code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
|---|---|---|---|---|
"""simple docstring"""
import os
import unittest
from transformers import BatchEncoding
from transformers.models.bert.tokenization_bert import (
BasicTokenizer,
WordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer
from transformers.testing_utils import require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
class _A ( lowerCAmelCase , unittest.TestCase ):
snake_case__ : List[Any] = ProphetNetTokenizer
snake_case__ : Dict = False
def A__ ( self ):
"""simple docstring"""
super().setUp()
lowercase = [
"""[UNK]""",
"""[CLS]""",
"""[SEP]""",
"""[PAD]""",
"""[MASK]""",
"""want""",
"""##want""",
"""##ed""",
"""wa""",
"""un""",
"""runn""",
"""##ing""",
""",""",
"""low""",
"""lowest""",
]
lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
def A__ ( self , __lowerCAmelCase ):
"""simple docstring"""
lowercase = """UNwant\u00E9d,running"""
lowercase = """unwanted, running"""
return input_text, output_text
def A__ ( self ):
"""simple docstring"""
lowercase = self.tokenizer_class(self.vocab_file )
lowercase = tokenizer.tokenize("""UNwant\u00E9d,running""" )
self.assertListEqual(__lowerCAmelCase , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , [9, 6, 7, 12, 10, 11] )
def A__ ( self ):
"""simple docstring"""
lowercase = BasicTokenizer()
self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) , ["""ah""", """\u535A""", """\u63A8""", """zz"""] )
def A__ ( self ):
"""simple docstring"""
lowercase = BasicTokenizer(do_lower_case=__lowerCAmelCase )
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] )
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] )
def A__ ( self ):
"""simple docstring"""
lowercase = BasicTokenizer(do_lower_case=__lowerCAmelCase , strip_accents=__lowerCAmelCase )
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""] )
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""h\u00E9llo"""] )
def A__ ( self ):
"""simple docstring"""
lowercase = BasicTokenizer(do_lower_case=__lowerCAmelCase , strip_accents=__lowerCAmelCase )
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] )
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] )
def A__ ( self ):
"""simple docstring"""
lowercase = BasicTokenizer(do_lower_case=__lowerCAmelCase )
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] )
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] )
def A__ ( self ):
"""simple docstring"""
lowercase = BasicTokenizer(do_lower_case=__lowerCAmelCase )
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] )
def A__ ( self ):
"""simple docstring"""
lowercase = BasicTokenizer(do_lower_case=__lowerCAmelCase , strip_accents=__lowerCAmelCase )
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] )
def A__ ( self ):
"""simple docstring"""
lowercase = BasicTokenizer(do_lower_case=__lowerCAmelCase , strip_accents=__lowerCAmelCase )
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] )
def A__ ( self ):
"""simple docstring"""
lowercase = BasicTokenizer(do_lower_case=__lowerCAmelCase , never_split=["""[UNK]"""] )
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] )
def A__ ( self ):
"""simple docstring"""
lowercase = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""]
lowercase = {}
for i, token in enumerate(__lowerCAmelCase ):
lowercase = i
lowercase = WordpieceTokenizer(vocab=__lowerCAmelCase , unk_token="""[UNK]""" )
self.assertListEqual(tokenizer.tokenize("""""" ) , [] )
self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) , ["""un""", """##want""", """##ed""", """runn""", """##ing"""] )
self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) , ["""[UNK]""", """runn""", """##ing"""] )
@require_torch
def A__ ( self ):
"""simple docstring"""
lowercase = self.tokenizer_class.from_pretrained("""microsoft/prophetnet-large-uncased""" )
lowercase = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""]
lowercase = [1037, 2146, 2_0423, 2005, 7680, 7849, 3989, 1012, 102]
lowercase = tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase , return_tensors="""pt""" )
self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase )
lowercase = list(batch.input_ids.numpy()[0] )
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
self.assertEqual((2, 9) , batch.input_ids.shape )
self.assertEqual((2, 9) , batch.attention_mask.shape )
def A__ ( self ):
"""simple docstring"""
self.assertTrue(_is_whitespace(""" """ ) )
self.assertTrue(_is_whitespace("""\t""" ) )
self.assertTrue(_is_whitespace("""\r""" ) )
self.assertTrue(_is_whitespace("""\n""" ) )
self.assertTrue(_is_whitespace("""\u00A0""" ) )
self.assertFalse(_is_whitespace("""A""" ) )
self.assertFalse(_is_whitespace("""-""" ) )
def A__ ( self ):
"""simple docstring"""
self.assertTrue(_is_control("""\u0005""" ) )
self.assertFalse(_is_control("""A""" ) )
self.assertFalse(_is_control(""" """ ) )
self.assertFalse(_is_control("""\t""" ) )
self.assertFalse(_is_control("""\r""" ) )
def A__ ( self ):
"""simple docstring"""
self.assertTrue(_is_punctuation("""-""" ) )
self.assertTrue(_is_punctuation("""$""" ) )
self.assertTrue(_is_punctuation("""`""" ) )
self.assertTrue(_is_punctuation(""".""" ) )
self.assertFalse(_is_punctuation("""A""" ) )
self.assertFalse(_is_punctuation(""" """ ) )
@slow
def A__ ( self ):
"""simple docstring"""
lowercase = self.tokenizer_class.from_pretrained("""microsoft/prophetnet-large-uncased""" )
lowercase = tokenizer.encode("""sequence builders""" , add_special_tokens=__lowerCAmelCase )
lowercase = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__lowerCAmelCase )
lowercase = tokenizer.build_inputs_with_special_tokens(__lowerCAmelCase )
lowercase = tokenizer.build_inputs_with_special_tokens(__lowerCAmelCase , __lowerCAmelCase )
assert encoded_sentence == text + [102]
assert encoded_pair == text + [102] + text_a + [102]
| 197
|
"""simple docstring"""
from ..utils import DummyObject, requires_backends
class _A ( metaclass=lowerCAmelCase ):
snake_case__ : Optional[int] = ['torch', 'torchsde']
def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ):
"""simple docstring"""
requires_backends(self , ["""torch""", """torchsde"""] )
@classmethod
def A__ ( cls , *__lowerCAmelCase , **__lowerCAmelCase ):
"""simple docstring"""
requires_backends(cls , ["""torch""", """torchsde"""] )
@classmethod
def A__ ( cls , *__lowerCAmelCase , **__lowerCAmelCase ):
"""simple docstring"""
requires_backends(cls , ["""torch""", """torchsde"""] )
| 197
| 1
|
import argparse
import re
import requests
import torch
# git clone https://github.com/salesforce/BLIP.git
from models.blip import blip_decoder
from models.blip_itm import blip_itm
from models.blip_vqa import blip_vqa
from PIL import Image
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
from transformers import (
BertTokenizer,
BlipConfig,
BlipForConditionalGeneration,
BlipForImageTextRetrieval,
BlipForQuestionAnswering,
)
def UpperCAmelCase ( a_ , a_ ) -> Optional[int]:
"""simple docstring"""
__A = "https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg"
__A = Image.open(requests.get(a_ , stream=a_ ).raw ).convert("RGB" )
__A = transforms.Compose(
[
transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ),
transforms.ToTensor(),
transforms.Normalize((0.48_145_466, 0.4_578_275, 0.40_821_073) , (0.26_862_954, 0.26_130_258, 0.27_577_711) ),
] )
__A = transform(a_ ).unsqueeze(0 ).to(a_ )
return image
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
if "visual_encoder" in key:
__A = re.sub("visual_encoder*" , "vision_model.encoder" , a_ )
if "blocks" in key:
__A = re.sub(r"blocks" , "layers" , a_ )
if "attn" in key:
__A = re.sub(r"attn" , "self_attn" , a_ )
if "norm1" in key:
__A = re.sub(r"norm1" , "layer_norm1" , a_ )
if "norm2" in key:
__A = re.sub(r"norm2" , "layer_norm2" , a_ )
if "encoder.norm" in key:
__A = re.sub(r"encoder.norm" , "post_layernorm" , a_ )
if "encoder.patch_embed.proj" in key:
__A = re.sub(r"encoder.patch_embed.proj" , "embeddings.patch_embedding" , a_ )
if "encoder.pos_embed" in key:
__A = re.sub(r"encoder.pos_embed" , "embeddings.position_embedding" , a_ )
if "encoder.cls_token" in key:
__A = re.sub(r"encoder.cls_token" , "embeddings.class_embedding" , a_ )
if "self_attn" in key:
__A = re.sub(r"self_attn.proj" , "self_attn.projection" , a_ )
return key
@torch.no_grad()
def UpperCAmelCase ( a_ , a_=None ) -> Dict:
"""simple docstring"""
if config_path is not None:
__A = BlipConfig.from_pretrained(a_ )
else:
__A = BlipConfig(projection_dim=5_1_2 , text_config={} , vision_config={} )
__A = BlipForConditionalGeneration(a_ ).eval()
__A = "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth"
__A = blip_decoder(pretrained=a_ , image_size=3_8_4 , vit="base" )
__A = pt_model.eval()
__A = pt_model.state_dict()
for key in modified_state_dict.copy():
__A = modified_state_dict.pop(a_ )
__A = rename_key(a_ )
__A = value
hf_model.load_state_dict(a_ )
__A = 3_8_4
__A = load_demo_image(image_size=a_ , device="cpu" )
__A = BertTokenizer.from_pretrained("bert-base-uncased" )
__A = tokenizer(["a picture of"] ).input_ids
__A = hf_model.generate(a_ , a_ )
assert out[0].tolist() == [3_0_5_2_2, 1_0_3_7, 3_8_6_1, 1_9_9_7, 1_0_3_7, 2_4_5_0, 3_5_6_4, 2_0_0_6, 1_9_9_6, 3_5_0_9, 2_0_0_7, 2_0_1_4, 3_8_9_9, 1_0_2]
__A = hf_model.generate(a_ )
assert out[0].tolist() == [3_0_5_2_2, 1_0_3_7, 2_4_5_0, 3_5_6_4, 2_0_0_6, 1_9_9_6, 3_5_0_9, 2_0_0_7, 2_0_1_4, 3_8_9_9, 1_0_2]
if pytorch_dump_folder_path is not None:
hf_model.save_pretrained(a_ )
# model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth'
__A = (
"https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth"
)
__A = blip_vqa(pretrained=a_ , image_size=a_ , vit="base" )
vqa_model.eval()
__A = vqa_model.state_dict()
for key in modified_state_dict.copy():
__A = modified_state_dict.pop(a_ )
__A = rename_key(a_ )
__A = value
__A = BlipForQuestionAnswering(a_ )
hf_vqa_model.load_state_dict(a_ )
__A = ["How many dogs are in this image?"]
__A = tokenizer(a_ , return_tensors="pt" ).input_ids
__A = hf_vqa_model.generate(a_ , a_ )
print(tokenizer.decode(answer[0] ) )
assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]"
if pytorch_dump_folder_path is not None:
hf_vqa_model.save_pretrained(pytorch_dump_folder_path + "_vqa" )
__A = "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth"
__A = blip_itm(pretrained=a_ , image_size=a_ , vit="base" )
itm_model.eval()
__A = itm_model.state_dict()
for key in modified_state_dict.copy():
__A = modified_state_dict.pop(a_ )
__A = rename_key(a_ )
__A = value
__A = BlipForImageTextRetrieval(a_ )
__A = ["A picture of a woman with a dog sitting in a beach"]
__A = tokenizer(
a_ , return_tensors="pt" , padding="max_length" , truncation=a_ , max_length=3_5 , ).input_ids
hf_itm_model.load_state_dict(a_ )
hf_itm_model.eval()
__A = hf_itm_model(a_ , a_ , use_itm_head=a_ )
__A = hf_itm_model(a_ , a_ , use_itm_head=a_ )
assert out[0].item() == 0.2_110_687_494_277_954
assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.45_698_845_386_505_127
if pytorch_dump_folder_path is not None:
hf_itm_model.save_pretrained(pytorch_dump_folder_path + "_itm" )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE :List[str] = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
SCREAMING_SNAKE_CASE :str = parser.parse_args()
convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
| 124
|
import argparse
from collections import defaultdict
import yaml
SCREAMING_SNAKE_CASE :str = 'docs/source/en/_toctree.yml'
def UpperCAmelCase ( a_ ) -> int:
"""simple docstring"""
__A = defaultdict(a_ )
for doc in model_doc:
counts[doc["local"]] += 1
__A = [key for key, value in counts.items() if value > 1]
__A = []
for duplicate_key in duplicates:
__A = list({doc["title"] for doc in model_doc if doc["local"] == duplicate_key} )
if len(a_ ) > 1:
raise ValueError(
F'''{duplicate_key} is present several times in the documentation table of content at '''
"`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the "
"others." )
# Only add this once
new_doc.append({"local": duplicate_key, "title": titles[0]} )
# Add none duplicate-keys
new_doc.extend([doc for doc in model_doc if counts[doc["local"]] == 1] )
# Sort
return sorted(a_ , key=lambda a_ : s["title"].lower() )
def UpperCAmelCase ( a_=False ) -> List[Any]:
"""simple docstring"""
with open(a_ , encoding="utf-8" ) as f:
__A = yaml.safe_load(f.read() )
# Get to the API doc
__A = 0
while content[api_idx]["title"] != "API":
api_idx += 1
__A = content[api_idx]["sections"]
# Then to the model doc
__A = 0
while api_doc[model_idx]["title"] != "Models":
model_idx += 1
__A = api_doc[model_idx]["sections"]
__A = [(idx, section) for idx, section in enumerate(a_ ) if "sections" in section]
__A = False
for idx, modality_doc in modalities_docs:
__A = modality_doc["sections"]
__A = clean_model_doc_toc(a_ )
if old_modality_doc != new_modality_doc:
__A = True
if overwrite:
__A = new_modality_doc
if diff:
if overwrite:
__A = model_doc
__A = api_doc
with open(a_ , "w" , encoding="utf-8" ) as f:
f.write(yaml.dump(a_ , allow_unicode=a_ ) )
else:
raise ValueError(
"The model doc part of the table of content is not properly sorted, run `make style` to fix this." )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE :Tuple = argparse.ArgumentParser()
parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.')
SCREAMING_SNAKE_CASE :List[str] = parser.parse_args()
check_model_doc(args.fix_and_overwrite)
| 124
| 1
|
"""simple docstring"""
from __future__ import annotations
import unittest
import numpy as np
from transformers import BlipTextConfig
from transformers.testing_utils import require_tf, slow
from transformers.utils import is_tf_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
if is_tf_available():
import tensorflow as tf
from transformers import TFBlipTextModel
from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST
class A_ :
"""simple docstring"""
def __init__( self :List[str] , lowercase_ :str , lowercase_ :Dict=12 , lowercase_ :Dict=7 , lowercase_ :str=True , lowercase_ :List[Any]=True , lowercase_ :Dict=True , lowercase_ :Optional[int]=99 , lowercase_ :Dict=32 , lowercase_ :Optional[Any]=32 , lowercase_ :Union[str, Any]=2 , lowercase_ :List[str]=4 , lowercase_ :Optional[int]=37 , lowercase_ :Union[str, Any]=0.1 , lowercase_ :Optional[int]=0.1 , lowercase_ :int=5_12 , lowercase_ :List[Any]=0.02 , lowercase_ :Any=0 , lowercase_ :List[Any]=None , ) -> int:
UpperCAmelCase = parent
UpperCAmelCase = batch_size
UpperCAmelCase = seq_length
UpperCAmelCase = is_training
UpperCAmelCase = use_input_mask
UpperCAmelCase = use_labels
UpperCAmelCase = vocab_size
UpperCAmelCase = hidden_size
UpperCAmelCase = projection_dim
UpperCAmelCase = num_hidden_layers
UpperCAmelCase = num_attention_heads
UpperCAmelCase = intermediate_size
UpperCAmelCase = dropout
UpperCAmelCase = attention_dropout
UpperCAmelCase = max_position_embeddings
UpperCAmelCase = initializer_range
UpperCAmelCase = scope
UpperCAmelCase = bos_token_id
def UpperCAmelCase__ ( self :List[Any] ) -> List[str]:
UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase = None
if self.use_input_mask:
UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
if input_mask is not None:
UpperCAmelCase = input_mask.numpy()
UpperCAmelCase , UpperCAmelCase = input_mask.shape
UpperCAmelCase = np.random.randint(1 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(__snake_case ):
UpperCAmelCase = 1
UpperCAmelCase = 0
UpperCAmelCase = self.get_config()
return config, input_ids, tf.convert_to_tensor(__snake_case )
def UpperCAmelCase__ ( self :List[str] ) -> Optional[int]:
return BlipTextConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , )
def UpperCAmelCase__ ( self :int , lowercase_ :Any , lowercase_ :List[str] , lowercase_ :List[Any] ) -> Optional[int]:
UpperCAmelCase = TFBlipTextModel(config=__snake_case )
UpperCAmelCase = model(__snake_case , attention_mask=__snake_case , training=__snake_case )
UpperCAmelCase = model(__snake_case , training=__snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def UpperCAmelCase__ ( self :Optional[int] ) -> Any:
UpperCAmelCase = self.prepare_config_and_inputs()
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = config_and_inputs
UpperCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_tf
class A_ ( snake_case_ , unittest.TestCase ):
"""simple docstring"""
__UpperCamelCase = (TFBlipTextModel,) if is_tf_available() else ()
__UpperCamelCase = False
__UpperCamelCase = False
__UpperCamelCase = False
def UpperCAmelCase__ ( self :List[Any] ) -> Optional[int]:
UpperCAmelCase = BlipTextModelTester(self )
UpperCAmelCase = ConfigTester(self , config_class=__snake_case , hidden_size=37 )
def UpperCAmelCase__ ( self :Optional[Any] ) -> Optional[Any]:
self.config_tester.run_common_tests()
def UpperCAmelCase__ ( self :int ) -> List[str]:
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__snake_case )
def UpperCAmelCase__ ( self :str ) -> Union[str, Any]:
pass
def UpperCAmelCase__ ( self :Optional[Any] ) -> Tuple:
pass
@unittest.skip(reason='Blip does not use inputs_embeds' )
def UpperCAmelCase__ ( self :List[Any] ) -> List[Any]:
pass
@unittest.skip(reason='BlipTextModel has no base class and is not available in MODEL_MAPPING' )
def UpperCAmelCase__ ( self :List[Any] ) -> List[str]:
pass
@unittest.skip(reason='BlipTextModel has no base class and is not available in MODEL_MAPPING' )
def UpperCAmelCase__ ( self :List[str] ) -> int:
pass
@slow
def UpperCAmelCase__ ( self :List[str] ) -> List[str]:
for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase = TFBlipTextModel.from_pretrained(__snake_case )
self.assertIsNotNone(__snake_case )
def UpperCAmelCase__ ( self :List[str] , lowercase_ :List[str]=True ) -> Any:
super().test_pt_tf_model_equivalence(allow_missing_keys=__snake_case )
| 78
|
'''simple docstring'''
import argparse
import json
from tqdm import tqdm
def UpperCamelCase__ ( ):
"""simple docstring"""
_lowerCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--src_path""" , type=lowerCAmelCase , default="""biencoder-nq-dev.json""" , help="""Path to raw DPR training data""" , )
parser.add_argument(
"""--evaluation_set""" , type=lowerCAmelCase , help="""where to store parsed evaluation_set file""" , )
parser.add_argument(
"""--gold_data_path""" , type=lowerCAmelCase , help="""where to store parsed gold_data_path file""" , )
_lowerCAmelCase = parser.parse_args()
with open(args.src_path , """r""" ) as src_file, open(args.evaluation_set , """w""" ) as eval_file, open(
args.gold_data_path , """w""" ) as gold_file:
_lowerCAmelCase = json.load(lowerCAmelCase )
for dpr_record in tqdm(lowerCAmelCase ):
_lowerCAmelCase = dpr_record["""question"""]
_lowerCAmelCase = [context["""title"""] for context in dpr_record["""positive_ctxs"""]]
eval_file.write(question + """\n""" )
gold_file.write("""\t""".join(lowerCAmelCase ) + """\n""" )
if __name__ == "__main__":
main()
| 70
| 0
|
'''simple docstring'''
import math
import tensorflow as tf
from packaging import version
def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> Dict:
lowerCamelCase__ : Union[str, Any] = tf.convert_to_tensor(UpperCamelCase )
lowerCamelCase__ : List[str] = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) ))
return x * cdf
def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> int:
lowerCamelCase__ : Tuple = tf.convert_to_tensor(UpperCamelCase )
lowerCamelCase__ : int = tf.cast(math.pi , x.dtype )
lowerCamelCase__ : Optional[Any] = tf.cast(0.04_4715 , x.dtype )
lowerCamelCase__ : str = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(UpperCamelCase , 3 )) ))
return x * cdf
def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> Union[str, Any]:
lowerCamelCase__ : str = tf.convert_to_tensor(UpperCamelCase )
return x * tf.tanh(tf.math.softplus(UpperCamelCase ) )
def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> Optional[int]:
lowerCamelCase__ : Optional[int] = tf.convert_to_tensor(UpperCamelCase )
lowerCamelCase__ : Union[str, Any] = tf.cast(0.04_4715 , x.dtype )
lowerCamelCase__ : Dict = tf.cast(0.79_7884_5608 , x.dtype )
return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) ))
def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> Tuple:
lowerCamelCase__ : Optional[Any] = tf.convert_to_tensor(UpperCamelCase )
lowerCamelCase__ : Any = tf.cast(1.702 , x.dtype )
return x * tf.math.sigmoid(coeff * x )
def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> Any:
return tf.clip_by_value(_gelu(UpperCamelCase ) , -10 , 10 )
def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase=-1 ) -> Optional[int]:
lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = tf.split(UpperCamelCase , 2 , axis=UpperCamelCase )
return a * tf.math.sigmoid(UpperCamelCase )
if version.parse(tf.version.VERSION) >= version.parse('''2.4'''):
def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> str:
return tf.keras.activations.gelu(UpperCamelCase , approximate=UpperCamelCase )
_A : Any =tf.keras.activations.gelu
_A : str =approximate_gelu_wrap
else:
_A : List[str] =_gelu
_A : Union[str, Any] =_gelu_new
_A : int ={
'''gelu''': gelu,
'''gelu_10''': gelu_aa,
'''gelu_fast''': gelu_fast,
'''gelu_new''': gelu_new,
'''glu''': glu,
'''mish''': mish,
'''quick_gelu''': quick_gelu,
'''relu''': tf.keras.activations.relu,
'''sigmoid''': tf.keras.activations.sigmoid,
'''silu''': tf.keras.activations.swish,
'''swish''': tf.keras.activations.swish,
'''tanh''': tf.keras.activations.tanh,
}
def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> Dict:
if activation_string in ACTaFN:
return ACTaFN[activation_string]
else:
raise KeyError(f'''function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}''' )
| 129
|
'''simple docstring'''
from typing import Optional, Tuple, Union
import torch
from einops import rearrange, reduce
from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel
from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput
from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput
_A : Union[str, Any] =8
def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase=BITS ) -> Tuple:
lowerCamelCase__ : List[str] = x.device
lowerCamelCase__ : Any = (x * 255).int().clamp(0 , 255 )
lowerCamelCase__ : Optional[int] = 2 ** torch.arange(bits - 1 , -1 , -1 , device=UpperCamelCase )
lowerCamelCase__ : int = rearrange(UpperCamelCase , """d -> d 1 1""" )
lowerCamelCase__ : List[str] = rearrange(UpperCamelCase , """b c h w -> b c 1 h w""" )
lowerCamelCase__ : Tuple = ((x & mask) != 0).float()
lowerCamelCase__ : List[Any] = rearrange(UpperCamelCase , """b c d h w -> b (c d) h w""" )
lowerCamelCase__ : Optional[int] = bits * 2 - 1
return bits
def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase=BITS ) -> List[Any]:
lowerCamelCase__ : List[Any] = x.device
lowerCamelCase__ : Dict = (x > 0).int()
lowerCamelCase__ : Optional[Any] = 2 ** torch.arange(bits - 1 , -1 , -1 , device=UpperCamelCase , dtype=torch.intaa )
lowerCamelCase__ : List[Any] = rearrange(UpperCamelCase , """d -> d 1 1""" )
lowerCamelCase__ : List[str] = rearrange(UpperCamelCase , """b (c d) h w -> b c d h w""" , d=8 )
lowerCamelCase__ : List[Any] = reduce(x * mask , """b c d h w -> b c h w""" , """sum""" )
return (dec / 255).clamp(0.0 , 1.0 )
def SCREAMING_SNAKE_CASE_ (self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = 0.0 , UpperCamelCase = True , UpperCamelCase=None , UpperCamelCase = True , ) -> Union[DDIMSchedulerOutput, Tuple]:
if self.num_inference_steps is None:
raise ValueError(
"""Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""" )
# See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
# Ideally, read DDIM paper in-detail understanding
# Notation (<variable name> -> <name in paper>
# - pred_noise_t -> e_theta(x_t, t)
# - pred_original_sample -> f_theta(x_t, t) or x_0
# - std_dev_t -> sigma_t
# - eta -> η
# - pred_sample_direction -> "direction pointing to x_t"
# - pred_prev_sample -> "x_t-1"
# 1. get previous step value (=t-1)
lowerCamelCase__ : Optional[int] = timestep - self.config.num_train_timesteps // self.num_inference_steps
# 2. compute alphas, betas
lowerCamelCase__ : str = self.alphas_cumprod[timestep]
lowerCamelCase__ : List[str] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
lowerCamelCase__ : Optional[int] = 1 - alpha_prod_t
# 3. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
lowerCamelCase__ : Optional[int] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
# 4. Clip "predicted x_0"
lowerCamelCase__ : Dict = self.bit_scale
if self.config.clip_sample:
lowerCamelCase__ : Optional[Any] = torch.clamp(UpperCamelCase , -scale , UpperCamelCase )
# 5. compute variance: "sigma_t(η)" -> see formula (16)
# σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
lowerCamelCase__ : Tuple = self._get_variance(UpperCamelCase , UpperCamelCase )
lowerCamelCase__ : Optional[int] = eta * variance ** 0.5
if use_clipped_model_output:
# the model_output is always re-derived from the clipped x_0 in Glide
lowerCamelCase__ : int = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
lowerCamelCase__ : Optional[Any] = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output
# 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
lowerCamelCase__ : Tuple = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction
if eta > 0:
# randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072
lowerCamelCase__ : Dict = model_output.device if torch.is_tensor(UpperCamelCase ) else """cpu"""
lowerCamelCase__ : str = torch.randn(model_output.shape , dtype=model_output.dtype , generator=UpperCamelCase ).to(UpperCamelCase )
lowerCamelCase__ : Optional[Any] = self._get_variance(UpperCamelCase , UpperCamelCase ) ** 0.5 * eta * noise
lowerCamelCase__ : int = prev_sample + variance
if not return_dict:
return (prev_sample,)
return DDIMSchedulerOutput(prev_sample=UpperCamelCase , pred_original_sample=UpperCamelCase )
def SCREAMING_SNAKE_CASE_ (self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase="epsilon" , UpperCamelCase=None , UpperCamelCase = True , ) -> Union[DDPMSchedulerOutput, Tuple]:
lowerCamelCase__ : List[Any] = timestep
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = torch.split(UpperCamelCase , sample.shape[1] , dim=1 )
else:
lowerCamelCase__ : List[str] = None
# 1. compute alphas, betas
lowerCamelCase__ : str = self.alphas_cumprod[t]
lowerCamelCase__ : List[str] = self.alphas_cumprod[t - 1] if t > 0 else self.one
lowerCamelCase__ : str = 1 - alpha_prod_t
lowerCamelCase__ : List[Any] = 1 - alpha_prod_t_prev
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if prediction_type == "epsilon":
lowerCamelCase__ : Union[str, Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif prediction_type == "sample":
lowerCamelCase__ : Optional[Any] = model_output
else:
raise ValueError(f'''Unsupported prediction_type {prediction_type}.''' )
# 3. Clip "predicted x_0"
lowerCamelCase__ : str = self.bit_scale
if self.config.clip_sample:
lowerCamelCase__ : List[Any] = torch.clamp(UpperCamelCase , -scale , UpperCamelCase )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
lowerCamelCase__ : Tuple = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t
lowerCamelCase__ : Tuple = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
lowerCamelCase__ : int = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
lowerCamelCase__ : Optional[Any] = 0
if t > 0:
lowerCamelCase__ : Optional[Any] = torch.randn(
model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=UpperCamelCase ).to(model_output.device )
lowerCamelCase__ : str = (self._get_variance(UpperCamelCase , predicted_variance=UpperCamelCase ) ** 0.5) * noise
lowerCamelCase__ : Optional[int] = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample,)
return DDPMSchedulerOutput(prev_sample=UpperCamelCase , pred_original_sample=UpperCamelCase )
class _lowercase ( _lowercase ):
def __init__( self: List[str] , UpperCamelCase__: UNetaDConditionModel , UpperCamelCase__: Union[DDIMScheduler, DDPMScheduler] , UpperCamelCase__: Optional[float] = 1.0 , ):
super().__init__()
lowerCamelCase__ : Optional[int] = bit_scale
lowerCamelCase__ : List[Any] = (
ddim_bit_scheduler_step if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else ddpm_bit_scheduler_step
)
self.register_modules(unet=UpperCamelCase__ , scheduler=UpperCamelCase__ )
@torch.no_grad()
def __call__( self: Union[str, Any] , UpperCamelCase__: Optional[int] = 256 , UpperCamelCase__: Optional[int] = 256 , UpperCamelCase__: Optional[int] = 50 , UpperCamelCase__: Optional[torch.Generator] = None , UpperCamelCase__: Optional[int] = 1 , UpperCamelCase__: Optional[str] = "pil" , UpperCamelCase__: bool = True , **UpperCamelCase__: int , ):
lowerCamelCase__ : List[Any] = torch.randn(
(batch_size, self.unet.config.in_channels, height, width) , generator=UpperCamelCase__ , )
lowerCamelCase__ : Union[str, Any] = decimal_to_bits(UpperCamelCase__ ) * self.bit_scale
lowerCamelCase__ : Union[str, Any] = latents.to(self.device )
self.scheduler.set_timesteps(UpperCamelCase__ )
for t in self.progress_bar(self.scheduler.timesteps ):
# predict the noise residual
lowerCamelCase__ : Tuple = self.unet(UpperCamelCase__ , UpperCamelCase__ ).sample
# compute the previous noisy sample x_t -> x_t-1
lowerCamelCase__ : Any = self.scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample
lowerCamelCase__ : Dict = bits_to_decimal(UpperCamelCase__ )
if output_type == "pil":
lowerCamelCase__ : int = self.numpy_to_pil(UpperCamelCase__ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=UpperCamelCase__ )
| 129
| 1
|
from .testing import (
are_the_same_tensors,
execute_subprocess_async,
require_bnb,
require_cpu,
require_cuda,
require_huggingface_suite,
require_mps,
require_multi_gpu,
require_multi_xpu,
require_safetensors,
require_single_gpu,
require_single_xpu,
require_torch_min_version,
require_tpu,
require_xpu,
skip,
slow,
)
from .training import RegressionDataset, RegressionModel, RegressionModelaXPU
from .scripts import test_script, test_sync, test_ops # isort: skip
| 76
|
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import AutoTokenizer, PegasusConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel
@require_tf
class a_ :
'''simple docstring'''
UpperCamelCase = PegasusConfig
UpperCamelCase = {}
UpperCamelCase = '''gelu'''
def __init__( self , A , A=13 , A=7 , A=True , A=False , A=99 , A=32 , A=2 , A=4 , A=37 , A=0.1 , A=0.1 , A=40 , A=2 , A=1 , A=0 , ) -> Optional[int]:
_SCREAMING_SNAKE_CASE = parent
_SCREAMING_SNAKE_CASE = batch_size
_SCREAMING_SNAKE_CASE = seq_length
_SCREAMING_SNAKE_CASE = is_training
_SCREAMING_SNAKE_CASE = use_labels
_SCREAMING_SNAKE_CASE = vocab_size
_SCREAMING_SNAKE_CASE = hidden_size
_SCREAMING_SNAKE_CASE = num_hidden_layers
_SCREAMING_SNAKE_CASE = num_attention_heads
_SCREAMING_SNAKE_CASE = intermediate_size
_SCREAMING_SNAKE_CASE = hidden_dropout_prob
_SCREAMING_SNAKE_CASE = attention_probs_dropout_prob
_SCREAMING_SNAKE_CASE = max_position_embeddings
_SCREAMING_SNAKE_CASE = eos_token_id
_SCREAMING_SNAKE_CASE = pad_token_id
_SCREAMING_SNAKE_CASE = bos_token_id
def snake_case_( self ) -> Optional[int]:
_SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
_SCREAMING_SNAKE_CASE = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
_SCREAMING_SNAKE_CASE = tf.concat([input_ids, eos_tensor] , axis=1 )
_SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_SCREAMING_SNAKE_CASE = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
_SCREAMING_SNAKE_CASE = prepare_pegasus_inputs_dict(A , A , A )
return config, inputs_dict
def snake_case_( self , A , A ) -> int:
_SCREAMING_SNAKE_CASE = TFPegasusModel(config=A ).get_decoder()
_SCREAMING_SNAKE_CASE = inputs_dict["""input_ids"""]
_SCREAMING_SNAKE_CASE = input_ids[:1, :]
_SCREAMING_SNAKE_CASE = inputs_dict["""attention_mask"""][:1, :]
_SCREAMING_SNAKE_CASE = inputs_dict["""head_mask"""]
_SCREAMING_SNAKE_CASE = 1
# first forward pass
_SCREAMING_SNAKE_CASE = model(A , attention_mask=A , head_mask=A , use_cache=A )
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
_SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 3) , config.vocab_size )
_SCREAMING_SNAKE_CASE = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
_SCREAMING_SNAKE_CASE = tf.concat([input_ids, next_tokens] , axis=-1 )
_SCREAMING_SNAKE_CASE = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
_SCREAMING_SNAKE_CASE = model(A , attention_mask=A )[0]
_SCREAMING_SNAKE_CASE = model(A , attention_mask=A , past_key_values=A )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
_SCREAMING_SNAKE_CASE = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
_SCREAMING_SNAKE_CASE = output_from_no_past[:, -3:, random_slice_idx]
_SCREAMING_SNAKE_CASE = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(A , A , rtol=1e-3 )
def lowerCamelCase ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : int=None , __lowerCamelCase : Dict=None , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : str=None , __lowerCamelCase : List[Any]=None , ) ->int:
if attention_mask is None:
_SCREAMING_SNAKE_CASE = tf.cast(tf.math.not_equal(__lowerCamelCase , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
_SCREAMING_SNAKE_CASE = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
_SCREAMING_SNAKE_CASE = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
_SCREAMING_SNAKE_CASE = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
_SCREAMING_SNAKE_CASE = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class a_ ( snake_case_ , snake_case_ , unittest.TestCase ):
'''simple docstring'''
UpperCamelCase = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else ()
UpperCamelCase = (TFPegasusForConditionalGeneration,) if is_tf_available() else ()
UpperCamelCase = (
{
'''conversational''': TFPegasusForConditionalGeneration,
'''feature-extraction''': TFPegasusModel,
'''summarization''': TFPegasusForConditionalGeneration,
'''text2text-generation''': TFPegasusForConditionalGeneration,
'''translation''': TFPegasusForConditionalGeneration,
}
if is_tf_available()
else {}
)
UpperCamelCase = True
UpperCamelCase = False
UpperCamelCase = False
def snake_case_( self ) -> Any:
_SCREAMING_SNAKE_CASE = TFPegasusModelTester(self )
_SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=A )
def snake_case_( self ) -> List[str]:
self.config_tester.run_common_tests()
def snake_case_( self ) -> str:
_SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*A )
@require_sentencepiece
@require_tokenizers
@require_tf
class a_ ( unittest.TestCase ):
'''simple docstring'''
UpperCamelCase = [
''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''',
''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''',
]
UpperCamelCase = [
'''California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to'''
''' reduce the risk of wildfires.''',
'''N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.''',
] # differs slightly from pytorch, likely due to numerical differences in linear layers
UpperCamelCase = '''google/pegasus-xsum'''
@cached_property
def snake_case_( self ) -> List[str]:
return AutoTokenizer.from_pretrained(self.model_name )
@cached_property
def snake_case_( self ) -> str:
_SCREAMING_SNAKE_CASE = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
def snake_case_( self , **A ) -> Optional[Any]:
_SCREAMING_SNAKE_CASE = self.translate_src_text(**A )
assert self.expected_text == generated_words
def snake_case_( self , **A ) -> Union[str, Any]:
_SCREAMING_SNAKE_CASE = self.tokenizer(self.src_text , **A , padding=A , return_tensors="""tf""" )
_SCREAMING_SNAKE_CASE = self.model.generate(
model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=A , )
_SCREAMING_SNAKE_CASE = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=A )
return generated_words
@slow
def snake_case_( self ) -> Any:
self._assert_generated_batch_equal_expected()
| 58
| 0
|
'''simple docstring'''
import hashlib
import unittest
from typing import Dict
import numpy as np
from transformers import (
MODEL_FOR_MASK_GENERATION_MAPPING,
TF_MODEL_FOR_MASK_GENERATION_MAPPING,
is_vision_available,
pipeline,
)
from transformers.pipelines import MaskGenerationPipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
if is_vision_available():
from PIL import Image
else:
class UpperCamelCase__ :
"""simple docstring"""
@staticmethod
def a ( *snake_case__ , **snake_case__ ):
'''simple docstring'''
pass
def lowercase (_A ):
"""simple docstring"""
_lowerCAmelCase : Tuple = hashlib.mda(image.tobytes() )
return m.hexdigest()[:1_0]
def lowercase (_A ):
"""simple docstring"""
_lowerCAmelCase : Union[str, Any] = np.array(snake_case__ )
_lowerCAmelCase : Dict = npimg.shape
return {"hash": hashimage(snake_case__ ), "shape": shape}
@is_pipeline_test
@require_vision
@require_torch
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
__magic_name__ = dict(
(list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) )
__magic_name__ = dict(
(list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) )
def a ( self , snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : Dict = MaskGenerationPipeline(model=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ )
return image_segmenter, [
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
]
def a ( self , snake_case__ , snake_case__ ):
'''simple docstring'''
pass
@require_tf
@unittest.skip('Image segmentation not implemented in TF' )
def a ( self ):
'''simple docstring'''
pass
@slow
@require_torch
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Any = pipeline('mask-generation' , model='facebook/sam-vit-huge' )
_lowerCAmelCase : List[Any] = image_segmenter('http://images.cocodataset.org/val2017/000000039769.jpg' , points_per_batch=256 )
# Shortening by hashing
_lowerCAmelCase : Tuple = []
for i, o in enumerate(outputs['masks'] ):
new_outupt += [{"mask": mask_to_test_readable(SCREAMING_SNAKE_CASE_ ), "scores": outputs["scores"][i]}]
# fmt: off
self.assertEqual(
nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [
{'mask': {'hash': '115ad19f5f', 'shape': (480, 640)}, 'scores': 1.0444},
{'mask': {'hash': '6affa964c6', 'shape': (480, 640)}, 'scores': 1.021},
{'mask': {'hash': 'dfe28a0388', 'shape': (480, 640)}, 'scores': 1.0167},
{'mask': {'hash': 'c0a5f4a318', 'shape': (480, 640)}, 'scores': 1.0132},
{'mask': {'hash': 'fe8065c197', 'shape': (480, 640)}, 'scores': 1.0053},
{'mask': {'hash': 'e2d0b7a0b7', 'shape': (480, 640)}, 'scores': 0.9967},
{'mask': {'hash': '453c7844bd', 'shape': (480, 640)}, 'scores': 0.993},
{'mask': {'hash': '3d44f2926d', 'shape': (480, 640)}, 'scores': 0.9909},
{'mask': {'hash': '64033ddc3f', 'shape': (480, 640)}, 'scores': 0.9879},
{'mask': {'hash': '801064ff79', 'shape': (480, 640)}, 'scores': 0.9834},
{'mask': {'hash': '6172f276ef', 'shape': (480, 640)}, 'scores': 0.9716},
{'mask': {'hash': 'b49e60e084', 'shape': (480, 640)}, 'scores': 0.9612},
{'mask': {'hash': 'a811e775fd', 'shape': (480, 640)}, 'scores': 0.9599},
{'mask': {'hash': 'a6a8ebcf4b', 'shape': (480, 640)}, 'scores': 0.9552},
{'mask': {'hash': '9d8257e080', 'shape': (480, 640)}, 'scores': 0.9532},
{'mask': {'hash': '32de6454a8', 'shape': (480, 640)}, 'scores': 0.9516},
{'mask': {'hash': 'af3d4af2c8', 'shape': (480, 640)}, 'scores': 0.9499},
{'mask': {'hash': '3c6db475fb', 'shape': (480, 640)}, 'scores': 0.9483},
{'mask': {'hash': 'c290813fb9', 'shape': (480, 640)}, 'scores': 0.9464},
{'mask': {'hash': 'b6f0b8f606', 'shape': (480, 640)}, 'scores': 0.943},
{'mask': {'hash': '92ce16bfdf', 'shape': (480, 640)}, 'scores': 0.943},
{'mask': {'hash': 'c749b25868', 'shape': (480, 640)}, 'scores': 0.9408},
{'mask': {'hash': 'efb6cab859', 'shape': (480, 640)}, 'scores': 0.9335},
{'mask': {'hash': '1ff2eafb30', 'shape': (480, 640)}, 'scores': 0.9326},
{'mask': {'hash': '788b798e24', 'shape': (480, 640)}, 'scores': 0.9262},
{'mask': {'hash': 'abea804f0e', 'shape': (480, 640)}, 'scores': 0.8999},
{'mask': {'hash': '7b9e8ddb73', 'shape': (480, 640)}, 'scores': 0.8986},
{'mask': {'hash': 'cd24047c8a', 'shape': (480, 640)}, 'scores': 0.8984},
{'mask': {'hash': '6943e6bcbd', 'shape': (480, 640)}, 'scores': 0.8873},
{'mask': {'hash': 'b5f47c9191', 'shape': (480, 640)}, 'scores': 0.8871}
] , )
# fmt: on
@require_torch
@slow
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Dict = 'facebook/sam-vit-huge'
_lowerCAmelCase : List[Any] = pipeline('mask-generation' , model=SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase : List[str] = image_segmenter(
'http://images.cocodataset.org/val2017/000000039769.jpg' , pred_iou_thresh=1 , points_per_batch=256 )
# Shortening by hashing
_lowerCAmelCase : Dict = []
for i, o in enumerate(outputs['masks'] ):
new_outupt += [{"mask": mask_to_test_readable(SCREAMING_SNAKE_CASE_ ), "scores": outputs["scores"][i]}]
self.assertEqual(
nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [
{'mask': {'hash': '115ad19f5f', 'shape': (480, 640)}, 'scores': 1.0444},
{'mask': {'hash': '6affa964c6', 'shape': (480, 640)}, 'scores': 1.0210},
{'mask': {'hash': 'dfe28a0388', 'shape': (480, 640)}, 'scores': 1.0167},
{'mask': {'hash': 'c0a5f4a318', 'shape': (480, 640)}, 'scores': 1.0132},
{'mask': {'hash': 'fe8065c197', 'shape': (480, 640)}, 'scores': 1.0053},
] , )
| 364
|
'''simple docstring'''
def lowercase (_A = 1_0_0_0_0_0_0 ):
"""simple docstring"""
_lowerCAmelCase : Any = set(range(3 , _A , 2 ) )
primes.add(2 )
for p in range(3 , _A , 2 ):
if p not in primes:
continue
primes.difference_update(set(range(p * p , _A , _A ) ) )
_lowerCAmelCase : Union[str, Any] = [float(_A ) for n in range(limit + 1 )]
for p in primes:
for n in range(_A , limit + 1 , _A ):
phi[n] *= 1 - 1 / p
return int(sum(phi[2:] ) )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 25
| 0
|
'''simple docstring'''
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
from ...utils import logging
from ..auto import CONFIG_MAPPING
a__ : List[Any] = logging.get_logger(__name__)
a__ : Union[str, Any] = {
"Salesforce/instruct-blip-flan-t5": "https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json",
}
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE):
UpperCAmelCase__ : List[str] = 'instructblip_vision_model'
def __init__( self :List[str] , _A :str=1_408 , _A :List[str]=6_144 , _A :List[Any]=39 , _A :Optional[Any]=16 , _A :Tuple=224 , _A :Tuple=14 , _A :Tuple="gelu" , _A :Optional[Any]=1E-6 , _A :List[Any]=0.0 , _A :Dict=1E-10 , _A :List[str]=True , **_A :Dict , ) -> Dict:
'''simple docstring'''
super().__init__(**_A )
__A = hidden_size
__A = intermediate_size
__A = num_hidden_layers
__A = num_attention_heads
__A = patch_size
__A = image_size
__A = initializer_range
__A = attention_dropout
__A = layer_norm_eps
__A = hidden_act
__A = qkv_bias
@classmethod
def lowercase_ ( cls :Any , _A :Union[str, os.PathLike] , **_A :Tuple ) -> "PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(_A )
__A , __A = cls.get_config_dict(_A , **_A )
# get the vision config dict if we are loading from InstructBlipConfig
if config_dict.get('model_type' ) == "instructblip":
__A = config_dict['vision_config']
if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(_A , **_A )
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE):
UpperCAmelCase__ : List[str] = 'instructblip_qformer'
def __init__( self :Tuple , _A :int=30_522 , _A :List[str]=768 , _A :str=12 , _A :Optional[Any]=12 , _A :Union[str, Any]=3_072 , _A :str="gelu" , _A :Tuple=0.1 , _A :Dict=0.1 , _A :Dict=512 , _A :Union[str, Any]=0.02 , _A :int=1E-12 , _A :str=0 , _A :Union[str, Any]="absolute" , _A :List[str]=2 , _A :Optional[Any]=1_408 , **_A :Any , ) -> Optional[Any]:
'''simple docstring'''
super().__init__(pad_token_id=_A , **_A )
__A = vocab_size
__A = hidden_size
__A = num_hidden_layers
__A = num_attention_heads
__A = hidden_act
__A = intermediate_size
__A = hidden_dropout_prob
__A = attention_probs_dropout_prob
__A = max_position_embeddings
__A = initializer_range
__A = layer_norm_eps
__A = position_embedding_type
__A = cross_attention_frequency
__A = encoder_hidden_size
@classmethod
def lowercase_ ( cls :int , _A :Union[str, os.PathLike] , **_A :int ) -> "PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(_A )
__A , __A = cls.get_config_dict(_A , **_A )
# get the qformer config dict if we are loading from InstructBlipConfig
if config_dict.get('model_type' ) == "instructblip":
__A = config_dict['qformer_config']
if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(_A , **_A )
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE):
UpperCAmelCase__ : Any = 'instructblip'
UpperCAmelCase__ : List[Any] = True
def __init__( self :Dict , _A :int=None , _A :Optional[Any]=None , _A :Optional[Any]=None , _A :Optional[Any]=32 , **_A :List[Any] ) -> Tuple:
'''simple docstring'''
super().__init__(**_A )
if vision_config is None:
__A = {}
logger.info('vision_config is None. initializing the InstructBlipVisionConfig with default values.' )
if qformer_config is None:
__A = {}
logger.info('qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.' )
if text_config is None:
__A = {}
logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' )
__A = InstructBlipVisionConfig(**_A )
__A = InstructBlipQFormerConfig(**_A )
__A = text_config['model_type'] if 'model_type' in text_config else 'opt'
__A = CONFIG_MAPPING[text_model_type](**_A )
__A = self.text_config.tie_word_embeddings
__A = self.text_config.is_encoder_decoder
__A = num_query_tokens
__A = self.vision_config.hidden_size
__A = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
__A = 1.0
__A = 0.02
@classmethod
def lowercase_ ( cls :int , _A :InstructBlipVisionConfig , _A :InstructBlipQFormerConfig , _A :PretrainedConfig , **_A :Any , ) -> Any:
'''simple docstring'''
return cls(
vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_A , )
def lowercase_ ( self :int ) -> Tuple:
'''simple docstring'''
__A = copy.deepcopy(self.__dict__ )
__A = self.vision_config.to_dict()
__A = self.qformer_config.to_dict()
__A = self.text_config.to_dict()
__A = self.__class__.model_type
return output
| 161
|
'''simple docstring'''
import functools
def snake_case ( UpperCAmelCase , UpperCAmelCase )-> int:
"""simple docstring"""
# Validation
if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not all(isinstance(UpperCAmelCase , UpperCAmelCase ) for day in days ):
raise ValueError('The parameter days should be a list of integers' )
if len(UpperCAmelCase ) != 3 or not all(isinstance(UpperCAmelCase , UpperCAmelCase ) for cost in costs ):
raise ValueError('The parameter costs should be a list of three integers' )
if len(UpperCAmelCase ) == 0:
return 0
if min(UpperCAmelCase ) <= 0:
raise ValueError('All days elements should be greater than 0' )
if max(UpperCAmelCase ) >= 3_6_6:
raise ValueError('All days elements should be less than 366' )
__A = set(UpperCAmelCase )
@functools.cache
def dynamic_programming(UpperCAmelCase ) -> int:
if index > 3_6_5:
return 0
if index not in days_set:
return dynamic_programming(index + 1 )
return min(
costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 3_0 ) , )
return dynamic_programming(1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 161
| 1
|
import math
import sys
def A_ ( _UpperCAmelCase ):
if number != int(_UpperCAmelCase ):
raise ValueError("the value of input must be a natural number" )
if number < 0:
raise ValueError("the value of input must not be a negative number" )
if number == 0:
return 1
SCREAMING_SNAKE_CASE_: Dict = [-1] * (number + 1)
SCREAMING_SNAKE_CASE_: Dict = 0
for i in range(1 , number + 1 ):
SCREAMING_SNAKE_CASE_: int = sys.maxsize
SCREAMING_SNAKE_CASE_: Any = int(math.sqrt(_UpperCAmelCase ) )
for j in range(1 , root + 1 ):
SCREAMING_SNAKE_CASE_: Any = 1 + answers[i - (j**2)]
SCREAMING_SNAKE_CASE_: List[str] = min(_UpperCAmelCase , _UpperCAmelCase )
SCREAMING_SNAKE_CASE_: Union[str, Any] = answer
return answers[number]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 127
|
import unittest
from queue import Empty
from threading import Thread
from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available
from transformers.testing_utils import CaptureStdout, require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers import AutoModelForCausalLM
@require_torch
class __lowercase ( unittest.TestCase ):
"""simple docstring"""
def _SCREAMING_SNAKE_CASE ( self : int):
SCREAMING_SNAKE_CASE_: str = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
SCREAMING_SNAKE_CASE_: str = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: str = -1
SCREAMING_SNAKE_CASE_: Optional[int] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: Any = model.generate(lowerCAmelCase__ , max_new_tokens=10 , do_sample=lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: List[str] = tokenizer.decode(greedy_ids[0])
with CaptureStdout() as cs:
SCREAMING_SNAKE_CASE_: int = TextStreamer(lowerCAmelCase__)
model.generate(lowerCAmelCase__ , max_new_tokens=10 , do_sample=lowerCAmelCase__ , streamer=lowerCAmelCase__)
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
SCREAMING_SNAKE_CASE_: Union[str, Any] = cs.out[:-1]
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__)
def _SCREAMING_SNAKE_CASE ( self : int):
SCREAMING_SNAKE_CASE_: List[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
SCREAMING_SNAKE_CASE_: int = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: List[Any] = -1
SCREAMING_SNAKE_CASE_: int = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: int = model.generate(lowerCAmelCase__ , max_new_tokens=10 , do_sample=lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: Tuple = tokenizer.decode(greedy_ids[0])
SCREAMING_SNAKE_CASE_: int = TextIteratorStreamer(lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: Optional[Any] = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer}
SCREAMING_SNAKE_CASE_: Tuple = Thread(target=model.generate , kwargs=lowerCAmelCase__)
thread.start()
SCREAMING_SNAKE_CASE_: Optional[Any] = ""
for new_text in streamer:
streamer_text += new_text
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__)
def _SCREAMING_SNAKE_CASE ( self : Optional[int]):
SCREAMING_SNAKE_CASE_: int = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
SCREAMING_SNAKE_CASE_: int = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: List[Any] = -1
SCREAMING_SNAKE_CASE_: Optional[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: Dict = model.generate(lowerCAmelCase__ , max_new_tokens=10 , do_sample=lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: Tuple = greedy_ids[:, input_ids.shape[1] :]
SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenizer.decode(new_greedy_ids[0])
with CaptureStdout() as cs:
SCREAMING_SNAKE_CASE_: Dict = TextStreamer(lowerCAmelCase__ , skip_prompt=lowerCAmelCase__)
model.generate(lowerCAmelCase__ , max_new_tokens=10 , do_sample=lowerCAmelCase__ , streamer=lowerCAmelCase__)
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
SCREAMING_SNAKE_CASE_: Any = cs.out[:-1]
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__)
def _SCREAMING_SNAKE_CASE ( self : Tuple):
# Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested
# with actual models -- the dummy models' tokenizers are not aligned with their models, and
# `skip_special_tokens=True` has no effect on them
SCREAMING_SNAKE_CASE_: Tuple = AutoTokenizer.from_pretrained("distilgpt2")
SCREAMING_SNAKE_CASE_: List[str] = AutoModelForCausalLM.from_pretrained("distilgpt2").to(lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: Optional[Any] = -1
SCREAMING_SNAKE_CASE_: List[str] = torch.ones((1, 5) , device=lowerCAmelCase__).long() * model.config.bos_token_id
with CaptureStdout() as cs:
SCREAMING_SNAKE_CASE_: Union[str, Any] = TextStreamer(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__)
model.generate(lowerCAmelCase__ , max_new_tokens=1 , do_sample=lowerCAmelCase__ , streamer=lowerCAmelCase__)
# The prompt contains a special token, so the streamer should not print it. As such, the output text, when
# re-tokenized, must only contain one token
SCREAMING_SNAKE_CASE_: str = cs.out[:-1] # Remove the final "\n"
SCREAMING_SNAKE_CASE_: Tuple = tokenizer(lowerCAmelCase__ , return_tensors="pt")
self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1))
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]):
SCREAMING_SNAKE_CASE_: List[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
SCREAMING_SNAKE_CASE_: List[str] = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: Dict = -1
SCREAMING_SNAKE_CASE_: List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: Any = TextIteratorStreamer(lowerCAmelCase__ , timeout=0.001)
SCREAMING_SNAKE_CASE_: Any = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer}
SCREAMING_SNAKE_CASE_: Optional[Any] = Thread(target=model.generate , kwargs=lowerCAmelCase__)
thread.start()
# The streamer will timeout after 0.001 seconds, so an exception will be raised
with self.assertRaises(lowerCAmelCase__):
SCREAMING_SNAKE_CASE_: Tuple = ""
for new_text in streamer:
streamer_text += new_text
| 127
| 1
|
import math
import numpy as np
import qiskit
from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute
def UpperCamelCase ( lowerCAmelCase__ = 3 ):
'''simple docstring'''
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
raise TypeError('''number of qubits must be a integer.''' )
if number_of_qubits <= 0:
raise ValueError('''number of qubits must be > 0.''' )
if math.floor(lowerCAmelCase__ ) != number_of_qubits:
raise ValueError('''number of qubits must be exact integer.''' )
if number_of_qubits > 10:
raise ValueError('''number of qubits too large to simulate(>10).''' )
lowercase = QuantumRegister(lowerCAmelCase__ , '''qr''' )
lowercase = ClassicalRegister(lowerCAmelCase__ , '''cr''' )
lowercase = QuantumCircuit(lowerCAmelCase__ , lowerCAmelCase__ )
lowercase = number_of_qubits
for i in range(lowerCAmelCase__ ):
quantum_circuit.h(number_of_qubits - i - 1 )
counter -= 1
for j in range(lowerCAmelCase__ ):
quantum_circuit.cp(np.pi / 2 ** (counter - j) , lowerCAmelCase__ , lowerCAmelCase__ )
for k in range(number_of_qubits // 2 ):
quantum_circuit.swap(lowerCAmelCase__ , number_of_qubits - k - 1 )
# measure all the qubits
quantum_circuit.measure(lowerCAmelCase__ , lowerCAmelCase__ )
# simulate with 10000 shots
lowercase = Aer.get_backend('''qasm_simulator''' )
lowercase = execute(lowerCAmelCase__ , lowerCAmelCase__ , shots=1_0000 )
return job.result().get_counts(lowerCAmelCase__ )
if __name__ == "__main__":
print(
F'Total count for quantum fourier transform state is: \
{quantum_fourier_transform(3)}'
)
| 101
|
import random
from .binary_exp_mod import bin_exp_mod
def A ( a_ ,a_=1_000 ) -> Optional[Any]:
if n < 2:
return False
if n % 2 == 0:
return n == 2
# this means n is odd
__UpperCamelCase : List[Any] =n - 1
__UpperCamelCase : Dict =0
while d % 2 == 0:
d /= 2
exp += 1
# n - 1=d*(2**exp)
__UpperCamelCase : Optional[Any] =0
while count < prec:
__UpperCamelCase : Dict =random.randint(2 ,n - 1 )
__UpperCamelCase : Optional[Any] =bin_exp_mod(a_ ,a_ ,a_ )
if b != 1:
__UpperCamelCase : List[str] =True
for _ in range(a_ ):
if b == n - 1:
__UpperCamelCase : Tuple =False
break
__UpperCamelCase : Dict =b * b
b %= n
if flag:
return False
count += 1
return True
if __name__ == "__main__":
A_ :str = abs(int(input('''Enter bound : ''').strip()))
print('''Here\'s the list of primes:''')
print(''', '''.join(str(i) for i in range(n + 1) if is_prime_big(i)))
| 71
| 0
|
"""simple docstring"""
import argparse
import numpy as np
import torch
from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging
logging.set_verbosity_info()
UpperCAmelCase = logging.get_logger('''transformers.models.speecht5''')
def lowerCamelCase (a_ :List[Any] , a_ :str , a_ :List[str]) -> Any:
hf_model.apply_weight_norm()
lowercase :List[str] = checkpoint['input_conv.weight_g']
lowercase :Union[str, Any] = checkpoint['input_conv.weight_v']
lowercase :Optional[Any] = checkpoint['input_conv.bias']
for i in range(len(config.upsample_rates)):
lowercase :Union[str, Any] = checkpoint[F"""upsamples.{i}.1.weight_g"""]
lowercase :List[str] = checkpoint[F"""upsamples.{i}.1.weight_v"""]
lowercase :List[str] = checkpoint[F"""upsamples.{i}.1.bias"""]
for i in range(len(config.upsample_rates) * len(config.resblock_kernel_sizes)):
for j in range(len(config.resblock_dilation_sizes)):
lowercase :Tuple = checkpoint[F"""blocks.{i}.convs1.{j}.1.weight_g"""]
lowercase :Optional[Any] = checkpoint[F"""blocks.{i}.convs1.{j}.1.weight_v"""]
lowercase :Optional[Any] = checkpoint[F"""blocks.{i}.convs1.{j}.1.bias"""]
lowercase :str = checkpoint[F"""blocks.{i}.convs2.{j}.1.weight_g"""]
lowercase :List[str] = checkpoint[F"""blocks.{i}.convs2.{j}.1.weight_v"""]
lowercase :Tuple = checkpoint[F"""blocks.{i}.convs2.{j}.1.bias"""]
lowercase :int = checkpoint['output_conv.1.weight_g']
lowercase :List[str] = checkpoint['output_conv.1.weight_v']
lowercase :int = checkpoint['output_conv.1.bias']
hf_model.remove_weight_norm()
@torch.no_grad()
def lowerCamelCase (a_ :Union[str, Any] , a_ :Optional[Any] , a_ :Dict , a_ :Optional[Any]=None , a_ :Tuple=None , ) -> str:
if config_path is not None:
lowercase :Any = SpeechTaHifiGanConfig.from_pretrained(a_)
else:
lowercase :List[Any] = SpeechTaHifiGanConfig()
lowercase :str = SpeechTaHifiGan(a_)
lowercase :str = torch.load(a_)
load_weights(orig_checkpoint['''model''']['''generator'''] , a_ , a_)
lowercase :Optional[Any] = np.load(a_)
lowercase :str = stats[0].reshape(-1)
lowercase :List[Any] = stats[1].reshape(-1)
lowercase :Optional[Any] = torch.from_numpy(a_).float()
lowercase :Tuple = torch.from_numpy(a_).float()
model.save_pretrained(a_)
if repo_id:
print('''Pushing to the hub...''')
model.push_to_hub(a_)
if __name__ == "__main__":
UpperCAmelCase = argparse.ArgumentParser()
parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''')
parser.add_argument('''--stats_path''', required=True, default=None, type=str, help='''Path to stats.npy file''')
parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''')
parser.add_argument(
'''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.'''
)
parser.add_argument(
'''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.'''
)
UpperCAmelCase = parser.parse_args()
convert_hifigan_checkpoint(
args.checkpoint_path,
args.stats_path,
args.pytorch_dump_folder_path,
args.config_path,
args.push_to_hub,
)
| 356
|
"""simple docstring"""
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
if TYPE_CHECKING:
from ...processing_utils import ProcessorMixin
from ...utils import TensorType
UpperCAmelCase = logging.get_logger(__name__)
UpperCAmelCase = {
'''microsoft/layoutlmv3-base''': '''https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json''',
}
class __magic_name__ ( __UpperCAmelCase ):
__A : Tuple = "layoutlmv3"
def __init__( self : int , snake_case__ : Any=5_0_2_6_5 , snake_case__ : int=7_6_8 , snake_case__ : Dict=1_2 , snake_case__ : Optional[Any]=1_2 , snake_case__ : Union[str, Any]=3_0_7_2 , snake_case__ : Tuple="gelu" , snake_case__ : List[str]=0.1 , snake_case__ : List[str]=0.1 , snake_case__ : int=5_1_2 , snake_case__ : int=2 , snake_case__ : Optional[int]=0.02 , snake_case__ : Union[str, Any]=1e-5 , snake_case__ : Optional[int]=1 , snake_case__ : Any=0 , snake_case__ : Optional[int]=2 , snake_case__ : int=1_0_2_4 , snake_case__ : str=1_2_8 , snake_case__ : Tuple=1_2_8 , snake_case__ : Optional[Any]=True , snake_case__ : Union[str, Any]=3_2 , snake_case__ : Any=1_2_8 , snake_case__ : List[Any]=6_4 , snake_case__ : List[Any]=2_5_6 , snake_case__ : Any=True , snake_case__ : Optional[Any]=True , snake_case__ : Tuple=True , snake_case__ : List[Any]=2_2_4 , snake_case__ : Optional[int]=3 , snake_case__ : Union[str, Any]=1_6 , snake_case__ : str=None , **snake_case__ : List[str] , ):
'''simple docstring'''
super().__init__(
vocab_size=snake_case__ , hidden_size=snake_case__ , num_hidden_layers=snake_case__ , num_attention_heads=snake_case__ , intermediate_size=snake_case__ , hidden_act=snake_case__ , hidden_dropout_prob=snake_case__ , attention_probs_dropout_prob=snake_case__ , max_position_embeddings=snake_case__ , type_vocab_size=snake_case__ , initializer_range=snake_case__ , layer_norm_eps=snake_case__ , pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ , )
lowercase :Optional[int] = max_ad_position_embeddings
lowercase :Tuple = coordinate_size
lowercase :Any = shape_size
lowercase :Union[str, Any] = has_relative_attention_bias
lowercase :Optional[Any] = rel_pos_bins
lowercase :Tuple = max_rel_pos
lowercase :Any = has_spatial_attention_bias
lowercase :Any = rel_ad_pos_bins
lowercase :str = max_rel_ad_pos
lowercase :int = text_embed
lowercase :Optional[int] = visual_embed
lowercase :str = input_size
lowercase :List[str] = num_channels
lowercase :str = patch_size
lowercase :Any = classifier_dropout
class __magic_name__ ( __UpperCAmelCase ):
__A : Tuple = version.parse("1.12" )
@property
def __snake_case ( self : Any ):
'''simple docstring'''
if self.task in ["question-answering", "sequence-classification"]:
return OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''sequence'''}),
('''bbox''', {0: '''batch''', 1: '''sequence'''}),
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
] )
else:
return OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''sequence'''}),
('''bbox''', {0: '''batch''', 1: '''sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''sequence'''}),
('''pixel_values''', {0: '''batch''', 1: '''num_channels'''}),
] )
@property
def __snake_case ( self : int ):
'''simple docstring'''
return 1e-5
@property
def __snake_case ( self : Union[str, Any] ):
'''simple docstring'''
return 1_2
def __snake_case ( self : str , snake_case__ : "ProcessorMixin" , snake_case__ : int = -1 , snake_case__ : int = -1 , snake_case__ : bool = False , snake_case__ : Optional["TensorType"] = None , snake_case__ : int = 3 , snake_case__ : int = 4_0 , snake_case__ : int = 4_0 , ):
'''simple docstring'''
setattr(processor.image_processor , '''apply_ocr''' , snake_case__ )
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
lowercase :Dict = compute_effective_axis_dimension(
snake_case__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
lowercase :Union[str, Any] = processor.tokenizer.num_special_tokens_to_add(snake_case__ )
lowercase :List[str] = compute_effective_axis_dimension(
snake_case__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=snake_case__ )
# Generate dummy inputs according to compute batch and sequence
lowercase :Tuple = [[''' '''.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size
# Generate dummy bounding boxes
lowercase :List[str] = [[[4_8, 8_4, 7_3, 1_2_8]]] * batch_size
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
# batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch)
lowercase :List[Any] = self._generate_dummy_images(snake_case__ , snake_case__ , snake_case__ , snake_case__ )
lowercase :Dict = dict(
processor(
snake_case__ , text=snake_case__ , boxes=snake_case__ , return_tensors=snake_case__ , ) )
return inputs
| 172
| 0
|
'''simple docstring'''
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import flax
import jax
import jax.numpy as jnp
from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils_flax import (
CommonSchedulerState,
FlaxKarrasDiffusionSchedulers,
FlaxSchedulerMixin,
FlaxSchedulerOutput,
add_noise_common,
get_velocity_common,
)
@flax.struct.dataclass
class A__ :
lowercase = 42
# setable values
lowercase = 42
lowercase = 42
lowercase = None
@classmethod
def snake_case_ ( cls , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[Any]:
'''simple docstring'''
return cls(common=UpperCamelCase__ , init_noise_sigma=UpperCamelCase__ , timesteps=UpperCamelCase__ )
@dataclass
class A__ ( _snake_case ):
lowercase = 42
class A__ ( _snake_case , _snake_case ):
lowercase = [e.name for e in FlaxKarrasDiffusionSchedulers]
lowercase = 42
@property
def snake_case_ ( self ) -> List[str]:
'''simple docstring'''
return True
@register_to_config
def __init__( self , UpperCamelCase__ = 1000 , UpperCamelCase__ = 0.0001 , UpperCamelCase__ = 0.02 , UpperCamelCase__ = "linear" , UpperCamelCase__ = None , UpperCamelCase__ = "fixed_small" , UpperCamelCase__ = True , UpperCamelCase__ = "epsilon" , UpperCamelCase__ = jnp.floataa , ) -> List[Any]:
'''simple docstring'''
A_ = dtype
def snake_case_ ( self , UpperCamelCase__ = None ) -> DDPMSchedulerState:
'''simple docstring'''
if common is None:
A_ = CommonSchedulerState.create(self )
# standard deviation of the initial noise distribution
A_ = jnp.array(1.0 , dtype=self.dtype )
A_ = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1]
return DDPMSchedulerState.create(
common=UpperCamelCase__ , init_noise_sigma=UpperCamelCase__ , timesteps=UpperCamelCase__ , )
def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None ) -> jnp.ndarray:
'''simple docstring'''
return sample
def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = () ) -> DDPMSchedulerState:
'''simple docstring'''
A_ = self.config.num_train_timesteps // num_inference_steps
# creates integer timesteps by multiplying by ratio
# rounding to avoid issues when num_inference_step is power of 3
A_ = (jnp.arange(0 , UpperCamelCase__ ) * step_ratio).round()[::-1]
return state.replace(
num_inference_steps=UpperCamelCase__ , timesteps=UpperCamelCase__ , )
def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None ) -> Optional[Any]:
'''simple docstring'''
A_ = state.common.alphas_cumprod[t]
A_ = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) )
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
# and sample from it to get previous sample
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
A_ = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t]
if variance_type is None:
A_ = self.config.variance_type
# hacks - were probably added for training stability
if variance_type == "fixed_small":
A_ = jnp.clip(UpperCamelCase__ , a_min=1e-2_0 )
# for rl-diffuser https://arxiv.org/abs/2205.09991
elif variance_type == "fixed_small_log":
A_ = jnp.log(jnp.clip(UpperCamelCase__ , a_min=1e-2_0 ) )
elif variance_type == "fixed_large":
A_ = state.common.betas[t]
elif variance_type == "fixed_large_log":
# Glide max_log
A_ = jnp.log(state.common.betas[t] )
elif variance_type == "learned":
return predicted_variance
elif variance_type == "learned_range":
A_ = variance
A_ = state.common.betas[t]
A_ = (predicted_variance + 1) / 2
A_ = frac * max_log + (1 - frac) * min_log
return variance
def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = True , ) -> Union[FlaxDDPMSchedulerOutput, Tuple]:
'''simple docstring'''
A_ = timestep
if key is None:
A_ = jax.random.PRNGKey(0 )
if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]:
A_ , A_ = jnp.split(UpperCamelCase__ , sample.shape[1] , axis=1 )
else:
A_ = None
# 1. compute alphas, betas
A_ = state.common.alphas_cumprod[t]
A_ = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) )
A_ = 1 - alpha_prod_t
A_ = 1 - alpha_prod_t_prev
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if self.config.prediction_type == "epsilon":
A_ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif self.config.prediction_type == "sample":
A_ = model_output
elif self.config.prediction_type == "v_prediction":
A_ = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
else:
raise ValueError(
f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` '''
""" for the FlaxDDPMScheduler.""" )
# 3. Clip "predicted x_0"
if self.config.clip_sample:
A_ = jnp.clip(UpperCamelCase__ , -1 , 1 )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
A_ = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t
A_ = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
A_ = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
def random_variance():
A_ = jax.random.split(UpperCamelCase__ , num=1 )
A_ = jax.random.normal(UpperCamelCase__ , shape=model_output.shape , dtype=self.dtype )
return (self._get_variance(UpperCamelCase__ , UpperCamelCase__ , predicted_variance=UpperCamelCase__ ) ** 0.5) * noise
A_ = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) )
A_ = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample, state)
return FlaxDDPMSchedulerOutput(prev_sample=UpperCamelCase__ , state=UpperCamelCase__ )
def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) -> jnp.ndarray:
'''simple docstring'''
return add_noise_common(state.common , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) -> jnp.ndarray:
'''simple docstring'''
return get_velocity_common(state.common , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
def __len__( self ) -> Union[str, Any]:
'''simple docstring'''
return self.config.num_train_timesteps
| 162
|
'''simple docstring'''
import unittest
from transformers import (
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TextaTextGenerationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, require_tf, require_torch
from transformers.utils import is_torch_available
from .test_pipelines_common import ANY
if is_torch_available():
import torch
@is_pipeline_test
class A__ ( unittest.TestCase ):
lowercase = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
lowercase = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple:
'''simple docstring'''
A_ = TextaTextGenerationPipeline(model=UpperCamelCase__ , tokenizer=UpperCamelCase__ )
return generator, ["Something to write", "Something else"]
def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Any:
'''simple docstring'''
A_ = generator("""Something there""" )
self.assertEqual(UpperCamelCase__ , [{"""generated_text""": ANY(UpperCamelCase__ )}] )
# These are encoder decoder, they don't just append to incoming string
self.assertFalse(outputs[0]["""generated_text"""].startswith("""Something there""" ) )
A_ = generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=UpperCamelCase__ )
self.assertEqual(
UpperCamelCase__ , [
[{"""generated_text""": ANY(UpperCamelCase__ )}, {"""generated_text""": ANY(UpperCamelCase__ )}],
[{"""generated_text""": ANY(UpperCamelCase__ )}, {"""generated_text""": ANY(UpperCamelCase__ )}],
] , )
A_ = generator(
["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=UpperCamelCase__ )
self.assertEqual(
UpperCamelCase__ , [
[{"""generated_text""": ANY(UpperCamelCase__ )}, {"""generated_text""": ANY(UpperCamelCase__ )}],
[{"""generated_text""": ANY(UpperCamelCase__ )}, {"""generated_text""": ANY(UpperCamelCase__ )}],
] , )
with self.assertRaises(UpperCamelCase__ ):
generator(4 )
@require_torch
def snake_case_ ( self ) -> Dict:
'''simple docstring'''
A_ = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""pt""" )
# do_sample=False necessary for reproducibility
A_ = generator("""Something there""" , do_sample=UpperCamelCase__ )
self.assertEqual(UpperCamelCase__ , [{"""generated_text""": """"""}] )
A_ = 3
A_ = generator(
"""Something there""" , num_return_sequences=UpperCamelCase__ , num_beams=UpperCamelCase__ , )
A_ = [
{"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide Beide"""},
{"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide"""},
{"""generated_text""": """"""},
]
self.assertEqual(UpperCamelCase__ , UpperCamelCase__ )
A_ = generator("""This is a test""" , do_sample=UpperCamelCase__ , num_return_sequences=2 , return_tensors=UpperCamelCase__ )
self.assertEqual(
UpperCamelCase__ , [
{"""generated_token_ids""": ANY(torch.Tensor )},
{"""generated_token_ids""": ANY(torch.Tensor )},
] , )
A_ = generator.model.config.eos_token_id
A_ = """<pad>"""
A_ = generator(
["""This is a test""", """This is a second test"""] , do_sample=UpperCamelCase__ , num_return_sequences=2 , batch_size=2 , return_tensors=UpperCamelCase__ , )
self.assertEqual(
UpperCamelCase__ , [
[
{"""generated_token_ids""": ANY(torch.Tensor )},
{"""generated_token_ids""": ANY(torch.Tensor )},
],
[
{"""generated_token_ids""": ANY(torch.Tensor )},
{"""generated_token_ids""": ANY(torch.Tensor )},
],
] , )
@require_tf
def snake_case_ ( self ) -> Any:
'''simple docstring'''
A_ = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""tf""" )
# do_sample=False necessary for reproducibility
A_ = generator("""Something there""" , do_sample=UpperCamelCase__ )
self.assertEqual(UpperCamelCase__ , [{"""generated_text""": """"""}] )
| 162
| 1
|
'''simple docstring'''
import argparse
import os
import torch
from transformers import FlavaConfig, FlavaForPreTraining
from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint
def lowercase (_A ):
"""simple docstring"""
return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() )
def lowercase (_A , _A ):
"""simple docstring"""
_lowerCAmelCase : List[str] = {}
for key, value in state_dict.items():
if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key:
continue
_lowerCAmelCase : int = key.replace('heads.cmd.mim_head.cls.predictions' , 'mmm_image_head' )
_lowerCAmelCase : str = key.replace('heads.cmd.mlm_head.cls.predictions' , 'mmm_text_head' )
_lowerCAmelCase : Optional[Any] = key.replace('heads.cmd.itm_head.cls' , 'itm_head' )
_lowerCAmelCase : str = key.replace('heads.cmd.itm_head.pooler' , 'itm_head.pooler' )
_lowerCAmelCase : List[str] = key.replace('heads.cmd.clip_head.logit_scale' , 'flava.logit_scale' )
_lowerCAmelCase : int = key.replace('heads.fairseq_mlm.cls.predictions' , 'mlm_head' )
_lowerCAmelCase : str = key.replace('heads.imagenet.mim_head.cls.predictions' , 'mim_head' )
_lowerCAmelCase : Dict = key.replace('mm_text_projection' , 'flava.text_to_mm_projection' )
_lowerCAmelCase : int = key.replace('mm_image_projection' , 'flava.image_to_mm_projection' )
_lowerCAmelCase : Optional[Any] = key.replace('image_encoder.module' , 'flava.image_model' )
_lowerCAmelCase : Tuple = key.replace('text_encoder.module' , 'flava.text_model' )
_lowerCAmelCase : int = key.replace('mm_encoder.module.encoder.cls_token' , 'flava.multimodal_model.cls_token' )
_lowerCAmelCase : int = key.replace('mm_encoder.module' , 'flava.multimodal_model' )
_lowerCAmelCase : Optional[int] = key.replace('text_projection' , 'flava.text_projection' )
_lowerCAmelCase : Dict = key.replace('image_projection' , 'flava.image_projection' )
_lowerCAmelCase : Tuple = value.float()
for key, value in codebook_state_dict.items():
_lowerCAmelCase : str = value
return upgrade
@torch.no_grad()
def lowercase (_A , _A , _A , _A=None ):
"""simple docstring"""
if config_path is not None:
_lowerCAmelCase : Optional[Any] = FlavaConfig.from_pretrained(_A )
else:
_lowerCAmelCase : Optional[int] = FlavaConfig()
_lowerCAmelCase : Optional[int] = FlavaForPreTraining(_A ).eval()
_lowerCAmelCase : str = convert_dalle_checkpoint(_A , _A , save_checkpoint=_A )
if os.path.exists(_A ):
_lowerCAmelCase : Optional[Any] = torch.load(_A , map_location='cpu' )
else:
_lowerCAmelCase : Tuple = torch.hub.load_state_dict_from_url(_A , map_location='cpu' )
_lowerCAmelCase : List[Any] = upgrade_state_dict(_A , _A )
hf_model.load_state_dict(_A )
_lowerCAmelCase : str = hf_model.state_dict()
_lowerCAmelCase : str = count_parameters(_A )
_lowerCAmelCase : Any = count_parameters(_A ) + count_parameters(_A )
assert torch.allclose(_A , _A , atol=1E-3 )
hf_model.save_pretrained(_A )
if __name__ == "__main__":
lowerCAmelCase : Optional[Any] = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""")
parser.add_argument("""--codebook_path""", default=None, type=str, help="""Path to flava codebook checkpoint""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
lowerCAmelCase : Any = parser.parse_args()
convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
| 365
|
'''simple docstring'''
import argparse
import os
import re
lowerCAmelCase : Tuple = """src/transformers"""
# Pattern that looks at the indentation in a line.
lowerCAmelCase : str = re.compile(r"""^(\s*)\S""")
# Pattern that matches `"key":" and puts `key` in group 0.
lowerCAmelCase : str = re.compile(r"""^\s*\"([^\"]+)\":""")
# Pattern that matches `_import_structure["key"]` and puts `key` in group 0.
lowerCAmelCase : Optional[int] = re.compile(r"""^\s*_import_structure\[\"([^\"]+)\"\]""")
# Pattern that matches `"key",` and puts `key` in group 0.
lowerCAmelCase : List[str] = re.compile(r"""^\s*\"([^\"]+)\",\s*$""")
# Pattern that matches any `[stuff]` and puts `stuff` in group 0.
lowerCAmelCase : Optional[int] = re.compile(r"""\[([^\]]+)\]""")
def lowercase (_A ):
"""simple docstring"""
_lowerCAmelCase : int = _re_indent.search(_A )
return "" if search is None else search.groups()[0]
def lowercase (_A , _A="" , _A=None , _A=None ):
"""simple docstring"""
_lowerCAmelCase : int = 0
_lowerCAmelCase : Dict = code.split('\n' )
if start_prompt is not None:
while not lines[index].startswith(_A ):
index += 1
_lowerCAmelCase : Dict = ['\n'.join(lines[:index] )]
else:
_lowerCAmelCase : str = []
