()
for number in range(11):
lowerCamelCase__ = 0
try:
lowerCamelCase__ = proth(number)
except ValueError:
print(F"""ValueError: there is no {number}th Proth number""")
continue
print(F"""The {number}th Proth number: {value}""")
| 302
|
import argparse
import os
import re
_snake_case = '''src/transformers/models/auto'''
# re pattern that matches mapping introductions:
# SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict
_snake_case = re.compile(r'''[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict''')
# re pattern that matches identifiers in mappings
_snake_case = re.compile(r'''\s*\(\s*"(\S[^"]+)"''')
def _UpperCamelCase ( snake_case__, snake_case__ = False ) -> List[Any]:
with open(snake_case__, "r", encoding="utf-8" ) as f:
__UpperCAmelCase : Dict = f.read()
__UpperCAmelCase : Optional[Any] = content.split("\n" )
__UpperCAmelCase : int = []
__UpperCAmelCase : Optional[int] = 0
while line_idx < len(snake_case__ ):
if _re_intro_mapping.search(lines[line_idx] ) is not None:
__UpperCAmelCase : str = len(re.search(r"^(\s*)\S", lines[line_idx] ).groups()[0] ) + 8
# Start of a new mapping!
while not lines[line_idx].startswith(" " * indent + "(" ):
new_lines.append(lines[line_idx] )
line_idx += 1
__UpperCAmelCase : Dict = []
while lines[line_idx].strip() != "]":
# Blocks either fit in one line or not
if lines[line_idx].strip() == "(":
__UpperCAmelCase : str = line_idx
while not lines[line_idx].startswith(" " * indent + ")" ):
line_idx += 1
blocks.append("\n".join(lines[start_idx : line_idx + 1] ) )
else:
blocks.append(lines[line_idx] )
line_idx += 1
# Sort blocks by their identifiers
__UpperCAmelCase : Dict = sorted(snake_case__, key=lambda snake_case__ : _re_identifier.search(snake_case__ ).groups()[0] )
new_lines += blocks
else:
new_lines.append(lines[line_idx] )
line_idx += 1
if overwrite:
with open(snake_case__, "w", encoding="utf-8" ) as f:
f.write("\n".join(snake_case__ ) )
elif "\n".join(snake_case__ ) != content:
return True
def _UpperCamelCase ( snake_case__ = False ) -> Any:
__UpperCAmelCase : str = [os.path.join(snake_case__, snake_case__ ) for f in os.listdir(snake_case__ ) if f.endswith(".py" )]
__UpperCAmelCase : Optional[Any] = [sort_auto_mapping(snake_case__, overwrite=snake_case__ ) for fname in fnames]
if not overwrite and any(snake_case__ ):
__UpperCAmelCase : List[Any] = [f for f, d in zip(snake_case__, snake_case__ ) if d]
raise ValueError(
f'''The following files have auto mappings that need sorting: {', '.join(snake_case__ )}. Run `make style` to fix'''
" this." )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''')
_snake_case = parser.parse_args()
sort_all_auto_mappings(not args.check_only)
| 157
| 0
|
import tempfile
import unittest
from transformers import TaConfig, is_torch_available
from transformers.testing_utils import (
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel
class _lowercase :
def __init__( self : List[Any] , snake_case : int , snake_case : Any=9_9 , snake_case : Tuple=1_3 , snake_case : str=7 , snake_case : List[str]=9 , snake_case : Optional[Any]=True , snake_case : Any=True , snake_case : Optional[Any]=False , snake_case : List[str]=3_2 , snake_case : str=5 , snake_case : Any=4 , snake_case : List[str]=3_7 , snake_case : Optional[Any]=8 , snake_case : Optional[Any]=0.1 , snake_case : Dict=0.002 , snake_case : Any=1 , snake_case : Optional[int]=0 , snake_case : List[str]=0 , snake_case : List[str]=None , snake_case : List[str]=None , ) -> Optional[int]:
"""simple docstring"""
UpperCamelCase_ : int = parent
UpperCamelCase_ : List[Any] = batch_size
UpperCamelCase_ : int = encoder_seq_length
UpperCamelCase_ : int = decoder_seq_length
# For common tests
UpperCamelCase_ : List[Any] = self.decoder_seq_length
UpperCamelCase_ : Optional[Any] = is_training
UpperCamelCase_ : Tuple = use_attention_mask
UpperCamelCase_ : int = use_labels
UpperCamelCase_ : List[str] = vocab_size
UpperCamelCase_ : Dict = hidden_size
UpperCamelCase_ : Any = num_hidden_layers
UpperCamelCase_ : Any = num_attention_heads
UpperCamelCase_ : Dict = d_ff
UpperCamelCase_ : List[Any] = relative_attention_num_buckets
UpperCamelCase_ : List[Any] = dropout_rate
UpperCamelCase_ : Dict = initializer_factor
UpperCamelCase_ : Union[str, Any] = eos_token_id
UpperCamelCase_ : Optional[int] = pad_token_id
UpperCamelCase_ : List[str] = decoder_start_token_id
UpperCamelCase_ : str = None
UpperCamelCase_ : int = decoder_layers
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> List[str]:
"""simple docstring"""
return TaConfig.from_pretrained('google/umt5-base' )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , snake_case : Optional[int] , snake_case : Any , snake_case : Optional[int] , snake_case : Optional[int]=None , snake_case : List[Any]=None , snake_case : int=None , snake_case : Optional[int]=None , snake_case : Tuple=None , ) -> List[str]:
"""simple docstring"""
if attention_mask is None:
UpperCamelCase_ : Optional[Any] = input_ids.ne(config.pad_token_id )
if decoder_attention_mask is None:
UpperCamelCase_ : Optional[int] = decoder_input_ids.ne(config.pad_token_id )
if head_mask is None:
UpperCamelCase_ : Optional[int] = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=snake_case )
if decoder_head_mask is None:
UpperCamelCase_ : Dict = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=snake_case )
if cross_attn_head_mask is None:
UpperCamelCase_ : Optional[Any] = torch.ones(
config.num_decoder_layers , config.num_attention_heads , device=snake_case )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase_ : Union[str, Any] = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size )
UpperCamelCase_ : Any = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
# we need to clamp the input ids here to avoid having pad token in between
# this is because for NllbMoe the position_ids are prepared such that
# all pad tokens have pos id = 2 and rest are between 2..seq_length
# and the seq_length here is seq_length - num_pad_tokens
# but when using past, there is no way of knowing if the past input ids had
# pad tokens in them, which results in incorrect seq_lenth and which in turn results in
# position_ids being off by num_pad_tokens in past input
UpperCamelCase_ : Union[str, Any] = input_ids.clamp(self.pad_token_id + 1 )
UpperCamelCase_ : Any = decoder_input_ids.clamp(self.pad_token_id + 1 )
UpperCamelCase_ : Dict = self.get_config()
UpperCamelCase_ : Dict = config.num_attention_heads
UpperCamelCase_ : Optional[int] = self.prepare_inputs_dict(snake_case , snake_case , snake_case )
return config, input_dict
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
UpperCamelCase_, UpperCamelCase_ : Any = self.prepare_config_and_inputs()
return config, inputs_dict
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
return TaConfig(
vocab_size=1_6_6 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def SCREAMING_SNAKE_CASE__ ( self : int ) -> Optional[int]:
"""simple docstring"""
return TaConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def SCREAMING_SNAKE_CASE__ ( self : str , snake_case : Dict , snake_case : List[str] , snake_case : Tuple , snake_case : int , snake_case : List[str] , snake_case : Optional[Any] , ) -> Tuple:
"""simple docstring"""
UpperCamelCase_ : int = UMTaModel(config=snake_case )
model.to(snake_case )
model.eval()
UpperCamelCase_ : Any = model(
input_ids=snake_case , decoder_input_ids=snake_case , attention_mask=snake_case , decoder_attention_mask=snake_case , )
UpperCamelCase_ : List[str] = model(input_ids=snake_case , decoder_input_ids=snake_case )
UpperCamelCase_ : Optional[Any] = result.last_hidden_state
UpperCamelCase_ : Optional[Any] = result.past_key_values
UpperCamelCase_ : Optional[int] = result.encoder_last_hidden_state
self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) )
self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) )
# There should be `num_layers` key value embeddings stored in decoder_past
self.parent.assertEqual(len(snake_case ) , config.num_layers )
# There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple
self.parent.assertEqual(len(decoder_past[0] ) , 4 )
def SCREAMING_SNAKE_CASE__ ( self : Any , snake_case : Tuple , snake_case : List[Any] , snake_case : Optional[int] , snake_case : Any , snake_case : Tuple , snake_case : str , ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase_ : int = UMTaModel(config=snake_case ).get_decoder().to(snake_case ).eval()
# first forward pass
UpperCamelCase_ : str = model(snake_case , use_cache=snake_case )
UpperCamelCase_ : List[Any] = model(snake_case )
UpperCamelCase_ : Dict = model(snake_case , use_cache=snake_case )
self.parent.assertTrue(len(snake_case ) == len(snake_case ) )
self.parent.assertTrue(len(snake_case ) == len(snake_case ) + 1 )
UpperCamelCase_, UpperCamelCase_ : Optional[Any] = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
UpperCamelCase_ : Any = ids_tensor((self.batch_size, 1) , config.vocab_size )
# append to next input_ids and
UpperCamelCase_ : List[Any] = torch.cat([input_ids, next_tokens] , dim=-1 )
UpperCamelCase_ : List[Any] = model(snake_case )['last_hidden_state']
UpperCamelCase_ : List[str] = model(snake_case , past_key_values=snake_case )['last_hidden_state']
# select random slice
UpperCamelCase_ : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item()
UpperCamelCase_ : Union[str, Any] = output_from_no_past[:, -1, random_slice_idx].detach()
UpperCamelCase_ : Any = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(snake_case , snake_case , atol=1e-3 ) )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , snake_case : Tuple , snake_case : int , ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase_ : Optional[int] = UMTaModel(config=snake_case ).to(snake_case ).half().eval()
UpperCamelCase_ : Union[str, Any] = model(**snake_case )['last_hidden_state']
self.parent.assertFalse(torch.isnan(snake_case ).any().item() )
@require_torch
class _lowercase ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ):
lowercase = (
(UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else ()
)
lowercase = (UMTaForConditionalGeneration,) if is_torch_available() else ()
lowercase = (
{
'conversational': UMTaForConditionalGeneration,
'feature-extraction': UMTaModel,
'summarization': UMTaForConditionalGeneration,
'text2text-generation': UMTaForConditionalGeneration,
'translation': UMTaForConditionalGeneration,
'question-answering': UMTaForQuestionAnswering,
}
if is_torch_available()
else {}
)
lowercase = True
lowercase = False
lowercase = False
lowercase = True
lowercase = True
# The small UMT5 model needs higher percentages for CPU/MP tests
lowercase = [0.8, 0.9]
def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> List[Any]:
"""simple docstring"""
UpperCamelCase_ : Optional[Any] = UMTaModelTester(self )
@unittest.skip('Test has a segmentation fault on torch 1.8.0' )
def SCREAMING_SNAKE_CASE__ ( self : str ) -> List[str]:
"""simple docstring"""
UpperCamelCase_ : List[str] = self.model_tester.prepare_config_and_inputs()
UpperCamelCase_ : List[str] = UMTaModel(config_and_inputs[0] ).to(snake_case )
with tempfile.TemporaryDirectory() as tmpdirname:
torch.onnx.export(
snake_case , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f"{tmpdirname}/t5_test.onnx" , export_params=snake_case , opset_version=9 , input_names=['input_ids', 'decoder_input_ids'] , )
@unittest.skipIf(torch_device == 'cpu' , 'Cant do half precision' )
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase_ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_fpaa_forward(*snake_case )
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
UpperCamelCase_ : Tuple = ['encoder_attentions', 'decoder_attentions', 'cross_attentions']
UpperCamelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
UpperCamelCase_ : Union[str, Any] = config_and_inputs[0]
UpperCamelCase_ : Tuple = UMTaForConditionalGeneration(snake_case ).eval()
model.to(snake_case )
UpperCamelCase_ : str = {
'head_mask': torch.zeros(config.num_layers , config.num_heads , device=snake_case ),
'decoder_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=snake_case ),
'cross_attn_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=snake_case ),
}
for attn_name, (name, mask) in zip(snake_case , head_masking.items() ):
UpperCamelCase_ : Optional[int] = {name: mask}
# Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified
if name == "head_mask":
UpperCamelCase_ : Union[str, Any] = torch.ones(
config.num_decoder_layers , config.num_heads , device=snake_case )
UpperCamelCase_ : Any = model.generate(
config_and_inputs[1]['input_ids'] , num_beams=1 , max_length=3 , output_attentions=snake_case , return_dict_in_generate=snake_case , **snake_case , )
# We check the state of decoder_attentions and cross_attentions just from the last step
UpperCamelCase_ : int = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 )
@unittest.skip('Does not work on the tiny model as we keep hitting edge cases.' )
def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Optional[Any]:
"""simple docstring"""
pass
@require_torch
@require_sentencepiece
@require_tokenizers
class _lowercase ( unittest.TestCase ):
@slow
@unittest.skip(
'Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged' )
def SCREAMING_SNAKE_CASE__ ( self : Any ) -> List[Any]:
"""simple docstring"""
UpperCamelCase_ : str = UMTaForConditionalGeneration.from_pretrained('google/umt5-small' , return_dict=snake_case ).to(snake_case )
UpperCamelCase_ : int = AutoTokenizer.from_pretrained('google/umt5-small' , use_fast=snake_case , legacy=snake_case )
UpperCamelCase_ : Dict = [
'Bonjour monsieur <extra_id_0> bien <extra_id_1>.',
'No se como puedo <extra_id_0>.',
'This is the reason why we <extra_id_0> them.',
'The <extra_id_0> walks in <extra_id_1>, seats',
'A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.',
]
UpperCamelCase_ : Dict = tokenizer(snake_case , return_tensors='pt' , padding=snake_case ).input_ids
# fmt: off
UpperCamelCase_ : List[str] = torch.tensor(
[
[ 3_8_5_3_0, 2_1_0_7_0_3, 2_5_6_2_9_9, 1_4_1_0, 2_5_6_2_9_8, 2_7_4, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 8_2_6, 3_2_1, 6_7_1, 2_5_9_2_2, 2_5_6_2_9_9, 2_7_4, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 1_4_6_0, 3_3_9, 3_1_2, 1_9_0_1_4, 1_0_6_2_0, 7_5_8, 2_5_6_2_9_9, 2_3_5_5,2_7_4, 1, 0, 0, 0, 0, 0, 0,0, 0],
[ 5_1_7, 2_5_6_2_9_9, 1_4_8_6_9, 2_8_1, 3_0_1, 2_5_6_2_9_8, 2_7_5, 1_1_9_9_8_3,1, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 3_2_0, 2_5_6_2_9_9, 1_4_8_6_9, 2_8_1, 2_2_3_4, 2_8_9, 2_2_7_5, 3_3_3,6_1_3_9_1, 2_8_9, 2_5_6_2_9_8, 5_4_3, 2_5_6_2_9_7, 1_6_8_7_1_4, 3_2_9, 2_5_6_2_9_6,2_7_4, 1],
] )
# fmt: on
torch.testing.assert_allclose(snake_case , snake_case )
UpperCamelCase_ : int = model.generate(input_ids.to(snake_case ) )
UpperCamelCase_ : List[Any] = [
'<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>',
'<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>',
'<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>',
'<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>',
'<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>',
]
UpperCamelCase_ : Dict = tokenizer.batch_decode(snake_case )
self.assertEqual(snake_case , snake_case )
| 50
|
import math
import flax.linen as nn
import jax.numpy as jnp
def __lowercase ( lowerCamelCase : jnp.ndarray , lowerCamelCase : int , lowerCamelCase : float = 1 , lowerCamelCase : float = 1 , lowerCamelCase : float = 1.0e4 , lowerCamelCase : bool = False , lowerCamelCase : float = 1.0 , ):
assert timesteps.ndim == 1, "Timesteps should be a 1d-array"
assert embedding_dim % 2 == 0, F"Embedding dimension {embedding_dim} should be even"
UpperCamelCase_ : Dict = float(embedding_dim // 2 )
UpperCamelCase_ : Dict = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift)
UpperCamelCase_ : Optional[int] = min_timescale * jnp.exp(jnp.arange(lowerCamelCase , dtype=jnp.floataa ) * -log_timescale_increment )
UpperCamelCase_ : int = jnp.expand_dims(lowerCamelCase , 1 ) * jnp.expand_dims(lowerCamelCase , 0 )
# scale embeddings
UpperCamelCase_ : Tuple = scale * emb
if flip_sin_to_cos:
UpperCamelCase_ : Tuple = jnp.concatenate([jnp.cos(lowerCamelCase ), jnp.sin(lowerCamelCase )] , axis=1 )
else:
UpperCamelCase_ : Optional[int] = jnp.concatenate([jnp.sin(lowerCamelCase ), jnp.cos(lowerCamelCase )] , axis=1 )
UpperCamelCase_ : Optional[Any] = jnp.reshape(lowerCamelCase , [jnp.shape(lowerCamelCase )[0], embedding_dim] )
return signal
class _lowercase ( nn.Module ):
lowercase = 3_2
lowercase = jnp.floataa
@nn.compact
def __call__( self : str , snake_case : Union[str, Any] ) -> Dict:
"""simple docstring"""
UpperCamelCase_ : str = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='linear_1' )(snake_case )
UpperCamelCase_ : int = nn.silu(snake_case )
UpperCamelCase_ : Optional[Any] = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='linear_2' )(snake_case )
return temb
class _lowercase ( nn.Module ):
lowercase = 3_2
lowercase = False
lowercase = 1
@nn.compact
def __call__( self : int , snake_case : Any ) -> str:
"""simple docstring"""
return get_sinusoidal_embeddings(
snake_case , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
| 50
| 1
|
import sys
import warnings
from os.path import abspath, dirname, join
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
__UpperCAmelCase = abspath(join(dirname(dirname(__file__)), 'src'))
sys.path.insert(1, git_repo_path)
# silence FutureWarning warnings in tests since often we can't act on them until
# they become normal warnings - i.e. the tests still need to test the current functionality
warnings.simplefilter(action='ignore', category=FutureWarning)
def lowercase__ ( __snake_case : List[Any] ):
'''simple docstring'''
from diffusers.utils.testing_utils import pytest_addoption_shared
pytest_addoption_shared(_lowerCamelCase )
def lowercase__ ( __snake_case : Union[str, Any] ):
'''simple docstring'''
from diffusers.utils.testing_utils import pytest_terminal_summary_main
UpperCAmelCase_ : Union[str, Any] = terminalreporter.config.getoption('--make-reports' )
if make_reports:
pytest_terminal_summary_main(_lowerCamelCase , id=_lowerCamelCase )
| 29
|
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_donut import DonutImageProcessor
UpperCamelCase_ = logging.get_logger(__name__)
class a_ (_a ):
def __init__( self , *snake_case_ , **snake_case_ ):
warnings.warn(
"""The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"""
""" use DonutImageProcessor instead.""" , snake_case_ , )
super().__init__(*snake_case_ , **snake_case_ )
| 309
| 0
|
"""simple docstring"""
from __future__ import annotations
def _lowercase ( __lowerCAmelCase ) -> list[int]: # This function is recursive
SCREAMING_SNAKE_CASE__ : Union[str, Any] = len(__lowerCAmelCase )
# If the array contains only one element, we return it (it's the stop condition of
# recursion)
if array_length <= 1:
return array
# Else
SCREAMING_SNAKE_CASE__ : List[Any] = array[0]
SCREAMING_SNAKE_CASE__ : Optional[int] = False
SCREAMING_SNAKE_CASE__ : Optional[int] = 1
SCREAMING_SNAKE_CASE__ : list[int] = []
while not is_found and i < array_length:
if array[i] < pivot:
SCREAMING_SNAKE_CASE__ : Tuple = True
SCREAMING_SNAKE_CASE__ : str = [element for element in array[i:] if element >= array[i]]
SCREAMING_SNAKE_CASE__ : Union[str, Any] = longest_subsequence(__lowerCAmelCase )
if len(__lowerCAmelCase ) > len(__lowerCAmelCase ):
SCREAMING_SNAKE_CASE__ : Union[str, Any] = temp_array
else:
i += 1
SCREAMING_SNAKE_CASE__ : Any = [element for element in array[1:] if element >= pivot]
SCREAMING_SNAKE_CASE__ : str = [pivot, *longest_subsequence(__lowerCAmelCase )]
if len(__lowerCAmelCase ) > len(__lowerCAmelCase ):
return temp_array
else:
return longest_subseq
if __name__ == "__main__":
import doctest
doctest.testmod()
| 354
|
"""simple docstring"""
import unittest
from transformers import DebertaConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
DebertaForMaskedLM,
DebertaForQuestionAnswering,
DebertaForSequenceClassification,
DebertaForTokenClassification,
DebertaModel,
)
from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST
class __a (UpperCamelCase_):
'''simple docstring'''
def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=99 , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.02 , _a=False , _a=True , _a="None" , _a=3 , _a=4 , _a=None , ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = parent
SCREAMING_SNAKE_CASE__ : Union[str, Any] = batch_size
SCREAMING_SNAKE_CASE__ : str = seq_length
SCREAMING_SNAKE_CASE__ : str = is_training
SCREAMING_SNAKE_CASE__ : List[Any] = use_input_mask
SCREAMING_SNAKE_CASE__ : str = use_token_type_ids
SCREAMING_SNAKE_CASE__ : Tuple = use_labels
SCREAMING_SNAKE_CASE__ : List[str] = vocab_size
SCREAMING_SNAKE_CASE__ : Optional[int] = hidden_size
SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_hidden_layers
SCREAMING_SNAKE_CASE__ : str = num_attention_heads
SCREAMING_SNAKE_CASE__ : Optional[int] = intermediate_size
SCREAMING_SNAKE_CASE__ : Tuple = hidden_act
SCREAMING_SNAKE_CASE__ : Tuple = hidden_dropout_prob
SCREAMING_SNAKE_CASE__ : List[Any] = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE__ : Any = max_position_embeddings
SCREAMING_SNAKE_CASE__ : List[str] = type_vocab_size
SCREAMING_SNAKE_CASE__ : Dict = type_sequence_label_size
SCREAMING_SNAKE_CASE__ : List[str] = initializer_range
SCREAMING_SNAKE_CASE__ : List[str] = num_labels
SCREAMING_SNAKE_CASE__ : Optional[int] = num_choices
SCREAMING_SNAKE_CASE__ : List[str] = relative_attention
SCREAMING_SNAKE_CASE__ : str = position_biased_input
SCREAMING_SNAKE_CASE__ : List[str] = pos_att_type
SCREAMING_SNAKE_CASE__ : Union[str, Any] = scope
def _a ( self ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = None
if self.use_input_mask:
SCREAMING_SNAKE_CASE__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
SCREAMING_SNAKE_CASE__ : str = None
if self.use_token_type_ids:
SCREAMING_SNAKE_CASE__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
SCREAMING_SNAKE_CASE__ : Optional[Any] = None
SCREAMING_SNAKE_CASE__ : int = None
SCREAMING_SNAKE_CASE__ : Any = None
if self.use_labels:
SCREAMING_SNAKE_CASE__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size )
SCREAMING_SNAKE_CASE__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
SCREAMING_SNAKE_CASE__ : List[Any] = ids_tensor([self.batch_size] , self.num_choices )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _a ( self ) -> Tuple:
"""simple docstring"""
return DebertaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , )
def _a ( self ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = self.get_config()
SCREAMING_SNAKE_CASE__ : Any = 300
return config
def _a ( self , _a ) -> List[str]:
"""simple docstring"""
self.parent.assertListEqual(list(result.loss.size() ) , [] )
def _a ( self , _a , _a , _a , _a , _a , _a , _a ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Dict = DebertaModel(config=_a )
model.to(_a )
model.eval()
SCREAMING_SNAKE_CASE__ : Any = model(_a , attention_mask=_a , token_type_ids=_a )[0]
SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(_a , token_type_ids=_a )[0]
SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(_a )[0]
self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] )
def _a ( self , _a , _a , _a , _a , _a , _a , _a ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[Any] = DebertaForMaskedLM(config=_a )
model.to(_a )
model.eval()
SCREAMING_SNAKE_CASE__ : Optional[int] = model(_a , attention_mask=_a , token_type_ids=_a , labels=_a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _a ( self , _a , _a , _a , _a , _a , _a , _a ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[Any] = self.num_labels
SCREAMING_SNAKE_CASE__ : Tuple = DebertaForSequenceClassification(_a )
model.to(_a )
model.eval()
SCREAMING_SNAKE_CASE__ : Any = model(_a , attention_mask=_a , token_type_ids=_a , labels=_a )
self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] )
self.check_loss_output(_a )
def _a ( self , _a , _a , _a , _a , _a , _a , _a ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[Any] = self.num_labels
SCREAMING_SNAKE_CASE__ : Optional[Any] = DebertaForTokenClassification(config=_a )
model.to(_a )
model.eval()
SCREAMING_SNAKE_CASE__ : int = model(_a , attention_mask=_a , token_type_ids=_a , labels=_a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _a ( self , _a , _a , _a , _a , _a , _a , _a ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[Any] = DebertaForQuestionAnswering(config=_a )
model.to(_a )
model.eval()
SCREAMING_SNAKE_CASE__ : List[str] = model(
_a , attention_mask=_a , token_type_ids=_a , start_positions=_a , end_positions=_a , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _a ( self ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = self.prepare_config_and_inputs()
(
(
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) ,
) : Optional[int] = config_and_inputs
SCREAMING_SNAKE_CASE__ : List[Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class __a (UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :List[str] = (
(
DebertaModel,
DebertaForMaskedLM,
DebertaForSequenceClassification,
DebertaForTokenClassification,
DebertaForQuestionAnswering,
)
if is_torch_available()
else ()
)
_SCREAMING_SNAKE_CASE :str = (
{
"""feature-extraction""": DebertaModel,
"""fill-mask""": DebertaForMaskedLM,
"""question-answering""": DebertaForQuestionAnswering,
"""text-classification""": DebertaForSequenceClassification,
"""token-classification""": DebertaForTokenClassification,
"""zero-shot""": DebertaForSequenceClassification,
}
if is_torch_available()
else {}
)
_SCREAMING_SNAKE_CASE :Union[str, Any] = True
_SCREAMING_SNAKE_CASE :str = False
_SCREAMING_SNAKE_CASE :Dict = False
_SCREAMING_SNAKE_CASE :Dict = False
_SCREAMING_SNAKE_CASE :Union[str, Any] = False
def _a ( self ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[Any] = DebertaModelTester(self )
SCREAMING_SNAKE_CASE__ : str = ConfigTester(self , config_class=_a , hidden_size=37 )
def _a ( self ) -> Any:
"""simple docstring"""
self.config_tester.run_common_tests()
def _a ( self ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_model(*_a )
def _a ( self ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_sequence_classification(*_a )
def _a ( self ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_masked_lm(*_a )
def _a ( self ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_question_answering(*_a )
def _a ( self ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_token_classification(*_a )
@slow
def _a ( self ) -> Optional[int]:
"""simple docstring"""
for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE__ : Dict = DebertaModel.from_pretrained(_a )
self.assertIsNotNone(_a )
@require_torch
@require_sentencepiece
@require_tokenizers
class __a (unittest.TestCase):
'''simple docstring'''
@unittest.skip(reason="""Model not available yet""" )
def _a ( self ) -> Any:
"""simple docstring"""
pass
@slow
def _a ( self ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[str] = DebertaModel.from_pretrained("""microsoft/deberta-base""" )
SCREAMING_SNAKE_CASE__ : Tuple = torch.tensor([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
SCREAMING_SNAKE_CASE__ : Optional[int] = model(_a , attention_mask=_a )[0]