# We split into blocks until we get to the `end_prompt` (or the end of the block).
_lowerCAmelCase : List[Any] = [lines[index]]
index += 1
while index < len(_A ) and (end_prompt is None or not lines[index].startswith(_A )):
if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level:
if len(_A ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ):
current_block.append(lines[index] )
blocks.append('\n'.join(_A ) )
if index < len(_A ) - 1:
_lowerCAmelCase : Union[str, Any] = [lines[index + 1]]
index += 1
else:
_lowerCAmelCase : Union[str, Any] = []
else:
blocks.append('\n'.join(_A ) )
_lowerCAmelCase : List[str] = [lines[index]]
else:
current_block.append(lines[index] )
index += 1
# Adds current block if it's nonempty.
if len(_A ) > 0:
blocks.append('\n'.join(_A ) )
# Add final block after end_prompt if provided.
if end_prompt is not None and index < len(_A ):
blocks.append('\n'.join(lines[index:] ) )
return blocks
def lowercase (_A ):
"""simple docstring"""
def _inner(_A ):
return key(_A ).lower().replace('_' , '' )
return _inner
def lowercase (_A , _A=None ):
"""simple docstring"""
def noop(_A ):
return x
if key is None:
_lowerCAmelCase : List[Any] = noop
# Constants are all uppercase, they go first.
_lowerCAmelCase : List[Any] = [obj for obj in objects if key(_A ).isupper()]
# Classes are not all uppercase but start with a capital, they go second.
_lowerCAmelCase : Tuple = [obj for obj in objects if key(_A )[0].isupper() and not key(_A ).isupper()]
# Functions begin with a lowercase, they go last.
_lowerCAmelCase : List[str] = [obj for obj in objects if not key(_A )[0].isupper()]
_lowerCAmelCase : Dict = ignore_underscore(_A )
return sorted(_A , key=_A ) + sorted(_A , key=_A ) + sorted(_A , key=_A )
def lowercase (_A ):
"""simple docstring"""
def _replace(_A ):
_lowerCAmelCase : Dict = match.groups()[0]
if "," not in imports:
return f'[{imports}]'
_lowerCAmelCase : Union[str, Any] = [part.strip().replace('"' , '' ) for part in imports.split(',' )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
_lowerCAmelCase : int = keys[:-1]
return "[" + ", ".join([f'"{k}"' for k in sort_objects(_A )] ) + "]"
_lowerCAmelCase : Tuple = import_statement.split('\n' )
if len(_A ) > 3:
# Here we have to sort internal imports that are on several lines (one per name):
# key: [
# "object1",
# "object2",
# ...
# ]
# We may have to ignore one or two lines on each side.
_lowerCAmelCase : Optional[Any] = 2 if lines[1].strip() == '[' else 1
_lowerCAmelCase : List[str] = [(i, _re_strip_line.search(_A ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )]
_lowerCAmelCase : Dict = sort_objects(_A , key=lambda _A : x[1] )
_lowerCAmelCase : Tuple = [lines[x[0] + idx] for x in sorted_indices]
return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] )
elif len(_A ) == 3:
# Here we have to sort internal imports that are on one separate line:
# key: [
# "object1", "object2", ...
# ]
if _re_bracket_content.search(lines[1] ) is not None:
_lowerCAmelCase : Tuple = _re_bracket_content.sub(_replace , lines[1] )
else:
_lowerCAmelCase : Optional[Any] = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
_lowerCAmelCase : List[str] = keys[:-1]
_lowerCAmelCase : Optional[Any] = get_indent(lines[1] ) + ', '.join([f'"{k}"' for k in sort_objects(_A )] )
return "\n".join(_A )
else:
# Finally we have to deal with imports fitting on one line
_lowerCAmelCase : Union[str, Any] = _re_bracket_content.sub(_replace , _A )
return import_statement
def lowercase (_A , _A=True ):
"""simple docstring"""
with open(_A , encoding='utf-8' ) as f:
_lowerCAmelCase : Any = f.read()
if "_import_structure" not in code:
return
# Blocks of indent level 0
_lowerCAmelCase : Tuple = split_code_in_indented_blocks(
_A , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' )
# We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt).
for block_idx in range(1 , len(_A ) - 1 ):
# Check if the block contains some `_import_structure`s thingy to sort.
_lowerCAmelCase : Tuple = main_blocks[block_idx]
_lowerCAmelCase : int = block.split('\n' )
# Get to the start of the imports.
_lowerCAmelCase : Tuple = 0
while line_idx < len(_A ) and "_import_structure" not in block_lines[line_idx]:
# Skip dummy import blocks
if "import dummy" in block_lines[line_idx]:
_lowerCAmelCase : Dict = len(_A )
else:
line_idx += 1
if line_idx >= len(_A ):
continue
# Ignore beginning and last line: they don't contain anything.
_lowerCAmelCase : str = '\n'.join(block_lines[line_idx:-1] )
_lowerCAmelCase : Tuple = get_indent(block_lines[1] )
# Slit the internal block into blocks of indent level 1.
_lowerCAmelCase : List[Any] = split_code_in_indented_blocks(_A , indent_level=_A )
# We have two categories of import key: list or _import_structure[key].append/extend
_lowerCAmelCase : Optional[int] = _re_direct_key if '_import_structure = {' in block_lines[0] else _re_indirect_key
# Grab the keys, but there is a trap: some lines are empty or just comments.
_lowerCAmelCase : int = [(pattern.search(_A ).groups()[0] if pattern.search(_A ) is not None else None) for b in internal_blocks]
# We only sort the lines with a key.
_lowerCAmelCase : Dict = [(i, key) for i, key in enumerate(_A ) if key is not None]
_lowerCAmelCase : Optional[int] = [x[0] for x in sorted(_A , key=lambda _A : x[1] )]
# We reorder the blocks by leaving empty lines/comments as they were and reorder the rest.
_lowerCAmelCase : int = 0
_lowerCAmelCase : Optional[Any] = []
for i in range(len(_A ) ):
if keys[i] is None:
reorderded_blocks.append(internal_blocks[i] )
else:
_lowerCAmelCase : Optional[Any] = sort_objects_in_import(internal_blocks[sorted_indices[count]] )
reorderded_blocks.append(_A )
count += 1
# And we put our main block back together with its first and last line.
_lowerCAmelCase : Optional[int] = '\n'.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] )
if code != "\n".join(_A ):
if check_only:
return True
else:
print(f'Overwriting {file}.' )
with open(_A , 'w' , encoding='utf-8' ) as f:
f.write('\n'.join(_A ) )
def lowercase (_A=True ):
"""simple docstring"""
_lowerCAmelCase : int = []
for root, _, files in os.walk(_A ):
if "__init__.py" in files:
_lowerCAmelCase : Optional[Any] = sort_imports(os.path.join(_A , '__init__.py' ) , check_only=_A )
if result:
_lowerCAmelCase : Optional[int] = [os.path.join(_A , '__init__.py' )]
if len(_A ) > 0:
raise ValueError(f'Would overwrite {len(_A )} files, run `make style`.' )
if __name__ == "__main__":
lowerCAmelCase : List[Any] = argparse.ArgumentParser()
parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""")
lowerCAmelCase : List[str] = parser.parse_args()
sort_imports_in_all_inits(check_only=args.check_only)
| 25
| 0
|
import tempfile
import unittest
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from transformers.testing_utils import (
is_torch_available,
require_optimum,
require_torch,
slow,
)
if is_torch_available():
import torch
@require_torch
@require_optimum
@slow
class A ( unittest.TestCase ):
def lowercase_ (self : Optional[int] ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = "hf-internal-testing/tiny-random-t5"
UpperCAmelCase__ = AutoTokenizer.from_pretrained(__UpperCAmelCase )
UpperCAmelCase__ = AutoModelForSeqaSeqLM.from_pretrained(__UpperCAmelCase )
UpperCAmelCase__ = tokenizer("This is me" , return_tensors="pt" )
UpperCAmelCase__ = model.to_bettertransformer()
self.assertTrue(any("BetterTransformer" in mod.__class__.__name__ for _, mod in model.named_modules() ) )
UpperCAmelCase__ = model.generate(**__UpperCAmelCase )
UpperCAmelCase__ = model.reverse_bettertransformer()
self.assertFalse(any("BetterTransformer" in mod.__class__.__name__ for _, mod in model.named_modules() ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(__UpperCAmelCase )
UpperCAmelCase__ = AutoModelForSeqaSeqLM.from_pretrained(__UpperCAmelCase )
self.assertFalse(
any("BetterTransformer" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) )
UpperCAmelCase__ = model_reloaded.generate(**__UpperCAmelCase )
self.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase ) )
def lowercase_ (self : Dict ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = "hf-internal-testing/tiny-random-t5"
UpperCAmelCase__ = AutoModelForSeqaSeqLM.from_pretrained(__UpperCAmelCase )
UpperCAmelCase__ = model.to_bettertransformer()
with tempfile.TemporaryDirectory() as tmpdirname:
with self.assertRaises(__UpperCAmelCase ):
model.save_pretrained(__UpperCAmelCase )
UpperCAmelCase__ = model.reverse_bettertransformer()
model.save_pretrained(__UpperCAmelCase )
| 65
|
import random
import unittest
import numpy as np
import transformers
from transformers import is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax
if is_flax_available():
import os
import jax.numpy as jnp
from jax import jit
from transformers import AutoTokenizer, FlaxAutoModelForCausalLM
from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model
lowerCamelCase_ = '''0.12''' # assumed parallelism: 8
if is_torch_available():
import torch
def __magic_name__ ( __a : Union[str, Any] , __a : Any , __a : Union[str, Any]=None ):
'''simple docstring'''
if rng is None:
UpperCamelCase__ = random.Random()
UpperCamelCase__ = 1
for dim in shape:
total_dims *= dim
UpperCamelCase__ = []
for _ in range(__a ):
values.append(rng.randint(0 , vocab_size - 1 ) )
UpperCamelCase__ = np.array(__a , dtype=jnp.intaa ).reshape(__a )
return output
def __magic_name__ ( __a : Dict , __a : Tuple=None ):
'''simple docstring'''
UpperCamelCase__ = ids_tensor(__a , vocab_size=2 , rng=__a )
# make sure that at least one token is attended to for each batch
UpperCamelCase__ = 1
return attn_mask
@require_flax
class __A:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = None
SCREAMING_SNAKE_CASE__ = ()
def UpperCAmelCase_ (self ):
UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
# cut to half length & take max batch_size 3
UpperCamelCase__ = 2
UpperCamelCase__ = inputs["""input_ids"""].shape[-1] // 2
UpperCamelCase__ = inputs["""input_ids"""][:max_batch_size, :sequence_length]
UpperCamelCase__ = jnp.ones_like(SCREAMING_SNAKE_CASE_ )
UpperCamelCase__ = attention_mask[:max_batch_size, :sequence_length]
# generate max 5 tokens
UpperCamelCase__ = input_ids.shape[-1] + 5
if config.eos_token_id is not None and config.pad_token_id is None:
# hack to allow generate for models such as GPT2 as is done in `generate()`
UpperCamelCase__ = config.eos_token_id
return config, input_ids, attention_mask, max_length
@is_pt_flax_cross_test
def UpperCAmelCase_ (self ):
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self._get_input_ids_and_config()
UpperCamelCase__ = False
UpperCamelCase__ = max_length
UpperCamelCase__ = 0
for model_class in self.all_generative_model_classes:
UpperCamelCase__ = model_class(SCREAMING_SNAKE_CASE_ )
UpperCamelCase__ = model_class.__name__[4:] # Skip the "Flax" at the beginning
UpperCamelCase__ = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
UpperCamelCase__ = pt_model_class(SCREAMING_SNAKE_CASE_ ).eval()
UpperCamelCase__ = load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE_ , flax_model.params )
UpperCamelCase__ = flax_model.generate(SCREAMING_SNAKE_CASE_ ).sequences
UpperCamelCase__ = pt_model.generate(torch.tensor(SCREAMING_SNAKE_CASE_ , dtype=torch.long ) )
if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]:
UpperCamelCase__ = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]]
self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() )
def UpperCAmelCase_ (self ):
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self._get_input_ids_and_config()
UpperCamelCase__ = False
UpperCamelCase__ = max_length
for model_class in self.all_generative_model_classes:
UpperCamelCase__ = model_class(SCREAMING_SNAKE_CASE_ )
UpperCamelCase__ = model.generate(SCREAMING_SNAKE_CASE_ ).sequences
self.assertEqual(generation_outputs.shape[-1] , SCREAMING_SNAKE_CASE_ )
UpperCamelCase__ = jit(model.generate )
UpperCamelCase__ = jit_generate(SCREAMING_SNAKE_CASE_ ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def UpperCAmelCase_ (self ):
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self._get_input_ids_and_config()
UpperCamelCase__ = True
UpperCamelCase__ = max_length
for model_class in self.all_generative_model_classes:
UpperCamelCase__ = model_class(SCREAMING_SNAKE_CASE_ )
UpperCamelCase__ = model.generate(SCREAMING_SNAKE_CASE_ ).sequences
self.assertEqual(generation_outputs.shape[-1] , SCREAMING_SNAKE_CASE_ )
UpperCamelCase__ = jit(model.generate )
UpperCamelCase__ = jit_generate(SCREAMING_SNAKE_CASE_ ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def UpperCAmelCase_ (self ):
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self._get_input_ids_and_config()
UpperCamelCase__ = False
UpperCamelCase__ = max_length
UpperCamelCase__ = 2
for model_class in self.all_generative_model_classes:
UpperCamelCase__ = model_class(SCREAMING_SNAKE_CASE_ )
UpperCamelCase__ = model.generate(SCREAMING_SNAKE_CASE_ ).sequences
self.assertEqual(generation_outputs.shape[-1] , SCREAMING_SNAKE_CASE_ )
UpperCamelCase__ = jit(model.generate )
UpperCamelCase__ = jit_generate(SCREAMING_SNAKE_CASE_ ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def UpperCAmelCase_ (self ):
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self._get_input_ids_and_config()
UpperCamelCase__ = False
UpperCamelCase__ = max_length
UpperCamelCase__ = 2
UpperCamelCase__ = 2
for model_class in self.all_generative_model_classes:
UpperCamelCase__ = model_class(SCREAMING_SNAKE_CASE_ )
UpperCamelCase__ = model.generate(SCREAMING_SNAKE_CASE_ ).sequences
self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences )
def UpperCAmelCase_ (self ):
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self._get_input_ids_and_config()
UpperCamelCase__ = True
UpperCamelCase__ = max_length
UpperCamelCase__ = 0.8
UpperCamelCase__ = 10
UpperCamelCase__ = 0.3
UpperCamelCase__ = 1
UpperCamelCase__ = 8
UpperCamelCase__ = 9
for model_class in self.all_generative_model_classes:
UpperCamelCase__ = model_class(SCREAMING_SNAKE_CASE_ )
UpperCamelCase__ = model.generate(SCREAMING_SNAKE_CASE_ ).sequences
self.assertEqual(generation_outputs.shape[-1] , SCREAMING_SNAKE_CASE_ )
UpperCamelCase__ = jit(model.generate )
UpperCamelCase__ = jit_generate(SCREAMING_SNAKE_CASE_ ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def UpperCAmelCase_ (self ):
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self._get_input_ids_and_config()
UpperCamelCase__ = max_length
UpperCamelCase__ = 1
UpperCamelCase__ = 8
UpperCamelCase__ = 9
for model_class in self.all_generative_model_classes:
UpperCamelCase__ = model_class(SCREAMING_SNAKE_CASE_ )
UpperCamelCase__ = model.generate(SCREAMING_SNAKE_CASE_ ).sequences
self.assertEqual(generation_outputs.shape[-1] , SCREAMING_SNAKE_CASE_ )
UpperCamelCase__ = jit(model.generate )
UpperCamelCase__ = jit_generate(SCREAMING_SNAKE_CASE_ ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def UpperCAmelCase_ (self ):
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self._get_input_ids_and_config()
UpperCamelCase__ = max_length
UpperCamelCase__ = 2
UpperCamelCase__ = 1
UpperCamelCase__ = 8
UpperCamelCase__ = 9
for model_class in self.all_generative_model_classes:
UpperCamelCase__ = model_class(SCREAMING_SNAKE_CASE_ )
UpperCamelCase__ = model.generate(SCREAMING_SNAKE_CASE_ ).sequences
self.assertEqual(generation_outputs.shape[-1] , SCREAMING_SNAKE_CASE_ )
UpperCamelCase__ = jit(model.generate )
UpperCamelCase__ = jit_generate(SCREAMING_SNAKE_CASE_ ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def UpperCAmelCase_ (self ):
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self._get_input_ids_and_config()
# pad attention mask on the left
UpperCamelCase__ = attention_mask.at[(0, 0)].set(0 )
UpperCamelCase__ = False
UpperCamelCase__ = max_length
for model_class in self.all_generative_model_classes:
UpperCamelCase__ = model_class(SCREAMING_SNAKE_CASE_ )
UpperCamelCase__ = model.generate(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ).sequences
self.assertEqual(generation_outputs.shape[-1] , SCREAMING_SNAKE_CASE_ )
UpperCamelCase__ = jit(model.generate )
UpperCamelCase__ = jit_generate(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def UpperCAmelCase_ (self ):
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self._get_input_ids_and_config()
# pad attention mask on the left
UpperCamelCase__ = attention_mask.at[(0, 0)].set(0 )
UpperCamelCase__ = True
UpperCamelCase__ = max_length
for model_class in self.all_generative_model_classes:
UpperCamelCase__ = model_class(SCREAMING_SNAKE_CASE_ )
UpperCamelCase__ = model.generate(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ).sequences
self.assertEqual(generation_outputs.shape[-1] , SCREAMING_SNAKE_CASE_ )
UpperCamelCase__ = jit(model.generate )
UpperCamelCase__ = jit_generate(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def UpperCAmelCase_ (self ):
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self._get_input_ids_and_config()
# pad attention mask on the left
UpperCamelCase__ = attention_mask.at[(0, 0)].set(0 )
UpperCamelCase__ = 2
UpperCamelCase__ = max_length
for model_class in self.all_generative_model_classes:
UpperCamelCase__ = model_class(SCREAMING_SNAKE_CASE_ )
UpperCamelCase__ = model.generate(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ).sequences
self.assertEqual(generation_outputs.shape[-1] , SCREAMING_SNAKE_CASE_ )
UpperCamelCase__ = jit(model.generate )
UpperCamelCase__ = jit_generate(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
@require_flax
class __A( unittest.TestCase ):
"""simple docstring"""
def UpperCAmelCase_ (self ):
UpperCamelCase__ = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-bert""" )
UpperCamelCase__ = FlaxAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" )
UpperCamelCase__ = """Hello world"""
UpperCamelCase__ = tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors="""np""" ).input_ids
# typos are quickly detected (the correct argument is `do_sample`)
with self.assertRaisesRegex(SCREAMING_SNAKE_CASE_ , """do_samples""" ):
model.generate(SCREAMING_SNAKE_CASE_ , do_samples=SCREAMING_SNAKE_CASE_ )
# arbitrary arguments that will not be used anywhere are also not accepted
with self.assertRaisesRegex(SCREAMING_SNAKE_CASE_ , """foo""" ):
UpperCamelCase__ = {"""foo""": """bar"""}
model.generate(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
| 244
| 0
|
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import torch
from ..models.clipseg import CLIPSegForImageSegmentation
from ..utils import is_vision_available, requires_backends
from .base import PipelineTool
if is_vision_available():
from PIL import Image
class _lowercase ( snake_case_ ):
lowercase = (
'This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.'
'It takes two arguments named `image` which should be the original image, and `label` which should be a text '
'describing the elements what should be identified in the segmentation mask. The tool returns the mask.'
)
lowercase = 'CIDAS/clipseg-rd64-refined'
lowercase = 'image_segmenter'
lowercase = CLIPSegForImageSegmentation
lowercase = ['image', 'text']
lowercase = ['image']
def __init__( self : List[str] , *snake_case : int , **snake_case : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
requires_backends(self , ['vision'] )
super().__init__(*snake_case , **snake_case )
def SCREAMING_SNAKE_CASE__ ( self : str , snake_case : "Image" , snake_case : str ) -> Any:
"""simple docstring"""
return self.pre_processor(text=[label] , images=[image] , padding=snake_case , return_tensors='pt' )
def SCREAMING_SNAKE_CASE__ ( self : str , snake_case : Optional[int] ) -> Tuple:
"""simple docstring"""
with torch.no_grad():
UpperCamelCase_ : Any = self.model(**snake_case ).logits
return logits
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , snake_case : int ) -> int:
"""simple docstring"""
UpperCamelCase_ : Union[str, Any] = outputs.cpu().detach().numpy()
UpperCamelCase_ : str = 0
UpperCamelCase_ : List[Any] = 1
return Image.fromarray((array * 2_5_5).astype(np.uinta ) )
| 50
|
from __future__ import annotations
import numpy as np
def __lowercase ( lowerCamelCase : list[float] ):
return np.maximum(0 , lowerCamelCase )
if __name__ == "__main__":
print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
| 50
| 1
|
'''simple docstring'''
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..bit import BitConfig
a_ : List[Any] = logging.get_logger(__name__)
a_ : Dict = {
"Intel/dpt-large": "https://huggingface.co/Intel/dpt-large/resolve/main/config.json",
# See all DPT models at https://huggingface.co/models?filter=dpt
}
class a ( _SCREAMING_SNAKE_CASE ):
_lowerCAmelCase = """dpt"""
def __init__( self , __magic_name__=7_68 , __magic_name__=12 , __magic_name__=12 , __magic_name__=30_72 , __magic_name__="gelu" , __magic_name__=0.0 , __magic_name__=0.0 , __magic_name__=0.0_2 , __magic_name__=1e-12 , __magic_name__=3_84 , __magic_name__=16 , __magic_name__=3 , __magic_name__=False , __magic_name__=True , __magic_name__=[2, 5, 8, 11] , __magic_name__="project" , __magic_name__=[4, 2, 1, 0.5] , __magic_name__=[96, 1_92, 3_84, 7_68] , __magic_name__=2_56 , __magic_name__=-1 , __magic_name__=False , __magic_name__=True , __magic_name__=0.4 , __magic_name__=2_55 , __magic_name__=0.1 , __magic_name__=[1, 10_24, 24, 24] , __magic_name__=[0, 1] , __magic_name__=None , **__magic_name__ , ) -> Dict:
super().__init__(**__magic_name__ )
_a = hidden_size
_a = is_hybrid
if self.is_hybrid:
if backbone_config is None:
logger.info('Initializing the config with a `BiT` backbone.' )
_a = {
'global_padding': 'same',
'layer_type': 'bottleneck',
'depths': [3, 4, 9],
'out_features': ['stage1', 'stage2', 'stage3'],
'embedding_dynamic_padding': True,
}
_a = BitConfig(**__magic_name__ )
elif isinstance(__magic_name__ , __magic_name__ ):
logger.info('Initializing the config with a `BiT` backbone.' )
_a = BitConfig(**__magic_name__ )
elif isinstance(__magic_name__ , __magic_name__ ):
_a = backbone_config
else:
raise ValueError(
f'backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.' )
_a = backbone_featmap_shape
_a = neck_ignore_stages
if readout_type != "project":
raise ValueError('Readout type must be \'project\' when using `DPT-hybrid` mode.' )
else:
_a = None
_a = None
_a = []
_a = num_hidden_layers
_a = num_attention_heads
_a = intermediate_size
_a = hidden_act
_a = hidden_dropout_prob
_a = attention_probs_dropout_prob
_a = initializer_range
_a = layer_norm_eps
_a = image_size
_a = patch_size
_a = num_channels
_a = qkv_bias
_a = backbone_out_indices
if readout_type not in ["ignore", "add", "project"]:
raise ValueError('Readout_type must be one of [\'ignore\', \'add\', \'project\']' )
_a = readout_type
_a = reassemble_factors
_a = neck_hidden_sizes
_a = fusion_hidden_size
_a = head_in_index
_a = use_batch_norm_in_fusion_residual
# auxiliary head attributes (semantic segmentation)
_a = use_auxiliary_head
_a = auxiliary_loss_weight
_a = semantic_loss_ignore_index
_a = semantic_classifier_dropout
def __UpperCAmelCase ( self ) -> Optional[Any]:
_a = copy.deepcopy(self.__dict__ )
if output["backbone_config"] is not None:
_a = self.backbone_config.to_dict()
_a = self.__class__.model_type
return output
| 168
|
'''simple docstring'''
import numpy as np
class a :
def __init__( self ) -> List[str]:
_a = (0, 0)
_a = None
_a = 0
_a = 0
_a = 0
def __eq__( self , __magic_name__ ) -> Optional[int]:
return self.position == cell.position
def __UpperCAmelCase ( self ) -> Any:
print(self.position )
class a :
def __init__( self , __magic_name__=(5, 5) ) -> Optional[int]:
_a = np.zeros(__magic_name__ )
_a = world_size[0]
_a = world_size[1]
def __UpperCAmelCase ( self ) -> List[Any]:
print(self.w )
def __UpperCAmelCase ( self , __magic_name__ ) -> Union[str, Any]:
_a = [
(-1, -1),
(-1, 0),
(-1, 1),
(0, -1),
(0, 1),
(1, -1),
(1, 0),
(1, 1),
]
_a = cell.position[0]
_a = cell.position[1]
_a = []
for n in neughbour_cord:
_a = current_x + n[0]
_a = current_y + n[1]
if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit:
_a = Cell()
_a = (x, y)
_a = cell
neighbours.append(__magic_name__ )
return neighbours
def _A (lowerCAmelCase__ :int , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :int ) -> List[str]:
'''simple docstring'''
_a = []
_a = []
_open.append(lowerCAmelCase__ )
while _open:
_a = np.argmin([n.f for n in _open] )
_a = _open[min_f]
_closed.append(_open.pop(lowerCAmelCase__ ) )
if current == goal:
break
for n in world.get_neigbours(lowerCAmelCase__ ):
for c in _closed:
if c == n:
continue
_a = current.g + 1
_a , _a = n.position
_a , _a = goal.position
_a = (ya - ya) ** 2 + (xa - xa) ** 2
_a = n.h + n.g
for c in _open:
if c == n and c.f < n.f:
continue
_open.append(lowerCAmelCase__ )
_a = []
while current.parent is not None:
path.append(current.position )
_a = current.parent
path.append(current.position )
return path[::-1]
if __name__ == "__main__":
a_ : str = Gridworld()
# Start position and goal
a_ : str = Cell()
a_ : Dict = (0, 0)
a_ : Dict = Cell()
a_ : Optional[Any] = (4, 4)
print(f'''path from {start.position} to {goal.position}''')
a_ : Tuple = astar(world, start, goal)
# Just for visual reasons.
for i in s:
a_ : Any = 1
print(world.w)
| 168
| 1
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
UpperCAmelCase_ : Optional[Any] = {
'configuration_llama': ['LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LlamaConfig'],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ : Any = ['LlamaTokenizer']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ : List[str] = ['LlamaTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ : Tuple = [
'LlamaForCausalLM',
'LlamaModel',
'LlamaPreTrainedModel',
'LlamaForSequenceClassification',
]
if TYPE_CHECKING:
from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_llama import LlamaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_llama_fast import LlamaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel
else:
import sys
UpperCAmelCase_ : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 357
|
from __future__ import annotations
from math import pi
# Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of
# Pi and the function
UpperCAmelCase_ : str = 1.054571817e-34 # unit of ℏ : J * s
UpperCAmelCase_ : Dict = 3e8 # unit of c : m * s^-1
def SCREAMING_SNAKE_CASE_ ( __A : float , __A : float , __A : float ) -> dict[str, float]:
"""simple docstring"""
if (force, area, distance).count(0 ) != 1:
raise ValueError('One and only one argument must be 0' )
if force < 0:
raise ValueError('Magnitude of force can not be negative' )
if distance < 0:
raise ValueError('Distance can not be negative' )
if area < 0:
raise ValueError('Area can not be negative' )
if force == 0:
a_ : Optional[Any] = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (
2_40 * (distance) ** 4
)
return {"force": force}
elif area == 0:
a_ : List[str] = (2_40 * force * (distance) ** 4) / (
REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2
)
return {"area": area}
elif distance == 0:
a_ : Tuple = (
(REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (2_40 * force)
) ** (1 / 4)
return {"distance": distance}
raise ValueError('One and only one argument must be 0' )
# Run doctest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 120
| 0
|
'''simple docstring'''
import argparse
from typing import List
import evaluate
import numpy as np
import torch
from datasets import DatasetDict, load_dataset
# New Code #
# We'll be using StratifiedKFold for this example
from sklearn.model_selection import StratifiedKFold
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing how to perform Cross Validation,
# and builds off the `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To help focus on the differences in the code, building `DataLoaders`
# was refactored into its own function.
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
__snake_case =16
__snake_case =32
def a_ ( lowerCamelCase : Accelerator , lowerCamelCase : DatasetDict , lowerCamelCase : List[int] , lowerCamelCase : List[int] , lowerCamelCase : int = 16 ):
lowerCAmelCase = AutoTokenizer.from_pretrained('bert-base-cased' )
lowerCAmelCase = DatasetDict(
{
'train': dataset['train'].select(lowerCamelCase ),
'validation': dataset['train'].select(lowerCamelCase ),
'test': dataset['validation'],
} )
def tokenize_function(lowerCamelCase : str ):
# max_length=None => use the model max length (it's actually the default)
lowerCAmelCase = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=lowerCamelCase , max_length=lowerCamelCase )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
lowerCAmelCase = datasets.map(
lowerCamelCase , batched=lowerCamelCase , remove_columns=['idx', 'sentence1', 'sentence2'] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
lowerCAmelCase = tokenized_datasets.rename_column('label' , 'labels' )
def collate_fn(lowerCamelCase : Dict ):
# On TPU it's best to pad everything to the same length or training will be very slow.
lowerCAmelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
lowerCAmelCase = 16
elif accelerator.mixed_precision != "no":
lowerCAmelCase = 8
else:
lowerCAmelCase = None
return tokenizer.pad(
lowerCamelCase , padding='longest' , max_length=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , return_tensors='pt' , )
# Instantiate dataloaders.
lowerCAmelCase = DataLoader(
tokenized_datasets['train'] , shuffle=lowerCamelCase , collate_fn=lowerCamelCase , batch_size=lowerCamelCase )
lowerCAmelCase = DataLoader(
tokenized_datasets['validation'] , shuffle=lowerCamelCase , collate_fn=lowerCamelCase , batch_size=lowerCamelCase )
lowerCAmelCase = DataLoader(
tokenized_datasets['test'] , shuffle=lowerCamelCase , collate_fn=lowerCamelCase , batch_size=lowerCamelCase )
return train_dataloader, eval_dataloader, test_dataloader
def a_ ( lowerCamelCase : Tuple , lowerCamelCase : List[Any] ):
# New Code #
lowerCAmelCase = []
# Download the dataset
lowerCAmelCase = load_dataset('glue' , 'mrpc' )
# Create our splits
lowerCAmelCase = StratifiedKFold(n_splits=int(args.num_folds ) )
# Initialize accelerator
lowerCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
lowerCAmelCase = config['lr']
lowerCAmelCase = int(config['num_epochs'] )
lowerCAmelCase = int(config['seed'] )
lowerCAmelCase = int(config['batch_size'] )
lowerCAmelCase = evaluate.load('glue' , 'mrpc' )
# If the batch size is too big we use gradient accumulation
lowerCAmelCase = 1
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU:
lowerCAmelCase = batch_size // MAX_GPU_BATCH_SIZE
lowerCAmelCase = MAX_GPU_BATCH_SIZE
set_seed(lowerCamelCase )
# New Code #
# Create our folds:
lowerCAmelCase = kfold.split(np.zeros(datasets['train'].num_rows ) , datasets['train']['label'] )
lowerCAmelCase = []
# Iterate over them
for i, (train_idxs, valid_idxs) in enumerate(lowerCamelCase ):
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = get_fold_dataloaders(
lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=lowerCamelCase )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
lowerCAmelCase = model.to(accelerator.device )
# Instantiate optimizer
lowerCAmelCase = AdamW(params=model.parameters() , lr=lowerCamelCase )
# Instantiate scheduler
lowerCAmelCase = get_linear_schedule_with_warmup(
optimizer=lowerCamelCase , num_warmup_steps=100 , num_training_steps=(len(lowerCamelCase ) * num_epochs) // gradient_accumulation_steps , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = accelerator.prepare(
lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase )
# Now we train the model
for epoch in range(lowerCamelCase ):
model.train()
for step, batch in enumerate(lowerCamelCase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
lowerCAmelCase = model(**lowerCamelCase )
lowerCAmelCase = outputs.loss
lowerCAmelCase = loss / gradient_accumulation_steps
accelerator.backward(lowerCamelCase )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(lowerCamelCase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
lowerCAmelCase = model(**lowerCamelCase )
lowerCAmelCase = outputs.logits.argmax(dim=-1 )
lowerCAmelCase , lowerCAmelCase = accelerator.gather_for_metrics((predictions, batch['labels']) )
metric.add_batch(
predictions=lowerCamelCase , references=lowerCamelCase , )
lowerCAmelCase = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f'''epoch {epoch}:''' , lowerCamelCase )
# New Code #
# We also run predictions on the test set at the very end
lowerCAmelCase = []
for step, batch in enumerate(lowerCamelCase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
lowerCAmelCase = model(**lowerCamelCase )
lowerCAmelCase = outputs.logits
lowerCAmelCase , lowerCAmelCase = accelerator.gather_for_metrics((predictions, batch['labels']) )
fold_predictions.append(predictions.cpu() )
if i == 0:
# We need all of the test predictions
test_references.append(references.cpu() )
# Use accelerator.print to print only on the main process.
test_predictions.append(torch.cat(lowerCamelCase , dim=0 ) )
# We now need to release all our memory and get rid of the current model, optimizer, etc
accelerator.free_memory()
# New Code #
# Finally we check the accuracy of our folded results:
lowerCAmelCase = torch.cat(lowerCamelCase , dim=0 )
lowerCAmelCase = torch.stack(lowerCamelCase , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 )
lowerCAmelCase = metric.compute(predictions=lowerCamelCase , references=lowerCamelCase )
accelerator.print('Average test metrics from all folds:' , lowerCamelCase )
def a_ ( ):
lowerCAmelCase = argparse.ArgumentParser(description='Simple example of training script.' )
parser.add_argument(
'--mixed_precision' , type=lowerCamelCase , default=lowerCamelCase , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose'
'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'
'and an Nvidia Ampere GPU.' , )
parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' )
# New Code #
parser.add_argument('--num_folds' , type=lowerCamelCase , default=3 , help='The number of splits to perform across the dataset' )
lowerCAmelCase = parser.parse_args()
lowerCAmelCase = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16}
training_function(lowerCamelCase , lowerCamelCase )
if __name__ == "__main__":
main()
| 4
|
'''simple docstring'''
from __future__ import annotations
from collections.abc import Iterator
class __SCREAMING_SNAKE_CASE :
def __init__( self : Dict , __lowercase : int ) -> None:
SCREAMING_SNAKE_CASE__ : List[Any] =value
SCREAMING_SNAKE_CASE__ : Node | None =None
SCREAMING_SNAKE_CASE__ : Node | None =None
class __SCREAMING_SNAKE_CASE :
def __init__( self : Dict , __lowercase : Node ) -> None:
SCREAMING_SNAKE_CASE__ : Any =tree
def __magic_name__ ( self : str , __lowercase : Node | None ) -> int:
if node is None:
return 0
return node.value + (
self.depth_first_search(node.left ) + self.depth_first_search(node.right )
)
def __iter__( self : Union[str, Any] ) -> Iterator[int]:
yield self.depth_first_search(self.tree )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 152
| 0
|
"""simple docstring"""
import argparse
import os
import sys
from unittest.mock import patch
import pytorch_lightning as pl
import timeout_decorator
import torch
from distillation import SummarizationDistiller, distill_main
from finetune import SummarizationModule, main
from transformers import MarianMTModel
from transformers.file_utils import cached_path
from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow
from utils import load_json
UpperCamelCase = '''sshleifer/mar_enro_6_3_student'''
class __UpperCAmelCase (_snake_case ):
def UpperCamelCase ( self: Dict ):
'''simple docstring'''
super().setUp()
_SCREAMING_SNAKE_CASE = cached_path(
"""https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz""" , extract_compressed_file=UpperCamelCase__ , )
_SCREAMING_SNAKE_CASE = F'{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k'
@slow
@require_torch_gpu
def UpperCamelCase ( self: Any ):
'''simple docstring'''
MarianMTModel.from_pretrained(UpperCamelCase__ )
@slow
@require_torch_gpu
def UpperCamelCase ( self: List[str] ):
'''simple docstring'''
_SCREAMING_SNAKE_CASE = {
"""$MAX_LEN""": 64,
"""$BS""": 64,
"""$GAS""": 1,
"""$ENRO_DIR""": self.data_dir,
"""facebook/mbart-large-cc25""": MARIAN_MODEL,
# "val_check_interval=0.25": "val_check_interval=1.0",
"""--learning_rate=3e-5""": """--learning_rate 3e-4""",
"""--num_train_epochs 6""": """--num_train_epochs 1""",
}
# Clean up bash script
_SCREAMING_SNAKE_CASE = (self.test_file_dir / """train_mbart_cc25_enro.sh""").open().read().split("""finetune.py""" )[1].strip()
_SCREAMING_SNAKE_CASE = bash_script.replace("""\\\n""" , """""" ).strip().replace("""\"$@\"""" , """""" )
for k, v in env_vars_to_replace.items():
_SCREAMING_SNAKE_CASE = bash_script.replace(UpperCamelCase__ , str(UpperCamelCase__ ) )
_SCREAMING_SNAKE_CASE = self.get_auto_remove_tmp_dir()
# bash_script = bash_script.replace("--fp16 ", "")
_SCREAMING_SNAKE_CASE = F'\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n '.split()
# XXX: args.gpus > 1 : handle multi_gpu in the future
_SCREAMING_SNAKE_CASE = ["""finetune.py"""] + bash_script.split() + args
with patch.object(UpperCamelCase__ , """argv""" , UpperCamelCase__ ):
_SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
_SCREAMING_SNAKE_CASE = pl.Trainer.add_argparse_args(UpperCamelCase__ )
_SCREAMING_SNAKE_CASE = SummarizationModule.add_model_specific_args(UpperCamelCase__ , os.getcwd() )
_SCREAMING_SNAKE_CASE = parser.parse_args()
_SCREAMING_SNAKE_CASE = main(UpperCamelCase__ )
# Check metrics
_SCREAMING_SNAKE_CASE = load_json(model.metrics_save_path )
_SCREAMING_SNAKE_CASE = metrics["""val"""][0]
_SCREAMING_SNAKE_CASE = metrics["""val"""][-1]
self.assertEqual(len(metrics["""val"""] ) , (args.max_epochs / args.val_check_interval) )
assert isinstance(last_step_stats[F'val_avg_{model.val_metric}'] , UpperCamelCase__ )
self.assertGreater(last_step_stats["""val_avg_gen_time"""] , 0.01 )
# model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?)
self.assertLessEqual(last_step_stats["""val_avg_gen_time"""] , 1.0 )
# test learning requirements:
# 1. BLEU improves over the course of training by more than 2 pts
self.assertGreater(last_step_stats["""val_avg_bleu"""] - first_step_stats["""val_avg_bleu"""] , 2 )
# 2. BLEU finishes above 17
self.assertGreater(last_step_stats["""val_avg_bleu"""] , 17 )
# 3. test BLEU and val BLEU within ~1.1 pt.
self.assertLess(abs(metrics["""val"""][-1]["""val_avg_bleu"""] - metrics["""test"""][-1]["""test_avg_bleu"""] ) , 1.1 )
# check lightning ckpt can be loaded and has a reasonable statedict
_SCREAMING_SNAKE_CASE = os.listdir(UpperCamelCase__ )
_SCREAMING_SNAKE_CASE = [x for x in contents if x.endswith(""".ckpt""" )][0]
_SCREAMING_SNAKE_CASE = os.path.join(args.output_dir , UpperCamelCase__ )
_SCREAMING_SNAKE_CASE = torch.load(UpperCamelCase__ , map_location="""cpu""" )
_SCREAMING_SNAKE_CASE = """model.model.decoder.layers.0.encoder_attn_layer_norm.weight"""
assert expected_key in ckpt["state_dict"]
assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa
# TODO: turn on args.do_predict when PL bug fixed.
if args.do_predict:
_SCREAMING_SNAKE_CASE = {os.path.basename(UpperCamelCase__ ) for p in contents}
assert "test_generations.txt" in contents
assert "test_results.txt" in contents
# assert len(metrics["val"]) == desired_n_evals
assert len(metrics["""test"""] ) == 1
class __UpperCAmelCase (_snake_case ):
@timeout_decorator.timeout(600 )
@slow
@require_torch_gpu
def UpperCamelCase ( self: Any ):
'''simple docstring'''
_SCREAMING_SNAKE_CASE = F'{self.test_file_dir_str}/test_data/wmt_en_ro'
_SCREAMING_SNAKE_CASE = {
"""--fp16_opt_level=O1""": """""",
"""$MAX_LEN""": 128,
"""$BS""": 16,
"""$GAS""": 1,
"""$ENRO_DIR""": data_dir,
"""$m""": """sshleifer/student_marian_en_ro_6_1""",
"""val_check_interval=0.25""": """val_check_interval=1.0""",
}
# Clean up bash script
_SCREAMING_SNAKE_CASE = (
(self.test_file_dir / """distil_marian_no_teacher.sh""").open().read().split("""distillation.py""" )[1].strip()
)
_SCREAMING_SNAKE_CASE = bash_script.replace("""\\\n""" , """""" ).strip().replace("""\"$@\"""" , """""" )
_SCREAMING_SNAKE_CASE = bash_script.replace("""--fp16 """ , """ """ )
for k, v in env_vars_to_replace.items():
_SCREAMING_SNAKE_CASE = bash_script.replace(UpperCamelCase__ , str(UpperCamelCase__ ) )
_SCREAMING_SNAKE_CASE = self.get_auto_remove_tmp_dir()
_SCREAMING_SNAKE_CASE = bash_script.replace("""--fp16""" , """""" )
_SCREAMING_SNAKE_CASE = 6
_SCREAMING_SNAKE_CASE = (
["""distillation.py"""]
+ bash_script.split()
+ [
F'--output_dir={output_dir}',
"""--gpus=1""",
"""--learning_rate=1e-3""",
F'--num_train_epochs={epochs}',
"""--warmup_steps=10""",
"""--val_check_interval=1.0""",
"""--do_predict""",
]
)
with patch.object(UpperCamelCase__ , """argv""" , UpperCamelCase__ ):
_SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
_SCREAMING_SNAKE_CASE = pl.Trainer.add_argparse_args(UpperCamelCase__ )
_SCREAMING_SNAKE_CASE = SummarizationDistiller.add_model_specific_args(UpperCamelCase__ , os.getcwd() )
_SCREAMING_SNAKE_CASE = parser.parse_args()
# assert args.gpus == gpus THIS BREAKS for multi_gpu
_SCREAMING_SNAKE_CASE = distill_main(UpperCamelCase__ )
# Check metrics
_SCREAMING_SNAKE_CASE = load_json(model.metrics_save_path )
_SCREAMING_SNAKE_CASE = metrics["""val"""][0]
_SCREAMING_SNAKE_CASE = metrics["""val"""][-1]
assert len(metrics["""val"""] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check
assert last_step_stats["val_avg_gen_time"] >= 0.01
assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing
assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved.
assert isinstance(last_step_stats[F'val_avg_{model.val_metric}'] , UpperCamelCase__ )
# check lightning ckpt can be loaded and has a reasonable statedict
_SCREAMING_SNAKE_CASE = os.listdir(UpperCamelCase__ )
_SCREAMING_SNAKE_CASE = [x for x in contents if x.endswith(""".ckpt""" )][0]
_SCREAMING_SNAKE_CASE = os.path.join(args.output_dir , UpperCamelCase__ )
_SCREAMING_SNAKE_CASE = torch.load(UpperCamelCase__ , map_location="""cpu""" )
_SCREAMING_SNAKE_CASE = """model.model.decoder.layers.0.encoder_attn_layer_norm.weight"""
assert expected_key in ckpt["state_dict"]
assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa
# TODO: turn on args.do_predict when PL bug fixed.
if args.do_predict:
_SCREAMING_SNAKE_CASE = {os.path.basename(UpperCamelCase__ ) for p in contents}
assert "test_generations.txt" in contents
assert "test_results.txt" in contents
# assert len(metrics["val"]) == desired_n_evals
assert len(metrics["""test"""] ) == 1
| 363
|
import logging
import os
import sys
import warnings
from dataclasses import dataclass, field
from random import randint
from typing import Optional
import datasets
import evaluate
import numpy as np
from datasets import DatasetDict, load_dataset
import transformers
from transformers import (
AutoConfig,
AutoFeatureExtractor,
AutoModelForAudioClassification,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
UpperCamelCase = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('''4.31.0''')
require_version('''datasets>=1.14.0''', '''To fix: pip install -r examples/pytorch/audio-classification/requirements.txt''')
def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ = 1_60_00 ) -> Dict:
"""simple docstring"""
_SCREAMING_SNAKE_CASE = int(round(sample_rate * max_length ) )
if len(snake_case__ ) <= sample_length:
return wav
_SCREAMING_SNAKE_CASE = randint(0 ,len(snake_case__ ) - sample_length - 1 )
return wav[random_offset : random_offset + sample_length]
@dataclass
class __UpperCAmelCase :
__snake_case : Optional[str] = field(default=_UpperCAmelCase ,metadata={"help": "Name of a dataset from the datasets package"} )
__snake_case : Optional[str] = field(
default=_UpperCAmelCase ,metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} )
__snake_case : Optional[str] = field(
default=_UpperCAmelCase ,metadata={"help": "A file containing the training audio paths and labels."} )
__snake_case : Optional[str] = field(
default=_UpperCAmelCase ,metadata={"help": "A file containing the validation audio paths and labels."} )
__snake_case : str = field(
default="train" ,metadata={
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
} ,)
__snake_case : str = field(
default="validation" ,metadata={
"help": (
"The name of the training data set split to use (via the datasets library). Defaults to 'validation'"
)
} ,)
__snake_case : str = field(
default="audio" ,metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"} ,)
__snake_case : str = field(
default="label" ,metadata={"help": "The name of the dataset column containing the labels. Defaults to 'label'"} )
__snake_case : Optional[int] = field(
default=_UpperCAmelCase ,metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
} ,)
__snake_case : Optional[int] = field(
default=_UpperCAmelCase ,metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
} ,)
__snake_case : float = field(
default=20 ,metadata={"help": "Audio clips will be randomly cut to this length during training if the value is set."} ,)
@dataclass
class __UpperCAmelCase :
__snake_case : str = field(
default="facebook/wav2vec2-base" ,metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ,)
__snake_case : Optional[str] = field(
default=_UpperCAmelCase ,metadata={"help": "Pretrained config name or path if not the same as model_name"} )
__snake_case : Optional[str] = field(
default=_UpperCAmelCase ,metadata={"help": "Where do you want to store the pretrained models downloaded from the Hub"} )
__snake_case : str = field(
default="main" ,metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} ,)
__snake_case : Optional[str] = field(
default=_UpperCAmelCase ,metadata={"help": "Name or path of preprocessor config."} )
__snake_case : bool = field(
default=_UpperCAmelCase ,metadata={"help": "Whether to freeze the feature encoder layers of the model."} )
__snake_case : bool = field(
default=_UpperCAmelCase ,metadata={"help": "Whether to generate an attention mask in the feature extractor."} )
__snake_case : bool = field(
default=_UpperCAmelCase ,metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
} ,)
__snake_case : Optional[bool] = field(
default=_UpperCAmelCase ,metadata={"help": "Whether to freeze the feature extractor layers of the model."} )
__snake_case : bool = field(
default=_UpperCAmelCase ,metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} ,)
def UpperCamelCase ( self: List[str] ):
'''simple docstring'''
if not self.freeze_feature_extractor and self.freeze_feature_encoder:
warnings.warn(
"""The argument `--freeze_feature_extractor` is deprecated and """
"""will be removed in a future version. Use `--freeze_feature_encoder`"""
"""instead. Setting `freeze_feature_encoder==True`.""" , UpperCAmelCase_ , )
if self.freeze_feature_extractor and not self.freeze_feature_encoder:
raise ValueError(
"""The argument `--freeze_feature_extractor` is deprecated and """
"""should not be used in combination with `--freeze_feature_encoder`."""
"""Only make use of `--freeze_feature_encoder`.""" )
def __lowerCamelCase ( ) -> Any:
"""simple docstring"""
_SCREAMING_SNAKE_CASE = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("""run_audio_classification""" ,snake_case__ ,snake_case__ )
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" ,datefmt="""%m/%d/%Y %H:%M:%S""" ,handlers=[logging.StreamHandler(sys.stdout )] ,)
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
_SCREAMING_SNAKE_CASE = training_args.get_process_log_level()
logger.setLevel(snake_case__ )
transformers.utils.logging.set_verbosity(snake_case__ )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} '
+ F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' )
logger.info(F'Training/evaluation parameters {training_args}' )
# Set seed before initializing model.
set_seed(training_args.seed )
# Detecting last checkpoint.
_SCREAMING_SNAKE_CASE = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
_SCREAMING_SNAKE_CASE = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F'Output directory ({training_args.output_dir}) already exists and is not empty. '
"""Use --overwrite_output_dir to train from scratch.""" )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change '
"""the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" )
# Initialize our dataset and prepare it for the audio classification task.
_SCREAMING_SNAKE_CASE = DatasetDict()
_SCREAMING_SNAKE_CASE = load_dataset(
data_args.dataset_name ,data_args.dataset_config_name ,split=data_args.train_split_name ,use_auth_token=True if model_args.use_auth_token else None ,)
_SCREAMING_SNAKE_CASE = load_dataset(
data_args.dataset_name ,data_args.dataset_config_name ,split=data_args.eval_split_name ,use_auth_token=True if model_args.use_auth_token else None ,)
if data_args.audio_column_name not in raw_datasets["train"].column_names:
raise ValueError(
F'--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. '
"""Make sure to set `--audio_column_name` to the correct audio column - one of """
F'{", ".join(raw_datasets["train"].column_names )}.' )
if data_args.label_column_name not in raw_datasets["train"].column_names:
raise ValueError(
F'--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. '
"""Make sure to set `--label_column_name` to the correct text column - one of """
F'{", ".join(raw_datasets["train"].column_names )}.' )
# Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over
# transformer outputs in the classifier, but it doesn't always lead to better accuracy
_SCREAMING_SNAKE_CASE = AutoFeatureExtractor.from_pretrained(
model_args.feature_extractor_name or model_args.model_name_or_path ,return_attention_mask=model_args.attention_mask ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,)
# `datasets` takes care of automatically loading and resampling the audio,
# so we just need to set the correct target sampling rate.
_SCREAMING_SNAKE_CASE = raw_datasets.cast_column(
data_args.audio_column_name ,datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) )
_SCREAMING_SNAKE_CASE = feature_extractor.model_input_names[0]
def train_transforms(snake_case__ ):
_SCREAMING_SNAKE_CASE = []
for audio in batch[data_args.audio_column_name]:
_SCREAMING_SNAKE_CASE = random_subsample(
audio["""array"""] ,max_length=data_args.max_length_seconds ,sample_rate=feature_extractor.sampling_rate )
subsampled_wavs.append(snake_case__ )
_SCREAMING_SNAKE_CASE = feature_extractor(snake_case__ ,sampling_rate=feature_extractor.sampling_rate )
_SCREAMING_SNAKE_CASE = {model_input_name: inputs.get(snake_case__ )}
_SCREAMING_SNAKE_CASE = list(batch[data_args.label_column_name] )
return output_batch
def val_transforms(snake_case__ ):
_SCREAMING_SNAKE_CASE = [audio["""array"""] for audio in batch[data_args.audio_column_name]]
_SCREAMING_SNAKE_CASE = feature_extractor(snake_case__ ,sampling_rate=feature_extractor.sampling_rate )
_SCREAMING_SNAKE_CASE = {model_input_name: inputs.get(snake_case__ )}
_SCREAMING_SNAKE_CASE = list(batch[data_args.label_column_name] )
return output_batch
# Prepare label mappings.
# We'll include these in the model's config to get human readable labels in the Inference API.
_SCREAMING_SNAKE_CASE = raw_datasets["""train"""].features[data_args.label_column_name].names
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = {}, {}
for i, label in enumerate(snake_case__ ):
_SCREAMING_SNAKE_CASE = str(snake_case__ )
_SCREAMING_SNAKE_CASE = label
# Load the accuracy metric from the datasets package
_SCREAMING_SNAKE_CASE = evaluate.load("""accuracy""" )
# Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with
# `predictions` and `label_ids` fields) and has to return a dictionary string to float.
def compute_metrics(snake_case__ ):
_SCREAMING_SNAKE_CASE = np.argmax(eval_pred.predictions ,axis=1 )
return metric.compute(predictions=snake_case__ ,references=eval_pred.label_ids )
_SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(
model_args.config_name or model_args.model_name_or_path ,num_labels=len(snake_case__ ) ,labelaid=snake_case__ ,idalabel=snake_case__ ,finetuning_task="""audio-classification""" ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,)
_SCREAMING_SNAKE_CASE = AutoModelForAudioClassification.from_pretrained(
model_args.model_name_or_path ,from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) ,config=snake_case__ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,ignore_mismatched_sizes=model_args.ignore_mismatched_sizes ,)
# freeze the convolutional waveform encoder
if model_args.freeze_feature_encoder:
model.freeze_feature_encoder()
if training_args.do_train:
if data_args.max_train_samples is not None:
_SCREAMING_SNAKE_CASE = (
raw_datasets["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) )
)
# Set the training transforms
raw_datasets["train"].set_transform(snake_case__ ,output_all_columns=snake_case__ )
if training_args.do_eval:
if data_args.max_eval_samples is not None:
_SCREAMING_SNAKE_CASE = (
raw_datasets["""eval"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) )
)
# Set the validation transforms
raw_datasets["eval"].set_transform(snake_case__ ,output_all_columns=snake_case__ )
# Initialize our trainer
_SCREAMING_SNAKE_CASE = Trainer(
model=snake_case__ ,args=snake_case__ ,train_dataset=raw_datasets["""train"""] if training_args.do_train else None ,eval_dataset=raw_datasets["""eval"""] if training_args.do_eval else None ,compute_metrics=snake_case__ ,tokenizer=snake_case__ ,)
# Training
if training_args.do_train:
_SCREAMING_SNAKE_CASE = None
if training_args.resume_from_checkpoint is not None:
_SCREAMING_SNAKE_CASE = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
_SCREAMING_SNAKE_CASE = last_checkpoint
_SCREAMING_SNAKE_CASE = trainer.train(resume_from_checkpoint=snake_case__ )
trainer.save_model()
trainer.log_metrics("""train""" ,train_result.metrics )
trainer.save_metrics("""train""" ,train_result.metrics )
trainer.save_state()
# Evaluation
if training_args.do_eval:
_SCREAMING_SNAKE_CASE = trainer.evaluate()
trainer.log_metrics("""eval""" ,snake_case__ )
trainer.save_metrics("""eval""" ,snake_case__ )
# Write model card and (optionally) push to hub
_SCREAMING_SNAKE_CASE = {
"""finetuned_from""": model_args.model_name_or_path,
"""tasks""": """audio-classification""",
"""dataset""": data_args.dataset_name,
"""tags""": ["""audio-classification"""],
}
if training_args.push_to_hub:
trainer.push_to_hub(**snake_case__ )
else:
trainer.create_model_card(**snake_case__ )
if __name__ == "__main__":
main()
| 125
| 0
|
from typing import Dict, Iterable, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends
if is_vision_available():
import PIL
# soft dependency
if is_pytesseract_available():
import pytesseract
lowerCamelCase : List[str] = logging.get_logger(__name__)
def _SCREAMING_SNAKE_CASE ( lowercase : Tuple , lowercase : Optional[int] , lowercase : Optional[int] ):
'''simple docstring'''
return [
int(10_00 * (box[0] / width) ),
int(10_00 * (box[1] / height) ),
int(10_00 * (box[2] / width) ),
int(10_00 * (box[3] / height) ),
]
def _SCREAMING_SNAKE_CASE ( lowercase : np.ndarray , lowercase : Optional[str] , lowercase : Optional[str] ):
'''simple docstring'''
lowerCamelCase_ = to_pil_image(lowercase )
lowerCamelCase_ , lowerCamelCase_ = pil_image.size
lowerCamelCase_ = pytesseract.image_to_data(lowercase , lang=lowercase , output_type='dict' , config=lowercase )
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = data['text'], data['left'], data['top'], data['width'], data['height']
# filter empty words and corresponding coordinates
lowerCamelCase_ = [idx for idx, word in enumerate(lowercase ) if not word.strip()]
lowerCamelCase_ = [word for idx, word in enumerate(lowercase ) if idx not in irrelevant_indices]
lowerCamelCase_ = [coord for idx, coord in enumerate(lowercase ) if idx not in irrelevant_indices]
lowerCamelCase_ = [coord for idx, coord in enumerate(lowercase ) if idx not in irrelevant_indices]
lowerCamelCase_ = [coord for idx, coord in enumerate(lowercase ) if idx not in irrelevant_indices]
lowerCamelCase_ = [coord for idx, coord in enumerate(lowercase ) if idx not in irrelevant_indices]
# turn coordinates into (left, top, left+width, top+height) format
lowerCamelCase_ = []
for x, y, w, h in zip(lowercase , lowercase , lowercase , lowercase ):
lowerCamelCase_ = [x, y, x + w, y + h]
actual_boxes.append(lowercase )
# finally, normalize the bounding boxes
lowerCamelCase_ = []
for box in actual_boxes:
normalized_boxes.append(normalize_box(lowercase , lowercase , lowercase ) )
assert len(lowercase ) == len(lowercase ), "Not as many words as there are bounding boxes"
return words, normalized_boxes
class A( UpperCamelCase ):
'''simple docstring'''
UpperCamelCase = ['''pixel_values''']
def __init__( self : int , A_ : bool = True , A_ : Dict[str, int] = None , A_ : PILImageResampling = PILImageResampling.BILINEAR , A_ : bool = True , A_ : float = 1 / 255 , A_ : bool = True , A_ : Union[float, Iterable[float]] = None , A_ : Union[float, Iterable[float]] = None , A_ : bool = True , A_ : Optional[str] = None , A_ : Optional[str] = "" , **A_ : Optional[int] , ) -> None:
"""simple docstring"""
super().__init__(**A_ )
lowerCamelCase_ = size if size is not None else {'height': 224, 'width': 224}
lowerCamelCase_ = get_size_dict(A_ )
lowerCamelCase_ = do_resize
lowerCamelCase_ = size
lowerCamelCase_ = resample
lowerCamelCase_ = do_rescale
lowerCamelCase_ = rescale_value
lowerCamelCase_ = do_normalize
lowerCamelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
lowerCamelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD
lowerCamelCase_ = apply_ocr
lowerCamelCase_ = ocr_lang
lowerCamelCase_ = tesseract_config
def a__ ( self : str , A_ : np.ndarray , A_ : Dict[str, int] , A_ : PILImageResampling = PILImageResampling.BILINEAR , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : str , ) -> np.ndarray:
"""simple docstring"""
lowerCamelCase_ = get_size_dict(A_ )
if "height" not in size or "width" not in size:
raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" )
lowerCamelCase_ = (size['height'], size['width'])
return resize(A_ , size=A_ , resample=A_ , data_format=A_ , **A_ )
def a__ ( self : Any , A_ : np.ndarray , A_ : Union[int, float] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Optional[Any] , ) -> np.ndarray:
"""simple docstring"""
return rescale(A_ , scale=A_ , data_format=A_ , **A_ )
def a__ ( self : Union[str, Any] , A_ : np.ndarray , A_ : Union[float, Iterable[float]] , A_ : Union[float, Iterable[float]] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : int , ) -> np.ndarray:
"""simple docstring"""
return normalize(A_ , mean=A_ , std=A_ , data_format=A_ , **A_ )
def a__ ( self : List[Any] , A_ : ImageInput , A_ : bool = None , A_ : Dict[str, int] = None , A_ : Dict=None , A_ : bool = None , A_ : float = None , A_ : bool = None , A_ : Union[float, Iterable[float]] = None , A_ : Union[float, Iterable[float]] = None , A_ : bool = None , A_ : Optional[str] = None , A_ : Optional[str] = None , A_ : Optional[Union[str, TensorType]] = None , A_ : ChannelDimension = ChannelDimension.FIRST , **A_ : Any , ) -> PIL.Image.Image:
"""simple docstring"""
lowerCamelCase_ = do_resize if do_resize is not None else self.do_resize
lowerCamelCase_ = size if size is not None else self.size
lowerCamelCase_ = get_size_dict(A_ )
lowerCamelCase_ = resample if resample is not None else self.resample
lowerCamelCase_ = do_rescale if do_rescale is not None else self.do_rescale
lowerCamelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor
lowerCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize
lowerCamelCase_ = image_mean if image_mean is not None else self.image_mean
lowerCamelCase_ = image_std if image_std is not None else self.image_std
lowerCamelCase_ = apply_ocr if apply_ocr is not None else self.apply_ocr
lowerCamelCase_ = ocr_lang if ocr_lang is not None else self.ocr_lang
lowerCamelCase_ = tesseract_config if tesseract_config is not None else self.tesseract_config
lowerCamelCase_ = make_list_of_images(A_ )
if not valid_images(A_ ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None:
raise ValueError('Size must be specified if do_resize is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('If do_normalize is True, image_mean and image_std must be specified.' )
# All transformations expect numpy arrays.
lowerCamelCase_ = [to_numpy_array(A_ ) for image in images]
# Tesseract OCR to get words + normalized bounding boxes
if apply_ocr:
requires_backends(self , 'pytesseract' )
lowerCamelCase_ = []
lowerCamelCase_ = []
for image in images:
lowerCamelCase_ , lowerCamelCase_ = apply_tesseract(A_ , A_ , A_ )
words_batch.append(A_ )
boxes_batch.append(A_ )
if do_resize:
lowerCamelCase_ = [self.resize(image=A_ , size=A_ , resample=A_ ) for image in images]
if do_rescale:
lowerCamelCase_ = [self.rescale(image=A_ , scale=A_ ) for image in images]
if do_normalize:
lowerCamelCase_ = [self.normalize(image=A_ , mean=A_ , std=A_ ) for image in images]
lowerCamelCase_ = [to_channel_dimension_format(A_ , A_ ) for image in images]
lowerCamelCase_ = BatchFeature(data={'pixel_values': images} , tensor_type=A_ )
if apply_ocr:
lowerCamelCase_ = words_batch
lowerCamelCase_ = boxes_batch
return data
| 204
|
from typing import Dict, List, Optional, Tuple, Union
import torch
from ...models import AutoencoderKL, TransformeraDModel
from ...schedulers import KarrasDiffusionSchedulers
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class A( UpperCamelCase ):
'''simple docstring'''
def __init__( self : str , A_ : TransformeraDModel , A_ : AutoencoderKL , A_ : KarrasDiffusionSchedulers , A_ : Optional[Dict[int, str]] = None , ) -> str:
"""simple docstring"""
super().__init__()
self.register_modules(transformer=A_ , vae=A_ , scheduler=A_ )
# create a imagenet -> id dictionary for easier use
lowerCamelCase_ = {}
if idalabel is not None:
for key, value in idalabel.items():
for label in value.split(',' ):
lowerCamelCase_ = int(A_ )
lowerCamelCase_ = dict(sorted(self.labels.items() ) )
def a__ ( self : Optional[int] , A_ : Union[str, List[str]] ) -> List[int]:
"""simple docstring"""
if not isinstance(A_ , A_ ):
lowerCamelCase_ = list(A_ )
for l in label:
if l not in self.labels:
raise ValueError(
f"""{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.""" )
return [self.labels[l] for l in label]
@torch.no_grad()
def __call__( self : Any , A_ : List[int] , A_ : float = 4.0 , A_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , A_ : int = 50 , A_ : Optional[str] = "pil" , A_ : bool = True , ) -> Union[ImagePipelineOutput, Tuple]:
"""simple docstring"""
lowerCamelCase_ = len(A_ )
lowerCamelCase_ = self.transformer.config.sample_size
lowerCamelCase_ = self.transformer.config.in_channels
lowerCamelCase_ = randn_tensor(
shape=(batch_size, latent_channels, latent_size, latent_size) , generator=A_ , device=self.device , dtype=self.transformer.dtype , )
lowerCamelCase_ = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents
lowerCamelCase_ = torch.tensor(A_ , device=self.device ).reshape(-1 )
lowerCamelCase_ = torch.tensor([1000] * batch_size , device=self.device )
lowerCamelCase_ = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels
# set step values
self.scheduler.set_timesteps(A_ )
for t in self.progress_bar(self.scheduler.timesteps ):
if guidance_scale > 1:
lowerCamelCase_ = latent_model_input[: len(A_ ) // 2]
lowerCamelCase_ = torch.cat([half, half] , dim=0 )
lowerCamelCase_ = self.scheduler.scale_model_input(A_ , A_ )
lowerCamelCase_ = t
if not torch.is_tensor(A_ ):
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
# This would be a good case for the `match` statement (Python 3.10+)
lowerCamelCase_ = latent_model_input.device.type == 'mps'
if isinstance(A_ , A_ ):
lowerCamelCase_ = torch.floataa if is_mps else torch.floataa
else:
lowerCamelCase_ = torch.intaa if is_mps else torch.intaa
lowerCamelCase_ = torch.tensor([timesteps] , dtype=A_ , device=latent_model_input.device )
elif len(timesteps.shape ) == 0:
lowerCamelCase_ = timesteps[None].to(latent_model_input.device )
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
lowerCamelCase_ = timesteps.expand(latent_model_input.shape[0] )
# predict noise model_output
lowerCamelCase_ = self.transformer(
A_ , timestep=A_ , class_labels=A_ ).sample
# perform guidance
if guidance_scale > 1:
lowerCamelCase_ , lowerCamelCase_ = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:]
lowerCamelCase_ , lowerCamelCase_ = torch.split(A_ , len(A_ ) // 2 , dim=0 )
lowerCamelCase_ = uncond_eps + guidance_scale * (cond_eps - uncond_eps)
lowerCamelCase_ = torch.cat([half_eps, half_eps] , dim=0 )
lowerCamelCase_ = torch.cat([eps, rest] , dim=1 )
# learned sigma
if self.transformer.config.out_channels // 2 == latent_channels:
lowerCamelCase_ , lowerCamelCase_ = torch.split(A_ , A_ , dim=1 )
else:
lowerCamelCase_ = noise_pred
# compute previous image: x_t -> x_t-1
lowerCamelCase_ = self.scheduler.step(A_ , A_ , A_ ).prev_sample
if guidance_scale > 1:
lowerCamelCase_ , lowerCamelCase_ = latent_model_input.chunk(2 , dim=0 )
else:
lowerCamelCase_ = latent_model_input
lowerCamelCase_ = 1 / self.vae.config.scaling_factor * latents
lowerCamelCase_ = self.vae.decode(A_ ).sample
lowerCamelCase_ = (samples / 2 + 0.5).clamp(0 , 1 )
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
lowerCamelCase_ = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if output_type == "pil":
lowerCamelCase_ = self.numpy_to_pil(A_ )
if not return_dict:
return (samples,)
return ImagePipelineOutput(images=A_ )
| 204
| 1
|
import argparse
from argparse import Namespace
import torch
from torch import nn
from transformers import XGLMConfig, XGLMForCausalLM
def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ):
__lowerCamelCase : Optional[int] = [
'decoder.version',
'decoder.output_projection.weight',
'_float_tensor',
'decoder.embed_positions._float_tensor',
]
for k in ignore_keys:
state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ):
__lowerCamelCase , __lowerCamelCase : Optional[Any] = emb.weight.shape
__lowerCamelCase : int = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase : Optional[int] = emb.weight.data
return lin_layer
def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ):
__lowerCamelCase : Union[str, Any] = torch.load(SCREAMING_SNAKE_CASE__ , map_location='cpu' )
__lowerCamelCase : Any = Namespace(**checkpoint['cfg']['model'] )
__lowerCamelCase : Dict = checkpoint['model']
remove_ignore_keys_(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase : str = state_dict['decoder.embed_tokens.weight'].shape[0]
__lowerCamelCase : int = {key.replace('decoder' , 'model' ): val for key, val in state_dict.items()}
__lowerCamelCase : Any = XGLMConfig(
vocab_size=SCREAMING_SNAKE_CASE__ , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='gelu' , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , )
__lowerCamelCase : List[Any] = XGLMForCausalLM(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase : int = model.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ )
print(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase : List[str] = make_linear_from_emb(model.model.embed_tokens )
return model
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.')
parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
lowercase_ = parser.parse_args()
lowercase_ = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path)
model.save_pretrained(args.pytorch_dump_folder_path)
| 194
|
import json
import os
import tempfile
import datasets
from utils import generate_example_dataset, get_duration
lowercase_ = 5_0_0_0_0
lowercase_ = 5_0_0_0
lowercase_ ,lowercase_ = os.path.split(__file__)
lowercase_ = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json'))
@get_duration
def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
for i in range(SCREAMING_SNAKE_CASE__ ):
__lowerCamelCase : Tuple = dataset[i]
@get_duration
def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
for i in range(0 , len(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ):
__lowerCamelCase : Optional[Any] = dataset[i : i + batch_size]
@get_duration
def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
with dataset.formatted_as(type=SCREAMING_SNAKE_CASE__ ):
for i in range(SCREAMING_SNAKE_CASE__ ):
__lowerCamelCase : str = dataset[i]
@get_duration
def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
with dataset.formatted_as(type=SCREAMING_SNAKE_CASE__ ):
for i in range(0 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
__lowerCamelCase : int = dataset[i : i + batch_size]
def UpperCamelCase__ ( ):
__lowerCamelCase : Union[str, Any] = {'num examples': SPEED_TEST_N_EXAMPLES}
__lowerCamelCase : Optional[Any] = [
(read, {'length': SMALL_TEST}),
(read, {'length': SPEED_TEST_N_EXAMPLES}),
(read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 10}),
(read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 100}),
(read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1_000}),
(read_formatted, {'type': 'numpy', 'length': SMALL_TEST}),
(read_formatted, {'type': 'pandas', 'length': SMALL_TEST}),
(read_formatted, {'type': 'torch', 'length': SMALL_TEST}),
(read_formatted, {'type': 'tensorflow', 'length': SMALL_TEST}),
(read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 10}),
(read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 1_000}),
]
__lowerCamelCase : Any = [
(read, {'length': SMALL_TEST}),
(read, {'length': SPEED_TEST_N_EXAMPLES}),
(read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 10}),
(read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 100}),
(read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1_000}),
(read_formatted, {'type': 'numpy', 'length': SMALL_TEST}),
(read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 10}),
(read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 1_000}),
]
with tempfile.TemporaryDirectory() as tmp_dir:
print('generating dataset' )
__lowerCamelCase : Optional[int] = datasets.Features(
{'list': datasets.Sequence(datasets.Value('float32' ) ), 'numbers': datasets.Value('float32' )} )
__lowerCamelCase : str = generate_example_dataset(
os.path.join(SCREAMING_SNAKE_CASE__ , 'dataset.arrow' ) , SCREAMING_SNAKE_CASE__ , num_examples=SCREAMING_SNAKE_CASE__ , seq_shapes={'list': (100,)} , )
print('first set of iterations' )
for func, kwargs in functions:
print(func.__name__ , str(SCREAMING_SNAKE_CASE__ ) )
__lowerCamelCase : Optional[int] = func(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
print('shuffling dataset' )
__lowerCamelCase : str = dataset.shuffle()
print('Second set of iterations (after shuffling' )
for func, kwargs in functions_shuffled:
print('shuffled ' , func.__name__ , str(SCREAMING_SNAKE_CASE__ ) )
__lowerCamelCase : int = func(
SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
with open(SCREAMING_SNAKE_CASE__ , 'wb' ) as f:
f.write(json.dumps(SCREAMING_SNAKE_CASE__ ).encode('utf-8' ) )
if __name__ == "__main__": # useful to run the profiler
benchmark_iterating()
| 194
| 1
|
"""simple docstring"""
from __future__ import annotations
from collections.abc import Callable
def lowercase ( _snake_case : Callable[[int | float], int | float] , _snake_case : int | float , _snake_case : int | float , _snake_case : int = 100 , ) ->float:
"""simple docstring"""
__snake_case : Tuple = x_start
__snake_case : List[Any] = fnc(_snake_case )
__snake_case : Tuple = 0.0
for _ in range(_snake_case ):
# Approximates small segments of curve as linear and solve
# for trapezoidal area
__snake_case : Any = (x_end - x_start) / steps + xa
__snake_case : int = fnc(_snake_case )
area += abs(fxa + fxa ) * (xa - xa) / 2
# Increment step
__snake_case : Any = xa
__snake_case : str = fxa
return area
if __name__ == "__main__":
def lowercase ( _snake_case : Optional[int] ) ->int:
"""simple docstring"""
return x**3 + x**2
print("""f(x) = x^3 + x^2""")
print("""The area between the curve, x = -5, x = 5 and the x axis is:""")
SCREAMING_SNAKE_CASE : Tuple = 10
while i <= 10_0000:
print(F'with {i} steps: {trapezoidal_area(f, -5, 5, i)}')
i *= 10
| 102
|
"""simple docstring"""
def lowercase_ ( _snake_case ,_snake_case ):
return 1 if input_a == input_a else 0
def lowercase_ ( ):
assert xnor_gate(0 ,0 ) == 1
assert xnor_gate(0 ,1 ) == 0
assert xnor_gate(1 ,0 ) == 0
assert xnor_gate(1 ,1 ) == 1
if __name__ == "__main__":
print(xnor_gate(0, 0))
print(xnor_gate(0, 1))
print(xnor_gate(1, 0))
print(xnor_gate(1, 1))
| 25
| 0
|
"""simple docstring"""
import gc
import unittest
import numpy as np
import torch
from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel
from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS,
CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class __lowerCAmelCase ( __snake_case , unittest.TestCase ):
lowercase = DiTPipeline
lowercase = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS
lowercase = PipelineTesterMixin.required_optional_params - {
"latents",
"num_images_per_prompt",
"callback",
"callback_steps",
}
lowercase = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS
lowercase = False
def UpperCAmelCase ( self ):
'''simple docstring'''
torch.manual_seed(0 )
__UpperCamelCase = TransformeraDModel(
sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=lowerCamelCase_ , activation_fn='gelu-approximate' , num_embeds_ada_norm=1000 , norm_type='ada_norm_zero' , norm_elementwise_affine=lowerCamelCase_ , )
__UpperCamelCase = AutoencoderKL()
__UpperCamelCase = DDIMScheduler()
__UpperCamelCase = {"""transformer""": transformer.eval(), """vae""": vae.eval(), """scheduler""": scheduler}
return components
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=0 ):
'''simple docstring'''
if str(lowerCamelCase_ ).startswith('mps' ):
__UpperCamelCase = torch.manual_seed(lowerCamelCase_ )
else:
__UpperCamelCase = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ )
__UpperCamelCase = {
"""class_labels""": [1],
"""generator""": generator,
"""num_inference_steps""": 2,
"""output_type""": """numpy""",
}
return inputs
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = """cpu"""
__UpperCamelCase = self.get_dummy_components()
__UpperCamelCase = self.pipeline_class(**lowerCamelCase_ )
pipe.to(lowerCamelCase_ )
pipe.set_progress_bar_config(disable=lowerCamelCase_ )
__UpperCamelCase = self.get_dummy_inputs(lowerCamelCase_ )
__UpperCamelCase = pipe(**lowerCamelCase_ ).images
__UpperCamelCase = image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 16, 16, 3) )
__UpperCamelCase = np.array([0.2_9_4_6, 0.6_6_0_1, 0.4_3_2_9, 0.3_2_9_6, 0.4_1_4_4, 0.5_3_1_9, 0.7_2_7_3, 0.5_0_1_3, 0.4_4_5_7] )
__UpperCamelCase = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(lowerCamelCase_ , 1E-3 )
def UpperCAmelCase ( self ):
'''simple docstring'''
self._test_inference_batch_single_identical(relax_max_difference=lowerCamelCase_ , expected_max_diff=1E-3 )
@unittest.skipIf(
torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , )
def UpperCAmelCase ( self ):
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
@require_torch_gpu
@slow
class __lowerCAmelCase ( unittest.TestCase ):
def UpperCAmelCase ( self ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = torch.manual_seed(0 )
__UpperCamelCase = DiTPipeline.from_pretrained('facebook/DiT-XL-2-256' )
pipe.to('cuda' )
__UpperCamelCase = ["""vase""", """umbrella""", """white shark""", """white wolf"""]
__UpperCamelCase = pipe.get_label_ids(lowerCamelCase_ )
__UpperCamelCase = pipe(lowerCamelCase_ , generator=lowerCamelCase_ , num_inference_steps=40 , output_type='np' ).images
for word, image in zip(lowerCamelCase_ , lowerCamelCase_ ):
__UpperCamelCase = load_numpy(
F'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy' )
assert np.abs((expected_image - image).max() ) < 1E-2
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = DiTPipeline.from_pretrained('facebook/DiT-XL-2-512' )
__UpperCamelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.to('cuda' )
__UpperCamelCase = ["""vase""", """umbrella"""]
__UpperCamelCase = pipe.get_label_ids(lowerCamelCase_ )
__UpperCamelCase = torch.manual_seed(0 )
__UpperCamelCase = pipe(lowerCamelCase_ , generator=lowerCamelCase_ , num_inference_steps=25 , output_type='np' ).images
for word, image in zip(lowerCamelCase_ , lowerCamelCase_ ):
__UpperCamelCase = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
F'/dit/{word}_512.npy' )
assert np.abs((expected_image - image).max() ) < 1E-1
| 365
|
"""simple docstring"""
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase : str = logging.get_logger(__name__)
UpperCamelCase : Dict = {
"microsoft/wavlm-base": "https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json",
# See all WavLM models at https://huggingface.co/models?filter=wavlm
}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
lowercase = "wavlm"
def __init__( self , __UpperCAmelCase=32 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1E-5 , __UpperCAmelCase="group" , __UpperCAmelCase="gelu" , __UpperCAmelCase=(512, 512, 512, 512, 512, 512, 512) , __UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , __UpperCAmelCase=(10, 3, 3, 3, 3, 2, 2) , __UpperCAmelCase=False , __UpperCAmelCase=128 , __UpperCAmelCase=16 , __UpperCAmelCase=320 , __UpperCAmelCase=800 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0.0_5 , __UpperCAmelCase=10 , __UpperCAmelCase=2 , __UpperCAmelCase=0.0 , __UpperCAmelCase=10 , __UpperCAmelCase=320 , __UpperCAmelCase=2 , __UpperCAmelCase=0.1 , __UpperCAmelCase=100 , __UpperCAmelCase=256 , __UpperCAmelCase=256 , __UpperCAmelCase=0.1 , __UpperCAmelCase="mean" , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=256 , __UpperCAmelCase=(512, 512, 512, 512, 1500) , __UpperCAmelCase=(5, 3, 3, 1, 1) , __UpperCAmelCase=(1, 2, 3, 1, 1) , __UpperCAmelCase=512 , __UpperCAmelCase=80 , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=False , __UpperCAmelCase=3 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=None , **__UpperCAmelCase , ):
'''simple docstring'''
super().__init__(**__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase )
__UpperCamelCase = hidden_size
__UpperCamelCase = feat_extract_norm
__UpperCamelCase = feat_extract_activation
__UpperCamelCase = list(__UpperCAmelCase )
__UpperCamelCase = list(__UpperCAmelCase )
__UpperCamelCase = list(__UpperCAmelCase )
__UpperCamelCase = conv_bias
__UpperCamelCase = num_buckets
__UpperCamelCase = max_bucket_distance
__UpperCamelCase = num_conv_pos_embeddings
__UpperCamelCase = num_conv_pos_embedding_groups
__UpperCamelCase = len(self.conv_dim )
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = intermediate_size
__UpperCamelCase = hidden_act
__UpperCamelCase = num_attention_heads
__UpperCamelCase = hidden_dropout
__UpperCamelCase = attention_dropout
__UpperCamelCase = activation_dropout
__UpperCamelCase = feat_proj_dropout
__UpperCamelCase = final_dropout
__UpperCamelCase = layerdrop
__UpperCamelCase = layer_norm_eps
__UpperCamelCase = initializer_range
__UpperCamelCase = num_ctc_classes
__UpperCamelCase = vocab_size
__UpperCamelCase = do_stable_layer_norm
__UpperCamelCase = use_weighted_layer_sum
__UpperCamelCase = classifier_proj_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =='
' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ='
F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'
F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__UpperCamelCase = apply_spec_augment
__UpperCamelCase = mask_time_prob
__UpperCamelCase = mask_time_length
__UpperCamelCase = mask_time_min_masks
__UpperCamelCase = mask_feature_prob
__UpperCamelCase = mask_feature_length
# parameters for pretraining with codevector quantized representations
__UpperCamelCase = num_codevectors_per_group
__UpperCamelCase = num_codevector_groups
__UpperCamelCase = contrastive_logits_temperature
__UpperCamelCase = num_negatives
__UpperCamelCase = codevector_dim
__UpperCamelCase = proj_codevector_dim
__UpperCamelCase = diversity_loss_weight
# ctc loss
__UpperCamelCase = ctc_loss_reduction
__UpperCamelCase = ctc_zero_infinity
# adapter
__UpperCamelCase = add_adapter
__UpperCamelCase = adapter_kernel_size
__UpperCamelCase = adapter_stride
__UpperCamelCase = num_adapter_layers
__UpperCamelCase = output_hidden_size or hidden_size
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
__UpperCamelCase = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
__UpperCamelCase = list(__UpperCAmelCase )
__UpperCamelCase = list(__UpperCAmelCase )
__UpperCamelCase = list(__UpperCAmelCase )
__UpperCamelCase = xvector_output_dim
@property
def UpperCAmelCase ( self ):
'''simple docstring'''
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 263
| 0
|
'''simple docstring'''
import os
from datetime import datetime as dt
from github import Github
__lowerCAmelCase = [
'good first issue',
'good second issue',
'good difficult issue',
'enhancement',
'new pipeline/model',
'new scheduler',
'wip',
]
def __SCREAMING_SNAKE_CASE ( ):
_snake_case = Github(os.environ["""GITHUB_TOKEN"""] )
_snake_case = g.get_repo("""huggingface/diffusers""" )
_snake_case = repo.get_issues(state="""open""" )
for issue in open_issues:
_snake_case = sorted(issue.get_comments() , key=lambda _SCREAMING_SNAKE_CASE : i.created_at , reverse=_SCREAMING_SNAKE_CASE )
_snake_case = comments[0] if len(_SCREAMING_SNAKE_CASE ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Closes the issue after 7 days of inactivity since the Stalebot notification.
issue.edit(state="""closed""" )
elif (
"stale" in issue.get_labels()
and last_comment is not None
and last_comment.user.login != "github-actions[bot]"
):
# Opens the issue if someone other than Stalebot commented.
issue.edit(state="""open""" )
issue.remove_from_labels("""stale""" )
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Post a Stalebot notification after 23 days of inactivity.
issue.create_comment(
"""This issue has been automatically marked as stale because it has not had """
"""recent activity. If you think this still needs to be addressed """
"""please comment on this thread.\n\nPlease note that issues that do not follow the """
"""[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) """
"""are likely to be ignored.""" )
issue.add_to_labels("""stale""" )
if __name__ == "__main__":
main()
| 341
|
'''simple docstring'''
import os
from typing import Dict, List, Tuple, TypeVar, Union
__lowerCAmelCase = TypeVar('T')
__lowerCAmelCase = Union[List[T], Tuple[T, ...]]
__lowerCAmelCase = Union[T, List[T], Dict[str, T]]
__lowerCAmelCase = Union[str, bytes, os.PathLike]
| 341
| 1
|
"""simple docstring"""
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from ...utils.dataclasses import (
ComputeEnvironment,
DistributedType,
DynamoBackend,
PrecisionType,
SageMakerDistributedType,
)
from ..menu import BulletMenu
UpperCAmelCase_ : str = [
"""EAGER""",
"""AOT_EAGER""",
"""INDUCTOR""",
"""NVFUSER""",
"""AOT_NVFUSER""",
"""AOT_CUDAGRAPHS""",
"""OFI""",
"""FX2TRT""",
"""ONNXRT""",
"""IPEX""",
]
def _A (__a , __a=None , __a=None , __a=None ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Dict = True
while ask_again:
SCREAMING_SNAKE_CASE_ : Any = input(UpperCamelCase__ )
try:
if default is not None and len(UpperCamelCase__ ) == 0:
return default
return convert_value(UpperCamelCase__ ) if convert_value is not None else result
except Exception:
if error_message is not None:
print(UpperCamelCase__ )
def _A (__a , __a=[] , __a=None , __a=0 ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : List[Any] = BulletMenu(UpperCamelCase__ , UpperCamelCase__ )
SCREAMING_SNAKE_CASE_ : Optional[int] = menu.run(default_choice=UpperCamelCase__ )
return convert_value(UpperCamelCase__ ) if convert_value is not None else result
def _A (__a ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Any = int(UpperCamelCase__ )
return ComputeEnvironment(['''LOCAL_MACHINE''', '''AMAZON_SAGEMAKER'''][value] )
def _A (__a ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[Any] = int(UpperCamelCase__ )
return DistributedType(['''NO''', '''MULTI_CPU''', '''MULTI_XPU''', '''MULTI_GPU''', '''MULTI_NPU''', '''TPU'''][value] )
def _A (__a ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Any = int(UpperCamelCase__ )
return DynamoBackend(DYNAMO_BACKENDS[value] ).value
def _A (__a ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Any = int(UpperCamelCase__ )
return PrecisionType(['''no''', '''fp16''', '''bf16''', '''fp8'''][value] )
def _A (__a ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[int] = int(UpperCamelCase__ )
return SageMakerDistributedType(['''NO''', '''DATA_PARALLEL''', '''MODEL_PARALLEL'''][value] )
def _A (__a ) -> List[Any]:
"""simple docstring"""
return {"yes": True, "no": False}[value.lower()]
class lowerCAmelCase__ ( argparse.RawDescriptionHelpFormatter ):
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( self : Dict , lowercase_ : Union[str, Any] , lowercase_ : List[Any] , lowercase_ : Union[str, Any] , lowercase_ : Optional[int]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[Any] = super()._format_usage(_a , _a , _a , _a)
SCREAMING_SNAKE_CASE_ : List[Any] = usage.replace('''<command> [<args>] ''' , '''''')
return usage
| 363
|
"""simple docstring"""
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import (
VersatileDiffusionDualGuidedPipeline,
VersatileDiffusionImageVariationPipeline,
VersatileDiffusionPipeline,
VersatileDiffusionTextToImagePipeline,
)
else:
from .modeling_text_unet import UNetFlatConditionModel
from .pipeline_versatile_diffusion import VersatileDiffusionPipeline
from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline
from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline
from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
| 318
| 0
|
"""simple docstring"""
import json
import os
import unittest
from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import (
VOCAB_FILES_NAMES,
GPTSanJapaneseTokenizer,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class A_ (lowercase__ ,unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : str = GPTSanJapaneseTokenizer
SCREAMING_SNAKE_CASE__ : str = False
SCREAMING_SNAKE_CASE__ : int = {"""do_clean_text""": False, """add_prefix_space""": False}
def UpperCamelCase__ ( self ):
"""simple docstring"""
super().setUp()
# fmt: off
UpperCAmelCase_ : Optional[int] = ["こん", "こんに", "にちは", "ばんは", "世界,㔺界", "、", "。", "<BR>", "<SP>", "<TAB>", "<URL>", "<EMAIL>", "<TEL>", "<DATE>", "<PRICE>", "<BLOCK>", "<KIGOU>", "<U2000U2BFF>", "<|emoji1|>", "<unk>", "<|bagoftoken|>", "<|endoftext|>"]
# fmt: on
UpperCAmelCase_ : List[Any] = {"emoji": {"\ud83d\ude00": "<|emoji1|>"}, "emoji_inv": {"<|emoji1|>": "\ud83d\ude00"}} # 😀
UpperCAmelCase_ : Dict = {"unk_token": "<unk>"}
UpperCAmelCase_ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
UpperCAmelCase_ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["emoji_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) )
with open(self.emoji_file , "w" ) as emoji_writer:
emoji_writer.write(json.dumps(lowercase_ ) )
def UpperCamelCase__ ( self , **lowercase_ ):
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **lowercase_ )
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Any = "こんにちは、世界。 \nこんばんは、㔺界。😀"
UpperCAmelCase_ : Union[str, Any] = "こんにちは、世界。 \nこんばんは、世界。😀"
return input_text, output_text
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.get_input_output_texts(lowercase_ )
UpperCAmelCase_ : Optional[int] = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ )
UpperCAmelCase_ : Optional[int] = tokenizer.decode(lowercase_ , clean_up_tokenization_spaces=lowercase_ )
return text, ids
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass # TODO add if relevant
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass # TODO add if relevant
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass # TODO add if relevant
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : str = self.get_tokenizer()
# Testing tokenization
UpperCAmelCase_ : Tuple = "こんにちは、世界。 こんばんは、㔺界。"
UpperCAmelCase_ : Dict = ["こん", "にちは", "、", "世界", "。", "<SP>", "こん", "ばんは", "、", "㔺界", "。"]
UpperCAmelCase_ : int = tokenizer.tokenize(lowercase_ )
self.assertListEqual(lowercase_ , lowercase_ )
# Testing conversion to ids without special tokens
UpperCAmelCase_ : int = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6]
UpperCAmelCase_ : Optional[Any] = tokenizer.convert_tokens_to_ids(lowercase_ )
self.assertListEqual(lowercase_ , lowercase_ )
# Testing conversion to ids with special tokens
UpperCAmelCase_ : Tuple = tokens + [tokenizer.unk_token]
UpperCAmelCase_ : Optional[int] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19]
UpperCAmelCase_ : int = tokenizer.convert_tokens_to_ids(lowercase_ )
self.assertListEqual(lowercase_ , lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = self.get_tokenizer()
# Testing tokenization
UpperCAmelCase_ : Optional[int] = "こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。"
UpperCAmelCase_ : Optional[int] = "こんにちは、、、、世界。こんばんは、、、、世界。"
UpperCAmelCase_ : Union[str, Any] = tokenizer.encode(lowercase_ )
UpperCAmelCase_ : Union[str, Any] = tokenizer.decode(lowercase_ )
self.assertEqual(lowercase_ , lowercase_ )
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" )
# Testing tokenization
UpperCAmelCase_ : List[Any] = "こんにちは、世界。"
UpperCAmelCase_ : List[Any] = "こんばんは、㔺界。😀"
UpperCAmelCase_ : List[Any] = "こんにちは、世界。こんばんは、世界。😀"
UpperCAmelCase_ : Optional[Any] = tokenizer.encode(prefix_text + input_text )
UpperCAmelCase_ : List[str] = tokenizer.encode("" , prefix_text=prefix_text + input_text )
UpperCAmelCase_ : str = tokenizer.encode(lowercase_ , prefix_text=lowercase_ )
UpperCAmelCase_ : List[Any] = tokenizer.decode(lowercase_ )
UpperCAmelCase_ : str = tokenizer.decode(lowercase_ )
UpperCAmelCase_ : List[str] = tokenizer.decode(lowercase_ )
self.assertEqual(lowercase_ , lowercase_ )
self.assertEqual(lowercase_ , lowercase_ )
self.assertEqual(lowercase_ , lowercase_ )
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Dict = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" )
# Testing tokenization
UpperCAmelCase_ : Union[str, Any] = "こんにちは、世界。"
UpperCAmelCase_ : Union[str, Any] = "こんばんは、㔺界。😀"
UpperCAmelCase_ : List[Any] = len(tokenizer.encode(lowercase_ ) ) - 2
UpperCAmelCase_ : Dict = len(tokenizer.encode(lowercase_ ) ) - 2
UpperCAmelCase_ : Union[str, Any] = [1] + [0] * (len_prefix + len_text + 1)
UpperCAmelCase_ : Any = [1] * (len_prefix + len_text + 1) + [0]
UpperCAmelCase_ : List[Any] = [1] + [1] * (len_prefix) + [0] * (len_text + 1)
UpperCAmelCase_ : Dict = tokenizer(prefix_text + input_text ).token_type_ids
UpperCAmelCase_ : Optional[Any] = tokenizer("" , prefix_text=prefix_text + input_text ).token_type_ids
UpperCAmelCase_ : str = tokenizer(lowercase_ , prefix_text=lowercase_ ).token_type_ids
self.assertListEqual(lowercase_ , lowercase_ )
self.assertListEqual(lowercase_ , lowercase_ )
self.assertListEqual(lowercase_ , lowercase_ )
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : List[str] = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" )
UpperCAmelCase_ : str = tokenizer.encode("あンいワ" )
UpperCAmelCase_ : List[Any] = tokenizer.encode("" , prefix_text="あンいワ" )
UpperCAmelCase_ : str = tokenizer.encode("いワ" , prefix_text="あン" )
self.assertEqual(tokenizer.decode(lowercase_ ) , tokenizer.decode(lowercase_ ) )
self.assertEqual(tokenizer.decode(lowercase_ ) , tokenizer.decode(lowercase_ ) )
self.assertNotEqual(lowercase_ , lowercase_ )
self.assertNotEqual(lowercase_ , lowercase_ )
self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token
self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" )
UpperCAmelCase_ : Tuple = [["武田信玄", "は、"], ["織田信長", "の配下の、"]]
UpperCAmelCase_ : Dict = tokenizer(lowercase_ , padding=lowercase_ )
UpperCAmelCase_ : int = tokenizer.batch_encode_plus(lowercase_ , padding=lowercase_ )
# fmt: off
UpperCAmelCase_ : str = [[3_5993, 8640, 2_5948, 3_5998, 3_0647, 3_5675, 3_5999, 3_5999], [3_5993, 1_0382, 9868, 3_5998, 3_0646, 9459, 3_0646, 3_5675]]
UpperCAmelCase_ : Optional[int] = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]]
UpperCAmelCase_ : int = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]]
# fmt: on
self.assertListEqual(x_token.input_ids , lowercase_ )
self.assertListEqual(x_token.token_type_ids , lowercase_ )
self.assertListEqual(x_token.attention_mask , lowercase_ )
self.assertListEqual(x_token_a.input_ids , lowercase_ )
self.assertListEqual(x_token_a.token_type_ids , lowercase_ )
self.assertListEqual(x_token_a.attention_mask , lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
# Intentionally convert some words to accommodate character fluctuations unique to Japanese
pass
def UpperCamelCase__ ( self ):
"""simple docstring"""
# tokenizer has no padding token
pass
| 61
|
"""simple docstring"""
def __UpperCAmelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int:
'''simple docstring'''
while a != 0:
__snake_case , __snake_case : Optional[Any] = b % a, a
return b
def __UpperCAmelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int:
'''simple docstring'''
if gcd(UpperCAmelCase_ , UpperCAmelCase_ ) != 1:
__snake_case : Optional[Any] = F"mod inverse of {a!r} and {m!r} does not exist"
raise ValueError(UpperCAmelCase_ )
__snake_case , __snake_case , __snake_case : Optional[int] = 1, 0, a
__snake_case , __snake_case , __snake_case : int = 0, 1, m
while va != 0:
__snake_case : Union[str, Any] = ua // va
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Union[str, Any] = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va
return ua % m
| 172
| 0
|
import pickle
import unittest
import torch
from accelerate import Accelerator
from accelerate.state import AcceleratorState
from accelerate.test_utils import require_cpu
@require_cpu
class _lowerCAmelCase( unittest.TestCase ):
"""simple docstring"""
def _a ( self ):
UpperCamelCase_: Dict = torch.nn.Linear(1_0 , 1_0 )
UpperCamelCase_: Optional[Any] = torch.optim.SGD(model.parameters() , 0.1 )
UpperCamelCase_: Tuple = Accelerator()
UpperCamelCase_: Dict = accelerator.prepare(_A )
try:
pickle.loads(pickle.dumps(_A ) )
except Exception as e:
self.fail(f'''Accelerated optimizer pickling failed with {e}''' )
AcceleratorState._reset_state()
| 350
|
import numpy as np
from sklearn.datasets import fetch_california_housing
from sklearn.metrics import mean_absolute_error, mean_squared_error
from sklearn.model_selection import train_test_split
from xgboost import XGBRegressor
def snake_case (UpperCAmelCase__ ) -> tuple:
return (data["data"], data["target"])
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> np.ndarray:
UpperCamelCase_: Dict = XGBRegressor(verbosity=0 , random_state=4_2 )
xgb.fit(UpperCAmelCase__ , UpperCAmelCase__ )
# Predict target for test data
UpperCamelCase_: int = xgb.predict(UpperCAmelCase__ )
UpperCamelCase_: Any = predictions.reshape(len(UpperCAmelCase__ ) , 1 )
return predictions
def snake_case () -> None:
UpperCamelCase_: Union[str, Any] = fetch_california_housing()
UpperCamelCase_ ,UpperCamelCase_: Tuple = data_handling(UpperCAmelCase__ )
UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: Optional[Any] = train_test_split(
UpperCAmelCase__ , UpperCAmelCase__ , test_size=0.25 , random_state=1 )
UpperCamelCase_: Union[str, Any] = xgboost(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
# Error printing
print(F'''Mean Absolute Error : {mean_absolute_error(UpperCAmelCase__ , UpperCAmelCase__ )}''' )
print(F'''Mean Square Error : {mean_squared_error(UpperCAmelCase__ , UpperCAmelCase__ )}''' )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 292
| 0
|
"""simple docstring"""
import sys
import turtle
def A__ ( UpperCamelCase , UpperCamelCase ):
return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2
def A__ ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , ):
my_pen.up()
my_pen.goto(vertexa[0] , vertexa[1] )
my_pen.down()
my_pen.goto(vertexa[0] , vertexa[1] )
my_pen.goto(vertexa[0] , vertexa[1] )
my_pen.goto(vertexa[0] , vertexa[1] )
if depth == 0:
return
triangle(_snake_case , get_mid(_snake_case , _snake_case ) , get_mid(_snake_case , _snake_case ) , depth - 1 )
triangle(_snake_case , get_mid(_snake_case , _snake_case ) , get_mid(_snake_case , _snake_case ) , depth - 1 )
triangle(_snake_case , get_mid(_snake_case , _snake_case ) , get_mid(_snake_case , _snake_case ) , depth - 1 )
if __name__ == "__main__":
if len(sys.argv) != 2:
raise ValueError(
'Correct format for using this script: '
'python fractals.py <int:depth_for_fractal>'
)
_snake_case : List[Any] = turtle.Turtle()
my_pen.ht()
my_pen.speed(5)
my_pen.pencolor('red')
_snake_case : Union[str, Any] = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle
triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
| 292
|
"""simple docstring"""
import logging
import os
from logging import (
CRITICAL, # NOQA
DEBUG, # NOQA
ERROR, # NOQA
FATAL, # NOQA
INFO, # NOQA
NOTSET, # NOQA
WARN, # NOQA
WARNING, # NOQA
)
from typing import Optional
from tqdm import auto as tqdm_lib
UpperCAmelCase__ : Optional[int] = {
'debug': logging.DEBUG,
'info': logging.INFO,
'warning': logging.WARNING,
'error': logging.ERROR,
'critical': logging.CRITICAL,
}
UpperCAmelCase__ : List[Any] = logging.WARNING
def lowercase_ ( ):
SCREAMING_SNAKE_CASE__ : Optional[Any] = os.getenv("""DATASETS_VERBOSITY""" ,_snake_case )
if env_level_str:
if env_level_str in log_levels:
return log_levels[env_level_str]
else:
logging.getLogger().warning(
f'''Unknown option DATASETS_VERBOSITY={env_level_str}, '''
f'''has to be one of: { ', '.join(log_levels.keys() ) }''' )
return _default_log_level
def lowercase_ ( ):
return __name__.split(""".""" )[0]
def lowercase_ ( ):
return logging.getLogger(_get_library_name() )
def lowercase_ ( ):
# Apply our default configuration to the library root logger.
SCREAMING_SNAKE_CASE__ : Optional[Any] = _get_library_root_logger()
library_root_logger.setLevel(_get_default_logging_level() )
def lowercase_ ( ):
SCREAMING_SNAKE_CASE__ : Optional[Any] = _get_library_root_logger()
library_root_logger.setLevel(logging.NOTSET )
def lowercase_ ( _snake_case = None ):
if name is None:
SCREAMING_SNAKE_CASE__ : Optional[Any] = _get_library_name()
return logging.getLogger(_snake_case )
def lowercase_ ( ):
return _get_library_root_logger().getEffectiveLevel()
def lowercase_ ( _snake_case ):
_get_library_root_logger().setLevel(_snake_case )
def lowercase_ ( ):
return set_verbosity(_snake_case )
def lowercase_ ( ):
return set_verbosity(_snake_case )
def lowercase_ ( ):
return set_verbosity(_snake_case )
def lowercase_ ( ):
return set_verbosity(_snake_case )
def lowercase_ ( ):
SCREAMING_SNAKE_CASE__ : Tuple = False
def lowercase_ ( ):
SCREAMING_SNAKE_CASE__ : str = True
# Configure the library root logger at the module level (singleton-like)
_configure_library_root_logger()
class lowerCAmelCase_ :
"""simple docstring"""
def __init__(self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> int: # pylint: disable=unused-argument
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[str] = args[0] if args else None
def __iter__(self ) -> int:
"""simple docstring"""
return iter(self._iterator )
def __getattr__(self , SCREAMING_SNAKE_CASE__ ) -> int:
"""simple docstring"""
def empty_fn(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): # pylint: disable=unused-argument
return
return empty_fn
def __enter__(self ) -> Dict:
"""simple docstring"""
return self
def __exit__(self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str:
"""simple docstring"""
return
UpperCAmelCase__ : str = True
class lowerCAmelCase_ :
"""simple docstring"""
def __call__(self , *SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False , **SCREAMING_SNAKE_CASE__ ) -> List[Any]:
"""simple docstring"""
if _tqdm_active and not disable:
return tqdm_lib.tqdm(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
else:
return EmptyTqdm(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
def __magic_name__ (self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[Any] = None
if _tqdm_active:
return tqdm_lib.tqdm.set_lock(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
def __magic_name__ (self ) -> Optional[Any]:
"""simple docstring"""
if _tqdm_active:
return tqdm_lib.tqdm.get_lock()
UpperCAmelCase__ : Tuple = _tqdm_cls()
def lowercase_ ( ):
global _tqdm_active
return bool(_tqdm_active )
def lowercase_ ( ):
global _tqdm_active
SCREAMING_SNAKE_CASE__ : Union[str, Any] = True
def lowercase_ ( ):
global _tqdm_active
SCREAMING_SNAKE_CASE__ : str = False
| 25
| 0
|
"""simple docstring"""
from torch import nn
def __snake_case ( SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[str]:
'''simple docstring'''
if act_fn in ["swish", "silu"]:
return nn.SiLU()
elif act_fn == "mish":
return nn.Mish()
elif act_fn == "gelu":
return nn.GELU()
else:
raise ValueError(f'Unsupported activation function: {act_fn}' )
| 202
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_lowerCAmelCase : Union[str, Any] = {
"configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"],
"tokenization_roformer": ["RoFormerTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCAmelCase : Any = ["RoFormerTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCAmelCase : Any = [
"ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"RoFormerForCausalLM",
"RoFormerForMaskedLM",
"RoFormerForMultipleChoice",
"RoFormerForQuestionAnswering",
"RoFormerForSequenceClassification",
"RoFormerForTokenClassification",
"RoFormerLayer",
"RoFormerModel",
"RoFormerPreTrainedModel",
"load_tf_weights_in_roformer",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCAmelCase : Optional[int] = [
"TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFRoFormerForCausalLM",
"TFRoFormerForMaskedLM",
"TFRoFormerForMultipleChoice",
"TFRoFormerForQuestionAnswering",
"TFRoFormerForSequenceClassification",
"TFRoFormerForTokenClassification",
"TFRoFormerLayer",
"TFRoFormerModel",
"TFRoFormerPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCAmelCase : List[str] = [
"FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"FlaxRoFormerForMaskedLM",
"FlaxRoFormerForMultipleChoice",
"FlaxRoFormerForQuestionAnswering",
"FlaxRoFormerForSequenceClassification",
"FlaxRoFormerForTokenClassification",
"FlaxRoFormerModel",
"FlaxRoFormerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig
from .tokenization_roformer import RoFormerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_roformer_fast import RoFormerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roformer import (
ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
RoFormerForCausalLM,
RoFormerForMaskedLM,
RoFormerForMultipleChoice,
RoFormerForQuestionAnswering,
RoFormerForSequenceClassification,
RoFormerForTokenClassification,
RoFormerLayer,
RoFormerModel,
RoFormerPreTrainedModel,
load_tf_weights_in_roformer,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roformer import (
TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForMultipleChoice,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerLayer,
TFRoFormerModel,
TFRoFormerPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roformer import (
FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
FlaxRoFormerForMaskedLM,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerModel,
FlaxRoFormerPreTrainedModel,
)
else:
import sys
_lowerCAmelCase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 202
| 1
|
def lowercase_ (A : list[int] ):
snake_case__ : int = len(A )
for i in range(A ):
for j in range(i + 1 , A ):
if numbers[j] < numbers[i]:
snake_case__ , snake_case__ : Dict = numbers[j], numbers[i]
return numbers
if __name__ == "__main__":
a_ :List[Any] = input("Enter numbers separated by a comma:\n").strip()
a_ :Union[str, Any] = [int(item) for item in user_input.split(",")]
print(exchange_sort(unsorted))
| 277
|
from typing import Dict, List
from nltk.translate import gleu_score
import datasets
from datasets import MetricInfo
a_ :Any = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n"
a_ :List[str] = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n"
a_ :List[str] = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class snake_case__ ( datasets.Metric ):
"""simple docstring"""
def lowercase_ ( self : str ) ->MetricInfo:
return datasets.MetricInfo(
description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features(
{
'predictions': datasets.Sequence(datasets.Value('string', id='token' ), id='sequence' ),
'references': datasets.Sequence(
datasets.Sequence(datasets.Value('string', id='token' ), id='sequence' ), id='references' ),
} ), )
def lowercase_ ( self : str, _snake_case : List[List[List[str]]], _snake_case : List[List[str]], _snake_case : int = 1, _snake_case : int = 4, ) ->Dict[str, float]:
return {
"google_bleu": gleu_score.corpus_gleu(
list_of_references=_snake_case, hypotheses=_snake_case, min_len=_snake_case, max_len=_snake_case )
}
| 277
| 1
|
"""simple docstring"""
def lowerCamelCase_ (UpperCamelCase__ : int = 1 , UpperCamelCase__ : int = 1000 ):
_UpperCAmelCase : List[str] = 1
_UpperCAmelCase : Any = 0
for divide_by_number in range(UpperCamelCase__ , digit + 1 ):
_UpperCAmelCase : list[int] = []
_UpperCAmelCase : int = numerator
for _ in range(1 , digit + 1 ):
if now_divide in has_been_divided:
if longest_list_length < len(UpperCamelCase__ ):
_UpperCAmelCase : Optional[Any] = len(UpperCamelCase__ )
_UpperCAmelCase : int = divide_by_number
else:
has_been_divided.append(UpperCamelCase__ )
_UpperCAmelCase : Tuple = now_divide * 10 % divide_by_number
return the_digit
# Tests
if __name__ == "__main__":
import doctest
doctest.testmod()
| 68
|
"""simple docstring"""
import datasets
from .evaluate import evaluate
_lowerCAmelCase :int = '\\n@article{hendrycks2021cuad,\n title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},\n author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},\n journal={arXiv preprint arXiv:2103.06268},\n year={2021}\n}\n'
_lowerCAmelCase :int = '\nThis metric wrap the official scoring script for version 1 of the Contract\nUnderstanding Atticus Dataset (CUAD).\nContract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510\ncommercial legal contracts that have been manually labeled to identify 41 categories of important\nclauses that lawyers look for when reviewing contracts in connection with corporate transactions.\n'
_lowerCAmelCase :str = '\nComputes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': list of possible texts for the answer, as a list of strings\n depending on a threshold on the confidence probability of each prediction.\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the CUAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\n \'aupr\': Area Under the Precision-Recall curve\n \'prec_at_80_recall\': Precision at 80% recall\n \'prec_at_90_recall\': Precision at 90% recall\nExamples:\n >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> cuad_metric = datasets.load_metric("cuad")\n >>> results = cuad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class _UpperCAmelCase ( datasets.Metric ):
'''simple docstring'''
def __lowerCAmelCase ( self ) -> List[str]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': {
'''id''': datasets.Value('''string''' ),
'''prediction_text''': datasets.features.Sequence(datasets.Value('''string''' ) ),
},
'''references''': {
'''id''': datasets.Value('''string''' ),
'''answers''': datasets.features.Sequence(
{
'''text''': datasets.Value('''string''' ),
'''answer_start''': datasets.Value('''int32''' ),
} ),
},
} ) , codebase_urls=['''https://www.atticusprojectai.org/cuad'''] , reference_urls=['''https://www.atticusprojectai.org/cuad'''] , )
def __lowerCAmelCase ( self , A , A ) -> List[Any]:
_UpperCAmelCase : Optional[int] = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions}
_UpperCAmelCase : Optional[Any] = [
{
'''paragraphs''': [
{
'''qas''': [
{
'''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']],
'''id''': ref['''id'''],
}
for ref in references
]
}
]
}
]
_UpperCAmelCase : Union[str, Any] = evaluate(dataset=A , predictions=A )
return score
| 68
| 1
|
'''simple docstring'''
def lowercase__ ( __UpperCamelCase = 1000 )-> int:
UpperCamelCase = 2**power
UpperCamelCase = str(__UpperCamelCase )
UpperCamelCase = list(__UpperCamelCase )
UpperCamelCase = 0
for i in list_num:
sum_of_num += int(__UpperCamelCase )
return sum_of_num
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = int(input('Enter the power of 2: ').strip())
print('2 ^ ', power, ' = ', 2**power)
SCREAMING_SNAKE_CASE__ = solution(power)
print('Sum of the digits is: ', result)
| 321
|
'''simple docstring'''
import importlib
import shutil
import threading
import warnings
from typing import List
import fsspec
import fsspec.asyn
from . import compression
from .hffilesystem import HfFileSystem
SCREAMING_SNAKE_CASE__ = importlib.util.find_spec('s3fs') is not None
if _has_safs:
from .safilesystem import SaFileSystem # noqa: F401
SCREAMING_SNAKE_CASE__ = [
compression.BzaFileSystem,
compression.GzipFileSystem,
compression.LzaFileSystem,
compression.XzFileSystem,
compression.ZstdFileSystem,
]
# Register custom filesystems
for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]:
if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class:
warnings.warn(f'A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.')
fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True)
def lowercase__ ( __UpperCamelCase )-> str:
if "://" in dataset_path:
UpperCamelCase = dataset_path.split("""://""" )[1]
return dataset_path
def lowercase__ ( __UpperCamelCase )-> bool:
if fs is not None and fs.protocol != "file":
return True
else:
return False
def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> int:
UpperCamelCase = not is_remote_filesystem(__UpperCamelCase )
if is_local:
# LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory
shutil.move(fs._strip_protocol(__UpperCamelCase ) , fs._strip_protocol(__UpperCamelCase ) )
else:
fs.mv(__UpperCamelCase , __UpperCamelCase , recursive=__UpperCamelCase )
def lowercase__ ( )-> None:
if hasattr(fsspec.asyn , """reset_lock""" ):
# for future fsspec>2022.05.0
fsspec.asyn.reset_lock()
else:
UpperCamelCase = None
UpperCamelCase = None
UpperCamelCase = threading.Lock()
| 321
| 1
|
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation
def UpperCAmelCase_ ( SCREAMING_SNAKE_CASE_ : Union[str, Any] ):
__lowerCAmelCase = 3_84
if "tiny" in model_name:
__lowerCAmelCase = [3, 3, 9, 3]
__lowerCAmelCase = [96, 1_92, 3_84, 7_68]
if "small" in model_name:
__lowerCAmelCase = [3, 3, 27, 3]
__lowerCAmelCase = [96, 1_92, 3_84, 7_68]
if "base" in model_name:
__lowerCAmelCase = [3, 3, 27, 3]
__lowerCAmelCase = [1_28, 2_56, 5_12, 10_24]
__lowerCAmelCase = 5_12
if "large" in model_name:
__lowerCAmelCase = [3, 3, 27, 3]
__lowerCAmelCase = [1_92, 3_84, 7_68, 15_36]
__lowerCAmelCase = 7_68
if "xlarge" in model_name:
__lowerCAmelCase = [3, 3, 27, 3]
__lowerCAmelCase = [2_56, 5_12, 10_24, 20_48]
__lowerCAmelCase = 10_24
# set label information
__lowerCAmelCase = 1_50
__lowerCAmelCase = '''huggingface/label-files'''
__lowerCAmelCase = '''ade20k-id2label.json'''
__lowerCAmelCase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type="dataset" ) , "r" ) )
__lowerCAmelCase = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()}
__lowerCAmelCase = {v: k for k, v in idalabel.items()}
__lowerCAmelCase = ConvNextConfig(
depths=SCREAMING_SNAKE_CASE__ , hidden_sizes=SCREAMING_SNAKE_CASE__ , out_features=["stage1", "stage2", "stage3", "stage4"] )
__lowerCAmelCase = UperNetConfig(
backbone_config=SCREAMING_SNAKE_CASE__ , auxiliary_in_channels=SCREAMING_SNAKE_CASE__ , num_labels=SCREAMING_SNAKE_CASE__ , idalabel=SCREAMING_SNAKE_CASE__ , labelaid=SCREAMING_SNAKE_CASE__ , )
return config
def UpperCAmelCase_ ( SCREAMING_SNAKE_CASE_ : List[Any] ):
__lowerCAmelCase = []
# fmt: off
# stem
rename_keys.append(("backbone.downsample_layers.0.0.weight", "backbone.embeddings.patch_embeddings.weight") )
rename_keys.append(("backbone.downsample_layers.0.0.bias", "backbone.embeddings.patch_embeddings.bias") )
rename_keys.append(("backbone.downsample_layers.0.1.weight", "backbone.embeddings.layernorm.weight") )
rename_keys.append(("backbone.downsample_layers.0.1.bias", "backbone.embeddings.layernorm.bias") )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((F"""backbone.stages.{i}.{j}.gamma""", F"""backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter""") )
rename_keys.append((F"""backbone.stages.{i}.{j}.depthwise_conv.weight""", F"""backbone.encoder.stages.{i}.layers.{j}.dwconv.weight""") )
rename_keys.append((F"""backbone.stages.{i}.{j}.depthwise_conv.bias""", F"""backbone.encoder.stages.{i}.layers.{j}.dwconv.bias""") )
rename_keys.append((F"""backbone.stages.{i}.{j}.norm.weight""", F"""backbone.encoder.stages.{i}.layers.{j}.layernorm.weight""") )
rename_keys.append((F"""backbone.stages.{i}.{j}.norm.bias""", F"""backbone.encoder.stages.{i}.layers.{j}.layernorm.bias""") )
rename_keys.append((F"""backbone.stages.{i}.{j}.pointwise_conv1.weight""", F"""backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight""") )
rename_keys.append((F"""backbone.stages.{i}.{j}.pointwise_conv1.bias""", F"""backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias""") )
rename_keys.append((F"""backbone.stages.{i}.{j}.pointwise_conv2.weight""", F"""backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight""") )
rename_keys.append((F"""backbone.stages.{i}.{j}.pointwise_conv2.bias""", F"""backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias""") )
if i > 0:
rename_keys.append((F"""backbone.downsample_layers.{i}.0.weight""", F"""backbone.encoder.stages.{i}.downsampling_layer.0.weight""") )
rename_keys.append((F"""backbone.downsample_layers.{i}.0.bias""", F"""backbone.encoder.stages.{i}.downsampling_layer.0.bias""") )
rename_keys.append((F"""backbone.downsample_layers.{i}.1.weight""", F"""backbone.encoder.stages.{i}.downsampling_layer.1.weight""") )
rename_keys.append((F"""backbone.downsample_layers.{i}.1.bias""", F"""backbone.encoder.stages.{i}.downsampling_layer.1.bias""") )
rename_keys.append((F"""backbone.norm{i}.weight""", F"""backbone.hidden_states_norms.stage{i+1}.weight""") )
rename_keys.append((F"""backbone.norm{i}.bias""", F"""backbone.hidden_states_norms.stage{i+1}.bias""") )
# decode head
rename_keys.extend(
[
("decode_head.conv_seg.weight", "decode_head.classifier.weight"),
("decode_head.conv_seg.bias", "decode_head.classifier.bias"),
("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"),
("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"),
] )
# fmt: on
return rename_keys
def UpperCAmelCase_ ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Tuple ):
__lowerCAmelCase = dct.pop(SCREAMING_SNAKE_CASE__ )
__lowerCAmelCase = val
def UpperCAmelCase_ ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[str] ):
__lowerCAmelCase = {
'''upernet-convnext-tiny''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth''',
'''upernet-convnext-small''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth''',
'''upernet-convnext-base''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth''',
'''upernet-convnext-large''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth''',
'''upernet-convnext-xlarge''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth''',
}
__lowerCAmelCase = model_name_to_url[model_name]
__lowerCAmelCase = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE__ , map_location="cpu" )['''state_dict''']
__lowerCAmelCase = get_upernet_config(SCREAMING_SNAKE_CASE__ )
__lowerCAmelCase = UperNetForSemanticSegmentation(SCREAMING_SNAKE_CASE__ )
model.eval()
# replace "bn" => "batch_norm"
for key in state_dict.copy().keys():
__lowerCAmelCase = state_dict.pop(SCREAMING_SNAKE_CASE__ )
if "bn" in key:
__lowerCAmelCase = key.replace("bn" , "batch_norm" )
__lowerCAmelCase = val
# rename keys
__lowerCAmelCase = create_rename_keys(SCREAMING_SNAKE_CASE__ )
for src, dest in rename_keys:
rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
model.load_state_dict(SCREAMING_SNAKE_CASE__ )
# verify on image
__lowerCAmelCase = '''https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg'''
__lowerCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ).convert("RGB" )
__lowerCAmelCase = SegformerImageProcessor()
__lowerCAmelCase = processor(SCREAMING_SNAKE_CASE__ , return_tensors="pt" ).pixel_values
with torch.no_grad():
__lowerCAmelCase = model(SCREAMING_SNAKE_CASE__ )
if model_name == "upernet-convnext-tiny":
__lowerCAmelCase = torch.tensor(
[[-8.81_10, -8.81_10, -8.65_21], [-8.81_10, -8.81_10, -8.65_21], [-8.77_46, -8.77_46, -8.61_30]] )
elif model_name == "upernet-convnext-small":
__lowerCAmelCase = torch.tensor(
[[-8.82_36, -8.82_36, -8.67_71], [-8.82_36, -8.82_36, -8.67_71], [-8.76_38, -8.76_38, -8.62_40]] )
elif model_name == "upernet-convnext-base":
__lowerCAmelCase = torch.tensor(
[[-8.85_58, -8.85_58, -8.69_05], [-8.85_58, -8.85_58, -8.69_05], [-8.76_69, -8.76_69, -8.60_21]] )
elif model_name == "upernet-convnext-large":
__lowerCAmelCase = torch.tensor(
[[-8.66_60, -8.66_60, -8.62_10], [-8.66_60, -8.66_60, -8.62_10], [-8.63_10, -8.63_10, -8.59_64]] )
elif model_name == "upernet-convnext-xlarge":
__lowerCAmelCase = torch.tensor(
[[-8.49_80, -8.49_80, -8.39_77], [-8.49_80, -8.49_80, -8.39_77], [-8.43_79, -8.43_79, -8.34_12]] )
print("Logits:" , outputs.logits[0, 0, :3, :3] )
assert torch.allclose(outputs.logits[0, 0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 )
print("Looks ok!" )
if pytorch_dump_folder_path is not None:
print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(SCREAMING_SNAKE_CASE__ )
print(F"""Saving processor to {pytorch_dump_folder_path}""" )
processor.save_pretrained(SCREAMING_SNAKE_CASE__ )
if push_to_hub:
print(F"""Pushing model and processor for {model_name} to hub""" )
model.push_to_hub(F"""openmmlab/{model_name}""" )
processor.push_to_hub(F"""openmmlab/{model_name}""" )
if __name__ == "__main__":
UpperCamelCase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""upernet-convnext-tiny""",
type=str,
choices=[f'''upernet-convnext-{size}''' for size in ["""tiny""", """small""", """base""", """large""", """xlarge"""]],
help="""Name of the ConvNext UperNet model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
UpperCamelCase__ = parser.parse_args()
convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 367
|
import argparse
import os
import torch
from transformers import FlavaConfig, FlavaForPreTraining
from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint
def _a ( SCREAMING_SNAKE_CASE_ : Any ):
# encoder.embeddings are double copied in original FLAVA
return sum(param.float().sum() if "encoder.embeddings" not in key else 0 for key, param in state_dict.items() )
def _a ( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Dict ):
__lowerCAmelCase = {}
for key, value in state_dict.items():
if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key:
continue
__lowerCAmelCase = key.replace("heads.cmd.mim_head.cls.predictions" , "mmm_image_head" )
__lowerCAmelCase = key.replace("heads.cmd.mlm_head.cls.predictions" , "mmm_text_head" )
__lowerCAmelCase = key.replace("heads.cmd.itm_head.cls" , "itm_head" )
__lowerCAmelCase = key.replace("heads.cmd.itm_head.pooler" , "itm_head.pooler" )
__lowerCAmelCase = key.replace("heads.cmd.clip_head.logit_scale" , "flava.logit_scale" )
__lowerCAmelCase = key.replace("heads.fairseq_mlm.cls.predictions" , "mlm_head" )
__lowerCAmelCase = key.replace("heads.imagenet.mim_head.cls.predictions" , "mim_head" )
__lowerCAmelCase = key.replace("mm_text_projection" , "flava.text_to_mm_projection" )
__lowerCAmelCase = key.replace("mm_image_projection" , "flava.image_to_mm_projection" )
__lowerCAmelCase = key.replace("image_encoder.module" , "flava.image_model" )
__lowerCAmelCase = key.replace("text_encoder.module" , "flava.text_model" )
__lowerCAmelCase = key.replace("mm_encoder.module.encoder.cls_token" , "flava.multimodal_model.cls_token" )
__lowerCAmelCase = key.replace("mm_encoder.module" , "flava.multimodal_model" )
__lowerCAmelCase = key.replace("text_projection" , "flava.text_projection" )
__lowerCAmelCase = key.replace("image_projection" , "flava.image_projection" )
__lowerCAmelCase = value.float()
for key, value in codebook_state_dict.items():
__lowerCAmelCase = value
return upgrade
@torch.no_grad()
def _a ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : int=None ):
if config_path is not None:
__lowerCAmelCase = FlavaConfig.from_pretrained(SCREAMING_SNAKE_CASE_ )
else:
__lowerCAmelCase = FlavaConfig()
__lowerCAmelCase = FlavaForPreTraining(SCREAMING_SNAKE_CASE_ ).eval()
__lowerCAmelCase = convert_dalle_checkpoint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , save_checkpoint=SCREAMING_SNAKE_CASE_ )
if os.path.exists(SCREAMING_SNAKE_CASE_ ):
__lowerCAmelCase = torch.load(SCREAMING_SNAKE_CASE_ , map_location="cpu" )
else:
__lowerCAmelCase = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE_ , map_location="cpu" )
__lowerCAmelCase = upgrade_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
hf_model.load_state_dict(SCREAMING_SNAKE_CASE_ )
__lowerCAmelCase = hf_model.state_dict()
__lowerCAmelCase = count_parameters(SCREAMING_SNAKE_CASE_ )
__lowerCAmelCase = count_parameters(SCREAMING_SNAKE_CASE_ ) + count_parameters(SCREAMING_SNAKE_CASE_ )
assert torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-3 )
hf_model.save_pretrained(SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
UpperCamelCase__ = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""")
parser.add_argument("""--codebook_path""", default=None, type=str, help="""Path to flava codebook checkpoint""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
UpperCamelCase__ = parser.parse_args()
convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
| 102
| 0
|
"""simple docstring"""
import copy
import re
class lowercase__ :
_UpperCAmelCase :Any = "hp"
_UpperCAmelCase :Any = {}
_UpperCAmelCase :Dict = None
@classmethod
def UpperCAmelCase__ ( cls : str , snake_case__ : str , snake_case__ : str ):
lowerCamelCase_ : str =prefix
lowerCamelCase_ : int =defaults
cls.build_naming_info()
@staticmethod
def UpperCAmelCase__ ( snake_case__ : Any , snake_case__ : Optional[int] ):
if len(snake_case__ ) == 0:
return ""
lowerCamelCase_ : List[Any] =None
if any(char.isdigit() for char in word ):
raise Exception(F"""Parameters should not contain numbers: '{word}' contains a number""" )
if word in info["short_word"]:
return info["short_word"][word]
for prefix_len in range(1 , len(snake_case__ ) + 1 ):
lowerCamelCase_ : List[str] =word[:prefix_len]
if prefix in info["reverse_short_word"]:
continue
else:
lowerCamelCase_ : str =prefix
break
if short_word is None:
# Paranoid fallback
def int_to_alphabetic(snake_case__ : List[Any] ):
lowerCamelCase_ : int =''''''
while integer != 0:
lowerCamelCase_ : Optional[int] =chr(ord("A" ) + integer % 10 ) + s
integer //= 10
return s
lowerCamelCase_ : int =0
while True:
lowerCamelCase_ : int =word + '''#''' + int_to_alphabetic(snake_case__ )
if sword in info["reverse_short_word"]:
continue
else:
lowerCamelCase_ : Any =sword
break
lowerCamelCase_ : str =short_word
lowerCamelCase_ : Union[str, Any] =word
return short_word
@staticmethod
def UpperCAmelCase__ ( snake_case__ : int , snake_case__ : Optional[Any] ):
lowerCamelCase_ : Any =param_name.split("_" )
lowerCamelCase_ : Optional[Any] =[TrialShortNamer.shortname_for_word(snake_case__ , snake_case__ ) for word in words]
# We try to create a separatorless short name, but if there is a collision we have to fallback
# to a separated short name
lowerCamelCase_ : Dict =['''''', '''_''']
for separator in separators:
lowerCamelCase_ : Optional[int] =separator.join(snake_case__ )
if shortname not in info["reverse_short_param"]:
lowerCamelCase_ : str =shortname
lowerCamelCase_ : List[str] =param_name
return shortname
return param_name
@staticmethod
def UpperCAmelCase__ ( snake_case__ : List[Any] , snake_case__ : Optional[int] ):
lowerCamelCase_ : Union[str, Any] =TrialShortNamer.shortname_for_key(snake_case__ , snake_case__ )
lowerCamelCase_ : str =short_name
lowerCamelCase_ : List[Any] =param_name
@classmethod
def UpperCAmelCase__ ( cls : Dict ):
if cls.NAMING_INFO is not None:
return
lowerCamelCase_ : Union[str, Any] ={
'''short_word''': {},
'''reverse_short_word''': {},
'''short_param''': {},
'''reverse_short_param''': {},
}
lowerCamelCase_ : List[str] =list(cls.DEFAULTS.keys() )
for k in field_keys:
cls.add_new_param_name(snake_case__ , snake_case__ )
lowerCamelCase_ : str =info
@classmethod
def UpperCAmelCase__ ( cls : Tuple , snake_case__ : List[Any] ):
cls.build_naming_info()
assert cls.PREFIX is not None
lowerCamelCase_ : str =[copy.copy(cls.PREFIX )]
for k, v in params.items():
if k not in cls.DEFAULTS:
raise Exception(F"""You should provide a default value for the param name {k} with value {v}""" )
if v == cls.DEFAULTS[k]:
# The default value is not added to the name
continue
lowerCamelCase_ : List[str] =cls.NAMING_INFO['''short_param'''][k]
if isinstance(snake_case__ , snake_case__ ):
lowerCamelCase_ : Any =1 if v else 0
lowerCamelCase_ : Any ='''''' if isinstance(snake_case__ , (int, float) ) else '''-'''
lowerCamelCase_ : Optional[Any] =F"""{key}{sep}{v}"""
name.append(snake_case__ )
return "_".join(snake_case__ )
@classmethod
def UpperCAmelCase__ ( cls : Dict , snake_case__ : Dict ):
lowerCamelCase_ : Union[str, Any] =repr[len(cls.PREFIX ) + 1 :]
if repr == "":
lowerCamelCase_ : Optional[int] =[]
else:
lowerCamelCase_ : List[str] =repr.split("_" )
lowerCamelCase_ : int ={}
for value in values:
if "-" in value:
lowerCamelCase_ : int =value.split("-" )
else:
lowerCamelCase_ : Union[str, Any] =re.sub("[0-9.]" , "" , snake_case__ )
lowerCamelCase_ : Dict =float(re.sub("[^0-9.]" , "" , snake_case__ ) )
lowerCamelCase_ : str =cls.NAMING_INFO['''reverse_short_param'''][p_k]
lowerCamelCase_ : List[str] =p_v
for k in cls.DEFAULTS:
if k not in parameters:
lowerCamelCase_ : Union[str, Any] =cls.DEFAULTS[k]
return parameters
| 144
|
'''simple docstring'''
snake_case_ : List[str] = {
"Pillow": "Pillow<10.0.0",
"accelerate": "accelerate>=0.20.3",
"av": "av==9.2.0",
"beautifulsoup4": "beautifulsoup4",
"black": "black~=23.1",
"codecarbon": "codecarbon==1.2.0",
"cookiecutter": "cookiecutter==1.7.3",
"dataclasses": "dataclasses",
"datasets": "datasets!=2.5.0",
"decord": "decord==0.6.0",
"deepspeed": "deepspeed>=0.9.3",
"diffusers": "diffusers",
"dill": "dill<0.3.5",
"evaluate": "evaluate>=0.2.0",
"fairscale": "fairscale>0.3",
"faiss-cpu": "faiss-cpu",
"fastapi": "fastapi",
"filelock": "filelock",
"flax": "flax>=0.4.1,<=0.7.0",
"ftfy": "ftfy",
"fugashi": "fugashi>=1.0",
"GitPython": "GitPython<3.1.19",
"hf-doc-builder": "hf-doc-builder>=0.3.0",
"huggingface-hub": "huggingface-hub>=0.14.1,<1.0",
"importlib_metadata": "importlib_metadata",
"ipadic": "ipadic>=1.0.0,<2.0",
"isort": "isort>=5.5.4",
"jax": "jax>=0.2.8,!=0.3.2,<=0.4.13",
"jaxlib": "jaxlib>=0.1.65,<=0.4.13",
"jieba": "jieba",
"kenlm": "kenlm",
"keras-nlp": "keras-nlp>=0.3.1",
"librosa": "librosa",
"nltk": "nltk",
"natten": "natten>=0.14.6",
"numpy": "numpy>=1.17",
"onnxconverter-common": "onnxconverter-common",
"onnxruntime-tools": "onnxruntime-tools>=1.4.2",
"onnxruntime": "onnxruntime>=1.4.0",
"opencv-python": "opencv-python",
"optuna": "optuna",
"optax": "optax>=0.0.8,<=0.1.4",
"packaging": "packaging>=20.0",
"parameterized": "parameterized",
"phonemizer": "phonemizer",
"protobuf": "protobuf",
"psutil": "psutil",
"pyyaml": "pyyaml>=5.1",
"pydantic": "pydantic<2",
"pytest": "pytest>=7.2.0",
"pytest-timeout": "pytest-timeout",
"pytest-xdist": "pytest-xdist",
"python": "python>=3.8.0",
"ray[tune]": "ray[tune]",
"regex": "regex!=2019.12.17",
"requests": "requests",
"rhoknp": "rhoknp>=1.1.0,<1.3.1",
"rjieba": "rjieba",
"rouge-score": "rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1",
"ruff": "ruff>=0.0.241,<=0.0.259",
"sacrebleu": "sacrebleu>=1.4.12,<2.0.0",
"sacremoses": "sacremoses",
"safetensors": "safetensors>=0.3.1",
"sagemaker": "sagemaker>=2.31.0",
"scikit-learn": "scikit-learn",
"sentencepiece": "sentencepiece>=0.1.91,!=0.1.92",
"sigopt": "sigopt",
"starlette": "starlette",
"sudachipy": "sudachipy>=0.6.6",
"sudachidict_core": "sudachidict_core>=20220729",
"tensorflow-cpu": "tensorflow-cpu>=2.6,<2.14",
"tensorflow": "tensorflow>=2.6,<2.14",
"tensorflow-text": "tensorflow-text<2.14",
"tf2onnx": "tf2onnx",
"timeout-decorator": "timeout-decorator",
"timm": "timm",
"tokenizers": "tokenizers>=0.11.1,!=0.11.3,<0.14",
"torch": "torch>=1.9,!=1.12.0",
"torchaudio": "torchaudio",
"torchvision": "torchvision",
"pyctcdecode": "pyctcdecode>=0.4.0",
"tqdm": "tqdm>=4.27",
"unidic": "unidic>=1.0.2",
"unidic_lite": "unidic_lite>=1.0.7",
"urllib3": "urllib3<2.0.0",
"uvicorn": "uvicorn",
}
| 125
| 0
|
'''simple docstring'''
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST,
OpenAIGPTConfig,
OpenAIGPTDoubleHeadsModel,
OpenAIGPTForSequenceClassification,
OpenAIGPTLMHeadModel,
OpenAIGPTModel,
)
class _a :
'''simple docstring'''
def __init__( self, A, A=13, A=7, A=True, A=True, A=True, A=99, A=32, A=5, A=4, A=37, A="gelu", A=0.1, A=0.1, A=512, A=16, A=2, A=0.02, A=3, A=4, A=None, ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = parent
SCREAMING_SNAKE_CASE : Tuple = batch_size
SCREAMING_SNAKE_CASE : Dict = seq_length
SCREAMING_SNAKE_CASE : Tuple = is_training
SCREAMING_SNAKE_CASE : List[str] = use_token_type_ids
SCREAMING_SNAKE_CASE : int = use_labels
SCREAMING_SNAKE_CASE : List[str] = vocab_size
SCREAMING_SNAKE_CASE : Dict = hidden_size
SCREAMING_SNAKE_CASE : List[Any] = num_hidden_layers
SCREAMING_SNAKE_CASE : Any = num_attention_heads
SCREAMING_SNAKE_CASE : str = intermediate_size
SCREAMING_SNAKE_CASE : str = hidden_act
SCREAMING_SNAKE_CASE : Any = hidden_dropout_prob
SCREAMING_SNAKE_CASE : Dict = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE : str = max_position_embeddings
SCREAMING_SNAKE_CASE : Optional[int] = type_vocab_size
SCREAMING_SNAKE_CASE : Optional[int] = type_sequence_label_size
SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range
SCREAMING_SNAKE_CASE : Any = num_labels
SCREAMING_SNAKE_CASE : str = num_choices
SCREAMING_SNAKE_CASE : List[Any] = scope
SCREAMING_SNAKE_CASE : List[Any] = self.vocab_size - 1
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size, self.seq_length], self.vocab_size )
SCREAMING_SNAKE_CASE : str = None
if self.use_token_type_ids:
SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size )
SCREAMING_SNAKE_CASE : List[str] = None
SCREAMING_SNAKE_CASE : str = None
SCREAMING_SNAKE_CASE : List[Any] = None
if self.use_labels:
SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size], self.type_sequence_label_size )
SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.num_labels )
SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size], self.num_choices )
SCREAMING_SNAKE_CASE : List[str] = OpenAIGPTConfig(
vocab_size=self.vocab_size, n_embd=self.hidden_size, n_layer=self.num_hidden_layers, n_head=self.num_attention_heads, n_positions=self.max_position_embeddings, pad_token_id=self.pad_token_id, )
SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2 )
return (
config,
input_ids,
head_mask,
token_type_ids,
sequence_labels,
token_labels,
choice_labels,
)
def UpperCamelCase_ ( self, A, A, A, A, *A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = OpenAIGPTModel(config=A )
model.to(A )
model.eval()
SCREAMING_SNAKE_CASE : Optional[int] = model(A, token_type_ids=A, head_mask=A )
SCREAMING_SNAKE_CASE : str = model(A, token_type_ids=A )
SCREAMING_SNAKE_CASE : Any = model(A )
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase_ ( self, A, A, A, A, *A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = OpenAIGPTLMHeadModel(A )
model.to(A )
model.eval()
SCREAMING_SNAKE_CASE : Optional[Any] = model(A, token_type_ids=A, labels=A )
self.parent.assertEqual(result.loss.shape, () )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase_ ( self, A, A, A, A, *A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = OpenAIGPTDoubleHeadsModel(A )
model.to(A )
model.eval()
SCREAMING_SNAKE_CASE : Dict = model(A, token_type_ids=A, labels=A )
self.parent.assertEqual(result.loss.shape, () )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase_ ( self, A, A, A, A, *A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = self.num_labels
SCREAMING_SNAKE_CASE : Tuple = OpenAIGPTForSequenceClassification(A )
model.to(A )
model.eval()
SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size], self.type_sequence_label_size )
SCREAMING_SNAKE_CASE : Optional[int] = model(A, token_type_ids=A, labels=A )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = self.prepare_config_and_inputs()
(
(
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) ,
) : Tuple = config_and_inputs
SCREAMING_SNAKE_CASE : int = {
'input_ids': input_ids,
'token_type_ids': token_type_ids,
'head_mask': head_mask,
}
return config, inputs_dict
@require_torch
class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : List[str] = (
(OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification)
if is_torch_available()
else ()
)
A : Any = (
(OpenAIGPTLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly
A : int = (
{
'''feature-extraction''': OpenAIGPTModel,
'''text-classification''': OpenAIGPTForSequenceClassification,
'''text-generation''': OpenAIGPTLMHeadModel,
'''zero-shot''': OpenAIGPTForSequenceClassification,
}
if is_torch_available()
else {}
)
def UpperCamelCase_ ( self, A, A, A, A, A ):
'''simple docstring'''
if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests":
# Get `tokenizer does not have a padding token` error for both fast/slow tokenizers.
# `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a
# tiny config could not be created.
return True
return False
def UpperCamelCase_ ( self, A, A, A=False ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = super()._prepare_for_class(A, A, return_labels=A )
if return_labels:
if model_class.__name__ == "OpenAIGPTDoubleHeadsModel":
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length), dtype=torch.long, device=A, )
SCREAMING_SNAKE_CASE : Optional[Any] = inputs_dict['labels']
SCREAMING_SNAKE_CASE : str = inputs_dict['labels']
SCREAMING_SNAKE_CASE : List[str] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices), dtype=torch.long, device=A, )
SCREAMING_SNAKE_CASE : Optional[Any] = torch.zeros(
self.model_tester.batch_size, dtype=torch.long, device=A )
return inputs_dict
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = OpenAIGPTModelTester(self )
SCREAMING_SNAKE_CASE : Tuple = ConfigTester(self, config_class=A, n_embd=37 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
self.config_tester.run_common_tests()
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_model(*A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head_model(*A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_double_lm_head_model(*A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*A )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE : str = OpenAIGPTModel.from_pretrained(A )
self.assertIsNotNone(A )
@require_torch
class _a ( unittest.TestCase ):
'''simple docstring'''
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' )
model.to(A )
SCREAMING_SNAKE_CASE : List[str] = torch.tensor([[481, 4_735, 544]], dtype=torch.long, device=A ) # the president is
SCREAMING_SNAKE_CASE : Tuple = [
481,
4_735,
544,
246,
963,
870,
762,
239,
244,
40_477,
244,
249,
719,
881,
487,
544,
240,
244,
603,
481,
] # the president is a very good man. " \n " i\'m sure he is, " said the
SCREAMING_SNAKE_CASE : Optional[Any] = model.generate(A, do_sample=A )
self.assertListEqual(output_ids[0].tolist(), A )
| 246
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import _LazyModule
UpperCamelCase_ = {"processing_wav2vec2_with_lm": ["Wav2Vec2ProcessorWithLM"]}
if TYPE_CHECKING:
from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM
else:
import sys
UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 246
| 1
|
'''simple docstring'''
import pytest
from datasets import inspect_metric, list_metrics, load_metric
@pytest.fixture
def UpperCAmelCase_ ( __lowercase : List[str] ) -> List[str]:
'''simple docstring'''
monkeypatch.setattr("datasets.utils.deprecation_utils._emitted_deprecation_warnings" , set() )
@pytest.fixture
def UpperCAmelCase_ ( __lowercase : Optional[Any] ) -> Any:
'''simple docstring'''
class A_ :
def __init__( self : Optional[int] , snake_case_ : str ):
_UpperCAmelCase = metric_id
class A_ :
_lowerCamelCase : Any = [MetricMock(lowerCAmelCase_ ) for metric_id in ["""accuracy""", """mse""", """precision""", """codeparrot/apps_metric"""]]
def lowercase ( self : Tuple ):
return self._metrics
monkeypatch.setattr("datasets.inspect.huggingface_hub" , HfhMock() )
@pytest.mark.parametrize(
"func, args" , [(load_metric, ("metrics/mse",)), (list_metrics, ()), (inspect_metric, ("metrics/mse", "tmp_path"))] )
def UpperCAmelCase_ ( __lowercase : Optional[int] , __lowercase : Dict , __lowercase : Optional[int] , __lowercase : List[Any] , __lowercase : List[str] ) -> int:
'''simple docstring'''
if "tmp_path" in args:
_UpperCAmelCase = tuple(arg if arg != "tmp_path" else tmp_path for arg in args )
with pytest.warns(__lowercase , match="https://huggingface.co/docs/evaluate" ):
func(*__lowercase )
| 22
|
import pytest
from datasets import inspect_metric, list_metrics, load_metric
@pytest.fixture
def UpperCamelCase ( __lowerCamelCase : Optional[int] ):
monkeypatch.setattr("datasets.utils.deprecation_utils._emitted_deprecation_warnings" , set() )
@pytest.fixture
def UpperCamelCase ( __lowerCamelCase : str ):
class UpperCAmelCase :
def __init__(self : Optional[int] , snake_case__ : str ) -> Any:
'''simple docstring'''
snake_case : List[str] = metric_id
class UpperCAmelCase :
A__ : List[str] = [MetricMock(A_ ) for metric_id in ["accuracy", "mse", "precision", "codeparrot/apps_metric"]]
def _SCREAMING_SNAKE_CASE (self : int ) -> List[str]:
'''simple docstring'''
return self._metrics
monkeypatch.setattr("datasets.inspect.huggingface_hub" , HfhMock() )
@pytest.mark.parametrize(
"func, args" , [(load_metric, ("metrics/mse",)), (list_metrics, ()), (inspect_metric, ("metrics/mse", "tmp_path"))] )
def UpperCamelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : int , __lowerCamelCase : Any ):
if "tmp_path" in args:
snake_case : str = tuple(arg if arg != "tmp_path" else tmp_path for arg in args )
with pytest.warns(__lowerCamelCase , match="https://huggingface.co/docs/evaluate" ):
func(*__lowerCamelCase )
| 59
| 0
|
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__a = logging.get_logger(__name__)
__a = {
'''microsoft/unispeech-large-1500h-cv''': (
'''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json'''
),
# See all UniSpeech models at https://huggingface.co/models?filter=unispeech
}
class __SCREAMING_SNAKE_CASE ( A__ ):
A : str = 'unispeech'
def __init__( self , SCREAMING_SNAKE_CASE__=32 , SCREAMING_SNAKE_CASE__=768 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=3072 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1E-5 , SCREAMING_SNAKE_CASE__="group" , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=(512, 512, 512, 512, 512, 512, 512) , SCREAMING_SNAKE_CASE__=(5, 2, 2, 2, 2, 2, 2) , SCREAMING_SNAKE_CASE__=(10, 3, 3, 3, 3, 2, 2) , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=128 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=0.05 , SCREAMING_SNAKE_CASE__=10 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=10 , SCREAMING_SNAKE_CASE__=0 , SCREAMING_SNAKE_CASE__=320 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=100 , SCREAMING_SNAKE_CASE__=256 , SCREAMING_SNAKE_CASE__=256 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__="mean" , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=256 , SCREAMING_SNAKE_CASE__=80 , SCREAMING_SNAKE_CASE__=0 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=0.5 , **SCREAMING_SNAKE_CASE__ , ):
super().__init__(**SCREAMING_SNAKE_CASE__ , pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ )
lowercase : Any = hidden_size
lowercase : str = feat_extract_norm
lowercase : Any = feat_extract_activation
lowercase : int = list(SCREAMING_SNAKE_CASE__ )
lowercase : List[str] = list(SCREAMING_SNAKE_CASE__ )
lowercase : Tuple = list(SCREAMING_SNAKE_CASE__ )
lowercase : Dict = conv_bias
lowercase : Tuple = num_conv_pos_embeddings
lowercase : List[str] = num_conv_pos_embedding_groups
lowercase : Union[str, Any] = len(self.conv_dim )
lowercase : Optional[int] = num_hidden_layers
lowercase : Dict = intermediate_size
lowercase : Optional[int] = hidden_act
lowercase : Optional[Any] = num_attention_heads
lowercase : Union[str, Any] = hidden_dropout
lowercase : int = attention_dropout
lowercase : Union[str, Any] = activation_dropout
lowercase : str = feat_proj_dropout
lowercase : Tuple = final_dropout
lowercase : Dict = layerdrop
lowercase : str = layer_norm_eps
lowercase : Any = initializer_range
lowercase : Tuple = num_ctc_classes
lowercase : List[str] = vocab_size
lowercase : Optional[Any] = do_stable_layer_norm
lowercase : int = use_weighted_layer_sum
lowercase : Any = classifier_proj_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =='''
''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ='''
f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,"""
f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
lowercase : Optional[Any] = apply_spec_augment
lowercase : List[str] = mask_time_prob
lowercase : Tuple = mask_time_length
lowercase : str = mask_time_min_masks
lowercase : int = mask_feature_prob
lowercase : Union[str, Any] = mask_feature_length
lowercase : int = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
lowercase : List[Any] = num_codevectors_per_group
lowercase : Dict = num_codevector_groups
lowercase : str = contrastive_logits_temperature
lowercase : Optional[Any] = feat_quantizer_dropout
lowercase : Optional[Any] = num_negatives
lowercase : Union[str, Any] = codevector_dim
lowercase : List[str] = proj_codevector_dim
lowercase : Optional[Any] = diversity_loss_weight
# ctc loss
lowercase : Optional[int] = ctc_loss_reduction
lowercase : Any = ctc_zero_infinity
# pretraining loss
lowercase : List[Any] = replace_prob
@property
def __lowerCamelCase ( self ):
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 365
|
import argparse
import os
import re
import tensorflow as tf
import torch
from transformers import BertConfig, BertModel
from transformers.utils import logging
logging.set_verbosity_info()
__a = logging.get_logger(__name__)
def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) ->Union[str, Any]:
"""simple docstring"""
lowercase : Any = os.path.abspath(_UpperCamelCase )
logger.info(f"""Converting TensorFlow checkpoint from {tf_path}""" )
# Load weights from TF model
lowercase : Optional[int] = tf.train.list_variables(_UpperCamelCase )
lowercase : Optional[int] = []
lowercase : Optional[int] = []
lowercase : Optional[Any] = []
for full_name, shape in init_vars:
# logger.info(f"Loading TF weight {name} with shape {shape}")
lowercase : int = full_name.split('''/''' )
if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]:
logger.info(f"""Skipping non-model layer {full_name}""" )
continue
if "optimizer" in full_name:
logger.info(f"""Skipping optimization layer {full_name}""" )
continue
if name[0] == "model":
# ignore initial 'model'
lowercase : List[Any] = name[1:]
# figure out how many levels deep the name is
lowercase : Optional[int] = 0
for _name in name:
if _name.startswith('''layer_with_weights''' ):
depth += 1
else:
break
layer_depth.append(_UpperCamelCase )
# read data
lowercase : Any = tf.train.load_variable(_UpperCamelCase, _UpperCamelCase )
names.append('''/'''.join(_UpperCamelCase ) )
arrays.append(_UpperCamelCase )
logger.info(f"""Read a total of {len(_UpperCamelCase ):,} layers""" )
# Sanity check
if len(set(_UpperCamelCase ) ) != 1:
raise ValueError(f"""Found layer names with different depths (layer depth {list(set(_UpperCamelCase ) )})""" )
lowercase : List[str] = list(set(_UpperCamelCase ) )[0]
if layer_depth != 1:
raise ValueError(
'''The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP'''
''' heads.''' )
# convert layers
logger.info('''Converting weights...''' )
for full_name, array in zip(_UpperCamelCase, _UpperCamelCase ):
lowercase : Optional[int] = full_name.split('''/''' )
lowercase : Tuple = model
lowercase : Any = []
for i, m_name in enumerate(_UpperCamelCase ):
if m_name == ".ATTRIBUTES":
# variable names end with .ATTRIBUTES/VARIABLE_VALUE
break
if m_name.startswith('''layer_with_weights''' ):
lowercase : Tuple = int(m_name.split('''-''' )[-1] )
if layer_num <= 2:
# embedding layers
# layer_num 0: word_embeddings
# layer_num 1: position_embeddings
# layer_num 2: token_type_embeddings
continue
elif layer_num == 3:
# embedding LayerNorm
trace.extend(['''embeddings''', '''LayerNorm'''] )
lowercase : int = getattr(_UpperCamelCase, '''embeddings''' )
lowercase : Optional[Any] = getattr(_UpperCamelCase, '''LayerNorm''' )
elif layer_num > 3 and layer_num < config.num_hidden_layers + 4:
# encoder layers
trace.extend(['''encoder''', '''layer''', str(layer_num - 4 )] )
lowercase : int = getattr(_UpperCamelCase, '''encoder''' )
lowercase : Tuple = getattr(_UpperCamelCase, '''layer''' )
lowercase : List[Any] = pointer[layer_num - 4]
elif layer_num == config.num_hidden_layers + 4:
# pooler layer
trace.extend(['''pooler''', '''dense'''] )
lowercase : str = getattr(_UpperCamelCase, '''pooler''' )
lowercase : str = getattr(_UpperCamelCase, '''dense''' )
elif m_name == "embeddings":
trace.append('''embeddings''' )
lowercase : Optional[int] = getattr(_UpperCamelCase, '''embeddings''' )
if layer_num == 0:
trace.append('''word_embeddings''' )
lowercase : str = getattr(_UpperCamelCase, '''word_embeddings''' )
elif layer_num == 1:
trace.append('''position_embeddings''' )
lowercase : List[Any] = getattr(_UpperCamelCase, '''position_embeddings''' )
elif layer_num == 2:
trace.append('''token_type_embeddings''' )
lowercase : int = getattr(_UpperCamelCase, '''token_type_embeddings''' )
else:
raise ValueError(f"""Unknown embedding layer with name {full_name}""" )
trace.append('''weight''' )
lowercase : Union[str, Any] = getattr(_UpperCamelCase, '''weight''' )
elif m_name == "_attention_layer":
# self-attention layer
trace.extend(['''attention''', '''self'''] )
lowercase : Tuple = getattr(_UpperCamelCase, '''attention''' )
lowercase : str = getattr(_UpperCamelCase, '''self''' )
elif m_name == "_attention_layer_norm":
# output attention norm
trace.extend(['''attention''', '''output''', '''LayerNorm'''] )
lowercase : Dict = getattr(_UpperCamelCase, '''attention''' )
lowercase : Any = getattr(_UpperCamelCase, '''output''' )
lowercase : Union[str, Any] = getattr(_UpperCamelCase, '''LayerNorm''' )
elif m_name == "_attention_output_dense":
# output attention dense
trace.extend(['''attention''', '''output''', '''dense'''] )
lowercase : Union[str, Any] = getattr(_UpperCamelCase, '''attention''' )
lowercase : str = getattr(_UpperCamelCase, '''output''' )
lowercase : Optional[int] = getattr(_UpperCamelCase, '''dense''' )
elif m_name == "_output_dense":
# output dense
trace.extend(['''output''', '''dense'''] )
lowercase : List[str] = getattr(_UpperCamelCase, '''output''' )
lowercase : str = getattr(_UpperCamelCase, '''dense''' )
elif m_name == "_output_layer_norm":
# output dense
trace.extend(['''output''', '''LayerNorm'''] )
lowercase : Dict = getattr(_UpperCamelCase, '''output''' )
lowercase : int = getattr(_UpperCamelCase, '''LayerNorm''' )
elif m_name == "_key_dense":
# attention key
trace.append('''key''' )
lowercase : Optional[Any] = getattr(_UpperCamelCase, '''key''' )
elif m_name == "_query_dense":
# attention query
trace.append('''query''' )
lowercase : Dict = getattr(_UpperCamelCase, '''query''' )
elif m_name == "_value_dense":
# attention value
trace.append('''value''' )
lowercase : Optional[Any] = getattr(_UpperCamelCase, '''value''' )
elif m_name == "_intermediate_dense":
# attention intermediate dense
trace.extend(['''intermediate''', '''dense'''] )
lowercase : List[str] = getattr(_UpperCamelCase, '''intermediate''' )
lowercase : Optional[int] = getattr(_UpperCamelCase, '''dense''' )
elif m_name == "_output_layer_norm":
# output layer norm
trace.append('''output''' )
lowercase : Tuple = getattr(_UpperCamelCase, '''output''' )
# weights & biases
elif m_name in ["bias", "beta"]:
trace.append('''bias''' )
lowercase : str = getattr(_UpperCamelCase, '''bias''' )
elif m_name in ["kernel", "gamma"]:
trace.append('''weight''' )
lowercase : Dict = getattr(_UpperCamelCase, '''weight''' )
else:
logger.warning(f"""Ignored {m_name}""" )
# for certain layers reshape is necessary
lowercase : Any = '''.'''.join(_UpperCamelCase )
if re.match(R'''(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)''', _UpperCamelCase ) or re.match(
R'''(\S+)\.attention\.output\.dense\.weight''', _UpperCamelCase ):
lowercase : Any = array.reshape(pointer.data.shape )
if "kernel" in full_name:
lowercase : List[str] = array.transpose()
if pointer.shape == array.shape:
lowercase : Optional[Any] = torch.from_numpy(_UpperCamelCase )
else:
raise ValueError(
f"""Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:"""
f""" {array.shape}""" )
logger.info(f"""Successfully set variable {full_name} to PyTorch layer {trace}""" )
return model
def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) ->Tuple:
"""simple docstring"""
logger.info(f"""Loading model based on config from {config_path}...""" )
lowercase : List[Any] = BertConfig.from_json_file(_UpperCamelCase )
lowercase : Dict = BertModel(_UpperCamelCase )
# Load weights from checkpoint
logger.info(f"""Loading weights from checkpoint {tf_checkpoint_path}...""" )
load_tfa_weights_in_bert(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase )
# Save pytorch-model
logger.info(f"""Saving PyTorch model to {pytorch_dump_path}...""" )
torch.save(model.state_dict(), _UpperCamelCase )
if __name__ == "__main__":
__a = argparse.ArgumentParser()
parser.add_argument(
'''--tf_checkpoint_path''', type=str, required=True, help='''Path to the TensorFlow 2.x checkpoint path.'''