# compare the actual values for a slice.
SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.tensor(
[[[-0.5_986, -0.8_055, -0.8_462], [1.4_484, -0.9_348, -0.8_059], [0.3_123, 0.0_032, -1.4_131]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _a , atol=1E-4 ) , f'''{output[:, 1:4, 1:4]}''' )
| 56
| 0
|
from __future__ import annotations
import unittest
from transformers import is_tf_available, is_torch_available
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow
if is_tf_available():
from transformers import (
AutoConfig,
BertConfig,
GPTaConfig,
TaConfig,
TFAutoModel,
TFAutoModelForCausalLM,
TFAutoModelForMaskedLM,
TFAutoModelForPreTraining,
TFAutoModelForQuestionAnswering,
TFAutoModelForSeqaSeqLM,
TFAutoModelForSequenceClassification,
TFAutoModelWithLMHead,
TFBertForMaskedLM,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFBertModel,
TFGPTaLMHeadModel,
TFRobertaForMaskedLM,
TFTaForConditionalGeneration,
)
from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST
if is_torch_available():
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoModelForMaskedLM,
AutoModelForPreTraining,
AutoModelForQuestionAnswering,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoModelWithLMHead,
BertForMaskedLM,
BertForPreTraining,
BertForQuestionAnswering,
BertForSequenceClassification,
BertModel,
GPTaLMHeadModel,
RobertaForMaskedLM,
TaForConditionalGeneration,
)
@is_pt_tf_cross_test
class __A ( unittest.TestCase ):
"""simple docstring"""
@slow
def __lowercase ( self ):
"""simple docstring"""
for model_name in ["bert-base-uncased"]:
__UpperCamelCase : List[str] =AutoConfig.from_pretrained(lowerCamelCase__ )
self.assertIsNotNone(lowerCamelCase__ )
self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ )
__UpperCamelCase : str =TFAutoModel.from_pretrained(lowerCamelCase__ , from_pt=lowerCamelCase__ )
self.assertIsNotNone(lowerCamelCase__ )
self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ )
__UpperCamelCase : List[Any] =AutoModel.from_pretrained(lowerCamelCase__ , from_tf=lowerCamelCase__ )
self.assertIsNotNone(lowerCamelCase__ )
self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ )
@slow
def __lowercase ( self ):
"""simple docstring"""
for model_name in ["bert-base-uncased"]:
__UpperCamelCase : Any =AutoConfig.from_pretrained(lowerCamelCase__ )
self.assertIsNotNone(lowerCamelCase__ )
self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ )
__UpperCamelCase : List[str] =TFAutoModelForPreTraining.from_pretrained(lowerCamelCase__ , from_pt=lowerCamelCase__ )
self.assertIsNotNone(lowerCamelCase__ )
self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ )
__UpperCamelCase : Optional[Any] =AutoModelForPreTraining.from_pretrained(lowerCamelCase__ , from_tf=lowerCamelCase__ )
self.assertIsNotNone(lowerCamelCase__ )
self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ )
@slow
def __lowercase ( self ):
"""simple docstring"""
for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCamelCase : Tuple =AutoConfig.from_pretrained(lowerCamelCase__ )
self.assertIsNotNone(lowerCamelCase__ )
self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ )
__UpperCamelCase : str =TFAutoModelForCausalLM.from_pretrained(lowerCamelCase__ , from_pt=lowerCamelCase__ )
__UpperCamelCase , __UpperCamelCase : Tuple =TFAutoModelForCausalLM.from_pretrained(
lowerCamelCase__ , output_loading_info=lowerCamelCase__ , from_pt=lowerCamelCase__ )
self.assertIsNotNone(lowerCamelCase__ )
self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ )
__UpperCamelCase : Optional[int] =AutoModelForCausalLM.from_pretrained(lowerCamelCase__ , from_tf=lowerCamelCase__ )
__UpperCamelCase , __UpperCamelCase : Union[str, Any] =AutoModelForCausalLM.from_pretrained(
lowerCamelCase__ , output_loading_info=lowerCamelCase__ , from_tf=lowerCamelCase__ )
self.assertIsNotNone(lowerCamelCase__ )
self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ )
@slow
def __lowercase ( self ):
"""simple docstring"""
for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCamelCase : int =AutoConfig.from_pretrained(lowerCamelCase__ )
self.assertIsNotNone(lowerCamelCase__ )
self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ )
__UpperCamelCase : Dict =TFAutoModelWithLMHead.from_pretrained(lowerCamelCase__ , from_pt=lowerCamelCase__ )
self.assertIsNotNone(lowerCamelCase__ )
self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ )
__UpperCamelCase : List[Any] =AutoModelWithLMHead.from_pretrained(lowerCamelCase__ , from_tf=lowerCamelCase__ )
self.assertIsNotNone(lowerCamelCase__ )
self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ )
@slow
def __lowercase ( self ):
"""simple docstring"""
for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCamelCase : List[Any] =AutoConfig.from_pretrained(lowerCamelCase__ )
self.assertIsNotNone(lowerCamelCase__ )
self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ )
__UpperCamelCase : List[str] =TFAutoModelForMaskedLM.from_pretrained(lowerCamelCase__ , from_pt=lowerCamelCase__ )
__UpperCamelCase , __UpperCamelCase : Tuple =TFAutoModelForMaskedLM.from_pretrained(
lowerCamelCase__ , output_loading_info=lowerCamelCase__ , from_pt=lowerCamelCase__ )
self.assertIsNotNone(lowerCamelCase__ )
self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ )
__UpperCamelCase : List[str] =AutoModelForMaskedLM.from_pretrained(lowerCamelCase__ , from_tf=lowerCamelCase__ )
__UpperCamelCase , __UpperCamelCase : Optional[Any] =AutoModelForMaskedLM.from_pretrained(
lowerCamelCase__ , output_loading_info=lowerCamelCase__ , from_tf=lowerCamelCase__ )
self.assertIsNotNone(lowerCamelCase__ )
self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ )
@slow
def __lowercase ( self ):
"""simple docstring"""
for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCamelCase : Any =AutoConfig.from_pretrained(lowerCamelCase__ )
self.assertIsNotNone(lowerCamelCase__ )
self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ )
__UpperCamelCase : List[Any] =TFAutoModelForSeqaSeqLM.from_pretrained(lowerCamelCase__ , from_pt=lowerCamelCase__ )
__UpperCamelCase , __UpperCamelCase : List[str] =TFAutoModelForSeqaSeqLM.from_pretrained(
lowerCamelCase__ , output_loading_info=lowerCamelCase__ , from_pt=lowerCamelCase__ )
self.assertIsNotNone(lowerCamelCase__ )
self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ )
__UpperCamelCase : Dict =AutoModelForSeqaSeqLM.from_pretrained(lowerCamelCase__ , from_tf=lowerCamelCase__ )
__UpperCamelCase , __UpperCamelCase : List[Any] =AutoModelForSeqaSeqLM.from_pretrained(
lowerCamelCase__ , output_loading_info=lowerCamelCase__ , from_tf=lowerCamelCase__ )
self.assertIsNotNone(lowerCamelCase__ )
self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ )
@slow
def __lowercase ( self ):
"""simple docstring"""
for model_name in ["bert-base-uncased"]:
__UpperCamelCase : str =AutoConfig.from_pretrained(lowerCamelCase__ )
self.assertIsNotNone(lowerCamelCase__ )
self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ )
__UpperCamelCase : Union[str, Any] =TFAutoModelForSequenceClassification.from_pretrained(lowerCamelCase__ , from_pt=lowerCamelCase__ )
self.assertIsNotNone(lowerCamelCase__ )
self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ )
__UpperCamelCase : str =AutoModelForSequenceClassification.from_pretrained(lowerCamelCase__ , from_tf=lowerCamelCase__ )
self.assertIsNotNone(lowerCamelCase__ )
self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ )
@slow
def __lowercase ( self ):
"""simple docstring"""
for model_name in ["bert-base-uncased"]:
__UpperCamelCase : List[Any] =AutoConfig.from_pretrained(lowerCamelCase__ )
self.assertIsNotNone(lowerCamelCase__ )
self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ )
__UpperCamelCase : Tuple =TFAutoModelForQuestionAnswering.from_pretrained(lowerCamelCase__ , from_pt=lowerCamelCase__ )
self.assertIsNotNone(lowerCamelCase__ )
self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ )
__UpperCamelCase : Optional[Any] =AutoModelForQuestionAnswering.from_pretrained(lowerCamelCase__ , from_tf=lowerCamelCase__ )
self.assertIsNotNone(lowerCamelCase__ )
self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ )
def __lowercase ( self ):
"""simple docstring"""
__UpperCamelCase : int =TFAutoModelWithLMHead.from_pretrained(lowerCamelCase__ , from_pt=lowerCamelCase__ )
self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ )
self.assertEqual(model.num_parameters() , 14410 )
self.assertEqual(model.num_parameters(only_trainable=lowerCamelCase__ ) , 14410 )
__UpperCamelCase : str =AutoModelWithLMHead.from_pretrained(lowerCamelCase__ , from_tf=lowerCamelCase__ )
self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ )
self.assertEqual(model.num_parameters() , 14410 )
self.assertEqual(model.num_parameters(only_trainable=lowerCamelCase__ ) , 14410 )
def __lowercase ( self ):
"""simple docstring"""
__UpperCamelCase : Union[str, Any] =TFAutoModelWithLMHead.from_pretrained(lowerCamelCase__ , from_pt=lowerCamelCase__ )
self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ )
self.assertEqual(model.num_parameters() , 14410 )
self.assertEqual(model.num_parameters(only_trainable=lowerCamelCase__ ) , 14410 )
__UpperCamelCase : int =AutoModelWithLMHead.from_pretrained(lowerCamelCase__ , from_tf=lowerCamelCase__ )
self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ )
self.assertEqual(model.num_parameters() , 14410 )
self.assertEqual(model.num_parameters(only_trainable=lowerCamelCase__ ) , 14410 )
| 71
|
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class __A :
"""simple docstring"""
UpperCamelCase__ : int =XGLMConfig
UpperCamelCase__ : Optional[Any] ={}
UpperCamelCase__ : List[str] ="""gelu"""
def __init__( self , lowerCamelCase__ , lowerCamelCase__=14 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=99 , lowerCamelCase__=32 , lowerCamelCase__=2 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=0.02 , ):
"""simple docstring"""
__UpperCamelCase : Tuple =parent
__UpperCamelCase : List[str] =batch_size
__UpperCamelCase : str =seq_length
__UpperCamelCase : Dict =is_training
__UpperCamelCase : Tuple =use_input_mask
__UpperCamelCase : List[Any] =use_labels
__UpperCamelCase : Any =vocab_size
__UpperCamelCase : List[Any] =d_model
__UpperCamelCase : Optional[int] =num_hidden_layers
__UpperCamelCase : List[str] =num_attention_heads
__UpperCamelCase : Optional[int] =ffn_dim
__UpperCamelCase : str =activation_function
__UpperCamelCase : Any =activation_dropout
__UpperCamelCase : Optional[int] =attention_dropout
__UpperCamelCase : Optional[int] =max_position_embeddings
__UpperCamelCase : Any =initializer_range
__UpperCamelCase : Dict =None
__UpperCamelCase : Optional[int] =0
__UpperCamelCase : Optional[Any] =2
__UpperCamelCase : str =1
def __lowercase ( self ):
"""simple docstring"""
return XGLMConfig.from_pretrained('facebook/xglm-564M' )
def __lowercase ( self ):
"""simple docstring"""
__UpperCamelCase : List[Any] =tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 )
__UpperCamelCase : Union[str, Any] =None
if self.use_input_mask:
__UpperCamelCase : Dict =random_attention_mask([self.batch_size, self.seq_length] )
__UpperCamelCase : Any =self.get_config()
__UpperCamelCase : Optional[Any] =floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
input_mask,
head_mask,
)
def __lowercase ( self ):
"""simple docstring"""
return XGLMConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=lowerCamelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=lowerCamelCase__ , )
def __lowercase ( self ):
"""simple docstring"""
__UpperCamelCase : List[str] =self.prepare_config_and_inputs()
(
(
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) ,
) : int =config_and_inputs
__UpperCamelCase : Optional[Any] ={
'input_ids': input_ids,
'head_mask': head_mask,
}
return config, inputs_dict
@require_tf
class __A ( a , a , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase__ : Union[str, Any] =(TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
UpperCamelCase__ : str =(TFXGLMForCausalLM,) if is_tf_available() else ()
UpperCamelCase__ : Optional[Any] =(
{"""feature-extraction""": TFXGLMModel, """text-generation""": TFXGLMForCausalLM} if is_tf_available() else {}
)
UpperCamelCase__ : Tuple =False
UpperCamelCase__ : Tuple =False
UpperCamelCase__ : Optional[Any] =False
def __lowercase ( self ):
"""simple docstring"""
__UpperCamelCase : Tuple =TFXGLMModelTester(self )
__UpperCamelCase : Dict =ConfigTester(self , config_class=lowerCamelCase__ , n_embd=37 )
def __lowercase ( self ):
"""simple docstring"""
self.config_tester.run_common_tests()
@slow
def __lowercase ( self ):
"""simple docstring"""
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCamelCase : Optional[Any] =TFXGLMModel.from_pretrained(lowerCamelCase__ )
self.assertIsNotNone(lowerCamelCase__ )
@unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' )
def __lowercase ( self ):
"""simple docstring"""
super().test_resize_token_embeddings()
@require_tf
class __A ( unittest.TestCase ):
"""simple docstring"""
@slow
def __lowercase ( self , lowerCamelCase__=True ):
"""simple docstring"""
__UpperCamelCase : int =TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' )
__UpperCamelCase : List[str] =tf.convert_to_tensor([[2, 268, 9865]] , dtype=tf.intaa ) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
__UpperCamelCase : str =[2, 268, 9865, 67, 11, 1988, 57252, 9865, 5, 984, 67, 1988, 213838, 1658, 53, 70446, 33, 6657, 278, 1581]
# fmt: on
__UpperCamelCase : Optional[Any] =model.generate(lowerCamelCase__ , do_sample=lowerCamelCase__ , num_beams=1 )
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist() , lowerCamelCase__ )
@slow
def __lowercase ( self ):
"""simple docstring"""
__UpperCamelCase : List[str] =XGLMTokenizer.from_pretrained('facebook/xglm-564M' )
__UpperCamelCase : Union[str, Any] =TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' )
tf.random.set_seed(0 )
__UpperCamelCase : str =tokenizer('Today is a nice day and' , return_tensors='tf' )
__UpperCamelCase : Union[str, Any] =tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(':/CPU:0' ):
__UpperCamelCase : Any =model.generate(lowerCamelCase__ , do_sample=lowerCamelCase__ , seed=[7, 0] )
__UpperCamelCase : Tuple =tokenizer.decode(output_ids[0] , skip_special_tokens=lowerCamelCase__ )
__UpperCamelCase : List[Any] =(
'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due'
)
self.assertEqual(lowerCamelCase__ , lowerCamelCase__ )
@slow
def __lowercase ( self ):
"""simple docstring"""
__UpperCamelCase : Tuple =TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' )
__UpperCamelCase : Optional[Any] =XGLMTokenizer.from_pretrained('facebook/xglm-564M' )
__UpperCamelCase : Optional[Any] ='left'
# use different length sentences to test batching
__UpperCamelCase : Optional[int] =[
'This is an extremelly long sentence that only exists to test the ability of the model to cope with '
'left-padding, such as in batched generation. The output for the sequence below should be the same '
'regardless of whether left padding is applied or not. When',
'Hello, my dog is a little',
]
__UpperCamelCase : List[Any] =tokenizer(lowerCamelCase__ , return_tensors='tf' , padding=lowerCamelCase__ )
__UpperCamelCase : Union[str, Any] =inputs['input_ids']
__UpperCamelCase : Dict =model.generate(input_ids=lowerCamelCase__ , attention_mask=inputs['attention_mask'] , max_new_tokens=12 )
__UpperCamelCase : List[Any] =tokenizer(sentences[0] , return_tensors='tf' ).input_ids
__UpperCamelCase : Dict =model.generate(input_ids=lowerCamelCase__ , max_new_tokens=12 )
__UpperCamelCase : Any =tokenizer(sentences[1] , return_tensors='tf' ).input_ids
__UpperCamelCase : Optional[Any] =model.generate(input_ids=lowerCamelCase__ , max_new_tokens=12 )
__UpperCamelCase : Optional[int] =tokenizer.batch_decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ )
__UpperCamelCase : Union[str, Any] =tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCamelCase__ )
__UpperCamelCase : int =tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCamelCase__ )
__UpperCamelCase : Any =[
'This is an extremelly long sentence that only exists to test the ability of the model to cope with '
'left-padding, such as in batched generation. The output for the sequence below should be the same '
'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be '
'a single',
'Hello, my dog is a little bit of a shy one, but he is very friendly',
]
self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ )
self.assertListEqual(lowerCamelCase__ , [non_padded_sentence, padded_sentence] )
| 71
| 1
|
'''simple docstring'''
import json
import os
from pathlib import Path
import pytest
from datasets.download.download_config import DownloadConfig
from datasets.download.download_manager import DownloadManager
from datasets.utils.file_utils import hash_url_to_filename
__a = "http://www.mocksite.com/file1.txt"
__a = "\"text\": [\"foo\", \"foo\"]"
__a = "6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8"
class UpperCAmelCase_ :
"""simple docstring"""
lowercase = 2_00
lowercase = {"Content-Length": "100"}
lowercase = {}
def lowerCamelCase ( self : Union[str, Any] , **snake_case_ : Union[str, Any] ):
return [bytes(snake_case_ , """utf-8""" )]
def __snake_case( *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
return MockResponse()
@pytest.mark.parametrize("""urls_type""" , [str, list, dict] )
def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]:
import requests
monkeypatch.setattr(_lowerCAmelCase , """request""" , _lowerCAmelCase )
snake_case__ : List[str] = URL
if issubclass(_lowerCAmelCase , _lowerCAmelCase ):
snake_case__ : Any = url
elif issubclass(_lowerCAmelCase , _lowerCAmelCase ):
snake_case__ : str = [url]
elif issubclass(_lowerCAmelCase , _lowerCAmelCase ):
snake_case__ : Optional[int] = {"""train""": url}
snake_case__ : str = """dummy"""
snake_case__ : Dict = """downloads"""
snake_case__ : Optional[int] = tmp_path
snake_case__ : Union[str, Any] = DownloadConfig(
cache_dir=os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , use_etag=_lowerCAmelCase , )
snake_case__ : Tuple = DownloadManager(dataset_name=_lowerCAmelCase , download_config=_lowerCAmelCase )
snake_case__ : Union[str, Any] = dl_manager.download(_lowerCAmelCase )
snake_case__ : Any = urls
for downloaded_paths in [downloaded_paths]:
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
snake_case__ : str = [downloaded_paths]
snake_case__ : List[str] = [urls]
elif isinstance(_lowerCAmelCase , _lowerCAmelCase ):
assert "train" in downloaded_paths.keys()
snake_case__ : int = downloaded_paths.values()
snake_case__ : List[Any] = urls.values()
assert downloaded_paths
for downloaded_path, input_url in zip(_lowerCAmelCase , _lowerCAmelCase ):
assert downloaded_path == dl_manager.downloaded_paths[input_url]
snake_case__ : Tuple = Path(_lowerCAmelCase )
snake_case__ : int = downloaded_path.parts
assert parts[-1] == HASH
assert parts[-2] == cache_subdir
assert downloaded_path.exists()
snake_case__ : Optional[int] = downloaded_path.read_text()
assert content == CONTENT
snake_case__ : Union[str, Any] = downloaded_path.with_suffix(""".json""" )
assert metadata_downloaded_path.exists()
snake_case__ : int = json.loads(metadata_downloaded_path.read_text() )
assert metadata_content == {"url": URL, "etag": None}
@pytest.mark.parametrize("""paths_type""" , [str, list, dict] )
def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]:
snake_case__ : int = str(_lowerCAmelCase )
if issubclass(_lowerCAmelCase , _lowerCAmelCase ):
snake_case__ : List[str] = filename
elif issubclass(_lowerCAmelCase , _lowerCAmelCase ):
snake_case__ : List[str] = [filename]
elif issubclass(_lowerCAmelCase , _lowerCAmelCase ):
snake_case__ : Any = {"""train""": filename}
snake_case__ : int = """dummy"""
snake_case__ : Optional[Any] = xz_file.parent
snake_case__ : str = """extracted"""
snake_case__ : Tuple = DownloadConfig(
cache_dir=_lowerCAmelCase , use_etag=_lowerCAmelCase , )
snake_case__ : Tuple = DownloadManager(dataset_name=_lowerCAmelCase , download_config=_lowerCAmelCase )
snake_case__ : List[str] = dl_manager.extract(_lowerCAmelCase )
snake_case__ : List[str] = paths
for extracted_paths in [extracted_paths]:
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
snake_case__ : int = [extracted_paths]
snake_case__ : List[str] = [paths]
elif isinstance(_lowerCAmelCase , _lowerCAmelCase ):
assert "train" in extracted_paths.keys()
snake_case__ : Tuple = extracted_paths.values()
snake_case__ : Dict = paths.values()
assert extracted_paths
for extracted_path, input_path in zip(_lowerCAmelCase , _lowerCAmelCase ):
assert extracted_path == dl_manager.extracted_paths[input_path]
snake_case__ : Optional[Any] = Path(_lowerCAmelCase )
snake_case__ : Optional[int] = extracted_path.parts
assert parts[-1] == hash_url_to_filename(_lowerCAmelCase , etag=_lowerCAmelCase )
assert parts[-2] == extracted_subdir
assert extracted_path.exists()
snake_case__ : int = extracted_path.read_text()
snake_case__ : int = text_file.read_text()
assert extracted_file_content == expected_file_content
def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> int:
assert path.endswith(""".jsonl""" )
for num_items, line in enumerate(_lowerCAmelCase , start=1 ):
snake_case__ : List[Any] = json.loads(line.decode("""utf-8""" ) )
assert item.keys() == {"col_1", "col_2", "col_3"}
assert num_items == 4
@pytest.mark.parametrize("""archive_jsonl""" , ["""tar_jsonl_path""", """zip_jsonl_path"""] )
def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> int:
snake_case__ : Union[str, Any] = request.getfixturevalue(_lowerCAmelCase )
snake_case__ : Optional[Any] = DownloadManager()
for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(_lowerCAmelCase ) , start=1 ):
_test_jsonl(_lowerCAmelCase , _lowerCAmelCase )
assert num_jsonl == 2
@pytest.mark.parametrize("""archive_nested_jsonl""" , ["""tar_nested_jsonl_path""", """zip_nested_jsonl_path"""] )
def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Dict:
snake_case__ : List[Any] = request.getfixturevalue(_lowerCAmelCase )
snake_case__ : Union[str, Any] = DownloadManager()
for num_tar, (path, file) in enumerate(dl_manager.iter_archive(_lowerCAmelCase ) , start=1 ):
for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(_lowerCAmelCase ) , start=1 ):
_test_jsonl(_lowerCAmelCase , _lowerCAmelCase )
assert num_tar == 1
assert num_jsonl == 2
def __snake_case( _lowerCAmelCase ) -> List[str]:
snake_case__ : List[str] = DownloadManager()
for num_file, file in enumerate(dl_manager.iter_files(_lowerCAmelCase ) , start=1 ):
assert os.path.basename(_lowerCAmelCase ) == ("test.txt" if num_file == 1 else "train.txt")
assert num_file == 2
| 360
|
'''simple docstring'''
import argparse
from pathlib import Path
import torch
from packaging import version
from torch.onnx import export
from diffusers import AutoencoderKL
__a = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11")
def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False , ) -> List[Any]:
output_path.parent.mkdir(parents=_lowerCAmelCase , exist_ok=_lowerCAmelCase )
# PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11,
# so we check the torch version for backwards compatibility
if is_torch_less_than_1_11:
export(
_lowerCAmelCase , _lowerCAmelCase , f=output_path.as_posix() , input_names=_lowerCAmelCase , output_names=_lowerCAmelCase , dynamic_axes=_lowerCAmelCase , do_constant_folding=_lowerCAmelCase , use_external_data_format=_lowerCAmelCase , enable_onnx_checker=_lowerCAmelCase , opset_version=_lowerCAmelCase , )
else:
export(
_lowerCAmelCase , _lowerCAmelCase , f=output_path.as_posix() , input_names=_lowerCAmelCase , output_names=_lowerCAmelCase , dynamic_axes=_lowerCAmelCase , do_constant_folding=_lowerCAmelCase , opset_version=_lowerCAmelCase , )
@torch.no_grad()
def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = False ) -> int:
snake_case__ : str = torch.floataa if fpaa else torch.floataa
if fpaa and torch.cuda.is_available():
snake_case__ : List[Any] = """cuda"""
elif fpaa and not torch.cuda.is_available():
raise ValueError("""`float16` model export is only supported on GPUs with CUDA""" )
else:
snake_case__ : Tuple = """cpu"""
snake_case__ : int = Path(_lowerCAmelCase )
# VAE DECODER
snake_case__ : List[str] = AutoencoderKL.from_pretrained(model_path + """/vae""" )
snake_case__ : List[str] = vae_decoder.config.latent_channels
# forward only through the decoder part
snake_case__ : Dict = vae_decoder.decode
onnx_export(
_lowerCAmelCase , model_args=(
torch.randn(1 , _lowerCAmelCase , 25 , 25 ).to(device=_lowerCAmelCase , dtype=_lowerCAmelCase ),
False,
) , output_path=output_path / """vae_decoder""" / """model.onnx""" , ordered_input_names=["""latent_sample""", """return_dict"""] , output_names=["""sample"""] , dynamic_axes={
"""latent_sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""},
} , opset=_lowerCAmelCase , )
del vae_decoder
if __name__ == "__main__":
__a = argparse.ArgumentParser()
parser.add_argument(
"--model_path",
type=str,
required=True,
help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).",
)
parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.")