)
parser.add_argument(
'''--bert_config_file''',
type=str,
required=True,
help='''The config json file corresponding to the BERT model. This specifies the model architecture.''',
)
parser.add_argument(
'''--pytorch_dump_path''',
type=str,
required=True,
help='''Path to the output PyTorch model (must include filename).''',
)
__a = parser.parse_args()
convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
| 173
| 0
|
import argparse
import json
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from typing import Callable, Dict, List, Tuple
import timm
import torch
import torch.nn as nn
from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf
from huggingface_hub import cached_download, hf_hub_url
from torch import Tensor
from vissl.models.model_helpers import get_trunk_forward_outputs
from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase = logging.get_logger()
@dataclass
class _lowerCamelCase :
"""simple docstring"""
snake_case = 42
snake_case = field(default_factory=UpperCamelCase )
snake_case = field(default_factory=UpperCamelCase )
def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->Optional[int]:
'''simple docstring'''
A_ : Any = len(list(m.modules() ) ) == 1 or isinstance(_SCREAMING_SNAKE_CASE , nn.Convad ) or isinstance(_SCREAMING_SNAKE_CASE , nn.BatchNormad )
if has_not_submodules:
self.traced.append(_SCREAMING_SNAKE_CASE )
def __call__( self , _SCREAMING_SNAKE_CASE )->int:
'''simple docstring'''
for m in self.module.modules():
self.handles.append(m.register_forward_hook(self._forward_hook ) )
self.module(_SCREAMING_SNAKE_CASE )
[x.remove() for x in self.handles]
return self
@property
def _snake_case ( self )->Dict:
'''simple docstring'''
return list(filter(lambda _SCREAMING_SNAKE_CASE : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) )
@dataclass
class _lowerCamelCase :
"""simple docstring"""
snake_case = 42
snake_case = 42
snake_case = 1
snake_case = field(default_factory=UpperCamelCase )
snake_case = field(default_factory=UpperCamelCase )
snake_case = True
def __call__( self , _SCREAMING_SNAKE_CASE )->List[Any]:
'''simple docstring'''
A_ : str = Tracker(self.dest )(_SCREAMING_SNAKE_CASE ).parametrized
A_ : Tuple = Tracker(self.src )(_SCREAMING_SNAKE_CASE ).parametrized
A_ : Any = list(filter(lambda _SCREAMING_SNAKE_CASE : type(_SCREAMING_SNAKE_CASE ) not in self.src_skip , _SCREAMING_SNAKE_CASE ) )
A_ : List[Any] = list(filter(lambda _SCREAMING_SNAKE_CASE : type(_SCREAMING_SNAKE_CASE ) not in self.dest_skip , _SCREAMING_SNAKE_CASE ) )
if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ) and self.raise_if_mismatch:
raise Exception(
F'''Numbers of operations are different. Source module has {len(_SCREAMING_SNAKE_CASE )} operations while'''
F''' destination module has {len(_SCREAMING_SNAKE_CASE )}.''' )
for dest_m, src_m in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
dest_m.load_state_dict(src_m.state_dict() )
if self.verbose == 1:
print(F'''Transfered from={src_m} to={dest_m}''' )
class _lowerCamelCase ( nn.Module ):
"""simple docstring"""
def __init__( self , _SCREAMING_SNAKE_CASE )->str:
'''simple docstring'''
super().__init__()
A_ : List[Tuple[str, nn.Module]] = []
# - get the stem
feature_blocks.append(('''conv1''', model.stem) )
# - get all the feature blocks
for k, v in model.trunk_output.named_children():
assert k.startswith('''block''' ), F'''Unexpected layer name {k}'''
A_ : Tuple = len(_SCREAMING_SNAKE_CASE ) + 1
feature_blocks.append((F'''res{block_index}''', v) )
A_ : str = nn.ModuleDict(_SCREAMING_SNAKE_CASE )
def _snake_case ( self , _SCREAMING_SNAKE_CASE )->Any:
'''simple docstring'''
return get_trunk_forward_outputs(
_SCREAMING_SNAKE_CASE , out_feat_keys=_SCREAMING_SNAKE_CASE , feature_blocks=self._feature_blocks , )
class _lowerCamelCase ( UpperCamelCase ):
"""simple docstring"""
def _snake_case ( self , _SCREAMING_SNAKE_CASE )->str:
'''simple docstring'''
A_ : List[Any] = x.split('''-''' )
return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] )
def __getitem__( self , _SCREAMING_SNAKE_CASE )->Callable[[], Tuple[nn.Module, Dict]]:
'''simple docstring'''
if x not in self:
A_ : List[str] = self.convert_name_to_timm(_SCREAMING_SNAKE_CASE )
A_ : Any = partial(lambda: (timm.create_model(_SCREAMING_SNAKE_CASE , pretrained=_SCREAMING_SNAKE_CASE ).eval(), None) )
else:
A_ : List[Any] = super().__getitem__(_SCREAMING_SNAKE_CASE )
return val
class _lowerCamelCase ( UpperCamelCase ):
"""simple docstring"""
def __getitem__( self , _SCREAMING_SNAKE_CASE )->Callable[[], nn.Module]:
'''simple docstring'''
if "seer" in x and "in1k" not in x:
A_ : Dict = RegNetModel
else:
A_ : Any = RegNetForImageClassification
return val
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
for from_key, to_key in keys:
A_ : List[Any] = from_state_dict[from_key].clone()
print(f'''Copied key={from_key} to={to_key}''' )
return to_state_dict
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = True , ):
print(f'''Converting {name}...''' )
with torch.no_grad():
A_ , A_ : List[str] = from_model_func()
A_ : int = our_model_func(SCREAMING_SNAKE_CASE ).eval()
A_ : str = ModuleTransfer(src=SCREAMING_SNAKE_CASE , dest=SCREAMING_SNAKE_CASE , raise_if_mismatch=SCREAMING_SNAKE_CASE )
A_ : Union[str, Any] = torch.randn((1, 3, 224, 224) )
module_transfer(SCREAMING_SNAKE_CASE )
if from_state_dict is not None:
A_ : str = []
# for seer - in1k finetuned we have to manually copy the head
if "seer" in name and "in1k" in name:
A_ : List[Any] = [('''0.clf.0.weight''', '''classifier.1.weight'''), ('''0.clf.0.bias''', '''classifier.1.bias''')]
A_ : Union[str, Any] = manually_copy_vissl_head(SCREAMING_SNAKE_CASE , our_model.state_dict() , SCREAMING_SNAKE_CASE )
our_model.load_state_dict(SCREAMING_SNAKE_CASE )
A_ : Dict = our_model(SCREAMING_SNAKE_CASE , output_hidden_states=SCREAMING_SNAKE_CASE )
A_ : Tuple = (
our_outputs.logits if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else our_outputs.last_hidden_state
)
A_ : int = from_model(SCREAMING_SNAKE_CASE )
A_ : List[str] = from_output[-1] if type(SCREAMING_SNAKE_CASE ) is list else from_output
# now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state
if "seer" in name and "in1k" in name:
A_ : List[Any] = our_outputs.hidden_states[-1]
assert torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), "The model logits don't match the original one."
if push_to_hub:
our_model.push_to_hub(
repo_path_or_name=save_directory / name , commit_message='''Add model''' , use_temp_dir=SCREAMING_SNAKE_CASE , )
A_ : Optional[int] = 224 if '''seer''' not in name else 384
# we can use the convnext one
A_ : Tuple = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' , size=SCREAMING_SNAKE_CASE )
image_processor.push_to_hub(
repo_path_or_name=save_directory / name , commit_message='''Add image processor''' , use_temp_dir=SCREAMING_SNAKE_CASE , )
print(f'''Pushed {name}''' )
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = True ):
A_ : Union[str, Any] = '''imagenet-1k-id2label.json'''
A_ : Union[str, Any] = 1_000
A_ : List[str] = (1, num_labels)
A_ : List[Any] = '''huggingface/label-files'''
A_ : Union[str, Any] = num_labels
A_ : Tuple = json.load(open(cached_download(hf_hub_url(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='''dataset''' ) ) , '''r''' ) )
A_ : int = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()}
A_ : str = idalabel
A_ : List[str] = {v: k for k, v in idalabel.items()}
A_ : Union[str, Any] = partial(SCREAMING_SNAKE_CASE , num_labels=SCREAMING_SNAKE_CASE , idalabel=SCREAMING_SNAKE_CASE , labelaid=SCREAMING_SNAKE_CASE )
A_ : str = {
'''regnet-x-002''': ImageNetPreTrainedConfig(
depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 , layer_type='''x''' ),
'''regnet-x-004''': ImageNetPreTrainedConfig(
depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 160, 384] , groups_width=16 , layer_type='''x''' ),
'''regnet-x-006''': ImageNetPreTrainedConfig(
depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 240, 528] , groups_width=24 , layer_type='''x''' ),
'''regnet-x-008''': ImageNetPreTrainedConfig(
depths=[1, 3, 7, 5] , hidden_sizes=[64, 128, 288, 672] , groups_width=16 , layer_type='''x''' ),
'''regnet-x-016''': ImageNetPreTrainedConfig(
depths=[2, 4, 10, 2] , hidden_sizes=[72, 168, 408, 912] , groups_width=24 , layer_type='''x''' ),
'''regnet-x-032''': ImageNetPreTrainedConfig(
depths=[2, 6, 15, 2] , hidden_sizes=[96, 192, 432, 1_008] , groups_width=48 , layer_type='''x''' ),
'''regnet-x-040''': ImageNetPreTrainedConfig(
depths=[2, 5, 14, 2] , hidden_sizes=[80, 240, 560, 1_360] , groups_width=40 , layer_type='''x''' ),
'''regnet-x-064''': ImageNetPreTrainedConfig(
depths=[2, 4, 10, 1] , hidden_sizes=[168, 392, 784, 1_624] , groups_width=56 , layer_type='''x''' ),
'''regnet-x-080''': ImageNetPreTrainedConfig(
depths=[2, 5, 15, 1] , hidden_sizes=[80, 240, 720, 1_920] , groups_width=120 , layer_type='''x''' ),
'''regnet-x-120''': ImageNetPreTrainedConfig(
depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2_240] , groups_width=112 , layer_type='''x''' ),
'''regnet-x-160''': ImageNetPreTrainedConfig(
depths=[2, 6, 13, 1] , hidden_sizes=[256, 512, 896, 2_048] , groups_width=128 , layer_type='''x''' ),
'''regnet-x-320''': ImageNetPreTrainedConfig(
depths=[2, 7, 13, 1] , hidden_sizes=[336, 672, 1_344, 2_520] , groups_width=168 , layer_type='''x''' ),
# y variant
'''regnet-y-002''': ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 ),
'''regnet-y-004''': ImageNetPreTrainedConfig(
depths=[1, 3, 6, 6] , hidden_sizes=[48, 104, 208, 440] , groups_width=8 ),
'''regnet-y-006''': ImageNetPreTrainedConfig(
depths=[1, 3, 7, 4] , hidden_sizes=[48, 112, 256, 608] , groups_width=16 ),
'''regnet-y-008''': ImageNetPreTrainedConfig(
depths=[1, 3, 8, 2] , hidden_sizes=[64, 128, 320, 768] , groups_width=16 ),
'''regnet-y-016''': ImageNetPreTrainedConfig(
depths=[2, 6, 17, 2] , hidden_sizes=[48, 120, 336, 888] , groups_width=24 ),
'''regnet-y-032''': ImageNetPreTrainedConfig(
depths=[2, 5, 13, 1] , hidden_sizes=[72, 216, 576, 1_512] , groups_width=24 ),
'''regnet-y-040''': ImageNetPreTrainedConfig(
depths=[2, 6, 12, 2] , hidden_sizes=[128, 192, 512, 1_088] , groups_width=64 ),
'''regnet-y-064''': ImageNetPreTrainedConfig(
depths=[2, 7, 14, 2] , hidden_sizes=[144, 288, 576, 1_296] , groups_width=72 ),
'''regnet-y-080''': ImageNetPreTrainedConfig(
depths=[2, 4, 10, 1] , hidden_sizes=[168, 448, 896, 2_016] , groups_width=56 ),
'''regnet-y-120''': ImageNetPreTrainedConfig(
depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2_240] , groups_width=112 ),
'''regnet-y-160''': ImageNetPreTrainedConfig(
depths=[2, 4, 11, 1] , hidden_sizes=[224, 448, 1_232, 3_024] , groups_width=112 ),
'''regnet-y-320''': ImageNetPreTrainedConfig(
depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1_392, 3_712] , groups_width=232 ),
# models created by SEER -> https://arxiv.org/abs/2202.08360
'''regnet-y-320-seer''': RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1_392, 3_712] , groups_width=232 ),
'''regnet-y-640-seer''': RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1_968, 4_920] , groups_width=328 ),
'''regnet-y-1280-seer''': RegNetConfig(
depths=[2, 7, 17, 1] , hidden_sizes=[528, 1_056, 2_904, 7_392] , groups_width=264 ),
'''regnet-y-2560-seer''': RegNetConfig(
depths=[3, 7, 16, 1] , hidden_sizes=[640, 1_696, 2_544, 5_088] , groups_width=640 ),
'''regnet-y-10b-seer''': ImageNetPreTrainedConfig(
depths=[2, 7, 17, 1] , hidden_sizes=[2_020, 4_040, 11_110, 28_280] , groups_width=1_010 ),
# finetuned on imagenet
'''regnet-y-320-seer-in1k''': ImageNetPreTrainedConfig(
depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1_392, 3_712] , groups_width=232 ),
'''regnet-y-640-seer-in1k''': ImageNetPreTrainedConfig(
depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1_968, 4_920] , groups_width=328 ),
'''regnet-y-1280-seer-in1k''': ImageNetPreTrainedConfig(
depths=[2, 7, 17, 1] , hidden_sizes=[528, 1_056, 2_904, 7_392] , groups_width=264 ),
'''regnet-y-2560-seer-in1k''': ImageNetPreTrainedConfig(
depths=[3, 7, 16, 1] , hidden_sizes=[640, 1_696, 2_544, 5_088] , groups_width=640 ),
'''regnet-y-10b-seer-in1k''': ImageNetPreTrainedConfig(
depths=[2, 7, 17, 1] , hidden_sizes=[2_020, 4_040, 11_110, 28_280] , groups_width=1_010 ),
}
A_ : Dict = NameToOurModelFuncMap()
A_ : Optional[Any] = NameToFromModelFuncMap()
# add seer weights logic
def load_using_classy_vision(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple[nn.Module, Dict]:
A_ : List[Any] = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE , model_dir=str(SCREAMING_SNAKE_CASE ) , map_location='''cpu''' )
A_ : Optional[int] = model_func()
# check if we have a head, if yes add it
A_ : Dict = files['''classy_state_dict''']['''base_model''']['''model''']
A_ : List[str] = model_state_dict['''trunk''']
model.load_state_dict(SCREAMING_SNAKE_CASE )
return model.eval(), model_state_dict["heads"]
# pretrained
A_ : List[Any] = partial(
SCREAMING_SNAKE_CASE , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , )
A_ : List[Any] = partial(
SCREAMING_SNAKE_CASE , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , )
A_ : Tuple = partial(
SCREAMING_SNAKE_CASE , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , )
A_ : Optional[Any] = partial(
SCREAMING_SNAKE_CASE , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch''' , lambda: FakeRegNetVisslWrapper(
RegNet(RegNetParams(depth=27 , group_width=1_010 , w_a=1_744 , w_a=6_2_0.8_3 , w_m=2.5_2 ) ) ) , )
# IN1K finetuned
A_ : List[str] = partial(
SCREAMING_SNAKE_CASE , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , )
A_ : str = partial(
SCREAMING_SNAKE_CASE , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , )
A_ : Union[str, Any] = partial(
SCREAMING_SNAKE_CASE , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , )
A_ : Optional[int] = partial(
SCREAMING_SNAKE_CASE , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch''' , lambda: FakeRegNetVisslWrapper(
RegNet(RegNetParams(depth=27 , group_width=1_010 , w_a=1_744 , w_a=6_2_0.8_3 , w_m=2.5_2 ) ) ) , )
if model_name:
convert_weight_and_push(
SCREAMING_SNAKE_CASE , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , )
else:
for model_name, config in names_to_config.items():
convert_weight_and_push(
SCREAMING_SNAKE_CASE , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , )
return config, expected_shape
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default=None,
type=str,
help=(
"""The name of the model you wish to convert, it must be one of the supported regnet* architecture,"""
""" currently: regnetx-*, regnety-*. If `None`, all of them will the converted."""
),
)
parser.add_argument(
"""--pytorch_dump_folder_path""",
default=None,
type=Path,
required=True,
help="""Path to the output PyTorch model directory.""",
)
parser.add_argument(
"""--push_to_hub""",
default=True,
type=bool,
required=False,
help="""If True, push model and image processor to the hub.""",
)
UpperCamelCase = parser.parse_args()
UpperCamelCase = args.pytorch_dump_folder_path
pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True)
convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 186
|
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
convert_to_rgb,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
UpperCamelCase = logging.get_logger(__name__)
if is_vision_available():
import PIL
class _lowerCamelCase ( UpperCamelCase ):
"""simple docstring"""
snake_case = ["pixel_values"]
def __init__( self , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = PILImageResampling.BICUBIC , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = 1 / 255 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = True , **_SCREAMING_SNAKE_CASE , )->None:
'''simple docstring'''
super().__init__(**_SCREAMING_SNAKE_CASE )
A_ : Tuple = size if size is not None else {'''shortest_edge''': 224}
A_ : Any = get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE )
A_ : Tuple = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
A_ : Dict = get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE , param_name='''crop_size''' )
A_ : str = do_resize
A_ : Tuple = size
A_ : Optional[Any] = resample
A_ : Tuple = do_center_crop
A_ : List[Any] = crop_size
A_ : Optional[int] = do_rescale
A_ : Tuple = rescale_factor
A_ : Any = do_normalize
A_ : int = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
A_ : Any = image_std if image_std is not None else OPENAI_CLIP_STD
A_ : Any = do_convert_rgb
def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = PILImageResampling.BICUBIC , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , )->np.ndarray:
'''simple docstring'''
A_ : Dict = get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE )
if "shortest_edge" not in size:
raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' )
A_ : Any = get_resize_output_image_size(_SCREAMING_SNAKE_CASE , size=size['''shortest_edge'''] , default_to_square=_SCREAMING_SNAKE_CASE )
return resize(_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , )->np.ndarray:
'''simple docstring'''
A_ : str = get_size_dict(_SCREAMING_SNAKE_CASE )
if "height" not in size or "width" not in size:
raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' )
return center_crop(_SCREAMING_SNAKE_CASE , size=(size['''height'''], size['''width''']) , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , )->int:
'''simple docstring'''
return rescale(_SCREAMING_SNAKE_CASE , scale=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , )->np.ndarray:
'''simple docstring'''
return normalize(_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = ChannelDimension.FIRST , **_SCREAMING_SNAKE_CASE , )->PIL.Image.Image:
'''simple docstring'''
A_ : Optional[int] = do_resize if do_resize is not None else self.do_resize
A_ : int = size if size is not None else self.size
A_ : Optional[int] = get_size_dict(_SCREAMING_SNAKE_CASE , param_name='''size''' , default_to_square=_SCREAMING_SNAKE_CASE )
A_ : List[Any] = resample if resample is not None else self.resample
A_ : Any = do_center_crop if do_center_crop is not None else self.do_center_crop
A_ : List[str] = crop_size if crop_size is not None else self.crop_size
A_ : int = get_size_dict(_SCREAMING_SNAKE_CASE , param_name='''crop_size''' , default_to_square=_SCREAMING_SNAKE_CASE )
A_ : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale
A_ : int = rescale_factor if rescale_factor is not None else self.rescale_factor
A_ : int = do_normalize if do_normalize is not None else self.do_normalize
A_ : Tuple = image_mean if image_mean is not None else self.image_mean
A_ : Tuple = image_std if image_std is not None else self.image_std
A_ : List[str] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
A_ : Optional[int] = make_list_of_images(_SCREAMING_SNAKE_CASE )
if not valid_images(_SCREAMING_SNAKE_CASE ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
A_ : List[str] = [convert_to_rgb(_SCREAMING_SNAKE_CASE ) for image in images]
# All transformations expect numpy arrays.
A_ : int = [to_numpy_array(_SCREAMING_SNAKE_CASE ) for image in images]
if do_resize:
A_ : Tuple = [self.resize(image=_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE ) for image in images]
if do_center_crop:
A_ : Union[str, Any] = [self.center_crop(image=_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE ) for image in images]
if do_rescale:
A_ : Tuple = [self.rescale(image=_SCREAMING_SNAKE_CASE , scale=_SCREAMING_SNAKE_CASE ) for image in images]
if do_normalize:
A_ : List[Any] = [self.normalize(image=_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE ) for image in images]
A_ : str = [to_channel_dimension_format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for image in images]
A_ : Optional[Any] = {'''pixel_values''': images}
return BatchFeature(data=_SCREAMING_SNAKE_CASE , tensor_type=_SCREAMING_SNAKE_CASE )
| 186
| 1
|
'''simple docstring'''
UpperCamelCase_ : str = [
'''DownloadConfig''',
'''DownloadManager''',
'''DownloadMode''',
'''StreamingDownloadManager''',
]
from .download_config import DownloadConfig
from .download_manager import DownloadManager, DownloadMode
from .streaming_download_manager import StreamingDownloadManager
| 353
|
'''simple docstring'''
import argparse
import collections
import numpy as np
import torch
from flax import traverse_util
from tax import checkpoints
from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
def __a ( _UpperCamelCase: Dict , _UpperCamelCase: Optional[int] , _UpperCamelCase: List[str] ) -> Optional[Any]:
"""simple docstring"""
return params[F"""{prefix}/{prefix}/relpos_bias/rel_embedding"""][:, i, :]
def __a ( _UpperCamelCase: List[Any] , _UpperCamelCase: Optional[Any] , _UpperCamelCase: Dict , _UpperCamelCase: Optional[Any]="attention" ) -> Any:
"""simple docstring"""
_snake_case = _snake_case = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/key/kernel"""][:, i, :, :] )
_snake_case = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] )
_snake_case = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/out/kernel"""][:, i, :, :] )
_snake_case = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] )
_snake_case = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/query/kernel"""][:, i, :, :] )
_snake_case = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] )
_snake_case = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/value/kernel"""][:, i, :, :] )
_snake_case = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] )
return k, o, q, v
def __a ( _UpperCamelCase: Tuple , _UpperCamelCase: Optional[int] , _UpperCamelCase: Optional[int] , _UpperCamelCase: Optional[int]=False ) -> List[Any]:
"""simple docstring"""
if split_mlp_wi:
_snake_case = params[F"""{prefix}/{prefix}/mlp/wi_0/kernel"""][:, i, :]
_snake_case = params[F"""{prefix}/{prefix}/mlp/wi_1/kernel"""][:, i, :]
_snake_case = (wi_a, wi_a)
else:
_snake_case = params[F"""{prefix}/{prefix}/mlp/wi/kernel"""][:, i, :]
_snake_case = params[F"""{prefix}/{prefix}/mlp/wo/kernel"""][:, i, :]
return wi, wo
def __a ( _UpperCamelCase: Optional[int] , _UpperCamelCase: Dict , _UpperCamelCase: Union[str, Any] , _UpperCamelCase: Union[str, Any] ) -> List[Any]:
"""simple docstring"""
return params[F"""{prefix}/{prefix}/{layer_name}/scale"""][:, i]
def __a ( _UpperCamelCase: dict , *, _UpperCamelCase: int , _UpperCamelCase: bool , _UpperCamelCase: bool = False ) -> str:
"""simple docstring"""
_snake_case = traverse_util.flatten_dict(variables["target"] )
_snake_case = {"/".join(_UpperCamelCase ): v for k, v in old.items()}
# v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi
_snake_case = "encoder/encoder/mlp/wi_0/kernel" in old
print("Split MLP:" , _UpperCamelCase )
_snake_case = collections.OrderedDict()
# Shared embeddings.
_snake_case = old["token_embedder/embedding"]
# Encoder.
for i in range(_UpperCamelCase ):
# Block i, layer 0 (Self Attention).
_snake_case = tax_layer_norm_lookup(_UpperCamelCase , _UpperCamelCase , "encoder" , "pre_attention_layer_norm" )
_snake_case , _snake_case , _snake_case , _snake_case = tax_attention_lookup(_UpperCamelCase , _UpperCamelCase , "encoder" , "attention" )
_snake_case = layer_norm
_snake_case = k.T
_snake_case = o.T
_snake_case = q.T
_snake_case = v.T
# Block i, layer 1 (MLP).
_snake_case = tax_layer_norm_lookup(_UpperCamelCase , _UpperCamelCase , "encoder" , "pre_mlp_layer_norm" )
_snake_case , _snake_case = tax_mlp_lookup(_UpperCamelCase , _UpperCamelCase , "encoder" , _UpperCamelCase )
_snake_case = layer_norm
if split_mlp_wi:
_snake_case = wi[0].T
_snake_case = wi[1].T
else:
_snake_case = wi.T
_snake_case = wo.T
if scalable_attention:
# convert the rel_embedding of each layer
_snake_case = tax_relpos_bias_lookup(
_UpperCamelCase , _UpperCamelCase , "encoder" ).T
_snake_case = old["encoder/encoder_norm/scale"]
if not scalable_attention:
_snake_case = tax_relpos_bias_lookup(
_UpperCamelCase , 0 , "encoder" ).T
_snake_case = tax_relpos_bias_lookup(
_UpperCamelCase , 0 , "decoder" ).T
if not is_encoder_only:
# Decoder.
for i in range(_UpperCamelCase ):
# Block i, layer 0 (Self Attention).
_snake_case = tax_layer_norm_lookup(_UpperCamelCase , _UpperCamelCase , "decoder" , "pre_self_attention_layer_norm" )
_snake_case , _snake_case , _snake_case , _snake_case = tax_attention_lookup(_UpperCamelCase , _UpperCamelCase , "decoder" , "self_attention" )
_snake_case = layer_norm
_snake_case = k.T
_snake_case = o.T
_snake_case = q.T
_snake_case = v.T
# Block i, layer 1 (Cross Attention).
_snake_case = tax_layer_norm_lookup(_UpperCamelCase , _UpperCamelCase , "decoder" , "pre_cross_attention_layer_norm" )
_snake_case , _snake_case , _snake_case , _snake_case = tax_attention_lookup(_UpperCamelCase , _UpperCamelCase , "decoder" , "encoder_decoder_attention" )
_snake_case = layer_norm
_snake_case = k.T
_snake_case = o.T
_snake_case = q.T
_snake_case = v.T
# Block i, layer 2 (MLP).
_snake_case = tax_layer_norm_lookup(_UpperCamelCase , _UpperCamelCase , "decoder" , "pre_mlp_layer_norm" )
_snake_case , _snake_case = tax_mlp_lookup(_UpperCamelCase , _UpperCamelCase , "decoder" , _UpperCamelCase )
_snake_case = layer_norm
if split_mlp_wi:
_snake_case = wi[0].T
_snake_case = wi[1].T
else:
_snake_case = wi.T
_snake_case = wo.T
if scalable_attention:
# convert the rel_embedding of each layer
_snake_case = tax_relpos_bias_lookup(_UpperCamelCase , _UpperCamelCase , "decoder" ).T
_snake_case = old["decoder/decoder_norm/scale"]
# LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead)
if "decoder/logits_dense/kernel" in old:
_snake_case = old["decoder/logits_dense/kernel"].T
return new
def __a ( _UpperCamelCase: Any , _UpperCamelCase: bool ) -> Dict:
"""simple docstring"""
_snake_case = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] )
# Add what is missing.
if "encoder.embed_tokens.weight" not in state_dict:
_snake_case = state_dict["shared.weight"]
if not is_encoder_only:
if "decoder.embed_tokens.weight" not in state_dict:
_snake_case = state_dict["shared.weight"]
if "lm_head.weight" not in state_dict: # For old 1.0 models.
print("Using shared word embeddings as lm_head." )
_snake_case = state_dict["shared.weight"]
return state_dict
def __a ( _UpperCamelCase: str , _UpperCamelCase: List[str] , _UpperCamelCase: Any , _UpperCamelCase: str , _UpperCamelCase: List[Any] ) -> Dict:
"""simple docstring"""
_snake_case = checkpoints.load_tax_checkpoint(_UpperCamelCase )
_snake_case = convert_tax_to_pytorch(
_UpperCamelCase , num_layers=config.num_layers , is_encoder_only=_UpperCamelCase , scalable_attention=_UpperCamelCase )
_snake_case = make_state_dict(_UpperCamelCase , _UpperCamelCase )
model.load_state_dict(_UpperCamelCase , strict=_UpperCamelCase )
def __a ( _UpperCamelCase: Union[str, Any] , _UpperCamelCase: Union[str, Any] , _UpperCamelCase: Optional[Any] , _UpperCamelCase: bool = False , _UpperCamelCase: bool = False , ) -> Dict:
"""simple docstring"""
_snake_case = MTaConfig.from_json_file(_UpperCamelCase )
print(F"""Building PyTorch model from configuration: {config}""" )
# Non-v1.1 checkpoints could also use T5Model, but this works for all.
# The v1.0 checkpoints will simply have an LM head that is the word embeddings.
if is_encoder_only:
_snake_case = UMTaEncoderModel(_UpperCamelCase )
else:
_snake_case = UMTaForConditionalGeneration(_UpperCamelCase )
# Load weights from tf checkpoint
load_tax_weights_in_ta(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
# Save pytorch-model
print(F"""Save PyTorch model to {pytorch_dump_path}""" )
model.save_pretrained(_UpperCamelCase )
# Verify that we can load the checkpoint.
model.from_pretrained(_UpperCamelCase )
print("Done" )
if __name__ == "__main__":
UpperCamelCase_ : Any = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''')
# Required parameters
parser.add_argument(
'''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.'''
)
parser.add_argument(
'''--config_file''',
default=None,
type=str,
required=True,
help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''',
)
parser.add_argument(
'''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
parser.add_argument(
'''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False
)
parser.add_argument(
'''--scalable_attention''',
action='''store_true''',
help='''Whether the model uses scaled attention (umt5 model)''',
default=False,
)
UpperCamelCase_ : Union[str, Any] = parser.parse_args()
convert_tax_checkpoint_to_pytorch(
args.tax_checkpoint_path,
args.config_file,
args.pytorch_dump_path,
args.is_encoder_only,
args.scalable_attention,
)
| 142
| 0
|
'''simple docstring'''
from collections.abc import Iterable
from typing import Any
class lowerCAmelCase_ :
def __init__( self , _lowerCAmelCase = None ) -> Dict:
_lowerCAmelCase = value
_lowerCAmelCase = None # Added in order to delete a node easier
_lowerCAmelCase = None
_lowerCAmelCase = None
def __repr__( self ) -> str:
from pprint import pformat
if self.left is None and self.right is None:
return str(self.value )
return pformat({f'''{self.value}''': (self.left, self.right)} , indent=1 )
class lowerCAmelCase_ :
def __init__( self , _lowerCAmelCase = None ) -> Any:
_lowerCAmelCase = root
def __str__( self ) -> int:
return str(self.root )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Dict:
if new_children is not None: # reset its kids
_lowerCAmelCase = node.parent
if node.parent is not None: # reset its parent
if self.is_right(snake_case_ ): # If it is the right children
_lowerCAmelCase = new_children
else:
_lowerCAmelCase = new_children
else:
_lowerCAmelCase = new_children
def _snake_case ( self , _lowerCAmelCase ) -> int:
if node.parent and node.parent.right:
return node == node.parent.right
return False
def _snake_case ( self ) -> Union[str, Any]:
return self.root is None
def _snake_case ( self , _lowerCAmelCase ) -> List[Any]:
_lowerCAmelCase = Node(snake_case_ ) # create a new Node
if self.empty(): # if Tree is empty
_lowerCAmelCase = new_node # set its root
else: # Tree is not empty
_lowerCAmelCase = self.root # from root
if parent_node is None:
return
while True: # While we don't get to a leaf
if value < parent_node.value: # We go left
if parent_node.left is None:
_lowerCAmelCase = new_node # We insert the new node in a leaf
break
else:
_lowerCAmelCase = parent_node.left
else:
if parent_node.right is None:
_lowerCAmelCase = new_node
break
else:
_lowerCAmelCase = parent_node.right
_lowerCAmelCase = parent_node
def _snake_case ( self , *_lowerCAmelCase ) -> List[Any]:
for value in values:
self.__insert(snake_case_ )
def _snake_case ( self , _lowerCAmelCase ) -> List[str]:
if self.empty():
raise IndexError("Warning: Tree is empty! please use another." )
else:
_lowerCAmelCase = self.root
# use lazy evaluation here to avoid NoneType Attribute error
while node is not None and node.value is not value:
_lowerCAmelCase = node.left if value < node.value else node.right
return node
def _snake_case ( self , _lowerCAmelCase = None ) -> str:
if node is None:
if self.root is None:
return None
_lowerCAmelCase = self.root
if not self.empty():
while node.right is not None:
_lowerCAmelCase = node.right
return node
def _snake_case ( self , _lowerCAmelCase = None ) -> str:
if node is None:
_lowerCAmelCase = self.root
if self.root is None:
return None
if not self.empty():
_lowerCAmelCase = self.root
while node.left is not None:
_lowerCAmelCase = node.left
return node
def _snake_case ( self , _lowerCAmelCase ) -> Dict:
_lowerCAmelCase = self.search(snake_case_ ) # Look for the node with that label
if node is not None:
if node.left is None and node.right is None: # If it has no children
self.__reassign_nodes(snake_case_ , snake_case_ )
elif node.left is None: # Has only right children
self.__reassign_nodes(snake_case_ , node.right )
elif node.right is None: # Has only left children
self.__reassign_nodes(snake_case_ , node.left )
else:
_lowerCAmelCase = self.get_max(
node.left ) # Gets the max value of the left branch
self.remove(tmp_node.value ) # type: ignore
_lowerCAmelCase = (
tmp_node.value # type: ignore
) # Assigns the value to the node to delete and keep tree structure
def _snake_case ( self , _lowerCAmelCase ) -> Dict:
if node is not None:
yield node # Preorder Traversal
yield from self.preorder_traverse(node.left )
yield from self.preorder_traverse(node.right )
def _snake_case ( self , _lowerCAmelCase=None ) -> List[Any]:
if traversal_function is None:
return self.preorder_traverse(self.root )
else:
return traversal_function(self.root )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Tuple:
if node:
self.inorder(snake_case_ , node.left )
arr.append(node.value )
self.inorder(snake_case_ , node.right )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> List[str]:
_lowerCAmelCase = []
self.inorder(snake_case_ , snake_case_ ) # append all values to list using inorder traversal
return arr[k - 1]
def __a(SCREAMING_SNAKE_CASE_ : List[str] ):
'''simple docstring'''
_lowerCAmelCase = []
if curr_node is not None:
_lowerCAmelCase = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node]
return node_list
def __a():
'''simple docstring'''
_lowerCAmelCase = (8, 3, 6, 1, 10, 14, 13, 4, 7)
_lowerCAmelCase = BinarySearchTree()
for i in testlist:
t.insert(_UpperCAmelCase )
# Prints all the elements of the list in order traversal
print(_UpperCAmelCase )
if t.search(6 ) is not None:
print("The value 6 exists" )
else:
print("The value 6 doesn\'t exist" )
if t.search(-1 ) is not None:
print("The value -1 exists" )
else:
print("The value -1 doesn\'t exist" )
if not t.empty():
print("Max Value: " , t.get_max().value ) # type: ignore
print("Min Value: " , t.get_min().value ) # type: ignore
for i in testlist:
t.remove(_UpperCAmelCase )
print(_UpperCAmelCase )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 158
|
"""simple docstring"""
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class _UpperCAmelCase ( UpperCAmelCase__ ):
'''simple docstring'''
lowercase_ : Dict = ["""image_processor""", """tokenizer"""]
lowercase_ : Union[str, Any] = """ViltImageProcessor"""
lowercase_ : Any = ("""BertTokenizer""", """BertTokenizerFast""")
def __init__( self , snake_case_=None , snake_case_=None , **snake_case_ ):
"""simple docstring"""
A_ : Union[str, Any] = None
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.' , snake_case_ , )
A_ : Dict = kwargs.pop('feature_extractor' )
A_ : Dict = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
super().__init__(snake_case_ , snake_case_ )
A_ : List[str] = self.image_processor
def __call__( self , snake_case_ , snake_case_ = None , snake_case_ = True , snake_case_ = False , snake_case_ = None , snake_case_ = None , snake_case_ = 0 , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = False , snake_case_ = False , snake_case_ = False , snake_case_ = False , snake_case_ = True , snake_case_ = None , **snake_case_ , ):
"""simple docstring"""
A_ : str = self.tokenizer(
text=snake_case_ , add_special_tokens=snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , stride=snake_case_ , pad_to_multiple_of=snake_case_ , return_token_type_ids=snake_case_ , return_attention_mask=snake_case_ , return_overflowing_tokens=snake_case_ , return_special_tokens_mask=snake_case_ , return_offsets_mapping=snake_case_ , return_length=snake_case_ , verbose=snake_case_ , return_tensors=snake_case_ , **snake_case_ , )
# add pixel_values + pixel_mask
A_ : Optional[int] = self.image_processor(snake_case_ , return_tensors=snake_case_ )
encoding.update(snake_case_ )
return encoding
def lowerCamelCase_ ( self , *snake_case_ , **snake_case_ ):
"""simple docstring"""
return self.tokenizer.batch_decode(*snake_case_ , **snake_case_ )
def lowerCamelCase_ ( self , *snake_case_ , **snake_case_ ):
"""simple docstring"""
return self.tokenizer.decode(*snake_case_ , **snake_case_ )
@property
def lowerCamelCase_ ( self ):
"""simple docstring"""
A_ : Any = self.tokenizer.model_input_names
A_ : Any = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def lowerCamelCase_ ( self ):
"""simple docstring"""
warnings.warn(
'`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , snake_case_ , )
return self.image_processor_class
@property
def lowerCamelCase_ ( self ):
"""simple docstring"""
warnings.warn(
'`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , snake_case_ , )
return self.image_processor
| 286
| 0
|
"""simple docstring"""
import os
import posixpath
import uuid
from dataclasses import dataclass
from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union
import numpy as np
import pyarrow as pa
import datasets
from datasets.arrow_writer import ArrowWriter, ParquetWriter
from datasets.config import MAX_SHARD_SIZE
from datasets.filesystems import (
is_remote_filesystem,
rename,
)
from datasets.iterable_dataset import _BaseExamplesIterable
from datasets.utils.py_utils import convert_file_size_to_int
_UpperCAmelCase : List[Any] = datasets.utils.logging.get_logger(__name__)
if TYPE_CHECKING:
import pyspark
@dataclass
class lowercase ( datasets.BuilderConfig ):
__lowercase : Optional[datasets.Features] = None
def A ( lowercase , lowercase , ) -> Dict:
'''simple docstring'''
import pyspark
def generate_fn():
UpperCamelCase = df.select('*' , pyspark.sql.functions.spark_partition_id().alias('part_id' ) )
for partition_id in partition_order:
UpperCamelCase = df_with_partition_id.select('*' ).where(f'''part_id = {partition_id}''' ).drop('part_id' )
UpperCamelCase = partition_df.collect()
UpperCamelCase = 0
for row in rows:
yield f'''{partition_id}_{row_id}''', row.asDict()
row_id += 1
return generate_fn
class lowercase ( _BaseExamplesIterable ):
def __init__( self , A_ , A_=None , ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase = df
UpperCamelCase = partition_order or range(self.df.rdd.getNumPartitions() )
UpperCamelCase = _generate_iterable_examples(self.df , self.partition_order )
def __iter__( self ) -> Any:
"""simple docstring"""
yield from self.generate_examples_fn()
def __UpperCamelCase ( self , A_ ) -> "SparkExamplesIterable":
"""simple docstring"""
UpperCamelCase = list(range(self.df.rdd.getNumPartitions() ) )
generator.shuffle(A_ )
return SparkExamplesIterable(self.df , partition_order=A_ )
def __UpperCamelCase ( self , A_ , A_ ) -> "SparkExamplesIterable":
"""simple docstring"""
UpperCamelCase = self.split_shard_indices_by_worker(A_ , A_ )
return SparkExamplesIterable(self.df , partition_order=A_ )
@property
def __UpperCamelCase ( self ) -> int:
"""simple docstring"""
return len(self.partition_order )
class lowercase ( datasets.DatasetBuilder ):
__lowercase : int = SparkConfig
def __init__( self , A_ , A_ = None , A_ = None , **A_ , ) -> Any:
"""simple docstring"""
import pyspark
UpperCamelCase = pyspark.sql.SparkSession.builder.getOrCreate()
UpperCamelCase = df
UpperCamelCase = working_dir
super().__init__(
cache_dir=A_ , config_name=str(self.df.semanticHash() ) , **A_ , )
def __UpperCamelCase ( self ) -> Tuple:
"""simple docstring"""
# Returns the path of the created file.
def create_cache_and_write_probe(A_ ):
# makedirs with exist_ok will recursively create the directory. It will not throw an error if directories
# already exist.
os.makedirs(self._cache_dir , exist_ok=A_ )
UpperCamelCase = os.path.join(self._cache_dir , 'fs_test' + uuid.uuida().hex )
# Opening the file in append mode will create a new file unless it already exists, in which case it will not
# change the file contents.
open(A_ , 'a' )
return [probe_file]
if self._spark.conf.get('spark.master' , '' ).startswith('local' ):
return
# If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS
# accessible to the driver.
# TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error.
if self._cache_dir:
UpperCamelCase = (
self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(A_ ).collect()
)
if os.path.isfile(probe[0] ):
return
raise ValueError(
'When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir' )
def __UpperCamelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
return datasets.DatasetInfo(features=self.config.features )
def __UpperCamelCase ( self , A_ ) -> str:
"""simple docstring"""
return [datasets.SplitGenerator(name=datasets.Split.TRAIN )]
def __UpperCamelCase ( self , A_ ) -> Optional[Any]:
"""simple docstring"""
import pyspark
def get_arrow_batch_size(A_ ):
for batch in it:
yield pa.RecordBatch.from_pydict({'batch_bytes': [batch.nbytes]} )
UpperCamelCase = self.df.count()
UpperCamelCase = df_num_rows if df_num_rows <= 100 else 100
# Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample.
UpperCamelCase = (
self.df.limit(A_ )
.repartition(1 )
.mapInArrow(A_ , 'batch_bytes: long' )
.agg(pyspark.sql.functions.sum('batch_bytes' ).alias('sample_bytes' ) )
.collect()[0]
.sample_bytes
/ sample_num_rows
)
UpperCamelCase = approx_bytes_per_row * df_num_rows
if approx_total_size > max_shard_size:
# Make sure there is at least one row per partition.
UpperCamelCase = min(A_ , int(approx_total_size / max_shard_size ) )
UpperCamelCase = self.df.repartition(A_ )
def __UpperCamelCase ( self , A_ , A_ , A_ , ) -> Iterable[Tuple[int, bool, Union[int, tuple]]]:
"""simple docstring"""
import pyspark
UpperCamelCase = ParquetWriter if file_format == 'parquet' else ArrowWriter
UpperCamelCase = os.path.join(self._working_dir , os.path.basename(A_ ) ) if self._working_dir else fpath
UpperCamelCase = file_format == 'parquet'
# Define these so that we don't reference self in write_arrow, which will result in a pickling error due to
# pickling the SparkContext.
UpperCamelCase = self.config.features
UpperCamelCase = self._writer_batch_size
UpperCamelCase = self._fs.storage_options
def write_arrow(A_ ):
# Within the same SparkContext, no two task attempts will share the same attempt ID.
UpperCamelCase = pyspark.TaskContext().taskAttemptId()
UpperCamelCase = next(A_ , A_ )
if first_batch is None:
# Some partitions might not receive any data.
return pa.RecordBatch.from_arrays(
[[task_id], [0], [0]] , names=['task_id', 'num_examples', 'num_bytes'] , )
UpperCamelCase = 0
UpperCamelCase = writer_class(
features=A_ , path=working_fpath.replace('SSSSS' , F'''{shard_id:05d}''' ).replace('TTTTT' , F'''{task_id:05d}''' ) , writer_batch_size=A_ , storage_options=A_ , embed_local_files=A_ , )
UpperCamelCase = pa.Table.from_batches([first_batch] )
writer.write_table(A_ )
for batch in it:
if max_shard_size is not None and writer._num_bytes >= max_shard_size:
UpperCamelCase , UpperCamelCase = writer.finalize()
writer.close()
yield pa.RecordBatch.from_arrays(
[[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , )
shard_id += 1
UpperCamelCase = writer_class(
features=writer._features , path=working_fpath.replace('SSSSS' , F'''{shard_id:05d}''' ).replace('TTTTT' , F'''{task_id:05d}''' ) , writer_batch_size=A_ , storage_options=A_ , embed_local_files=A_ , )
UpperCamelCase = pa.Table.from_batches([batch] )
writer.write_table(A_ )
if writer._num_bytes > 0:
UpperCamelCase , UpperCamelCase = writer.finalize()
writer.close()
yield pa.RecordBatch.from_arrays(
[[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , )
if working_fpath != fpath:
for file in os.listdir(os.path.dirname(A_ ) ):
UpperCamelCase = os.path.join(os.path.dirname(A_ ) , os.path.basename(A_ ) )
shutil.move(A_ , A_ )
UpperCamelCase = (
self.df.mapInArrow(A_ , 'task_id: long, num_examples: long, num_bytes: long' )
.groupBy('task_id' )
.agg(
pyspark.sql.functions.sum('num_examples' ).alias('total_num_examples' ) , pyspark.sql.functions.sum('num_bytes' ).alias('total_num_bytes' ) , pyspark.sql.functions.count('num_bytes' ).alias('num_shards' ) , pyspark.sql.functions.collect_list('num_examples' ).alias('shard_lengths' ) , )
.collect()
)
for row in stats:
yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths)
def __UpperCamelCase ( self , A_ , A_ = "arrow" , A_ = None , A_ = None , **A_ , ) -> List[Any]:
"""simple docstring"""
self._validate_cache_dir()
UpperCamelCase = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE )
self._repartition_df_if_needed(A_ )
UpperCamelCase = not is_remote_filesystem(self._fs )
UpperCamelCase = os.path.join if is_local else posixpath.join
UpperCamelCase = '-TTTTT-SSSSS-of-NNNNN'
UpperCamelCase = F'''{self.name}-{split_generator.name}{SUFFIX}.{file_format}'''
UpperCamelCase = path_join(self._output_dir , A_ )
UpperCamelCase = 0
UpperCamelCase = 0
UpperCamelCase = 0
UpperCamelCase = []
UpperCamelCase = []
for task_id, content in self._prepare_split_single(A_ , A_ , A_ ):
(
(
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) ,
) = content
if num_bytes > 0:
total_num_examples += num_examples
total_num_bytes += num_bytes
total_shards += num_shards
task_id_and_num_shards.append((task_id, num_shards) )
all_shard_lengths.extend(A_ )
UpperCamelCase = total_num_examples
UpperCamelCase = total_num_bytes
# should rename everything at the end
logger.debug(F'''Renaming {total_shards} shards.''' )
if total_shards > 1:
UpperCamelCase = all_shard_lengths
# Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a
# pickling error due to pickling the SparkContext.
UpperCamelCase = self._fs
# use the -SSSSS-of-NNNNN pattern
def _rename_shard(
A_ , A_ , A_ , ):
rename(
A_ , fpath.replace('SSSSS' , F'''{shard_id:05d}''' ).replace('TTTTT' , F'''{task_id:05d}''' ) , fpath.replace('TTTTT-SSSSS' , F'''{global_shard_id:05d}''' ).replace('NNNNN' , F'''{total_shards:05d}''' ) , )
UpperCamelCase = []
UpperCamelCase = 0
for i in range(len(A_ ) ):
UpperCamelCase , UpperCamelCase = task_id_and_num_shards[i]
for shard_id in range(A_ ):
args.append([task_id, shard_id, global_shard_id] )
global_shard_id += 1
self._spark.sparkContext.parallelize(A_ , len(A_ ) ).map(lambda A_ : _rename_shard(*A_ ) ).collect()
else:
# don't use any pattern
UpperCamelCase = 0
UpperCamelCase = task_id_and_num_shards[0][0]
self._rename(
fpath.replace('SSSSS' , F'''{shard_id:05d}''' ).replace('TTTTT' , F'''{task_id:05d}''' ) , fpath.replace(A_ , '' ) , )
def __UpperCamelCase ( self , A_ , ) -> SparkExamplesIterable:
"""simple docstring"""
return SparkExamplesIterable(self.df )
| 361
|
import darl # noqa
import gym
import tqdm
from diffusers.experimental import ValueGuidedRLPipeline
_UpperCAmelCase : Optional[Any] = {
"n_samples": 64,
"horizon": 32,
"num_inference_steps": 20,
"n_guide_steps": 2, # can set to 0 for faster sampling, does not use value network
"scale_grad_by_std": True,
"scale": 0.1,
"eta": 0.0,
"t_grad_cutoff": 2,
"device": "cpu",
}
if __name__ == "__main__":
_UpperCAmelCase : int = "hopper-medium-v2"
_UpperCAmelCase : Tuple = gym.make(env_name)
_UpperCAmelCase : Any = ValueGuidedRLPipeline.from_pretrained(
"bglick13/hopper-medium-v2-value-function-hor32",
env=env,
)
env.seed(0)
_UpperCAmelCase : Optional[Any] = env.reset()
_UpperCAmelCase : Union[str, Any] = 0
_UpperCAmelCase : Union[str, Any] = 0
_UpperCAmelCase : Dict = 1_000
_UpperCAmelCase : Tuple = [obs.copy()]
try:
for t in tqdm.tqdm(range(T)):
# call the policy
_UpperCAmelCase : int = pipeline(obs, planning_horizon=32)
# execute action in environment
_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : List[Any] = env.step(denorm_actions)
_UpperCAmelCase : int = env.get_normalized_score(total_reward)
# update return
total_reward += reward
total_score += score
print(
F'''Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:'''
F''' {total_score}'''
)
# save observations for rendering
rollout.append(next_observation.copy())
_UpperCAmelCase : Union[str, Any] = next_observation
except KeyboardInterrupt:
pass
print(F'''Total reward: {total_reward}''')
| 110
| 0
|
"""simple docstring"""
import collections
import json
import math
import os
import re
import time
from fnmatch import fnmatch
from typing import Dict
import requests
from slack_sdk import WebClient
__A = WebClient(token=os.environ["CI_SLACK_BOT_TOKEN"])
def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Union[str, Any]:
lowercase__: List[str] = test_results.split(''' ''' )
lowercase__: Dict = 0
lowercase__: str = 0
# When the output is short enough, the output is surrounded by = signs: "== OUTPUT =="
# When it is too long, those signs are not present.
lowercase__: int = expressions[-2] if '''=''' in expressions[-1] else expressions[-1]
for i, expression in enumerate(lowerCAmelCase__ ):
if "failed" in expression:
failed += int(expressions[i - 1] )
if "passed" in expression:
success += int(expressions[i - 1] )
return failed, success, time_spent
def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> List[str]:
lowercase__: int = {}
lowercase__: Optional[Any] = None
lowercase__: Any = False
for line in failures_short_lines.split('''\n''' ):
if re.search(R'''_ \[doctest\]''' , lowerCAmelCase__ ):
lowercase__: Union[str, Any] = True
lowercase__: Union[str, Any] = line.split(''' ''' )[2]
elif in_error and not line.split(''' ''' )[0].isdigit():
lowercase__: Optional[Any] = line
lowercase__: List[Any] = False
return failures
class UpperCAmelCase :
"""simple docstring"""
def __init__( self , _UpperCAmelCase , _UpperCAmelCase ):
lowercase__: Union[str, Any] = title
lowercase__: Optional[Any] = doc_test_results['''time_spent'''].split(''',''' )[0]
lowercase__: Tuple = doc_test_results['''success''']
lowercase__: List[str] = doc_test_results['''failures''']
lowercase__: str = self.n_success + self.n_failures
# Failures and success of the modeling tests
lowercase__: Any = doc_test_results
@property
def _snake_case ( self ):
lowercase__: Dict = [self._time_spent]
lowercase__: Dict = 0
for time in time_spent:
lowercase__: List[str] = time.split(''':''' )
# Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute.
if len(snake_case_ ) == 1:
lowercase__: Optional[int] = [0, 0, time_parts[0]]
lowercase__: Optional[int] = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] )
total_secs += hours * 3600 + minutes * 60 + seconds
lowercase__: List[str] = total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60
return F"""{int(snake_case_ )}h{int(snake_case_ )}m{int(snake_case_ )}s"""
@property
def _snake_case ( self ):
return {"type": "header", "text": {"type": "plain_text", "text": self.title}}
@property
def _snake_case ( self ):
return {
"type": "section",
"text": {
"type": "plain_text",
"text": F"""🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.""",
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": F"""https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}""",
},
}
@property
def _snake_case ( self ):
return {
"type": "section",
"text": {
"type": "plain_text",
"text": (
F"""There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in"""
F""" {self.time}."""
),
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": F"""https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}""",
},
}
@property
def _snake_case ( self ):
lowercase__: List[str] = 40
lowercase__: List[str] = {k: v['''failed'''] for k, v in doc_test_results.items() if isinstance(snake_case_ , snake_case_ )}
lowercase__: int = ''''''
for category, failures in category_failures.items():
if len(snake_case_ ) == 0:
continue
if report != "":
report += "\n\n"
report += F"""*{category} failures*:""".ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n"
report += "`"
report += "`\n`".join(snake_case_ )
report += "`"
return {
"type": "section",
"text": {
"type": "mrkdwn",
"text": F"""The following examples had failures:\n\n\n{report}\n""",
},
}
@property
def _snake_case ( self ):
lowercase__: List[Any] = [self.header]
if self.n_failures > 0:
blocks.append(self.failures )
if self.n_failures > 0:
blocks.extend([self.category_failures] )
if self.n_failures == 0:
blocks.append(self.no_failures )
return json.dumps(snake_case_ )
@staticmethod
def _snake_case ( ):
lowercase__: Optional[int] = [
{
'''type''': '''section''',
'''text''': {
'''type''': '''plain_text''',
'''text''': '''There was an issue running the tests.''',
},
'''accessory''': {
'''type''': '''button''',
'''text''': {'''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True},
'''url''': F"""https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}""",
},
}
]
print('''Sending the following payload''' )
print(json.dumps({'''blocks''': json.loads(snake_case_ )} ) )
client.chat_postMessage(
channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , text='''There was an issue running the tests.''' , blocks=snake_case_ , )
def _snake_case ( self ):
print('''Sending the following payload''' )
print(json.dumps({'''blocks''': json.loads(self.payload )} ) )
lowercase__: Any = F"""{self.n_failures} failures out of {self.n_tests} tests,""" if self.n_failures else '''All tests passed.'''
lowercase__: Dict = client.chat_postMessage(
channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , blocks=self.payload , text=snake_case_ , )
def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
lowercase__: List[str] = ''''''
for key, value in failures.items():
lowercase__: Any = value[:200] + ''' [Truncated]''' if len(snake_case_ ) > 250 else value
failures_text += F"""*{key}*\n_{value}_\n\n"""
lowercase__: Dict = job_name
lowercase__: Dict = {'''type''': '''section''', '''text''': {'''type''': '''mrkdwn''', '''text''': text}}
if job_link is not None:
lowercase__: List[str] = {
'''type''': '''button''',
'''text''': {'''type''': '''plain_text''', '''text''': '''GitHub Action job''', '''emoji''': True},
'''url''': job_link,
}
return [
{"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}},
content,
{"type": "section", "text": {"type": "mrkdwn", "text": failures_text}},
]
def _snake_case ( self ):
if self.thread_ts is None:
raise ValueError('''Can only post reply if a post has been made.''' )
lowercase__: Any = self.doc_test_results.pop('''job_link''' )
self.doc_test_results.pop('''failures''' )
self.doc_test_results.pop('''success''' )
self.doc_test_results.pop('''time_spent''' )
lowercase__: str = sorted(self.doc_test_results.items() , key=lambda _UpperCAmelCase : t[0] )
for job, job_result in sorted_dict:
if len(job_result['''failures'''] ):
lowercase__: Optional[Any] = F"""*Num failures* :{len(job_result['failed'] )} \n"""
lowercase__: List[Any] = job_result['''failures''']
lowercase__: int = self.get_reply_blocks(snake_case_ , snake_case_ , snake_case_ , text=snake_case_ )
print('''Sending the following reply''' )
print(json.dumps({'''blocks''': blocks} ) )
client.chat_postMessage(
channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , text=F"""Results for {job}""" , blocks=snake_case_ , thread_ts=self.thread_ts['''ts'''] , )
time.sleep(1 )
def SCREAMING_SNAKE_CASE__ ( ) -> Optional[Any]:
lowercase__: int = os.environ['''GITHUB_RUN_ID''']
lowercase__: Union[str, Any] = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100"""
lowercase__: Optional[int] = requests.get(lowerCAmelCase__ ).json()
lowercase__: List[Any] = {}
try:
jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} )
lowercase__: Optional[Any] = math.ceil((result['''total_count'''] - 1_0_0) / 1_0_0 )
for i in range(lowerCAmelCase__ ):
lowercase__: Any = requests.get(url + F"""&page={i + 2}""" ).json()
jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} )
return jobs
except Exception as e:
print('''Unknown error, could not fetch links.''' , lowerCAmelCase__ )
return {}
def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Dict:
lowercase__: int = {}
if os.path.exists(lowerCAmelCase__ ):
lowercase__: List[Any] = os.listdir(lowerCAmelCase__ )
for file in files:
try:
with open(os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) , encoding='''utf-8''' ) as f:
lowercase__: Optional[Any] = f.read()
except UnicodeDecodeError as e:
raise ValueError(F"""Could not open {os.path.join(lowerCAmelCase__ , lowerCAmelCase__ )}.""" ) from e
return _artifact
def SCREAMING_SNAKE_CASE__ ( ) -> Optional[Any]:
class UpperCAmelCase :
"""simple docstring"""
def __init__( self , _UpperCAmelCase ):
lowercase__: Optional[int] = name
lowercase__: int = []
def __str__( self ):
return self.name
def _snake_case ( self , _UpperCAmelCase ):
self.paths.append({'''name''': self.name, '''path''': path} )
lowercase__: Dict[str, Artifact] = {}
lowercase__: Tuple = filter(os.path.isdir , os.listdir() )
for directory in directories:
lowercase__: Tuple = directory
if artifact_name not in _available_artifacts:
lowercase__: str = Artifact(lowerCAmelCase__ )
_available_artifacts[artifact_name].add_path(lowerCAmelCase__ )
return _available_artifacts
if __name__ == "__main__":
__A = get_job_links()
__A = retrieve_available_artifacts()
__A = collections.OrderedDict(
[
("*.py", "API Examples"),
("*.md", "MD Examples"),
]
)
# This dict will contain all the information relative to each doc test category:
# - failed: list of failed tests
# - failures: dict in the format 'test': 'error_message'
__A = {
v: {
"failed": [],
"failures": {},
}
for v in docs.values()
}
# Link to the GitHub Action job
__A = github_actions_job_links.get("run_doctests")
__A = available_artifacts["doc_tests_gpu_test_reports"].paths[0]
__A = retrieve_artifact(artifact_path["name"])
if "stats" in artifact:
__A ,__A ,__A = handle_test_results(artifact["stats"])
__A = failed
__A = success
__A = time_spent[1:-1] + ", "
__A = extract_first_line_failure(artifact["failures_short"])
for line in artifact["summary_short"].split("\n"):
if re.search("FAILED", line):
__A = line.replace("FAILED ", "")
__A = line.split()[0].replace("\n", "")
if "::" in line:
__A ,__A = line.split("::")
else:
__A ,__A = line, line
for file_regex in docs.keys():
if fnmatch(file_path, file_regex):
__A = docs[file_regex]
doc_test_results[category]["failed"].append(test)
__A = all_failures[test] if test in all_failures else "N/A"
__A = failure
break
__A = Message("🤗 Results of the doc tests.", doc_test_results)
message.post()
message.post_reply()
| 177
|
import argparse
import requests
import torch
from PIL import Image
from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel
def __UpperCamelCase ( lowerCAmelCase__ : Any ):
# vision encoder
if "img_encoder.pos_embed" in name:
__a : Any = name.replace('''img_encoder.pos_embed''' , '''vision_model.embeddings.position_embeddings''' )
if "img_encoder.patch_embed.proj" in name:
__a : str = name.replace('''img_encoder.patch_embed.proj''' , '''vision_model.embeddings.patch_embeddings.projection''' )
if "img_encoder.patch_embed.norm" in name:
__a : int = name.replace('''img_encoder.patch_embed.norm''' , '''vision_model.embeddings.layernorm''' )
if "img_encoder.layers" in name:
__a : Union[str, Any] = name.replace('''img_encoder.layers''' , '''vision_model.encoder.stages''' )
if "blocks" in name and "res" not in name:
__a : List[Any] = name.replace('''blocks''' , '''layers''' )
if "attn" in name and "pre_assign" not in name:
__a : Tuple = name.replace('''attn''' , '''self_attn''' )
if "proj" in name and "self_attn" in name and "text" not in name:
__a : List[Any] = name.replace('''proj''' , '''out_proj''' )
if "pre_assign_attn.attn.proj" in name:
__a : Any = name.replace('''pre_assign_attn.attn.proj''' , '''pre_assign_attn.attn.out_proj''' )
if "norm1" in name:
__a : Union[str, Any] = name.replace('''norm1''' , '''layer_norm1''' )
if "norm2" in name and "pre_assign" not in name:
__a : Optional[int] = name.replace('''norm2''' , '''layer_norm2''' )
if "img_encoder.norm" in name:
__a : Union[str, Any] = name.replace('''img_encoder.norm''' , '''vision_model.layernorm''' )
# text encoder
if "text_encoder.token_embedding" in name:
__a : List[Any] = name.replace('''text_encoder.token_embedding''' , '''text_model.embeddings.token_embedding''' )
if "text_encoder.positional_embedding" in name:
__a : Any = name.replace('''text_encoder.positional_embedding''' , '''text_model.embeddings.position_embedding.weight''' )
if "text_encoder.transformer.resblocks." in name:
__a : Any = name.replace('''text_encoder.transformer.resblocks.''' , '''text_model.encoder.layers.''' )
if "ln_1" in name:
__a : str = name.replace('''ln_1''' , '''layer_norm1''' )
if "ln_2" in name:
__a : Union[str, Any] = name.replace('''ln_2''' , '''layer_norm2''' )
if "c_fc" in name:
__a : Union[str, Any] = name.replace('''c_fc''' , '''fc1''' )
if "c_proj" in name:
__a : Union[str, Any] = name.replace('''c_proj''' , '''fc2''' )
if "text_encoder" in name:
__a : Optional[int] = name.replace('''text_encoder''' , '''text_model''' )
if "ln_final" in name:
__a : str = name.replace('''ln_final''' , '''final_layer_norm''' )
# projection layers
if "img_projector.linear_hidden." in name:
__a : List[str] = name.replace('''img_projector.linear_hidden.''' , '''visual_projection.''' )
if "img_projector.linear_out." in name:
__a : str = name.replace('''img_projector.linear_out.''' , '''visual_projection.3.''' )
if "text_projector.linear_hidden" in name:
__a : int = name.replace('''text_projector.linear_hidden''' , '''text_projection''' )
if "text_projector.linear_out" in name:
__a : List[str] = name.replace('''text_projector.linear_out''' , '''text_projection.3''' )
return name
def __UpperCamelCase ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple ):
for key in orig_state_dict.copy().keys():
__a : List[Any] = orig_state_dict.pop(lowerCAmelCase__ )
if "qkv" in key:
# weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment:
# we need to split them up into separate matrices/vectors
__a : Tuple = key.split('''.''' )
__a , __a : List[Any] = int(key_split[2] ), int(key_split[4] )
__a : List[Any] = config.vision_config.hidden_size
if "weight" in key:
__a : int = val[:dim, :]
__a : List[str] = val[dim : dim * 2, :]
__a : List[Any] = val[-dim:, :]
else:
__a : List[str] = val[:dim]
__a : int = val[dim : dim * 2]
__a : Any = val[-dim:]
elif "in_proj" in key:
# weights and biases of the key, value and query projections of text encoder's attention layers require special treatment:
# we need to split them up into separate matrices/vectors
__a : int = key.split('''.''' )
__a : str = int(key_split[3] )
__a : List[Any] = config.text_config.hidden_size
if "weight" in key:
__a : List[str] = val[:dim, :]
__a : Any = val[
dim : dim * 2, :
]
__a : Dict = val[-dim:, :]
else:
__a : List[str] = val[:dim]
__a : Any = val[dim : dim * 2]
__a : Any = val[-dim:]
else:
__a : Union[str, Any] = rename_key(lowerCAmelCase__ )
# squeeze if necessary
if (
"text_projection.0" in new_name
or "text_projection.3" in new_name
or "visual_projection.0" in new_name
or "visual_projection.3" in new_name
):
__a : List[Any] = val.squeeze_()
else:
__a : Dict = val
return orig_state_dict
def __UpperCamelCase ( ):
__a : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
__a : str = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw )
return im
@torch.no_grad()
def __UpperCamelCase ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any]="groupvit-gcc-yfcc" , lowerCAmelCase__ : int=False ):
__a : Union[str, Any] = GroupViTConfig()
__a : int = GroupViTModel(lowerCAmelCase__ ).eval()
__a : Any = torch.load(lowerCAmelCase__ , map_location='''cpu''' )['''model''']
__a : Optional[Any] = convert_state_dict(lowerCAmelCase__ , lowerCAmelCase__ )
__a , __a : Dict = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ )
assert missing_keys == ["text_model.embeddings.position_ids"]
assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowerCAmelCase__ ) == 0)
# verify result
__a : Any = CLIPProcessor.from_pretrained('''openai/clip-vit-base-patch32''' )
__a : Optional[Any] = prepare_img()
__a : Optional[int] = processor(text=['''a photo of a cat''', '''a photo of a dog'''] , images=lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors='''pt''' )
with torch.no_grad():
__a : Tuple = model(**lowerCAmelCase__ )
if model_name == "groupvit-gcc-yfcc":
__a : List[str] = torch.tensor([[13.35_23, 6.36_29]] )
elif model_name == "groupvit-gcc-redcaps":
__a : List[str] = torch.tensor([[16.18_73, 8.62_30]] )
else:
raise ValueError(f"Model name {model_name} not supported." )
assert torch.allclose(outputs.logits_per_image , lowerCAmelCase__ , atol=1e-3 )
processor.save_pretrained(lowerCAmelCase__ )
model.save_pretrained(lowerCAmelCase__ )
print('''Successfully saved processor and model to''' , lowerCAmelCase__ )
if push_to_hub:
print('''Pushing to the hub...''' )
processor.push_to_hub(lowerCAmelCase__ , organization='''nielsr''' )
model.push_to_hub(lowerCAmelCase__ , organization='''nielsr''' )
if __name__ == "__main__":
lowercase__ =argparse.ArgumentParser()
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to dump the processor and PyTorch model.'
)
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to GroupViT checkpoint')
parser.add_argument(
'--model_name',
default='groupvit-gccy-fcc',
type=str,
help='Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'',
)
parser.add_argument(
'--push_to_hub',
action='store_true',
help='Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.',
)
lowercase__ =parser.parse_args()
convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 216
| 0
|
import math
from typing import Any, Callable, List, Optional, Tuple, Union
import numpy as np
import torch
from ...models import TaFilmDecoder
from ...schedulers import DDPMScheduler
from ...utils import is_onnx_available, logging, randn_tensor
if is_onnx_available():
from ..onnx_utils import OnnxRuntimeModel
from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline
from .continous_encoder import SpectrogramContEncoder
from .notes_encoder import SpectrogramNotesEncoder
UpperCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name
UpperCAmelCase_ = 256
class lowerCamelCase__( __lowerCamelCase):
UpperCAmelCase__ : Union[str, Any] = ['melgan']
def __init__( self: Optional[Any] , UpperCamelCase_: SpectrogramNotesEncoder , UpperCamelCase_: SpectrogramContEncoder , UpperCamelCase_: TaFilmDecoder , UpperCamelCase_: DDPMScheduler , UpperCamelCase_: OnnxRuntimeModel if is_onnx_available() else Any , ):
super().__init__()
# From MELGAN
__lowerCamelCase = math.log(1E-5 ) # Matches MelGAN training.
__lowerCamelCase = 4.0 # Largest value for most examples
__lowerCamelCase = 1_28
self.register_modules(
notes_encoder=UpperCamelCase_ , continuous_encoder=UpperCamelCase_ , decoder=UpperCamelCase_ , scheduler=UpperCamelCase_ , melgan=UpperCamelCase_ , )
def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Tuple , UpperCamelCase_: int=(-1.0, 1.0) , UpperCamelCase_: Union[str, Any]=False ):
__lowerCamelCase, __lowerCamelCase = output_range
if clip:
__lowerCamelCase = torch.clip(UpperCamelCase_ , self.min_value , self.max_value )
# Scale to [0, 1].
__lowerCamelCase = (features - self.min_value) / (self.max_value - self.min_value)
# Scale to [min_out, max_out].
return zero_one * (max_out - min_out) + min_out
def lowerCAmelCase__ ( self: int , UpperCamelCase_: Optional[int] , UpperCamelCase_: List[Any]=(-1.0, 1.0) , UpperCamelCase_: Dict=False ):
__lowerCamelCase, __lowerCamelCase = input_range
__lowerCamelCase = torch.clip(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if clip else outputs
# Scale to [0, 1].
__lowerCamelCase = (outputs - min_out) / (max_out - min_out)
# Scale to [self.min_value, self.max_value].
return zero_one * (self.max_value - self.min_value) + self.min_value
def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: Any , UpperCamelCase_: Any , UpperCamelCase_: Dict ):
__lowerCamelCase = input_tokens > 0
__lowerCamelCase, __lowerCamelCase = self.notes_encoder(
encoder_input_tokens=UpperCamelCase_ , encoder_inputs_mask=UpperCamelCase_ )
__lowerCamelCase, __lowerCamelCase = self.continuous_encoder(
encoder_inputs=UpperCamelCase_ , encoder_inputs_mask=UpperCamelCase_ )
return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)]
def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: str , UpperCamelCase_: Dict , UpperCamelCase_: Optional[int] ):
__lowerCamelCase = noise_time
if not torch.is_tensor(UpperCamelCase_ ):
__lowerCamelCase = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device )
elif torch.is_tensor(UpperCamelCase_ ) and len(timesteps.shape ) == 0:
__lowerCamelCase = timesteps[None].to(input_tokens.device )
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
__lowerCamelCase = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device )
__lowerCamelCase = self.decoder(
encodings_and_masks=UpperCamelCase_ , decoder_input_tokens=UpperCamelCase_ , decoder_noise_time=UpperCamelCase_ )
return logits
@torch.no_grad()
def __call__( self: List[Any] , UpperCamelCase_: List[List[int]] , UpperCamelCase_: Optional[torch.Generator] = None , UpperCamelCase_: int = 1_00 , UpperCamelCase_: bool = True , UpperCamelCase_: str = "numpy" , UpperCamelCase_: Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCamelCase_: int = 1 , ):
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(UpperCamelCase_ , UpperCamelCase_ ) or callback_steps <= 0)
):
raise ValueError(
F'`callback_steps` has to be a positive integer but is {callback_steps} of type'
F' {type(UpperCamelCase_ )}.' )
__lowerCamelCase = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa )
__lowerCamelCase = np.zeros([1, 0, self.n_dims] , np.floataa )
__lowerCamelCase = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=UpperCamelCase_ , device=self.device )
for i, encoder_input_tokens in enumerate(UpperCamelCase_ ):
if i == 0:
__lowerCamelCase = torch.from_numpy(pred_mel[:1].copy() ).to(
device=self.device , dtype=self.decoder.dtype )
# The first chunk has no previous context.
__lowerCamelCase = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=UpperCamelCase_ , device=self.device )
else:
# The full song pipeline does not feed in a context feature, so the mask
# will be all 0s after the feature converter. Because we know we're
# feeding in a full context chunk from the previous prediction, set it
# to all 1s.
__lowerCamelCase = ones
__lowerCamelCase = self.scale_features(
UpperCamelCase_ , output_range=[-1.0, 1.0] , clip=UpperCamelCase_ )
__lowerCamelCase = self.encode(
input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=UpperCamelCase_ , continuous_mask=UpperCamelCase_ , )
# Sample encoder_continuous_inputs shaped gaussian noise to begin loop
__lowerCamelCase = randn_tensor(
shape=encoder_continuous_inputs.shape , generator=UpperCamelCase_ , device=self.device , dtype=self.decoder.dtype , )
# set step values
self.scheduler.set_timesteps(UpperCamelCase_ )
# Denoising diffusion loop
for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ):
__lowerCamelCase = self.decode(
encodings_and_masks=UpperCamelCase_ , input_tokens=UpperCamelCase_ , noise_time=t / self.scheduler.config.num_train_timesteps , )
# Compute previous output: x_t -> x_t-1
__lowerCamelCase = self.scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample
__lowerCamelCase = self.scale_to_features(UpperCamelCase_ , input_range=[-1.0, 1.0] )
__lowerCamelCase = mel[:1]
__lowerCamelCase = mel.cpu().float().numpy()
__lowerCamelCase = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 )
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(UpperCamelCase_ , UpperCamelCase_ )
logger.info("""Generated segment""" , UpperCamelCase_ )
if output_type == "numpy" and not is_onnx_available():
raise ValueError(
"""Cannot return output in 'np' format if ONNX is not available. Make sure to have ONNX installed or set 'output_type' to 'mel'.""" )
elif output_type == "numpy" and self.melgan is None:
raise ValueError(
"""Cannot return output in 'np' format if melgan component is not defined. Make sure to define `self.melgan` or set 'output_type' to 'mel'.""" )
if output_type == "numpy":
__lowerCamelCase = self.melgan(input_features=full_pred_mel.astype(np.floataa ) )
else:
__lowerCamelCase = full_pred_mel
if not return_dict:
return (output,)
return AudioPipelineOutput(audios=UpperCamelCase_ )
| 370
|
import string
import numpy
def lowerCamelCase__ ( A__ : int , A__ : int ):
'''simple docstring'''
return b if a == 0 else greatest_common_divisor(b % a , A__ )
class lowerCamelCase__:
UpperCAmelCase__ : Optional[int] = string.ascii_uppercase + string.digits
# This cipher takes alphanumerics into account
# i.e. a total of 36 characters
# take x and return x % len(key_string)
UpperCAmelCase__ : Optional[int] = numpy.vectorize(lambda __lowerCamelCase: x % 36)
UpperCAmelCase__ : List[Any] = numpy.vectorize(__lowerCamelCase)
def __init__( self: List[Any] , UpperCamelCase_: numpy.ndarray ):
__lowerCamelCase = self.modulus(UpperCamelCase_ ) # mod36 calc's on the encrypt key
self.check_determinant() # validate the determinant of the encryption key
__lowerCamelCase = encrypt_key.shape[0]
def lowerCAmelCase__ ( self: str , UpperCamelCase_: str ):
return self.key_string.index(UpperCamelCase_ )
def lowerCAmelCase__ ( self: str , UpperCamelCase_: int ):
return self.key_string[round(UpperCamelCase_ )]
def lowerCAmelCase__ ( self: Tuple ):
__lowerCamelCase = round(numpy.linalg.det(self.encrypt_key ) )
if det < 0:
__lowerCamelCase = det % len(self.key_string )
__lowerCamelCase = len(self.key_string )
if greatest_common_divisor(UpperCamelCase_ , len(self.key_string ) ) != 1:
__lowerCamelCase = (
F'determinant modular {req_l} of encryption key({det}) '
F'is not co prime w.r.t {req_l}.\nTry another key.'
)
raise ValueError(UpperCamelCase_ )
def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: str ):
__lowerCamelCase = [char for char in text.upper() if char in self.key_string]
__lowerCamelCase = chars[-1]
while len(UpperCamelCase_ ) % self.break_key != 0:
chars.append(UpperCamelCase_ )
return "".join(UpperCamelCase_ )
def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: str ):
__lowerCamelCase = self.process_text(text.upper() )
__lowerCamelCase = """"""
for i in range(0 , len(UpperCamelCase_ ) - self.break_key + 1 , self.break_key ):
__lowerCamelCase = text[i : i + self.break_key]
__lowerCamelCase = [self.replace_letters(UpperCamelCase_ ) for char in batch]
__lowerCamelCase = numpy.array([vec] ).T
__lowerCamelCase = self.modulus(self.encrypt_key.dot(UpperCamelCase_ ) ).T.tolist()[
0
]
__lowerCamelCase = """""".join(
self.replace_digits(UpperCamelCase_ ) for num in batch_encrypted )
encrypted += encrypted_batch
return encrypted
def lowerCAmelCase__ ( self: List[str] ):
__lowerCamelCase = round(numpy.linalg.det(self.encrypt_key ) )
if det < 0:
__lowerCamelCase = det % len(self.key_string )
__lowerCamelCase = None
for i in range(len(self.key_string ) ):
if (det * i) % len(self.key_string ) == 1:
__lowerCamelCase = i
break
__lowerCamelCase = (
det_inv
* numpy.linalg.det(self.encrypt_key )
* numpy.linalg.inv(self.encrypt_key )
)
return self.to_int(self.modulus(UpperCamelCase_ ) )
def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: str ):
__lowerCamelCase = self.make_decrypt_key()
__lowerCamelCase = self.process_text(text.upper() )
__lowerCamelCase = """"""
for i in range(0 , len(UpperCamelCase_ ) - self.break_key + 1 , self.break_key ):
__lowerCamelCase = text[i : i + self.break_key]
__lowerCamelCase = [self.replace_letters(UpperCamelCase_ ) for char in batch]
__lowerCamelCase = numpy.array([vec] ).T
__lowerCamelCase = self.modulus(decrypt_key.dot(UpperCamelCase_ ) ).T.tolist()[0]
__lowerCamelCase = """""".join(
self.replace_digits(UpperCamelCase_ ) for num in batch_decrypted )
decrypted += decrypted_batch
return decrypted
def lowerCamelCase__ ( ):
'''simple docstring'''
__lowerCamelCase = int(input("""Enter the order of the encryption key: """ ) )
__lowerCamelCase = []
print("""Enter each row of the encryption key with space separated integers""" )
for _ in range(A__ ):
__lowerCamelCase = [int(A__ ) for x in input().split()]
hill_matrix.append(A__ )
__lowerCamelCase = HillCipher(numpy.array(A__ ) )
print("""Would you like to encrypt or decrypt some text? (1 or 2)""" )
__lowerCamelCase = input("""\n1. Encrypt\n2. Decrypt\n""" )
if option == "1":
__lowerCamelCase = input("""What text would you like to encrypt?: """ )
print("""Your encrypted text is:""" )
print(hc.encrypt(A__ ) )
elif option == "2":
__lowerCamelCase = input("""What text would you like to decrypt?: """ )
print("""Your decrypted text is:""" )
print(hc.decrypt(A__ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 29
| 0
|
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_A = {
'''configuration_megatron_bert''': ['''MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegatronBertConfig'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A = [
'''MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''MegatronBertForCausalLM''',
'''MegatronBertForMaskedLM''',
'''MegatronBertForMultipleChoice''',
'''MegatronBertForNextSentencePrediction''',
'''MegatronBertForPreTraining''',
'''MegatronBertForQuestionAnswering''',
'''MegatronBertForSequenceClassification''',
'''MegatronBertForTokenClassification''',
'''MegatronBertModel''',
'''MegatronBertPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_megatron_bert import (
MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
MegatronBertForCausalLM,
MegatronBertForMaskedLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
MegatronBertModel,
MegatronBertPreTrainedModel,
)
else:
import sys
_A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 122
|
import argparse
import io
import requests
import torch
from omegaconf import OmegaConf
from diffusers import AutoencoderKL
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import (
assign_to_checkpoint,
conv_attn_to_linear,
create_vae_diffusers_config,
renew_vae_attention_paths,
renew_vae_resnet_paths,
)
def lowerCamelCase__ ( a__ : Any , a__ : Union[str, Any] ) -> int:
UpperCamelCase_ = checkpoint
UpperCamelCase_ = {}
UpperCamelCase_ = vae_state_dict["""encoder.conv_in.weight"""]
UpperCamelCase_ = vae_state_dict["""encoder.conv_in.bias"""]
UpperCamelCase_ = vae_state_dict["""encoder.conv_out.weight"""]
UpperCamelCase_ = vae_state_dict["""encoder.conv_out.bias"""]
UpperCamelCase_ = vae_state_dict["""encoder.norm_out.weight"""]
UpperCamelCase_ = vae_state_dict["""encoder.norm_out.bias"""]
UpperCamelCase_ = vae_state_dict["""decoder.conv_in.weight"""]
UpperCamelCase_ = vae_state_dict["""decoder.conv_in.bias"""]
UpperCamelCase_ = vae_state_dict["""decoder.conv_out.weight"""]
UpperCamelCase_ = vae_state_dict["""decoder.conv_out.bias"""]
UpperCamelCase_ = vae_state_dict["""decoder.norm_out.weight"""]
UpperCamelCase_ = vae_state_dict["""decoder.norm_out.bias"""]
UpperCamelCase_ = vae_state_dict["""quant_conv.weight"""]
UpperCamelCase_ = vae_state_dict["""quant_conv.bias"""]
UpperCamelCase_ = vae_state_dict["""post_quant_conv.weight"""]
UpperCamelCase_ = vae_state_dict["""post_quant_conv.bias"""]
# Retrieves the keys for the encoder down blocks only
UpperCamelCase_ = len({""".""".join(layer.split(""".""" )[:3] ) for layer in vae_state_dict if """encoder.down""" in layer} )
UpperCamelCase_ = {
layer_id: [key for key in vae_state_dict if f'''down.{layer_id}''' in key] for layer_id in range(a__ )
}
# Retrieves the keys for the decoder up blocks only
UpperCamelCase_ = len({""".""".join(layer.split(""".""" )[:3] ) for layer in vae_state_dict if """decoder.up""" in layer} )
UpperCamelCase_ = {
layer_id: [key for key in vae_state_dict if f'''up.{layer_id}''' in key] for layer_id in range(a__ )
}
for i in range(a__ ):
UpperCamelCase_ = [key for key in down_blocks[i] if f'''down.{i}''' in key and f'''down.{i}.downsample''' not in key]
if f'''encoder.down.{i}.downsample.conv.weight''' in vae_state_dict:
UpperCamelCase_ = vae_state_dict.pop(
f'''encoder.down.{i}.downsample.conv.weight''' )
UpperCamelCase_ = vae_state_dict.pop(
f'''encoder.down.{i}.downsample.conv.bias''' )
UpperCamelCase_ = renew_vae_resnet_paths(a__ )
UpperCamelCase_ = {"""old""": f'''down.{i}.block''', """new""": f'''down_blocks.{i}.resnets'''}
assign_to_checkpoint(a__ , a__ , a__ , additional_replacements=[meta_path] , config=a__ )
UpperCamelCase_ = [key for key in vae_state_dict if """encoder.mid.block""" in key]
UpperCamelCase_ = 2
for i in range(1 , num_mid_res_blocks + 1 ):
UpperCamelCase_ = [key for key in mid_resnets if f'''encoder.mid.block_{i}''' in key]
UpperCamelCase_ = renew_vae_resnet_paths(a__ )
UpperCamelCase_ = {"""old""": f'''mid.block_{i}''', """new""": f'''mid_block.resnets.{i - 1}'''}
assign_to_checkpoint(a__ , a__ , a__ , additional_replacements=[meta_path] , config=a__ )
UpperCamelCase_ = [key for key in vae_state_dict if """encoder.mid.attn""" in key]
UpperCamelCase_ = renew_vae_attention_paths(a__ )
UpperCamelCase_ = {"""old""": """mid.attn_1""", """new""": """mid_block.attentions.0"""}
assign_to_checkpoint(a__ , a__ , a__ , additional_replacements=[meta_path] , config=a__ )
conv_attn_to_linear(a__ )
for i in range(a__ ):
UpperCamelCase_ = num_up_blocks - 1 - i
UpperCamelCase_ = [
key for key in up_blocks[block_id] if f'''up.{block_id}''' in key and f'''up.{block_id}.upsample''' not in key
]
if f'''decoder.up.{block_id}.upsample.conv.weight''' in vae_state_dict:
UpperCamelCase_ = vae_state_dict[
f'''decoder.up.{block_id}.upsample.conv.weight'''
]
UpperCamelCase_ = vae_state_dict[
f'''decoder.up.{block_id}.upsample.conv.bias'''
]
UpperCamelCase_ = renew_vae_resnet_paths(a__ )
UpperCamelCase_ = {"""old""": f'''up.{block_id}.block''', """new""": f'''up_blocks.{i}.resnets'''}
assign_to_checkpoint(a__ , a__ , a__ , additional_replacements=[meta_path] , config=a__ )
UpperCamelCase_ = [key for key in vae_state_dict if """decoder.mid.block""" in key]
UpperCamelCase_ = 2
for i in range(1 , num_mid_res_blocks + 1 ):
UpperCamelCase_ = [key for key in mid_resnets if f'''decoder.mid.block_{i}''' in key]
UpperCamelCase_ = renew_vae_resnet_paths(a__ )
UpperCamelCase_ = {"""old""": f'''mid.block_{i}''', """new""": f'''mid_block.resnets.{i - 1}'''}
assign_to_checkpoint(a__ , a__ , a__ , additional_replacements=[meta_path] , config=a__ )
UpperCamelCase_ = [key for key in vae_state_dict if """decoder.mid.attn""" in key]
UpperCamelCase_ = renew_vae_attention_paths(a__ )
UpperCamelCase_ = {"""old""": """mid.attn_1""", """new""": """mid_block.attentions.0"""}
assign_to_checkpoint(a__ , a__ , a__ , additional_replacements=[meta_path] , config=a__ )
conv_attn_to_linear(a__ )
return new_checkpoint
def lowerCamelCase__ ( a__ : str , a__ : str , ) -> List[Any]:
# Only support V1
UpperCamelCase_ = requests.get(
""" https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml""" )
UpperCamelCase_ = io.BytesIO(r.content )
UpperCamelCase_ = OmegaConf.load(a__ )
UpperCamelCase_ = 512
UpperCamelCase_ = """cuda""" if torch.cuda.is_available() else """cpu"""
if checkpoint_path.endswith("""safetensors""" ):
from safetensors import safe_open
UpperCamelCase_ = {}
with safe_open(a__ , framework="""pt""" , device="""cpu""" ) as f:
for key in f.keys():
UpperCamelCase_ = f.get_tensor(a__ )
else:
UpperCamelCase_ = torch.load(a__ , map_location=a__ )["""state_dict"""]
# Convert the VAE model.
UpperCamelCase_ = create_vae_diffusers_config(a__ , image_size=a__ )
UpperCamelCase_ = custom_convert_ldm_vae_checkpoint(a__ , a__ )
UpperCamelCase_ = AutoencoderKL(**a__ )
vae.load_state_dict(a__ )
vae.save_pretrained(a__ )
if __name__ == "__main__":
_A = argparse.ArgumentParser()
parser.add_argument('''--vae_pt_path''', default=None, type=str, required=True, help='''Path to the VAE.pt to convert.''')
parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the VAE.pt to convert.''')
_A = parser.parse_args()
vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
| 122
| 1
|
import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
_lowerCamelCase = 16
_lowerCamelCase = 32
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Accelerator , __UpperCamelCase : int = 16 , __UpperCamelCase : str = "bert-base-cased" ) -> Union[str, Any]:
UpperCAmelCase_ = AutoTokenizer.from_pretrained(__UpperCamelCase )
UpperCAmelCase_ = load_dataset('''glue''' , '''mrpc''' )
def tokenize_function(__UpperCamelCase : str ):
# max_length=None => use the model max length (it's actually the default)
UpperCAmelCase_ = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__UpperCamelCase , max_length=__UpperCamelCase )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
UpperCAmelCase_ = datasets.map(
__UpperCamelCase , batched=__UpperCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=__UpperCamelCase )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
UpperCAmelCase_ = tokenized_datasets.rename_column('''label''' , '''labels''' )
def collate_fn(__UpperCamelCase : Any ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(__UpperCamelCase , padding='''max_length''' , max_length=128 , return_tensors='''pt''' )
return tokenizer.pad(__UpperCamelCase , padding='''longest''' , return_tensors='''pt''' )
# Instantiate dataloaders.
UpperCAmelCase_ = DataLoader(
tokenized_datasets['''train'''] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase )
UpperCAmelCase_ = DataLoader(
tokenized_datasets['''validation'''] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase )
return train_dataloader, eval_dataloader
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[Any] ) -> Tuple:
# Initialize accelerator
UpperCAmelCase_ = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
UpperCAmelCase_ = config['''lr''']
UpperCAmelCase_ = int(config['''num_epochs'''] )
UpperCAmelCase_ = int(config['''seed'''] )
UpperCAmelCase_ = int(config['''batch_size'''] )
UpperCAmelCase_ = args.model_name_or_path
set_seed(__UpperCamelCase )
UpperCAmelCase_ , UpperCAmelCase_ = get_dataloaders(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
UpperCAmelCase_ = AutoModelForSequenceClassification.from_pretrained(__UpperCamelCase , return_dict=__UpperCamelCase )
# Instantiate optimizer
UpperCAmelCase_ = (
AdamW
if accelerator.state.deepspeed_plugin is None
or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
UpperCAmelCase_ = optimizer_cls(params=model.parameters() , lr=__UpperCamelCase )
if accelerator.state.deepspeed_plugin is not None:
UpperCAmelCase_ = accelerator.state.deepspeed_plugin.deepspeed_config[
'''gradient_accumulation_steps'''
]
else:
UpperCAmelCase_ = 1
UpperCAmelCase_ = (len(__UpperCamelCase ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
UpperCAmelCase_ = get_linear_schedule_with_warmup(
optimizer=__UpperCamelCase , num_warmup_steps=0 , num_training_steps=__UpperCamelCase , )
else:
UpperCAmelCase_ = DummyScheduler(__UpperCamelCase , total_num_steps=__UpperCamelCase , warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = accelerator.prepare(
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
# We need to keep track of how many total steps we have iterated over
UpperCAmelCase_ = 0
# We also need to keep track of the stating epoch so files are named properly
UpperCAmelCase_ = 0
# Now we train the model
UpperCAmelCase_ = evaluate.load('''glue''' , '''mrpc''' )
UpperCAmelCase_ = 0
UpperCAmelCase_ = {}
for epoch in range(__UpperCamelCase , __UpperCamelCase ):
model.train()
for step, batch in enumerate(__UpperCamelCase ):
UpperCAmelCase_ = model(**__UpperCamelCase )
UpperCAmelCase_ = outputs.loss
UpperCAmelCase_ = loss / gradient_accumulation_steps
accelerator.backward(__UpperCamelCase )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
model.eval()
UpperCAmelCase_ = 0
for step, batch in enumerate(__UpperCamelCase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
UpperCAmelCase_ = model(**__UpperCamelCase )
UpperCAmelCase_ = outputs.logits.argmax(dim=-1 )
# It is slightly faster to call this once, than multiple times
UpperCAmelCase_ , UpperCAmelCase_ = accelerator.gather(
(predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(__UpperCamelCase ) - 1:
UpperCAmelCase_ = predictions[: len(eval_dataloader.dataset ) - samples_seen]
UpperCAmelCase_ = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=__UpperCamelCase , references=__UpperCamelCase , )
UpperCAmelCase_ = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f'epoch {epoch}:' , __UpperCamelCase )
UpperCAmelCase_ = eval_metric['''accuracy''']
if best_performance < eval_metric["accuracy"]:
UpperCAmelCase_ = eval_metric['''accuracy''']
if args.performance_lower_bound is not None:
assert (
args.performance_lower_bound <= best_performance
), f'Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}'
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir , '''all_results.json''' ) , '''w''' ) as f:
json.dump(__UpperCamelCase , __UpperCamelCase )
def SCREAMING_SNAKE_CASE ( ) -> List[Any]:
UpperCAmelCase_ = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' )
parser.add_argument(
'''--model_name_or_path''' , type=__UpperCamelCase , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=__UpperCamelCase , )
parser.add_argument(
'''--output_dir''' , type=__UpperCamelCase , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , )
parser.add_argument(
'''--performance_lower_bound''' , type=__UpperCamelCase , default=__UpperCamelCase , help='''Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.''' , )
parser.add_argument(
'''--num_epochs''' , type=__UpperCamelCase , default=3 , help='''Number of train epochs.''' , )
UpperCAmelCase_ = parser.parse_args()
UpperCAmelCase_ = {'''lr''': 2e-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16}
training_function(__UpperCamelCase , __UpperCamelCase )
if __name__ == "__main__":
main()
| 355
|
from typing import List, Optional, Union
import numpy as np
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
_lowerCamelCase = logging.get_logger(__name__)
class a ( _A ):
'''simple docstring'''
lowerCAmelCase : str = ['input_values', 'padding_mask']
def __init__( self : Optional[Any] , __snake_case : int = 1 , __snake_case : int = 2_40_00 , __snake_case : float = 0.0 , __snake_case : float = None , __snake_case : float = None , **__snake_case : Dict , ):
super().__init__(feature_size=__snake_case , sampling_rate=__snake_case , padding_value=__snake_case , **__snake_case )
UpperCAmelCase_ = chunk_length_s
UpperCAmelCase_ = overlap
@property
def lowerCamelCase_ ( self : List[str] ):
if self.chunk_length_s is None:
return None
else:
return int(self.chunk_length_s * self.sampling_rate )
@property
def lowerCamelCase_ ( self : List[str] ):
if self.chunk_length_s is None or self.overlap is None:
return None
else:
return max(1 , int((1.0 - self.overlap) * self.chunk_length ) )
def __call__( self : List[str] , __snake_case : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __snake_case : Optional[Union[bool, str, PaddingStrategy]] = None , __snake_case : Optional[bool] = False , __snake_case : Optional[int] = None , __snake_case : Optional[Union[str, TensorType]] = None , __snake_case : Optional[int] = None , ):
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of'
F' {self.sampling_rate}. Please make sure that the provided audio input was sampled with'
F' {self.sampling_rate} and not {sampling_rate}.' )
else:
logger.warning(
'''It is strongly recommended to pass the `sampling_rate` argument to this function. '''
'''Failing to do so can result in silent errors that might be hard to debug.''' )
if padding and truncation:
raise ValueError('''Both padding and truncation were set. Make sure you only set one.''' )
elif padding is None:
# by default let's pad the inputs
UpperCAmelCase_ = True
UpperCAmelCase_ = bool(
isinstance(__snake_case , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) )
if is_batched:
UpperCAmelCase_ = [np.asarray(__snake_case , dtype=np.floataa ).T for audio in raw_audio]
elif not is_batched and not isinstance(__snake_case , np.ndarray ):
UpperCAmelCase_ = np.asarray(__snake_case , dtype=np.floataa )
elif isinstance(__snake_case , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ):
UpperCAmelCase_ = raw_audio.astype(np.floataa )
# always return batch
if not is_batched:
UpperCAmelCase_ = [np.asarray(__snake_case ).T]
# verify inputs are valid
for idx, example in enumerate(__snake_case ):
if example.ndim > 2:
raise ValueError(F'Expected input shape (channels, length) but got shape {example.shape}' )
if self.feature_size == 1 and example.ndim != 1:
raise ValueError(F'Expected mono audio but example has {example.shape[-1]} channels' )
if self.feature_size == 2 and example.shape[-1] != 2:
raise ValueError(F'Expected stereo audio but example has {example.shape[-1]} channels' )
UpperCAmelCase_ = None
UpperCAmelCase_ = BatchFeature({'''input_values''': raw_audio} )
if self.chunk_stride is not None and self.chunk_length is not None and max_length is None:
if truncation:
UpperCAmelCase_ = min(array.shape[0] for array in raw_audio )
UpperCAmelCase_ = int(np.floor(max_length / self.chunk_stride ) )
UpperCAmelCase_ = (nb_step - 1) * self.chunk_stride + self.chunk_length
elif padding:
UpperCAmelCase_ = max(array.shape[0] for array in raw_audio )
UpperCAmelCase_ = int(np.ceil(max_length / self.chunk_stride ) )
UpperCAmelCase_ = (nb_step - 1) * self.chunk_stride + self.chunk_length
UpperCAmelCase_ = '''max_length'''
else:
UpperCAmelCase_ = input_values
# normal padding on batch
if padded_inputs is None:
UpperCAmelCase_ = self.pad(
__snake_case , max_length=__snake_case , truncation=__snake_case , padding=__snake_case , return_attention_mask=__snake_case , )
if padding:
UpperCAmelCase_ = padded_inputs.pop('''attention_mask''' )
UpperCAmelCase_ = []
for example in padded_inputs.pop('''input_values''' ):
if self.feature_size == 1:
UpperCAmelCase_ = example[..., None]
input_values.append(example.T )
UpperCAmelCase_ = input_values
if return_tensors is not None:
UpperCAmelCase_ = padded_inputs.convert_to_tensors(__snake_case )
return padded_inputs
| 177
| 0
|
__UpperCAmelCase = 8.3_1_4_4_5_9_8
def lowercase__ ( __snake_case : float , __snake_case : float ):
'''simple docstring'''
if temperature < 0:
raise Exception('Temperature cannot be less than 0 K' )
if molar_mass <= 0:
raise Exception('Molar mass cannot be less than or equal to 0 kg/mol' )
else:
return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5
if __name__ == "__main__":
import doctest
# run doctest
doctest.testmod()
# example
__UpperCAmelCase = 300
__UpperCAmelCase = 28
__UpperCAmelCase = rms_speed_of_molecule(temperature, molar_mass)
print(F'Vrms of Nitrogen gas at 300 K is {vrms} m/s')
| 29
|
from __future__ import annotations
lowerCamelCase__ : Optional[int] = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0]
lowerCamelCase__ : List[Any] = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1]
def UpperCAmelCase_ ( __UpperCAmelCase : list[float] ) -> list[float]:
SCREAMING_SNAKE_CASE_ = []
SCREAMING_SNAKE_CASE_ = len(__UpperCAmelCase )
for i in range(__UpperCAmelCase ):
SCREAMING_SNAKE_CASE_ = -1
for j in range(i + 1 , __UpperCAmelCase ):
if arr[i] < arr[j]:
SCREAMING_SNAKE_CASE_ = arr[j]
break
result.append(__UpperCAmelCase )
return result
def UpperCAmelCase_ ( __UpperCAmelCase : list[float] ) -> list[float]:
SCREAMING_SNAKE_CASE_ = []
for i, outer in enumerate(__UpperCAmelCase ):
SCREAMING_SNAKE_CASE_ = -1
for inner in arr[i + 1 :]:
if outer < inner:
SCREAMING_SNAKE_CASE_ = inner
break
result.append(__UpperCAmelCase )
return result
def UpperCAmelCase_ ( __UpperCAmelCase : list[float] ) -> list[float]:
SCREAMING_SNAKE_CASE_ = len(__UpperCAmelCase )
SCREAMING_SNAKE_CASE_ = []
SCREAMING_SNAKE_CASE_ = [-1] * arr_size
for index in reversed(range(__UpperCAmelCase ) ):
if stack:
while stack[-1] <= arr[index]:
stack.pop()
if not stack:
break
if stack:
SCREAMING_SNAKE_CASE_ = stack[-1]
stack.append(arr[index] )
return result
if __name__ == "__main__":
from doctest import testmod
from timeit import timeit
testmod()
print(next_greatest_element_slow(arr))
print(next_greatest_element_fast(arr))
print(next_greatest_element(arr))
lowerCamelCase__ : List[str] = (
'from __main__ import arr, next_greatest_element_slow, '
'next_greatest_element_fast, next_greatest_element'
)
print(
'next_greatest_element_slow():',
timeit('next_greatest_element_slow(arr)', setup=setup),
)
print(
'next_greatest_element_fast():',
timeit('next_greatest_element_fast(arr)', setup=setup),
)
print(
' next_greatest_element():',
timeit('next_greatest_element(arr)', setup=setup),
)
| 225
| 0
|
def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase) -> int:
a = 1 # To kept the Calculated Value
# Since C(n, k) = C(n, n-k)
if k > (n - k):
a = n - k
# Calculate C(n,k)
for i in range(__UpperCamelCase):
result *= n - i
result //= i + 1
return result
def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> int:
return binomial_coefficient(2 * node_count , __UpperCamelCase) // (node_count + 1)
def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> int:
if n < 0:
raise ValueError("factorial() not defined for negative values")
a = 1
for i in range(1 , n + 1):
result *= i
return result
def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> int:
return catalan_number(__UpperCamelCase) * factorial(__UpperCamelCase)
if __name__ == "__main__":
lowercase__ : Optional[int] = int(input("Enter the number of nodes: ").strip() or 0)
if node_count <= 0:
raise ValueError("We need some nodes to work with.")
print(
F'Given {node_count} nodes, there are {binary_tree_count(node_count)} '
F'binary trees and {catalan_number(node_count)} binary search trees.'
)
| 353
|
def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> int:
return 1 if digit in (0, 1) else (digit * factorial(digit - 1))
def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> bool:
a = 0
a = number
while duplicate > 0:
a , a = divmod(__UpperCamelCase , 10)
fact_sum += factorial(__UpperCamelCase)
return fact_sum == number
if __name__ == "__main__":
print("Program to check whether a number is a Krisnamurthy Number or not.")
lowercase__ : str = int(input("Enter number: ").strip())
print(
F'{number} is {"" if krishnamurthy(number) else "not "}a Krishnamurthy Number.'
)
| 180
| 0
|
"""simple docstring"""
import os
from typing import List, Optional, Union
from ...image_processing_utils import BatchFeature
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
from ..auto import AutoTokenizer
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ =['image_processor', 'tokenizer']
lowerCamelCase__ ='BlipImageProcessor'
lowerCamelCase__ ='AutoTokenizer'
def __init__(self , a_ , a_ , a_ ):
'''simple docstring'''
super().__init__(a_ , a_ )
# add QFormer tokenizer
__snake_case : Optional[Any] = qformer_tokenizer
def __call__(self , a_ = None , a_ = None , a_ = True , a_ = False , a_ = None , a_ = None , a_ = 0 , a_ = None , a_ = None , a_ = False , a_ = False , a_ = False , a_ = False , a_ = False , a_ = True , a_ = None , **a_ , ):
'''simple docstring'''
if images is None and text is None:
raise ValueError('''You have to specify at least images or text.''' )
__snake_case : Any = BatchFeature()
if text is not None:
__snake_case : str = self.tokenizer(
text=a_ , add_special_tokens=a_ , padding=a_ , truncation=a_ , max_length=a_ , stride=a_ , pad_to_multiple_of=a_ , return_attention_mask=a_ , return_overflowing_tokens=a_ , return_special_tokens_mask=a_ , return_offsets_mapping=a_ , return_token_type_ids=a_ , return_length=a_ , verbose=a_ , return_tensors=a_ , **a_ , )
encoding.update(a_ )
__snake_case : Dict = self.qformer_tokenizer(
text=a_ , add_special_tokens=a_ , padding=a_ , truncation=a_ , max_length=a_ , stride=a_ , pad_to_multiple_of=a_ , return_attention_mask=a_ , return_overflowing_tokens=a_ , return_special_tokens_mask=a_ , return_offsets_mapping=a_ , return_token_type_ids=a_ , return_length=a_ , verbose=a_ , return_tensors=a_ , **a_ , )
__snake_case : List[str] = qformer_text_encoding.pop('''input_ids''' )
__snake_case : Union[str, Any] = qformer_text_encoding.pop('''attention_mask''' )
if images is not None:
__snake_case : List[Any] = self.image_processor(a_ , return_tensors=a_ )
encoding.update(a_ )
return encoding
def SCREAMING_SNAKE_CASE (self , *a_ , **a_ ):
'''simple docstring'''
return self.tokenizer.batch_decode(*a_ , **a_ )
def SCREAMING_SNAKE_CASE (self , *a_ , **a_ ):
'''simple docstring'''
return self.tokenizer.decode(*a_ , **a_ )
@property
# Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Tuple = self.tokenizer.model_input_names
__snake_case : Union[str, Any] = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
def SCREAMING_SNAKE_CASE (self , a_ , **a_ ):
'''simple docstring'''
if os.path.isfile(a_ ):
raise ValueError(f"""Provided path ({save_directory}) should be a directory, not a file""" )
os.makedirs(a_ , exist_ok=a_ )
__snake_case : str = os.path.join(a_ , '''qformer_tokenizer''' )
self.qformer_tokenizer.save_pretrained(a_ )
return super().save_pretrained(a_ , **a_ )
@classmethod
def SCREAMING_SNAKE_CASE (cls , a_ , **a_ ):
'''simple docstring'''
__snake_case : Any = AutoTokenizer.from_pretrained(a_ , subfolder='''qformer_tokenizer''' )
__snake_case : str = cls._get_arguments_from_pretrained(a_ , **a_ )
args.append(a_ )
return cls(*a_ )
| 102
|
'''simple docstring'''
def _A ( lowercase__ = 1000000 ):
lowercase__ = [i - 1 for i in range(limit + 1 )]
for i in range(2 , limit + 1 ):
if phi[i] == i - 1:
for j in range(2 * i , limit + 1 , lowercase__ ):
phi[j] -= phi[j] // i
return sum(phi[2 : limit + 1] )
if __name__ == "__main__":
print(solution())
| 164
| 0
|
"""simple docstring"""
import gc
import unittest
import torch
from parameterized import parameterized
from diffusers import AutoencoderKL
from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
enable_full_determinism()
class _UpperCAmelCase ( __snake_case, __snake_case, unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ =AutoencoderKL
lowerCamelCase__ ='sample'
lowerCamelCase__ =1E-2
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : int = 4
__snake_case : Optional[Any] = 3
__snake_case : Dict = (32, 32)
__snake_case : Any = floats_tensor((batch_size, num_channels) + sizes ).to(a_ )
return {"sample": image}
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return (3, 32, 32)
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return (3, 32, 32)
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[Any] = {
'''block_out_channels''': [32, 64],
'''in_channels''': 3,
'''out_channels''': 3,
'''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''],
'''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''],
'''latent_channels''': 4,
}
__snake_case : str = self.dummy_input
return init_dict, inputs_dict
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
pass
@unittest.skipIf(torch_device == '''mps''' , '''Gradient checkpointing skipped on MPS''' )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case , __snake_case : int = self.prepare_init_args_and_inputs_for_common()
__snake_case : Dict = self.model_class(**a_ )
model.to(a_ )
assert not model.is_gradient_checkpointing and model.training
__snake_case : Tuple = model(**a_ ).sample
# run the backwards pass on the model. For backwards pass, for simplicity purpose,
# we won't calculate the loss and rather backprop on out.sum()
model.zero_grad()
__snake_case : List[str] = torch.randn_like(a_ )
__snake_case : str = (out - labels).mean()
loss.backward()
# re-instantiate the model now enabling gradient checkpointing
__snake_case : Optional[int] = self.model_class(**a_ )
# clone model
model_a.load_state_dict(model.state_dict() )
model_a.to(a_ )
model_a.enable_gradient_checkpointing()
assert model_a.is_gradient_checkpointing and model_a.training
__snake_case : List[str] = model_a(**a_ ).sample
# run the backwards pass on the model. For backwards pass, for simplicity purpose,
# we won't calculate the loss and rather backprop on out.sum()
model_a.zero_grad()
__snake_case : Dict = (out_a - labels).mean()
loss_a.backward()
# compare the output and parameters gradients
self.assertTrue((loss - loss_a).abs() < 1E-5 )
__snake_case : Dict = dict(model.named_parameters() )
__snake_case : int = dict(model_a.named_parameters() )
for name, param in named_params.items():
self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5E-5 ) )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case , __snake_case : int = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' , output_loading_info=a_ )
self.assertIsNotNone(a_ )
self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 )
model.to(a_ )
__snake_case : Any = model(**self.dummy_input )
assert image is not None, "Make sure output is not None"
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[Any] = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' )
__snake_case : Tuple = model.to(a_ )
model.eval()
if torch_device == "mps":
__snake_case : str = torch.manual_seed(0 )
else:
__snake_case : Optional[Any] = torch.Generator(device=a_ ).manual_seed(0 )
__snake_case : List[Any] = torch.randn(
1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , )
__snake_case : str = image.to(a_ )
with torch.no_grad():
__snake_case : Tuple = model(a_ , sample_posterior=a_ , generator=a_ ).sample
__snake_case : Optional[int] = output[0, -1, -3:, -3:].flatten().cpu()
# Since the VAE Gaussian prior's generator is seeded on the appropriate device,
# the expected output slices are not the same for CPU and GPU.
if torch_device == "mps":
__snake_case : List[str] = torch.tensor(
[
-4.0078E-01,
-3.8323E-04,
-1.2681E-01,
-1.1462E-01,
2.0095E-01,
1.0893E-01,
-8.8247E-02,
-3.0361E-01,
-9.8644E-03,
] )
elif torch_device == "cpu":
__snake_case : Any = torch.tensor(
[-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026] )
else:
__snake_case : str = torch.tensor(
[-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485] )
self.assertTrue(torch_all_close(a_ , a_ , rtol=1E-2 ) )
@slow
class _UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE (self , a_ , a_ ):
'''simple docstring'''
return f"""gaussian_noise_s={seed}_shape={'_'.join([str(a_ ) for s in shape] )}.npy"""
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def SCREAMING_SNAKE_CASE (self , a_=0 , a_=(4, 3, 5_12, 5_12) , a_=False ):
'''simple docstring'''
__snake_case : Any = torch.floataa if fpaa else torch.floataa
__snake_case : Any = torch.from_numpy(load_hf_numpy(self.get_file_format(a_ , a_ ) ) ).to(a_ ).to(a_ )
return image
def SCREAMING_SNAKE_CASE (self , a_="CompVis/stable-diffusion-v1-4" , a_=False ):
'''simple docstring'''
__snake_case : List[Any] = '''fp16''' if fpaa else None
__snake_case : List[Any] = torch.floataa if fpaa else torch.floataa
__snake_case : Tuple = AutoencoderKL.from_pretrained(
a_ , subfolder='''vae''' , torch_dtype=a_ , revision=a_ , )
model.to(a_ ).eval()
return model
def SCREAMING_SNAKE_CASE (self , a_=0 ):
'''simple docstring'''
if torch_device == "mps":
return torch.manual_seed(a_ )
return torch.Generator(device=a_ ).manual_seed(a_ )
@parameterized.expand(
[
# fmt: off
[33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]],
[47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]],
# fmt: on
] )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ ):
'''simple docstring'''
__snake_case : int = self.get_sd_vae_model()
__snake_case : Dict = self.get_sd_image(a_ )
__snake_case : List[Any] = self.get_generator(a_ )
with torch.no_grad():
__snake_case : Optional[int] = model(a_ , generator=a_ , sample_posterior=a_ ).sample
assert sample.shape == image.shape
__snake_case : int = sample[-1, -2:, -2:, :2].flatten().float().cpu()
__snake_case : Optional[int] = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice )
assert torch_all_close(a_ , a_ , atol=3E-3 )
@parameterized.expand(
[
# fmt: off
[33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]],
[47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]],
# fmt: on
] )
@require_torch_gpu
def SCREAMING_SNAKE_CASE (self , a_ , a_ ):
'''simple docstring'''
__snake_case : List[str] = self.get_sd_vae_model(fpaa=a_ )
__snake_case : List[Any] = self.get_sd_image(a_ , fpaa=a_ )
__snake_case : int = self.get_generator(a_ )
with torch.no_grad():
__snake_case : str = model(a_ , generator=a_ , sample_posterior=a_ ).sample
assert sample.shape == image.shape
__snake_case : Optional[int] = sample[-1, -2:, :2, -2:].flatten().float().cpu()
__snake_case : Tuple = torch.tensor(a_ )
assert torch_all_close(a_ , a_ , atol=1E-2 )
@parameterized.expand(
[
# fmt: off
[33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]],
[47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]],
# fmt: on
] )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ ):
'''simple docstring'''
__snake_case : Tuple = self.get_sd_vae_model()
__snake_case : Optional[Any] = self.get_sd_image(a_ )
with torch.no_grad():
__snake_case : List[Any] = model(a_ ).sample
assert sample.shape == image.shape
__snake_case : Dict = sample[-1, -2:, -2:, :2].flatten().float().cpu()
__snake_case : Any = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice )
assert torch_all_close(a_ , a_ , atol=3E-3 )
@parameterized.expand(
[
# fmt: off
[13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]],
[37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]],
# fmt: on
] )
@require_torch_gpu
def SCREAMING_SNAKE_CASE (self , a_ , a_ ):
'''simple docstring'''
__snake_case : int = self.get_sd_vae_model()
__snake_case : Tuple = self.get_sd_image(a_ , shape=(3, 4, 64, 64) )
with torch.no_grad():
__snake_case : str = model.decode(a_ ).sample
assert list(sample.shape ) == [3, 3, 5_12, 5_12]
__snake_case : Dict = sample[-1, -2:, :2, -2:].flatten().cpu()
__snake_case : Any = torch.tensor(a_ )
assert torch_all_close(a_ , a_ , atol=1E-3 )
@parameterized.expand(
[
# fmt: off
[27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]],
[16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]],
# fmt: on
] )
@require_torch_gpu
def SCREAMING_SNAKE_CASE (self , a_ , a_ ):
'''simple docstring'''
__snake_case : Any = self.get_sd_vae_model(fpaa=a_ )
__snake_case : Union[str, Any] = self.get_sd_image(a_ , shape=(3, 4, 64, 64) , fpaa=a_ )
with torch.no_grad():
__snake_case : Optional[int] = model.decode(a_ ).sample
assert list(sample.shape ) == [3, 3, 5_12, 5_12]
__snake_case : Optional[Any] = sample[-1, -2:, :2, -2:].flatten().float().cpu()
__snake_case : Dict = torch.tensor(a_ )
assert torch_all_close(a_ , a_ , atol=5E-3 )
@parameterized.expand([(13,), (16,), (27,)] )
@require_torch_gpu
@unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' )
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
__snake_case : Any = self.get_sd_vae_model(fpaa=a_ )
__snake_case : Any = self.get_sd_image(a_ , shape=(3, 4, 64, 64) , fpaa=a_ )
with torch.no_grad():
__snake_case : Optional[int] = model.decode(a_ ).sample
model.enable_xformers_memory_efficient_attention()
with torch.no_grad():
__snake_case : Union[str, Any] = model.decode(a_ ).sample
assert list(sample.shape ) == [3, 3, 5_12, 5_12]
assert torch_all_close(a_ , a_ , atol=1E-1 )
@parameterized.expand([(13,), (16,), (37,)] )
@require_torch_gpu
@unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' )
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
__snake_case : Optional[int] = self.get_sd_vae_model()
__snake_case : str = self.get_sd_image(a_ , shape=(3, 4, 64, 64) )
with torch.no_grad():
__snake_case : Optional[Any] = model.decode(a_ ).sample
model.enable_xformers_memory_efficient_attention()
with torch.no_grad():
__snake_case : Optional[Any] = model.decode(a_ ).sample
assert list(sample.shape ) == [3, 3, 5_12, 5_12]
assert torch_all_close(a_ , a_ , atol=1E-2 )
@parameterized.expand(
[
# fmt: off
[33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]],
[47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]],
# fmt: on
] )
def SCREAMING_SNAKE_CASE (self , a_ , a_ ):
'''simple docstring'''
__snake_case : Tuple = self.get_sd_vae_model()
__snake_case : Optional[int] = self.get_sd_image(a_ )
__snake_case : List[str] = self.get_generator(a_ )
with torch.no_grad():
__snake_case : List[str] = model.encode(a_ ).latent_dist
__snake_case : int = dist.sample(generator=a_ )
assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]]
__snake_case : Optional[Any] = sample[0, -1, -3:, -3:].flatten().cpu()
__snake_case : Union[str, Any] = torch.tensor(a_ )
__snake_case : str = 3E-3 if torch_device != '''mps''' else 1E-2
assert torch_all_close(a_ , a_ , atol=a_ )
| 24
|
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_mbart import MBartTokenizer
else:
SCREAMING_SNAKE_CASE : Optional[int] = None
SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE : int = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""}
SCREAMING_SNAKE_CASE : List[Any] = {
"""vocab_file""": {
"""facebook/mbart-large-en-ro""": (
"""https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model"""
),
"""facebook/mbart-large-cc25""": (
"""https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model"""
),
},
"""tokenizer_file""": {
"""facebook/mbart-large-en-ro""": """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json""",
"""facebook/mbart-large-cc25""": """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json""",
},
}
SCREAMING_SNAKE_CASE : Tuple = {
"""facebook/mbart-large-en-ro""": 1024,
"""facebook/mbart-large-cc25""": 1024,
}
# fmt: off
SCREAMING_SNAKE_CASE : List[Any] = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN"""]
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ =VOCAB_FILES_NAMES
lowerCamelCase__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase__ =PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase__ =['input_ids', 'attention_mask']
lowerCamelCase__ =MBartTokenizer
lowerCamelCase__ =[]
lowerCamelCase__ =[]
def __init__(self , a_=None , a_=None , a_="<s>" , a_="</s>" , a_="</s>" , a_="<s>" , a_="<unk>" , a_="<pad>" , a_="<mask>" , a_=None , a_=None , a_=None , **a_ , ):
'''simple docstring'''
__snake_case : Optional[int] = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else mask_token
super().__init__(
vocab_file=a_ , tokenizer_file=a_ , bos_token=a_ , eos_token=a_ , sep_token=a_ , cls_token=a_ , unk_token=a_ , pad_token=a_ , mask_token=a_ , src_lang=a_ , tgt_lang=a_ , additional_special_tokens=a_ , **a_ , )
__snake_case : Tuple = vocab_file
__snake_case : Optional[Any] = False if not self.vocab_file else True
__snake_case : Dict = FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens] )
self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} )
__snake_case : Optional[int] = {
lang_code: self.convert_tokens_to_ids(a_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
__snake_case : List[Any] = src_lang if src_lang is not None else '''en_XX'''
__snake_case : Any = self.convert_tokens_to_ids(self._src_lang )
__snake_case : Dict = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self._src_lang
@src_lang.setter
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
__snake_case : Tuple = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ):
'''simple docstring'''
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ):
'''simple docstring'''
__snake_case : Tuple = [self.sep_token_id]
__snake_case : Optional[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , **a_ ):
'''simple docstring'''
if src_lang is None or tgt_lang is None:
raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' )
__snake_case : Optional[int] = src_lang
__snake_case : Tuple = self(a_ , add_special_tokens=a_ , return_tensors=a_ , **a_ )
__snake_case : Union[str, Any] = self.convert_tokens_to_ids(a_ )
__snake_case : int = tgt_lang_id
return inputs
def SCREAMING_SNAKE_CASE (self , a_ , a_ = "en_XX" , a_ = None , a_ = "ro_RO" , **a_ , ):
'''simple docstring'''
__snake_case : int = src_lang
__snake_case : List[Any] = tgt_lang
return super().prepare_seqaseq_batch(a_ , a_ , **a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self.set_src_lang_special_tokens(self.src_lang )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
__snake_case : int = self.convert_tokens_to_ids(a_ )
__snake_case : List[Any] = []
__snake_case : Any = [self.eos_token_id, self.cur_lang_code]
__snake_case : List[str] = self.convert_ids_to_tokens(self.prefix_tokens )
__snake_case : Dict = self.convert_ids_to_tokens(self.suffix_tokens )
__snake_case : Any = processors.TemplateProcessing(
single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
__snake_case : int = self.convert_tokens_to_ids(a_ )
__snake_case : Optional[Any] = []
__snake_case : Dict = [self.eos_token_id, self.cur_lang_code]
__snake_case : str = self.convert_ids_to_tokens(self.prefix_tokens )
__snake_case : Any = self.convert_ids_to_tokens(self.suffix_tokens )
__snake_case : Tuple = processors.TemplateProcessing(
single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ):
'''simple docstring'''
if not self.can_save_slow_tokenizer:
raise ValueError(
'''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '''
'''tokenizer.''' )
if not os.path.isdir(a_ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" )
return
__snake_case : Optional[Any] = os.path.join(
a_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ):
copyfile(self.vocab_file , a_ )
return (out_vocab_file,)
| 24
| 1
|
"""simple docstring"""
import numpy as np
from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey
def snake_case__ ( __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int ):
"""simple docstring"""
# prepare kernel
# the kernel size have to be odd
if (ksize % 2) == 0:
lowerCamelCase__ : Dict =ksize + 1
lowerCamelCase__ : Any =np.zeros((ksize, ksize) , dtype=np.floataa )
# each value
for y in range(__lowerCamelCase ):
for x in range(__lowerCamelCase ):
# distance from center
lowerCamelCase__ : Any =x - ksize // 2
lowerCamelCase__ : Tuple =y - ksize // 2
# degree to radiant
lowerCamelCase__ : int =theta / 180 * np.pi
lowerCamelCase__ : int =np.cos(_theta )
lowerCamelCase__ : Tuple =np.sin(_theta )
# get kernel x
lowerCamelCase__ : List[Any] =cos_theta * px + sin_theta * py
# get kernel y
lowerCamelCase__ : Any =-sin_theta * px + cos_theta * py
# fill kernel
lowerCamelCase__ : List[Any] =np.exp(
-(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi )
return gabor
if __name__ == "__main__":
import doctest
doctest.testmod()
# read original image
_lowercase : int = imread("../image_data/lena.jpg")
# turn image in gray scale value
_lowercase : Dict = cvtColor(img, COLOR_BGR2GRAY)
# Apply multiple Kernel to detect edges
_lowercase : Dict = np.zeros(gray.shape[:2])
for theta in [0, 3_0, 6_0, 9_0, 1_2_0, 1_5_0]:
_lowercase : Dict = gabor_filter_kernel(1_0, 8, theta, 1_0, 0, 0)
out += filteraD(gray, CV_8UC3, kernel_aa)
_lowercase : List[Any] = out / out.max() * 2_5_5
_lowercase : str = out.astype(np.uinta)
imshow("Original", gray)
imshow("Gabor filter with 20x20 mask and 6 directions", out)
waitKey(0)
| 238
|
"""simple docstring"""
import itertools
import json
import linecache
import os
import pickle
import re
import socket
import string
from collections import Counter
from logging import getLogger
from pathlib import Path
from typing import Callable, Dict, Iterable, List
import git
import torch
from torch.utils.data import Dataset
from transformers import BartTokenizer, RagTokenizer, TaTokenizer
def snake_case__ ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple=True , __lowerCamelCase : Dict="pt" ):
"""simple docstring"""
lowerCamelCase__ : str ={'''add_prefix_space''': True} if isinstance(__lowerCamelCase , __lowerCamelCase ) and not line.startswith(''' ''' ) else {}
lowerCamelCase__ : int =padding_side
return tokenizer(
[line] , max_length=__lowerCamelCase , padding='''max_length''' if pad_to_max_length else None , truncation=__lowerCamelCase , return_tensors=__lowerCamelCase , add_special_tokens=__lowerCamelCase , **__lowerCamelCase , )
def snake_case__ ( __lowerCamelCase : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int]=None , ):
"""simple docstring"""
lowerCamelCase__ : Any =input_ids.ne(__lowerCamelCase ).any(dim=0 )
if attention_mask is None:
return input_ids[:, keep_column_mask]
else:
return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask])
class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ):
'''simple docstring'''
def __init__( self : str, lowerCamelCase : Union[str, Any], lowerCamelCase : Dict, lowerCamelCase : Union[str, Any], lowerCamelCase : Dict, lowerCamelCase : str="train", lowerCamelCase : List[Any]=None, lowerCamelCase : Tuple=None, lowerCamelCase : List[str]=None, lowerCamelCase : int="", )-> List[Any]:
super().__init__()
lowerCamelCase__ : Tuple =Path(lowerCamelCase ).joinpath(type_path + '''.source''' )
lowerCamelCase__ : str =Path(lowerCamelCase ).joinpath(type_path + '''.target''' )
lowerCamelCase__ : Dict =self.get_char_lens(self.src_file )
lowerCamelCase__ : Tuple =max_source_length
lowerCamelCase__ : Optional[int] =max_target_length
assert min(self.src_lens ) > 0, F'''found empty line in {self.src_file}'''
lowerCamelCase__ : Dict =tokenizer
lowerCamelCase__ : List[str] =prefix
if n_obs is not None:
lowerCamelCase__ : int =self.src_lens[:n_obs]
lowerCamelCase__ : Dict =src_lang
lowerCamelCase__ : Tuple =tgt_lang
def __len__( self : Dict )-> Optional[int]:
return len(self.src_lens )
def __getitem__( self : List[str], lowerCamelCase : Optional[int] )-> Dict[str, torch.Tensor]:
lowerCamelCase__ : List[Any] =index + 1 # linecache starts at 1
lowerCamelCase__ : Optional[int] =self.prefix + linecache.getline(str(self.src_file ), lowerCamelCase ).rstrip('''\n''' )
lowerCamelCase__ : Optional[Any] =linecache.getline(str(self.tgt_file ), lowerCamelCase ).rstrip('''\n''' )
assert source_line, F'''empty source line for index {index}'''
assert tgt_line, F'''empty tgt line for index {index}'''
# Need to add eos token manually for T5
if isinstance(self.tokenizer, lowerCamelCase ):
source_line += self.tokenizer.eos_token
tgt_line += self.tokenizer.eos_token
# Pad source and target to the right
lowerCamelCase__ : Optional[int] =(
self.tokenizer.question_encoder if isinstance(self.tokenizer, lowerCamelCase ) else self.tokenizer
)
lowerCamelCase__ : Tuple =self.tokenizer.generator if isinstance(self.tokenizer, lowerCamelCase ) else self.tokenizer
lowerCamelCase__ : Optional[int] =encode_line(lowerCamelCase, lowerCamelCase, self.max_source_length, '''right''' )
lowerCamelCase__ : str =encode_line(lowerCamelCase, lowerCamelCase, self.max_target_length, '''right''' )
lowerCamelCase__ : str =source_inputs['''input_ids'''].squeeze()
lowerCamelCase__ : str =target_inputs['''input_ids'''].squeeze()
lowerCamelCase__ : Union[str, Any] =source_inputs['''attention_mask'''].squeeze()
return {
"input_ids": source_ids,
"attention_mask": src_mask,
"decoder_input_ids": target_ids,
}
@staticmethod
def snake_case ( lowerCamelCase : Union[str, Any] )-> Optional[int]:
return [len(lowerCamelCase ) for x in Path(lowerCamelCase ).open().readlines()]
def snake_case ( self : str, lowerCamelCase : str )-> Dict[str, torch.Tensor]:
lowerCamelCase__ : List[Any] =torch.stack([x['''input_ids'''] for x in batch] )
lowerCamelCase__ : int =torch.stack([x['''attention_mask'''] for x in batch] )
lowerCamelCase__ : Union[str, Any] =torch.stack([x['''decoder_input_ids'''] for x in batch] )
lowerCamelCase__ : str =(
self.tokenizer.generator.pad_token_id
if isinstance(self.tokenizer, lowerCamelCase )
else self.tokenizer.pad_token_id
)
lowerCamelCase__ : List[str] =(
self.tokenizer.question_encoder.pad_token_id
if isinstance(self.tokenizer, lowerCamelCase )
else self.tokenizer.pad_token_id
)
lowerCamelCase__ : Optional[int] =trim_batch(lowerCamelCase, lowerCamelCase )
lowerCamelCase__ , lowerCamelCase__ : Any =trim_batch(lowerCamelCase, lowerCamelCase, attention_mask=lowerCamelCase )
lowerCamelCase__ : List[str] ={
'''input_ids''': source_ids,
'''attention_mask''': source_mask,
'''decoder_input_ids''': y,
}
return batch
_lowercase : Any = getLogger(__name__)
def snake_case__ ( __lowerCamelCase : List[List] ):
"""simple docstring"""
return list(itertools.chain.from_iterable(__lowerCamelCase ) )
def snake_case__ ( __lowerCamelCase : str ):
"""simple docstring"""
lowerCamelCase__ : Dict =get_git_info()
save_json(__lowerCamelCase , os.path.join(__lowerCamelCase , '''git_log.json''' ) )
def snake_case__ ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Dict=4 , **__lowerCamelCase : int ):
"""simple docstring"""
with open(__lowerCamelCase , '''w''' ) as f:
json.dump(__lowerCamelCase , __lowerCamelCase , indent=__lowerCamelCase , **__lowerCamelCase )
def snake_case__ ( __lowerCamelCase : List[Any] ):
"""simple docstring"""
with open(__lowerCamelCase ) as f:
return json.load(__lowerCamelCase )
def snake_case__ ( ):
"""simple docstring"""
lowerCamelCase__ : List[Any] =git.Repo(search_parent_directories=__lowerCamelCase )
lowerCamelCase__ : Union[str, Any] ={
'''repo_id''': str(__lowerCamelCase ),
'''repo_sha''': str(repo.head.object.hexsha ),
'''repo_branch''': str(repo.active_branch ),
'''hostname''': str(socket.gethostname() ),
}
return repo_infos
def snake_case__ ( __lowerCamelCase : Callable , __lowerCamelCase : Iterable ):
"""simple docstring"""
return list(map(__lowerCamelCase , __lowerCamelCase ) )
def snake_case__ ( __lowerCamelCase : Any , __lowerCamelCase : List[Any] ):
"""simple docstring"""
with open(__lowerCamelCase , '''wb''' ) as f:
return pickle.dump(__lowerCamelCase , __lowerCamelCase )
def snake_case__ ( __lowerCamelCase : str ):
"""simple docstring"""
def remove_articles(__lowerCamelCase : List[Any] ):
return re.sub(R'''\b(a|an|the)\b''' , ''' ''' , __lowerCamelCase )
def white_space_fix(__lowerCamelCase : Any ):
return " ".join(text.split() )
def remove_punc(__lowerCamelCase : Optional[Any] ):
lowerCamelCase__ : Tuple =set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(__lowerCamelCase : Any ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(__lowerCamelCase ) ) ) )
def snake_case__ ( __lowerCamelCase : List[str] , __lowerCamelCase : List[str] ):
"""simple docstring"""
lowerCamelCase__ : List[str] =normalize_answer(__lowerCamelCase ).split()
lowerCamelCase__ : List[str] =normalize_answer(__lowerCamelCase ).split()
lowerCamelCase__ : Optional[int] =Counter(__lowerCamelCase ) & Counter(__lowerCamelCase )
lowerCamelCase__ : Union[str, Any] =sum(common.values() )
if num_same == 0:
return 0
lowerCamelCase__ : Dict =1.0 * num_same / len(__lowerCamelCase )
lowerCamelCase__ : List[str] =1.0 * num_same / len(__lowerCamelCase )
lowerCamelCase__ : Union[str, Any] =(2 * precision * recall) / (precision + recall)
return fa
def snake_case__ ( __lowerCamelCase : Dict , __lowerCamelCase : int ):
"""simple docstring"""
return normalize_answer(__lowerCamelCase ) == normalize_answer(__lowerCamelCase )
def snake_case__ ( __lowerCamelCase : List[str] , __lowerCamelCase : List[str] ):
"""simple docstring"""
assert len(__lowerCamelCase ) == len(__lowerCamelCase )
lowerCamelCase__ : Any =0
for hypo, pred in zip(__lowerCamelCase , __lowerCamelCase ):
em += exact_match_score(__lowerCamelCase , __lowerCamelCase )
if len(__lowerCamelCase ) > 0:
em /= len(__lowerCamelCase )
return {"em": em}
def snake_case__ ( __lowerCamelCase : List[str] ):
"""simple docstring"""
return model_prefix.startswith('''rag''' )
def snake_case__ ( __lowerCamelCase : Any , __lowerCamelCase : List[str] , __lowerCamelCase : str ):
"""simple docstring"""
lowerCamelCase__ : Any ={p: p for p in extra_params}
# T5 models don't have `dropout` param, they have `dropout_rate` instead
lowerCamelCase__ : Optional[int] ='''dropout_rate'''
for p in extra_params:
if getattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ):
if not hasattr(__lowerCamelCase , __lowerCamelCase ) and not hasattr(__lowerCamelCase , equivalent_param[p] ):
logger.info('''config doesn\'t have a `{}` attribute'''.format(__lowerCamelCase ) )
delattr(__lowerCamelCase , __lowerCamelCase )
continue
lowerCamelCase__ : List[Any] =p if hasattr(__lowerCamelCase , __lowerCamelCase ) else equivalent_param[p]
setattr(__lowerCamelCase , __lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase ) )
delattr(__lowerCamelCase , __lowerCamelCase )
return hparams, config
| 238
| 1
|
"""simple docstring"""
import warnings
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_UpperCamelCase: Dict = logging.get_logger(__name__)
_UpperCamelCase: Optional[int] = {
'nvidia/segformer-b0-finetuned-ade-512-512': (
'https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json'
),
# See all SegFormer models at https://huggingface.co/models?filter=segformer
}
class a__ ( SCREAMING_SNAKE_CASE__ ):
_lowerCamelCase = 'segformer'
def __init__( self : int, lowerCAmelCase : Tuple=3, lowerCAmelCase : Union[str, Any]=4, lowerCAmelCase : Optional[int]=[2, 2, 2, 2], lowerCAmelCase : Any=[8, 4, 2, 1], lowerCAmelCase : Optional[int]=[32, 64, 160, 256], lowerCAmelCase : Optional[int]=[7, 3, 3, 3], lowerCAmelCase : List[str]=[4, 2, 2, 2], lowerCAmelCase : str=[1, 2, 5, 8], lowerCAmelCase : Union[str, Any]=[4, 4, 4, 4], lowerCAmelCase : Any="gelu", lowerCAmelCase : List[str]=0.0, lowerCAmelCase : Tuple=0.0, lowerCAmelCase : str=0.1, lowerCAmelCase : Union[str, Any]=0.02, lowerCAmelCase : int=0.1, lowerCAmelCase : Tuple=1e-6, lowerCAmelCase : List[Any]=256, lowerCAmelCase : List[str]=255, **lowerCAmelCase : Dict, ) -> Union[str, Any]:
super().__init__(**lowerCAmelCase )
if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False:
warnings.warn(
'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be'
' removed, as the behaviour will default to that of reshape_last_stage = True.', lowerCAmelCase, )
lowercase : Union[str, Any] = num_channels
lowercase : Optional[Any] = num_encoder_blocks
lowercase : Optional[Any] = depths
lowercase : Any = sr_ratios
lowercase : List[str] = hidden_sizes
lowercase : List[Any] = patch_sizes
lowercase : Any = strides
lowercase : List[Any] = mlp_ratios
lowercase : Any = num_attention_heads
lowercase : Union[str, Any] = hidden_act
lowercase : Optional[Any] = hidden_dropout_prob
lowercase : Union[str, Any] = attention_probs_dropout_prob
lowercase : str = classifier_dropout_prob
lowercase : List[str] = initializer_range
lowercase : Tuple = drop_path_rate
lowercase : Dict = layer_norm_eps
lowercase : List[Any] = decoder_hidden_size
lowercase : Optional[Any] = kwargs.get('reshape_last_stage', lowerCAmelCase )
lowercase : Tuple = semantic_loss_ignore_index
class a__ ( SCREAMING_SNAKE_CASE__ ):
_lowerCamelCase = version.parse('1.11' )
@property
def lowercase ( self : Tuple ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
@property
def lowercase ( self : List[str] ) -> float:
return 1e-4
@property
def lowercase ( self : Any ) -> int:
return 12
| 53
|
"""simple docstring"""
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers
from ...tokenization_utils_base import BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
_UpperCamelCase: List[str] = logging.get_logger(__name__)
_UpperCamelCase: List[str] = {'tokenizer_file': 'tokenizer.json'}
_UpperCamelCase: str = {
'tokenizer_file': {
'bigscience/tokenizer': 'https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json',
'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json',
'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json',
'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json',
'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json',
'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json',
'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json',
},
}
class a__ ( SCREAMING_SNAKE_CASE__ ):
_lowerCamelCase = VOCAB_FILES_NAMES
_lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP
_lowerCamelCase = ['input_ids', 'attention_mask']
_lowerCamelCase = None
def __init__( self : Tuple, lowerCAmelCase : Tuple=None, lowerCAmelCase : Optional[Any]=None, lowerCAmelCase : str=None, lowerCAmelCase : Union[str, Any]="<unk>", lowerCAmelCase : Any="<s>", lowerCAmelCase : str="</s>", lowerCAmelCase : Tuple="<pad>", lowerCAmelCase : Dict=False, lowerCAmelCase : Union[str, Any]=False, **lowerCAmelCase : Optional[Any], ) -> str:
super().__init__(
lowerCAmelCase, lowerCAmelCase, tokenizer_file=lowerCAmelCase, unk_token=lowerCAmelCase, bos_token=lowerCAmelCase, eos_token=lowerCAmelCase, pad_token=lowerCAmelCase, add_prefix_space=lowerCAmelCase, clean_up_tokenization_spaces=lowerCAmelCase, **lowerCAmelCase, )
lowercase : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('add_prefix_space', lowerCAmelCase ) != add_prefix_space:
lowercase : Dict = getattr(lowerCAmelCase, pre_tok_state.pop('type' ) )
lowercase : Optional[Any] = add_prefix_space
lowercase : List[str] = pre_tok_class(**lowerCAmelCase )
lowercase : List[str] = add_prefix_space
def lowercase ( self : Dict, *lowerCAmelCase : Tuple, **lowerCAmelCase : List[Any] ) -> BatchEncoding:
lowercase : str = kwargs.get('is_split_into_words', lowerCAmelCase )
if not (self.add_prefix_space or not is_split_into_words):
raise Exception(
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with'''
' pretokenized inputs.' )
return super()._batch_encode_plus(*lowerCAmelCase, **lowerCAmelCase )
def lowercase ( self : List[Any], *lowerCAmelCase : Dict, **lowerCAmelCase : Dict ) -> BatchEncoding:
lowercase : List[str] = kwargs.get('is_split_into_words', lowerCAmelCase )
if not (self.add_prefix_space or not is_split_into_words):
raise Exception(
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with'''
' pretokenized inputs.' )
return super()._encode_plus(*lowerCAmelCase, **lowerCAmelCase )
def lowercase ( self : Optional[int], lowerCAmelCase : str, lowerCAmelCase : Optional[str] = None ) -> Tuple[str]:
lowercase : Optional[Any] = self._tokenizer.model.save(lowerCAmelCase, name=lowerCAmelCase )
return tuple(lowerCAmelCase )
def lowercase ( self : Tuple, lowerCAmelCase : "Conversation" ) -> List[int]:
lowercase : Dict = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(lowerCAmelCase, add_special_tokens=lowerCAmelCase ) + [self.eos_token_id] )
if len(lowerCAmelCase ) > self.model_max_length:
lowercase : Optional[Any] = input_ids[-self.model_max_length :]
return input_ids
| 53
| 1
|
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
from transformers import BatchEncoding, CanineTokenizer
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.tokenization_utils import AddedToken
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
class A_ ( lowerCAmelCase_ , unittest.TestCase ):
_lowerCamelCase : str = CanineTokenizer
_lowerCamelCase : Tuple = False
def lowercase ( self : List[Any] ):
super().setUp()
_UpperCAmelCase = CanineTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def lowercase ( self : List[str] ):
return CanineTokenizer.from_pretrained("google/canine-s" )
def lowercase ( self : Union[str, Any] , **snake_case_ : List[Any] ):
_UpperCAmelCase = self.tokenizer_class.from_pretrained(self.tmpdirname , **snake_case_ )
_UpperCAmelCase = 1_0_2_4
return tokenizer
@require_torch
def lowercase ( self : List[str] ):
_UpperCAmelCase = self.canine_tokenizer
_UpperCAmelCase = ["Life is like a box of chocolates.", "You never know what you're gonna get."]
# fmt: off
_UpperCAmelCase = [5_7_3_4_4, 7_6, 1_0_5, 1_0_2, 1_0_1, 3_2, 1_0_5, 1_1_5, 3_2, 1_0_8, 1_0_5, 1_0_7, 1_0_1, 3_2, 9_7, 3_2, 9_8, 1_1_1, 1_2_0, 3_2, 1_1_1, 1_0_2, 3_2, 9_9, 1_0_4, 1_1_1, 9_9, 1_1_1, 1_0_8, 9_7, 1_1_6, 1_0_1, 1_1_5, 4_6, 5_7_3_4_5, 0, 0, 0, 0]
# fmt: on
_UpperCAmelCase = tokenizer(snake_case_ , padding=snake_case_ , return_tensors="pt" )
self.assertIsInstance(snake_case_ , snake_case_ )
_UpperCAmelCase = list(batch.input_ids.numpy()[0] )
self.assertListEqual(snake_case_ , snake_case_ )
self.assertEqual((2, 3_9) , batch.input_ids.shape )
self.assertEqual((2, 3_9) , batch.attention_mask.shape )
@require_torch
def lowercase ( self : List[Any] ):
_UpperCAmelCase = self.canine_tokenizer
_UpperCAmelCase = ["Once there was a man.", "He wrote a test in HuggingFace Tranformers."]