parser.add_argument(
"--opset",
default=14,
type=int,
help="The version of the ONNX operator set to use.",
)
parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode")
__a = parser.parse_args()
print(args.output_path)
convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
print("SD: Done: ONNX")
| 43
| 0
|
import argparse
import os
import shutil
from pathlib import Path
import onnx
import torch
from packaging import version
from torch.onnx import export
from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline
__A =version.parse(version.parse(torch.__version__).base_version) < version.parse('''1.11''')
def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=False , ):
output_path.parent.mkdir(parents=_a , exist_ok=_a )
# PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11,
# so we check the torch version for backwards compatibility
if is_torch_less_than_1_11:
export(
_a , _a , f=output_path.as_posix() , input_names=_a , output_names=_a , dynamic_axes=_a , do_constant_folding=_a , use_external_data_format=_a , enable_onnx_checker=_a , opset_version=_a , )
else:
export(
_a , _a , f=output_path.as_posix() , input_names=_a , output_names=_a , dynamic_axes=_a , do_constant_folding=_a , opset_version=_a , )
@torch.no_grad()
def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = False ):
lowerCamelCase_ = torch.floataa if fpaa else torch.floataa
if fpaa and torch.cuda.is_available():
lowerCamelCase_ = "cuda"
elif fpaa and not torch.cuda.is_available():
raise ValueError("`float16` model export is only supported on GPUs with CUDA" )
else:
lowerCamelCase_ = "cpu"
lowerCamelCase_ = StableDiffusionPipeline.from_pretrained(_a , torch_dtype=_a ).to(_a )
lowerCamelCase_ = Path(_a )
# TEXT ENCODER
lowerCamelCase_ = pipeline.text_encoder.config.max_position_embeddings
lowerCamelCase_ = pipeline.text_encoder.config.hidden_size
lowerCamelCase_ = pipeline.tokenizer(
"A sample prompt" , padding="max_length" , max_length=pipeline.tokenizer.model_max_length , truncation=_a , return_tensors="pt" , )
onnx_export(
pipeline.text_encoder , model_args=(text_input.input_ids.to(device=_a , dtype=torch.intaa )) , output_path=output_path / "text_encoder" / "model.onnx" , ordered_input_names=["input_ids"] , output_names=["last_hidden_state", "pooler_output"] , dynamic_axes={
"input_ids": {0: "batch", 1: "sequence"},
} , opset=_a , )
del pipeline.text_encoder
# UNET
lowerCamelCase_ = pipeline.unet.config.in_channels
lowerCamelCase_ = pipeline.unet.config.sample_size
lowerCamelCase_ = output_path / "unet" / "model.onnx"
onnx_export(
pipeline.unet , model_args=(
torch.randn(2 , _a , _a , _a ).to(device=_a , dtype=_a ),
torch.randn(2 ).to(device=_a , dtype=_a ),
torch.randn(2 , _a , _a ).to(device=_a , dtype=_a ),
False,
) , output_path=_a , ordered_input_names=["sample", "timestep", "encoder_hidden_states", "return_dict"] , output_names=["out_sample"] , dynamic_axes={
"sample": {0: "batch", 1: "channels", 2: "height", 3: "width"},
"timestep": {0: "batch"},
"encoder_hidden_states": {0: "batch", 1: "sequence"},
} , opset=_a , use_external_data_format=_a , )
lowerCamelCase_ = str(unet_path.absolute().as_posix() )
lowerCamelCase_ = os.path.dirname(_a )
lowerCamelCase_ = onnx.load(_a )
# clean up existing tensor files
shutil.rmtree(_a )
os.mkdir(_a )
# collate external tensor files into one
onnx.save_model(
_a , _a , save_as_external_data=_a , all_tensors_to_one_file=_a , location="weights.pb" , convert_attribute=_a , )
del pipeline.unet
# VAE ENCODER
lowerCamelCase_ = pipeline.vae
lowerCamelCase_ = vae_encoder.config.in_channels
lowerCamelCase_ = vae_encoder.config.sample_size
# need to get the raw tensor output (sample) from the encoder
lowerCamelCase_ = lambda lowerCamelCase__ , lowerCamelCase__ : vae_encoder.encode(_a , _a )[0].sample()
onnx_export(
_a , model_args=(
torch.randn(1 , _a , _a , _a ).to(device=_a , dtype=_a ),
False,
) , output_path=output_path / "vae_encoder" / "model.onnx" , ordered_input_names=["sample", "return_dict"] , output_names=["latent_sample"] , dynamic_axes={
"sample": {0: "batch", 1: "channels", 2: "height", 3: "width"},
} , opset=_a , )
# VAE DECODER
lowerCamelCase_ = pipeline.vae
lowerCamelCase_ = vae_decoder.config.latent_channels
lowerCamelCase_ = vae_decoder.config.out_channels
# forward only through the decoder part
lowerCamelCase_ = vae_encoder.decode
onnx_export(
_a , model_args=(
torch.randn(1 , _a , _a , _a ).to(device=_a , dtype=_a ),
False,
) , output_path=output_path / "vae_decoder" / "model.onnx" , ordered_input_names=["latent_sample", "return_dict"] , output_names=["sample"] , dynamic_axes={
"latent_sample": {0: "batch", 1: "channels", 2: "height", 3: "width"},
} , opset=_a , )
del pipeline.vae
# SAFETY CHECKER
if pipeline.safety_checker is not None:
lowerCamelCase_ = pipeline.safety_checker
lowerCamelCase_ = safety_checker.config.vision_config.num_channels
lowerCamelCase_ = safety_checker.config.vision_config.image_size
lowerCamelCase_ = safety_checker.forward_onnx
onnx_export(
pipeline.safety_checker , model_args=(
torch.randn(
1 , _a , _a , _a , ).to(device=_a , dtype=_a ),
torch.randn(1 , _a , _a , _a ).to(device=_a , dtype=_a ),
) , output_path=output_path / "safety_checker" / "model.onnx" , ordered_input_names=["clip_input", "images"] , output_names=["out_images", "has_nsfw_concepts"] , dynamic_axes={
"clip_input": {0: "batch", 1: "channels", 2: "height", 3: "width"},
"images": {0: "batch", 1: "height", 2: "width", 3: "channels"},
} , opset=_a , )
del pipeline.safety_checker
lowerCamelCase_ = OnnxRuntimeModel.from_pretrained(output_path / "safety_checker" )
lowerCamelCase_ = pipeline.feature_extractor
else:
lowerCamelCase_ = None
lowerCamelCase_ = None
lowerCamelCase_ = OnnxStableDiffusionPipeline(
vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / "vae_encoder" ) , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / "vae_decoder" ) , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / "text_encoder" ) , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / "unet" ) , scheduler=pipeline.scheduler , safety_checker=_a , feature_extractor=_a , requires_safety_checker=safety_checker is not None , )
onnx_pipeline.save_pretrained(_a )
print("ONNX pipeline saved to" , _a )
del pipeline
del onnx_pipeline
lowerCamelCase_ = OnnxStableDiffusionPipeline.from_pretrained(_a , provider="CPUExecutionProvider" )
print("ONNX pipeline is loadable" )
if __name__ == "__main__":
__A =argparse.ArgumentParser()
parser.add_argument(
'''--model_path''',
type=str,
required=True,
help='''Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).''',
)
parser.add_argument('''--output_path''', type=str, required=True, help='''Path to the output model.''')
parser.add_argument(
'''--opset''',
default=1_4,
type=int,
help='''The version of the ONNX operator set to use.''',
)
parser.add_argument('''--fp16''', action='''store_true''', default=False, help='''Export the models in `float16` mode''')
__A =parser.parse_args()
convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
| 19
|
from collections.abc import Callable
import numpy as np
def lowerCamelCase__ ( _a , _a , _a , _a , _a):
SCREAMING_SNAKE_CASE : Dict = int(np.ceil((x_end - xa) / step_size))
SCREAMING_SNAKE_CASE : Tuple = np.zeros((n + 1,))
SCREAMING_SNAKE_CASE : int = ya
SCREAMING_SNAKE_CASE : int = xa
for k in range(_a):
SCREAMING_SNAKE_CASE : Any = y[k] + step_size * ode_func(_a , y[k])
x += step_size
return y
if __name__ == "__main__":
import doctest
doctest.testmod()
| 76
| 0
|
'''simple docstring'''
import math_equivalence # From: git+https://github.com/hendrycks/math.git
import datasets
__lowerCAmelCase = '''\
@article{hendrycksmath2021,
title={Measuring Mathematical Problem Solving With the MATH Dataset},
author={Dan Hendrycks
and Collin Burns
and Saurav Kadavath
and Akul Arora
and Steven Basart
and Eric Tang
and Dawn Song
and Jacob Steinhardt},
journal={arXiv preprint arXiv:2103.03874},
year={2021}
}
'''
__lowerCAmelCase = '''\
This metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.
It first canonicalizes the inputs (e.g., converting "1/2" to "\\frac{1}{2}") and then computes accuracy.
'''
__lowerCAmelCase = r'''
Calculates accuracy after canonicalizing inputs.
Args:
predictions: list of predictions to score. Each prediction
is a string that contains natural language and LaTex.
references: list of reference for each prediction. Each
reference is a string that contains natural language
and LaTex.
Returns:
accuracy: accuracy after canonicalizing inputs
(e.g., converting "1/2" to "\\frac{1}{2}")
Examples:
>>> metric = datasets.load_metric("competition_math")
>>> results = metric.compute(references=["\\frac{1}{2}"], predictions=["1/2"])
>>> print(results)
{\'accuracy\': 1.0}
'''
@datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __magic_name__ ( datasets.Metric ):
def __lowercase ( self : Optional[int] ):
return datasets.MetricInfo(
description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(
{
'predictions': datasets.Value('string' ),
'references': datasets.Value('string' ),
} ) ,homepage='https://github.com/hendrycks/math' ,codebase_urls=['https://github.com/hendrycks/math'] ,)
def __lowercase ( self : Union[str, Any] ,_UpperCAmelCase : int ,_UpperCAmelCase : List[Any] ):
_a : Any = 0.0
for i, j in zip(_UpperCAmelCase ,_UpperCAmelCase ):
n_correct += 1.0 if math_equivalence.is_equiv(_UpperCAmelCase ,_UpperCAmelCase ) else 0.0
_a : str = n_correct / len(_UpperCAmelCase )
return {
"accuracy": accuracy,
}
| 352
|
'''simple docstring'''
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from tensorflow.python.eager import context
from tensorflow.python.framework import ops
from transformers import GradientAccumulator, create_optimizer
@require_tf
class __magic_name__ ( unittest.TestCase ):
def __lowercase ( self : int ,_UpperCAmelCase : int ,_UpperCAmelCase : str ,_UpperCAmelCase : Optional[Any] ):
self.assertEqual(len(_UpperCAmelCase ) ,len(_UpperCAmelCase ) )
for a, b in zip(_UpperCAmelCase ,_UpperCAmelCase ):
self.assertAlmostEqual(_UpperCAmelCase ,_UpperCAmelCase ,delta=_UpperCAmelCase )
def __lowercase ( self : int ):
_a : int = GradientAccumulator()
accumulator([tf.constant([1.0, 2.0] )] )
accumulator([tf.constant([-2.0, 1.0] )] )
accumulator([tf.constant([-1.0, 2.0] )] )
with self.assertRaises(_UpperCAmelCase ):
accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] )
self.assertEqual(accumulator.step ,3 )
self.assertEqual(len(accumulator.gradients ) ,1 )
self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() ,[-2.0, 5.0] ,tol=1E-2 )
accumulator.reset()
self.assertEqual(accumulator.step ,0 )
self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() ,[0.0, 0.0] ,tol=1E-2 )
def __lowercase ( self : Any ):
_a : int = None
ops.enable_eager_execution_internal()
_a : Optional[int] = tf.config.list_physical_devices('CPU' )
if len(_UpperCAmelCase ) == 1:
tf.config.set_logical_device_configuration(
physical_devices[0] ,[tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] )
_a : Tuple = tf.config.list_logical_devices(device_type='CPU' )
_a : List[str] = tf.distribute.MirroredStrategy(devices=devices[:2] )
with strategy.scope():
_a : Tuple = GradientAccumulator()
_a : List[Any] = tf.Variable([4.0, 3.0] )
_a , _a : Dict = create_optimizer(5E-5 ,10 ,5 )
_a : Tuple = tf.Variable([0.0, 0.0] ,trainable=_UpperCAmelCase )
def accumulate_on_replica(_UpperCAmelCase : str ):
accumulator([gradient] )
def apply_on_replica():
optimizer.apply_gradients(list(zip(accumulator.gradients ,[variable] ) ) )
@tf.function
def accumulate(_UpperCAmelCase : Optional[int] ,_UpperCAmelCase : Optional[int] ):
with strategy.scope():
_a : Union[str, Any] = strategy.experimental_local_results(_UpperCAmelCase )
local_variables[0].assign(_UpperCAmelCase )
local_variables[1].assign(_UpperCAmelCase )
strategy.run(_UpperCAmelCase ,args=(gradient_placeholder,) )
@tf.function
def apply_grad():
with strategy.scope():
strategy.run(_UpperCAmelCase )
def _check_local_values(_UpperCAmelCase : Tuple ,_UpperCAmelCase : List[str] ):
_a : List[Any] = strategy.experimental_local_results(accumulator._gradients[0] )
self.assertListAlmostEqual(values[0].value() ,_UpperCAmelCase ,tol=1E-2 )
self.assertListAlmostEqual(values[1].value() ,_UpperCAmelCase ,tol=1E-2 )
accumulate([1.0, 2.0] ,[-1.0, 1.0] )
accumulate([3.0, -1.0] ,[-1.0, -1.0] )
accumulate([-2.0, 2.0] ,[3.0, -2.0] )
self.assertEqual(accumulator.step ,3 )
_check_local_values([2.0, 3.0] ,[1.0, -2.0] )
apply_grad()
self.assertListAlmostEqual(variable.value() ,[4.0, 3.0] ,tol=1E-2 )
accumulator.reset()
self.assertEqual(accumulator.step ,0 )
_check_local_values([0.0, 0.0] ,[0.0, 0.0] )
| 107
| 0
|
'''simple docstring'''
import unittest
import numpy as np
from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING
from transformers.pipelines import AudioClassificationPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_torchaudio,
slow,
)
from .test_pipelines_common import ANY
@is_pipeline_test
class a__ ( unittest.TestCase ):
"""simple docstring"""
__UpperCamelCase : Optional[int] = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING
__UpperCamelCase : str = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING
def _snake_case (self , __lowercase , __lowercase , __lowercase ):
__lowerCAmelCase = AudioClassificationPipeline(model=__lowerCAmelCase , feature_extractor=__lowerCAmelCase )
# test with a raw waveform
__lowerCAmelCase = np.zeros((3_40_00,) )
__lowerCAmelCase = np.zeros((1_40_00,) )
return audio_classifier, [audioa, audio]
def _snake_case (self , __lowercase , __lowercase ):
__lowerCAmelCase , __lowerCAmelCase = examples
__lowerCAmelCase = audio_classifier(__lowerCAmelCase )
# by default a model is initialized with num_labels=2
self.assertEqual(
__lowerCAmelCase , [
{'''score''': ANY(__lowerCAmelCase ), '''label''': ANY(__lowerCAmelCase )},
{'''score''': ANY(__lowerCAmelCase ), '''label''': ANY(__lowerCAmelCase )},
] , )
__lowerCAmelCase = audio_classifier(__lowerCAmelCase , top_k=1 )
self.assertEqual(
__lowerCAmelCase , [
{'''score''': ANY(__lowerCAmelCase ), '''label''': ANY(__lowerCAmelCase )},
] , )
self.run_torchaudio(__lowerCAmelCase )
@require_torchaudio
def _snake_case (self , __lowercase ):
import datasets
# test with a local file
__lowerCAmelCase = datasets.load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' )
__lowerCAmelCase = dataset[0]['''audio''']['''array''']
__lowerCAmelCase = audio_classifier(__lowerCAmelCase )
self.assertEqual(
__lowerCAmelCase , [
{'''score''': ANY(__lowerCAmelCase ), '''label''': ANY(__lowerCAmelCase )},
{'''score''': ANY(__lowerCAmelCase ), '''label''': ANY(__lowerCAmelCase )},
] , )
@require_torch
def _snake_case (self ):
__lowerCAmelCase = '''anton-l/wav2vec2-random-tiny-classifier'''
__lowerCAmelCase = pipeline('''audio-classification''' , model=__lowerCAmelCase )
__lowerCAmelCase = np.ones((80_00,) )
__lowerCAmelCase = audio_classifier(__lowerCAmelCase , top_k=4 )
__lowerCAmelCase = [
{'''score''': 0.0_8_4_2, '''label''': '''no'''},
{'''score''': 0.0_8_3_8, '''label''': '''up'''},
{'''score''': 0.0_8_3_7, '''label''': '''go'''},
{'''score''': 0.0_8_3_4, '''label''': '''right'''},
]
__lowerCAmelCase = [
{'''score''': 0.0_8_4_5, '''label''': '''stop'''},
{'''score''': 0.0_8_4_4, '''label''': '''on'''},
{'''score''': 0.0_8_4_1, '''label''': '''right'''},
{'''score''': 0.0_8_3_4, '''label''': '''left'''},
]
self.assertIn(nested_simplify(__lowerCAmelCase , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] )
__lowerCAmelCase = {'''array''': np.ones((80_00,) ), '''sampling_rate''': audio_classifier.feature_extractor.sampling_rate}
__lowerCAmelCase = audio_classifier(__lowerCAmelCase , top_k=4 )
self.assertIn(nested_simplify(__lowerCAmelCase , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] )
@require_torch
@slow
def _snake_case (self ):
import datasets
__lowerCAmelCase = '''superb/wav2vec2-base-superb-ks'''
__lowerCAmelCase = pipeline('''audio-classification''' , model=__lowerCAmelCase )
__lowerCAmelCase = datasets.load_dataset('''anton-l/superb_dummy''' , '''ks''' , split='''test''' )
__lowerCAmelCase = np.array(dataset[3]['''speech'''] , dtype=np.floataa )
__lowerCAmelCase = audio_classifier(__lowerCAmelCase , top_k=4 )
self.assertEqual(
nested_simplify(__lowerCAmelCase , decimals=3 ) , [
{'''score''': 0.9_8_1, '''label''': '''go'''},
{'''score''': 0.0_0_7, '''label''': '''up'''},
{'''score''': 0.0_0_6, '''label''': '''_unknown_'''},
{'''score''': 0.0_0_1, '''label''': '''down'''},
] , )
@require_tf
@unittest.skip('''Audio classification is not implemented for TF''' )
def _snake_case (self ):
pass
| 174
|
"""simple docstring"""
import argparse
import json
import subprocess
def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple , lowerCAmelCase__ :List[Any] ) -> Optional[Any]:
'''simple docstring'''
lowercase = []
lowercase = (
f'curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"'
""" https://api.github.com/repos/huggingface/transformers/actions/runners"""
)
lowercase = subprocess.run(lowerCAmelCase__ , shell=lowerCAmelCase__ , stdout=subprocess.PIPE )
lowercase = output.stdout.decode("""utf-8""" )
lowercase = json.loads(lowerCAmelCase__ )
lowercase = status["""runners"""]
for runner in runners:
if runner["name"] in target_runners:
if runner["status"] == "offline":
offline_runners.append(lowerCAmelCase__ )
# save the result so we can report them on Slack
with open("""offline_runners.txt""" , """w""" ) as fp:
fp.write(json.dumps(lowerCAmelCase__ ) )
if len(lowerCAmelCase__ ) > 0:
lowercase = """\n""".join([x["""name"""] for x in offline_runners] )
raise ValueError(f'The following runners are offline:\n{failed}' )
if __name__ == "__main__":
def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[int] ) -> Tuple:
'''simple docstring'''
return values.split(""",""" )
__lowerCAmelCase : str =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--target_runners""",
default=None,
type=list_str,
required=True,
help="""Comma-separated list of runners to check status.""",
)
parser.add_argument(
"""--token""", default=None, type=str, required=True, help="""A token that has actions:read permission."""
)
__lowerCAmelCase : str =parser.parse_args()
get_runner_status(args.target_runners, args.token)
| 197
| 0
|
'''simple docstring'''
import inspect
import unittest
from transformers import SegformerConfig, is_torch_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_MAPPING,
SegformerForImageClassification,
SegformerForSemanticSegmentation,
SegformerModel,
)
from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import SegformerImageProcessor
class a__ ( a__ ):
'''simple docstring'''
def __SCREAMING_SNAKE_CASE ( self ) -> List[str]:
lowerCAmelCase__ = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(lowerCamelCase_ , '''hidden_sizes''' ) )
self.parent.assertTrue(hasattr(lowerCamelCase_ , '''num_attention_heads''' ) )
self.parent.assertTrue(hasattr(lowerCamelCase_ , '''num_encoder_blocks''' ) )
class a__ :
'''simple docstring'''
def __init__( self , lowerCamelCase_ , lowerCamelCase_=13 , lowerCamelCase_=64 , lowerCamelCase_=3 , lowerCamelCase_=4 , lowerCamelCase_=[2, 2, 2, 2] , lowerCamelCase_=[8, 4, 2, 1] , lowerCamelCase_=[16, 32, 64, 1_28] , lowerCamelCase_=[1, 4, 8, 16] , lowerCamelCase_=[1, 2, 4, 8] , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=0.02 , lowerCamelCase_=3 , lowerCamelCase_=None , ) -> List[str]:
lowerCAmelCase__ = parent
lowerCAmelCase__ = batch_size
lowerCAmelCase__ = image_size
lowerCAmelCase__ = num_channels
lowerCAmelCase__ = num_encoder_blocks
lowerCAmelCase__ = sr_ratios
lowerCAmelCase__ = depths
lowerCAmelCase__ = hidden_sizes
lowerCAmelCase__ = downsampling_rates
lowerCAmelCase__ = num_attention_heads
lowerCAmelCase__ = is_training
lowerCAmelCase__ = use_labels
lowerCAmelCase__ = hidden_act
lowerCAmelCase__ = hidden_dropout_prob
lowerCAmelCase__ = attention_probs_dropout_prob
lowerCAmelCase__ = initializer_range
lowerCAmelCase__ = num_labels
lowerCAmelCase__ = scope
def __SCREAMING_SNAKE_CASE ( self ) -> str:
lowerCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCAmelCase__ = None
if self.use_labels:
lowerCAmelCase__ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
lowerCAmelCase__ = self.get_config()
return config, pixel_values, labels
def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]:
return SegformerConfig(
image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , )
def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Optional[Any]:
lowerCAmelCase__ = SegformerModel(config=lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
lowerCAmelCase__ = model(lowerCamelCase_ )
lowerCAmelCase__ = lowerCAmelCase__ = self.image_size // (self.downsampling_rates[-1] * 2)
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) )
def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> str:
lowerCAmelCase__ = self.num_labels
lowerCAmelCase__ = SegformerForSemanticSegmentation(lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
lowerCAmelCase__ = model(lowerCamelCase_ )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) )
lowerCAmelCase__ = model(lowerCamelCase_ , labels=lowerCamelCase_ )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) )
self.parent.assertGreater(result.loss , 0.0 )
def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Dict:
lowerCAmelCase__ = 1
lowerCAmelCase__ = SegformerForSemanticSegmentation(config=lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
lowerCAmelCase__ = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(lowerCamelCase_ )
lowerCAmelCase__ = model(lowerCamelCase_ , labels=lowerCamelCase_ )
self.parent.assertGreater(result.loss , 0.0 )
def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]:
lowerCAmelCase__ = self.prepare_config_and_inputs()
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = config_and_inputs
lowerCAmelCase__ = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class a__ ( a__ , a__ , unittest.TestCase ):
'''simple docstring'''
lowercase__ : Optional[int] = (
(
SegformerModel,
SegformerForSemanticSegmentation,
SegformerForImageClassification,
)
if is_torch_available()
else ()
)
lowercase__ : Dict = (
{
"feature-extraction": SegformerModel,
"image-classification": SegformerForImageClassification,
"image-segmentation": SegformerForSemanticSegmentation,
}
if is_torch_available()
else {}
)
lowercase__ : str = True
lowercase__ : str = False
lowercase__ : str = False
lowercase__ : Any = False
def __SCREAMING_SNAKE_CASE ( self ) -> Dict:
lowerCAmelCase__ = SegformerModelTester(self )
lowerCAmelCase__ = SegformerConfigTester(self , config_class=lowerCamelCase_ )
def __SCREAMING_SNAKE_CASE ( self ) -> Dict:
self.config_tester.run_common_tests()
def __SCREAMING_SNAKE_CASE ( self ) -> int:
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCamelCase_ )
def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]:
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_binary_image_segmentation(*lowerCamelCase_ )
def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]:
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_segmentation(*lowerCamelCase_ )
@unittest.skip('''SegFormer does not use inputs_embeds''' )
def __SCREAMING_SNAKE_CASE ( self ) -> Dict:
pass
@unittest.skip('''SegFormer does not have get_input_embeddings method and get_output_embeddings methods''' )
def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]:
pass
def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]:
lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase__ = model_class(lowerCamelCase_ )
lowerCAmelCase__ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCAmelCase__ = [*signature.parameters.keys()]
lowerCAmelCase__ = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , lowerCamelCase_ )
def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]:
lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowerCAmelCase__ = True
for model_class in self.all_model_classes:
lowerCAmelCase__ = True
lowerCAmelCase__ = False
lowerCAmelCase__ = True
lowerCAmelCase__ = model_class(lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
with torch.no_grad():
lowerCAmelCase__ = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) )
lowerCAmelCase__ = outputs.attentions
lowerCAmelCase__ = sum(self.model_tester.depths )
self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
lowerCAmelCase__ = True
lowerCAmelCase__ = model_class(lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
with torch.no_grad():
lowerCAmelCase__ = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) )
lowerCAmelCase__ = outputs.attentions
self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ )
# verify the first attentions (first block, first layer)
lowerCAmelCase__ = (self.model_tester.image_size // 4) ** 2
lowerCAmelCase__ = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , )
# verify the last attentions (last block, last layer)
lowerCAmelCase__ = (self.model_tester.image_size // 32) ** 2
lowerCAmelCase__ = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2
self.assertListEqual(
list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , )
lowerCAmelCase__ = len(lowerCamelCase_ )
# Check attention is always last and order is fine
lowerCAmelCase__ = True
lowerCAmelCase__ = True
lowerCAmelCase__ = model_class(lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
with torch.no_grad():
lowerCAmelCase__ = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) )
self.assertEqual(out_len + 1 , len(lowerCamelCase_ ) )
lowerCAmelCase__ = outputs.attentions
self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ )
# verify the first attentions (first block, first layer)
lowerCAmelCase__ = (self.model_tester.image_size // 4) ** 2
lowerCAmelCase__ = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , )
def __SCREAMING_SNAKE_CASE ( self ) -> str:
def check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ):
lowerCAmelCase__ = model_class(lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
with torch.no_grad():
lowerCAmelCase__ = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) )
lowerCAmelCase__ = outputs.hidden_states
lowerCAmelCase__ = self.model_tester.num_encoder_blocks
self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ )
# verify the first hidden states (first block)
self.assertListEqual(
list(hidden_states[0].shape[-3:] ) , [
self.model_tester.hidden_sizes[0],
self.model_tester.image_size // 4,
self.model_tester.image_size // 4,
] , )
lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase__ = True
check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowerCAmelCase__ = True
check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]:
if not self.model_tester.is_training:
return
lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowerCAmelCase__ = True
for model_class in self.all_model_classes:
if model_class in get_values(lowerCamelCase_ ):
continue
lowerCAmelCase__ = model_class(lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.train()
lowerCAmelCase__ = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ , return_labels=lowerCamelCase_ )
lowerCAmelCase__ = model(**lowerCamelCase_ ).loss
loss.backward()
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' )
def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]:
pass
@slow
def __SCREAMING_SNAKE_CASE ( self ) -> List[str]:
for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase__ = SegformerModel.from_pretrained(lowerCamelCase_ )
self.assertIsNotNone(lowerCamelCase_ )
def _snake_case ( ) -> str:
lowerCAmelCase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
class a__ ( unittest.TestCase ):
'''simple docstring'''
@slow
def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]:
# only resize + normalize
lowerCAmelCase__ = SegformerImageProcessor(
image_scale=(5_12, 5_12) , keep_ratio=lowerCamelCase_ , align=lowerCamelCase_ , do_random_crop=lowerCamelCase_ )
lowerCAmelCase__ = SegformerForSemanticSegmentation.from_pretrained('''nvidia/segformer-b0-finetuned-ade-512-512''' ).to(
lowerCamelCase_ )
lowerCAmelCase__ = prepare_img()
lowerCAmelCase__ = image_processor(images=lowerCamelCase_ , return_tensors='''pt''' )
lowerCAmelCase__ = encoded_inputs.pixel_values.to(lowerCamelCase_ )
with torch.no_grad():
lowerCAmelCase__ = model(lowerCamelCase_ )
lowerCAmelCase__ = torch.Size((1, model.config.num_labels, 1_28, 1_28) )
self.assertEqual(outputs.logits.shape , lowerCamelCase_ )
lowerCAmelCase__ = torch.tensor(
[
[[-4.6_310, -5.5_232, -6.2_356], [-5.1_921, -6.1_444, -6.5_996], [-5.4_424, -6.2_790, -6.7_574]],
[[-12.1_391, -13.3_122, -13.9_554], [-12.8_732, -13.9_352, -14.3_563], [-12.9_438, -13.8_226, -14.2_513]],
[[-12.5_134, -13.4_686, -14.4_915], [-12.8_669, -14.4_343, -14.7_758], [-13.2_523, -14.5_819, -15.0_694]],
] ).to(lowerCamelCase_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , lowerCamelCase_ , atol=1e-4 ) )
@slow
def __SCREAMING_SNAKE_CASE ( self ) -> str:
# only resize + normalize
lowerCAmelCase__ = SegformerImageProcessor(
image_scale=(5_12, 5_12) , keep_ratio=lowerCamelCase_ , align=lowerCamelCase_ , do_random_crop=lowerCamelCase_ )
lowerCAmelCase__ = SegformerForSemanticSegmentation.from_pretrained(
'''nvidia/segformer-b1-finetuned-cityscapes-1024-1024''' ).to(lowerCamelCase_ )
lowerCAmelCase__ = prepare_img()
lowerCAmelCase__ = image_processor(images=lowerCamelCase_ , return_tensors='''pt''' )
lowerCAmelCase__ = encoded_inputs.pixel_values.to(lowerCamelCase_ )
with torch.no_grad():
lowerCAmelCase__ = model(lowerCamelCase_ )
lowerCAmelCase__ = torch.Size((1, model.config.num_labels, 1_28, 1_28) )
self.assertEqual(outputs.logits.shape , lowerCamelCase_ )
lowerCAmelCase__ = torch.tensor(
[
[[-13.5_748, -13.9_111, -12.6_500], [-14.3_500, -15.3_683, -14.2_328], [-14.7_532, -16.0_424, -15.6_087]],
[[-17.1_651, -15.8_725, -12.9_653], [-17.2_580, -17.3_718, -14.8_223], [-16.6_058, -16.8_783, -16.7_452]],
[[-3.6_456, -3.0_209, -1.4_203], [-3.0_797, -3.1_959, -2.0_000], [-1.8_757, -1.9_217, -1.6_997]],
] ).to(lowerCamelCase_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , lowerCamelCase_ , atol=1e-1 ) )
@slow
def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]:
# only resize + normalize
lowerCAmelCase__ = SegformerImageProcessor(
image_scale=(5_12, 5_12) , keep_ratio=lowerCamelCase_ , align=lowerCamelCase_ , do_random_crop=lowerCamelCase_ )
lowerCAmelCase__ = SegformerForSemanticSegmentation.from_pretrained('''nvidia/segformer-b0-finetuned-ade-512-512''' ).to(
lowerCamelCase_ )
lowerCAmelCase__ = prepare_img()
lowerCAmelCase__ = image_processor(images=lowerCamelCase_ , return_tensors='''pt''' )
lowerCAmelCase__ = encoded_inputs.pixel_values.to(lowerCamelCase_ )
with torch.no_grad():
lowerCAmelCase__ = model(lowerCamelCase_ )
lowerCAmelCase__ = outputs.logits.detach().cpu()
lowerCAmelCase__ = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase_ , target_sizes=[(5_00, 3_00)] )
lowerCAmelCase__ = torch.Size((5_00, 3_00) )
self.assertEqual(segmentation[0].shape , lowerCamelCase_ )
lowerCAmelCase__ = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase_ )
lowerCAmelCase__ = torch.Size((1_28, 1_28) )
self.assertEqual(segmentation[0].shape , lowerCamelCase_ )
| 228
|
'''simple docstring'''
def _snake_case ( A = 10 , A = 22 ) -> int:
lowerCAmelCase__ = range(1 , A )
lowerCAmelCase__ = range(1 , A )
return sum(
1 for power in powers for base in bases if len(str(base**power ) ) == power )
if __name__ == "__main__":
print(f"""{solution(10, 22) = }""")
| 228
| 1
|
"""simple docstring"""
from __future__ import annotations
import collections
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import is_tf_available, is_vision_available
from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask
from ..bert.test_modeling_tf_bert import TFBertModelTester
from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester
from ..deit.test_modeling_tf_deit import TFDeiTModelTester
from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester
from ..vit.test_modeling_tf_vit import TFViTModelTester
if is_tf_available():
from transformers import (
TFBertModel,
TFCLIPVisionModel,
TFDeiTModel,
TFRobertaModel,
TFVisionTextDualEncoderModel,
TFViTModel,
VisionTextDualEncoderConfig,
)
if is_vision_available():
from PIL import Image
from transformers import VisionTextDualEncoderProcessor
def _snake_case ( lowercase__ ):
if isinstance(lowercase__ , collections.abc.Iterable ):
return x
return (x, x)
@require_tf
class lowerCAmelCase__ :
'''simple docstring'''
def A_ ( self , lowercase , lowercase ):
pass
def A_ ( self ):
pass
def A_ ( self ):
pass
def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase=None , **lowercase ):
_lowerCamelCase : Tuple = VisionTextDualEncoderConfig.from_vision_text_configs(lowercase , lowercase )
_lowerCamelCase : int = TFVisionTextDualEncoderModel(lowercase )
_lowerCamelCase : Optional[Any] = model(input_ids=lowercase , pixel_values=lowercase , attention_mask=lowercase )
self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], config.projection_dim) )
self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], config.projection_dim) )
def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase=None , **lowercase ):
_lowerCamelCase, _lowerCamelCase : Dict = self.get_vision_text_model(lowercase , lowercase )
_lowerCamelCase : Optional[Any] = TFVisionTextDualEncoderModel(vision_model=lowercase , text_model=lowercase )
_lowerCamelCase : List[str] = model(input_ids=lowercase , pixel_values=lowercase , attention_mask=lowercase )
self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) )
self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) )
def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase=None , **lowercase ):
_lowerCamelCase, _lowerCamelCase : List[Any] = self.get_vision_text_model(lowercase , lowercase )
_lowerCamelCase : Tuple = {'vision_model': vision_model, 'text_model': text_model}
_lowerCamelCase : Dict = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**lowercase )
_lowerCamelCase : Dict = model(input_ids=lowercase , pixel_values=lowercase , attention_mask=lowercase )
self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) )
self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) )
def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase=None , **lowercase ):
_lowerCamelCase, _lowerCamelCase : int = self.get_vision_text_model(lowercase , lowercase )
_lowerCamelCase : List[Any] = TFVisionTextDualEncoderModel(vision_model=lowercase , text_model=lowercase )
_lowerCamelCase : Union[str, Any] = model(input_ids=lowercase , pixel_values=lowercase , attention_mask=lowercase )
_lowerCamelCase : Union[str, Any] = output[0].numpy()
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(lowercase )
_lowerCamelCase : List[Any] = TFVisionTextDualEncoderModel.from_pretrained(lowercase )
_lowerCamelCase : Tuple = model(input_ids=lowercase , pixel_values=lowercase , attention_mask=lowercase )
_lowerCamelCase : List[str] = after_output[0].numpy()
_lowerCamelCase : Optional[int] = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(lowercase , 1E-5 )
def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase=None , **lowercase ):
_lowerCamelCase, _lowerCamelCase : List[Any] = self.get_vision_text_model(lowercase , lowercase )
_lowerCamelCase : List[str] = TFVisionTextDualEncoderModel(vision_model=lowercase , text_model=lowercase )
_lowerCamelCase : Tuple = model(
input_ids=lowercase , pixel_values=lowercase , attention_mask=lowercase , output_attentions=lowercase )
_lowerCamelCase : List[Any] = output.vision_model_output.attentions
self.assertEqual(len(lowercase ) , vision_config.num_hidden_layers )
# in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token)
_lowerCamelCase : Any = to_atuple(vision_model.config.image_size )
_lowerCamelCase : List[Any] = to_atuple(vision_model.config.patch_size )
_lowerCamelCase : Optional[int] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
_lowerCamelCase : Tuple = num_patches + 1
self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) )
_lowerCamelCase : Union[str, Any] = output.text_model_output.attentions
self.assertEqual(len(lowercase ) , text_config.num_hidden_layers )
self.assertEqual(
text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , )
def A_ ( self , lowercase , lowercase , lowercase ):
_lowerCamelCase : Tuple = np.abs((a - b) ).max()
self.assertLessEqual(lowercase , lowercase , F'''Difference between torch and flax is {diff} (>= {tol}).''' )
def A_ ( self ):
_lowerCamelCase : Any = self.prepare_config_and_inputs()
self.check_vision_text_dual_encoder_model(**lowercase )
def A_ ( self ):
_lowerCamelCase : Optional[Any] = self.prepare_config_and_inputs()
self.check_model_from_pretrained_configs(**lowercase )
def A_ ( self ):
_lowerCamelCase : Optional[int] = self.prepare_config_and_inputs()
self.check_vision_text_dual_encoder_from_pretrained(**lowercase )
def A_ ( self ):
_lowerCamelCase : List[Any] = self.prepare_config_and_inputs()
self.check_save_load(**lowercase )
def A_ ( self ):
_lowerCamelCase : Any = self.prepare_config_and_inputs()
self.check_vision_text_output_attention(**lowercase )
@slow
def A_ ( self ):
_lowerCamelCase, _lowerCamelCase : int = self.get_pretrained_model_and_inputs()
_lowerCamelCase : str = model_a(**lowercase )
_lowerCamelCase : List[Any] = outputs[0].numpy()
with tempfile.TemporaryDirectory() as tmp_dirname:
model_a.save_pretrained(lowercase )
_lowerCamelCase : List[Any] = TFVisionTextDualEncoderModel.from_pretrained(lowercase )
_lowerCamelCase : Union[str, Any] = model_a(**lowercase )
_lowerCamelCase : Optional[Any] = after_outputs[0].numpy()
_lowerCamelCase : Tuple = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(lowercase , 1E-5 )
@require_tf
class lowerCAmelCase__ ( lowercase, unittest.TestCase ):
'''simple docstring'''
def A_ ( self ):
_lowerCamelCase : Optional[Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained(
'hf-internal-testing/tiny-random-vit' , 'hf-internal-testing/tiny-random-bert' )
_lowerCamelCase : Tuple = 13
_lowerCamelCase : Tuple = floats_tensor(
[
batch_size,
model.vision_model.config.num_channels,
model.vision_model.config.image_size,
model.vision_model.config.image_size,
] )
_lowerCamelCase : Dict = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size )
_lowerCamelCase : int = random_attention_mask([batch_size, 4] )
_lowerCamelCase : Any = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask}
return model, inputs
def A_ ( self , lowercase , lowercase ):
_lowerCamelCase : int = TFViTModel(lowercase , name='vision_model' )
_lowerCamelCase : Union[str, Any] = TFBertModel(lowercase , name='text_model' )
return vision_model, text_model
def A_ ( self ):
_lowerCamelCase : Optional[int] = TFViTModelTester(self )
_lowerCamelCase : str = TFBertModelTester(self )
_lowerCamelCase : int = vit_model_tester.prepare_config_and_inputs()
_lowerCamelCase : str = bert_model_tester.prepare_config_and_inputs()
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Dict = vision_config_and_inputs
(
(
_lowerCamelCase
), (
_lowerCamelCase
), (
_lowerCamelCase
), (
_lowerCamelCase
), (
_lowerCamelCase
), (
_lowerCamelCase
), (
_lowerCamelCase
),
) : Union[str, Any] = text_config_and_inputs
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": input_mask,
"input_ids": input_ids,
"text_token_type_ids": token_type_ids,
"text_sequence_labels": sequence_labels,
"text_token_labels": token_labels,
"text_choice_labels": choice_labels,
}
@require_tf
class lowerCAmelCase__ ( lowercase, unittest.TestCase ):
'''simple docstring'''
def A_ ( self ):