_UpperCAmelCase = tokenizer(snake_case_ , padding=snake_case_ , return_tensors="pt" )
# check if input_ids, attention_mask and token_type_ids are returned
self.assertIn("input_ids" , snake_case_ )
self.assertIn("attention_mask" , snake_case_ )
self.assertIn("token_type_ids" , snake_case_ )
@require_torch
def lowercase ( self : Optional[int] ):
_UpperCAmelCase = self.canine_tokenizer
_UpperCAmelCase = [
"What's the weater?",
"It's about 25 degrees.",
]
_UpperCAmelCase = tokenizer(
text_target=snake_case_ , max_length=3_2 , padding="max_length" , truncation=snake_case_ , return_tensors="pt" )
self.assertEqual(3_2 , targets["input_ids"].shape[1] )
def lowercase ( self : Union[str, Any] ):
# safety check on max_len default value so we are sure the test works
_UpperCAmelCase = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'{tokenizer.__class__.__name__}' ):
self.assertNotEqual(tokenizer.model_max_length , 4_2 )
# Now let's start the test
_UpperCAmelCase = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'{tokenizer.__class__.__name__}' ):
# Isolate this from the other tests because we save additional tokens/etc
_UpperCAmelCase = tempfile.mkdtemp()
_UpperCAmelCase = " He is very happy, UNwant\u00E9d,running"
_UpperCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ )
tokenizer.save_pretrained(snake_case_ )
_UpperCAmelCase = tokenizer.__class__.from_pretrained(snake_case_ )
_UpperCAmelCase = after_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
shutil.rmtree(snake_case_ )
_UpperCAmelCase = self.get_tokenizers(model_max_length=4_2 )
for tokenizer in tokenizers:
with self.subTest(f'{tokenizer.__class__.__name__}' ):
# Isolate this from the other tests because we save additional tokens/etc
_UpperCAmelCase = tempfile.mkdtemp()
_UpperCAmelCase = " He is very happy, UNwant\u00E9d,running"
_UpperCAmelCase = tokenizer.additional_special_tokens
# We can add a new special token for Canine as follows:
_UpperCAmelCase = chr(0Xe0_07 )
additional_special_tokens.append(snake_case_ )
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} )
_UpperCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ )
tokenizer.save_pretrained(snake_case_ )
_UpperCAmelCase = tokenizer.__class__.from_pretrained(snake_case_ )
_UpperCAmelCase = after_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
self.assertIn(snake_case_ , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 4_2 )
_UpperCAmelCase = tokenizer.__class__.from_pretrained(snake_case_ , model_max_length=4_3 )
self.assertEqual(tokenizer.model_max_length , 4_3 )
shutil.rmtree(snake_case_ )
def lowercase ( self : int ):
_UpperCAmelCase = self.get_tokenizers(do_lower_case=snake_case_ )
for tokenizer in tokenizers:
with self.subTest(f'{tokenizer.__class__.__name__}' ):
_UpperCAmelCase , _UpperCAmelCase = self.get_clean_sequence(snake_case_ )
# a special token for Canine can be defined as follows:
_UpperCAmelCase = 0Xe0_05
_UpperCAmelCase = chr(snake_case_ )
tokenizer.add_special_tokens({"cls_token": special_token} )
_UpperCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ )
self.assertEqual(len(snake_case_ ) , 1 )
_UpperCAmelCase = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=snake_case_ )
_UpperCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ )
_UpperCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ )
_UpperCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ )
self.assertEqual(snake_case_ , input_encoded + special_token_id )
_UpperCAmelCase = tokenizer.decode(snake_case_ , skip_special_tokens=snake_case_ )
self.assertTrue(special_token not in decoded )
def lowercase ( self : int ):
_UpperCAmelCase = self.get_tokenizers(do_lower_case=snake_case_ )
for tokenizer in tokenizers:
with self.subTest(f'{tokenizer.__class__.__name__}' ):
_UpperCAmelCase = chr(0Xe0_05 )
_UpperCAmelCase = chr(0Xe0_06 )
# `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py)
tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=snake_case_ )
# `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`,
# which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py)
tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]} )
_UpperCAmelCase = tokenizer.tokenize(snake_case_ )
_UpperCAmelCase = tokenizer.tokenize(snake_case_ )
self.assertEqual(len(snake_case_ ) , 1 )
self.assertEqual(len(snake_case_ ) , 1 )
self.assertEqual(token_a[0] , snake_case_ )
self.assertEqual(token_a[0] , snake_case_ )
@require_tokenizers
def lowercase ( self : Any ):
_UpperCAmelCase = self.get_tokenizers(do_lower_case=snake_case_ )
for tokenizer in tokenizers:
with self.subTest(f'{tokenizer.__class__.__name__}' ):
# a special token for Canine can be defined as follows:
_UpperCAmelCase = 0Xe0_06
_UpperCAmelCase = chr(snake_case_ )
_UpperCAmelCase = AddedToken(snake_case_ , lstrip=snake_case_ )
tokenizer.add_special_tokens({"additional_special_tokens": [new_token]} )
with tempfile.TemporaryDirectory() as tmp_dir_name:
tokenizer.save_pretrained(snake_case_ )
tokenizer.from_pretrained(snake_case_ )
def lowercase ( self : List[Any] ):
_UpperCAmelCase = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(snake_case_ )
with open(os.path.join(snake_case_ , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file:
_UpperCAmelCase = json.load(snake_case_ )
with open(os.path.join(snake_case_ , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file:
_UpperCAmelCase = json.load(snake_case_ )
# a special token for Canine can be defined as follows:
_UpperCAmelCase = 0Xe0_06
_UpperCAmelCase = chr(snake_case_ )
_UpperCAmelCase = [new_token_a]
_UpperCAmelCase = [new_token_a]
with open(os.path.join(snake_case_ , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile:
json.dump(snake_case_ , snake_case_ )
with open(os.path.join(snake_case_ , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile:
json.dump(snake_case_ , snake_case_ )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
_UpperCAmelCase = tokenizer_class.from_pretrained(snake_case_ , extra_ids=0 )
self.assertIn(snake_case_ , tokenizer_without_change_in_init.additional_special_tokens )
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , )
_UpperCAmelCase = 0Xe0_07
_UpperCAmelCase = chr(snake_case_ )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
_UpperCAmelCase = [AddedToken(snake_case_ , lstrip=snake_case_ )]
_UpperCAmelCase = tokenizer_class.from_pretrained(
snake_case_ , additional_special_tokens=snake_case_ , extra_ids=0 )
self.assertIn(snake_case_ , tokenizer.additional_special_tokens )
# self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) )
@require_tokenizers
def lowercase ( self : Tuple ):
_UpperCAmelCase = self.get_tokenizers(do_lower_case=snake_case_ )
for tokenizer in tokenizers:
with self.subTest(f'{tokenizer.__class__.__name__}' ):
_UpperCAmelCase = "hello world"
if self.space_between_special_tokens:
_UpperCAmelCase = "[CLS] hello world [SEP]"
else:
_UpperCAmelCase = input
_UpperCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ )
_UpperCAmelCase = tokenizer.decode(snake_case_ , spaces_between_special_tokens=self.space_between_special_tokens )
self.assertIn(snake_case_ , [output, output.lower()] )
def lowercase ( self : str ):
_UpperCAmelCase = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'{tokenizer.__class__.__name__}' ):
_UpperCAmelCase = [
"bos_token",
"eos_token",
"unk_token",
"sep_token",
"pad_token",
"cls_token",
"mask_token",
]
_UpperCAmelCase = "a"
_UpperCAmelCase = ord(snake_case_ )
for attr in attributes_list:
setattr(snake_case_ , attr + "_id" , snake_case_ )
self.assertEqual(getattr(snake_case_ , snake_case_ ) , snake_case_ )
self.assertEqual(getattr(snake_case_ , attr + "_id" ) , snake_case_ )
setattr(snake_case_ , attr + "_id" , snake_case_ )
self.assertEqual(getattr(snake_case_ , snake_case_ ) , snake_case_ )
self.assertEqual(getattr(snake_case_ , attr + "_id" ) , snake_case_ )
setattr(snake_case_ , "additional_special_tokens_ids" , [] )
self.assertListEqual(getattr(snake_case_ , "additional_special_tokens" ) , [] )
self.assertListEqual(getattr(snake_case_ , "additional_special_tokens_ids" ) , [] )
_UpperCAmelCase = 0Xe0_06
_UpperCAmelCase = chr(snake_case_ )
setattr(snake_case_ , "additional_special_tokens_ids" , [additional_special_token_id] )
self.assertListEqual(getattr(snake_case_ , "additional_special_tokens" ) , [additional_special_token] )
self.assertListEqual(getattr(snake_case_ , "additional_special_tokens_ids" ) , [additional_special_token_id] )
def lowercase ( self : Any ):
pass
def lowercase ( self : List[Any] ):
pass
def lowercase ( self : Union[str, Any] ):
pass
def lowercase ( self : List[Any] ):
pass
def lowercase ( self : List[Any] ):
pass
def lowercase ( self : int ):
pass
def lowercase ( self : int ):
pass
def lowercase ( self : Optional[Any] ):
pass
| 22
|
import dataclasses
import json
import sys
import types
from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError
from copy import copy
from enum import Enum
from inspect import isclass
from pathlib import Path
from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints
import yaml
_UpperCAmelCase : Optional[Any] =NewType("""DataClass""", Any)
_UpperCAmelCase : Dict =NewType("""DataClassType""", Any)
def lowerCAmelCase ( lowerCAmelCase_ )-> Tuple:
if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
return v
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise ArgumentTypeError(
f"""Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).""" )
def lowerCAmelCase ( lowerCAmelCase_ )-> Callable[[str], Any]:
lowerCAmelCase_ : str = {str(lowerCAmelCase_ ): choice for choice in choices}
return lambda lowerCAmelCase_ : str_to_choice.get(lowerCAmelCase_ , lowerCAmelCase_ )
def lowerCAmelCase ( *,
lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = dataclasses.MISSING , lowerCAmelCase_ = dataclasses.MISSING , lowerCAmelCase_ = None , **lowerCAmelCase_ , )-> dataclasses.Field:
if metadata is None:
# Important, don't use as default param in function signature because dict is mutable and shared across function calls
lowerCAmelCase_ : Dict = {}
if aliases is not None:
lowerCAmelCase_ : str = aliases
if help is not None:
lowerCAmelCase_ : Tuple = help
return dataclasses.field(metadata=lowerCAmelCase_ , default=lowerCAmelCase_ , default_factory=lowerCAmelCase_ , **lowerCAmelCase_ )
class snake_case__( UpperCAmelCase__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Iterable[DataClassType]
def __init__( self , __lowercase , **__lowercase ) -> List[str]:
# To make the default appear when using --help
if "formatter_class" not in kwargs:
lowerCAmelCase_ : Optional[int] = ArgumentDefaultsHelpFormatter
super().__init__(**__lowercase )
if dataclasses.is_dataclass(__lowercase ):
lowerCAmelCase_ : Union[str, Any] = [dataclass_types]
lowerCAmelCase_ : List[Any] = list(__lowercase )
for dtype in self.dataclass_types:
self._add_dataclass_arguments(__lowercase )
@staticmethod
def lowercase_ ( __lowercase , __lowercase ) -> Union[str, Any]:
lowerCAmelCase_ : Optional[Any] = f"""--{field.name}"""
lowerCAmelCase_ : Tuple = field.metadata.copy()
# field.metadata is not used at all by Data Classes,
# it is provided as a third-party extension mechanism.
if isinstance(field.type , __lowercase ):
raise RuntimeError(
'''Unresolved type detected, which should have been done with the help of '''
'''`typing.get_type_hints` method by default''' )
lowerCAmelCase_ : List[str] = kwargs.pop('''aliases''' , [] )
if isinstance(__lowercase , __lowercase ):
lowerCAmelCase_ : Optional[Any] = [aliases]
lowerCAmelCase_ : Any = getattr(field.type , '''__origin__''' , field.type )
if origin_type is Union or (hasattr(__lowercase , '''UnionType''' ) and isinstance(__lowercase , types.UnionType )):
if str not in field.type.__args__ and (
len(field.type.__args__ ) != 2 or type(__lowercase ) not in field.type.__args__
):
raise ValueError(
'''Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because'''
''' the argument parser only supports one type per argument.'''
f""" Problem encountered in field '{field.name}'.""" )
if type(__lowercase ) not in field.type.__args__:
# filter `str` in Union
lowerCAmelCase_ : List[Any] = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1]
lowerCAmelCase_ : Dict = getattr(field.type , '''__origin__''' , field.type )
elif bool not in field.type.__args__:
# filter `NoneType` in Union (except for `Union[bool, NoneType]`)
lowerCAmelCase_ : str = (
field.type.__args__[0] if isinstance(__lowercase , field.type.__args__[1] ) else field.type.__args__[1]
)
lowerCAmelCase_ : List[Any] = getattr(field.type , '''__origin__''' , field.type )
# A variable to store kwargs for a boolean field, if needed
# so that we can init a `no_*` complement argument (see below)
lowerCAmelCase_ : Dict = {}
if origin_type is Literal or (isinstance(field.type , __lowercase ) and issubclass(field.type , __lowercase )):
if origin_type is Literal:
lowerCAmelCase_ : Optional[Any] = field.type.__args__
else:
lowerCAmelCase_ : int = [x.value for x in field.type]
lowerCAmelCase_ : str = make_choice_type_function(kwargs['''choices'''] )
if field.default is not dataclasses.MISSING:
lowerCAmelCase_ : str = field.default
else:
lowerCAmelCase_ : Tuple = True
elif field.type is bool or field.type == Optional[bool]:
# Copy the currect kwargs to use to instantiate a `no_*` complement argument below.
# We do not initialize it here because the `no_*` alternative must be instantiated after the real argument
lowerCAmelCase_ : Tuple = copy(__lowercase )
# Hack because type=bool in argparse does not behave as we want.
lowerCAmelCase_ : Dict = string_to_bool
if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING):
# Default value is False if we have no default when of type bool.
lowerCAmelCase_ : Union[str, Any] = False if field.default is dataclasses.MISSING else field.default
# This is the value that will get picked if we don't include --field_name in any way
lowerCAmelCase_ : List[str] = default
# This tells argparse we accept 0 or 1 value after --field_name
lowerCAmelCase_ : int = '''?'''
# This is the value that will get picked if we do --field_name (without value)
lowerCAmelCase_ : List[Any] = True
elif isclass(__lowercase ) and issubclass(__lowercase , __lowercase ):
lowerCAmelCase_ : Union[str, Any] = field.type.__args__[0]
lowerCAmelCase_ : Dict = '''+'''
if field.default_factory is not dataclasses.MISSING:
lowerCAmelCase_ : Any = field.default_factory()
elif field.default is dataclasses.MISSING:
lowerCAmelCase_ : Optional[int] = True
else:
lowerCAmelCase_ : List[Any] = field.type
if field.default is not dataclasses.MISSING:
lowerCAmelCase_ : Dict = field.default
elif field.default_factory is not dataclasses.MISSING:
lowerCAmelCase_ : List[Any] = field.default_factory()
else:
lowerCAmelCase_ : int = True
parser.add_argument(__lowercase , *__lowercase , **__lowercase )
# Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added.
# Order is important for arguments with the same destination!
# We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down
# here and we do not need those changes/additional keys.
if field.default is True and (field.type is bool or field.type == Optional[bool]):
lowerCAmelCase_ : Any = False
parser.add_argument(f"""--no_{field.name}""" , action='''store_false''' , dest=field.name , **__lowercase )
def lowercase_ ( self , __lowercase ) -> List[Any]:
if hasattr(__lowercase , '''_argument_group_name''' ):
lowerCAmelCase_ : str = self.add_argument_group(dtype._argument_group_name )
else:
lowerCAmelCase_ : Dict = self
try:
lowerCAmelCase_ : Dict[str, type] = get_type_hints(__lowercase )
except NameError:
raise RuntimeError(
f"""Type resolution failed for {dtype}. Try declaring the class in global scope or """
'''removing line of `from __future__ import annotations` which opts in Postponed '''
'''Evaluation of Annotations (PEP 563)''' )
except TypeError as ex:
# Remove this block when we drop Python 3.9 support
if sys.version_info[:2] < (3, 1_0) and "unsupported operand type(s) for |" in str(__lowercase ):
lowerCAmelCase_ : Any = '''.'''.join(map(__lowercase , sys.version_info[:3] ) )
raise RuntimeError(
f"""Type resolution failed for {dtype} on Python {python_version}. Try removing """
'''line of `from __future__ import annotations` which opts in union types as '''
'''`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To '''
'''support Python versions that lower than 3.10, you need to use '''
'''`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of '''
'''`X | None`.''' ) from ex
raise
for field in dataclasses.fields(__lowercase ):
if not field.init:
continue
lowerCAmelCase_ : Optional[int] = type_hints[field.name]
self._parse_dataclass_field(__lowercase , __lowercase )
def lowercase_ ( self , __lowercase=None , __lowercase=False , __lowercase=True , __lowercase=None , __lowercase=None , ) -> Tuple[DataClass, ...]:
if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )):
lowerCAmelCase_ : str = []
if args_filename:
args_files.append(Path(__lowercase ) )
elif look_for_args_file and len(sys.argv ):
args_files.append(Path(sys.argv[0] ).with_suffix('''.args''' ) )
# args files specified via command line flag should overwrite default args files so we add them last
if args_file_flag:
# Create special parser just to extract the args_file_flag values
lowerCAmelCase_ : str = ArgumentParser()
args_file_parser.add_argument(__lowercase , type=__lowercase , action='''append''' )
# Use only remaining args for further parsing (remove the args_file_flag)
lowerCAmelCase_ , lowerCAmelCase_ : Tuple = args_file_parser.parse_known_args(args=__lowercase )
lowerCAmelCase_ : int = vars(__lowercase ).get(args_file_flag.lstrip('''-''' ) , __lowercase )
if cmd_args_file_paths:
args_files.extend([Path(__lowercase ) for p in cmd_args_file_paths] )
lowerCAmelCase_ : Dict = []
for args_file in args_files:
if args_file.exists():
file_args += args_file.read_text().split()
# in case of duplicate arguments the last one has precedence
# args specified via the command line should overwrite args from files, so we add them last
lowerCAmelCase_ : Any = file_args + args if args is not None else file_args + sys.argv[1:]
lowerCAmelCase_ , lowerCAmelCase_ : Dict = self.parse_known_args(args=__lowercase )
lowerCAmelCase_ : Any = []
for dtype in self.dataclass_types:
lowerCAmelCase_ : str = {f.name for f in dataclasses.fields(__lowercase ) if f.init}
lowerCAmelCase_ : str = {k: v for k, v in vars(__lowercase ).items() if k in keys}
for k in keys:
delattr(__lowercase , __lowercase )
lowerCAmelCase_ : Optional[int] = dtype(**__lowercase )
outputs.append(__lowercase )
if len(namespace.__dict__ ) > 0:
# additional namespace.
outputs.append(__lowercase )
if return_remaining_strings:
return (*outputs, remaining_args)
else:
if remaining_args:
raise ValueError(f"""Some specified arguments are not used by the HfArgumentParser: {remaining_args}""" )
return (*outputs,)
def lowercase_ ( self , __lowercase , __lowercase = False ) -> Tuple[DataClass, ...]:
lowerCAmelCase_ : int = set(args.keys() )
lowerCAmelCase_ : str = []
for dtype in self.dataclass_types:
lowerCAmelCase_ : int = {f.name for f in dataclasses.fields(__lowercase ) if f.init}
lowerCAmelCase_ : List[str] = {k: v for k, v in args.items() if k in keys}
unused_keys.difference_update(inputs.keys() )
lowerCAmelCase_ : List[str] = dtype(**__lowercase )
outputs.append(__lowercase )
if not allow_extra_keys and unused_keys:
raise ValueError(f"""Some keys are not used by the HfArgumentParser: {sorted(__lowercase )}""" )
return tuple(__lowercase )
def lowercase_ ( self , __lowercase , __lowercase = False ) -> Tuple[DataClass, ...]:
with open(Path(__lowercase ) , encoding='''utf-8''' ) as open_json_file:
lowerCAmelCase_ : Dict = json.loads(open_json_file.read() )
lowerCAmelCase_ : str = self.parse_dict(__lowercase , allow_extra_keys=__lowercase )
return tuple(__lowercase )
def lowercase_ ( self , __lowercase , __lowercase = False ) -> Tuple[DataClass, ...]:
lowerCAmelCase_ : Optional[Any] = self.parse_dict(yaml.safe_load(Path(__lowercase ).read_text() ) , allow_extra_keys=__lowercase )
return tuple(__lowercase )
| 262
| 0
|
"""simple docstring"""
import unittest
from pathlib import Path
from tempfile import TemporaryDirectory
from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available
from transformers.models.bert.tokenization_bert import BertTokenizer
from transformers.testing_utils import require_tensorflow_text, require_tf, slow
if is_tf_available():
import tensorflow as tf
if is_tensorflow_text_available():
from transformers.models.bert import TFBertTokenizer
__UpperCamelCase = ['''bert-base-uncased''', '''bert-base-cased''']
__UpperCamelCase = '''hf-internal-testing/tiny-bert-tf-only'''
if is_tf_available():
class UpperCamelCase ( tf.keras.Model ):
def __init__( self, lowerCAmelCase__) -> Dict:
super().__init__()
snake_case_ = tokenizer
snake_case_ = AutoConfig.from_pretrained(lowerCAmelCase__)
snake_case_ = TFAutoModel.from_config(lowerCAmelCase__)
def a_ ( self, lowerCAmelCase__) -> List[str]:
snake_case_ = self.tokenizer(lowerCAmelCase__)
snake_case_ = self.bert(**lowerCAmelCase__)
return out["pooler_output"]
@require_tf
@require_tensorflow_text
class UpperCamelCase ( unittest.TestCase ):
def a_ ( self) -> Optional[Any]:
super().setUp()
snake_case_ = [
BertTokenizer.from_pretrained(lowerCAmelCase__) for checkpoint in (TOKENIZER_CHECKPOINTS * 2)
] # repeat for when fast_bert_tokenizer=false
snake_case_ = [TFBertTokenizer.from_pretrained(lowerCAmelCase__) for checkpoint in TOKENIZER_CHECKPOINTS] + [
TFBertTokenizer.from_pretrained(lowerCAmelCase__, use_fast_bert_tokenizer=lowerCAmelCase__)
for checkpoint in TOKENIZER_CHECKPOINTS
]
assert len(self.tokenizers) == len(self.tf_tokenizers)
snake_case_ = [
'This is a straightforward English test sentence.',
'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.',
'Now we\'re going to add some Chinese: 一 二 三 一二三',
'And some much more rare Chinese: 齉 堃 齉堃',
'Je vais aussi écrire en français pour tester les accents',
'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ',
]
snake_case_ = list(zip(self.test_sentences, self.test_sentences[::-1]))
def a_ ( self) -> List[str]:
for tokenizer, tf_tokenizer in zip(self.tokenizers, self.tf_tokenizers):
for test_inputs in (self.test_sentences, self.paired_sentences):
snake_case_ = tokenizer(lowerCAmelCase__, return_tensors='tf', padding='longest')
snake_case_ = tf_tokenizer(lowerCAmelCase__)
for key in python_outputs.keys():
self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape))
self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key], tf.intaa) == tf_outputs[key]))
@slow
def a_ ( self) -> int:
for tf_tokenizer in self.tf_tokenizers:
snake_case_ = tf_tokenizer(self.paired_sentences)
snake_case_ = tf_tokenizer(
text=[sentence[0] for sentence in self.paired_sentences], text_pair=[sentence[1] for sentence in self.paired_sentences], )
for key in merged_outputs.keys():
self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key], tf.intaa) == separated_outputs[key]))
@slow
def a_ ( self) -> Optional[int]:
for tf_tokenizer in self.tf_tokenizers:
snake_case_ = tf.function(lowerCAmelCase__)
for test_inputs in (self.test_sentences, self.paired_sentences):
snake_case_ = tf.constant(lowerCAmelCase__)
snake_case_ = compiled_tokenizer(lowerCAmelCase__)
snake_case_ = tf_tokenizer(lowerCAmelCase__)
for key in eager_outputs.keys():
self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key]))
@slow
def a_ ( self) -> int:
for tf_tokenizer in self.tf_tokenizers:
snake_case_ = ModelToSave(tokenizer=lowerCAmelCase__)
snake_case_ = tf.convert_to_tensor(self.test_sentences)
snake_case_ = model(lowerCAmelCase__) # Build model with some sample inputs
with TemporaryDirectory() as tempdir:
snake_case_ = Path(lowerCAmelCase__) / 'saved.model'
model.save(lowerCAmelCase__)
snake_case_ = tf.keras.models.load_model(lowerCAmelCase__)
snake_case_ = loaded_model(lowerCAmelCase__)
# We may see small differences because the loaded model is compiled, so we need an epsilon for the test
self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output)), 1e-5)
| 312
|
"""simple docstring"""
from __future__ import annotations
def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> list[str]:
if partitions <= 0:
raise ValueError('partitions must be a positive number!' )
if partitions > number_of_bytes:
raise ValueError('partitions can not > number_of_bytes!' )
snake_case_ = number_of_bytes // partitions
snake_case_ = []
for i in range(UpperCAmelCase ):
snake_case_ = i * bytes_per_partition + 1
snake_case_ = (
number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition
)
allocation_list.append(f'{start_bytes}-{end_bytes}' )
return allocation_list
if __name__ == "__main__":
import doctest
doctest.testmod()
| 312
| 1
|
"""simple docstring"""
from __future__ import annotations
import numpy as np
from numpy import floataa
from numpy.typing import NDArray
def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : NDArray[floataa] , SCREAMING_SNAKE_CASE : NDArray[floataa] , SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int , ):
'''simple docstring'''
lowerCAmelCase = coefficient_matrix.shape
lowerCAmelCase = constant_matrix.shape
if rowsa != colsa:
lowerCAmelCase = F'Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}'
raise ValueError(lowerCAmelCase_ )
if colsa != 1:
lowerCAmelCase = F'Constant matrix must be nx1 but received {rowsa}x{colsa}'
raise ValueError(lowerCAmelCase_ )
if rowsa != rowsa:
lowerCAmelCase = (
"""Coefficient and constant matrices dimensions must be nxn and nx1 but """
F'received {rowsa}x{colsa} and {rowsa}x{colsa}'
)
raise ValueError(lowerCAmelCase_ )
if len(lowerCAmelCase_ ) != rowsa:
lowerCAmelCase = (
"""Number of initial values must be equal to number of rows in coefficient """
F'matrix but received {len(lowerCAmelCase_ )} and {rowsa}'
)
raise ValueError(lowerCAmelCase_ )
if iterations <= 0:
raise ValueError("""Iterations must be at least 1""" )
lowerCAmelCase = np.concatenate(
(coefficient_matrix, constant_matrix) , axis=1 )
lowerCAmelCase = table.shape
strictly_diagonally_dominant(lowerCAmelCase_ )
# Iterates the whole matrix for given number of times
for _ in range(lowerCAmelCase_ ):
lowerCAmelCase = []
for row in range(lowerCAmelCase_ ):
lowerCAmelCase = 0
for col in range(lowerCAmelCase_ ):
if col == row:
lowerCAmelCase = table[row][col]
elif col == cols - 1:
lowerCAmelCase = table[row][col]
else:
temp += (-1) * table[row][col] * init_val[col]
lowerCAmelCase = (temp + val) / denom
new_val.append(lowerCAmelCase_ )
lowerCAmelCase = new_val
return [float(lowerCAmelCase_ ) for i in new_val]
def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : NDArray[floataa] ):
'''simple docstring'''
lowerCAmelCase = table.shape
lowerCAmelCase = True
for i in range(0 , lowerCAmelCase_ ):
lowerCAmelCase = 0
for j in range(0 , cols - 1 ):
if i == j:
continue
else:
total += table[i][j]
if table[i][i] <= total:
raise ValueError("""Coefficient matrix is not strictly diagonally dominant""" )
return is_diagonally_dominant
# Test Cases
if __name__ == "__main__":
import doctest
doctest.testmod()
| 46
|
from maths.prime_check import is_prime
def snake_case_ ( lowerCAmelCase_ : int ):
if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
__lowercase : Dict = F"Input value of [number={number}] must be an integer"
raise TypeError(lowerCAmelCase_ )
if is_prime(lowerCAmelCase_ ) and is_prime(number + 2 ):
return number + 2
else:
return -1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 233
| 0
|
from abc import ABC, abstractmethod
from argparse import ArgumentParser
class __a ( __UpperCamelCase ):
@staticmethod
@abstractmethod
def A ( UpperCAmelCase : ArgumentParser ):
raise NotImplementedError()
@abstractmethod
def A ( self : str ):
raise NotImplementedError()
| 351
|
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
__UpperCAmelCase = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = ['BartphoTokenizer']
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bartpho import BartphoTokenizer
else:
import sys
__UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 28
| 0
|
# HF Trainer benchmarking tool
#
# This tool can be used to run and compare multiple dimensions of the HF Trainers args.
#
# It then prints a report once in github format with all the information that needs to be shared
# with others and second time in a console-friendly format, so it's easier to use for tuning things up.
#
# The main idea is:
#
# ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \
# --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \
# --target-metric-key train_samples_per_second
#
# The variations can be any command line argument that you want to compare and not just dtype as in
# the example.
#
# --variations allows you to compare variations in multiple dimensions.
#
# as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6
# times adding one of:
#
# 1. --tf32 0 --fp16 0
# 2. --tf32 0 --fp16 1
# 3. --tf32 0 --bf16 1
# 4. --tf32 1 --fp16 0
# 5. --tf32 1 --fp16 1
# 6. --tf32 1 --bf16 1
#
# and print the results. This is just a cartesian product - and more than 2 dimensions can be used.
#
# If you want to rely on defaults, this:
# --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1'
# is identical to this:
# --variations '--tf32 0|--tf32 1' '|--fp16|--bf16'
#
# the leading empty variation in the 2nd dimension is a valid variation.
#
# So here we get the following 6 variations:
#
# 1. --tf32 0
# 2. --tf32 0 --fp16
# 3. --tf32 0 --bf16
# 4. --tf32 1
# 5. --tf32 1 --fp16
# 6. --tf32 1 --bf16
#
# In this particular case we don't know what the default tf32 setting is as it's normally
# pytorch-version dependent). That's why it's best to do an explicit setting of each variation:
# `--tf32 0|--tf32 1`
#
# Here is a full example of a train:
#
# CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \
# --base-cmd \
# ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \
# --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \
# --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \
# --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \
# --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \
# --source_prefix "translate English to Romanian: " --warmup_steps 50 \
# --max_train_samples 20000 --dataloader_num_workers 2 ' \
# --target-metric-key train_samples_per_second --repeat-times 1 --variations \
# '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \
# --repeat-times 1 --base-variation '--tf32 0'
#
# and here is a possible output:
#
#
# | Variation | Train | Diff | Train |
# | | samples | % | loss |
# | | per | | |
# | | second | | |
# |:----------------|----------:|-------:|--------:|
# | --tf32 0 | 285.11 | 0 | 2.51 |
# | --tf32 1 | 342.09 | 20 | 2.51 |
# | --fp16 --tf32 0 | 423.49 | 49 | 2.51 |
# | --fp16 --tf32 1 | 423.13 | 48 | 2.51 |
# | --bf16 --tf32 0 | 416.80 | 46 | 2.52 |
# | --bf16 --tf32 1 | 415.87 | 46 | 2.52 |
#
#
# So you can quickly compare the different outcomes.
#
# Typically running each experiment once is enough, but if the environment is unstable you can
# re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results.
#
# By default it'll use the lowest result as the base line to use as 100% and then compare the rest to
# it as can be seen from the table above, but you can also specify which combination is the one to use as
# the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0'
#
# --target-metric-key is there to tell the program which metrics to compare - the different metric keys are
# inside output_dir/all_results.json. e.g., to measure eval performance instead of train use:
# --target-metric-key eval_samples_per_second
# but of course you will need to adjust the --base-cmd value in the example to perform evaluation as
# well (as currently it doesn't)
#
import argparse
import datetime
import io
import itertools
import json
import math
import os
import platform
import re
import shlex
import subprocess
import sys
from pathlib import Path
from statistics import fmean
import pandas as pd
import torch
from tqdm import tqdm
import transformers
lowercase__ : Union[str, Any] = float("nan")
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : Optional[Any] , __lowercase : str ):
"""simple docstring"""
snake_case_ = sys.stdout
snake_case_ = open(SCREAMING_SNAKE_CASE__ , "a" )
def __getattr__( self : Dict , __lowercase : Any ):
"""simple docstring"""
return getattr(self.stdout , SCREAMING_SNAKE_CASE__ )
def snake_case__ ( self : Optional[Any] , __lowercase : Dict ):
"""simple docstring"""
self.stdout.write(SCREAMING_SNAKE_CASE__ )
# strip tqdm codes
self.file.write(re.sub(r"^.*\r" , "" , SCREAMING_SNAKE_CASE__ , 0 , re.M ) )
def lowerCamelCase__ ( _A=80 , _A=False ):
'''simple docstring'''
snake_case_ = []
# deal with critical env vars
snake_case_ = ["CUDA_VISIBLE_DEVICES"]
for key in env_keys:
snake_case_ = os.environ.get(__lowerCAmelCase , __lowerCAmelCase )
if val is not None:
cmd.append(f"{key}={val}" )
# python executable (not always needed if the script is executable)
snake_case_ = sys.executable if full_python_path else sys.executable.split("/" )[-1]
cmd.append(__lowerCAmelCase )
# now the normal args
cmd += list(map(shlex.quote , sys.argv ) )
# split up into up to MAX_WIDTH lines with shell multi-line escapes
snake_case_ = []
snake_case_ = ""
while len(__lowerCAmelCase ) > 0:
current_line += f"{cmd.pop(0 )} "
if len(__lowerCAmelCase ) == 0 or len(__lowerCAmelCase ) + len(cmd[0] ) + 1 > max_width - 1:
lines.append(__lowerCAmelCase )
snake_case_ = ""
return "\\\n".join(__lowerCAmelCase )
def lowerCamelCase__ ( _A , _A ):
'''simple docstring'''
snake_case_ = re.sub(R"[\\\n]+" , " " , args.base_cmd )
# remove --output_dir if any and set our own
snake_case_ = re.sub("--output_dir\s+[^\s]+" , "" , args.base_cmd )
args.base_cmd += f" --output_dir {output_dir}"
# ensure we have --overwrite_output_dir
snake_case_ = re.sub("--overwrite_output_dir\s+" , "" , args.base_cmd )
args.base_cmd += " --overwrite_output_dir"
return [sys.executable] + shlex.split(args.base_cmd )
def lowerCamelCase__ ( _A , _A , _A , _A , _A , _A , _A ):
'''simple docstring'''
if 0:
import random
from time import sleep
sleep(0 )
return dict(
{k: random.uniform(0 , 100 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 1_00.2, 55.66_66, 2_22.22_22_22_22] )} , )
snake_case_ = subprocess.run(__lowerCAmelCase , capture_output=__lowerCAmelCase , text=__lowerCAmelCase )
if verbose:
print("STDOUT" , result.stdout )
print("STDERR" , result.stderr )
# save the streams
snake_case_ = variation.replace(" " , "-" )
with open(Path(__lowerCAmelCase ) / f"log.{prefix}.stdout.txt" , "w" ) as f:
f.write(result.stdout )
with open(Path(__lowerCAmelCase ) / f"log.{prefix}.stderr.txt" , "w" ) as f:
f.write(result.stderr )
if result.returncode != 0:
if verbose:
print("failed" )
return {target_metric_key: nan}
with io.open(f"{output_dir}/all_results.json" , "r" , encoding="utf-8" ) as f:
snake_case_ = json.load(__lowerCAmelCase )
# filter out just the keys we want
return {k: v for k, v in metrics.items() if k in metric_keys}
def lowerCamelCase__ ( _A , _A , _A , _A , _A , _A , _A , _A , _A , _A , ):
'''simple docstring'''
snake_case_ = []
snake_case_ = []
snake_case_ = f"{id}: {variation:<{longest_variation_len}}"
snake_case_ = f"{preamble}: "
snake_case_ = set(report_metric_keys + [target_metric_key] )
for i in tqdm(range(__lowerCAmelCase ) , desc=__lowerCAmelCase , leave=__lowerCAmelCase ):
snake_case_ = process_run_single(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
snake_case_ = single_run_metrics[target_metric_key]
if not math.isnan(__lowerCAmelCase ):
metrics.append(__lowerCAmelCase )
results.append(__lowerCAmelCase )
outcome += "✓"
else:
outcome += "✘"
snake_case_ = f"\33[2K\r{outcome}"
if len(__lowerCAmelCase ) > 0:
snake_case_ = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()}
snake_case_ = round(mean_metrics[target_metric_key] , 2 )
snake_case_ = f"{outcome} {mean_target}"
if len(__lowerCAmelCase ) > 1:
results_str += f" {tuple(round(__lowerCAmelCase , 2 ) for x in results )}"
print(__lowerCAmelCase )
snake_case_ = variation
return mean_metrics
else:
print(__lowerCAmelCase )
return {variation_key: variation, target_metric_key: nan}
def lowerCamelCase__ ( ):
'''simple docstring'''
snake_case_ = torch.cuda.get_device_properties(torch.device("cuda" ) )
return f"\nDatetime : {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' )}\n\nSoftware:\ntransformers: {transformers.__version__}\ntorch : {torch.__version__}\ncuda : {torch.version.cuda}\npython : {platform.python_version()}\n\nHardware:\n{torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB\n"
def lowerCamelCase__ ( _A , _A , _A , _A , _A ):
'''simple docstring'''
snake_case_ = pd.DataFrame(__lowerCAmelCase )
snake_case_ = "variation"
snake_case_ = "diff_%"
snake_case_ = nan
if base_variation is not None and len(df[df[variation_key] == base_variation] ):
# this may still return nan
snake_case_ = df.loc[df[variation_key] == base_variation][target_metric_key].item()
if math.isnan(__lowerCAmelCase ):
# as a fallback, use the minimal value as the sentinel
snake_case_ = df.loc[df[target_metric_key] != nan][target_metric_key].min()
# create diff column if possible
if not math.isnan(__lowerCAmelCase ):
snake_case_ = df.apply(
lambda _A : round(100 * (r[target_metric_key] - sentinel_value) / sentinel_value )
if not math.isnan(r[target_metric_key] )
else 0 , axis="columns" , )
# re-order columns
snake_case_ = [variation_key, target_metric_key, diff_key, *report_metric_keys]
snake_case_ = df.reindex(__lowerCAmelCase , axis="columns" ) # reorder cols
# capitalize
snake_case_ = df.rename(str.capitalize , axis="columns" )
# make the cols as narrow as possible
snake_case_ = df.rename(lambda _A : c.replace("_" , "<br>" ) , axis="columns" )
snake_case_ = df.rename(lambda _A : c.replace("_" , "\n" ) , axis="columns" )
snake_case_ = ["", "Copy between the cut-here-lines and paste as is to github or a forum"]
report += ["----------8<-----------------8<--------"]
report += ["*** Results:", df_github.to_markdown(index=__lowerCAmelCase , floatfmt=".2f" )]
report += ["```"]
report += ["*** Setup:", get_versions()]
report += ["*** The benchmark command line was:", get_original_command()]
report += ["```"]
report += ["----------8<-----------------8<--------"]
report += ["*** Results (console):", df_console.to_markdown(index=__lowerCAmelCase , floatfmt=".2f" )]
print("\n\n".join(__lowerCAmelCase ) )
def lowerCamelCase__ ( ):
'''simple docstring'''
snake_case_ = argparse.ArgumentParser()
parser.add_argument(
"--base-cmd" , default=__lowerCAmelCase , type=__lowerCAmelCase , required=__lowerCAmelCase , help="Base cmd" , )
parser.add_argument(
"--variations" , default=__lowerCAmelCase , type=__lowerCAmelCase , nargs="+" , required=__lowerCAmelCase , help="Multi-dimensional variations, example: \'|--fp16|--bf16\' \'|--tf32\'" , )
parser.add_argument(
"--base-variation" , default=__lowerCAmelCase , type=__lowerCAmelCase , help="Baseline variation to compare to. if None the minimal target value will be used to compare against" , )
parser.add_argument(
"--target-metric-key" , default=__lowerCAmelCase , type=__lowerCAmelCase , required=__lowerCAmelCase , help="Target metric key in output_dir/all_results.json, e.g., train_samples_per_second" , )
parser.add_argument(
"--report-metric-keys" , default="" , type=__lowerCAmelCase , help="Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., \'train_loss train_samples" , )
parser.add_argument(
"--repeat-times" , default=1 , type=__lowerCAmelCase , help="How many times to re-run each variation - an average will be reported" , )
parser.add_argument(
"--output_dir" , default="output_benchmark" , type=__lowerCAmelCase , help="The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked" , )
parser.add_argument(
"--verbose" , default=__lowerCAmelCase , action="store_true" , help="Whether to show the outputs of each run or just the benchmark progress" , )
snake_case_ = parser.parse_args()
snake_case_ = args.output_dir
Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase )
snake_case_ = get_base_command(__lowerCAmelCase , __lowerCAmelCase )
# split each dimension into its --foo variations
snake_case_ = [list(map(str.strip , re.split(R"\|" , __lowerCAmelCase ) ) ) for x in args.variations]
# build a cartesian product of dimensions and convert those back into cmd-line arg strings,
# while stripping white space for inputs that were empty
snake_case_ = list(map(str.strip , map(" ".join , itertools.product(*__lowerCAmelCase ) ) ) )
snake_case_ = max(len(__lowerCAmelCase ) for x in variations )
# split wanted keys
snake_case_ = args.report_metric_keys.split()
# capture prints into a log file for convenience
snake_case_ = f"benchmark-report-{datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S' )}.txt"
print(f"\nNote: each run\'s output is also logged under {output_dir}/log.*.std*.txt" )
print(f"and this script\'s output is also piped into {report_fn}" )
snake_case_ = Tee(__lowerCAmelCase )
print(f"\n*** Running {len(__lowerCAmelCase )} benchmarks:" )
print(f"Base command: {' '.join(__lowerCAmelCase )}" )
snake_case_ = "variation"
snake_case_ = []
for id, variation in enumerate(tqdm(__lowerCAmelCase , desc="Total completion: " , leave=__lowerCAmelCase ) ):
snake_case_ = base_cmd + variation.split()
results.append(
process_run(
id + 1 , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , args.target_metric_key , __lowerCAmelCase , args.repeat_times , __lowerCAmelCase , args.verbose , ) )
process_results(__lowerCAmelCase , args.target_metric_key , __lowerCAmelCase , args.base_variation , __lowerCAmelCase )
if __name__ == "__main__":
main()
| 187
|
import argparse
import collections
import json
import os
import re
import string
import sys
import numpy as np
SCREAMING_SNAKE_CASE__ : Union[str, Any] = re.compile(r"\b(a|an|the)\b", re.UNICODE)
SCREAMING_SNAKE_CASE__ : int = None
def __magic_name__ ( ) -> str:
__lowerCamelCase = argparse.ArgumentParser('''Official evaluation script for SQuAD version 2.0.''' )
parser.add_argument('''data_file''' , metavar='''data.json''' , help='''Input data JSON file.''' )
parser.add_argument('''pred_file''' , metavar='''pred.json''' , help='''Model predictions.''' )
parser.add_argument(
'''--out-file''' , '''-o''' , metavar='''eval.json''' , help='''Write accuracy metrics to file (default is stdout).''' )
parser.add_argument(
'''--na-prob-file''' , '''-n''' , metavar='''na_prob.json''' , help='''Model estimates of probability of no answer.''' )
parser.add_argument(
'''--na-prob-thresh''' , '''-t''' , type=__lowerCAmelCase , default=1.0 , help='''Predict "" if no-answer probability exceeds this (default = 1.0).''' , )
parser.add_argument(
'''--out-image-dir''' , '''-p''' , metavar='''out_images''' , default=__lowerCAmelCase , help='''Save precision-recall curves to directory.''' )
parser.add_argument('''--verbose''' , '''-v''' , action='''store_true''' )
if len(sys.argv ) == 1:
parser.print_help()
sys.exit(1 )
return parser.parse_args()
def __magic_name__ ( __lowerCAmelCase : List[str] ) -> Union[str, Any]:
__lowerCamelCase = {}
for article in dataset:
for p in article["paragraphs"]:
for qa in p["qas"]:
__lowerCamelCase = bool(qa['''answers''']['''text'''] )
return qid_to_has_ans
def __magic_name__ ( __lowerCAmelCase : Dict ) -> Optional[Any]:
def remove_articles(__lowerCAmelCase : Optional[int] ):
return ARTICLES_REGEX.sub(''' ''' , __lowerCAmelCase )
def white_space_fix(__lowerCAmelCase : Optional[int] ):
return " ".join(text.split() )
def remove_punc(__lowerCAmelCase : Union[str, Any] ):
__lowerCamelCase = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(__lowerCAmelCase : Dict ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(__lowerCAmelCase ) ) ) )
def __magic_name__ ( __lowerCAmelCase : List[Any] ) -> Optional[int]:
if not s:
return []
return normalize_answer(__lowerCAmelCase ).split()
def __magic_name__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Tuple ) -> int:
return int(normalize_answer(__lowerCAmelCase ) == normalize_answer(__lowerCAmelCase ) )
def __magic_name__ ( __lowerCAmelCase : Any , __lowerCAmelCase : Tuple ) -> str:
__lowerCamelCase = get_tokens(__lowerCAmelCase )
__lowerCamelCase = get_tokens(__lowerCAmelCase )
__lowerCamelCase = collections.Counter(__lowerCAmelCase ) & collections.Counter(__lowerCAmelCase )
__lowerCamelCase = sum(common.values() )
if len(__lowerCAmelCase ) == 0 or len(__lowerCAmelCase ) == 0:
# If either is no-answer, then F1 is 1 if they agree, 0 otherwise
return int(gold_toks == pred_toks )
if num_same == 0:
return 0
__lowerCamelCase = 1.0 * num_same / len(__lowerCAmelCase )
__lowerCamelCase = 1.0 * num_same / len(__lowerCAmelCase )
__lowerCamelCase = (2 * precision * recall) / (precision + recall)
return fa
def __magic_name__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] ) -> Optional[Any]:
__lowerCamelCase = {}
__lowerCamelCase = {}
for article in dataset:
for p in article["paragraphs"]:
for qa in p["qas"]:
__lowerCamelCase = qa['''id''']
__lowerCamelCase = [t for t in qa['''answers''']['''text'''] if normalize_answer(__lowerCAmelCase )]
if not gold_answers:
# For unanswerable questions, only correct answer is empty string
__lowerCamelCase = ['''''']
if qid not in preds:
print(f'''Missing prediction for {qid}''' )
continue
__lowerCamelCase = preds[qid]
# Take max over all gold answers
__lowerCamelCase = max(compute_exact(__lowerCAmelCase , __lowerCAmelCase ) for a in gold_answers )
__lowerCamelCase = max(compute_fa(__lowerCAmelCase , __lowerCAmelCase ) for a in gold_answers )
return exact_scores, fa_scores
def __magic_name__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Union[str, Any] ) -> List[str]:
__lowerCamelCase = {}
for qid, s in scores.items():
__lowerCamelCase = na_probs[qid] > na_prob_thresh
if pred_na:
__lowerCamelCase = float(not qid_to_has_ans[qid] )
else:
__lowerCamelCase = s
return new_scores
def __magic_name__ ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[Any]=None ) -> Union[str, Any]:
if not qid_list:
__lowerCamelCase = len(__lowerCAmelCase )
return collections.OrderedDict(
[
('''exact''', 100.0 * sum(exact_scores.values() ) / total),
('''f1''', 100.0 * sum(fa_scores.values() ) / total),
('''total''', total),
] )
else:
__lowerCamelCase = len(__lowerCAmelCase )
return collections.OrderedDict(
[
('''exact''', 100.0 * sum(exact_scores[k] for k in qid_list ) / total),
('''f1''', 100.0 * sum(fa_scores[k] for k in qid_list ) / total),
('''total''', total),
] )
def __magic_name__ ( __lowerCAmelCase : Any , __lowerCAmelCase : str , __lowerCAmelCase : Optional[Any] ) -> int:
for k in new_eval:
__lowerCamelCase = new_eval[k]
def __magic_name__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any] ) -> Optional[Any]:
plt.step(__lowerCAmelCase , __lowerCAmelCase , color='''b''' , alpha=0.2 , where='''post''' )
plt.fill_between(__lowerCAmelCase , __lowerCAmelCase , step='''post''' , alpha=0.2 , color='''b''' )
plt.xlabel('''Recall''' )
plt.ylabel('''Precision''' )
plt.xlim([0.0, 1.05] )
plt.ylim([0.0, 1.05] )
plt.title(__lowerCAmelCase )
plt.savefig(__lowerCAmelCase )
plt.clf()
def __magic_name__ ( __lowerCAmelCase : Any , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any]=None , __lowerCAmelCase : Tuple=None ) -> int:
__lowerCamelCase = sorted(__lowerCAmelCase , key=lambda __lowerCAmelCase : na_probs[k] )
__lowerCamelCase = 0.0
__lowerCamelCase = 1.0
__lowerCamelCase = 0.0
__lowerCamelCase = [1.0]
__lowerCamelCase = [0.0]
__lowerCamelCase = 0.0
for i, qid in enumerate(__lowerCAmelCase ):
if qid_to_has_ans[qid]:
true_pos += scores[qid]
__lowerCamelCase = true_pos / float(i + 1 )
__lowerCamelCase = true_pos / float(__lowerCAmelCase )
if i == len(__lowerCAmelCase ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]:
# i.e., if we can put a threshold after this point
avg_prec += cur_p * (cur_r - recalls[-1])
precisions.append(__lowerCAmelCase )
recalls.append(__lowerCAmelCase )
if out_image:
plot_pr_curve(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
return {"ap": 100.0 * avg_prec}
def __magic_name__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[Any] ) -> List[Any]:
if out_image_dir and not os.path.exists(__lowerCAmelCase ):
os.makedirs(__lowerCAmelCase )
__lowerCamelCase = sum(1 for v in qid_to_has_ans.values() if v )
if num_true_pos == 0:
return
__lowerCamelCase = make_precision_recall_eval(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , out_image=os.path.join(__lowerCAmelCase , '''pr_exact.png''' ) , title='''Precision-Recall curve for Exact Match score''' , )
__lowerCamelCase = make_precision_recall_eval(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , out_image=os.path.join(__lowerCAmelCase , '''pr_f1.png''' ) , title='''Precision-Recall curve for F1 score''' , )
__lowerCamelCase = {k: float(__lowerCAmelCase ) for k, v in qid_to_has_ans.items()}
__lowerCamelCase = make_precision_recall_eval(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , out_image=os.path.join(__lowerCAmelCase , '''pr_oracle.png''' ) , title='''Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)''' , )
merge_eval(__lowerCAmelCase , __lowerCAmelCase , '''pr_exact''' )
merge_eval(__lowerCAmelCase , __lowerCAmelCase , '''pr_f1''' )
merge_eval(__lowerCAmelCase , __lowerCAmelCase , '''pr_oracle''' )
def __magic_name__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int ) -> Optional[Any]:
if not qid_list:
return
__lowerCamelCase = [na_probs[k] for k in qid_list]
__lowerCamelCase = np.ones_like(__lowerCAmelCase ) / float(len(__lowerCAmelCase ) )
plt.hist(__lowerCAmelCase , weights=__lowerCAmelCase , bins=20 , range=(0.0, 1.0) )
plt.xlabel('''Model probability of no-answer''' )
plt.ylabel('''Proportion of dataset''' )
plt.title(f'''Histogram of no-answer probability: {name}''' )
plt.savefig(os.path.join(__lowerCAmelCase , f'''na_prob_hist_{name}.png''' ) )
plt.clf()
def __magic_name__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] ) -> Optional[int]:
__lowerCamelCase = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] )
__lowerCamelCase = num_no_ans
__lowerCamelCase = cur_score
__lowerCamelCase = 0.0
__lowerCamelCase = sorted(__lowerCAmelCase , key=lambda __lowerCAmelCase : na_probs[k] )
for i, qid in enumerate(__lowerCAmelCase ):
if qid not in scores:
continue
if qid_to_has_ans[qid]:
__lowerCamelCase = scores[qid]
else:
if preds[qid]:
__lowerCamelCase = -1
else:
__lowerCamelCase = 0
cur_score += diff
if cur_score > best_score:
__lowerCamelCase = cur_score
__lowerCamelCase = na_probs[qid]
return 100.0 * best_score / len(__lowerCAmelCase ), best_thresh
def __magic_name__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : int , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : int , __lowerCAmelCase : Optional[Any] ) -> int:
__lowerCamelCase , __lowerCamelCase = find_best_thresh(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
__lowerCamelCase , __lowerCamelCase = find_best_thresh(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
__lowerCamelCase = best_exact
__lowerCamelCase = exact_thresh
__lowerCamelCase = best_fa
__lowerCamelCase = fa_thresh
def __magic_name__ ( ) -> Optional[int]:
with open(OPTS.data_file ) as f:
__lowerCamelCase = json.load(__lowerCAmelCase )
__lowerCamelCase = dataset_json['''data''']
with open(OPTS.pred_file ) as f:
__lowerCamelCase = json.load(__lowerCAmelCase )
if OPTS.na_prob_file:
with open(OPTS.na_prob_file ) as f:
__lowerCamelCase = json.load(__lowerCAmelCase )
else:
__lowerCamelCase = {k: 0.0 for k in preds}
__lowerCamelCase = make_qid_to_has_ans(__lowerCAmelCase ) # maps qid to True/False
__lowerCamelCase = [k for k, v in qid_to_has_ans.items() if v]
__lowerCamelCase = [k for k, v in qid_to_has_ans.items() if not v]
__lowerCamelCase , __lowerCamelCase = get_raw_scores(__lowerCAmelCase , __lowerCAmelCase )
__lowerCamelCase = apply_no_ans_threshold(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , OPTS.na_prob_thresh )
__lowerCamelCase = apply_no_ans_threshold(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , OPTS.na_prob_thresh )
__lowerCamelCase = make_eval_dict(__lowerCAmelCase , __lowerCAmelCase )
if has_ans_qids:
__lowerCamelCase = make_eval_dict(__lowerCAmelCase , __lowerCAmelCase , qid_list=__lowerCAmelCase )
merge_eval(__lowerCAmelCase , __lowerCAmelCase , '''HasAns''' )
if no_ans_qids:
__lowerCamelCase = make_eval_dict(__lowerCAmelCase , __lowerCAmelCase , qid_list=__lowerCAmelCase )
merge_eval(__lowerCAmelCase , __lowerCAmelCase , '''NoAns''' )
if OPTS.na_prob_file:
find_all_best_thresh(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
if OPTS.na_prob_file and OPTS.out_image_dir:
run_precision_recall_analysis(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , OPTS.out_image_dir )
histogram_na_prob(__lowerCAmelCase , __lowerCAmelCase , OPTS.out_image_dir , '''hasAns''' )
histogram_na_prob(__lowerCAmelCase , __lowerCAmelCase , OPTS.out_image_dir , '''noAns''' )
if OPTS.out_file:
with open(OPTS.out_file , '''w''' ) as f:
json.dump(__lowerCAmelCase , __lowerCAmelCase )
else:
print(json.dumps(__lowerCAmelCase , indent=2 ) )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ : Any = parse_args()
if OPTS.out_image_dir:
import matplotlib
matplotlib.use("Agg")
import matplotlib.pyplot as plt
main()
| 270
| 0
|
from argparse import ArgumentParser
from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline
from ..utils import logging
from . import BaseTransformersCLICommand
__lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name
def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> Optional[Any]:
"""simple docstring"""
if not path:
return "pipe"
for ext in PipelineDataFormat.SUPPORTED_FORMATS:
if path.endswith(__UpperCamelCase ):
return ext
raise Exception(
f"""Unable to determine file format from file extension {path}. """
f"""Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}""" )
def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = pipeline(
task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , )
SCREAMING_SNAKE_CASE__ = try_infer_format_from_ext(args.input ) if args.format == """infer""" else args.format
SCREAMING_SNAKE_CASE__ = PipelineDataFormat.from_str(
format=__UpperCamelCase , output_path=args.output , input_path=args.input , column=args.column if args.column else nlp.default_input_names , overwrite=args.overwrite , )
return RunCommand(__UpperCamelCase , __UpperCamelCase )
class __snake_case ( lowerCamelCase_ ):
def __init__( self : int , _lowercase : Pipeline , _lowercase : PipelineDataFormat ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = nlp
SCREAMING_SNAKE_CASE__ = reader
@staticmethod
def __a ( _lowercase : ArgumentParser ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = parser.add_parser("""run""" , help="""Run a pipeline through the CLI""" )
run_parser.add_argument("""--task""" , choices=get_supported_tasks() , help="""Task to run""" )
run_parser.add_argument("""--input""" , type=_lowercase , help="""Path to the file to use for inference""" )
run_parser.add_argument("""--output""" , type=_lowercase , help="""Path to the file that will be used post to write results.""" )
run_parser.add_argument("""--model""" , type=_lowercase , help="""Name or path to the model to instantiate.""" )
run_parser.add_argument("""--config""" , type=_lowercase , help="""Name or path to the model's config to instantiate.""" )
run_parser.add_argument(
"""--tokenizer""" , type=_lowercase , help="""Name of the tokenizer to use. (default: same as the model name)""" )
run_parser.add_argument(
"""--column""" , type=_lowercase , help="""Name of the column to use as input. (For multi columns input as QA use column1,columns2)""" , )
run_parser.add_argument(
"""--format""" , type=_lowercase , default="""infer""" , choices=PipelineDataFormat.SUPPORTED_FORMATS , help="""Input format to read from""" , )
run_parser.add_argument(
"""--device""" , type=_lowercase , default=-1 , help="""Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)""" , )
run_parser.add_argument("""--overwrite""" , action="""store_true""" , help="""Allow overwriting the output file.""" )
run_parser.set_defaults(func=_lowercase )
def __a ( self : Optional[int] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self._nlp, []
for entry in self._reader:
SCREAMING_SNAKE_CASE__ = nlp(**_lowercase ) if self._reader.is_multi_columns else nlp(_lowercase )
if isinstance(_lowercase , _lowercase ):
outputs.append(_lowercase )
else:
outputs += output
# Saving data
if self._nlp.binary_output:
SCREAMING_SNAKE_CASE__ = self._reader.save_binary(_lowercase )
logger.warning(f"""Current pipeline requires output to be in binary format, saving at {binary_path}""" )
else:
self._reader.save(_lowercase )
| 365
|
from __future__ import annotations
__lowerCamelCase : Dict = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0]
__lowerCamelCase : Union[str, Any] = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1]
def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : list[float] ) -> list[float]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = []
SCREAMING_SNAKE_CASE__ = len(__UpperCamelCase )
for i in range(__UpperCamelCase ):
SCREAMING_SNAKE_CASE__ = -1
for j in range(i + 1 , __UpperCamelCase ):
if arr[i] < arr[j]:
SCREAMING_SNAKE_CASE__ = arr[j]
break
result.append(__UpperCamelCase )
return result
def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : list[float] ) -> list[float]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = []
for i, outer in enumerate(__UpperCamelCase ):
SCREAMING_SNAKE_CASE__ = -1
for inner in arr[i + 1 :]:
if outer < inner:
SCREAMING_SNAKE_CASE__ = inner
break
result.append(__UpperCamelCase )
return result
def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : list[float] ) -> list[float]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = len(__UpperCamelCase )
SCREAMING_SNAKE_CASE__ = []
SCREAMING_SNAKE_CASE__ = [-1] * arr_size
for index in reversed(range(__UpperCamelCase ) ):
if stack:
while stack[-1] <= arr[index]:
stack.pop()
if not stack:
break
if stack:
SCREAMING_SNAKE_CASE__ = stack[-1]
stack.append(arr[index] )
return result
if __name__ == "__main__":
from doctest import testmod
from timeit import timeit
testmod()
print(next_greatest_element_slow(arr))
print(next_greatest_element_fast(arr))
print(next_greatest_element(arr))
__lowerCamelCase : List[Any] = (
'''from __main__ import arr, next_greatest_element_slow, '''
'''next_greatest_element_fast, next_greatest_element'''
)
print(
'''next_greatest_element_slow():''',
timeit('''next_greatest_element_slow(arr)''', setup=setup),
)
print(
'''next_greatest_element_fast():''',
timeit('''next_greatest_element_fast(arr)''', setup=setup),
)
print(
''' next_greatest_element():''',
timeit('''next_greatest_element(arr)''', setup=setup),
)
| 204
| 0
|
import asyncio
import os
import shutil
import subprocess
import sys
import tempfile
import unittest
from distutils.util import strtobool
from functools import partial
from pathlib import Path
from typing import List, Union
from unittest import mock
import torch
from ..state import AcceleratorState, PartialState
from ..utils import (
gather,
is_bnb_available,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_mps_available,
is_safetensors_available,
is_tensorboard_available,
is_torch_version,
is_tpu_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
)
def __lowerCamelCase ( lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[str]=False ):
'''simple docstring'''
try:
lowerCamelCase = os.environ[key]
except KeyError:
# KEY isn't set, default to `default`.
lowerCamelCase = default
else:
# KEY is set, convert it to True or False.
try:
lowerCamelCase = strtobool(__snake_case )
except ValueError:
# More values are supported, but let's keep the message simple.
raise ValueError(f'If set, {key} must be yes or no.' )
return _value
UpperCAmelCase : Union[str, Any] = parse_flag_from_env("RUN_SLOW", default=False)
def __lowerCamelCase ( lowerCamelCase__ : int ):
'''simple docstring'''
return unittest.skip("""Test was skipped""" )(__snake_case )
def __lowerCamelCase ( lowerCamelCase__ : Tuple ):
'''simple docstring'''
return unittest.skipUnless(_run_slow_tests , """test is slow""" )(__snake_case )
def __lowerCamelCase ( lowerCamelCase__ : List[str] ):
'''simple docstring'''
return unittest.skipUnless(not torch.cuda.is_available() , """test requires only a CPU""" )(__snake_case )
def __lowerCamelCase ( lowerCamelCase__ : Tuple ):
'''simple docstring'''
return unittest.skipUnless(torch.cuda.is_available() , """test requires a GPU""" )(__snake_case )
def __lowerCamelCase ( lowerCamelCase__ : List[str] ):
'''simple docstring'''
return unittest.skipUnless(is_xpu_available() , """test requires a XPU""" )(__snake_case )
def __lowerCamelCase ( lowerCamelCase__ : str ):
'''simple docstring'''
return unittest.skipUnless(is_mps_available() , """test requires a `mps` backend support in `torch`""" )(__snake_case )
def __lowerCamelCase ( lowerCamelCase__ : Tuple ):
'''simple docstring'''
return unittest.skipUnless(
is_transformers_available() and is_datasets_available() , """test requires the Hugging Face suite""" )(__snake_case )
def __lowerCamelCase ( lowerCamelCase__ : str ):
'''simple docstring'''
return unittest.skipUnless(is_bnb_available() , """test requires the bitsandbytes library""" )(__snake_case )
def __lowerCamelCase ( lowerCamelCase__ : Dict ):
'''simple docstring'''
return unittest.skipUnless(is_tpu_available() , """test requires TPU""" )(__snake_case )
def __lowerCamelCase ( lowerCamelCase__ : Tuple ):
'''simple docstring'''
return unittest.skipUnless(torch.cuda.device_count() == 1 , """test requires a GPU""" )(__snake_case )
def __lowerCamelCase ( lowerCamelCase__ : Dict ):
'''simple docstring'''
return unittest.skipUnless(torch.xpu.device_count() == 1 , """test requires a XPU""" )(__snake_case )
def __lowerCamelCase ( lowerCamelCase__ : Optional[int] ):
'''simple docstring'''
return unittest.skipUnless(torch.cuda.device_count() > 1 , """test requires multiple GPUs""" )(__snake_case )
def __lowerCamelCase ( lowerCamelCase__ : int ):
'''simple docstring'''
return unittest.skipUnless(torch.xpu.device_count() > 1 , """test requires multiple XPUs""" )(__snake_case )
def __lowerCamelCase ( lowerCamelCase__ : Dict ):
'''simple docstring'''
return unittest.skipUnless(is_safetensors_available() , """test requires safetensors""" )(__snake_case )
def __lowerCamelCase ( lowerCamelCase__ : Tuple ):
'''simple docstring'''
return unittest.skipUnless(is_deepspeed_available() , """test requires DeepSpeed""" )(__snake_case )
def __lowerCamelCase ( lowerCamelCase__ : List[Any] ):
'''simple docstring'''
return unittest.skipUnless(is_torch_version(""">=""" , """1.12.0""" ) , """test requires torch version >= 1.12.0""" )(__snake_case )
def __lowerCamelCase ( lowerCamelCase__ : Dict=None , lowerCamelCase__ : Dict=None ):
'''simple docstring'''
if test_case is None:
return partial(__snake_case , version=__snake_case )
return unittest.skipUnless(is_torch_version(""">=""" , __snake_case ) , f'test requires torch version >= {version}' )(__snake_case )
def __lowerCamelCase ( lowerCamelCase__ : str ):
'''simple docstring'''
return unittest.skipUnless(is_tensorboard_available() , """test requires Tensorboard""" )(__snake_case )
def __lowerCamelCase ( lowerCamelCase__ : List[str] ):
'''simple docstring'''
return unittest.skipUnless(is_wandb_available() , """test requires wandb""" )(__snake_case )
def __lowerCamelCase ( lowerCamelCase__ : str ):
'''simple docstring'''
return unittest.skipUnless(is_comet_ml_available() , """test requires comet_ml""" )(__snake_case )
UpperCAmelCase : List[Any] = (
any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available()
)
def __lowerCamelCase ( lowerCamelCase__ : List[Any] ):
'''simple docstring'''
return unittest.skipUnless(
_atleast_one_tracker_available , """test requires at least one tracker to be available and for `comet_ml` to not be installed""" , )(__snake_case )
class __lowercase ( unittest.TestCase ):
"""simple docstring"""
UpperCamelCase : Union[str, Any] = True
@classmethod
def __A ( cls ) -> Union[str, Any]:
'''simple docstring'''
lowerCamelCase = tempfile.mkdtemp()
@classmethod
def __A ( cls ) -> List[str]:
'''simple docstring'''
if os.path.exists(cls.tmpdir ):
shutil.rmtree(cls.tmpdir )
def __A ( self ) -> str:
'''simple docstring'''
if self.clear_on_setup:
for path in Path(self.tmpdir ).glob("""**/*""" ):
if path.is_file():
path.unlink()
elif path.is_dir():
shutil.rmtree(_UpperCamelCase )
class __lowercase ( unittest.TestCase ):
"""simple docstring"""
def __A ( self ) -> Optional[int]:
'''simple docstring'''
super().tearDown()
# Reset the state of the AcceleratorState singleton.
AcceleratorState._reset_state()
PartialState._reset_state()
class __lowercase ( unittest.TestCase ):
"""simple docstring"""
def __A ( self , A ) -> Any:
'''simple docstring'''
lowerCamelCase = mocks if isinstance(_UpperCamelCase , (tuple, list) ) else [mocks]
for m in self.mocks:
m.start()
self.addCleanup(m.stop )
def __lowerCamelCase ( lowerCamelCase__ : int ):
'''simple docstring'''
lowerCamelCase = AcceleratorState()
lowerCamelCase = tensor[None].clone().to(state.device )
lowerCamelCase = gather(__snake_case ).cpu()
lowerCamelCase = tensor[0].cpu()
for i in range(tensors.shape[0] ):
if not torch.equal(tensors[i] , __snake_case ):
return False
return True
class __lowercase :
"""simple docstring"""
def __init__( self , A , A , A ) -> Any:
'''simple docstring'''
lowerCamelCase = returncode
lowerCamelCase = stdout
lowerCamelCase = stderr
async def __lowerCamelCase ( lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Optional[int] ):
'''simple docstring'''
while True:
lowerCamelCase = await stream.readline()
if line:
callback(__snake_case )
else:
break
async def __lowerCamelCase ( lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Dict=None , lowerCamelCase__ : str=None , lowerCamelCase__ : Dict=None , lowerCamelCase__ : List[str]=False , lowerCamelCase__ : Optional[int]=False ):
'''simple docstring'''
if echo:
print("""\nRunning: """ , """ """.join(__snake_case ) )
lowerCamelCase = await asyncio.create_subprocess_exec(
cmd[0] , *cmd[1:] , stdin=__snake_case , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__snake_case , )
# note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe
# https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait
#
# If it starts hanging, will need to switch to the following code. The problem is that no data
# will be seen until it's done and if it hangs for example there will be no debug info.
# out, err = await p.communicate()
# return _RunOutput(p.returncode, out, err)
lowerCamelCase = []
lowerCamelCase = []
def tee(lowerCamelCase__ : Dict , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Optional[int]="" ):
lowerCamelCase = line.decode("""utf-8""" ).rstrip()
sink.append(__snake_case )
if not quiet:
print(__snake_case , __snake_case , file=__snake_case )
# XXX: the timeout doesn't seem to make any difference here
await asyncio.wait(
[
asyncio.create_task(_read_stream(p.stdout , lambda lowerCamelCase__ : tee(__snake_case , __snake_case , sys.stdout , label="""stdout:""" ) ) ),
asyncio.create_task(_read_stream(p.stderr , lambda lowerCamelCase__ : tee(__snake_case , __snake_case , sys.stderr , label="""stderr:""" ) ) ),
] , timeout=__snake_case , )
return _RunOutput(await p.wait() , __snake_case , __snake_case )
def __lowerCamelCase ( lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : List[Any]=None , lowerCamelCase__ : str=None , lowerCamelCase__ : Tuple=180 , lowerCamelCase__ : Dict=False , lowerCamelCase__ : Optional[Any]=True ):
'''simple docstring'''
lowerCamelCase = asyncio.get_event_loop()
lowerCamelCase = loop.run_until_complete(
_stream_subprocess(__snake_case , env=__snake_case , stdin=__snake_case , timeout=__snake_case , quiet=__snake_case , echo=__snake_case ) )
lowerCamelCase = ' '.join(__snake_case )
if result.returncode > 0:
lowerCamelCase = '\n'.join(result.stderr )
raise RuntimeError(
f'\'{cmd_str}\' failed with returncode {result.returncode}\n\n'
f'The combined stderr from workers follows:\n{stderr}' )
return result
class __lowercase ( _snake_case ):
"""simple docstring"""
pass
def __lowerCamelCase ( lowerCamelCase__ : List[str] , lowerCamelCase__ : List[Any]=False ):
'''simple docstring'''
try:
lowerCamelCase = subprocess.check_output(__snake_case , stderr=subprocess.STDOUT )
if return_stdout:
if hasattr(__snake_case , """decode""" ):
lowerCamelCase = output.decode("""utf-8""" )
return output
except subprocess.CalledProcessError as e:
raise SubprocessCallException(
f'Command `{" ".join(__snake_case )}` failed with the following error:\n\n{e.output.decode()}' ) from e
| 252
|
import os
# Precomputes a list of the 100 first triangular numbers
__UpperCAmelCase = [int(0.5 * n * (n + 1)) for n in range(1, 101)]
def lowercase__ ( ):
'''simple docstring'''
UpperCAmelCase_ : Any = os.path.dirname(os.path.realpath(__snake_case ) )
UpperCAmelCase_ : Optional[Any] = os.path.join(__snake_case , 'words.txt' )
UpperCAmelCase_ : Union[str, Any] = ''
with open(__snake_case ) as f:
UpperCAmelCase_ : List[Any] = f.readline()
UpperCAmelCase_ : Optional[int] = [word.strip('"' ) for word in words.strip('\r\n' ).split(',' )]
UpperCAmelCase_ : Optional[int] = [
word
for word in [sum(ord(__snake_case ) - 64 for x in word ) for word in words]
if word in TRIANGULAR_NUMBERS
]
return len(__snake_case )
if __name__ == "__main__":
print(solution())
| 29
| 0
|
from typing import Optional
import numpy as np
import torch
from torch import nn
from transformers import GPTaConfig, GPTaLMHeadModel
from transformers.modeling_utils import ModuleUtilsMixin
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class _lowerCAmelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ):
"""simple docstring"""
a : Optional[int] =[r'''h\.\d+\.attn\.bias''', r'''h\.\d+\.attn\.masked_bias''']
@register_to_config
def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = 5_0_2_5_7 , _lowerCamelCase = 1_0_2_4 , _lowerCamelCase = 7_6_8 , _lowerCamelCase = 1_2 , _lowerCamelCase = 1_2 , _lowerCamelCase = None , _lowerCamelCase = "gelu_new" , _lowerCamelCase = 0.1 , _lowerCamelCase = 0.1 , _lowerCamelCase = 0.1 , _lowerCamelCase = 1e-5 , _lowerCamelCase = 0.0_2 , _lowerCamelCase = True , _lowerCamelCase = True , _lowerCamelCase = False , _lowerCamelCase = False , ):
super().__init__()
UpperCamelCase_: str = prefix_length
if prefix_inner_dim != n_embd and prefix_hidden_dim is None:
raise ValueError(
f'''`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and'''
f''' `n_embd`: {n_embd} are not equal.''' )
UpperCamelCase_: Any = prefix_inner_dim
UpperCamelCase_: Dict = prefix_hidden_dim
UpperCamelCase_: int = (
nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim )
if self.prefix_hidden_dim is not None
else nn.Identity()
)
UpperCamelCase_: Tuple = (
nn.Linear(self.prefix_hidden_dim , _lowerCamelCase ) if self.prefix_hidden_dim is not None else nn.Identity()
)
UpperCamelCase_: Union[str, Any] = GPTaConfig(
vocab_size=_lowerCamelCase , n_positions=_lowerCamelCase , n_embd=_lowerCamelCase , n_layer=_lowerCamelCase , n_head=_lowerCamelCase , n_inner=_lowerCamelCase , activation_function=_lowerCamelCase , resid_pdrop=_lowerCamelCase , embd_pdrop=_lowerCamelCase , attn_pdrop=_lowerCamelCase , layer_norm_epsilon=_lowerCamelCase , initializer_range=_lowerCamelCase , scale_attn_weights=_lowerCamelCase , use_cache=_lowerCamelCase , scale_attn_by_inverse_layer_idx=_lowerCamelCase , reorder_and_upcast_attn=_lowerCamelCase , )
UpperCamelCase_: Optional[Any] = GPTaLMHeadModel(_lowerCamelCase )
def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , ):
UpperCamelCase_: Any = self.transformer.transformer.wte(_lowerCamelCase )
UpperCamelCase_: Any = self.encode_prefix(_lowerCamelCase )
UpperCamelCase_: Tuple = self.decode_prefix(_lowerCamelCase )
UpperCamelCase_: Optional[int] = torch.cat((prefix_embeds, embedding_text) , dim=1 )
if labels is not None:
UpperCamelCase_: Any = self.get_dummy_token(input_ids.shape[0] , input_ids.device )
UpperCamelCase_: str = torch.cat((dummy_token, input_ids) , dim=1 )
UpperCamelCase_: int = self.transformer(inputs_embeds=_lowerCamelCase , labels=_lowerCamelCase , attention_mask=_lowerCamelCase )
if self.prefix_hidden_dim is not None:
return out, hidden
else:
return out
def _a ( self , _lowerCamelCase , _lowerCamelCase ):
return torch.zeros(_lowerCamelCase , self.prefix_length , dtype=torch.intaa , device=_lowerCamelCase )
def _a ( self , _lowerCamelCase ):
return self.encode_prefix(_lowerCamelCase )
@torch.no_grad()
def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
UpperCamelCase_: List[Any] = torch.split(_lowerCamelCase , 1 , dim=0 )
UpperCamelCase_: Optional[Any] = []
UpperCamelCase_: Optional[int] = []
for feature in features:
UpperCamelCase_: Tuple = self.decode_prefix(feature.to(_lowerCamelCase ) ) # back to the clip feature
# Only support beam search for now
UpperCamelCase_ ,UpperCamelCase_: Optional[Any] = self.generate_beam(
input_embeds=_lowerCamelCase , device=_lowerCamelCase , eos_token_id=_lowerCamelCase )
generated_tokens.append(output_tokens[0] )
generated_seq_lengths.append(seq_lengths[0] )
UpperCamelCase_: Any = torch.stack(_lowerCamelCase )
UpperCamelCase_: Tuple = torch.stack(_lowerCamelCase )
return generated_tokens, generated_seq_lengths
@torch.no_grad()
def _a ( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase = 5 , _lowerCamelCase = 6_7 , _lowerCamelCase = 1.0 , _lowerCamelCase = None , ):
UpperCamelCase_: Dict = eos_token_id
UpperCamelCase_: Tuple = None
UpperCamelCase_: Optional[Any] = None
UpperCamelCase_: List[Any] = torch.ones(_lowerCamelCase , device=_lowerCamelCase , dtype=torch.int )
UpperCamelCase_: int = torch.zeros(_lowerCamelCase , device=_lowerCamelCase , dtype=torch.bool )
if input_embeds is not None:
UpperCamelCase_: List[str] = input_embeds
else:
UpperCamelCase_: str = self.transformer.transformer.wte(_lowerCamelCase )
for i in range(_lowerCamelCase ):
UpperCamelCase_: Dict = self.transformer(inputs_embeds=_lowerCamelCase )
UpperCamelCase_: Any = outputs.logits
UpperCamelCase_: Optional[Any] = logits[:, -1, :] / (temperature if temperature > 0 else 1.0)
UpperCamelCase_: str = logits.softmax(-1 ).log()
if scores is None:
UpperCamelCase_ ,UpperCamelCase_: List[Any] = logits.topk(_lowerCamelCase , -1 )
UpperCamelCase_: Union[str, Any] = generated.expand(_lowerCamelCase , *generated.shape[1:] )
UpperCamelCase_ ,UpperCamelCase_: Union[str, Any] = next_tokens.permute(1 , 0 ), scores.squeeze(0 )
if tokens is None:
UpperCamelCase_: Optional[Any] = next_tokens
else:
UpperCamelCase_: Tuple = tokens.expand(_lowerCamelCase , *tokens.shape[1:] )
UpperCamelCase_: Optional[int] = torch.cat((tokens, next_tokens) , dim=1 )
else:
UpperCamelCase_: Tuple = -float(np.inf )
UpperCamelCase_: Tuple = 0
UpperCamelCase_: Optional[Any] = scores[:, None] + logits
seq_lengths[~is_stopped] += 1
UpperCamelCase_: Optional[int] = scores_sum / seq_lengths[:, None]
UpperCamelCase_ ,UpperCamelCase_: str = scores_sum_average.view(-1 ).topk(_lowerCamelCase , -1 )
UpperCamelCase_: List[str] = next_tokens // scores_sum.shape[1]
UpperCamelCase_: Union[str, Any] = seq_lengths[next_tokens_source]
UpperCamelCase_: int = next_tokens % scores_sum.shape[1]
UpperCamelCase_: Optional[Any] = next_tokens.unsqueeze(1 )
UpperCamelCase_: Dict = tokens[next_tokens_source]
UpperCamelCase_: List[Any] = torch.cat((tokens, next_tokens) , dim=1 )
UpperCamelCase_: List[Any] = generated[next_tokens_source]
UpperCamelCase_: Union[str, Any] = scores_sum_average * seq_lengths
UpperCamelCase_: List[Any] = is_stopped[next_tokens_source]
UpperCamelCase_: Tuple = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 )
UpperCamelCase_: int = torch.cat((generated, next_token_embed) , dim=1 )
UpperCamelCase_: Dict = is_stopped + next_tokens.eq(_lowerCamelCase ).squeeze()
if is_stopped.all():
break
UpperCamelCase_: Optional[Any] = scores / seq_lengths
UpperCamelCase_: str = scores.argsort(descending=_lowerCamelCase )
# tokens tensors are already padded to max_seq_length
UpperCamelCase_: Dict = [tokens[i] for i in order]
UpperCamelCase_: Optional[int] = torch.stack(_lowerCamelCase , dim=0 )
UpperCamelCase_: Optional[Any] = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype )
return output_texts, seq_lengths
| 292
|
import argparse
import os
from pathlib import Path
from typing import Dict
import tensorflow as tf
import torch
from tqdm import tqdm
from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer
from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params
A_ : Tuple = [
# replace left string with right string to get the relevant state_dict key (identical state dict to bart)
['memory_attention', 'encoder_attn'],
['attention', 'attn'],
['/', '.'],
['.LayerNorm.gamma', '_layer_norm.weight'],
['.LayerNorm.beta', '_layer_norm.bias'],
['r.layer_', 'r.layers.'],
['output_proj', 'out_proj'],
['ffn.dense_1.', 'fc2.'],
['ffn.dense.', 'fc1.'],
['ffn_layer_norm', 'final_layer_norm'],
['kernel', 'weight'],
['encoder_layer_norm.', 'encoder.layer_norm.'],
['decoder_layer_norm.', 'decoder.layer_norm.'],
['embeddings.weights', 'shared.weight'],
]
def snake_case (UpperCAmelCase__ ) -> str:
for pegasus_name, hf_name in PATTERNS:
UpperCamelCase_: List[str] = k.replace(UpperCAmelCase__ , UpperCAmelCase__ )
return k
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> PegasusForConditionalGeneration:
UpperCamelCase_: List[str] = DEFAULTS.copy()
cfg_kwargs.update(UpperCAmelCase__ )
UpperCamelCase_: Tuple = PegasusConfig(**UpperCAmelCase__ )
UpperCamelCase_: Tuple = PegasusForConditionalGeneration(UpperCAmelCase__ )
UpperCamelCase_: List[Any] = torch_model.model.state_dict()
UpperCamelCase_: str = {}
for k, v in tf_weights.items():
UpperCamelCase_: Dict = rename_state_dict_key(UpperCAmelCase__ )
if new_k not in sd:
raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' )
if "dense" in k or "proj" in new_k:
UpperCamelCase_: int = v.T
UpperCamelCase_: Union[str, Any] = torch.tensor(UpperCAmelCase__ , dtype=sd[new_k].dtype )
assert v.shape == sd[new_k].shape, F'''{new_k}, {k}, {v.shape}, {sd[new_k].shape}'''
# make sure embedding.padding_idx is respected
UpperCamelCase_: Tuple = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] )
UpperCamelCase_: int = mapping['shared.weight']
UpperCamelCase_: Union[str, Any] = mapping['shared.weight']
UpperCamelCase_: Dict = {k: torch.zeros_like(UpperCAmelCase__ ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping}
mapping.update(**UpperCAmelCase__ )
UpperCamelCase_ ,UpperCamelCase_: Optional[int] = torch_model.model.load_state_dict(UpperCAmelCase__ , strict=UpperCAmelCase__ )
UpperCamelCase_: List[str] = [
k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight']
]
assert unexpected_missing == [], F'''no matches found for the following torch keys {unexpected_missing}'''
assert extra == [], F'''no matches found for the following tf keys {extra}'''
return torch_model
def snake_case (UpperCAmelCase__="./ckpt/aeslc/model.ckpt-32000" ) -> Dict:
UpperCamelCase_: Union[str, Any] = tf.train.list_variables(UpperCAmelCase__ )
UpperCamelCase_: Tuple = {}
UpperCamelCase_: Dict = ['Adafactor', 'global_step']
for name, shape in tqdm(UpperCAmelCase__ , desc='converting tf checkpoint to dict' ):
UpperCamelCase_: Union[str, Any] = any(pat in name for pat in ignore_name )
if skip_key:
continue
UpperCamelCase_: Dict = tf.train.load_variable(UpperCAmelCase__ , UpperCAmelCase__ )
UpperCamelCase_: Optional[Any] = array
return tf_weights
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> int:
# save tokenizer first
UpperCamelCase_: Any = Path(UpperCAmelCase__ ).parent.name
UpperCamelCase_: Tuple = task_specific_params[F'''summarization_{dataset}''']['max_position_embeddings']
UpperCamelCase_: Optional[Any] = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=UpperCAmelCase__ )
assert tok.model_max_length == desired_max_model_length
tok.save_pretrained(UpperCAmelCase__ )
# convert model
UpperCamelCase_: Optional[Any] = get_tf_weights_as_numpy(UpperCAmelCase__ )
UpperCamelCase_: Any = task_specific_params[F'''summarization_{dataset}''']
if dataset == "large":
UpperCamelCase_: Union[str, Any] = task_specific_params
UpperCamelCase_: Tuple = convert_pegasus(UpperCAmelCase__ , UpperCAmelCase__ )
torch_model.save_pretrained(UpperCAmelCase__ )
UpperCamelCase_: int = torch_model.state_dict()
sd.pop('model.decoder.embed_positions.weight' )
sd.pop('model.encoder.embed_positions.weight' )
torch.save(UpperCAmelCase__ , Path(UpperCAmelCase__ ) / 'pytorch_model.bin' )
if __name__ == "__main__":
A_ : str = argparse.ArgumentParser()
# Required parameters
parser.add_argument('tf_ckpt_path', type=str, help='passed to tf.train.list_variables')
parser.add_argument('save_dir', default=None, type=str, help='Path to the output PyTorch model.')
A_ : Optional[Any] = parser.parse_args()
if args.save_dir is None:
A_ : Union[str, Any] = Path(args.tf_ckpt_path).parent.name
A_ : Optional[Any] = os.path.join('pegasus', dataset)
convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
| 292
| 1
|
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
'''facebook/s2t-small-librispeech-asr''': (
'''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json'''
),
# See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text
}
class SCREAMING_SNAKE_CASE__ ( lowercase ):
"""simple docstring"""
a : str ="speech_to_text"
a : Dict =["past_key_values"]
a : Any ={"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__( self , snake_case__=10_000 , snake_case__=12 , snake_case__=2_048 , snake_case__=4 , snake_case__=6 , snake_case__=2_048 , snake_case__=4 , snake_case__=0.0 , snake_case__=0.0 , snake_case__=True , snake_case__=True , snake_case__="relu" , snake_case__=256 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.02 , snake_case__=2 , snake_case__=True , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__=6_000 , snake_case__=1_024 , snake_case__=2 , snake_case__=(5, 5) , snake_case__=1_024 , snake_case__=80 , snake_case__=1 , **snake_case__ , ):
"""simple docstring"""
lowerCAmelCase : Dict = vocab_size
lowerCAmelCase : List[Any] = d_model
lowerCAmelCase : List[str] = encoder_ffn_dim
lowerCAmelCase : int = encoder_layers
lowerCAmelCase : Dict = encoder_attention_heads
lowerCAmelCase : Optional[int] = decoder_ffn_dim
lowerCAmelCase : str = decoder_layers
lowerCAmelCase : Tuple = decoder_attention_heads
lowerCAmelCase : Optional[int] = dropout
lowerCAmelCase : int = attention_dropout
lowerCAmelCase : Union[str, Any] = activation_dropout
lowerCAmelCase : Any = activation_function
lowerCAmelCase : Any = init_std
lowerCAmelCase : Union[str, Any] = encoder_layerdrop
lowerCAmelCase : List[str] = decoder_layerdrop
lowerCAmelCase : List[str] = use_cache
lowerCAmelCase : Dict = encoder_layers
lowerCAmelCase : Any = scale_embedding # scale factor will be sqrt(d_model) if True
lowerCAmelCase : Tuple = max_source_positions
lowerCAmelCase : Optional[Any] = max_target_positions
lowerCAmelCase : Optional[Any] = num_conv_layers
lowerCAmelCase : Union[str, Any] = list(snake_case__ )
lowerCAmelCase : Any = conv_channels
lowerCAmelCase : str = input_feat_per_channel
lowerCAmelCase : List[Any] = input_channels
if len(self.conv_kernel_sizes ) != self.num_conv_layers:
raise ValueError(
"Configuration for convolutional module is incorrect. "
"It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` "
f"""but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, """
f"""`config.num_conv_layers = {self.num_conv_layers}`.""" )
super().__init__(
pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , is_encoder_decoder=snake_case__ , decoder_start_token_id=snake_case__ , **snake_case__ , )
| 108
|
"""simple docstring"""
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
if TYPE_CHECKING:
from ...processing_utils import ProcessorMixin
from ...utils import TensorType
_lowerCamelCase : Union[str, Any] = logging.get_logger(__name__)
_lowerCamelCase : Optional[Any] = {
'microsoft/layoutlmv3-base': 'https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json',
}
class lowercase ( __UpperCAmelCase):
__lowerCAmelCase : List[Any] = """layoutlmv3"""
def __init__( self : Optional[int] , _lowerCamelCase : str=5_02_65 , _lowerCamelCase : Any=7_68 , _lowerCamelCase : int=12 , _lowerCamelCase : str=12 , _lowerCamelCase : int=30_72 , _lowerCamelCase : List[Any]="gelu" , _lowerCamelCase : Tuple=0.1 , _lowerCamelCase : str=0.1 , _lowerCamelCase : Any=5_12 , _lowerCamelCase : Tuple=2 , _lowerCamelCase : Dict=0.02 , _lowerCamelCase : Optional[Any]=1E-5 , _lowerCamelCase : Union[str, Any]=1 , _lowerCamelCase : Any=0 , _lowerCamelCase : int=2 , _lowerCamelCase : Union[str, Any]=10_24 , _lowerCamelCase : Dict=1_28 , _lowerCamelCase : int=1_28 , _lowerCamelCase : Union[str, Any]=True , _lowerCamelCase : int=32 , _lowerCamelCase : int=1_28 , _lowerCamelCase : Tuple=64 , _lowerCamelCase : List[Any]=2_56 , _lowerCamelCase : List[Any]=True , _lowerCamelCase : Union[str, Any]=True , _lowerCamelCase : List[str]=True , _lowerCamelCase : Tuple=2_24 , _lowerCamelCase : List[Any]=3 , _lowerCamelCase : Dict=16 , _lowerCamelCase : Any=None , **_lowerCamelCase : List[str] , ):
"""simple docstring"""
super().__init__(
vocab_size=_lowerCamelCase , hidden_size=_lowerCamelCase , num_hidden_layers=_lowerCamelCase , num_attention_heads=_lowerCamelCase , intermediate_size=_lowerCamelCase , hidden_act=_lowerCamelCase , hidden_dropout_prob=_lowerCamelCase , attention_probs_dropout_prob=_lowerCamelCase , max_position_embeddings=_lowerCamelCase , type_vocab_size=_lowerCamelCase , initializer_range=_lowerCamelCase , layer_norm_eps=_lowerCamelCase , pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , **_lowerCamelCase , )
A_ : List[Any] = max_ad_position_embeddings
A_ : List[str] = coordinate_size
A_ : Tuple = shape_size
A_ : Optional[Any] = has_relative_attention_bias
A_ : Any = rel_pos_bins
A_ : str = max_rel_pos
A_ : Optional[int] = has_spatial_attention_bias
A_ : int = rel_ad_pos_bins
A_ : Tuple = max_rel_ad_pos
A_ : int = text_embed
A_ : List[Any] = visual_embed
A_ : str = input_size
A_ : Dict = num_channels
A_ : Optional[int] = patch_size
A_ : Dict = classifier_dropout
class lowercase ( __UpperCAmelCase):
__lowerCAmelCase : Optional[Any] = version.parse("""1.12""")
@property
def a_ ( self : Tuple ):
"""simple docstring"""
if self.task in ["question-answering", "sequence-classification"]:
return OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''sequence'''}),
('''bbox''', {0: '''batch''', 1: '''sequence'''}),
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
] )
else:
return OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''sequence'''}),
('''bbox''', {0: '''batch''', 1: '''sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''sequence'''}),
('''pixel_values''', {0: '''batch''', 1: '''num_channels'''}),
] )
@property
def a_ ( self : int ):
"""simple docstring"""
return 1E-5
@property
def a_ ( self : Optional[int] ):
"""simple docstring"""
return 12
def a_ ( self : Optional[int] , _lowerCamelCase : "ProcessorMixin" , _lowerCamelCase : int = -1 , _lowerCamelCase : int = -1 , _lowerCamelCase : bool = False , _lowerCamelCase : Optional["TensorType"] = None , _lowerCamelCase : int = 3 , _lowerCamelCase : int = 40 , _lowerCamelCase : int = 40 , ):
"""simple docstring"""
setattr(processor.image_processor , '''apply_ocr''' , _lowerCamelCase )
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
A_ : Tuple = compute_effective_axis_dimension(
_lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
A_ : Tuple = processor.tokenizer.num_special_tokens_to_add(_lowerCamelCase )
A_ : List[Any] = compute_effective_axis_dimension(
_lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowerCamelCase )
# Generate dummy inputs according to compute batch and sequence
A_ : int = [[''' '''.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size
# Generate dummy bounding boxes
A_ : Optional[int] = [[[48, 84, 73, 1_28]]] * batch_size
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
# batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch)
A_ : str = self._generate_dummy_images(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
A_ : Union[str, Any] = dict(
processor(
_lowerCamelCase , text=_lowerCamelCase , boxes=_lowerCamelCase , return_tensors=_lowerCamelCase , ) )
return inputs
| 167
| 0
|
import sys
from collections import defaultdict
class a__ :
def __init__( self ):
"""simple docstring"""
__lowerCAmelCase = []
def __SCREAMING_SNAKE_CASE( self , _A ):
"""simple docstring"""
return self.node_position[vertex]
def __SCREAMING_SNAKE_CASE( self , _A , _A ):
"""simple docstring"""
__lowerCAmelCase = pos
def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A ):
"""simple docstring"""
if start > size // 2 - 1:
return
else:
if 2 * start + 2 >= size:
__lowerCAmelCase = 2 * start + 1
else:
if heap[2 * start + 1] < heap[2 * start + 2]:
__lowerCAmelCase = 2 * start + 1
else:
__lowerCAmelCase = 2 * start + 2
if heap[smallest_child] < heap[start]:
__lowerCAmelCase , __lowerCAmelCase = heap[smallest_child], positions[smallest_child]
__lowerCAmelCase , __lowerCAmelCase = (
heap[start],
positions[start],
)
__lowerCAmelCase , __lowerCAmelCase = temp, tempa
__lowerCAmelCase = self.get_position(positions[smallest_child] )
self.set_position(
positions[smallest_child] , self.get_position(positions[start] ) )
self.set_position(positions[start] , _A )
self.top_to_bottom(_A , _A , _A , _A )
def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A ):
"""simple docstring"""
__lowerCAmelCase = position[index]
while index != 0:
__lowerCAmelCase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 )
if val < heap[parent]:
__lowerCAmelCase = heap[parent]
__lowerCAmelCase = position[parent]
self.set_position(position[parent] , _A )
else:
__lowerCAmelCase = val
__lowerCAmelCase = temp
self.set_position(_A , _A )
break
__lowerCAmelCase = parent
else:
__lowerCAmelCase = val
__lowerCAmelCase = temp
self.set_position(_A , 0 )
def __SCREAMING_SNAKE_CASE( self , _A , _A ):
"""simple docstring"""
__lowerCAmelCase = len(_A ) // 2 - 1
for i in range(_A , -1 , -1 ):
self.top_to_bottom(_A , _A , len(_A ) , _A )
def __SCREAMING_SNAKE_CASE( self , _A , _A ):
"""simple docstring"""
__lowerCAmelCase = positions[0]
__lowerCAmelCase = sys.maxsize
self.top_to_bottom(_A , 0 , len(_A ) , _A )
return temp
def _a ( SCREAMING_SNAKE_CASE_ : Union[str, Any] ):
__lowerCAmelCase = Heap()
__lowerCAmelCase = [0] * len(SCREAMING_SNAKE_CASE_ )
__lowerCAmelCase = [-1] * len(SCREAMING_SNAKE_CASE_ ) # Neighboring Tree Vertex of selected vertex
# Minimum Distance of explored vertex with neighboring vertex of partial tree
# formed in graph
__lowerCAmelCase = [] # Heap of Distance of vertices from their neighboring vertex
__lowerCAmelCase = []
for vertex in range(len(SCREAMING_SNAKE_CASE_ ) ):
distance_tv.append(sys.maxsize )
positions.append(SCREAMING_SNAKE_CASE_ )
heap.node_position.append(SCREAMING_SNAKE_CASE_ )
__lowerCAmelCase = []
__lowerCAmelCase = 1
__lowerCAmelCase = sys.maxsize
for neighbor, distance in adjacency_list[0]:
__lowerCAmelCase = 0
__lowerCAmelCase = distance
heap.heapify(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
for _ in range(1 , len(SCREAMING_SNAKE_CASE_ ) ):
__lowerCAmelCase = heap.delete_minimum(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
if visited[vertex] == 0:
tree_edges.append((nbr_tv[vertex], vertex) )
__lowerCAmelCase = 1
for neighbor, distance in adjacency_list[vertex]:
if (
visited[neighbor] == 0
and distance < distance_tv[heap.get_position(SCREAMING_SNAKE_CASE_ )]
):
__lowerCAmelCase = distance
heap.bottom_to_top(
SCREAMING_SNAKE_CASE_ , heap.get_position(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCAmelCase = vertex
return tree_edges
if __name__ == "__main__": # pragma: no cover
# < --------- Prims Algorithm --------- >
UpperCamelCase__ : Dict = int(input("""Enter number of edges: """).strip())
UpperCamelCase__ : List[Any] = defaultdict(list)
for _ in range(edges_number):
UpperCamelCase__ : List[str] = [int(x) for x in input().strip().split()]
adjacency_list[edge[0]].append([edge[1], edge[2]])
adjacency_list[edge[1]].append([edge[0], edge[2]])
print(prisms_algorithm(adjacency_list))
| 358
|
from __future__ import annotations
import copy
import tempfile
import unittest
from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available
from transformers.testing_utils import (
DUMMY_UNKNOWN_IDENTIFIER,
SMALL_MODEL_IDENTIFIER,
RequestCounter,
require_tensorflow_probability,
require_tf,
slow,
)
from ..bert.test_modeling_bert import BertModelTester
if is_tf_available():
from transformers import (
TFAutoModel,
TFAutoModelForCausalLM,
TFAutoModelForMaskedLM,
TFAutoModelForPreTraining,
TFAutoModelForQuestionAnswering,
TFAutoModelForSeqaSeqLM,
TFAutoModelForSequenceClassification,
TFAutoModelForTableQuestionAnswering,
TFAutoModelForTokenClassification,
TFAutoModelWithLMHead,
TFBertForMaskedLM,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFBertModel,
TFFunnelBaseModel,
TFFunnelModel,
TFGPTaLMHeadModel,
TFRobertaForMaskedLM,
TFTaForConditionalGeneration,
TFTapasForQuestionAnswering,
)
from transformers.models.auto.modeling_tf_auto import (
TF_MODEL_FOR_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_MASKED_LM_MAPPING,
TF_MODEL_FOR_PRETRAINING_MAPPING,
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
TF_MODEL_MAPPING,
)
from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST
class a__ ( snake_case__ ):
_a : Optional[int] = """new-model"""
if is_tf_available():
class a__ ( snake_case__ ):
_a : Dict = NewModelConfig
@require_tf
class a__ ( unittest.TestCase ):
@slow
def __SCREAMING_SNAKE_CASE( self ):
"""simple docstring"""
__lowerCAmelCase = "bert-base-cased"
__lowerCAmelCase = AutoConfig.from_pretrained(_A )
self.assertIsNotNone(_A )
self.assertIsInstance(_A , _A )
__lowerCAmelCase = TFAutoModel.from_pretrained(_A )
self.assertIsNotNone(_A )
self.assertIsInstance(_A , _A )
@slow
def __SCREAMING_SNAKE_CASE( self ):
"""simple docstring"""
__lowerCAmelCase = "bert-base-cased"
__lowerCAmelCase = AutoConfig.from_pretrained(_A )
self.assertIsNotNone(_A )
self.assertIsInstance(_A , _A )
__lowerCAmelCase = TFAutoModelForPreTraining.from_pretrained(_A )
self.assertIsNotNone(_A )
self.assertIsInstance(_A , _A )
@slow
def __SCREAMING_SNAKE_CASE( self ):
"""simple docstring"""
for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowerCAmelCase = AutoConfig.from_pretrained(_A )
self.assertIsNotNone(_A )
self.assertIsInstance(_A , _A )
__lowerCAmelCase = TFAutoModelForCausalLM.from_pretrained(_A )
__lowerCAmelCase , __lowerCAmelCase = TFAutoModelForCausalLM.from_pretrained(_A , output_loading_info=_A )
self.assertIsNotNone(_A )
self.assertIsInstance(_A , _A )
@slow
def __SCREAMING_SNAKE_CASE( self ):
"""simple docstring"""
for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowerCAmelCase = AutoConfig.from_pretrained(_A )
self.assertIsNotNone(_A )
self.assertIsInstance(_A , _A )
__lowerCAmelCase = TFAutoModelWithLMHead.from_pretrained(_A )
self.assertIsNotNone(_A )
self.assertIsInstance(_A , _A )
@slow
def __SCREAMING_SNAKE_CASE( self ):
"""simple docstring"""
for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowerCAmelCase = AutoConfig.from_pretrained(_A )
self.assertIsNotNone(_A )
self.assertIsInstance(_A , _A )
__lowerCAmelCase = TFAutoModelForMaskedLM.from_pretrained(_A )
__lowerCAmelCase , __lowerCAmelCase = TFAutoModelForMaskedLM.from_pretrained(_A , output_loading_info=_A )
self.assertIsNotNone(_A )
self.assertIsInstance(_A , _A )
@slow
def __SCREAMING_SNAKE_CASE( self ):
"""simple docstring"""
for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowerCAmelCase = AutoConfig.from_pretrained(_A )
self.assertIsNotNone(_A )
self.assertIsInstance(_A , _A )
__lowerCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained(_A )
__lowerCAmelCase , __lowerCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained(_A , output_loading_info=_A )
self.assertIsNotNone(_A )
self.assertIsInstance(_A , _A )
@slow
def __SCREAMING_SNAKE_CASE( self ):
"""simple docstring"""
for model_name in ["bert-base-uncased"]:
__lowerCAmelCase = AutoConfig.from_pretrained(_A )
self.assertIsNotNone(_A )
self.assertIsInstance(_A , _A )
__lowerCAmelCase = TFAutoModelForSequenceClassification.from_pretrained(_A )
self.assertIsNotNone(_A )
self.assertIsInstance(_A , _A )
@slow
def __SCREAMING_SNAKE_CASE( self ):
"""simple docstring"""
for model_name in ["bert-base-uncased"]:
__lowerCAmelCase = AutoConfig.from_pretrained(_A )
self.assertIsNotNone(_A )
self.assertIsInstance(_A , _A )
__lowerCAmelCase = TFAutoModelForQuestionAnswering.from_pretrained(_A )
self.assertIsNotNone(_A )
self.assertIsInstance(_A , _A )
@slow
@require_tensorflow_probability
def __SCREAMING_SNAKE_CASE( self ):
"""simple docstring"""
for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]:
__lowerCAmelCase = AutoConfig.from_pretrained(_A )
self.assertIsNotNone(_A )
self.assertIsInstance(_A , _A )
__lowerCAmelCase = TFAutoModelForTableQuestionAnswering.from_pretrained(_A )
__lowerCAmelCase , __lowerCAmelCase = TFAutoModelForTableQuestionAnswering.from_pretrained(
_A , output_loading_info=_A )
self.assertIsNotNone(_A )
self.assertIsInstance(_A , _A )
def __SCREAMING_SNAKE_CASE( self ):
"""simple docstring"""
__lowerCAmelCase = TFAutoModelWithLMHead.from_pretrained(_A )
self.assertIsInstance(_A , _A )
self.assertEqual(model.num_parameters() , 1_4_4_1_0 )
self.assertEqual(model.num_parameters(only_trainable=_A ) , 1_4_4_1_0 )
def __SCREAMING_SNAKE_CASE( self ):
"""simple docstring"""
__lowerCAmelCase = TFAutoModelWithLMHead.from_pretrained(_A )
self.assertIsInstance(_A , _A )
self.assertEqual(model.num_parameters() , 1_4_4_1_0 )
self.assertEqual(model.num_parameters(only_trainable=_A ) , 1_4_4_1_0 )
def __SCREAMING_SNAKE_CASE( self ):
"""simple docstring"""
__lowerCAmelCase = TFAutoModel.from_pretrained("sgugger/funnel-random-tiny" )
self.assertIsInstance(_A , _A )
__lowerCAmelCase = copy.deepcopy(model.config )
__lowerCAmelCase = ["FunnelBaseModel"]
__lowerCAmelCase = TFAutoModel.from_config(_A )
self.assertIsInstance(_A , _A )
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(_A )
__lowerCAmelCase = TFAutoModel.from_pretrained(_A )
self.assertIsInstance(_A , _A )
def __SCREAMING_SNAKE_CASE( self ):
"""simple docstring"""
try:
AutoConfig.register("new-model" , _A )
__lowerCAmelCase = [
TFAutoModel,
TFAutoModelForCausalLM,
TFAutoModelForMaskedLM,
TFAutoModelForPreTraining,
TFAutoModelForQuestionAnswering,
TFAutoModelForSequenceClassification,
TFAutoModelForTokenClassification,
]
for auto_class in auto_classes:
with self.subTest(auto_class.__name__ ):
# Wrong config class will raise an error
with self.assertRaises(_A ):
auto_class.register(_A , _A )
auto_class.register(_A , _A )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(_A ):
auto_class.register(_A , _A )
# Now that the config is registered, it can be used as any other config with the auto-API
__lowerCAmelCase = BertModelTester(self ).get_config()
__lowerCAmelCase = NewModelConfig(**tiny_config.to_dict() )
__lowerCAmelCase = auto_class.from_config(_A )
self.assertIsInstance(_A , _A )
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(_A )
__lowerCAmelCase = auto_class.from_pretrained(_A )
self.assertIsInstance(_A , _A )
finally:
if "new-model" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["new-model"]
for mapping in (
TF_MODEL_MAPPING,
TF_MODEL_FOR_PRETRAINING_MAPPING,
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_MASKED_LM_MAPPING,
):
if NewModelConfig in mapping._extra_content:
del mapping._extra_content[NewModelConfig]
def __SCREAMING_SNAKE_CASE( self ):
"""simple docstring"""
with self.assertRaisesRegex(
_A , "bert-base is not a local folder and is not a valid model identifier" ):
__lowerCAmelCase = TFAutoModel.from_pretrained("bert-base" )
def __SCREAMING_SNAKE_CASE( self ):
"""simple docstring"""
with self.assertRaisesRegex(
_A , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ):
__lowerCAmelCase = TFAutoModel.from_pretrained(_A , revision="aaaaaa" )
def __SCREAMING_SNAKE_CASE( self ):
"""simple docstring"""
with self.assertRaisesRegex(
_A , "hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin" , ):
__lowerCAmelCase = TFAutoModel.from_pretrained("hf-internal-testing/config-no-model" )
def __SCREAMING_SNAKE_CASE( self ):
"""simple docstring"""
with self.assertRaisesRegex(_A , "Use `from_pt=True` to load this model" ):
__lowerCAmelCase = TFAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only" )
def __SCREAMING_SNAKE_CASE( self ):
"""simple docstring"""
__lowerCAmelCase = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert" )
with RequestCounter() as counter:
__lowerCAmelCase = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert" )
self.assertEqual(counter.get_request_count , 0 )
self.assertEqual(counter.head_request_count , 1 )
self.assertEqual(counter.other_request_count , 0 )
# With a sharded checkpoint
__lowerCAmelCase = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded" )
with RequestCounter() as counter:
__lowerCAmelCase = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded" )
self.assertEqual(counter.get_request_count , 0 )
self.assertEqual(counter.head_request_count , 1 )
self.assertEqual(counter.other_request_count , 0 )
| 102
| 0
|
class UpperCAmelCase :
def __init__(self : Dict , snake_case__ : Optional[Any] ) -> List[Any]:
'''simple docstring'''
snake_case : Optional[int] = val
snake_case : Any = None
snake_case : Tuple = None
def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : str ) -> Tuple:
'''simple docstring'''
if self.val:
if val < self.val:
if self.left is None:
snake_case : Any = Node(snake_case__ )
else:
self.left.insert(snake_case__ )
elif val > self.val:
if self.right is None:
snake_case : Tuple = Node(snake_case__ )
else:
self.right.insert(snake_case__ )
else:
snake_case : Optional[Any] = val
def UpperCamelCase ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int ):
# Recursive traversal
if root:
inorder(root.left , __lowerCamelCase )
res.append(root.val )
inorder(root.right , __lowerCamelCase )
def UpperCamelCase ( __lowerCamelCase : Tuple ):
# Build BST
if len(__lowerCamelCase ) == 0:
return arr
snake_case : Optional[int] = Node(arr[0] )
for i in range(1 , len(__lowerCamelCase ) ):
root.insert(arr[i] )
# Traverse BST in order.
snake_case : Optional[int] = []
inorder(__lowerCamelCase , __lowerCamelCase )
return res
if __name__ == "__main__":
print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
| 59
|
import argparse
import json
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from typing import Callable, Dict, List, Tuple
import timm
import torch
import torch.nn as nn
from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf
from huggingface_hub import cached_download, hf_hub_url
from torch import Tensor
from vissl.models.model_helpers import get_trunk_forward_outputs
from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel
from transformers.utils import logging
logging.set_verbosity_info()
__lowerCamelCase = logging.get_logger()
@dataclass
class UpperCAmelCase :
A__ : nn.Module
A__ : List[nn.Module] = field(default_factory=A_ )
A__ : list = field(default_factory=A_ )
def _SCREAMING_SNAKE_CASE (self : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : Tensor , snake_case__ : Tensor ) -> Optional[Any]:
'''simple docstring'''
snake_case : List[str] = len(list(m.modules() ) ) == 1 or isinstance(snake_case__ , nn.Convad ) or isinstance(snake_case__ , nn.BatchNormad )
if has_not_submodules:
self.traced.append(snake_case__ )
def __call__(self : List[Any] , snake_case__ : Tensor ) -> List[Any]:
'''simple docstring'''
for m in self.module.modules():
self.handles.append(m.register_forward_hook(self._forward_hook ) )
self.module(snake_case__ )
[x.remove() for x in self.handles]
return self
@property
def _SCREAMING_SNAKE_CASE (self : int ) -> Optional[int]:
'''simple docstring'''
return list(filter(lambda snake_case__ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) )
@dataclass
class UpperCAmelCase :
A__ : nn.Module
A__ : nn.Module
A__ : int = 1
A__ : List = field(default_factory=A_ )
A__ : List = field(default_factory=A_ )
A__ : bool = True
def __call__(self : List[Any] , snake_case__ : Tensor ) -> Any:
'''simple docstring'''
snake_case : str = Tracker(self.dest )(snake_case__ ).parametrized
snake_case : Optional[int] = Tracker(self.src )(snake_case__ ).parametrized
snake_case : List[str] = list(filter(lambda snake_case__ : type(snake_case__ ) not in self.src_skip , snake_case__ ) )
snake_case : Optional[Any] = list(filter(lambda snake_case__ : type(snake_case__ ) not in self.dest_skip , snake_case__ ) )
if len(snake_case__ ) != len(snake_case__ ) and self.raise_if_mismatch:
raise Exception(
f"""Numbers of operations are different. Source module has {len(snake_case__ )} operations while"""
f""" destination module has {len(snake_case__ )}.""" )
for dest_m, src_m in zip(snake_case__ , snake_case__ ):
dest_m.load_state_dict(src_m.state_dict() )
if self.verbose == 1:
print(f"""Transfered from={src_m} to={dest_m}""" )
class UpperCAmelCase ( nn.Module ):
def __init__(self : Tuple , snake_case__ : nn.Module ) -> Optional[Any]:
'''simple docstring'''
super().__init__()
snake_case : List[Tuple[str, nn.Module]] = []
# - get the stem
feature_blocks.append(("conv1", model.stem) )
# - get all the feature blocks
for k, v in model.trunk_output.named_children():
assert k.startswith("block" ), f"""Unexpected layer name {k}"""
snake_case : Union[str, Any] = len(snake_case__ ) + 1
feature_blocks.append((f"""res{block_index}""", v) )
snake_case : Optional[Any] = nn.ModuleDict(snake_case__ )
def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : Tensor ) -> Dict:
'''simple docstring'''
return get_trunk_forward_outputs(
snake_case__ , out_feat_keys=snake_case__ , feature_blocks=self._feature_blocks , )
class UpperCAmelCase ( A_ ):
def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : str ) -> str:
'''simple docstring'''
snake_case : List[Any] = x.split("-" )
return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] )
def __getitem__(self : Optional[int] , snake_case__ : str ) -> Callable[[], Tuple[nn.Module, Dict]]:
'''simple docstring'''
if x not in self:
snake_case : Dict = self.convert_name_to_timm(snake_case__ )
snake_case : Union[str, Any] = partial(lambda: (timm.create_model(snake_case__ , pretrained=snake_case__ ).eval(), None) )
else:
snake_case : List[str] = super().__getitem__(snake_case__ )
return val
class UpperCAmelCase ( A_ ):
def __getitem__(self : Dict , snake_case__ : str ) -> Callable[[], nn.Module]:
'''simple docstring'''
if "seer" in x and "in1k" not in x:
snake_case : str = RegNetModel
else:
snake_case : Optional[Any] = RegNetForImageClassification
return val
def UpperCamelCase ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Tuple[str, str]] ):
for from_key, to_key in keys:
snake_case : str = from_state_dict[from_key].clone()
print(f"""Copied key={from_key} to={to_key}""" )
return to_state_dict
def UpperCamelCase ( __lowerCamelCase : str , __lowerCamelCase : Callable[[], nn.Module] , __lowerCamelCase : Callable[[], nn.Module] , __lowerCamelCase : RegNetConfig , __lowerCamelCase : Path , __lowerCamelCase : bool = True , ):
print(f"""Converting {name}...""" )
with torch.no_grad():
snake_case , snake_case : int = from_model_func()
snake_case : str = our_model_func(__lowerCamelCase ).eval()
snake_case : int = ModuleTransfer(src=__lowerCamelCase , dest=__lowerCamelCase , raise_if_mismatch=__lowerCamelCase )
snake_case : Dict = torch.randn((1, 3, 224, 224) )
module_transfer(__lowerCamelCase )
if from_state_dict is not None:
snake_case : str = []
# for seer - in1k finetuned we have to manually copy the head
if "seer" in name and "in1k" in name:
snake_case : Tuple = [("0.clf.0.weight", "classifier.1.weight"), ("0.clf.0.bias", "classifier.1.bias")]
snake_case : Optional[Any] = manually_copy_vissl_head(__lowerCamelCase , our_model.state_dict() , __lowerCamelCase )
our_model.load_state_dict(__lowerCamelCase )
snake_case : Any = our_model(__lowerCamelCase , output_hidden_states=__lowerCamelCase )
snake_case : Union[str, Any] = (
our_outputs.logits if isinstance(__lowerCamelCase , __lowerCamelCase ) else our_outputs.last_hidden_state
)
snake_case : Union[str, Any] = from_model(__lowerCamelCase )
snake_case : Dict = from_output[-1] if type(__lowerCamelCase ) is list else from_output
# now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state
if "seer" in name and "in1k" in name:
snake_case : Any = our_outputs.hidden_states[-1]
assert torch.allclose(__lowerCamelCase , __lowerCamelCase ), "The model logits don't match the original one."
if push_to_hub:
our_model.push_to_hub(
repo_path_or_name=save_directory / name , commit_message="Add model" , use_temp_dir=__lowerCamelCase , )
snake_case : List[str] = 224 if "seer" not in name else 384
# we can use the convnext one
snake_case : int = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" , size=__lowerCamelCase )
image_processor.push_to_hub(
repo_path_or_name=save_directory / name , commit_message="Add image processor" , use_temp_dir=__lowerCamelCase , )
print(f"""Pushed {name}""" )
def UpperCamelCase ( __lowerCamelCase : Path , __lowerCamelCase : str = None , __lowerCamelCase : bool = True ):
snake_case : Union[str, Any] = "imagenet-1k-id2label.json"
snake_case : List[str] = 1000
snake_case : List[str] = (1, num_labels)
snake_case : Any = "huggingface/label-files"
snake_case : List[str] = num_labels
snake_case : Optional[Any] = json.load(open(cached_download(hf_hub_url(__lowerCamelCase , __lowerCamelCase , repo_type="dataset" ) ) , "r" ) )
snake_case : List[Any] = {int(__lowerCamelCase ): v for k, v in idalabel.items()}
snake_case : str = idalabel
snake_case : List[Any] = {v: k for k, v in idalabel.items()}
snake_case : Dict = partial(__lowerCamelCase , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase )
snake_case : Optional[Any] = {
"regnet-x-002": ImageNetPreTrainedConfig(
depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 , layer_type="x" ),
"regnet-x-004": ImageNetPreTrainedConfig(
depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 160, 384] , groups_width=16 , layer_type="x" ),
"regnet-x-006": ImageNetPreTrainedConfig(
depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 240, 528] , groups_width=24 , layer_type="x" ),
"regnet-x-008": ImageNetPreTrainedConfig(
depths=[1, 3, 7, 5] , hidden_sizes=[64, 128, 288, 672] , groups_width=16 , layer_type="x" ),
"regnet-x-016": ImageNetPreTrainedConfig(
depths=[2, 4, 10, 2] , hidden_sizes=[72, 168, 408, 912] , groups_width=24 , layer_type="x" ),
"regnet-x-032": ImageNetPreTrainedConfig(
depths=[2, 6, 15, 2] , hidden_sizes=[96, 192, 432, 1008] , groups_width=48 , layer_type="x" ),
"regnet-x-040": ImageNetPreTrainedConfig(
depths=[2, 5, 14, 2] , hidden_sizes=[80, 240, 560, 1360] , groups_width=40 , layer_type="x" ),
"regnet-x-064": ImageNetPreTrainedConfig(
depths=[2, 4, 10, 1] , hidden_sizes=[168, 392, 784, 1624] , groups_width=56 , layer_type="x" ),
"regnet-x-080": ImageNetPreTrainedConfig(
depths=[2, 5, 15, 1] , hidden_sizes=[80, 240, 720, 1920] , groups_width=120 , layer_type="x" ),
"regnet-x-120": ImageNetPreTrainedConfig(
depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 , layer_type="x" ),
"regnet-x-160": ImageNetPreTrainedConfig(
depths=[2, 6, 13, 1] , hidden_sizes=[256, 512, 896, 2048] , groups_width=128 , layer_type="x" ),
"regnet-x-320": ImageNetPreTrainedConfig(
depths=[2, 7, 13, 1] , hidden_sizes=[336, 672, 1344, 2520] , groups_width=168 , layer_type="x" ),
# y variant
"regnet-y-002": ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 ),
"regnet-y-004": ImageNetPreTrainedConfig(
depths=[1, 3, 6, 6] , hidden_sizes=[48, 104, 208, 440] , groups_width=8 ),
"regnet-y-006": ImageNetPreTrainedConfig(
depths=[1, 3, 7, 4] , hidden_sizes=[48, 112, 256, 608] , groups_width=16 ),
"regnet-y-008": ImageNetPreTrainedConfig(
depths=[1, 3, 8, 2] , hidden_sizes=[64, 128, 320, 768] , groups_width=16 ),
"regnet-y-016": ImageNetPreTrainedConfig(
depths=[2, 6, 17, 2] , hidden_sizes=[48, 120, 336, 888] , groups_width=24 ),
"regnet-y-032": ImageNetPreTrainedConfig(
depths=[2, 5, 13, 1] , hidden_sizes=[72, 216, 576, 1512] , groups_width=24 ),
"regnet-y-040": ImageNetPreTrainedConfig(
depths=[2, 6, 12, 2] , hidden_sizes=[128, 192, 512, 1088] , groups_width=64 ),
"regnet-y-064": ImageNetPreTrainedConfig(
depths=[2, 7, 14, 2] , hidden_sizes=[144, 288, 576, 1296] , groups_width=72 ),
"regnet-y-080": ImageNetPreTrainedConfig(
depths=[2, 4, 10, 1] , hidden_sizes=[168, 448, 896, 2016] , groups_width=56 ),
"regnet-y-120": ImageNetPreTrainedConfig(
depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 ),
"regnet-y-160": ImageNetPreTrainedConfig(
depths=[2, 4, 11, 1] , hidden_sizes=[224, 448, 1232, 3024] , groups_width=112 ),
"regnet-y-320": ImageNetPreTrainedConfig(
depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ),
# models created by SEER -> https://arxiv.org/abs/2202.08360
"regnet-y-320-seer": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ),
"regnet-y-640-seer": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ),
"regnet-y-1280-seer": RegNetConfig(
depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ),
"regnet-y-2560-seer": RegNetConfig(
depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ),
"regnet-y-10b-seer": ImageNetPreTrainedConfig(
depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 11110, 28280] , groups_width=1010 ),
# finetuned on imagenet
"regnet-y-320-seer-in1k": ImageNetPreTrainedConfig(
depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ),
"regnet-y-640-seer-in1k": ImageNetPreTrainedConfig(
depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ),
"regnet-y-1280-seer-in1k": ImageNetPreTrainedConfig(
depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ),
"regnet-y-2560-seer-in1k": ImageNetPreTrainedConfig(
depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ),
"regnet-y-10b-seer-in1k": ImageNetPreTrainedConfig(
depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 11110, 28280] , groups_width=1010 ),
}
snake_case : Union[str, Any] = NameToOurModelFuncMap()
snake_case : str = NameToFromModelFuncMap()
# add seer weights logic
def load_using_classy_vision(__lowerCamelCase : str , __lowerCamelCase : Callable[[], nn.Module] ) -> Tuple[nn.Module, Dict]:
snake_case : List[Any] = torch.hub.load_state_dict_from_url(__lowerCamelCase , model_dir=str(__lowerCamelCase ) , map_location="cpu" )
snake_case : Dict = model_func()
# check if we have a head, if yes add it
snake_case : str = files["classy_state_dict"]["base_model"]["model"]
snake_case : Dict = model_state_dict["trunk"]
model.load_state_dict(__lowerCamelCase )
return model.eval(), model_state_dict["heads"]
# pretrained
snake_case : List[Any] = partial(
__lowerCamelCase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , )
snake_case : Optional[int] = partial(
__lowerCamelCase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , )
snake_case : List[str] = partial(
__lowerCamelCase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , )
snake_case : Tuple = partial(
__lowerCamelCase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch" , lambda: FakeRegNetVisslWrapper(
RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=620.83 , w_m=2.52 ) ) ) , )
# IN1K finetuned
snake_case : List[Any] = partial(
__lowerCamelCase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , )
snake_case : Tuple = partial(
__lowerCamelCase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , )
snake_case : str = partial(
__lowerCamelCase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , )
snake_case : Dict = partial(
__lowerCamelCase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch" , lambda: FakeRegNetVisslWrapper(
RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=620.83 , w_m=2.52 ) ) ) , )
if model_name:
convert_weight_and_push(
__lowerCamelCase , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , __lowerCamelCase , __lowerCamelCase , )
else:
for model_name, config in names_to_config.items():
convert_weight_and_push(
__lowerCamelCase , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , )
return config, expected_shape
if __name__ == "__main__":
__lowerCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default=None,
type=str,
help=(
"""The name of the model you wish to convert, it must be one of the supported regnet* architecture,"""
""" currently: regnetx-*, regnety-*. If `None`, all of them will the converted."""
),
)
parser.add_argument(
"""--pytorch_dump_folder_path""",
default=None,
type=Path,
required=True,
help="""Path to the output PyTorch model directory.""",
)
parser.add_argument(
"""--push_to_hub""",
default=True,
type=bool,
required=False,
help="""If True, push model and image processor to the hub.""",
)
__lowerCamelCase = parser.parse_args()
__lowerCamelCase = args.pytorch_dump_folder_path
pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True)
convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 59
| 1
|
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
convert_to_rgb,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
lowerCamelCase__ = logging.get_logger(__name__)
if is_vision_available():
import PIL
class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :Tuple = ["pixel_values"]
def __init__( self : Dict , __a : bool = True , __a : Dict[str, int] = None , __a : PILImageResampling = PILImageResampling.BICUBIC , __a : bool = True , __a : Dict[str, int] = None , __a : bool = True , __a : Union[int, float] = 1 / 255 , __a : bool = True , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : bool = True , **__a : List[Any] , ) -> None:
super().__init__(**__a )
_UpperCamelCase : List[str] = size if size is not None else {"shortest_edge": 224}
_UpperCamelCase : str = get_size_dict(__a , default_to_square=__a )
_UpperCamelCase : Tuple = crop_size if crop_size is not None else {"height": 224, "width": 224}
_UpperCamelCase : Tuple = get_size_dict(__a , default_to_square=__a , param_name="crop_size" )
_UpperCamelCase : List[str] = do_resize
_UpperCamelCase : List[Any] = size
_UpperCamelCase : Any = resample
_UpperCamelCase : Union[str, Any] = do_center_crop
_UpperCamelCase : List[str] = crop_size
_UpperCamelCase : Tuple = do_rescale
_UpperCamelCase : Tuple = rescale_factor
_UpperCamelCase : List[str] = do_normalize
_UpperCamelCase : Union[str, Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
_UpperCamelCase : str = image_std if image_std is not None else OPENAI_CLIP_STD
_UpperCamelCase : List[str] = do_convert_rgb
def __SCREAMING_SNAKE_CASE ( self : str , __a : np.ndarray , __a : Dict[str, int] , __a : PILImageResampling = PILImageResampling.BICUBIC , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Dict , ) -> np.ndarray:
_UpperCamelCase : Optional[int] = get_size_dict(__a , default_to_square=__a )
if "shortest_edge" not in size:
raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' )
_UpperCamelCase : str = get_resize_output_image_size(__a , size=size["shortest_edge"] , default_to_square=__a )
return resize(__a , size=__a , resample=__a , data_format=__a , **__a )
def __SCREAMING_SNAKE_CASE ( self : str , __a : np.ndarray , __a : Dict[str, int] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[Any] , ) -> np.ndarray:
_UpperCamelCase : str = get_size_dict(__a )
if "height" not in size or "width" not in size:
raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' )
return center_crop(__a , size=(size["height"], size["width"]) , data_format=__a , **__a )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : np.ndarray , __a : Union[int, float] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Any , ) -> Optional[int]:
return rescale(__a , scale=__a , data_format=__a , **__a )
def __SCREAMING_SNAKE_CASE ( self : Dict , __a : np.ndarray , __a : Union[float, List[float]] , __a : Union[float, List[float]] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[Any] , ) -> np.ndarray:
return normalize(__a , mean=__a , std=__a , data_format=__a , **__a )
def __SCREAMING_SNAKE_CASE ( self : Dict , __a : ImageInput , __a : bool = None , __a : Dict[str, int] = None , __a : PILImageResampling = None , __a : bool = None , __a : int = None , __a : bool = None , __a : float = None , __a : bool = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : bool = None , __a : Optional[Union[str, TensorType]] = None , __a : Optional[ChannelDimension] = ChannelDimension.FIRST , **__a : str , ) -> PIL.Image.Image:
_UpperCamelCase : str = do_resize if do_resize is not None else self.do_resize
_UpperCamelCase : Union[str, Any] = size if size is not None else self.size
_UpperCamelCase : Union[str, Any] = get_size_dict(__a , param_name="size" , default_to_square=__a )
_UpperCamelCase : Any = resample if resample is not None else self.resample
_UpperCamelCase : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop
_UpperCamelCase : Optional[int] = crop_size if crop_size is not None else self.crop_size
_UpperCamelCase : int = get_size_dict(__a , param_name="crop_size" , default_to_square=__a )
_UpperCamelCase : str = do_rescale if do_rescale is not None else self.do_rescale
_UpperCamelCase : Any = rescale_factor if rescale_factor is not None else self.rescale_factor
_UpperCamelCase : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize
_UpperCamelCase : Optional[int] = image_mean if image_mean is not None else self.image_mean
_UpperCamelCase : Any = image_std if image_std is not None else self.image_std
_UpperCamelCase : Any = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
_UpperCamelCase : str = make_list_of_images(__a )
if not valid_images(__a ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
if do_resize and size is None:
raise ValueError("Size must be specified if do_resize is True." )
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True." )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
_UpperCamelCase : Tuple = [convert_to_rgb(__a ) for image in images]
# All transformations expect numpy arrays.
_UpperCamelCase : Optional[int] = [to_numpy_array(__a ) for image in images]
if do_resize:
_UpperCamelCase : Dict = [self.resize(image=__a , size=__a , resample=__a ) for image in images]
if do_center_crop:
_UpperCamelCase : Dict = [self.center_crop(image=__a , size=__a ) for image in images]
if do_rescale:
_UpperCamelCase : Tuple = [self.rescale(image=__a , scale=__a ) for image in images]
if do_normalize:
_UpperCamelCase : Optional[int] = [self.normalize(image=__a , mean=__a , std=__a ) for image in images]
_UpperCamelCase : Optional[Any] = [to_channel_dimension_format(__a , __a ) for image in images]
_UpperCamelCase : List[str] = {"pixel_values": images}
return BatchFeature(data=__a , tensor_type=__a )
| 310
|
"""simple docstring"""
import unittest
from queue import Empty
from threading import Thread
from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available
from transformers.testing_utils import CaptureStdout, require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers import AutoModelForCausalLM
@require_torch
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]:
_UpperCamelCase : List[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
_UpperCamelCase : Union[str, Any] = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__a )
_UpperCamelCase : Optional[int] = -1
_UpperCamelCase : List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__a )
_UpperCamelCase : Union[str, Any] = model.generate(__a , max_new_tokens=10 , do_sample=__a )
_UpperCamelCase : Optional[Any] = tokenizer.decode(greedy_ids[0] )
with CaptureStdout() as cs:
_UpperCamelCase : Any = TextStreamer(__a )
model.generate(__a , max_new_tokens=10 , do_sample=__a , streamer=__a )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
_UpperCamelCase : Optional[int] = cs.out[:-1]
self.assertEqual(__a , __a )
def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]:
_UpperCamelCase : List[str] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
_UpperCamelCase : Tuple = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__a )
_UpperCamelCase : Dict = -1
_UpperCamelCase : Dict = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__a )
_UpperCamelCase : List[str] = model.generate(__a , max_new_tokens=10 , do_sample=__a )
_UpperCamelCase : Optional[int] = tokenizer.decode(greedy_ids[0] )
_UpperCamelCase : Tuple = TextIteratorStreamer(__a )
_UpperCamelCase : Union[str, Any] = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer}
_UpperCamelCase : Optional[Any] = Thread(target=model.generate , kwargs=__a )
thread.start()
_UpperCamelCase : Tuple = ""
for new_text in streamer:
streamer_text += new_text
self.assertEqual(__a , __a )
def __SCREAMING_SNAKE_CASE ( self : str ) -> Dict:
_UpperCamelCase : Tuple = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
_UpperCamelCase : int = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__a )
_UpperCamelCase : Union[str, Any] = -1
_UpperCamelCase : str = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__a )
_UpperCamelCase : Union[str, Any] = model.generate(__a , max_new_tokens=10 , do_sample=__a )
_UpperCamelCase : str = greedy_ids[:, input_ids.shape[1] :]
_UpperCamelCase : Dict = tokenizer.decode(new_greedy_ids[0] )
with CaptureStdout() as cs:
_UpperCamelCase : Optional[int] = TextStreamer(__a , skip_prompt=__a )
model.generate(__a , max_new_tokens=10 , do_sample=__a , streamer=__a )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
_UpperCamelCase : Tuple = cs.out[:-1]
self.assertEqual(__a , __a )
def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]:
# Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested
# with actual models -- the dummy models' tokenizers are not aligned with their models, and
# `skip_special_tokens=True` has no effect on them
_UpperCamelCase : Dict = AutoTokenizer.from_pretrained("distilgpt2" )
_UpperCamelCase : Optional[int] = AutoModelForCausalLM.from_pretrained("distilgpt2" ).to(__a )
_UpperCamelCase : int = -1
_UpperCamelCase : Any = torch.ones((1, 5) , device=__a ).long() * model.config.bos_token_id
with CaptureStdout() as cs:
_UpperCamelCase : List[str] = TextStreamer(__a , skip_special_tokens=__a )
model.generate(__a , max_new_tokens=1 , do_sample=__a , streamer=__a )
# The prompt contains a special token, so the streamer should not print it. As such, the output text, when
# re-tokenized, must only contain one token
_UpperCamelCase : int = cs.out[:-1] # Remove the final "\n"
_UpperCamelCase : int = tokenizer(__a , return_tensors="pt" )
self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) )
def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]:
_UpperCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
_UpperCamelCase : Union[str, Any] = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__a )
_UpperCamelCase : Optional[Any] = -1
_UpperCamelCase : Tuple = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__a )
_UpperCamelCase : Any = TextIteratorStreamer(__a , timeout=0.0_01 )
_UpperCamelCase : Optional[int] = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer}
_UpperCamelCase : List[Any] = Thread(target=model.generate , kwargs=__a )
thread.start()
# The streamer will timeout after 0.001 seconds, so an exception will be raised
with self.assertRaises(__a ):
_UpperCamelCase : List[str] = ""
for new_text in streamer:
streamer_text += new_text
| 310
| 1
|
import unittest
import numpy as np
from transformers import RobertaPreLayerNormConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import (
FlaxRobertaPreLayerNormForCausalLM,
FlaxRobertaPreLayerNormForMaskedLM,
FlaxRobertaPreLayerNormForMultipleChoice,
FlaxRobertaPreLayerNormForQuestionAnswering,
FlaxRobertaPreLayerNormForSequenceClassification,
FlaxRobertaPreLayerNormForTokenClassification,
FlaxRobertaPreLayerNormModel,
)
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
def __init__(self : List[Any] , a__ : Optional[int] , a__ : Optional[int]=13 , a__ : List[Any]=7 , a__ : Dict=True , a__ : Optional[Any]=True , a__ : List[Any]=True , a__ : Optional[Any]=True , a__ : Optional[int]=99 , a__ : Optional[Any]=32 , a__ : List[str]=5 , a__ : Any=4 , a__ : str=37 , a__ : Optional[int]="gelu" , a__ : Optional[Any]=0.1 , a__ : Dict=0.1 , a__ : Any=512 , a__ : Union[str, Any]=16 , a__ : Any=2 , a__ : Optional[int]=0.0_2 , a__ : Optional[int]=4 , ):
"""simple docstring"""
__snake_case = parent
__snake_case = batch_size
__snake_case = seq_length
__snake_case = is_training
__snake_case = use_attention_mask
__snake_case = use_token_type_ids
__snake_case = use_labels
__snake_case = vocab_size
__snake_case = hidden_size
__snake_case = num_hidden_layers
__snake_case = num_attention_heads
__snake_case = intermediate_size
__snake_case = hidden_act
__snake_case = hidden_dropout_prob
__snake_case = attention_probs_dropout_prob
__snake_case = max_position_embeddings
__snake_case = type_vocab_size
__snake_case = type_sequence_label_size
__snake_case = initializer_range
__snake_case = num_choices
def a (self : Union[str, Any] ):
"""simple docstring"""
__snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__snake_case = None
if self.use_attention_mask:
__snake_case = random_attention_mask([self.batch_size, self.seq_length] )
__snake_case = None
if self.use_token_type_ids:
__snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__snake_case = RobertaPreLayerNormConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a__ , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def a (self : List[Any] ):
"""simple docstring"""
__snake_case = self.prepare_config_and_inputs()
__snake_case , __snake_case , __snake_case , __snake_case = config_and_inputs
__snake_case = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask}
return config, inputs_dict
def a (self : Dict ):
"""simple docstring"""
__snake_case = self.prepare_config_and_inputs()
__snake_case , __snake_case , __snake_case , __snake_case = config_and_inputs
__snake_case = True
__snake_case = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
__snake_case = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
# Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40
class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , unittest.TestCase ):
A_ : Any = True
A_ : Optional[Any] = (
(
FlaxRobertaPreLayerNormModel,
FlaxRobertaPreLayerNormForCausalLM,
FlaxRobertaPreLayerNormForMaskedLM,
FlaxRobertaPreLayerNormForSequenceClassification,
FlaxRobertaPreLayerNormForTokenClassification,
FlaxRobertaPreLayerNormForMultipleChoice,
FlaxRobertaPreLayerNormForQuestionAnswering,
)
if is_flax_available()
else ()
)
def a (self : Dict ):
"""simple docstring"""
__snake_case = FlaxRobertaPreLayerNormModelTester(self )
@slow
def a (self : List[Any] ):
"""simple docstring"""
for model_class_name in self.all_model_classes:
__snake_case = model_class_name.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=a__ )
__snake_case = model(np.ones((1, 1) ) )
self.assertIsNotNone(a__ )
@require_flax
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
@slow
def a (self : str ):
"""simple docstring"""
__snake_case = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=a__ )
__snake_case = np.array([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] , dtype=jnp.intaa )
__snake_case = model(a__ )[0]
__snake_case = [1, 11, 5_0265]
self.assertEqual(list(output.shape ) , a__ )
# compare the actual values for a slice.
__snake_case = np.array(
[[[4_0.4_8_8_0, 1_8.0_1_9_9, -5.2_3_6_7], [-1.8_8_7_7, -4.0_8_8_5, 1_0.7_0_8_5], [-2.2_6_1_3, -5.6_1_1_0, 7.2_6_6_5]]] , dtype=np.floataa )
self.assertTrue(np.allclose(output[:, :3, :3] , a__ , atol=1E-4 ) )
@slow
def a (self : Any ):
"""simple docstring"""
__snake_case = FlaxRobertaPreLayerNormModel.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=a__ )
__snake_case = np.array([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] , dtype=jnp.intaa )
__snake_case = model(a__ )[0]
# compare the actual values for a slice.
__snake_case = np.array(
[[[0.0_2_0_8, -0.0_3_5_6, 0.0_2_3_7], [-0.1_5_6_9, -0.0_4_1_1, -0.2_6_2_6], [0.1_8_7_9, 0.0_1_2_5, -0.0_0_8_9]]] , dtype=np.floataa )
self.assertTrue(np.allclose(output[:, :3, :3] , a__ , atol=1E-4 ) )
| 24
|
import logging
import os
from dataclasses import dataclass
from typing import List, Optional, Union
import tqdm
from filelock import FileLock
from transformers import (
BartTokenizer,
BartTokenizerFast,
DataProcessor,
PreTrainedTokenizer,
RobertaTokenizer,
RobertaTokenizerFast,
XLMRobertaTokenizer,
is_tf_available,
is_torch_available,
)
snake_case_ = logging.getLogger(__name__)
@dataclass(frozen=_UpperCAmelCase )
class SCREAMING_SNAKE_CASE__ :
A_ : str
A_ : str
A_ : Optional[str] = None
A_ : Optional[str] = None
A_ : Optional[str] = None
@dataclass(frozen=_UpperCAmelCase )
class SCREAMING_SNAKE_CASE__ :
A_ : List[int]
A_ : Optional[List[int]] = None
A_ : Optional[List[int]] = None
A_ : Optional[Union[int, float]] = None
A_ : Optional[int] = None
if is_torch_available():
import torch
from torch.utils.data import Dataset
class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ):
A_ : List[InputFeatures]
def __init__(self : int , a__ : str , a__ : PreTrainedTokenizer , a__ : str , a__ : Optional[int] = None , a__ : List[Any]=False , a__ : bool = False , ):
"""simple docstring"""
__snake_case = hans_processors[task]()
__snake_case = os.path.join(
a__ , '''cached_{}_{}_{}_{}'''.format(
'''dev''' if evaluate else '''train''' , tokenizer.__class__.__name__ , str(a__ ) , a__ , ) , )
__snake_case = processor.get_labels()
if tokenizer.__class__ in (
RobertaTokenizer,
RobertaTokenizerFast,
XLMRobertaTokenizer,
BartTokenizer,
BartTokenizerFast,
):
# HACK(label indices are swapped in RoBERTa pretrained model)
__snake_case , __snake_case = label_list[2], label_list[1]
__snake_case = label_list
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
__snake_case = cached_features_file + '''.lock'''
with FileLock(a__ ):
if os.path.exists(a__ ) and not overwrite_cache:
logger.info(f"""Loading features from cached file {cached_features_file}""" )
__snake_case = torch.load(a__ )
else:
logger.info(f"""Creating features from dataset file at {data_dir}""" )
__snake_case = (
processor.get_dev_examples(a__ ) if evaluate else processor.get_train_examples(a__ )
)
logger.info('''Training examples: %s''' , len(a__ ) )
__snake_case = hans_convert_examples_to_features(a__ , a__ , a__ , a__ )
logger.info('''Saving features into cached file %s''' , a__ )
torch.save(self.features , a__ )
def __len__(self : int ):
"""simple docstring"""
return len(self.features )
def __getitem__(self : Dict , a__ : List[Any] ):
"""simple docstring"""
return self.features[i]
def a (self : List[Any] ):
"""simple docstring"""
return self.label_list
if is_tf_available():
import tensorflow as tf
class SCREAMING_SNAKE_CASE__ :
A_ : List[InputFeatures]
def __init__(self : Tuple , a__ : str , a__ : PreTrainedTokenizer , a__ : str , a__ : Optional[int] = 128 , a__ : Any=False , a__ : bool = False , ):
"""simple docstring"""
__snake_case = hans_processors[task]()
__snake_case = processor.get_labels()
if tokenizer.__class__ in (
RobertaTokenizer,
RobertaTokenizerFast,
XLMRobertaTokenizer,
BartTokenizer,
BartTokenizerFast,
):
# HACK(label indices are swapped in RoBERTa pretrained model)
__snake_case , __snake_case = label_list[2], label_list[1]
__snake_case = label_list
__snake_case = processor.get_dev_examples(a__ ) if evaluate else processor.get_train_examples(a__ )
__snake_case = hans_convert_examples_to_features(a__ , a__ , a__ , a__ )
def gen():
for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='''convert examples to features''' ):
if ex_index % 1_0000 == 0:
logger.info('''Writing example %d of %d''' % (ex_index, len(a__ )) )
yield (
{
"example_id": 0,
"input_ids": ex.input_ids,
"attention_mask": ex.attention_mask,
"token_type_ids": ex.token_type_ids,
},
ex.label,
)
__snake_case = tf.data.Dataset.from_generator(
a__ , (
{
'''example_id''': tf.intaa,
'''input_ids''': tf.intaa,
'''attention_mask''': tf.intaa,
'''token_type_ids''': tf.intaa,
},
tf.intaa,
) , (
{
'''example_id''': tf.TensorShape([] ),
'''input_ids''': tf.TensorShape([None, None] ),
'''attention_mask''': tf.TensorShape([None, None] ),
'''token_type_ids''': tf.TensorShape([None, None] ),
},
tf.TensorShape([] ),
) , )
def a (self : Union[str, Any] ):
"""simple docstring"""
return self.dataset
def __len__(self : Dict ):
"""simple docstring"""
return len(self.features )
def __getitem__(self : Any , a__ : Dict ):
"""simple docstring"""
return self.features[i]
def a (self : str ):
"""simple docstring"""
return self.label_list
class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ):
def a (self : Dict , a__ : Dict ):
"""simple docstring"""
return self._create_examples(self._read_tsv(os.path.join(a__ , '''heuristics_train_set.txt''' ) ) , '''train''' )
def a (self : Optional[int] , a__ : Tuple ):
"""simple docstring"""
return self._create_examples(self._read_tsv(os.path.join(a__ , '''heuristics_evaluation_set.txt''' ) ) , '''dev''' )
def a (self : int ):
"""simple docstring"""
return ["contradiction", "entailment", "neutral"]
def a (self : Any , a__ : Optional[int] , a__ : List[Any] ):
"""simple docstring"""
__snake_case = []
for i, line in enumerate(a__ ):
if i == 0:
continue
__snake_case = '''%s-%s''' % (set_type, line[0])
__snake_case = line[5]
__snake_case = line[6]
__snake_case = line[7][2:] if line[7].startswith('''ex''' ) else line[7]
__snake_case = line[0]
examples.append(InputExample(guid=a__ , text_a=a__ , text_b=a__ , label=a__ , pairID=a__ ) )
return examples
def lowerCamelCase__ ( snake_case_ : List[InputExample] , snake_case_ : List[str] , snake_case_ : int , snake_case_ : PreTrainedTokenizer , ) -> List[str]:
__snake_case = {label: i for i, label in enumerate(snake_case_ )}
__snake_case = []
for ex_index, example in tqdm.tqdm(enumerate(snake_case_ ) , desc='''convert examples to features''' ):
if ex_index % 1_0000 == 0:
logger.info('''Writing example %d''' % (ex_index) )
__snake_case = tokenizer(
example.text_a , example.text_b , add_special_tokens=snake_case_ , max_length=snake_case_ , padding='''max_length''' , truncation=snake_case_ , return_overflowing_tokens=snake_case_ , )
__snake_case = label_map[example.label] if example.label in label_map else 0
__snake_case = int(example.pairID )
features.append(InputFeatures(**snake_case_ , label=snake_case_ , pairID=snake_case_ ) )
for i, example in enumerate(examples[:5] ):
logger.info('''*** Example ***''' )
logger.info(f"""guid: {example}""" )
logger.info(f"""features: {features[i]}""" )
return features
snake_case_ = {
'hans': 3,
}
snake_case_ = {
'hans': HansProcessor,
}
| 24
| 1
|
from typing import List, Optional, Tuple, Union
import torch
from ...schedulers import DDIMScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class A ( _UpperCAmelCase ):
"""simple docstring"""
def __init__( self : Dict,lowercase_ : Union[str, Any],lowercase_ : List[str] )-> str:
'''simple docstring'''
super().__init__()
# make sure scheduler can always be converted to DDIM
A__ = DDIMScheduler.from_config(scheduler.config )
self.register_modules(unet=lowercase_,scheduler=lowercase_ )
@torch.no_grad()
def __call__( self : Dict,lowercase_ : int = 1,lowercase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None,lowercase_ : float = 0.0,lowercase_ : int = 5_0,lowercase_ : Optional[bool] = None,lowercase_ : Optional[str] = "pil",lowercase_ : bool = True,)-> Union[ImagePipelineOutput, Tuple]:
'''simple docstring'''
if isinstance(self.unet.config.sample_size,lowercase_ ):
A__ = (
batch_size,
self.unet.config.in_channels,
self.unet.config.sample_size,
self.unet.config.sample_size,
)
else:
A__ = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size)
if isinstance(lowercase_,lowercase_ ) and len(lowercase_ ) != batch_size:
raise ValueError(
F'You have passed a list of generators of length {len(lowercase_ )}, but requested an effective batch'
F' size of {batch_size}. Make sure the batch size matches the length of the generators.' )
A__ = randn_tensor(lowercase_,generator=lowercase_,device=self.device,dtype=self.unet.dtype )
# set step values
self.scheduler.set_timesteps(lowercase_ )
for t in self.progress_bar(self.scheduler.timesteps ):
# 1. predict noise model_output
A__ = self.unet(lowercase_,lowercase_ ).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
A__ = self.scheduler.step(
lowercase_,lowercase_,lowercase_,eta=lowercase_,use_clipped_model_output=lowercase_,generator=lowercase_ ).prev_sample
A__ = (image / 2 + 0.5).clamp(0,1 )
A__ = image.cpu().permute(0,2,3,1 ).numpy()
if output_type == "pil":
A__ = self.numpy_to_pil(lowercase_ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=lowercase_ )
| 282
|
import random
def _snake_case( SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : str ) -> tuple:
'''simple docstring'''
A__ , A__ , A__ = [], [], []
for element in data:
if element < pivot:
less.append(SCREAMING_SNAKE_CASE__ )
elif element > pivot:
greater.append(SCREAMING_SNAKE_CASE__ )
else:
equal.append(SCREAMING_SNAKE_CASE__ )
return less, equal, greater
def _snake_case( SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : int ) -> str:
'''simple docstring'''
if index >= len(SCREAMING_SNAKE_CASE__ ) or index < 0:
return None
A__ = items[random.randint(0 , len(SCREAMING_SNAKE_CASE__ ) - 1 )]
A__ = 0
A__ , A__ , A__ = _partition(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
A__ = len(SCREAMING_SNAKE_CASE__ )
A__ = len(SCREAMING_SNAKE_CASE__ )
# index is the pivot
if m <= index < m + count:
return pivot
# must be in smaller
elif m > index:
return quick_select(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# must be in larger
else:
return quick_select(SCREAMING_SNAKE_CASE__ , index - (m + count) )
| 282
| 1
|
"""simple docstring"""
import baseaa
import io
import json
import os
from copy import deepcopy
from ..optimizer import AcceleratedOptimizer
from ..scheduler import AcceleratedScheduler
class lowercase:
'''simple docstring'''
def __init__( self: Tuple, a_: Union[str, Any] ):
'''simple docstring'''
if isinstance(__UpperCamelCase, __UpperCamelCase ):
# Don't modify user's data should they want to reuse it (e.g. in tests), because once we
# modified it, it will not be accepted here again, since `auto` values would have been overridden
_snake_case : Optional[Any] = deepcopy(__UpperCamelCase )
elif os.path.exists(__UpperCamelCase ):
with io.open(__UpperCamelCase, """r""", encoding="""utf-8""" ) as f:
_snake_case : Any = json.load(__UpperCamelCase )
else:
try:
_snake_case : Union[str, Any] = baseaa.urlsafe_baadecode(__UpperCamelCase ).decode("""utf-8""" )
_snake_case : str = json.loads(__UpperCamelCase )
except (UnicodeDecodeError, AttributeError, ValueError):
raise ValueError(
f"Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}" )
_snake_case : str = config
self.set_stage_and_offload()
def UpperCamelCase_ ( self: Any ):
'''simple docstring'''
_snake_case : Optional[Any] = self.get_value("""zero_optimization.stage""", -1 )
# offload
_snake_case : Optional[int] = False
if self.is_zeroa() or self.is_zeroa():
_snake_case : int = set(["""cpu""", """nvme"""] )
_snake_case : int = set(
[
self.get_value("""zero_optimization.offload_optimizer.device""" ),
self.get_value("""zero_optimization.offload_param.device""" ),
] )
if len(offload_devices & offload_devices_valid ) > 0:
_snake_case : int = True
def UpperCamelCase_ ( self: Dict, a_: Any ):
'''simple docstring'''
_snake_case : List[Any] = self.config
# find the config node of interest if it exists
_snake_case : int = ds_key_long.split(""".""" )
_snake_case : Union[str, Any] = nodes.pop()
for node in nodes:
_snake_case : List[Any] = config.get(__UpperCamelCase )
if config is None:
return None, ds_key
return config, ds_key
def UpperCamelCase_ ( self: str, a_: Tuple, a_: Optional[Any]=None ):
'''simple docstring'''
_snake_case , _snake_case : Optional[Any] = self.find_config_node(__UpperCamelCase )
if config is None:
return default
return config.get(__UpperCamelCase, __UpperCamelCase )
def UpperCamelCase_ ( self: str, a_: List[str], a_: int=False ):
'''simple docstring'''
_snake_case : Tuple = self.config
# find the config node of interest if it exists
_snake_case : List[Any] = ds_key_long.split(""".""" )
for node in nodes:
_snake_case : List[Any] = config
_snake_case : List[str] = config.get(__UpperCamelCase )
if config is None:
if must_exist:
raise ValueError(f"Can\'t find {ds_key_long} entry in the config: {self.config}" )
else:
return
# if found remove it
if parent_config is not None:
parent_config.pop(__UpperCamelCase )
def UpperCamelCase_ ( self: Optional[Any], a_: int ):
'''simple docstring'''
_snake_case : str = self.get_value(__UpperCamelCase )
return False if value is None else bool(__UpperCamelCase )
def UpperCamelCase_ ( self: int, a_: List[str] ):
'''simple docstring'''
_snake_case : Any = self.get_value(__UpperCamelCase )
return False if value is None else not bool(__UpperCamelCase )
def UpperCamelCase_ ( self: Any ):
'''simple docstring'''
return self._stage == 2
def UpperCamelCase_ ( self: List[Any] ):
'''simple docstring'''
return self._stage == 3
def UpperCamelCase_ ( self: List[Any] ):
'''simple docstring'''
return self._offload
class lowercase:
'''simple docstring'''
def __init__( self: Dict, a_: Any ):
'''simple docstring'''
_snake_case : Union[str, Any] = engine
def UpperCamelCase_ ( self: str, a_: int, **a_: List[str] ):
'''simple docstring'''
self.engine.backward(__UpperCamelCase, **__UpperCamelCase )
# Deepspeed's `engine.step` performs the following operations:
# - gradient accumulation check
# - gradient clipping
# - optimizer step
# - zero grad
# - checking overflow
# - lr_scheduler step (only if engine.lr_scheduler is not None)
self.engine.step()