# DeiT repo doesn't have TF weights, but we don't actually use the weights at all so let's
# just reinitialize it.
_lowerCamelCase : int = TFVisionTextDualEncoderModel.from_vision_text_pretrained(
'Rocketknight1/tiny-random-deit-tf' , 'hf-internal-testing/tiny-random-roberta' )
_lowerCamelCase : Tuple = 13
_lowerCamelCase : Tuple = floats_tensor(
[
batch_size,
model.vision_model.config.num_channels,
model.vision_model.config.image_size,
model.vision_model.config.image_size,
] )
_lowerCamelCase : Tuple = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size )
_lowerCamelCase : str = random_attention_mask([batch_size, 4] )
_lowerCamelCase : Optional[Any] = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask}
return model, inputs
def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase=None , **lowercase ):
_lowerCamelCase, _lowerCamelCase : Union[str, Any] = self.get_vision_text_model(lowercase , lowercase )
_lowerCamelCase : Dict = TFVisionTextDualEncoderModel(vision_model=lowercase , text_model=lowercase )
_lowerCamelCase : List[Any] = model(
input_ids=lowercase , pixel_values=lowercase , attention_mask=lowercase , output_attentions=lowercase )
_lowerCamelCase : Union[str, Any] = output.vision_model_output.attentions
self.assertEqual(len(lowercase ) , vision_config.num_hidden_layers )
# in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens)
_lowerCamelCase : Any = to_atuple(vision_model.config.image_size )
_lowerCamelCase : Union[str, Any] = to_atuple(vision_model.config.patch_size )
_lowerCamelCase : Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
_lowerCamelCase : Optional[int] = num_patches + 2
self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) )
_lowerCamelCase : List[Any] = output.text_model_output.attentions
self.assertEqual(len(lowercase ) , text_config.num_hidden_layers )
self.assertEqual(
text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , )
def A_ ( self , lowercase , lowercase ):
_lowerCamelCase : List[Any] = TFDeiTModel(lowercase , name='vision_model' )
_lowerCamelCase : List[str] = TFRobertaModel(lowercase , name='text_model' )
return vision_model, text_model
def A_ ( self ):
_lowerCamelCase : Any = TFDeiTModelTester(self )
_lowerCamelCase : Union[str, Any] = TFRobertaModelTester(self )
_lowerCamelCase : Optional[int] = vit_model_tester.prepare_config_and_inputs()
_lowerCamelCase : int = bert_model_tester.prepare_config_and_inputs()
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Dict = vision_config_and_inputs
(
(
_lowerCamelCase
), (
_lowerCamelCase
), (
_lowerCamelCase
), (
_lowerCamelCase
), (
_lowerCamelCase
), (
_lowerCamelCase
), (
_lowerCamelCase
),
) : Dict = text_config_and_inputs
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": input_mask,
"input_ids": input_ids,
"text_token_type_ids": token_type_ids,
"text_sequence_labels": sequence_labels,
"text_token_labels": token_labels,
"text_choice_labels": choice_labels,
}
@require_tf
class lowerCAmelCase__ ( lowercase, unittest.TestCase ):
'''simple docstring'''
def A_ ( self ):
_lowerCamelCase : Dict = TFVisionTextDualEncoderModel.from_vision_text_pretrained(
'Rocketknight1/tiny-random-clip-tf' , 'hf-internal-testing/tiny-random-bert' )
_lowerCamelCase : Any = 13
_lowerCamelCase : List[Any] = floats_tensor(
[
batch_size,
model.vision_model.config.num_channels,
model.vision_model.config.image_size,
model.vision_model.config.image_size,
] )
_lowerCamelCase : Any = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size )
_lowerCamelCase : List[Any] = random_attention_mask([batch_size, 4] )
_lowerCamelCase : List[Any] = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask}
return model, inputs
def A_ ( self , lowercase , lowercase ):
_lowerCamelCase : Optional[int] = TFCLIPVisionModel(lowercase , name='vision_model' )
_lowerCamelCase : List[str] = TFBertModel(lowercase , name='text_model' )
return vision_model, text_model
def A_ ( self ):
_lowerCamelCase : Union[str, Any] = TFCLIPVisionModelTester(self )
_lowerCamelCase : Optional[Any] = TFBertModelTester(self )
_lowerCamelCase : str = clip_model_tester.prepare_config_and_inputs()
_lowerCamelCase : Optional[int] = bert_model_tester.prepare_config_and_inputs()
_lowerCamelCase, _lowerCamelCase : List[Any] = vision_config_and_inputs
(
(
_lowerCamelCase
), (
_lowerCamelCase
), (
_lowerCamelCase
), (
_lowerCamelCase
), (
_lowerCamelCase
), (
_lowerCamelCase
), (
_lowerCamelCase
),
) : List[str] = text_config_and_inputs
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": input_mask,
"input_ids": input_ids,
"text_token_type_ids": token_type_ids,
"text_sequence_labels": sequence_labels,
"text_token_labels": token_labels,
"text_choice_labels": choice_labels,
}
@require_vision
@require_tf
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
@slow
def A_ ( self ):
_lowerCamelCase : List[str] = TFVisionTextDualEncoderModel.from_pretrained(
'clip-italian/clip-italian' , logit_scale_init_value=1.0 , from_pt=lowercase )
_lowerCamelCase : str = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian' )
_lowerCamelCase : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
_lowerCamelCase : List[Any] = processor(
text=['una foto di un gatto', 'una foto di un cane'] , images=lowercase , padding=lowercase , return_tensors='np' )
_lowerCamelCase : List[Any] = model(**lowercase )
# verify the logits
self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) )
self.assertEqual(
outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , )
_lowerCamelCase : int = np.array([[1.2_28_47_27, 0.3_10_41_22]] )
self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , lowercase , atol=1E-3 ) )
| 96
|
def lowerCAmelCase ( lowerCAmelCase_ = 10**9 )-> int:
lowerCAmelCase_ : List[Any] = 1
lowerCAmelCase_ : Optional[int] = 2
lowerCAmelCase_ : Any = 0
lowerCAmelCase_ : str = 0
lowerCAmelCase_ : str = 0
while perimeter <= max_perimeter:
perimeters_sum += perimeter
prev_value += 2 * value
value += prev_value
lowerCAmelCase_ : Any = 2 * value + 2 if i % 2 == 0 else 2 * value - 2
i += 1
return perimeters_sum
if __name__ == "__main__":
print(f"""{solution() = }""")
| 262
| 0
|
"""simple docstring"""
from transformers import BertTokenizerFast
from .custom_tokenization import CustomTokenizer
class _lowerCAmelCase ( a ):
"""simple docstring"""
__magic_name__ :Any = CustomTokenizer
pass
| 369
|
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
__A = logging.get_logger(__name__)
__A = {
"""microsoft/swin-tiny-patch4-window7-224""": (
"""https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json"""
),
# See all Swin models at https://huggingface.co/models?filter=swin
}
class _lowerCAmelCase ( a , a ):
"""simple docstring"""
__magic_name__ :int = """swin"""
__magic_name__ :Tuple = {
"""num_attention_heads""": """num_heads""",
"""num_hidden_layers""": """num_layers""",
}
def __init__( self , __UpperCAmelCase=2_2_4 , __UpperCAmelCase=4 , __UpperCAmelCase=3 , __UpperCAmelCase=9_6 , __UpperCAmelCase=[2, 2, 6, 2] , __UpperCAmelCase=[3, 6, 1_2, 2_4] , __UpperCAmelCase=7 , __UpperCAmelCase=4.0 , __UpperCAmelCase=True , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase="gelu" , __UpperCAmelCase=False , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-5 , __UpperCAmelCase=3_2 , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase , ):
'''simple docstring'''
super().__init__(**__UpperCAmelCase )
lowerCAmelCase__ :Any = image_size
lowerCAmelCase__ :List[Any] = patch_size
lowerCAmelCase__ :Optional[int] = num_channels
lowerCAmelCase__ :str = embed_dim
lowerCAmelCase__ :Optional[int] = depths
lowerCAmelCase__ :List[str] = len(__UpperCAmelCase )
lowerCAmelCase__ :Optional[Any] = num_heads
lowerCAmelCase__ :List[Any] = window_size
lowerCAmelCase__ :List[Any] = mlp_ratio
lowerCAmelCase__ :int = qkv_bias
lowerCAmelCase__ :Optional[int] = hidden_dropout_prob
lowerCAmelCase__ :int = attention_probs_dropout_prob
lowerCAmelCase__ :List[Any] = drop_path_rate
lowerCAmelCase__ :Any = hidden_act
lowerCAmelCase__ :Dict = use_absolute_embeddings
lowerCAmelCase__ :int = layer_norm_eps
lowerCAmelCase__ :Dict = initializer_range
lowerCAmelCase__ :int = encoder_stride
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
lowerCAmelCase__ :str = int(embed_dim * 2 ** (len(__UpperCAmelCase ) - 1) )
lowerCAmelCase__ :str = ['stem'] + [F"stage{idx}" for idx in range(1 , len(__UpperCAmelCase ) + 1 )]
lowerCAmelCase__ , lowerCAmelCase__ :List[Any] = get_aligned_output_features_output_indices(
out_features=__UpperCAmelCase , out_indices=__UpperCAmelCase , stage_names=self.stage_names )
class _lowerCAmelCase ( a ):
"""simple docstring"""
__magic_name__ :int = version.parse("""1.11""" )
@property
def snake_case ( self ):
'''simple docstring'''
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
@property
def snake_case ( self ):
'''simple docstring'''
return 1E-4
| 254
| 0
|
'''simple docstring'''
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxSeqaSeqConfigWithPast
from ...utils import logging
_lowercase : Optional[int] = logging.get_logger(__name__)
_lowercase : Any = {
"google/umt5-small": "https://huggingface.co/google/umt5-small/resolve/main/config.json",
# See all umt5 models at https://huggingface.co/models?filter=umt5
}
class lowerCAmelCase__ ( lowerCamelCase_ ):
lowerCAmelCase_ = '''umt5'''
lowerCAmelCase_ = ['''past_key_values''']
def __init__( self , __SCREAMING_SNAKE_CASE=25_01_12 , __SCREAMING_SNAKE_CASE=5_12 , __SCREAMING_SNAKE_CASE=64 , __SCREAMING_SNAKE_CASE=10_24 , __SCREAMING_SNAKE_CASE=8 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=6 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=1_28 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=1E-6 , __SCREAMING_SNAKE_CASE=1.0 , __SCREAMING_SNAKE_CASE="gated-gelu" , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE="T5Tokenizer" , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=0 , **__SCREAMING_SNAKE_CASE , ):
"""simple docstring"""
super().__init__(
is_encoder_decoder=__SCREAMING_SNAKE_CASE , tokenizer_class=__SCREAMING_SNAKE_CASE , tie_word_embeddings=__SCREAMING_SNAKE_CASE , pad_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , decoder_start_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , )
lowercase_ : List[str] = vocab_size
lowercase_ : Optional[Any] = d_model
lowercase_ : str = d_kv
lowercase_ : Any = d_ff
lowercase_ : Optional[Any] = num_layers
lowercase_ : Tuple = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
lowercase_ : Optional[Any] = num_heads
lowercase_ : int = relative_attention_num_buckets
lowercase_ : Tuple = relative_attention_max_distance
lowercase_ : Union[str, Any] = dropout_rate
lowercase_ : List[str] = layer_norm_epsilon
lowercase_ : str = initializer_factor
lowercase_ : int = feed_forward_proj
lowercase_ : Optional[Any] = use_cache
lowercase_ : Optional[Any] = self.feed_forward_proj.split('''-''' )
lowercase_ : List[str] = act_info[-1]
lowercase_ : List[str] = act_info[0] == '''gated'''
if len(__SCREAMING_SNAKE_CASE ) > 1 and act_info[0] != "gated" or len(__SCREAMING_SNAKE_CASE ) > 2:
raise ValueError(
F'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.'''
'''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. '''
'''\'gated-gelu\' or \'relu\'''' )
if feed_forward_proj == "gated-gelu":
lowercase_ : int = '''gelu_new'''
@property
def _snake_case ( self ):
"""simple docstring"""
return self.d_model
@property
def _snake_case ( self ):
"""simple docstring"""
return self.num_heads
@property
def _snake_case ( self ):
"""simple docstring"""
return self.num_layers
class lowerCAmelCase__ ( lowerCamelCase_ ):
@property
# Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs
def _snake_case ( self ):
"""simple docstring"""
lowercase_ : str = {
'''input_ids''': {0: '''batch''', 1: '''encoder_sequence'''},
'''attention_mask''': {0: '''batch''', 1: '''encoder_sequence'''},
}
if self.use_past:
lowercase_ : str = '''past_encoder_sequence + sequence'''
lowercase_ : Optional[int] = {0: '''batch'''}
lowercase_ : List[str] = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''}
else:
lowercase_ : List[Any] = {0: '''batch''', 1: '''decoder_sequence'''}
lowercase_ : Optional[Any] = {0: '''batch''', 1: '''decoder_sequence'''}
if self.use_past:
self.fill_with_past_key_values_(__SCREAMING_SNAKE_CASE , direction='''inputs''' )
return common_inputs
@property
# Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset
def _snake_case ( self ):
"""simple docstring"""
return 13
@property
def _snake_case ( self ):
"""simple docstring"""
return 5E-4
| 93
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
_lowercase : Union[str, Any] = {
"configuration_mask2former": [
"MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"Mask2FormerConfig",
],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Optional[int] = ["Mask2FormerImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : str = [
"MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"Mask2FormerForUniversalSegmentation",
"Mask2FormerModel",
"Mask2FormerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_maskaformer import MaskaFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_maskaformer import (
MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
MaskaFormerForUniversalSegmentation,
MaskaFormerModel,
MaskaFormerPreTrainedModel,
)
else:
import sys
_lowercase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 93
| 1
|
import argparse
import torch
from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ):
"""simple docstring"""
if gpta_config_file == "":
_lowerCAmelCase = GPTaConfig()
else:
_lowerCAmelCase = GPTaConfig.from_json_file(__snake_case )
_lowerCAmelCase = GPTaModel(__snake_case )
# Load weights from numpy
load_tf_weights_in_gpta(__snake_case , __snake_case , __snake_case )
# Save pytorch-model
_lowerCAmelCase = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME
_lowerCAmelCase = pytorch_dump_folder_path + """/""" + CONFIG_NAME
print(f"Save PyTorch model to {pytorch_weights_dump_path}" )
torch.save(model.state_dict() , __snake_case )
print(f"Save configuration file to {pytorch_config_dump_path}" )
with open(__snake_case , """w""" , encoding="""utf-8""" ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
A__ : Any =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--gpt2_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
parser.add_argument(
'''--gpt2_config_file''',
default='''''',
type=str,
help=(
'''An optional config json file corresponding to the pre-trained OpenAI model. \n'''
'''This specifies the model architecture.'''
),
)
A__ : List[Any] =parser.parse_args()
convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
| 356
|
'''simple docstring'''
import inspect
import os
import unittest
import torch
import accelerate
from accelerate import debug_launcher
from accelerate.test_utils import (
execute_subprocess_async,
require_cpu,
require_huggingface_suite,
require_multi_gpu,
require_single_gpu,
)
from accelerate.utils import patch_environment
@require_huggingface_suite
class UpperCAmelCase ( unittest.TestCase ):
def lowercase__ ( self : int ) -> Union[str, Any]:
_lowerCAmelCase = inspect.getfile(accelerate.test_utils )
_lowerCAmelCase = os.path.sep.join(
mod_file.split(os.path.sep )[:-1] + ["""scripts""", """external_deps""", """test_metrics.py"""] )
from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401
_lowerCAmelCase = test_metrics
@require_cpu
def lowercase__ ( self : Optional[Any] ) -> Optional[Any]:
debug_launcher(self.test_metrics.main , num_processes=1 )
@require_cpu
def lowercase__ ( self : Tuple ) -> Tuple:
debug_launcher(self.test_metrics.main )
@require_single_gpu
def lowercase__ ( self : Union[str, Any] ) -> str:
self.test_metrics.main()
@require_multi_gpu
def lowercase__ ( self : str ) -> List[str]:
print(f"Found {torch.cuda.device_count()} devices." )
_lowerCAmelCase = ["""torchrun""", f"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(__snake_case , env=os.environ.copy() )
| 220
| 0
|
'''simple docstring'''
from typing import Dict, Optional
import numpy as np
import datasets
_UpperCamelCase : Optional[Any] = '\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n'
_UpperCamelCase : List[str] = '\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric("mean_iou")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mean_iou\': 0.47750000000000004, \'mean_accuracy\': 0.5916666666666666, \'overall_accuracy\': 0.5263157894736842, \'per_category_iou\': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), \'per_category_accuracy\': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n'
_UpperCamelCase : Optional[int] = '\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}'
def __UpperCAmelCase ( A : Any , A : Optional[int] , A : List[str] , A : List[Any] , A : str = None , A : Tuple = False , ) -> int:
if label_map is not None:
for old_id, new_id in label_map.items():
UpperCAmelCase_ : Optional[int] = new_id
# turn into Numpy arrays
UpperCAmelCase_ : Dict = np.array(UpperCamelCase__ )
UpperCAmelCase_ : Any = np.array(UpperCamelCase__ )
if reduce_labels:
UpperCAmelCase_ : Optional[Any] = 2_5_5
UpperCAmelCase_ : List[Any] = label - 1
UpperCAmelCase_ : Any = 2_5_5
UpperCAmelCase_ : Dict = label != ignore_index
UpperCAmelCase_ : Optional[int] = np.not_equal(UpperCamelCase__ , UpperCamelCase__ )
UpperCAmelCase_ : Tuple = pred_label[mask]
UpperCAmelCase_ : Dict = np.array(UpperCamelCase__ )[mask]
UpperCAmelCase_ : List[str] = pred_label[pred_label == label]
UpperCAmelCase_ : Optional[Any] = np.histogram(UpperCamelCase__ , bins=UpperCamelCase__ , range=(0, num_labels - 1) )[0]
UpperCAmelCase_ : Tuple = np.histogram(UpperCamelCase__ , bins=UpperCamelCase__ , range=(0, num_labels - 1) )[0]
UpperCAmelCase_ : Optional[Any] = np.histogram(UpperCamelCase__ , bins=UpperCamelCase__ , range=(0, num_labels - 1) )[0]
UpperCAmelCase_ : List[Any] = area_pred_label + area_label - area_intersect
return area_intersect, area_union, area_pred_label, area_label
def __UpperCAmelCase ( A : Tuple , A : Dict , A : Tuple , A : List[Any] , A : Optional[Any] = None , A : List[str] = False , ) -> int:
UpperCAmelCase_ : Any = np.zeros((num_labels,) , dtype=np.floataa )
UpperCAmelCase_ : int = np.zeros((num_labels,) , dtype=np.floataa )
UpperCAmelCase_ : Optional[Any] = np.zeros((num_labels,) , dtype=np.floataa )
UpperCAmelCase_ : int = np.zeros((num_labels,) , dtype=np.floataa )
for result, gt_seg_map in zip(UpperCamelCase__ , UpperCamelCase__ ):
UpperCAmelCase_ : List[Any] = intersect_and_union(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
total_area_intersect += area_intersect
total_area_union += area_union
total_area_pred_label += area_pred_label
total_area_label += area_label
return total_area_intersect, total_area_union, total_area_pred_label, total_area_label
def __UpperCAmelCase ( A : Union[str, Any] , A : List[str] , A : Any , A : Union[str, Any] , A : Optional[int] = None , A : str = None , A : Tuple = False , ) -> Union[str, Any]:
UpperCAmelCase_ : str = total_intersect_and_union(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# compute metrics
UpperCAmelCase_ : Dict = {}
UpperCAmelCase_ : int = total_area_intersect.sum() / total_area_label.sum()
UpperCAmelCase_ : Tuple = total_area_intersect / total_area_union
UpperCAmelCase_ : Any = total_area_intersect / total_area_label
UpperCAmelCase_ : Union[str, Any] = np.nanmean(UpperCamelCase__ )
UpperCAmelCase_ : Optional[Any] = np.nanmean(UpperCamelCase__ )
UpperCAmelCase_ : Optional[int] = all_acc
UpperCAmelCase_ : Dict = iou
UpperCAmelCase_ : int = acc
if nan_to_num is not None:
UpperCAmelCase_ : str = {metric: np.nan_to_num(UpperCamelCase__ , nan=UpperCamelCase__ ) for metric, metric_value in metrics.items()}
return metrics
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION)
class snake_case__ ( datasets.Metric):
def A ( self : Union[str, Any] ) -> Dict:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
# 1st Seq - height dim, 2nd - width dim
{
'''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ),
'''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ),
} ) , reference_urls=[
'''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py'''
] , )
def A ( self : Optional[Any] , _A : List[str] , _A : int , _A : int , _A : Optional[Any] , _A : List[Any] = None , _A : str = None , _A : List[str] = False , ) -> Union[str, Any]:
UpperCAmelCase_ : Optional[Any] = mean_iou(
results=_lowerCamelCase , gt_seg_maps=_lowerCamelCase , num_labels=_lowerCamelCase , ignore_index=_lowerCamelCase , nan_to_num=_lowerCamelCase , label_map=_lowerCamelCase , reduce_labels=_lowerCamelCase , )
return iou_result
| 304
|
'''simple docstring'''
import logging
import os
import sys
from pathlib import Path
from unittest.mock import patch
from parameterized import parameterized
from run_eval import run_generate
from run_eval_search import run_search
from transformers.testing_utils import CaptureStdout, TestCasePlus, slow
from utils import ROUGE_KEYS
logging.basicConfig(level=logging.DEBUG)
__A =logging.getLogger()
def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ):
UpperCAmelCase__ : Union[str, Any] = """\n""".join(UpperCamelCase__ )
Path(UpperCamelCase__ ).open("""w""" ).writelines(UpperCamelCase__ )
__A ='patrickvonplaten/t5-tiny-random'
__A ='sshleifer/bart-tiny-random'
__A ='sshleifer/tiny-mbart'
__A =logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks
class _snake_case ( a__ ):
def snake_case__ ( self , _lowerCamelCase):
UpperCAmelCase__ : Any = Path(self.get_auto_remove_tmp_dir()) / """utest_input.source"""
UpperCAmelCase__ : Dict = input_file_name.parent / """utest_output.txt"""
assert not output_file_name.exists()
UpperCAmelCase__ : Any = [""" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."""]
_dump_articles(_lowerCamelCase , _lowerCamelCase)
UpperCAmelCase__ : Optional[Any] = str(Path(self.get_auto_remove_tmp_dir()) / """scores.json""")
UpperCAmelCase__ : int = """translation_en_to_de""" if model == T5_TINY else """summarization"""
UpperCAmelCase__ : Union[str, Any] = f'''
run_eval_search.py
{model}
{input_file_name}
{output_file_name}
--score_path {score_path}
--task {task}
--num_beams 2
--length_penalty 2.0
'''.split()
with patch.object(_lowerCamelCase , """argv""" , _lowerCamelCase):
run_generate()
assert Path(_lowerCamelCase).exists()
# os.remove(Path(output_file_name))
def snake_case__ ( self):
self.run_eval_tester(_lowerCamelCase)
@parameterized.expand([BART_TINY, MBART_TINY])
@slow
def snake_case__ ( self , _lowerCamelCase):
self.run_eval_tester(_lowerCamelCase)
@parameterized.expand([T5_TINY, MBART_TINY])
@slow
def snake_case__ ( self , _lowerCamelCase):
UpperCAmelCase__ : Optional[Any] = Path(self.get_auto_remove_tmp_dir()) / """utest_input.source"""
UpperCAmelCase__ : List[str] = input_file_name.parent / """utest_output.txt"""
assert not output_file_name.exists()
UpperCAmelCase__ : int = {
"""en""": ["""Machine learning is great, isn't it?""", """I like to eat bananas""", """Tomorrow is another great day!"""],
"""de""": [
"""Maschinelles Lernen ist großartig, oder?""",
"""Ich esse gerne Bananen""",
"""Morgen ist wieder ein toller Tag!""",
],
}
UpperCAmelCase__ : int = Path(self.get_auto_remove_tmp_dir())
UpperCAmelCase__ : Any = str(tmp_dir / """scores.json""")
UpperCAmelCase__ : List[str] = str(tmp_dir / """val.target""")
_dump_articles(_lowerCamelCase , text["""en"""])
_dump_articles(_lowerCamelCase , text["""de"""])
UpperCAmelCase__ : int = """translation_en_to_de""" if model == T5_TINY else """summarization"""
UpperCAmelCase__ : List[Any] = f'''
run_eval_search.py
{model}
{str(_lowerCamelCase)}
{str(_lowerCamelCase)}
--score_path {score_path}
--reference_path {reference_path}
--task {task}
'''.split()
testargs.extend(["""--search""", """num_beams=1:2 length_penalty=0.9:1.0"""])
with patch.object(_lowerCamelCase , """argv""" , _lowerCamelCase):
with CaptureStdout() as cs:
run_search()
UpperCAmelCase__ : Optional[Any] = [""" num_beams | length_penalty""", model, """Best score args"""]
UpperCAmelCase__ : Any = ["""Info"""]
if "translation" in task:
expected_strings.append("""bleu""")
else:
expected_strings.extend(_lowerCamelCase)
for w in expected_strings:
assert w in cs.out
for w in un_expected_strings:
assert w not in cs.out
assert Path(_lowerCamelCase).exists()
os.remove(Path(_lowerCamelCase))
| 163
| 0
|
'''simple docstring'''
def _A (lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :list[list[int]] ) -> int:
'''simple docstring'''
def update_area_of_max_square(lowerCAmelCase__ :int , lowerCAmelCase__ :int ) -> int:
# BASE CASE
if row >= rows or col >= cols:
return 0
_a = update_area_of_max_square(_SCREAMING_SNAKE_CASE , col + 1 )
_a = update_area_of_max_square(row + 1 , col + 1 )
_a = update_area_of_max_square(row + 1 , _SCREAMING_SNAKE_CASE )
if mat[row][col]:
_a = 1 + min([right, diagonal, down] )
_a = max(largest_square_area[0] , _SCREAMING_SNAKE_CASE )
return sub_problem_sol
else:
return 0
_a = [0]
update_area_of_max_square(0 , 0 )
return largest_square_area[0]
def _A (lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :list[list[int]] ) -> int:
'''simple docstring'''
def update_area_of_max_square_using_dp_array(
lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :list[list[int]] ) -> int:
if row >= rows or col >= cols:
return 0
if dp_array[row][col] != -1:
return dp_array[row][col]
_a = update_area_of_max_square_using_dp_array(_SCREAMING_SNAKE_CASE , col + 1 , _SCREAMING_SNAKE_CASE )
_a = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , _SCREAMING_SNAKE_CASE )
_a = update_area_of_max_square_using_dp_array(row + 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if mat[row][col]:
_a = 1 + min([right, diagonal, down] )
_a = max(largest_square_area[0] , _SCREAMING_SNAKE_CASE )
_a = sub_problem_sol
return sub_problem_sol
else:
return 0
_a = [0]
_a = [[-1] * cols for _ in range(_SCREAMING_SNAKE_CASE )]
update_area_of_max_square_using_dp_array(0 , 0 , _SCREAMING_SNAKE_CASE )
return largest_square_area[0]
def _A (lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :list[list[int]] ) -> int:
'''simple docstring'''
_a = [[0] * (cols + 1) for _ in range(rows + 1 )]
_a = 0
for row in range(rows - 1 , -1 , -1 ):
for col in range(cols - 1 , -1 , -1 ):
_a = dp_array[row][col + 1]
_a = dp_array[row + 1][col + 1]
_a = dp_array[row + 1][col]
if mat[row][col] == 1:
_a = 1 + min(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_a = max(dp_array[row][col] , _SCREAMING_SNAKE_CASE )
else:
_a = 0
return largest_square_area
def _A (lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :list[list[int]] ) -> int:
'''simple docstring'''
_a = [0] * (cols + 1)
_a = [0] * (cols + 1)
_a = 0
for row in range(rows - 1 , -1 , -1 ):
for col in range(cols - 1 , -1 , -1 ):
_a = current_row[col + 1]
_a = next_row[col + 1]
_a = next_row[col]
if mat[row][col] == 1:
_a = 1 + min(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_a = max(current_row[col] , _SCREAMING_SNAKE_CASE )
else:
_a = 0
_a = current_row
return largest_square_area
if __name__ == "__main__":
import doctest
doctest.testmod()
print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
| 351
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
a_ : str = {
"configuration_nllb_moe": [
"NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP",
"NllbMoeConfig",
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : Tuple = [
"NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST",
"NllbMoeForConditionalGeneration",
"NllbMoeModel",
"NllbMoePreTrainedModel",
"NllbMoeTop2Router",
"NllbMoeSparseMLP",
]
if TYPE_CHECKING:
from .configuration_nllb_moe import (
NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP,
NllbMoeConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_nllb_moe import (
NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST,
NllbMoeForConditionalGeneration,
NllbMoeModel,
NllbMoePreTrainedModel,
NllbMoeSparseMLP,
NllbMoeTopaRouter,
)
else:
import sys
a_ : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 104
| 0
|
"""simple docstring"""
from math import pow
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) -> Optional[int]:
'''simple docstring'''
if current_sum == needed_sum:
# If the sum of the powers is equal to needed_sum, then we have a solution.
solutions_count += 1
return current_sum, solutions_count
lowercase_ = int(pow(__lowerCAmelCase , __lowerCAmelCase ) )
if current_sum + i_to_n <= needed_sum:
# If the sum of the powers is less than needed_sum, then continue adding powers.
current_sum += i_to_n
lowercase_ = backtrack(
__lowerCAmelCase , __lowerCAmelCase , current_number + 1 , __lowerCAmelCase , __lowerCAmelCase )
current_sum -= i_to_n
if i_to_n < needed_sum:
# If the power of i is less than needed_sum, then try with the next power.
lowercase_ = backtrack(
__lowerCAmelCase , __lowerCAmelCase , current_number + 1 , __lowerCAmelCase , __lowerCAmelCase )
return current_sum, solutions_count
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> int:
'''simple docstring'''
if not (1 <= needed_sum <= 10_00 and 2 <= power <= 10):
raise ValueError(
"""Invalid input\n"""
"""needed_sum must be between 1 and 1000, power between 2 and 10.""" )
return backtrack(__lowerCAmelCase , __lowerCAmelCase , 1 , 0 , 0 )[1] # Return the solutions_count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 136
|
'''simple docstring'''
from math import pow
def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ):
if current_sum == needed_sum:
# If the sum of the powers is equal to needed_sum, then we have a solution.
solutions_count += 1
return current_sum, solutions_count
lowercase__ : Optional[Any] = int(pow(UpperCAmelCase , UpperCAmelCase ) )
if current_sum + i_to_n <= needed_sum:
# If the sum of the powers is less than needed_sum, then continue adding powers.
current_sum += i_to_n
lowercase__ , lowercase__ : Dict = backtrack(
UpperCAmelCase , UpperCAmelCase , current_number + 1 , UpperCAmelCase , UpperCAmelCase )
current_sum -= i_to_n
if i_to_n < needed_sum:
# If the power of i is less than needed_sum, then try with the next power.
lowercase__ , lowercase__ : str = backtrack(
UpperCAmelCase , UpperCAmelCase , current_number + 1 , UpperCAmelCase , UpperCAmelCase )
return current_sum, solutions_count
def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ):
if not (1 <= needed_sum <= 1000 and 2 <= power <= 10):
raise ValueError(
'''Invalid input\n'''
'''needed_sum must be between 1 and 1000, power between 2 and 10.''' )
return backtrack(UpperCAmelCase , UpperCAmelCase , 1 , 0 , 0 )[1] # Return the solutions_count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 198
| 0
|
from ...configuration_utils import PretrainedConfig
class snake_case__(_UpperCamelCase ):
"""simple docstring"""
lowercase_ = """bert-generation"""
def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int]=50_358 , SCREAMING_SNAKE_CASE : List[Any]=1_024 , SCREAMING_SNAKE_CASE : Optional[Any]=24 , SCREAMING_SNAKE_CASE : List[str]=16 , SCREAMING_SNAKE_CASE : Tuple=4_096 , SCREAMING_SNAKE_CASE : List[Any]="gelu" , SCREAMING_SNAKE_CASE : str=0.1 , SCREAMING_SNAKE_CASE : Any=0.1 , SCREAMING_SNAKE_CASE : Optional[int]=512 , SCREAMING_SNAKE_CASE : Tuple=0.02 , SCREAMING_SNAKE_CASE : Optional[int]=1E-1_2 , SCREAMING_SNAKE_CASE : List[Any]=0 , SCREAMING_SNAKE_CASE : List[str]=2 , SCREAMING_SNAKE_CASE : str=1 , SCREAMING_SNAKE_CASE : str="absolute" , SCREAMING_SNAKE_CASE : Optional[int]=True , **SCREAMING_SNAKE_CASE : str , ):
super().__init__(pad_token_id=SCREAMING_SNAKE_CASE , bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
lowercase__ : Any = vocab_size
lowercase__ : Any = hidden_size
lowercase__ : Tuple = num_hidden_layers
lowercase__ : Union[str, Any] = num_attention_heads
lowercase__ : Any = hidden_act
lowercase__ : Dict = intermediate_size
lowercase__ : List[str] = hidden_dropout_prob
lowercase__ : Tuple = attention_probs_dropout_prob
lowercase__ : int = max_position_embeddings
lowercase__ : Optional[Any] = initializer_range
lowercase__ : Tuple = layer_norm_eps
lowercase__ : Dict = position_embedding_type
lowercase__ : Union[str, Any] = use_cache
| 121
|
import argparse
import json
import torch
from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel
def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__=1 ):
"""simple docstring"""
if n_shave_prefix_segments >= 0:
return ".".join(path.split("." )[n_shave_prefix_segments:] )
else:
return ".".join(path.split("." )[:n_shave_prefix_segments] )
def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__=0 ):
"""simple docstring"""
lowercase__ : List[str] = []
for old_item in old_list:
lowercase__ : Optional[Any] = old_item.replace("in_layers.0" , "norm1" )
lowercase__ : Union[str, Any] = new_item.replace("in_layers.2" , "conv1" )
lowercase__ : Optional[Any] = new_item.replace("out_layers.0" , "norm2" )
lowercase__ : Union[str, Any] = new_item.replace("out_layers.3" , "conv2" )
lowercase__ : Dict = new_item.replace("emb_layers.1" , "time_emb_proj" )
lowercase__ : int = new_item.replace("skip_connection" , "conv_shortcut" )
lowercase__ : Tuple = shave_segments(lowerCamelCase__ , n_shave_prefix_segments=lowerCamelCase__ )
mapping.append({"old": old_item, "new": new_item} )
return mapping
def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__=0 ):
"""simple docstring"""
lowercase__ : str = []
for old_item in old_list:
lowercase__ : Optional[int] = old_item
lowercase__ : Dict = new_item.replace("norm.weight" , "group_norm.weight" )
lowercase__ : Optional[int] = new_item.replace("norm.bias" , "group_norm.bias" )
lowercase__ : Tuple = new_item.replace("proj_out.weight" , "proj_attn.weight" )
lowercase__ : List[Any] = new_item.replace("proj_out.bias" , "proj_attn.bias" )
lowercase__ : Optional[Any] = shave_segments(lowerCamelCase__ , n_shave_prefix_segments=lowerCamelCase__ )
mapping.append({"old": old_item, "new": new_item} )
return mapping
def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None ):
"""simple docstring"""
assert isinstance(lowerCamelCase__ , lowerCamelCase__ ), "Paths should be a list of dicts containing 'old' and 'new' keys."
# Splits the attention layers into three variables.
if attention_paths_to_split is not None:
for path, path_map in attention_paths_to_split.items():
lowercase__ : List[str] = old_checkpoint[path]
lowercase__ : str = old_tensor.shape[0] // 3
lowercase__ : List[str] = (-1, channels) if len(old_tensor.shape ) == 3 else (-1)
lowercase__ : Union[str, Any] = old_tensor.shape[0] // config["num_head_channels"] // 3
lowercase__ : Union[str, Any] = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] )
lowercase__ , lowercase__ , lowercase__ : Optional[Any] = old_tensor.split(channels // num_heads , dim=1 )
lowercase__ : Dict = query.reshape(lowerCamelCase__ )
lowercase__ : Dict = key.reshape(lowerCamelCase__ )
lowercase__ : int = value.reshape(lowerCamelCase__ )
for path in paths:
lowercase__ : Union[str, Any] = path["new"]
# These have already been assigned
if attention_paths_to_split is not None and new_path in attention_paths_to_split:
continue
# Global renaming happens here
lowercase__ : List[Any] = new_path.replace("middle_block.0" , "mid_block.resnets.0" )
lowercase__ : Optional[Any] = new_path.replace("middle_block.1" , "mid_block.attentions.0" )
lowercase__ : List[str] = new_path.replace("middle_block.2" , "mid_block.resnets.1" )
if additional_replacements is not None:
for replacement in additional_replacements:
lowercase__ : Tuple = new_path.replace(replacement["old"] , replacement["new"] )
# proj_attn.weight has to be converted from conv 1D to linear
if "proj_attn.weight" in new_path:
lowercase__ : List[Any] = old_checkpoint[path["old"]][:, :, 0]
else:
lowercase__ : List[Any] = old_checkpoint[path["old"]]
def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
lowercase__ : Union[str, Any] = {}
lowercase__ : Optional[Any] = checkpoint["time_embed.0.weight"]
lowercase__ : Tuple = checkpoint["time_embed.0.bias"]
lowercase__ : Dict = checkpoint["time_embed.2.weight"]
lowercase__ : Optional[Any] = checkpoint["time_embed.2.bias"]
lowercase__ : Optional[int] = checkpoint["input_blocks.0.0.weight"]
lowercase__ : List[Any] = checkpoint["input_blocks.0.0.bias"]
lowercase__ : Tuple = checkpoint["out.0.weight"]
lowercase__ : List[Any] = checkpoint["out.0.bias"]
lowercase__ : Tuple = checkpoint["out.2.weight"]
lowercase__ : Optional[Any] = checkpoint["out.2.bias"]
# Retrieves the keys for the input blocks only
lowercase__ : Dict = len({".".join(layer.split("." )[:2] ) for layer in checkpoint if "input_blocks" in layer} )
lowercase__ : str = {
layer_id: [key for key in checkpoint if F"""input_blocks.{layer_id}""" in key]
for layer_id in range(lowerCamelCase__ )
}
# Retrieves the keys for the middle blocks only
lowercase__ : Tuple = len({".".join(layer.split("." )[:2] ) for layer in checkpoint if "middle_block" in layer} )
lowercase__ : Union[str, Any] = {
layer_id: [key for key in checkpoint if F"""middle_block.{layer_id}""" in key]
for layer_id in range(lowerCamelCase__ )
}
# Retrieves the keys for the output blocks only
lowercase__ : Tuple = len({".".join(layer.split("." )[:2] ) for layer in checkpoint if "output_blocks" in layer} )
lowercase__ : Tuple = {
layer_id: [key for key in checkpoint if F"""output_blocks.{layer_id}""" in key]
for layer_id in range(lowerCamelCase__ )
}
for i in range(1 , lowerCamelCase__ ):
lowercase__ : Tuple = (i - 1) // (config["num_res_blocks"] + 1)
lowercase__ : Optional[int] = (i - 1) % (config["num_res_blocks"] + 1)
lowercase__ : List[Any] = [key for key in input_blocks[i] if F"""input_blocks.{i}.0""" in key]
lowercase__ : Dict = [key for key in input_blocks[i] if F"""input_blocks.{i}.1""" in key]
if F"""input_blocks.{i}.0.op.weight""" in checkpoint:
lowercase__ : int = checkpoint[
F"""input_blocks.{i}.0.op.weight"""
]
lowercase__ : List[str] = checkpoint[
F"""input_blocks.{i}.0.op.bias"""
]
continue
lowercase__ : Union[str, Any] = renew_resnet_paths(lowerCamelCase__ )
lowercase__ : Optional[int] = {"old": F"""input_blocks.{i}.0""", "new": F"""down_blocks.{block_id}.resnets.{layer_in_block_id}"""}
lowercase__ : Optional[int] = {"old": "resnets.2.op", "new": "downsamplers.0.op"}
assign_to_checkpoint(
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , additional_replacements=[meta_path, resnet_op] , config=lowerCamelCase__ )
if len(lowerCamelCase__ ):
lowercase__ : Tuple = renew_attention_paths(lowerCamelCase__ )
lowercase__ : str = {
"old": F"""input_blocks.{i}.1""",
"new": F"""down_blocks.{block_id}.attentions.{layer_in_block_id}""",
}
lowercase__ : List[str] = {
F"""input_blocks.{i}.1.qkv.bias""": {
"key": F"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""",
"query": F"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""",
"value": F"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""",
},
F"""input_blocks.{i}.1.qkv.weight""": {
"key": F"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""",
"query": F"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""",
"value": F"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""",
},
}
assign_to_checkpoint(
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , additional_replacements=[meta_path] , attention_paths_to_split=lowerCamelCase__ , config=lowerCamelCase__ , )
lowercase__ : int = middle_blocks[0]
lowercase__ : Dict = middle_blocks[1]
lowercase__ : Dict = middle_blocks[2]
lowercase__ : Any = renew_resnet_paths(lowerCamelCase__ )
assign_to_checkpoint(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , config=lowerCamelCase__ )
lowercase__ : List[Any] = renew_resnet_paths(lowerCamelCase__ )
assign_to_checkpoint(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , config=lowerCamelCase__ )
lowercase__ : Optional[int] = renew_attention_paths(lowerCamelCase__ )
lowercase__ : Optional[int] = {
"middle_block.1.qkv.bias": {
"key": "mid_block.attentions.0.key.bias",
"query": "mid_block.attentions.0.query.bias",
"value": "mid_block.attentions.0.value.bias",
},
"middle_block.1.qkv.weight": {
"key": "mid_block.attentions.0.key.weight",
"query": "mid_block.attentions.0.query.weight",
"value": "mid_block.attentions.0.value.weight",
},
}
assign_to_checkpoint(
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , attention_paths_to_split=lowerCamelCase__ , config=lowerCamelCase__ )
for i in range(lowerCamelCase__ ):
lowercase__ : List[Any] = i // (config["num_res_blocks"] + 1)
lowercase__ : Optional[int] = i % (config["num_res_blocks"] + 1)
lowercase__ : List[Any] = [shave_segments(lowerCamelCase__ , 2 ) for name in output_blocks[i]]
lowercase__ : Optional[Any] = {}
for layer in output_block_layers:
lowercase__ , lowercase__ : str = layer.split("." )[0], shave_segments(lowerCamelCase__ , 1 )
if layer_id in output_block_list:
output_block_list[layer_id].append(lowerCamelCase__ )
else:
lowercase__ : Tuple = [layer_name]
if len(lowerCamelCase__ ) > 1:
lowercase__ : Dict = [key for key in output_blocks[i] if F"""output_blocks.{i}.0""" in key]
lowercase__ : Dict = [key for key in output_blocks[i] if F"""output_blocks.{i}.1""" in key]
lowercase__ : Optional[Any] = renew_resnet_paths(lowerCamelCase__ )
lowercase__ : Optional[Any] = renew_resnet_paths(lowerCamelCase__ )
lowercase__ : Tuple = {"old": F"""output_blocks.{i}.0""", "new": F"""up_blocks.{block_id}.resnets.{layer_in_block_id}"""}
assign_to_checkpoint(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , additional_replacements=[meta_path] , config=lowerCamelCase__ )
if ["conv.weight", "conv.bias"] in output_block_list.values():
lowercase__ : List[str] = list(output_block_list.values() ).index(["conv.weight", "conv.bias"] )
lowercase__ : Tuple = checkpoint[
F"""output_blocks.{i}.{index}.conv.weight"""
]
lowercase__ : Optional[Any] = checkpoint[
F"""output_blocks.{i}.{index}.conv.bias"""
]
# Clear attentions as they have been attributed above.
if len(lowerCamelCase__ ) == 2:
lowercase__ : int = []
if len(lowerCamelCase__ ):
lowercase__ : Tuple = renew_attention_paths(lowerCamelCase__ )
lowercase__ : str = {
"old": F"""output_blocks.{i}.1""",
"new": F"""up_blocks.{block_id}.attentions.{layer_in_block_id}""",
}
lowercase__ : Union[str, Any] = {
F"""output_blocks.{i}.1.qkv.bias""": {
"key": F"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""",
"query": F"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""",
"value": F"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""",
},
F"""output_blocks.{i}.1.qkv.weight""": {
"key": F"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""",
"query": F"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""",
"value": F"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""",
},
}
assign_to_checkpoint(
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any("qkv" in key for key in attentions ) else None , config=lowerCamelCase__ , )
else:
lowercase__ : int = renew_resnet_paths(lowerCamelCase__ , n_shave_prefix_segments=1 )
for path in resnet_0_paths:
lowercase__ : List[Any] = ".".join(["output_blocks", str(lowerCamelCase__ ), path["old"]] )
lowercase__ : Any = ".".join(["up_blocks", str(lowerCamelCase__ ), "resnets", str(lowerCamelCase__ ), path["new"]] )
lowercase__ : List[Any] = checkpoint[old_path]
return new_checkpoint
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
parser.add_argument(
'''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.'''
)
parser.add_argument(
'''--config_file''',
default=None,
type=str,
required=True,
help='''The config json file corresponding to the architecture.''',
)
parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''')
lowerCAmelCase__ = parser.parse_args()
lowerCAmelCase__ = torch.load(args.checkpoint_path)
with open(args.config_file) as f:
lowerCAmelCase__ = json.loads(f.read())
lowerCAmelCase__ = convert_ldm_checkpoint(checkpoint, config)
if "ldm" in config:
del config["ldm"]
lowerCAmelCase__ = UNetaDModel(**config)
model.load_state_dict(converted_checkpoint)
try:
lowerCAmelCase__ = DDPMScheduler.from_config('''/'''.join(args.checkpoint_path.split('''/''')[:-1]))
lowerCAmelCase__ = VQModel.from_pretrained('''/'''.join(args.checkpoint_path.split('''/''')[:-1]))
lowerCAmelCase__ = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae)
pipe.save_pretrained(args.dump_path)
except: # noqa: E722
model.save_pretrained(args.dump_path)
| 121
| 1
|
"""simple docstring"""
from maths.prime_check import is_prime
def UpperCAmelCase__ ( lowerCAmelCase__ :Any ) -> int:
'''simple docstring'''
if not isinstance(__UpperCAmelCase , __UpperCAmelCase ):
lowercase = f'Input value of [number={number}] must be an integer'
raise TypeError(__UpperCAmelCase )
if is_prime(__UpperCAmelCase ) and is_prime(number + 2 ):
return number + 2
else:
return -1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 197
|
'''simple docstring'''
import argparse
import torch
from torch import nn
from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration
def __magic_name__ ( __UpperCAmelCase ) -> str:
'''simple docstring'''
snake_case_ = [
'''encoder.version''',
'''decoder.version''',
'''model.encoder.version''',
'''model.decoder.version''',
'''decoder.output_projection.weight''',
'''_float_tensor''',
'''encoder.embed_positions._float_tensor''',
'''decoder.embed_positions._float_tensor''',
]
for k in ignore_keys:
state_dict.pop(__UpperCAmelCase, __UpperCAmelCase )
def __magic_name__ ( __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
snake_case_ = list(s_dict.keys() )
for key in keys:
if "transformer_layers" in key:
snake_case_ = s_dict.pop(__UpperCAmelCase )
elif "subsample" in key:
snake_case_ = s_dict.pop(__UpperCAmelCase )
def __magic_name__ ( __UpperCAmelCase ) -> int:
'''simple docstring'''
snake_case_ ,snake_case_ = emb.weight.shape
snake_case_ = nn.Linear(__UpperCAmelCase, __UpperCAmelCase, bias=__UpperCAmelCase )
snake_case_ = emb.weight.data
return lin_layer
def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> Dict:
'''simple docstring'''
snake_case_ = torch.load(__UpperCAmelCase, map_location='''cpu''' )
snake_case_ = mam_aaa['''args''']
snake_case_ = mam_aaa['''model''']
snake_case_ = state_dict['''decoder.output_projection.weight''']
remove_ignore_keys_(__UpperCAmelCase )
rename_keys(__UpperCAmelCase )
snake_case_ = state_dict['''decoder.embed_tokens.weight'''].shape[0]
snake_case_ = args.share_decoder_input_output_embed
snake_case_ = [int(__UpperCAmelCase ) for i in args.conv_kernel_sizes.split(''',''' )]
snake_case_ = SpeechaTextConfig(
vocab_size=__UpperCAmelCase, max_source_positions=args.max_source_positions, max_target_positions=args.max_target_positions, encoder_layers=args.encoder_layers, decoder_layers=args.decoder_layers, encoder_attention_heads=args.encoder_attention_heads, decoder_attention_heads=args.decoder_attention_heads, encoder_ffn_dim=args.encoder_ffn_embed_dim, decoder_ffn_dim=args.decoder_ffn_embed_dim, d_model=args.encoder_embed_dim, dropout=args.dropout, attention_dropout=args.attention_dropout, activation_dropout=args.activation_dropout, activation_function='''relu''', num_conv_layers=len(__UpperCAmelCase ), conv_channels=args.conv_channels, conv_kernel_sizes=__UpperCAmelCase, input_feat_per_channel=args.input_feat_per_channel, input_channels=args.input_channels, tie_word_embeddings=__UpperCAmelCase, num_beams=5, max_length=200, use_cache=__UpperCAmelCase, decoder_start_token_id=2, early_stopping=__UpperCAmelCase, )
snake_case_ = SpeechaTextForConditionalGeneration(__UpperCAmelCase )
snake_case_ ,snake_case_ = model.model.load_state_dict(__UpperCAmelCase, strict=__UpperCAmelCase )
if len(__UpperCAmelCase ) > 0 and not set(__UpperCAmelCase ) <= {
"encoder.embed_positions.weights",
"decoder.embed_positions.weights",
}:
raise ValueError(
'''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,'''
F" but all the following weights are missing {missing}" )
if tie_embeds:
snake_case_ = make_linear_from_emb(model.model.decoder.embed_tokens )
else:
snake_case_ = lm_head_weights
model.save_pretrained(__UpperCAmelCase )
if __name__ == "__main__":
a : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument('--fairseq_path', type=str, help='Path to the fairseq model (.pt) file.')
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
a : List[Any] = parser.parse_args()
convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
| 56
| 0
|
from collections import deque
from .hash_table import HashTable
class lowerCamelCase_ ( lowercase__ ):
'''simple docstring'''
def __init__( self : Tuple , *_lowerCAmelCase : int , **_lowerCAmelCase : Tuple ):
super().__init__(*_UpperCamelCase , **_UpperCamelCase )
def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : str , _lowerCAmelCase : Optional[int] ):
SCREAMING_SNAKE_CASE_ = deque([] ) if self.values[key] is None else self.values[key]
self.values[key].appendleft(_UpperCamelCase )
SCREAMING_SNAKE_CASE_ = self.values[key]
def lowerCAmelCase_ ( self : Tuple ):
return (
sum(self.charge_factor - len(_UpperCamelCase ) for slot in self.values )
/ self.size_table
* self.charge_factor
)
def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Tuple=None ):
if not (
len(self.values[key] ) == self.charge_factor and self.values.count(_UpperCamelCase ) == 0
):
return key
return super()._collision_resolution(_UpperCamelCase , _UpperCamelCase )
| 358
|
from pathlib import PurePosixPath
from typing import Optional
import fsspec
from fsspec import AbstractFileSystem
from huggingface_hub.hf_api import DatasetInfo
from ..utils.file_utils import get_authentication_headers_for_url
from ..utils.hub import hf_hub_url
class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = ""
lowercase_ = "hf-legacy" # "hf://"" is reserved for hffs
def __init__( self : Optional[int] , _lowerCAmelCase : Optional[DatasetInfo] = None , _lowerCAmelCase : Optional[str] = None , **_lowerCAmelCase : int , ):
super().__init__(self , **_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = repo_info
SCREAMING_SNAKE_CASE_ = token
SCREAMING_SNAKE_CASE_ = None
def lowerCAmelCase_ ( self : Tuple ):
if self.dir_cache is None:
SCREAMING_SNAKE_CASE_ = {}
for hf_file in self.repo_info.siblings:
# TODO(QL): add sizes
SCREAMING_SNAKE_CASE_ = {
'name': hf_file.rfilename,
'size': None,
'type': 'file',
}
self.dir_cache.update(
{
str(_lowerCAmelCase ): {'name': str(_lowerCAmelCase ), 'size': None, 'type': 'directory'}
for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1]
} )
def lowerCAmelCase_ ( self : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : str = "rb" , **_lowerCAmelCase : Optional[Any] , ):
if not isinstance(self.repo_info , _lowerCAmelCase ):
raise NotImplementedError(F"Open is only implemented for dataset repositories, but got {self.repo_info}" )
SCREAMING_SNAKE_CASE_ = hf_hub_url(self.repo_info.id , _lowerCAmelCase , revision=self.repo_info.sha )
return fsspec.open(
_lowerCAmelCase , mode=_lowerCAmelCase , headers=get_authentication_headers_for_url(_lowerCAmelCase , use_auth_token=self.token ) , client_kwargs={'trust_env': True} , ).open()
def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Any , **_lowerCAmelCase : Dict ):
self._get_dirs()
SCREAMING_SNAKE_CASE_ = self._strip_protocol(_lowerCAmelCase )
if path in self.dir_cache:
return self.dir_cache[path]
else:
raise FileNotFoundError(_lowerCAmelCase )
def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Any=False , **_lowerCAmelCase : str ):
self._get_dirs()
SCREAMING_SNAKE_CASE_ = PurePosixPath(path.strip('/' ) )
SCREAMING_SNAKE_CASE_ = {}
for p, f in self.dir_cache.items():
SCREAMING_SNAKE_CASE_ = PurePosixPath(p.strip('/' ) )
SCREAMING_SNAKE_CASE_ = p.parent
if root == path:
SCREAMING_SNAKE_CASE_ = f
SCREAMING_SNAKE_CASE_ = list(paths.values() )
if detail:
return out
else:
return sorted(f['name'] for f in out )
| 210
| 0
|
'''simple docstring'''
import inspect
import unittest
from transformers import YolosConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import YolosForObjectDetection, YolosModel
from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class A__ :
"""simple docstring"""
def __init__( self : str , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Tuple=1_3 , lowerCAmelCase__ : str=[3_0, 3_0] , lowerCAmelCase__ : str=2 , lowerCAmelCase__ : Optional[Any]=3 , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : Union[str, Any]=3_2 , lowerCAmelCase__ : Optional[Any]=5 , lowerCAmelCase__ : Union[str, Any]=4 , lowerCAmelCase__ : int=3_7 , lowerCAmelCase__ : Union[str, Any]="gelu" , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : Optional[int]=0.1 , lowerCAmelCase__ : List[Any]=1_0 , lowerCAmelCase__ : Any=0.02 , lowerCAmelCase__ : List[Any]=3 , lowerCAmelCase__ : int=None , lowerCAmelCase__ : Dict=8 , lowerCAmelCase__ : List[Any]=1_0 , ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = parent
_UpperCAmelCase : List[str] = batch_size
_UpperCAmelCase : Tuple = image_size
_UpperCAmelCase : int = patch_size
_UpperCAmelCase : Union[str, Any] = num_channels
_UpperCAmelCase : Any = is_training
_UpperCAmelCase : Union[str, Any] = use_labels
_UpperCAmelCase : List[Any] = hidden_size
_UpperCAmelCase : Tuple = num_hidden_layers
_UpperCAmelCase : Tuple = num_attention_heads
_UpperCAmelCase : Union[str, Any] = intermediate_size
_UpperCAmelCase : Union[str, Any] = hidden_act
_UpperCAmelCase : int = hidden_dropout_prob
_UpperCAmelCase : Dict = attention_probs_dropout_prob
_UpperCAmelCase : Optional[int] = type_sequence_label_size
_UpperCAmelCase : List[str] = initializer_range
_UpperCAmelCase : Dict = num_labels
_UpperCAmelCase : Tuple = scope
_UpperCAmelCase : Optional[int] = n_targets
_UpperCAmelCase : Any = num_detection_tokens
# we set the expected sequence length (which is used in several tests)
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens
_UpperCAmelCase : str = (image_size[1] // patch_size) * (image_size[0] // patch_size)
_UpperCAmelCase : Dict = num_patches + 1 + self.num_detection_tokens
def _lowerCAmelCase ( self : str ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] )
_UpperCAmelCase : Tuple = None
if self.use_labels:
# labels is a list of Dict (each Dict being the labels for a given example in the batch)
_UpperCAmelCase : List[Any] = []
for i in range(self.batch_size ):
_UpperCAmelCase : Optional[Any] = {}
_UpperCAmelCase : str = torch.randint(
high=self.num_labels , size=(self.n_targets,) , device=__lowercase )
_UpperCAmelCase : Optional[Any] = torch.rand(self.n_targets , 4 , device=__lowercase )
labels.append(__lowercase )
_UpperCAmelCase : Union[str, Any] = self.get_config()
return config, pixel_values, labels
def _lowerCAmelCase ( self : int ) -> List[Any]:
"""simple docstring"""
return YolosConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowercase , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , )
def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Dict ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = YolosModel(config=__lowercase )
model.to(__lowercase )
model.eval()
_UpperCAmelCase : Union[str, Any] = model(__lowercase )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) )
def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : int ) -> int:
"""simple docstring"""
_UpperCAmelCase : str = YolosForObjectDetection(__lowercase )
model.to(__lowercase )
model.eval()
_UpperCAmelCase : str = model(pixel_values=__lowercase )
_UpperCAmelCase : Optional[int] = model(__lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) )
self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) )
_UpperCAmelCase : Dict = model(pixel_values=__lowercase , labels=__lowercase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) )
self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) )
def _lowerCAmelCase ( self : Any ) -> Any:
"""simple docstring"""
_UpperCAmelCase : int = self.prepare_config_and_inputs()
_UpperCAmelCase : Union[str, Any] = config_and_inputs
_UpperCAmelCase : Union[str, Any] = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class A__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : Optional[int] = (YolosModel, YolosForObjectDetection) if is_torch_available() else ()
UpperCamelCase_ : Tuple = (
{"""feature-extraction""": YolosModel, """object-detection""": YolosForObjectDetection} if is_torch_available() else {}
)
UpperCamelCase_ : Optional[Any] = False
UpperCamelCase_ : Optional[Any] = False
UpperCamelCase_ : Union[str, Any] = False
UpperCamelCase_ : List[str] = False
def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Tuple=False ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = super()._prepare_for_class(__lowercase , __lowercase , return_labels=__lowercase )
if return_labels:
if model_class.__name__ == "YolosForObjectDetection":
_UpperCAmelCase : Dict = []
for i in range(self.model_tester.batch_size ):
_UpperCAmelCase : Union[str, Any] = {}
_UpperCAmelCase : Tuple = torch.ones(
size=(self.model_tester.n_targets,) , device=__lowercase , dtype=torch.long )
_UpperCAmelCase : str = torch.ones(
self.model_tester.n_targets , 4 , device=__lowercase , dtype=torch.float )
labels.append(__lowercase )
_UpperCAmelCase : Union[str, Any] = labels
return inputs_dict
def _lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : Any = YolosModelTester(self )
_UpperCAmelCase : List[Any] = ConfigTester(self , config_class=__lowercase , has_text_modality=__lowercase , hidden_size=3_7 )
def _lowerCAmelCase ( self : List[str] ) -> Tuple:
"""simple docstring"""
self.config_tester.run_common_tests()
def _lowerCAmelCase ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
pass
def _lowerCAmelCase ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCAmelCase : Tuple = model_class(__lowercase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
_UpperCAmelCase : Tuple = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__lowercase , nn.Linear ) )
def _lowerCAmelCase ( self : int ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCAmelCase : str = model_class(__lowercase )
_UpperCAmelCase : Dict = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_UpperCAmelCase : int = [*signature.parameters.keys()]
_UpperCAmelCase : Tuple = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , __lowercase )
def _lowerCAmelCase ( self : Optional[int] ) -> Any:
"""simple docstring"""
_UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowercase )
def _lowerCAmelCase ( self : Tuple ) -> str:
"""simple docstring"""
_UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCAmelCase : str = True
# in YOLOS, the seq_len is different
_UpperCAmelCase : List[str] = self.model_tester.expected_seq_len
for model_class in self.all_model_classes:
_UpperCAmelCase : Dict = True
_UpperCAmelCase : List[Any] = False
_UpperCAmelCase : Optional[Any] = True
_UpperCAmelCase : List[Any] = model_class(__lowercase )
model.to(__lowercase )
model.eval()
with torch.no_grad():
_UpperCAmelCase : Optional[Any] = model(**self._prepare_for_class(__lowercase , __lowercase ) )
_UpperCAmelCase : List[str] = outputs.attentions
self.assertEqual(len(__lowercase ) , self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
_UpperCAmelCase : Optional[Any] = True
_UpperCAmelCase : List[str] = model_class(__lowercase )
model.to(__lowercase )
model.eval()
with torch.no_grad():
_UpperCAmelCase : Optional[Any] = model(**self._prepare_for_class(__lowercase , __lowercase ) )
_UpperCAmelCase : List[str] = outputs.attentions
self.assertEqual(len(__lowercase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , )
_UpperCAmelCase : int = len(__lowercase )
# Check attention is always last and order is fine
_UpperCAmelCase : Any = True
_UpperCAmelCase : List[Any] = True
_UpperCAmelCase : Dict = model_class(__lowercase )
model.to(__lowercase )
model.eval()
with torch.no_grad():
_UpperCAmelCase : int = model(**self._prepare_for_class(__lowercase , __lowercase ) )
_UpperCAmelCase : List[Any] = 1
self.assertEqual(out_len + added_hidden_states , len(__lowercase ) )
_UpperCAmelCase : Union[str, Any] = outputs.attentions
self.assertEqual(len(__lowercase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , )
def _lowerCAmelCase ( self : str ) -> Optional[Any]:
"""simple docstring"""
def check_hidden_states_output(lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str] ):
_UpperCAmelCase : List[Any] = model_class(__lowercase )
model.to(__lowercase )
model.eval()
with torch.no_grad():
_UpperCAmelCase : Optional[Any] = model(**self._prepare_for_class(__lowercase , __lowercase ) )
_UpperCAmelCase : Any = outputs.hidden_states
_UpperCAmelCase : Any = getattr(
self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(__lowercase ) , __lowercase )
# YOLOS has a different seq_length
_UpperCAmelCase : List[str] = self.model_tester.expected_seq_len
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , )
_UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCAmelCase : Tuple = True
check_hidden_states_output(__lowercase , __lowercase , __lowercase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_UpperCAmelCase : Any = True
check_hidden_states_output(__lowercase , __lowercase , __lowercase )
def _lowerCAmelCase ( self : List[str] ) -> Any:
"""simple docstring"""
_UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_object_detection(*__lowercase )
@slow
def _lowerCAmelCase ( self : List[str] ) -> Any:
"""simple docstring"""
for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_UpperCAmelCase : Any = YolosModel.from_pretrained(__lowercase )
self.assertIsNotNone(__lowercase )
def __UpperCAmelCase ( ):
_UpperCAmelCase : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class A__ ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def _lowerCAmelCase ( self : List[str] ) -> List[str]:
"""simple docstring"""
return AutoImageProcessor.from_pretrained("hustvl/yolos-small" ) if is_vision_available() else None
@slow
def _lowerCAmelCase ( self : int ) -> Any:
"""simple docstring"""
_UpperCAmelCase : List[str] = YolosForObjectDetection.from_pretrained("hustvl/yolos-small" ).to(__lowercase )
_UpperCAmelCase : Dict = self.default_image_processor
_UpperCAmelCase : Optional[int] = prepare_img()
_UpperCAmelCase : Any = image_processor(images=__lowercase , return_tensors="pt" ).to(__lowercase )
# forward pass
with torch.no_grad():
_UpperCAmelCase : Optional[int] = model(inputs.pixel_values )
# verify outputs
_UpperCAmelCase : str = torch.Size((1, 1_0_0, 9_2) )
self.assertEqual(outputs.logits.shape , __lowercase )
_UpperCAmelCase : int = torch.tensor(
[[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] , device=__lowercase , )
_UpperCAmelCase : Any = torch.tensor(
[[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] , device=__lowercase )
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , __lowercase , atol=1e-4 ) )
self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , __lowercase , atol=1e-4 ) )
# verify postprocessing
_UpperCAmelCase : Tuple = image_processor.post_process_object_detection(
__lowercase , threshold=0.3 , target_sizes=[image.size[::-1]] )[0]
_UpperCAmelCase : Optional[int] = torch.tensor([0.9994, 0.9790, 0.9964, 0.9972, 0.9861] ).to(__lowercase )
_UpperCAmelCase : Optional[int] = [7_5, 7_5, 1_7, 6_3, 1_7]
_UpperCAmelCase : int = torch.tensor([3_3_5.0_6_0_9, 79.3848, 3_7_5.4_2_1_6, 1_8_7.2_4_9_5] ).to(__lowercase )
self.assertEqual(len(results["scores"] ) , 5 )
self.assertTrue(torch.allclose(results["scores"] , __lowercase , atol=1e-4 ) )
self.assertSequenceEqual(results["labels"].tolist() , __lowercase )
self.assertTrue(torch.allclose(results["boxes"][0, :] , __lowercase ) )
| 145
|
import argparse
import torch
from ...utils import logging
from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert
logging.set_verbosity_info()
def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCamelCase :List[Any] = AlbertConfig.from_json_file(SCREAMING_SNAKE_CASE )
print(f"""Building PyTorch model from configuration: {config}""" )
__UpperCamelCase :List[str] = AlbertForPreTraining(SCREAMING_SNAKE_CASE )
# Load weights from tf checkpoint
load_tf_weights_in_albert(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# Save pytorch-model
print(f"""Save PyTorch model to {pytorch_dump_path}""" )
torch.save(model.state_dict() , SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
__lowercase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.'''
)
parser.add_argument(
'''--albert_config_file''',
default=None,
type=str,
required=True,
help=(
'''The config json file corresponding to the pre-trained ALBERT model. \n'''
'''This specifies the model architecture.'''
),
)
parser.add_argument(
'''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
__lowercase = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
| 43
| 0
|
"""simple docstring"""
from __future__ import annotations
__UpperCAmelCase : Any = "Muhammad Umer Farooq"
__UpperCAmelCase : List[str] = "MIT"
__UpperCAmelCase : Any = "1.0.0"
__UpperCAmelCase : Optional[int] = "Muhammad Umer Farooq"
__UpperCAmelCase : Optional[Any] = "contact@muhammadumerfarooq.me"
__UpperCAmelCase : str = "Alpha"
import re
from html.parser import HTMLParser
from urllib import parse
import requests
class UpperCAmelCase_ ( a__):
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
super().__init__()
UpperCamelCase : list[str] = []
UpperCamelCase : str = domain
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
if tag == "a":
# Check the list of defined attributes.
for name, value in attrs:
# If href is defined, and not empty nor # print it.
if name == "href" and value != "#" and value != "":
# If not already in urls.
if value not in self.urls:
UpperCamelCase : List[str] = parse.urljoin(self.domain , __SCREAMING_SNAKE_CASE )
self.urls.append(__SCREAMING_SNAKE_CASE )
def a ( SCREAMING_SNAKE_CASE_ : str ):
"""simple docstring"""
return ".".join(get_sub_domain_name(_lowerCamelCase ).split('''.''' )[-2:] )
def a ( SCREAMING_SNAKE_CASE_ : str ):
"""simple docstring"""
return parse.urlparse(_lowerCamelCase ).netloc
def a ( SCREAMING_SNAKE_CASE_ : str = "https://github.com" ):
"""simple docstring"""
UpperCamelCase : Optional[int] = get_domain_name(_lowerCamelCase )
# Initialize the parser
UpperCamelCase : List[str] = Parser(_lowerCamelCase )
try:
# Open URL
UpperCamelCase : Optional[Any] = requests.get(_lowerCamelCase )
# pass the raw HTML to the parser to get links
parser.feed(r.text )
# Get links and loop through
UpperCamelCase : str = set()
for link in parser.urls:
# open URL.
# read = requests.get(link)
try:
UpperCamelCase : Optional[Any] = requests.get(_lowerCamelCase )
# Get the valid email.
UpperCamelCase : Any = re.findall('''[a-zA-Z0-9]+@''' + domain , read.text )
# If not in list then append it.
for email in emails:
valid_emails.add(_lowerCamelCase )
except ValueError:
pass
except ValueError:
raise SystemExit(1 )
# Finally return a sorted list of email addresses with no duplicates.
return sorted(_lowerCamelCase )
if __name__ == "__main__":
__UpperCAmelCase : Dict = emails_from_url("https://github.com")
print(f'''{len(emails)} emails found:''')
print("\n".join(sorted(emails)))
| 370
|
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__UpperCAmelCase : Union[str, Any] = {
"configuration_mgp_str": ["MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP", "MgpstrConfig"],
"processing_mgp_str": ["MgpstrProcessor"],
"tokenization_mgp_str": ["MgpstrTokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase : Union[str, Any] = [
"MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST",
"MgpstrModel",
"MgpstrPreTrainedModel",
"MgpstrForSceneTextRecognition",
]
if TYPE_CHECKING:
from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig
from .processing_mgp_str import MgpstrProcessor
from .tokenization_mgp_str import MgpstrTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mgp_str import (
MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST,
MgpstrForSceneTextRecognition,
MgpstrModel,
MgpstrPreTrainedModel,
)
else:
import sys
__UpperCAmelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 315
| 0
|
"""simple docstring"""
from math import ceil
def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ,_lowerCamelCase : Union[str, Any] ) -> int:
_lowerCAmelCase : Dict = list(range(0 ,_lowerCamelCase ) )
_lowerCAmelCase : Tuple = [item for sublist in list(device_map.values() ) for item in sublist]
# Duplicate check
_lowerCAmelCase : Union[str, Any] = []
for i in device_map_blocks:
if device_map_blocks.count(_lowerCamelCase ) > 1 and i not in duplicate_blocks:
duplicate_blocks.append(_lowerCamelCase )
# Missing blocks
_lowerCAmelCase : int = [i for i in blocks if i not in device_map_blocks]
_lowerCAmelCase : List[Any] = [i for i in device_map_blocks if i not in blocks]
if len(_lowerCamelCase ) != 0:
raise ValueError(
"""Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device."""
""" These attention blocks were specified more than once: """ + str(_lowerCamelCase ) )
if len(_lowerCamelCase ) != 0:
raise ValueError(
"""There are attention blocks for this model that are not specified in the device_map. Add these attention """
"""blocks to a device on the device_map: """ + str(_lowerCamelCase ) )
if len(_lowerCamelCase ) != 0:
raise ValueError(
"""The device_map contains more attention blocks than this model has. Remove these from the device_map:"""
+ str(_lowerCamelCase ) )
def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ,_lowerCamelCase : Tuple ) -> str:
_lowerCAmelCase : Optional[Any] = list(range(_lowerCamelCase ) )
_lowerCAmelCase : Optional[Any] = int(ceil(n_layers / len(_lowerCamelCase ) ) )
_lowerCAmelCase : Optional[int] = [layers[i : i + n_blocks] for i in range(0 ,_lowerCamelCase ,_lowerCamelCase )]
return dict(zip(_lowerCamelCase ,_lowerCamelCase ) )
| 44
|
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized, parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv('TEST_SAGEMAKER' , 'False')) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , )
@pytest.mark.usefixtures('sm_env')
@parameterized_class(
[
{
'framework': 'pytorch',
'script': 'run_glue.py',
'model_name_or_path': 'distilbert-base-cased',
'instance_type': 'ml.p3.16xlarge',
'results': {'train_runtime': 6_5_0, 'eval_accuracy': 0.7, 'eval_loss': 0.6},
},
{
'framework': 'pytorch',
'script': 'run_ddp.py',
'model_name_or_path': 'distilbert-base-cased',
'instance_type': 'ml.p3.16xlarge',
'results': {'train_runtime': 6_0_0, 'eval_accuracy': 0.7, 'eval_loss': 0.6},
},
{
'framework': 'tensorflow',
'script': 'run_tf_dist.py',
'model_name_or_path': 'distilbert-base-cased',
'instance_type': 'ml.p3.16xlarge',
'results': {'train_runtime': 6_0_0, 'eval_accuracy': 0.6, 'eval_loss': 0.7},
},
])
class lowerCamelCase__ ( unittest.TestCase):
'''simple docstring'''
def _lowerCamelCase ( self :List[Any] ) -> Any:
if self.framework == "pytorch":
subprocess.run(
f'cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'.split() , encoding="utf-8" , check=a , )
assert hasattr(self , "env" )
def _lowerCamelCase ( self :Any , a :Optional[Any] ) -> Dict:
__UpperCamelCase : str = f'{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}'
# distributed data settings
__UpperCamelCase : Optional[int] = {"smdistributed": {"dataparallel": {"enabled": True}}} if self.script != "run_ddp.py" else None
# creates estimator
return HuggingFace(
entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=a , instance_count=a , instance_type=self.instance_type , debugger_hook_config=a , hyperparameters={**self.env.distributed_hyperparameters, "model_name_or_path": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=a , py_version="py36" , )
def _lowerCamelCase ( self :Dict , a :Dict ) -> Optional[int]:
TrainingJobAnalytics(a ).export_csv(f'{self.env.test_path}/{job_name}_metrics.csv' )
@parameterized.expand([(2,)] )
def _lowerCamelCase ( self :Dict , a :Tuple ) -> List[Any]:
# create estimator
__UpperCamelCase : int = self.create_estimator(a )
# run training
estimator.fit()
# result dataframe
__UpperCamelCase : Optional[int] = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe()
# extract kpis
__UpperCamelCase : Optional[Any] = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] )
__UpperCamelCase : Tuple = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] )
# get train time from SageMaker job, this includes starting, preprocessing, stopping
__UpperCamelCase : int = (
Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds" , 9_9_9_9_9_9 )
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy )
assert all(t <= self.results["eval_loss"] for t in eval_loss )
# dump tests result into json file to share in PR
with open(f'{estimator.latest_training_job.name}.json' , "w" ) as outfile:
json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , a )
| 232
| 0
|
'''simple docstring'''
from __future__ import annotations
import inspect
import unittest
from typing import List, Tuple
from transformers import RegNetConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class snake_case__ :
def __init__( self : str , __a : Optional[int] , __a : str=3 , __a : Optional[int]=32 , __a : Optional[Any]=3 , __a : Optional[int]=10 , __a : List[Any]=[10, 20, 30, 40] , __a : Dict=[1, 1, 2, 1] , __a : Tuple=True , __a : Union[str, Any]=True , __a : Dict="relu" , __a : Any=3 , __a : str=None , ) -> int:
'''simple docstring'''
__snake_case : str = parent
__snake_case : Union[str, Any] = batch_size
__snake_case : List[str] = image_size
__snake_case : Tuple = num_channels
__snake_case : Any = embeddings_size
__snake_case : List[Any] = hidden_sizes
__snake_case : str = depths
__snake_case : int = is_training
__snake_case : List[str] = use_labels
__snake_case : Tuple = hidden_act
__snake_case : Any = num_labels
__snake_case : List[str] = scope
__snake_case : Dict = len(__a )
def A_ ( self : int ) -> Optional[int]:
'''simple docstring'''
__snake_case : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__snake_case : str = None
if self.use_labels:
__snake_case : Optional[int] = ids_tensor([self.batch_size] , self.num_labels )
__snake_case : Tuple = self.get_config()
return config, pixel_values, labels
def A_ ( self : Optional[Any] ) -> Dict:
'''simple docstring'''
return RegNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , )
def A_ ( self : Optional[Any] , __a : Any , __a : Union[str, Any] , __a : Union[str, Any] ) -> str:
'''simple docstring'''
__snake_case : Union[str, Any] = TFRegNetModel(config=__a )
__snake_case : Union[str, Any] = model(__a , training=__a )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def A_ ( self : List[str] , __a : Dict , __a : Union[str, Any] , __a : Optional[Any] ) -> Tuple:
'''simple docstring'''
__snake_case : List[str] = self.num_labels
__snake_case : List[Any] = TFRegNetForImageClassification(__a )
__snake_case : Optional[int] = model(__a , labels=__a , training=__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def A_ ( self : int ) -> List[Any]:
'''simple docstring'''
__snake_case : List[Any] = self.prepare_config_and_inputs()
__snake_case : Any = config_and_inputs
__snake_case : Any = {'pixel_values': pixel_values}
return config, inputs_dict
@require_tf
class snake_case__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ):
A__ = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else ()
A__ = (
{'''feature-extraction''': TFRegNetModel, '''image-classification''': TFRegNetForImageClassification}
if is_tf_available()
else {}
)
A__ = False
A__ = False
A__ = False
A__ = False
A__ = False
def A_ ( self : List[str] ) -> Tuple:
'''simple docstring'''
__snake_case : str = TFRegNetModelTester(self )
__snake_case : Optional[Any] = ConfigTester(self , config_class=__a , has_text_modality=__a )
def A_ ( self : Optional[int] ) -> Tuple:
'''simple docstring'''
return
@unittest.skip(reason='RegNet does not use inputs_embeds' )
def A_ ( self : List[Any] ) -> List[str]:
'''simple docstring'''
pass
@unittest.skipIf(
not is_tf_available() or len(tf.config.list_physical_devices('GPU' ) ) == 0 , reason='TF does not support backprop for grouped convolutions on CPU.' , )
@slow
def A_ ( self : List[str] ) -> Any:
'''simple docstring'''
super().test_keras_fit()
@unittest.skip(reason='RegNet does not support input and output embeddings' )
def A_ ( self : str ) -> str:
'''simple docstring'''
pass
def A_ ( self : List[str] ) -> List[str]:
'''simple docstring'''
__snake_case : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : Tuple = model_class(__a )
__snake_case : List[str] = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__snake_case : Optional[int] = [*signature.parameters.keys()]
__snake_case : Any = ['pixel_values']
self.assertListEqual(arg_names[:1] , __a )
def A_ ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
__snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__a )
def A_ ( self : Optional[Any] ) -> Dict:
'''simple docstring'''
def check_hidden_states_output(__a : List[str] , __a : List[Any] , __a : Optional[Any] ):
__snake_case : List[Any] = model_class(__a )
__snake_case : int = model(**self._prepare_for_class(__a , __a ) , training=__a )
__snake_case : Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
__snake_case : List[Any] = self.model_tester.num_stages
self.assertEqual(len(__a ) , expected_num_stages + 1 )
# RegNet's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , )
__snake_case : int = self.model_tester.prepare_config_and_inputs_for_common()
__snake_case : Optional[int] = ['basic', 'bottleneck']
for model_class in self.all_model_classes:
for layer_type in layers_type:
__snake_case : List[str] = layer_type
__snake_case : Optional[Any] = True
check_hidden_states_output(__a , __a , __a )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__snake_case : str = True
check_hidden_states_output(__a , __a , __a )
def A_ ( self : Tuple ) -> List[str]:
'''simple docstring'''
__snake_case : int = self.model_tester.prepare_config_and_inputs_for_common()
def check_equivalence(__a : Optional[int] , __a : Tuple , __a : Union[str, Any] , __a : List[Any]={} ):
__snake_case : Optional[Any] = model(__a , return_dict=__a , **__a )
__snake_case : Tuple = model(__a , return_dict=__a , **__a ).to_tuple()
def recursive_check(__a : Tuple , __a : Optional[int] ):
if isinstance(__a , (List, Tuple) ):
for tuple_iterable_value, dict_iterable_value in zip(__a , __a ):
recursive_check(__a , __a )
elif tuple_object is None:
return
else:
self.assertTrue(
all(tf.equal(__a , __a ) ) , msg=(
'Tuple and dict output are not equal. Difference:'
f''' {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}'''
) , )
recursive_check(__a , __a )
for model_class in self.all_model_classes:
__snake_case : List[str] = model_class(__a )
__snake_case : List[Any] = self._prepare_for_class(__a , __a )
__snake_case : str = self._prepare_for_class(__a , __a )
check_equivalence(__a , __a , __a )
__snake_case : List[str] = self._prepare_for_class(__a , __a , return_labels=__a )
__snake_case : Tuple = self._prepare_for_class(__a , __a , return_labels=__a )
check_equivalence(__a , __a , __a )
__snake_case : Union[str, Any] = self._prepare_for_class(__a , __a )
__snake_case : Union[str, Any] = self._prepare_for_class(__a , __a )
check_equivalence(__a , __a , __a , {'output_hidden_states': True} )
__snake_case : Optional[Any] = self._prepare_for_class(__a , __a , return_labels=__a )
__snake_case : Any = self._prepare_for_class(__a , __a , return_labels=__a )
check_equivalence(__a , __a , __a , {'output_hidden_states': True} )
def A_ ( self : str ) -> Optional[int]:
'''simple docstring'''
__snake_case : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__a )
@slow
def A_ ( self : Union[str, Any] ) -> int:
'''simple docstring'''
for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case : Tuple = TFRegNetModel.from_pretrained(__a )
self.assertIsNotNone(__a )
def a_ ( ) -> Optional[int]:
__snake_case : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_tf
@require_vision
class snake_case__ ( unittest.TestCase ):
@cached_property
def A_ ( self : List[Any] ) -> str:
'''simple docstring'''
return (
AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def A_ ( self : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
__snake_case : List[str] = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
__snake_case : str = self.default_image_processor
__snake_case : Union[str, Any] = prepare_img()
__snake_case : str = image_processor(images=__a , return_tensors='tf' )
# forward pass
__snake_case : Optional[int] = model(**__a , training=__a )
# verify the logits
__snake_case : List[str] = tf.TensorShape((1, 1000) )
self.assertEqual(outputs.logits.shape , __a )
__snake_case : List[str] = tf.constant([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6] )
tf.debugging.assert_near(outputs.logits[0, :3] , __a , atol=1e-4 )
| 355
|
'''simple docstring'''
import os
import unittest
from transformers import BatchEncoding
from transformers.models.bert.tokenization_bert import (
BasicTokenizer,
WordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer
from transformers.testing_utils import require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
class snake_case__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ):
A__ = ProphetNetTokenizer
A__ = False
def A_ ( self : Optional[int] ) -> Dict:
'''simple docstring'''
super().setUp()
__snake_case : Dict = [
'[UNK]',
'[CLS]',
'[SEP]',
'[PAD]',
'[MASK]',
'want',
'##want',
'##ed',
'wa',
'un',
'runn',
'##ing',
',',
'low',
'lowest',
]
__snake_case : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) )
def A_ ( self : int , __a : Union[str, Any] ) -> List[str]:
'''simple docstring'''
__snake_case : Optional[int] = 'UNwant\u00E9d,running'
__snake_case : List[str] = 'unwanted, running'
return input_text, output_text
def A_ ( self : Union[str, Any] ) -> str:
'''simple docstring'''
__snake_case : Dict = self.tokenizer_class(self.vocab_file )
__snake_case : List[str] = tokenizer.tokenize('UNwant\u00E9d,running' )
self.assertListEqual(__a , ['un', '##want', '##ed', ',', 'runn', '##ing'] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , [9, 6, 7, 12, 10, 11] )
def A_ ( self : List[str] ) -> Union[str, Any]:
'''simple docstring'''
__snake_case : List[str] = BasicTokenizer()
self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] )
def A_ ( self : Union[str, Any] ) -> str:
'''simple docstring'''
__snake_case : Optional[int] = BasicTokenizer(do_lower_case=__a )
self.assertListEqual(
tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] )
self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] )
def A_ ( self : Dict ) -> Optional[int]:
'''simple docstring'''
__snake_case : List[Any] = BasicTokenizer(do_lower_case=__a , strip_accents=__a )
self.assertListEqual(
tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] )
self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] )
def A_ ( self : int ) -> Any:
'''simple docstring'''
__snake_case : int = BasicTokenizer(do_lower_case=__a , strip_accents=__a )
self.assertListEqual(
tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] )
self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] )
def A_ ( self : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
__snake_case : Union[str, Any] = BasicTokenizer(do_lower_case=__a )
self.assertListEqual(
tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] )
self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] )
def A_ ( self : List[str] ) -> Union[str, Any]:
'''simple docstring'''
__snake_case : Dict = BasicTokenizer(do_lower_case=__a )
self.assertListEqual(
tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] )
def A_ ( self : Any ) -> List[str]:
'''simple docstring'''
__snake_case : str = BasicTokenizer(do_lower_case=__a , strip_accents=__a )
self.assertListEqual(
tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] )
def A_ ( self : Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
__snake_case : List[Any] = BasicTokenizer(do_lower_case=__a , strip_accents=__a )
self.assertListEqual(
tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] )
def A_ ( self : Optional[int] ) -> List[str]:
'''simple docstring'''
__snake_case : Optional[Any] = BasicTokenizer(do_lower_case=__a , never_split=['[UNK]'] )
self.assertListEqual(
tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] )
def A_ ( self : Optional[int] ) -> List[Any]:
'''simple docstring'''
__snake_case : Any = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing']
__snake_case : List[Any] = {}
for i, token in enumerate(__a ):
__snake_case : List[str] = i
__snake_case : Any = WordpieceTokenizer(vocab=__a , unk_token='[UNK]' )
self.assertListEqual(tokenizer.tokenize('' ) , [] )
self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] )
self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] )
@require_torch
def A_ ( self : Union[str, Any] ) -> Tuple:
'''simple docstring'''
__snake_case : Optional[Any] = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' )
__snake_case : int = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
__snake_case : str = [1037, 2146, 20423, 2005, 7680, 7849, 3989, 1012, 102]
__snake_case : Union[str, Any] = tokenizer(__a , padding=__a , return_tensors='pt' )
self.assertIsInstance(__a , __a )
__snake_case : int = list(batch.input_ids.numpy()[0] )
self.assertListEqual(__a , __a )
self.assertEqual((2, 9) , batch.input_ids.shape )
self.assertEqual((2, 9) , batch.attention_mask.shape )
def A_ ( self : Union[str, Any] ) -> Any:
'''simple docstring'''
self.assertTrue(_is_whitespace(' ' ) )
self.assertTrue(_is_whitespace('\t' ) )
self.assertTrue(_is_whitespace('\r' ) )
self.assertTrue(_is_whitespace('\n' ) )
self.assertTrue(_is_whitespace('\u00A0' ) )
self.assertFalse(_is_whitespace('A' ) )
self.assertFalse(_is_whitespace('-' ) )
def A_ ( self : Dict ) -> Optional[Any]:
'''simple docstring'''
self.assertTrue(_is_control('\u0005' ) )
self.assertFalse(_is_control('A' ) )
self.assertFalse(_is_control(' ' ) )
self.assertFalse(_is_control('\t' ) )
self.assertFalse(_is_control('\r' ) )
def A_ ( self : List[Any] ) -> int:
'''simple docstring'''
self.assertTrue(_is_punctuation('-' ) )
self.assertTrue(_is_punctuation('$' ) )
self.assertTrue(_is_punctuation('`' ) )
self.assertTrue(_is_punctuation('.' ) )
self.assertFalse(_is_punctuation('A' ) )
self.assertFalse(_is_punctuation(' ' ) )
@slow
def A_ ( self : str ) -> Optional[int]:
'''simple docstring'''
__snake_case : str = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' )
__snake_case : Optional[int] = tokenizer.encode('sequence builders' , add_special_tokens=__a )
__snake_case : Optional[int] = tokenizer.encode('multi-sequence build' , add_special_tokens=__a )
__snake_case : Optional[Any] = tokenizer.build_inputs_with_special_tokens(__a )
__snake_case : List[Any] = tokenizer.build_inputs_with_special_tokens(__a , __a )
assert encoded_sentence == text + [102]
assert encoded_pair == text + [102] + text_a + [102]
| 0
| 0
|
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_torch_available
from transformers.testing_utils import require_torch, torch_device
if is_torch_available():
from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments
@require_torch
class __lowerCAmelCase ( unittest.TestCase ):
def lowerCamelCase__ ( self :Dict , __magic_name__ :Dict ):
'''simple docstring'''
for model_result in results.values():
for batch_size, sequence_length in zip(model_result["""bs"""] , model_result["""ss"""] ):
a = model_result["""result"""][batch_size][sequence_length]
self.assertIsNotNone(__magic_name__ )
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
a = """sshleifer/tiny-gpt2"""
a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__magic_name__ , inference=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__magic_name__ , )
a = PyTorchBenchmark(__magic_name__ )
a = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
a = """sgugger/tiny-distilbert-classification"""
a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__magic_name__ , inference=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__magic_name__ , only_pretrain_model=__magic_name__ , )
a = PyTorchBenchmark(__magic_name__ )
a = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
a = """sshleifer/tiny-gpt2"""
a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__magic_name__ , inference=__magic_name__ , torchscript=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__magic_name__ , )
a = PyTorchBenchmark(__magic_name__ )
a = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" )
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
a = """sshleifer/tiny-gpt2"""
a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__magic_name__ , inference=__magic_name__ , fpaa=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__magic_name__ , )
a = PyTorchBenchmark(__magic_name__ )
a = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
a = """sshleifer/tiny-gpt2"""
a = AutoConfig.from_pretrained(__magic_name__ )
# set architectures equal to `None`
a = None
a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__magic_name__ , inference=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__magic_name__ , )
a = PyTorchBenchmark(__magic_name__ , configs=[config] )
a = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
a = """sshleifer/tiny-gpt2"""
a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__magic_name__ , inference=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__magic_name__ , )
a = PyTorchBenchmark(__magic_name__ )
a = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
@unittest.skipIf(torch_device == """cpu""" , """Can't do half precision""" )
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
a = """sshleifer/tiny-gpt2"""
a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__magic_name__ , inference=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , fpaa=__magic_name__ , multi_process=__magic_name__ , )
a = PyTorchBenchmark(__magic_name__ )
a = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = """sshleifer/tiny-gpt2"""
a = AutoConfig.from_pretrained(__magic_name__ )
a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__magic_name__ , inference=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__magic_name__ , )
a = PyTorchBenchmark(__magic_name__ , configs=[config] )
a = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
a = """sshleifer/tinier_bart"""
a = AutoConfig.from_pretrained(__magic_name__ )
a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__magic_name__ , inference=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__magic_name__ , )
a = PyTorchBenchmark(__magic_name__ , configs=[config] )
a = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = """sshleifer/tiny-gpt2"""
a = AutoConfig.from_pretrained(__magic_name__ )
a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__magic_name__ , inference=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__magic_name__ , )
a = PyTorchBenchmark(__magic_name__ , configs=[config] )
a = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
a = """sshleifer/tinier_bart"""
a = AutoConfig.from_pretrained(__magic_name__ )
a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__magic_name__ , inference=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__magic_name__ , )
a = PyTorchBenchmark(__magic_name__ , configs=[config] )
a = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
a = """sshleifer/tiny-gpt2"""
with tempfile.TemporaryDirectory() as tmp_dir:
a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__magic_name__ , inference=__magic_name__ , save_to_csv=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__magic_name__ , """inf_time.csv""" ) , train_memory_csv_file=os.path.join(__magic_name__ , """train_mem.csv""" ) , inference_memory_csv_file=os.path.join(__magic_name__ , """inf_mem.csv""" ) , train_time_csv_file=os.path.join(__magic_name__ , """train_time.csv""" ) , env_info_csv_file=os.path.join(__magic_name__ , """env.csv""" ) , multi_process=__magic_name__ , )
a = PyTorchBenchmark(__magic_name__ )
benchmark.run()
self.assertTrue(Path(os.path.join(__magic_name__ , """inf_time.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(__magic_name__ , """train_time.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(__magic_name__ , """inf_mem.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(__magic_name__ , """train_mem.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(__magic_name__ , """env.csv""" ) ).exists() )
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
a = """sshleifer/tiny-gpt2"""
def _check_summary_is_not_empty(__magic_name__ :Tuple ):
self.assertTrue(hasattr(__magic_name__ , """sequential""" ) )
self.assertTrue(hasattr(__magic_name__ , """cumulative""" ) )
self.assertTrue(hasattr(__magic_name__ , """current""" ) )
self.assertTrue(hasattr(__magic_name__ , """total""" ) )
with tempfile.TemporaryDirectory() as tmp_dir:
a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__magic_name__ , inference=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__magic_name__ , """log.txt""" ) , log_print=__magic_name__ , trace_memory_line_by_line=__magic_name__ , multi_process=__magic_name__ , )
a = PyTorchBenchmark(__magic_name__ )
a = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
_check_summary_is_not_empty(result.train_summary )
self.assertTrue(Path(os.path.join(__magic_name__ , """log.txt""" ) ).exists() )
| 228
|
def __A ( __lowerCamelCase ) -> int:
a = 0
while num > 0:
digit_sum += num % 10
num //= 10
return digit_sum
def __A ( __lowerCamelCase = 100 ) -> int:
a = 1
a = 2
for i in range(2 , max_n + 1 ):
a = pre_numerator
a = 2 * i // 3 if i % 3 == 0 else 1
a = cur_numerator
a = e_cont * pre_numerator + temp
return sum_digits(__lowerCamelCase )
if __name__ == "__main__":
print(F'{solution() = }')
| 228
| 1
|
from ..utils import DummyObject, requires_backends
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: int = ["sentencepiece"]
def __init__( self: Dict , *__lowerCamelCase: Optional[int] , **__lowerCamelCase: Union[str, Any] ) -> List[str]:
requires_backends(self , ["sentencepiece"] )
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: str = ["sentencepiece"]
def __init__( self: int , *__lowerCamelCase: Optional[int] , **__lowerCamelCase: Tuple ) -> List[str]:
requires_backends(self , ["sentencepiece"] )
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: int = ["sentencepiece"]
def __init__( self: Union[str, Any] , *__lowerCamelCase: List[str] , **__lowerCamelCase: Any ) -> Any:
requires_backends(self , ["sentencepiece"] )
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: Any = ["sentencepiece"]
def __init__( self: Union[str, Any] , *__lowerCamelCase: Any , **__lowerCamelCase: Optional[Any] ) -> int:
requires_backends(self , ["sentencepiece"] )
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: Union[str, Any] = ["sentencepiece"]
def __init__( self: Dict , *__lowerCamelCase: List[str] , **__lowerCamelCase: Optional[Any] ) -> Union[str, Any]:
requires_backends(self , ["sentencepiece"] )
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: Optional[Any] = ["sentencepiece"]
def __init__( self: Tuple , *__lowerCamelCase: Optional[Any] , **__lowerCamelCase: Tuple ) -> Optional[int]:
requires_backends(self , ["sentencepiece"] )
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: List[str] = ["sentencepiece"]
def __init__( self: Any , *__lowerCamelCase: Optional[Any] , **__lowerCamelCase: Union[str, Any] ) -> Dict:
requires_backends(self , ["sentencepiece"] )
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: Tuple = ["sentencepiece"]
def __init__( self: int , *__lowerCamelCase: str , **__lowerCamelCase: Any ) -> Any:
requires_backends(self , ["sentencepiece"] )
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: str = ["sentencepiece"]
def __init__( self: Tuple , *__lowerCamelCase: str , **__lowerCamelCase: Tuple ) -> List[str]:
requires_backends(self , ["sentencepiece"] )
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: Dict = ["sentencepiece"]
def __init__( self: List[str] , *__lowerCamelCase: Any , **__lowerCamelCase: int ) -> List[Any]:
requires_backends(self , ["sentencepiece"] )
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: Union[str, Any] = ["sentencepiece"]
def __init__( self: Optional[Any] , *__lowerCamelCase: Union[str, Any] , **__lowerCamelCase: List[Any] ) -> str:
requires_backends(self , ["sentencepiece"] )
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: str = ["sentencepiece"]
def __init__( self: int , *__lowerCamelCase: List[Any] , **__lowerCamelCase: List[Any] ) -> List[Any]:
requires_backends(self , ["sentencepiece"] )
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: List[str] = ["sentencepiece"]
def __init__( self: Dict , *__lowerCamelCase: List[str] , **__lowerCamelCase: List[str] ) -> Optional[Any]:
requires_backends(self , ["sentencepiece"] )
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: int = ["sentencepiece"]
def __init__( self: Optional[Any] , *__lowerCamelCase: Optional[int] , **__lowerCamelCase: Tuple ) -> Optional[int]:
requires_backends(self , ["sentencepiece"] )
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: Union[str, Any] = ["sentencepiece"]
def __init__( self: Optional[Any] , *__lowerCamelCase: Optional[Any] , **__lowerCamelCase: Tuple ) -> Optional[Any]:
requires_backends(self , ["sentencepiece"] )
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: Union[str, Any] = ["sentencepiece"]
def __init__( self: str , *__lowerCamelCase: Dict , **__lowerCamelCase: List[Any] ) -> Union[str, Any]:
requires_backends(self , ["sentencepiece"] )
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: Tuple = ["sentencepiece"]
def __init__( self: Optional[Any] , *__lowerCamelCase: Union[str, Any] , **__lowerCamelCase: Tuple ) -> Tuple:
requires_backends(self , ["sentencepiece"] )
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: Any = ["sentencepiece"]
def __init__( self: List[str] , *__lowerCamelCase: int , **__lowerCamelCase: Dict ) -> str:
requires_backends(self , ["sentencepiece"] )
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: List[str] = ["sentencepiece"]
def __init__( self: Tuple , *__lowerCamelCase: List[Any] , **__lowerCamelCase: Dict ) -> int:
requires_backends(self , ["sentencepiece"] )
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: List[str] = ["sentencepiece"]
def __init__( self: Any , *__lowerCamelCase: List[Any] , **__lowerCamelCase: int ) -> Tuple:
requires_backends(self , ["sentencepiece"] )
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: Union[str, Any] = ["sentencepiece"]
def __init__( self: Optional[int] , *__lowerCamelCase: Union[str, Any] , **__lowerCamelCase: List[str] ) -> Union[str, Any]:
requires_backends(self , ["sentencepiece"] )
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: Union[str, Any] = ["sentencepiece"]
def __init__( self: Union[str, Any] , *__lowerCamelCase: Dict , **__lowerCamelCase: Optional[int] ) -> List[Any]:
requires_backends(self , ["sentencepiece"] )
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: Optional[int] = ["sentencepiece"]
def __init__( self: str , *__lowerCamelCase: str , **__lowerCamelCase: Optional[int] ) -> Union[str, Any]:
requires_backends(self , ["sentencepiece"] )
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: str = ["sentencepiece"]
def __init__( self: Any , *__lowerCamelCase: Union[str, Any] , **__lowerCamelCase: Optional[Any] ) -> List[Any]:
requires_backends(self , ["sentencepiece"] )
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: Tuple = ["sentencepiece"]
def __init__( self: int , *__lowerCamelCase: List[str] , **__lowerCamelCase: List[str] ) -> Any:
requires_backends(self , ["sentencepiece"] )
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: Tuple = ["sentencepiece"]
def __init__( self: Tuple , *__lowerCamelCase: Optional[Any] , **__lowerCamelCase: Tuple ) -> List[str]:
requires_backends(self , ["sentencepiece"] )
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: int = ["sentencepiece"]
def __init__( self: List[str] , *__lowerCamelCase: Tuple , **__lowerCamelCase: str ) -> str:
requires_backends(self , ["sentencepiece"] )
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: List[str] = ["sentencepiece"]
def __init__( self: Union[str, Any] , *__lowerCamelCase: int , **__lowerCamelCase: Dict ) -> str:
requires_backends(self , ["sentencepiece"] )
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: Optional[int] = ["sentencepiece"]
def __init__( self: List[Any] , *__lowerCamelCase: Tuple , **__lowerCamelCase: Optional[Any] ) -> List[Any]:
requires_backends(self , ["sentencepiece"] )
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: int = ["sentencepiece"]
def __init__( self: List[str] , *__lowerCamelCase: Any , **__lowerCamelCase: Optional[Any] ) -> Optional[Any]:
requires_backends(self , ["sentencepiece"] )
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: List[Any] = ["sentencepiece"]
def __init__( self: int , *__lowerCamelCase: Union[str, Any] , **__lowerCamelCase: Optional[int] ) -> Any:
requires_backends(self , ["sentencepiece"] )
| 342
|
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_snake_case = logging.get_logger(__name__)
_snake_case = {
'''weiweishi/roc-bert-base-zh''': '''https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json''',
}
class _snake_case ( _lowercase ):
lowerCamelCase__: Dict = "roc_bert"
def __init__( self: int , __lowerCamelCase: Union[str, Any]=3_05_22 , __lowerCamelCase: int=7_68 , __lowerCamelCase: Any=12 , __lowerCamelCase: int=12 , __lowerCamelCase: Union[str, Any]=30_72 , __lowerCamelCase: Union[str, Any]="gelu" , __lowerCamelCase: Optional[int]=0.1 , __lowerCamelCase: str=0.1 , __lowerCamelCase: Any=5_12 , __lowerCamelCase: Union[str, Any]=2 , __lowerCamelCase: str=0.02 , __lowerCamelCase: int=1e-12 , __lowerCamelCase: str=True , __lowerCamelCase: int=0 , __lowerCamelCase: List[str]="absolute" , __lowerCamelCase: List[Any]=None , __lowerCamelCase: Optional[int]=True , __lowerCamelCase: List[str]=True , __lowerCamelCase: Dict=7_68 , __lowerCamelCase: Optional[int]=9_10 , __lowerCamelCase: Union[str, Any]=5_12 , __lowerCamelCase: int=2_48_58 , __lowerCamelCase: Optional[int]=True , **__lowerCamelCase: Any , ) -> List[Any]:
__UpperCAmelCase : str = vocab_size
__UpperCAmelCase : Dict = max_position_embeddings
__UpperCAmelCase : Optional[Any] = hidden_size
__UpperCAmelCase : Optional[int] = num_hidden_layers
__UpperCAmelCase : Union[str, Any] = num_attention_heads
__UpperCAmelCase : List[str] = intermediate_size
__UpperCAmelCase : List[Any] = hidden_act
__UpperCAmelCase : List[str] = hidden_dropout_prob
__UpperCAmelCase : Optional[int] = attention_probs_dropout_prob
__UpperCAmelCase : Union[str, Any] = initializer_range
__UpperCAmelCase : Optional[Any] = type_vocab_size
__UpperCAmelCase : List[Any] = layer_norm_eps
__UpperCAmelCase : Optional[int] = use_cache
__UpperCAmelCase : Optional[Any] = enable_pronunciation
__UpperCAmelCase : Any = enable_shape
__UpperCAmelCase : Union[str, Any] = pronunciation_embed_dim
__UpperCAmelCase : Optional[Any] = pronunciation_vocab_size
__UpperCAmelCase : Optional[Any] = shape_embed_dim
__UpperCAmelCase : List[Any] = shape_vocab_size
__UpperCAmelCase : int = concat_input
__UpperCAmelCase : int = position_embedding_type
__UpperCAmelCase : Optional[int] = classifier_dropout
super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase )
| 342
| 1
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.