# and this plugin overrides the above calls with no-ops when Accelerate runs under
# Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple
# training loop that works transparently under many training regimes.
class lowercase( _lowercase ):
'''simple docstring'''
def __init__( self: List[str], a_: Any ):
'''simple docstring'''
super().__init__(__UpperCamelCase, device_placement=__UpperCamelCase, scaler=__UpperCamelCase )
_snake_case : Any = hasattr(self.optimizer, """overflow""" )
def UpperCamelCase_ ( self: Any, a_: Dict=None ):
'''simple docstring'''
pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed
def UpperCamelCase_ ( self: Any ):
'''simple docstring'''
pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed
@property
def UpperCamelCase_ ( self: Union[str, Any] ):
'''simple docstring'''
if self.__has_overflow__:
return self.optimizer.overflow
return False
class lowercase( _lowercase ):
'''simple docstring'''
def __init__( self: Dict, a_: Tuple, a_: List[Any] ):
'''simple docstring'''
super().__init__(__UpperCamelCase, __UpperCamelCase )
def UpperCamelCase_ ( self: Optional[Any] ):
'''simple docstring'''
pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed
class lowercase:
'''simple docstring'''
def __init__( self: Dict, a_: Any, a_: Optional[Any]=0.001, a_: Optional[Any]=0, **a_: List[Any] ):
'''simple docstring'''
_snake_case : List[Any] = params
_snake_case : Dict = lr
_snake_case : Optional[int] = weight_decay
_snake_case : str = kwargs
class lowercase:
'''simple docstring'''
def __init__( self: List[Any], a_: List[str], a_: int=None, a_: List[str]=0, **a_: Optional[Any] ):
'''simple docstring'''
_snake_case : Any = optimizer
_snake_case : Optional[Any] = total_num_steps
_snake_case : str = warmup_num_steps
_snake_case : Any = kwargs
| 64
|
"""simple docstring"""
import logging
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import arg_to_scheduler
from transformers import TrainingArguments
UpperCAmelCase = logging.getLogger(__name__)
@dataclass
class UpperCAmelCase_ ( _lowercase):
snake_case__ = field(
default=0.0 , metadata={'''help''': '''The label smoothing epsilon to apply (if not zero).'''})
snake_case__ = field(default=_lowercase , metadata={'''help''': '''Whether to SortishSamler or not.'''})
snake_case__ = field(
default=_lowercase , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''})
snake_case__ = field(default=_lowercase , metadata={'''help''': '''whether to use adafactor'''})
snake_case__ = field(
default=_lowercase , metadata={'''help''': '''Encoder layer dropout probability. Goes into model.config.'''})
snake_case__ = field(
default=_lowercase , metadata={'''help''': '''Decoder layer dropout probability. Goes into model.config.'''})
snake_case__ = field(default=_lowercase , metadata={'''help''': '''Dropout probability. Goes into model.config.'''})
snake_case__ = field(
default=_lowercase , metadata={'''help''': '''Attention dropout probability. Goes into model.config.'''})
snake_case__ = field(
default='''linear''' , metadata={'''help''': F'''Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys())}'''} , )
| 256
| 0
|
import json
import multiprocessing as mp
import re
from collections import defaultdict
from functools import partial
from typing import Dict, List, Optional, Set, Tuple, Type
from datasets import Dataset
from datasketch import MinHash, MinHashLSH
from dpu_utils.utils.iterators import ThreadedIterator
from tqdm import tqdm
UpperCAmelCase__ = re.compile("[^A-Za-z_0-9]")
# parameters used in DuplicationIndex
UpperCAmelCase__ = 10
UpperCAmelCase__ = 256
def _a ( a :List[str] ) -> Optional[MinHash]:
if len(a ) < MIN_NUM_TOKENS:
return None
a = MinHash(num_perm=a )
for token in set(a ):
min_hash.update(token.encode() )
return min_hash
def _a ( a :str ) -> Set[str]:
return {t for t in NON_ALPHA.split(a ) if len(t.strip() ) > 0}
class lowercase_ :
'''simple docstring'''
def __init__( self : Any , *,
__UpperCAmelCase : float = 0.85 , ) ->Dict:
"""simple docstring"""
a = duplication_jaccard_threshold
a = NUM_PERM
a = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm )
a = defaultdict(__UpperCAmelCase )
def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Tuple , __UpperCAmelCase : MinHash ) ->None:
"""simple docstring"""
a = self._index.query(__UpperCAmelCase )
if code_key in self._index.keys:
print(F"""Duplicate key {code_key}""" )
return
self._index.insert(__UpperCAmelCase , __UpperCAmelCase )
if len(__UpperCAmelCase ) > 0:
for base_duplicate in close_duplicates:
if base_duplicate in self._duplicate_clusters:
self._duplicate_clusters[base_duplicate].add(__UpperCAmelCase )
break
else:
self._duplicate_clusters[close_duplicates[0]].add(__UpperCAmelCase )
def __lowerCAmelCase ( self : Dict ) ->List[List[Dict]]:
"""simple docstring"""
a = []
for base, duplicates in self._duplicate_clusters.items():
a = [base] + list(__UpperCAmelCase )
# reformat the cluster to be a list of dict
a = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster]
duplicate_clusters.append(__UpperCAmelCase )
return duplicate_clusters
def __lowerCAmelCase ( self : Any , __UpperCAmelCase : Dict ) ->None:
"""simple docstring"""
a = self.get_duplicate_clusters()
with open(__UpperCAmelCase , '''w''' ) as f:
json.dump(__UpperCAmelCase , __UpperCAmelCase )
def _a ( a :List[Any] ) -> List[Any]:
a , a = element
a = get_min_hash([t for t in NON_ALPHA.split(data['''content'''] ) if len(t.strip() ) > 0] )
if min_hash is not None:
return (index, data["repo_name"], data["path"]), min_hash
def _a ( a :Type[Dataset] ) -> List[Any]:
with mp.Pool() as pool:
for data in pool.imap_unordered(
_compute_min_hash , ThreadedIterator(a , max_queue_size=10_000 ) , chunksize=100 , ):
if data is not None:
yield data
def _a ( a :Type[Dataset] , a :float ) -> str:
a = DuplicationIndex(duplication_jaccard_threshold=a )
for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(a ) ) , max_queue_size=100 ) ):
di.add(a , a )
# Returns a List[Cluster] where Cluster is List[str] with the filenames.
return di.get_duplicate_clusters()
def _a ( a :str , a :str ) -> float:
a = get_tokens(a )
a = get_tokens(a )
return len(tokensa & tokensa ) / len(tokensa | tokensa )
UpperCAmelCase__ = None
def _a ( a :Tuple , a :Tuple ) -> Any:
a = []
for elementa in cluster:
a = _shared_dataset[elementa['''base_index''']]['''content''']
for elementa in extremes:
a = _shared_dataset[elementa['''base_index''']]['''content''']
if jaccard_similarity(a , a ) >= jaccard_threshold:
elementa["copies"] += 1
break
else:
a = 1
extremes.append(a )
return extremes
def _a ( a :List[Any] , a :Optional[Any] , a :Union[str, Any] ) -> Optional[int]:
global _shared_dataset
a = dataset
a = []
a = partial(_find_cluster_extremes_shared , jaccard_threshold=a )
with mp.Pool() as pool:
for extremes in tqdm(
pool.imap_unordered(
a , a , ) , total=len(a ) , ):
extremes_list.append(a )
return extremes_list
def _a ( a :Type[Dataset] , a :float = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]:
a = make_duplicate_clusters(a , a )
a = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster}
a = {}
a = find_extremes(a , a , a )
for extremes in extremes_clusters:
for element in extremes:
a = element
a = duplicate_indices - set(extreme_dict.keys() )
a = dataset.filter(lambda a , a : idx not in remove_indices , with_indices=a )
# update duplicate_clusters
for cluster in duplicate_clusters:
for element in cluster:
a = element['''base_index'''] in extreme_dict
if element["is_extreme"]:
a = extreme_dict[element['''base_index''']]['''copies''']
print(F"""Original dataset size: {len(a )}""" )
print(F"""Number of duplicate clusters: {len(a )}""" )
print(F"""Files in duplicate cluster: {len(a )}""" )
print(F"""Unique files in duplicate cluster: {len(a )}""" )
print(F"""Filtered dataset size: {len(a )}""" )
return ds_filter, duplicate_clusters
| 26
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
UpperCAmelCase__ = {
"configuration_deberta": ["DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "DebertaConfig", "DebertaOnnxConfig"],
"tokenization_deberta": ["DebertaTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = ["DebertaTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = [
"DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",
"DebertaForMaskedLM",
"DebertaForQuestionAnswering",
"DebertaForSequenceClassification",
"DebertaForTokenClassification",
"DebertaModel",
"DebertaPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = [
"TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFDebertaForMaskedLM",
"TFDebertaForQuestionAnswering",
"TFDebertaForSequenceClassification",
"TFDebertaForTokenClassification",
"TFDebertaModel",
"TFDebertaPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig
from .tokenization_deberta import DebertaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_deberta_fast import DebertaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_deberta import (
DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
DebertaForMaskedLM,
DebertaForQuestionAnswering,
DebertaForSequenceClassification,
DebertaForTokenClassification,
DebertaModel,
DebertaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_deberta import (
TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDebertaForMaskedLM,
TFDebertaForQuestionAnswering,
TFDebertaForSequenceClassification,
TFDebertaForTokenClassification,
TFDebertaModel,
TFDebertaPreTrainedModel,
)
else:
import sys
UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 26
| 1
|
"""simple docstring"""
import pytest
from datasets import Dataset, DatasetDict, Features, NamedSplit, Value
from datasets.io.text import TextDatasetReader
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def a_ ( lowerCamelCase , lowerCamelCase ):
assert isinstance(lowerCamelCase , lowerCamelCase )
assert dataset.num_rows == 4
assert dataset.num_columns == 1
assert dataset.column_names == ["text"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('keep_in_memory' , [False, True] )
def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ):
UpperCAmelCase__ = tmp_path / 'cache'
UpperCAmelCase__ = {'text': 'string'}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
UpperCAmelCase__ = TextDatasetReader(lowerCamelCase , cache_dir=lowerCamelCase , keep_in_memory=lowerCamelCase ).read()
_check_text_dataset(lowerCamelCase , lowerCamelCase )
@pytest.mark.parametrize(
'features' , [
None,
{'text': 'string'},
{'text': 'int32'},
{'text': 'float32'},
] , )
def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ):
UpperCAmelCase__ = tmp_path / 'cache'
UpperCAmelCase__ = {'text': 'string'}
UpperCAmelCase__ = features.copy() if features else default_expected_features
UpperCAmelCase__ = (
Features({feature: Value(lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None
)
UpperCAmelCase__ = TextDatasetReader(lowerCamelCase , features=lowerCamelCase , cache_dir=lowerCamelCase ).read()
_check_text_dataset(lowerCamelCase , lowerCamelCase )
@pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] )
def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ):
UpperCAmelCase__ = tmp_path / 'cache'
UpperCAmelCase__ = {'text': 'string'}
UpperCAmelCase__ = TextDatasetReader(lowerCamelCase , cache_dir=lowerCamelCase , split=lowerCamelCase ).read()
_check_text_dataset(lowerCamelCase , lowerCamelCase )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize('path_type' , [str, list] )
def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ):
if issubclass(lowerCamelCase , lowerCamelCase ):
UpperCAmelCase__ = text_path
elif issubclass(lowerCamelCase , lowerCamelCase ):
UpperCAmelCase__ = [text_path]
UpperCAmelCase__ = tmp_path / 'cache'
UpperCAmelCase__ = {'text': 'string'}
UpperCAmelCase__ = TextDatasetReader(lowerCamelCase , cache_dir=lowerCamelCase ).read()
_check_text_dataset(lowerCamelCase , lowerCamelCase )
def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=("train",) ):
assert isinstance(lowerCamelCase , lowerCamelCase )
for split in splits:
UpperCAmelCase__ = dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 1
assert dataset.column_names == ["text"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('keep_in_memory' , [False, True] )
def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ):
UpperCAmelCase__ = tmp_path / 'cache'
UpperCAmelCase__ = {'text': 'string'}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
UpperCAmelCase__ = TextDatasetReader({'train': text_path} , cache_dir=lowerCamelCase , keep_in_memory=lowerCamelCase ).read()
_check_text_datasetdict(lowerCamelCase , lowerCamelCase )
@pytest.mark.parametrize(
'features' , [
None,
{'text': 'string'},
{'text': 'int32'},
{'text': 'float32'},
] , )
def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ):
UpperCAmelCase__ = tmp_path / 'cache'
# CSV file loses col_1 string dtype information: default now is "int64" instead of "string"
UpperCAmelCase__ = {'text': 'string'}
UpperCAmelCase__ = features.copy() if features else default_expected_features
UpperCAmelCase__ = (
Features({feature: Value(lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None
)
UpperCAmelCase__ = TextDatasetReader({'train': text_path} , features=lowerCamelCase , cache_dir=lowerCamelCase ).read()
_check_text_datasetdict(lowerCamelCase , lowerCamelCase )
@pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] )
def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ):
if split:
UpperCAmelCase__ = {split: text_path}
else:
UpperCAmelCase__ = 'train'
UpperCAmelCase__ = {'train': text_path, 'test': text_path}
UpperCAmelCase__ = tmp_path / 'cache'
UpperCAmelCase__ = {'text': 'string'}
UpperCAmelCase__ = TextDatasetReader(lowerCamelCase , cache_dir=lowerCamelCase ).read()
_check_text_datasetdict(lowerCamelCase , lowerCamelCase , splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
| 98
|
"""simple docstring"""
from __future__ import annotations
from collections.abc import Generator
import requests
from bsa import BeautifulSoup
a = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l='
def lowercase (snake_case__ : str = "mumbai" ) -> Generator[tuple[str, str], None, None]:
'''simple docstring'''
lowerCAmelCase = BeautifulSoup(requests.get(url + location ).content , """html.parser""" )
# This attribute finds out all the specifics listed in a job
for job in soup.find_all("""div""" , attrs={"""data-tn-component""": """organicJob"""} ):
lowerCAmelCase = job.find("""a""" , attrs={"""data-tn-element""": """jobTitle"""} ).text.strip()
lowerCAmelCase = job.find("""span""" , {"""class""": """company"""} ).text.strip()
yield job_title, company_name
if __name__ == "__main__":
for i, job in enumerate(fetch_jobs('Bangalore'), 1):
print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
| 155
| 0
|
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
UpperCamelCase__ = logging.get_logger(__name__)
UpperCamelCase__ = {'vocab_file': 'sentencepiece.bpe.model'}
UpperCamelCase__ = {
'vocab_file': {
'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model',
'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model',
'moussaKam/barthez-orangesum-title': (
'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model'
),
},
}
UpperCamelCase__ = {
'moussaKam/mbarthez': 1_0_2_4,
'moussaKam/barthez': 1_0_2_4,
'moussaKam/barthez-orangesum-title': 1_0_2_4,
}
UpperCamelCase__ = '▁'
class A ( UpperCAmelCase_ ):
__UpperCAmelCase : Dict = VOCAB_FILES_NAMES
__UpperCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP
__UpperCAmelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCAmelCase : int = ['input_ids', 'attention_mask']
def __init__(self : int , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[Any]="<s>" , __UpperCAmelCase : Tuple="</s>" , __UpperCAmelCase : Tuple="</s>" , __UpperCAmelCase : int="<s>" , __UpperCAmelCase : Any="<unk>" , __UpperCAmelCase : List[str]="<pad>" , __UpperCAmelCase : int="<mask>" , __UpperCAmelCase : Optional[Dict[str, Any]] = None , **__UpperCAmelCase : str , ) -> None:
"""simple docstring"""
UpperCAmelCase__ = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token
UpperCAmelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , )
UpperCAmelCase__ = vocab_file
UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(__UpperCAmelCase ) )
UpperCAmelCase__ = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3}
UpperCAmelCase__ = len(self.sp_model ) - 1
UpperCAmelCase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def lowercase_ (self : Any , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
UpperCAmelCase__ = [self.cls_token_id]
UpperCAmelCase__ = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def lowercase_ (self : Dict , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None , __UpperCAmelCase : bool = False ) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase )
if token_ids_a is None:
return [1] + ([0] * len(__UpperCAmelCase )) + [1]
return [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] + ([0] * len(__UpperCAmelCase )) + [1]
def lowercase_ (self : List[Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
UpperCAmelCase__ = [self.sep_token_id]
UpperCAmelCase__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def lowercase_ (self : Optional[int] ) -> int:
"""simple docstring"""
return len(self.sp_model )
def lowercase_ (self : Dict ) -> str:
"""simple docstring"""
UpperCAmelCase__ = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def lowercase_ (self : int , __UpperCAmelCase : str ) -> List[str]:
"""simple docstring"""
return self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase )
def lowercase_ (self : List[Any] , __UpperCAmelCase : Tuple ) -> Any:
"""simple docstring"""
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
UpperCAmelCase__ = self.sp_model.PieceToId(__UpperCAmelCase )
return spm_id if spm_id else self.unk_token_id
def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : Dict ) -> str:
"""simple docstring"""
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(__UpperCAmelCase )
def lowercase_ (self : Dict , __UpperCAmelCase : Tuple ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = []
UpperCAmelCase__ = ""
UpperCAmelCase__ = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(__UpperCAmelCase ) + token
UpperCAmelCase__ = True
UpperCAmelCase__ = []
else:
current_sub_tokens.append(__UpperCAmelCase )
UpperCAmelCase__ = False
out_string += self.sp_model.decode(__UpperCAmelCase )
return out_string.strip()
def __getstate__(self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = self.__dict__.copy()
UpperCAmelCase__ = None
return state
def __setstate__(self : int , __UpperCAmelCase : Optional[Any] ) -> int:
"""simple docstring"""
UpperCAmelCase__ = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
UpperCAmelCase__ = {}
UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def lowercase_ (self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(__UpperCAmelCase ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
UpperCAmelCase__ = os.path.join(
__UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(__UpperCAmelCase , "wb" ) as fi:
UpperCAmelCase__ = self.sp_model.serialized_model_proto()
fi.write(__UpperCAmelCase )
return (out_vocab_file,)
| 143
|
from typing import Any, Callable, Dict, List, Optional, Union
import torch
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
UpperCamelCase__ = 'CompVis/stable-diffusion-v1-1'
UpperCamelCase__ = 'CompVis/stable-diffusion-v1-2'
UpperCamelCase__ = 'CompVis/stable-diffusion-v1-3'
UpperCamelCase__ = 'CompVis/stable-diffusion-v1-4'
class A ( UpperCAmelCase_ ):
def __init__(self : Union[str, Any] , __UpperCAmelCase : AutoencoderKL , __UpperCAmelCase : CLIPTextModel , __UpperCAmelCase : CLIPTokenizer , __UpperCAmelCase : UNetaDConditionModel , __UpperCAmelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __UpperCAmelCase : StableDiffusionSafetyChecker , __UpperCAmelCase : CLIPImageProcessor , __UpperCAmelCase : bool = True , ) -> Tuple:
"""simple docstring"""
super()._init_()
UpperCAmelCase__ = StableDiffusionPipeline.from_pretrained(__UpperCAmelCase )
UpperCAmelCase__ = StableDiffusionPipeline.from_pretrained(__UpperCAmelCase )
UpperCAmelCase__ = StableDiffusionPipeline.from_pretrained(__UpperCAmelCase )
UpperCAmelCase__ = StableDiffusionPipeline(
vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , unet=__UpperCAmelCase , scheduler=__UpperCAmelCase , safety_checker=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , requires_safety_checker=__UpperCAmelCase , )
self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea )
@property
def lowercase_ (self : int ) -> Dict[str, Any]:
"""simple docstring"""
return {k: getattr(self , __UpperCAmelCase ) for k in self.config.keys() if not k.startswith("_" )}
def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : Optional[Union[str, int]] = "auto" ) -> Optional[int]:
"""simple docstring"""
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
UpperCAmelCase__ = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(__UpperCAmelCase )
def lowercase_ (self : int ) -> Optional[int]:
"""simple docstring"""
self.enable_attention_slicing(__UpperCAmelCase )
@torch.no_grad()
def lowercase_ (self : Optional[int] , __UpperCAmelCase : Union[str, List[str]] , __UpperCAmelCase : int = 5_1_2 , __UpperCAmelCase : int = 5_1_2 , __UpperCAmelCase : int = 5_0 , __UpperCAmelCase : float = 7.5 , __UpperCAmelCase : Optional[Union[str, List[str]]] = None , __UpperCAmelCase : Optional[int] = 1 , __UpperCAmelCase : float = 0.0 , __UpperCAmelCase : Optional[torch.Generator] = None , __UpperCAmelCase : Optional[torch.FloatTensor] = None , __UpperCAmelCase : Optional[str] = "pil" , __UpperCAmelCase : bool = True , __UpperCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __UpperCAmelCase : int = 1 , **__UpperCAmelCase : Any , ) -> Dict:
"""simple docstring"""
return self.pipea(
prompt=__UpperCAmelCase , height=__UpperCAmelCase , width=__UpperCAmelCase , num_inference_steps=__UpperCAmelCase , guidance_scale=__UpperCAmelCase , negative_prompt=__UpperCAmelCase , num_images_per_prompt=__UpperCAmelCase , eta=__UpperCAmelCase , generator=__UpperCAmelCase , latents=__UpperCAmelCase , output_type=__UpperCAmelCase , return_dict=__UpperCAmelCase , callback=__UpperCAmelCase , callback_steps=__UpperCAmelCase , **__UpperCAmelCase , )
@torch.no_grad()
def lowercase_ (self : List[str] , __UpperCAmelCase : Union[str, List[str]] , __UpperCAmelCase : int = 5_1_2 , __UpperCAmelCase : int = 5_1_2 , __UpperCAmelCase : int = 5_0 , __UpperCAmelCase : float = 7.5 , __UpperCAmelCase : Optional[Union[str, List[str]]] = None , __UpperCAmelCase : Optional[int] = 1 , __UpperCAmelCase : float = 0.0 , __UpperCAmelCase : Optional[torch.Generator] = None , __UpperCAmelCase : Optional[torch.FloatTensor] = None , __UpperCAmelCase : Optional[str] = "pil" , __UpperCAmelCase : bool = True , __UpperCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __UpperCAmelCase : int = 1 , **__UpperCAmelCase : Optional[Any] , ) -> Any:
"""simple docstring"""
return self.pipea(
prompt=__UpperCAmelCase , height=__UpperCAmelCase , width=__UpperCAmelCase , num_inference_steps=__UpperCAmelCase , guidance_scale=__UpperCAmelCase , negative_prompt=__UpperCAmelCase , num_images_per_prompt=__UpperCAmelCase , eta=__UpperCAmelCase , generator=__UpperCAmelCase , latents=__UpperCAmelCase , output_type=__UpperCAmelCase , return_dict=__UpperCAmelCase , callback=__UpperCAmelCase , callback_steps=__UpperCAmelCase , **__UpperCAmelCase , )
@torch.no_grad()
def lowercase_ (self : List[str] , __UpperCAmelCase : Union[str, List[str]] , __UpperCAmelCase : int = 5_1_2 , __UpperCAmelCase : int = 5_1_2 , __UpperCAmelCase : int = 5_0 , __UpperCAmelCase : float = 7.5 , __UpperCAmelCase : Optional[Union[str, List[str]]] = None , __UpperCAmelCase : Optional[int] = 1 , __UpperCAmelCase : float = 0.0 , __UpperCAmelCase : Optional[torch.Generator] = None , __UpperCAmelCase : Optional[torch.FloatTensor] = None , __UpperCAmelCase : Optional[str] = "pil" , __UpperCAmelCase : bool = True , __UpperCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __UpperCAmelCase : int = 1 , **__UpperCAmelCase : Any , ) -> Dict:
"""simple docstring"""
return self.pipea(
prompt=__UpperCAmelCase , height=__UpperCAmelCase , width=__UpperCAmelCase , num_inference_steps=__UpperCAmelCase , guidance_scale=__UpperCAmelCase , negative_prompt=__UpperCAmelCase , num_images_per_prompt=__UpperCAmelCase , eta=__UpperCAmelCase , generator=__UpperCAmelCase , latents=__UpperCAmelCase , output_type=__UpperCAmelCase , return_dict=__UpperCAmelCase , callback=__UpperCAmelCase , callback_steps=__UpperCAmelCase , **__UpperCAmelCase , )
@torch.no_grad()
def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : Union[str, List[str]] , __UpperCAmelCase : int = 5_1_2 , __UpperCAmelCase : int = 5_1_2 , __UpperCAmelCase : int = 5_0 , __UpperCAmelCase : float = 7.5 , __UpperCAmelCase : Optional[Union[str, List[str]]] = None , __UpperCAmelCase : Optional[int] = 1 , __UpperCAmelCase : float = 0.0 , __UpperCAmelCase : Optional[torch.Generator] = None , __UpperCAmelCase : Optional[torch.FloatTensor] = None , __UpperCAmelCase : Optional[str] = "pil" , __UpperCAmelCase : bool = True , __UpperCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __UpperCAmelCase : int = 1 , **__UpperCAmelCase : Union[str, Any] , ) -> List[str]:
"""simple docstring"""
return self.pipea(
prompt=__UpperCAmelCase , height=__UpperCAmelCase , width=__UpperCAmelCase , num_inference_steps=__UpperCAmelCase , guidance_scale=__UpperCAmelCase , negative_prompt=__UpperCAmelCase , num_images_per_prompt=__UpperCAmelCase , eta=__UpperCAmelCase , generator=__UpperCAmelCase , latents=__UpperCAmelCase , output_type=__UpperCAmelCase , return_dict=__UpperCAmelCase , callback=__UpperCAmelCase , callback_steps=__UpperCAmelCase , **__UpperCAmelCase , )
@torch.no_grad()
def lowercase_ (self : int , __UpperCAmelCase : Union[str, List[str]] , __UpperCAmelCase : int = 5_1_2 , __UpperCAmelCase : int = 5_1_2 , __UpperCAmelCase : int = 5_0 , __UpperCAmelCase : float = 7.5 , __UpperCAmelCase : Optional[Union[str, List[str]]] = None , __UpperCAmelCase : Optional[int] = 1 , __UpperCAmelCase : float = 0.0 , __UpperCAmelCase : Optional[torch.Generator] = None , __UpperCAmelCase : Optional[torch.FloatTensor] = None , __UpperCAmelCase : Optional[str] = "pil" , __UpperCAmelCase : bool = True , __UpperCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __UpperCAmelCase : int = 1 , **__UpperCAmelCase : Any , ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = "cuda" if torch.cuda.is_available() else "cpu"
self.to(__UpperCAmelCase )
# Checks if the height and width are divisible by 8 or not
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" )
# Get first result from Stable Diffusion Checkpoint v1.1
UpperCAmelCase__ = self.textaimg_sda_a(
prompt=__UpperCAmelCase , height=__UpperCAmelCase , width=__UpperCAmelCase , num_inference_steps=__UpperCAmelCase , guidance_scale=__UpperCAmelCase , negative_prompt=__UpperCAmelCase , num_images_per_prompt=__UpperCAmelCase , eta=__UpperCAmelCase , generator=__UpperCAmelCase , latents=__UpperCAmelCase , output_type=__UpperCAmelCase , return_dict=__UpperCAmelCase , callback=__UpperCAmelCase , callback_steps=__UpperCAmelCase , **__UpperCAmelCase , )
# Get first result from Stable Diffusion Checkpoint v1.2
UpperCAmelCase__ = self.textaimg_sda_a(
prompt=__UpperCAmelCase , height=__UpperCAmelCase , width=__UpperCAmelCase , num_inference_steps=__UpperCAmelCase , guidance_scale=__UpperCAmelCase , negative_prompt=__UpperCAmelCase , num_images_per_prompt=__UpperCAmelCase , eta=__UpperCAmelCase , generator=__UpperCAmelCase , latents=__UpperCAmelCase , output_type=__UpperCAmelCase , return_dict=__UpperCAmelCase , callback=__UpperCAmelCase , callback_steps=__UpperCAmelCase , **__UpperCAmelCase , )
# Get first result from Stable Diffusion Checkpoint v1.3
UpperCAmelCase__ = self.textaimg_sda_a(
prompt=__UpperCAmelCase , height=__UpperCAmelCase , width=__UpperCAmelCase , num_inference_steps=__UpperCAmelCase , guidance_scale=__UpperCAmelCase , negative_prompt=__UpperCAmelCase , num_images_per_prompt=__UpperCAmelCase , eta=__UpperCAmelCase , generator=__UpperCAmelCase , latents=__UpperCAmelCase , output_type=__UpperCAmelCase , return_dict=__UpperCAmelCase , callback=__UpperCAmelCase , callback_steps=__UpperCAmelCase , **__UpperCAmelCase , )
# Get first result from Stable Diffusion Checkpoint v1.4
UpperCAmelCase__ = self.textaimg_sda_a(
prompt=__UpperCAmelCase , height=__UpperCAmelCase , width=__UpperCAmelCase , num_inference_steps=__UpperCAmelCase , guidance_scale=__UpperCAmelCase , negative_prompt=__UpperCAmelCase , num_images_per_prompt=__UpperCAmelCase , eta=__UpperCAmelCase , generator=__UpperCAmelCase , latents=__UpperCAmelCase , output_type=__UpperCAmelCase , return_dict=__UpperCAmelCase , callback=__UpperCAmelCase , callback_steps=__UpperCAmelCase , **__UpperCAmelCase , )
# Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result
return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
| 143
| 1
|
lowerCAmelCase = [
"DownloadConfig",
"DownloadManager",
"DownloadMode",
"StreamingDownloadManager",
]
from .download_config import DownloadConfig
from .download_manager import DownloadManager, DownloadMode
from .streaming_download_manager import StreamingDownloadManager
| 295
|
'''simple docstring'''
def __lowerCamelCase ( A__ = 50 ) -> int:
"""simple docstring"""
UpperCamelCase = [1] * (length + 1)
for row_length in range(3 , length + 1 ):
for block_length in range(3 , row_length + 1 ):
for block_start in range(row_length - block_length ):
ways_number[row_length] += ways_number[
row_length - block_start - block_length - 1
]
ways_number[row_length] += 1
return ways_number[length]
if __name__ == "__main__":
print(f'''{solution() = }''')
| 28
| 0
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__snake_case : int ={'configuration_opt': ['OPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'OPTConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case : Optional[Any] =[
'OPT_PRETRAINED_MODEL_ARCHIVE_LIST',
'OPTForCausalLM',
'OPTModel',
'OPTPreTrainedModel',
'OPTForSequenceClassification',
'OPTForQuestionAnswering',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case : Optional[int] =['TFOPTForCausalLM', 'TFOPTModel', 'TFOPTPreTrainedModel']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case : int =[
'FlaxOPTForCausalLM',
'FlaxOPTModel',
'FlaxOPTPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_opt import (
OPT_PRETRAINED_MODEL_ARCHIVE_LIST,
OPTForCausalLM,
OPTForQuestionAnswering,
OPTForSequenceClassification,
OPTModel,
OPTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel
else:
import sys
__snake_case : int =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 94
|
import fire
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoTokenizer
from utils import SeqaSeqDataset, pickle_save
def lowerCAmelCase__ ( lowerCamelCase_ : Dict ,lowerCamelCase_ : Optional[int] ,lowerCamelCase_ : List[Any]=1024 ,lowerCamelCase_ : int=1024 ,lowerCamelCase_ : Dict=False ,**lowerCamelCase_ : Tuple):
'''simple docstring'''
lowerCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained(lowerCamelCase_)
lowerCAmelCase__ : Optional[Any] = SeqaSeqDataset(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,type_path='''train''' ,**lowerCamelCase_)
lowerCAmelCase__ : int = tok.pad_token_id
def get_lens(lowerCamelCase_ : Tuple):
lowerCAmelCase__ : Tuple = tqdm(
DataLoader(lowerCamelCase_ ,batch_size=512 ,num_workers=8 ,shuffle=lowerCamelCase_ ,collate_fn=ds.collate_fn) ,desc=str(ds.len_file) ,)
lowerCAmelCase__ : Tuple = []
for batch in dl:
lowerCAmelCase__ : Dict = batch['''input_ids'''].ne(lowerCamelCase_).sum(1).tolist()
lowerCAmelCase__ : Dict = batch['''labels'''].ne(lowerCamelCase_).sum(1).tolist()
if consider_target:
for src, tgt in zip(lowerCamelCase_ ,lowerCamelCase_):
max_lens.append(max(lowerCamelCase_ ,lowerCamelCase_))
else:
max_lens.extend(lowerCamelCase_)
return max_lens
lowerCAmelCase__ : str = get_lens(lowerCamelCase_)
lowerCAmelCase__ : Tuple = SeqaSeqDataset(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,type_path='''val''' ,**lowerCamelCase_)
lowerCAmelCase__ : Optional[int] = get_lens(lowerCamelCase_)
pickle_save(lowerCamelCase_ ,train_ds.len_file)
pickle_save(lowerCamelCase_ ,val_ds.len_file)
if __name__ == "__main__":
fire.Fire(save_len_file)
| 94
| 1
|
"""simple docstring"""
import argparse
import logging
import os
import re
import tensorflow as tf
from transformers import (
AutoConfig,
AutoTokenizer,
DataCollatorForLanguageModeling,
PushToHubCallback,
TFAutoModelForMaskedLM,
create_optimizer,
)
__a = logging.getLogger(__name__)
__a = tf.data.AUTOTUNE
def A_ ( ):
'''simple docstring'''
snake_case_ :Optional[int] = argparse.ArgumentParser(description="""Train a masked language model on TPU.""" )
parser.add_argument(
"""--pretrained_model_config""", type=_lowercase, default="""roberta-base""", help="""The model config to use. Note that we don't copy the model's weights, only the config!""", )
parser.add_argument(
"""--tokenizer""", type=_lowercase, default="""unigram-tokenizer-wikitext""", help="""The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size.""", )
parser.add_argument(
"""--per_replica_batch_size""", type=_lowercase, default=8, help="""Batch size per TPU core.""", )
parser.add_argument(
"""--no_tpu""", action="""store_true""", help="""If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances.""", )
parser.add_argument(
"""--tpu_name""", type=_lowercase, help="""Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs.""", default="""local""", )
parser.add_argument(
"""--tpu_zone""", type=_lowercase, help="""Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.""", )
parser.add_argument(
"""--gcp_project""", type=_lowercase, help="""Google cloud project name. Only used for non-Colab TPU nodes.""" )
parser.add_argument(
"""--bfloat16""", action="""store_true""", help="""Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.""", )
parser.add_argument(
"""--train_dataset""", type=_lowercase, help="""Path to training dataset to load. If the path begins with `gs://`"""
""" then the dataset will be loaded from a Google Cloud Storage bucket.""", )
parser.add_argument(
"""--shuffle_buffer_size""", type=_lowercase, default=2**18, help="""Size of the shuffle buffer (in samples)""", )
parser.add_argument(
"""--eval_dataset""", type=_lowercase, help="""Path to evaluation dataset to load. If the path begins with `gs://`"""
""" then the dataset will be loaded from a Google Cloud Storage bucket.""", )
parser.add_argument(
"""--num_epochs""", type=_lowercase, default=1, help="""Number of epochs to train for.""", )
parser.add_argument(
"""--learning_rate""", type=_lowercase, default=1e-4, help="""Learning rate to use for training.""", )
parser.add_argument(
"""--weight_decay_rate""", type=_lowercase, default=1e-3, help="""Weight decay rate to use for training.""", )
parser.add_argument(
"""--max_length""", type=_lowercase, default=512, help="""Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py""", )
parser.add_argument(
"""--mlm_probability""", type=_lowercase, default=0.15, help="""Fraction of tokens to mask during training.""", )
parser.add_argument("""--output_dir""", type=_lowercase, required=_lowercase, help="""Path to save model checkpoints to.""" )
parser.add_argument("""--hub_model_id""", type=_lowercase, help="""Model ID to upload to on the Hugging Face Hub.""" )
snake_case_ :Dict = parser.parse_args()
return args
def A_ ( _lowercase ):
'''simple docstring'''
try:
if args.tpu_name:
snake_case_ :List[str] = tf.distribute.cluster_resolver.TPUClusterResolver(
args.tpu_name, zone=args.tpu_zone, project=args.gcp_project )
else:
snake_case_ :List[Any] = tf.distribute.cluster_resolver.TPUClusterResolver()
except ValueError:
raise RuntimeError(
"""Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or """
"""--gcp_project. When running on a TPU VM, use --tpu_name local.""" )
tf.config.experimental_connect_to_cluster(_lowercase )
tf.tpu.experimental.initialize_tpu_system(_lowercase )
return tpu
def A_ ( _lowercase ):
'''simple docstring'''
snake_case_ :Optional[int] = 0
for file in file_list:
snake_case_ :List[Any] = file.split("""/""" )[-1]
snake_case_ :Union[str, Any] = re.search(r"""-\d+-(\d+)\.tfrecord""", _lowercase ).group(1 )
snake_case_ :List[str] = int(_lowercase )
num_samples += sample_count
return num_samples
def A_ ( _lowercase, _lowercase, _lowercase, _lowercase, _lowercase, _lowercase=None ):
'''simple docstring'''
snake_case_ :Optional[int] = count_samples(_lowercase )
snake_case_ :Union[str, Any] = tf.data.Dataset.from_tensor_slices(_lowercase )
if shuffle:
snake_case_ :List[str] = dataset.shuffle(len(_lowercase ) )
snake_case_ :Any = tf.data.TFRecordDataset(_lowercase, num_parallel_reads=_lowercase )
# TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here
snake_case_ :Optional[Any] = dataset.apply(tf.data.experimental.assert_cardinality(_lowercase ) )
snake_case_ :Any = dataset.map(_lowercase, num_parallel_calls=_lowercase )
if shuffle:
assert shuffle_buffer_size is not None
snake_case_ :Dict = dataset.shuffle(args.shuffle_buffer_size )
snake_case_ :Dict = dataset.batch(_lowercase, drop_remainder=_lowercase )
snake_case_ :Any = dataset.map(_lowercase, num_parallel_calls=_lowercase )
snake_case_ :Optional[int] = dataset.prefetch(_lowercase )
return dataset
def A_ ( _lowercase ):
'''simple docstring'''
if not args.no_tpu:
snake_case_ :Optional[Any] = initialize_tpu(_lowercase )
snake_case_ :Dict = tf.distribute.TPUStrategy(_lowercase )
else:
snake_case_ :Tuple = tf.distribute.OneDeviceStrategy(device="""/gpu:0""" )
if args.bfloataa:
tf.keras.mixed_precision.set_global_policy("""mixed_bfloat16""" )
snake_case_ :List[Any] = AutoTokenizer.from_pretrained(args.tokenizer )
snake_case_ :Any = AutoConfig.from_pretrained(args.pretrained_model_config )
snake_case_ :List[str] = tokenizer.vocab_size
snake_case_ :Optional[int] = tf.io.gfile.glob(os.path.join(args.train_dataset, """*.tfrecord""" ) )
if not training_records:
raise ValueError(f"""No .tfrecord files found in {args.train_dataset}.""" )
snake_case_ :Union[str, Any] = tf.io.gfile.glob(os.path.join(args.eval_dataset, """*.tfrecord""" ) )
if not eval_records:
raise ValueError(f"""No .tfrecord files found in {args.eval_dataset}.""" )
snake_case_ :Optional[Any] = count_samples(_lowercase )
snake_case_ :Union[str, Any] = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync)
snake_case_ :List[str] = steps_per_epoch * args.num_epochs
with strategy.scope():
snake_case_ :List[str] = TFAutoModelForMaskedLM.from_config(_lowercase )
model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built
snake_case_, snake_case_ :Optional[Any] = create_optimizer(
num_train_steps=_lowercase, num_warmup_steps=total_train_steps // 20, init_lr=args.learning_rate, weight_decay_rate=args.weight_decay_rate, )
# Transformers models compute the right loss for their task by default when labels are passed, and will
# use this for training unless you specify your own loss function in compile().
model.compile(optimizer=_lowercase, metrics=["""accuracy"""] )
def decode_fn(_lowercase ):
snake_case_ :Tuple = {
"""input_ids""": tf.io.FixedLenFeature(dtype=tf.intaa, shape=(args.max_length,) ),
"""attention_mask""": tf.io.FixedLenFeature(dtype=tf.intaa, shape=(args.max_length,) ),
}
return tf.io.parse_single_example(_lowercase, _lowercase )
# Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can
# use their methods in our data pipeline.
snake_case_ :Any = DataCollatorForLanguageModeling(
tokenizer=_lowercase, mlm_probability=args.mlm_probability, mlm=_lowercase, return_tensors="""tf""" )
def mask_with_collator(_lowercase ):
# TF really needs an isin() function
snake_case_ :List[str] = (
~tf.cast(batch["""attention_mask"""], tf.bool )
| (batch["""input_ids"""] == tokenizer.cls_token_id)
| (batch["""input_ids"""] == tokenizer.sep_token_id)
)
snake_case_, snake_case_ :Union[str, Any] = data_collator.tf_mask_tokens(
batch["""input_ids"""], vocab_size=len(_lowercase ), mask_token_id=tokenizer.mask_token_id, special_tokens_mask=_lowercase, )
return batch
snake_case_ :Optional[Any] = args.per_replica_batch_size * strategy.num_replicas_in_sync
snake_case_ :Union[str, Any] = prepare_dataset(
_lowercase, decode_fn=_lowercase, mask_fn=_lowercase, batch_size=_lowercase, shuffle=_lowercase, shuffle_buffer_size=args.shuffle_buffer_size, )
snake_case_ :Optional[Any] = prepare_dataset(
_lowercase, decode_fn=_lowercase, mask_fn=_lowercase, batch_size=_lowercase, shuffle=_lowercase, )
snake_case_ :List[Any] = []
if args.hub_model_id:
callbacks.append(
PushToHubCallback(output_dir=args.output_dir, hub_model_id=args.hub_model_id, tokenizer=_lowercase ) )
model.fit(
_lowercase, validation_data=_lowercase, epochs=args.num_epochs, callbacks=_lowercase, )
model.save_pretrained(args.output_dir )
if __name__ == "__main__":
__a = parse_args()
main(args)
| 66
|
"""simple docstring"""
import unittest
import torch
from torch import nn
from diffusers.models.activations import get_activation
class a ( unittest.TestCase ):
"""simple docstring"""
def UpperCamelCase ( self: str ):
"""simple docstring"""
A__ = get_activation("""swish""" )
self.assertIsInstance(UpperCamelCase , nn.SiLU )
self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def UpperCamelCase ( self: Any ):
"""simple docstring"""
A__ = get_activation("""silu""" )
self.assertIsInstance(UpperCamelCase , nn.SiLU )
self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def UpperCamelCase ( self: Optional[int] ):
"""simple docstring"""
A__ = get_activation("""mish""" )
self.assertIsInstance(UpperCamelCase , nn.Mish )
self.assertEqual(act(torch.tensor(-2_00 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def UpperCamelCase ( self: Any ):
"""simple docstring"""
A__ = get_activation("""gelu""" )
self.assertIsInstance(UpperCamelCase , nn.GELU )
self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
| 335
| 0
|
"""simple docstring"""
from ..utils import (
OptionalDependencyNotAvailable,
is_flax_available,
is_scipy_available,
is_torch_available,
is_torchsde_available,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_pt_objects import * # noqa F403
else:
from .scheduling_consistency_models import CMStochasticIterativeScheduler
from .scheduling_ddim import DDIMScheduler
from .scheduling_ddim_inverse import DDIMInverseScheduler
from .scheduling_ddim_parallel import DDIMParallelScheduler
from .scheduling_ddpm import DDPMScheduler
from .scheduling_ddpm_parallel import DDPMParallelScheduler
from .scheduling_deis_multistep import DEISMultistepScheduler
from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler
from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler
from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler
from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler
from .scheduling_euler_discrete import EulerDiscreteScheduler
from .scheduling_heun_discrete import HeunDiscreteScheduler
from .scheduling_ipndm import IPNDMScheduler
from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler
from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler
from .scheduling_karras_ve import KarrasVeScheduler
from .scheduling_pndm import PNDMScheduler
from .scheduling_repaint import RePaintScheduler
from .scheduling_sde_ve import ScoreSdeVeScheduler
from .scheduling_sde_vp import ScoreSdeVpScheduler
from .scheduling_unclip import UnCLIPScheduler
from .scheduling_unipc_multistep import UniPCMultistepScheduler
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
from .scheduling_vq_diffusion import VQDiffusionScheduler
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_flax_objects import * # noqa F403
else:
from .scheduling_ddim_flax import FlaxDDIMScheduler
from .scheduling_ddpm_flax import FlaxDDPMScheduler
from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler
from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler
from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler
from .scheduling_pndm_flax import FlaxPNDMScheduler
from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler
from .scheduling_utils_flax import (
FlaxKarrasDiffusionSchedulers,
FlaxSchedulerMixin,
FlaxSchedulerOutput,
broadcast_to_shape_from_left,
)
try:
if not (is_torch_available() and is_scipy_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_torch_and_scipy_objects import * # noqa F403
else:
from .scheduling_lms_discrete import LMSDiscreteScheduler
try:
if not (is_torch_available() and is_torchsde_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403
else:
from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
| 11
|
"""simple docstring"""
import unittest
from transformers import load_tool
from .test_tools_common import ToolTesterMixin
lowercase_ = "\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n"
class __lowerCAmelCase ( unittest.TestCase , __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __UpperCAmelCase ( self ):
__a = load_tool('''text-question-answering''' )
self.tool.setup()
__a = load_tool('''text-question-answering''' , remote=_a )
def __UpperCAmelCase ( self ):
__a = self.tool(_a , '''What did Hugging Face do in April 2021?''' )
self.assertEqual(_a , '''launched the BigScience Research Workshop''' )
def __UpperCAmelCase ( self ):
__a = self.remote_tool(_a , '''What did Hugging Face do in April 2021?''' )
self.assertEqual(_a , '''launched the BigScience Research Workshop''' )
def __UpperCAmelCase ( self ):
__a = self.tool(text=_a , question='''What did Hugging Face do in April 2021?''' )
self.assertEqual(_a , '''launched the BigScience Research Workshop''' )
def __UpperCAmelCase ( self ):
__a = self.remote_tool(text=_a , question='''What did Hugging Face do in April 2021?''' )
self.assertEqual(_a , '''launched the BigScience Research Workshop''' )
| 11
| 1
|
'''simple docstring'''
import json
import sys
def lowerCAmelCase (__A , __A):
"""simple docstring"""
with open(__A , encoding='''utf-8''') as f:
_a = json.load(__A)
_a = ['''<details>''', '''<summary>Show updated benchmarks!</summary>''', ''' ''']
for benchmark_name in sorted(__A):
_a = results[benchmark_name]
_a = benchmark_name.split('''/''')[-1]
output_md.append(F'''### Benchmark: {benchmark_file_name}''')
_a = '''| metric |'''
_a = '''|--------|'''
_a = '''| new / old (diff) |'''
for metric_name in sorted(__A):
_a = benchmark_res[metric_name]
_a = metric_vals['''new''']
_a = metric_vals.get('''old''' , __A)
_a = metric_vals.get('''diff''' , __A)
_a = F''' {new_val:f}''' if isinstance(__A , (int, float)) else '''None'''
if old_val is not None:
val_str += F''' / {old_val:f}''' if isinstance(__A , (int, float)) else "None"
if dif_val is not None:
val_str += F''' ({dif_val:f})''' if isinstance(__A , (int, float)) else "None"
title += " " + metric_name + " |"
lines += "---|"
value += val_str + " |"
output_md += [title, lines, value, " "]
output_md.append('''</details>''')
with open(__A , '''w''' , encoding='''utf-8''') as f:
f.writelines('''\n'''.join(__A))
if __name__ == "__main__":
lowercase_ = sys.argv[1]
lowercase_ = sys.argv[2]
format_json_to_md(input_json_file, output_md_file)
| 211
|
'''simple docstring'''
import random
def lowerCAmelCase (__A):
"""simple docstring"""
_a = num - 1
_a = 0
while s % 2 == 0:
_a = s // 2
t += 1
for _ in range(5):
_a = random.randrange(2 , num - 1)
_a = pow(__A , __A , __A)
if v != 1:
_a = 0
while v != (num - 1):
if i == t - 1:
return False
else:
_a = i + 1
_a = (v**2) % num
return True
def lowerCAmelCase (__A):
"""simple docstring"""
if num < 2:
return False
_a = [
2,
3,
5,
7,
11,
13,
17,
19,
23,
29,
31,
37,
41,
43,
47,
53,
59,
61,
67,
71,
73,
79,
83,
89,
97,
101,
103,
107,
109,
113,
127,
131,
137,
139,
149,
151,
157,
163,
167,
173,
179,
181,
191,
193,
197,
199,
211,
223,
227,
229,
233,
239,
241,
251,
257,
263,
269,
271,
277,
281,
283,
293,
307,
311,
313,
317,
331,
337,
347,
349,
353,
359,
367,
373,
379,
383,
389,
397,
401,
409,
419,
421,
431,
433,
439,
443,
449,
457,
461,
463,
467,
479,
487,
491,
499,
503,
509,
521,
523,
541,
547,
557,
563,
569,
571,
577,
587,
593,
599,
601,
607,
613,
617,
619,
631,
641,
643,
647,
653,
659,
661,
673,
677,
683,
691,
701,
709,
719,
727,
733,
739,
743,
751,
757,
761,
769,
773,
787,
797,
809,
811,
821,
823,
827,
829,
839,
853,
857,
859,
863,
877,
881,
883,
887,
907,
911,
919,
929,
937,
941,
947,
953,
967,
971,
977,
983,
991,
997,
]
if num in low_primes:
return True
for prime in low_primes:
if (num % prime) == 0:
return False
return rabin_miller(__A)
def lowerCAmelCase (__A = 1_024):
"""simple docstring"""
while True:
_a = random.randrange(2 ** (keysize - 1) , 2 ** (keysize))
if is_prime_low_num(__A):
return num
if __name__ == "__main__":
lowercase_ = generate_large_prime()
print(("Prime number:", num))
print(("is_prime_low_num:", is_prime_low_num(num)))
| 211
| 1
|
"""simple docstring"""
from typing import List, Optional, Union
import numpy as np
import PIL
import torch
from PIL import Image
from ...models import UNetaDConditionModel, VQModel
from ...pipelines import DiffusionPipeline
from ...pipelines.pipeline_utils import ImagePipelineOutput
from ...schedulers import DDPMScheduler
from ...utils import (
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
replace_example_docstring,
)
lowerCAmelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name
lowerCAmelCase__ = '''
Examples:
```py
>>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline
>>> from diffusers.utils import load_image
>>> import torch
>>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(
... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16
... )
>>> pipe_prior.to("cuda")
>>> prompt = "A red cartoon frog, 4k"
>>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)
>>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(
... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16
... )
>>> pipe.to("cuda")
>>> init_image = load_image(
... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
... "/kandinsky/frog.png"
... )
>>> image = pipe(
... image=init_image,
... image_embeds=image_emb,
... negative_image_embeds=zero_image_emb,
... height=768,
... width=768,
... num_inference_steps=100,
... strength=0.2,
... ).images
>>> image[0].save("red_frog.png")
```
'''
def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=8 ):
"""simple docstring"""
UpperCamelCase = height // scale_factor**2
if height % scale_factor**2 != 0:
new_height += 1
UpperCamelCase = width // scale_factor**2
if width % scale_factor**2 != 0:
new_width += 1
return new_height * scale_factor, new_width * scale_factor
def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=512 ):
"""simple docstring"""
UpperCamelCase = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 )
UpperCamelCase = np.array(pil_image.convert("RGB" ) )
UpperCamelCase = arr.astype(np.floataa ) / 1_27.5 - 1
UpperCamelCase = np.transpose(_SCREAMING_SNAKE_CASE , [2, 0, 1] )
UpperCamelCase = torch.from_numpy(_SCREAMING_SNAKE_CASE ).unsqueeze(0 )
return image
class _lowerCamelCase ( _lowercase ):
def __init__(self , __a , __a , __a , ) -> List[Any]:
super().__init__()
self.register_modules(
unet=__a , scheduler=__a , movq=__a , )
UpperCamelCase = 2 ** (len(self.movq.config.block_out_channels ) - 1)
def snake_case_ (self , __a , __a , __a ) -> Optional[Any]:
# get the original timestep using init_timestep
UpperCamelCase = min(int(num_inference_steps * strength ) , __a )
UpperCamelCase = max(num_inference_steps - init_timestep , 0 )
UpperCamelCase = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def snake_case_ (self , __a , __a , __a , __a , __a , __a , __a=None ) -> str:
if not isinstance(__a , (torch.Tensor, PIL.Image.Image, list) ):
raise ValueError(
F"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(__a )}" )
UpperCamelCase = image.to(device=__a , dtype=__a )
UpperCamelCase = batch_size * num_images_per_prompt
if image.shape[1] == 4:
UpperCamelCase = image
else:
if isinstance(__a , __a ) and len(__a ) != batch_size:
raise ValueError(
F"You have passed a list of generators of length {len(__a )}, but requested an effective batch"
F" size of {batch_size}. Make sure the batch size matches the length of the generators." )
elif isinstance(__a , __a ):
UpperCamelCase = [
self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(__a )
]
UpperCamelCase = torch.cat(__a , dim=0 )
else:
UpperCamelCase = self.movq.encode(__a ).latent_dist.sample(__a )
UpperCamelCase = self.movq.config.scaling_factor * init_latents
UpperCamelCase = torch.cat([init_latents] , dim=0 )
UpperCamelCase = init_latents.shape
UpperCamelCase = randn_tensor(__a , generator=__a , device=__a , dtype=__a )
# get latents
UpperCamelCase = self.scheduler.add_noise(__a , __a , __a )
UpperCamelCase = init_latents
return latents
def snake_case_ (self , __a=0 ) -> List[Any]:
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("Please install accelerate via `pip install accelerate`" )
UpperCamelCase = torch.device(F"cuda:{gpu_id}" )
UpperCamelCase = [
self.unet,
self.movq,
]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(__a , __a )
def snake_case_ (self , __a=0 ) -> List[Any]:
if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ):
from accelerate import cpu_offload_with_hook
else:
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." )
UpperCamelCase = torch.device(F"cuda:{gpu_id}" )
if self.device.type != "cpu":
self.to("cpu" , silence_dtype_warnings=__a )
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
UpperCamelCase = None
for cpu_offloaded_model in [self.unet, self.movq]:
UpperCamelCase , UpperCamelCase = cpu_offload_with_hook(__a , __a , prev_module_hook=__a )
# We'll offload the last model manually.
UpperCamelCase = hook
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def snake_case_ (self ) -> Dict:
if not hasattr(self.unet , "_hf_hook" ):
return self.device
for module in self.unet.modules():
if (
hasattr(__a , "_hf_hook" )
and hasattr(module._hf_hook , "execution_device" )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
@torch.no_grad()
@replace_example_docstring(__a )
def __call__(self , __a , __a , __a , __a = 5_12 , __a = 5_12 , __a = 1_00 , __a = 4.0 , __a = 0.3 , __a = 1 , __a = None , __a = "pil" , __a = True , ) -> Any:
UpperCamelCase = self._execution_device
UpperCamelCase = guidance_scale > 1.0
if isinstance(__a , __a ):
UpperCamelCase = torch.cat(__a , dim=0 )
UpperCamelCase = image_embeds.shape[0]
if isinstance(__a , __a ):
UpperCamelCase = torch.cat(__a , dim=0 )
if do_classifier_free_guidance:
UpperCamelCase = image_embeds.repeat_interleave(__a , dim=0 )
UpperCamelCase = negative_image_embeds.repeat_interleave(__a , dim=0 )
UpperCamelCase = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=__a )
if not isinstance(__a , __a ):
UpperCamelCase = [image]
if not all(isinstance(__a , (PIL.Image.Image, torch.Tensor) ) for i in image ):
raise ValueError(
F"Input is in incorrect format: {[type(__a ) for i in image]}. Currently, we only support PIL image and pytorch tensor" )
UpperCamelCase = torch.cat([prepare_image(__a , __a , __a ) for i in image] , dim=0 )
UpperCamelCase = image.to(dtype=image_embeds.dtype , device=__a )
UpperCamelCase = self.movq.encode(__a )["latents"]
UpperCamelCase = latents.repeat_interleave(__a , dim=0 )
self.scheduler.set_timesteps(__a , device=__a )
UpperCamelCase , UpperCamelCase = self.get_timesteps(__a , __a , __a )
UpperCamelCase = timesteps[:1].repeat(batch_size * num_images_per_prompt )
UpperCamelCase , UpperCamelCase = downscale_height_and_width(__a , __a , self.movq_scale_factor )
UpperCamelCase = self.prepare_latents(
__a , __a , __a , __a , image_embeds.dtype , __a , __a )
for i, t in enumerate(self.progress_bar(__a ) ):
# expand the latents if we are doing classifier free guidance
UpperCamelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
UpperCamelCase = {"image_embeds": image_embeds}
UpperCamelCase = self.unet(
sample=__a , timestep=__a , encoder_hidden_states=__a , added_cond_kwargs=__a , return_dict=__a , )[0]
if do_classifier_free_guidance:
UpperCamelCase , UpperCamelCase = noise_pred.split(latents.shape[1] , dim=1 )
UpperCamelCase , UpperCamelCase = noise_pred.chunk(2 )
UpperCamelCase , UpperCamelCase = variance_pred.chunk(2 )
UpperCamelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
UpperCamelCase = torch.cat([noise_pred, variance_pred_text] , dim=1 )
if not (
hasattr(self.scheduler.config , "variance_type" )
and self.scheduler.config.variance_type in ["learned", "learned_range"]
):
UpperCamelCase , UpperCamelCase = noise_pred.split(latents.shape[1] , dim=1 )
# compute the previous noisy sample x_t -> x_t-1
UpperCamelCase = self.scheduler.step(
__a , __a , __a , generator=__a , )[0]
# post-processing
UpperCamelCase = self.movq.decode(__a , force_not_quantize=__a )["sample"]
if output_type not in ["pt", "np", "pil"]:
raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" )
if output_type in ["np", "pil"]:
UpperCamelCase = image * 0.5 + 0.5
UpperCamelCase = image.clamp(0 , 1 )
UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if output_type == "pil":
UpperCamelCase = self.numpy_to_pil(__a )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=__a )
| 244
|
"""simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer
from .base import PipelineTool
class _lowerCamelCase ( _lowercase ):
UpperCAmelCase_ = "facebook/bart-large-mnli"
UpperCAmelCase_ = (
"This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which "
"should be the text to classify, and `labels`, which should be the list of labels to use for classification. "
"It returns the most likely label in the list of provided `labels` for the input text."
)
UpperCAmelCase_ = "text_classifier"
UpperCAmelCase_ = AutoTokenizer
UpperCAmelCase_ = AutoModelForSequenceClassification
UpperCAmelCase_ = ["text", ["text"]]
UpperCAmelCase_ = ["text"]
def snake_case_ (self ) -> List[Any]:
super().setup()
UpperCamelCase = self.model.config
UpperCamelCase = -1
for idx, label in config.idalabel.items():
if label.lower().startswith("entail" ):
UpperCamelCase = int(__a )
if self.entailment_id == -1:
raise ValueError("Could not determine the entailment ID from the model config, please pass it at init." )
def snake_case_ (self , __a , __a ) -> List[Any]:
UpperCamelCase = labels
return self.pre_processor(
[text] * len(__a ) , [F"This example is {label}" for label in labels] , return_tensors="pt" , padding="max_length" , )
def snake_case_ (self , __a ) -> int:
UpperCamelCase = outputs.logits
UpperCamelCase = torch.argmax(logits[:, 2] ).item()
return self._labels[label_id]
| 244
| 1
|
"""simple docstring"""
import unittest
from transformers import (
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TextaTextGenerationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, require_tf, require_torch
from transformers.utils import is_torch_available
from .test_pipelines_common import ANY
if is_torch_available():
import torch
@is_pipeline_test
class _lowerCamelCase ( unittest.TestCase ):
_lowerCamelCase :Any = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
_lowerCamelCase :Optional[int] = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
def _lowerCAmelCase ( self : Optional[int] , UpperCamelCase : str , UpperCamelCase : int , UpperCamelCase : Tuple ) -> int:
"""simple docstring"""
lowerCAmelCase__ : Union[str, Any] = TextaTextGenerationPipeline(model=a_ , tokenizer=a_ )
return generator, ["Something to write", "Something else"]
def _lowerCAmelCase ( self : Tuple , UpperCamelCase : List[str] , UpperCamelCase : List[Any] ) -> Optional[int]:
"""simple docstring"""
lowerCAmelCase__ : Union[str, Any] = generator("""Something there""" )
self.assertEqual(a_ , [{"""generated_text""": ANY(a_ )}] )
# These are encoder decoder, they don't just append to incoming string
self.assertFalse(outputs[0]["""generated_text"""].startswith("""Something there""" ) )
lowerCAmelCase__ : List[Any] = generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=a_ )
self.assertEqual(
a_ , [
[{"""generated_text""": ANY(a_ )}, {"""generated_text""": ANY(a_ )}],
[{"""generated_text""": ANY(a_ )}, {"""generated_text""": ANY(a_ )}],
] , )
lowerCAmelCase__ : Optional[int] = generator(
["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=a_ )
self.assertEqual(
a_ , [
[{"""generated_text""": ANY(a_ )}, {"""generated_text""": ANY(a_ )}],
[{"""generated_text""": ANY(a_ )}, {"""generated_text""": ANY(a_ )}],
] , )
with self.assertRaises(a_ ):
generator(4 )
@require_torch
def _lowerCAmelCase ( self : str ) -> List[str]:
"""simple docstring"""
lowerCAmelCase__ : Any = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""pt""" )
# do_sample=False necessary for reproducibility
lowerCAmelCase__ : int = generator("""Something there""" , do_sample=a_ )
self.assertEqual(a_ , [{"""generated_text""": """"""}] )
lowerCAmelCase__ : Optional[int] = 3
lowerCAmelCase__ : int = generator(
"""Something there""" , num_return_sequences=a_ , num_beams=a_ , )
lowerCAmelCase__ : Dict = [
{'''generated_text''': '''Beide Beide Beide Beide Beide Beide Beide Beide Beide'''},
{'''generated_text''': '''Beide Beide Beide Beide Beide Beide Beide Beide'''},
{'''generated_text''': ''''''},
]
self.assertEqual(a_ , a_ )
lowerCAmelCase__ : List[Any] = generator("""This is a test""" , do_sample=a_ , num_return_sequences=2 , return_tensors=a_ )
self.assertEqual(
a_ , [
{"""generated_token_ids""": ANY(torch.Tensor )},
{"""generated_token_ids""": ANY(torch.Tensor )},
] , )
lowerCAmelCase__ : Dict = generator.model.config.eos_token_id
lowerCAmelCase__ : Any = '''<pad>'''
lowerCAmelCase__ : Tuple = generator(
["""This is a test""", """This is a second test"""] , do_sample=a_ , num_return_sequences=2 , batch_size=2 , return_tensors=a_ , )
self.assertEqual(
a_ , [
[
{"""generated_token_ids""": ANY(torch.Tensor )},
{"""generated_token_ids""": ANY(torch.Tensor )},
],
[
{"""generated_token_ids""": ANY(torch.Tensor )},
{"""generated_token_ids""": ANY(torch.Tensor )},
],
] , )
@require_tf
def _lowerCAmelCase ( self : Optional[Any] ) -> str:
"""simple docstring"""
lowerCAmelCase__ : Optional[int] = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""tf""" )
# do_sample=False necessary for reproducibility
lowerCAmelCase__ : Union[str, Any] = generator("""Something there""" , do_sample=a_ )
self.assertEqual(a_ , [{"""generated_text""": """"""}] )
| 242
|
"""simple docstring"""
from sklearn.metrics import recall_score
import datasets
SCREAMING_SNAKE_CASE : Dict = """
Recall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:
Recall = TP / (TP + FN)
Where TP is the true positives and FN is the false negatives.
"""
SCREAMING_SNAKE_CASE : Any = """
Args:
- **predictions** (`list` of `int`): The predicted labels.
- **references** (`list` of `int`): The ground truth labels.
- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.
- **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`.
- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.
- `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.
- `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.
- `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.
- `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.
- `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).
- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.
- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .
- `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised.
- `0`: If there is a zero division, the return value is `0`.
- `1`: If there is a zero division, the return value is `1`.
Returns:
- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.
Examples:
Example 1-A simple example with some errors
>>> recall_metric = datasets.load_metric('recall')
>>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])
>>> print(results)
{'recall': 0.6666666666666666}
Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.
>>> recall_metric = datasets.load_metric('recall')
>>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)
>>> print(results)
{'recall': 0.5}
Example 3-The same example as Example 1, but with `sample_weight` included.
>>> recall_metric = datasets.load_metric('recall')
>>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]
>>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)
>>> print(results)
{'recall': 0.55}
Example 4-A multiclass example, using different averages.
>>> recall_metric = datasets.load_metric('recall')
>>> predictions = [0, 2, 1, 0, 0, 1]
>>> references = [0, 1, 2, 0, 1, 2]
>>> results = recall_metric.compute(predictions=predictions, references=references, average='macro')
>>> print(results)
{'recall': 0.3333333333333333}
>>> results = recall_metric.compute(predictions=predictions, references=references, average='micro')
>>> print(results)
{'recall': 0.3333333333333333}
>>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted')
>>> print(results)
{'recall': 0.3333333333333333}
>>> results = recall_metric.compute(predictions=predictions, references=references, average=None)
>>> print(results)
{'recall': array([1., 0., 0.])}
"""
SCREAMING_SNAKE_CASE : Tuple = """
@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION )
class _UpperCAmelCase ( datasets.Metric ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ),
'''references''': datasets.Sequence(datasets.Value('''int32''' ) ),
}
if self.config_name == '''multilabel'''
else {
'''predictions''': datasets.Value('''int32''' ),
'''references''': datasets.Value('''int32''' ),
} ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html'''] , )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_=None , a_=1 , a_="binary" , a_=None , a_="warn" , ):
'''simple docstring'''
__snake_case : Any = recall_score(
a_ , a_ , labels=a_ , pos_label=a_ , average=a_ , sample_weight=a_ , zero_division=a_ , )
return {"recall": float(a_ ) if score.size == 1 else score}
| 102
| 0
|
'''simple docstring'''
from __future__ import annotations
def A__ ( UpperCAmelCase_ , UpperCAmelCase_ ):
if b == 0:
return (1, 0)
(_UpperCamelCase) : Dict = extended_euclid(UpperCAmelCase_ , a % b )
_UpperCamelCase : List[Any] = a // b
return (y, x - k * y)
def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ):
(_UpperCamelCase) : Optional[int] = extended_euclid(UpperCAmelCase_ , UpperCAmelCase_ )
_UpperCamelCase : Optional[Any] = na * na
_UpperCamelCase : Optional[int] = ra * x * na + ra * y * na
return (n % m + m) % m
def A__ ( UpperCAmelCase_ , UpperCAmelCase_ ):
(_UpperCamelCase) : int = extended_euclid(UpperCAmelCase_ , UpperCAmelCase_ )
if b < 0:
_UpperCamelCase : str = (b % n + n) % n
return b
def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ):
_UpperCamelCase : List[str] = invert_modulo(UpperCAmelCase_ , UpperCAmelCase_ ), invert_modulo(UpperCAmelCase_ , UpperCAmelCase_ )
_UpperCamelCase : Any = na * na
_UpperCamelCase : List[str] = ra * x * na + ra * y * na
return (n % m + m) % m
if __name__ == "__main__":
from doctest import testmod
testmod(name='chinese_remainder_theorem', verbose=True)
testmod(name='chinese_remainder_theorem2', verbose=True)
testmod(name='invert_modulo', verbose=True)
testmod(name='extended_euclid', verbose=True)
| 360
|
'''simple docstring'''
from __future__ import annotations
import numpy as np
def A__ ( UpperCAmelCase_ ):
_UpperCamelCase , _UpperCamelCase : Optional[int] = np.shape(UpperCAmelCase_ )
if rows != columns:
_UpperCamelCase : Union[str, Any] = (
'\'table\' has to be of square shaped array but got a '
f'{rows}x{columns} array:\n{table}'
)
raise ValueError(UpperCAmelCase_ )
_UpperCamelCase : Optional[Any] = np.zeros((rows, columns) )
_UpperCamelCase : Tuple = np.zeros((rows, columns) )
for i in range(UpperCAmelCase_ ):
for j in range(UpperCAmelCase_ ):
_UpperCamelCase : Optional[Any] = sum(lower[i][k] * upper[k][j] for k in range(UpperCAmelCase_ ) )
if upper[j][j] == 0:
raise ArithmeticError('No LU decomposition exists' )
_UpperCamelCase : Optional[Any] = (table[i][j] - total) / upper[j][j]
_UpperCamelCase : int = 1
for j in range(UpperCAmelCase_ , UpperCAmelCase_ ):
_UpperCamelCase : Optional[int] = sum(lower[i][k] * upper[k][j] for k in range(UpperCAmelCase_ ) )
_UpperCamelCase : Tuple = table[i][j] - total
return lower, upper
if __name__ == "__main__":
import doctest
doctest.testmod()
| 236
| 0
|
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A__ : Any = logging.get_logger(__name__)
A__ : Optional[int] = {
'microsoft/beit-base-patch16-224-pt22k': (
'https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json'
),
# See all BEiT models at https://huggingface.co/models?filter=beit
}
class lowercase__ ( snake_case__ ):
_UpperCAmelCase :Tuple = "beit"
def __init__( self : Optional[Any] , snake_case__ : int=8192 , snake_case__ : List[str]=768 , snake_case__ : int=12 , snake_case__ : Tuple=12 , snake_case__ : Optional[int]=3072 , snake_case__ : List[Any]="gelu" , snake_case__ : Tuple=0.0 , snake_case__ : List[str]=0.0 , snake_case__ : str=0.02 , snake_case__ : Dict=1E-12 , snake_case__ : Tuple=224 , snake_case__ : Union[str, Any]=16 , snake_case__ : List[Any]=3 , snake_case__ : str=False , snake_case__ : Any=False , snake_case__ : int=False , snake_case__ : Optional[Any]=False , snake_case__ : Optional[Any]=0.1 , snake_case__ : Union[str, Any]=0.1 , snake_case__ : Optional[int]=True , snake_case__ : int=[3, 5, 7, 11] , snake_case__ : List[str]=[1, 2, 3, 6] , snake_case__ : Tuple=True , snake_case__ : Optional[int]=0.4 , snake_case__ : Dict=256 , snake_case__ : List[str]=1 , snake_case__ : Optional[int]=False , snake_case__ : int=255 , **snake_case__ : Tuple , ):
super().__init__(**snake_case__ )
lowerCamelCase_ : Optional[int] =vocab_size
lowerCamelCase_ : List[str] =hidden_size
lowerCamelCase_ : List[Any] =num_hidden_layers
lowerCamelCase_ : Optional[int] =num_attention_heads
lowerCamelCase_ : Optional[Any] =intermediate_size
lowerCamelCase_ : List[Any] =hidden_act
lowerCamelCase_ : Optional[int] =hidden_dropout_prob
lowerCamelCase_ : List[Any] =attention_probs_dropout_prob
lowerCamelCase_ : List[str] =initializer_range
lowerCamelCase_ : Optional[int] =layer_norm_eps
lowerCamelCase_ : Optional[int] =image_size
lowerCamelCase_ : int =patch_size
lowerCamelCase_ : str =num_channels
lowerCamelCase_ : List[str] =use_mask_token
lowerCamelCase_ : Tuple =use_absolute_position_embeddings
lowerCamelCase_ : Any =use_relative_position_bias
lowerCamelCase_ : Dict =use_shared_relative_position_bias
lowerCamelCase_ : Dict =layer_scale_init_value
lowerCamelCase_ : Tuple =drop_path_rate
lowerCamelCase_ : Tuple =use_mean_pooling
# decode head attributes (semantic segmentation)
lowerCamelCase_ : Union[str, Any] =out_indices
lowerCamelCase_ : Any =pool_scales
# auxiliary head attributes (semantic segmentation)
lowerCamelCase_ : List[Any] =use_auxiliary_head
lowerCamelCase_ : List[Any] =auxiliary_loss_weight
lowerCamelCase_ : Optional[Any] =auxiliary_channels
lowerCamelCase_ : Optional[int] =auxiliary_num_convs
lowerCamelCase_ : Union[str, Any] =auxiliary_concat_input
lowerCamelCase_ : Any =semantic_loss_ignore_index
class lowercase__ ( snake_case__ ):
_UpperCAmelCase :Optional[Any] = version.parse("1.11" )
@property
def UpperCAmelCase__ ( self : Union[str, Any] ):
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def UpperCAmelCase__ ( self : Optional[int] ):
return 1E-4
| 144
|
"""simple docstring"""
import math
def _snake_case ( lowerCamelCase__ : list , lowerCamelCase__ : int ) -> int:
lowerCamelCase_ : int =len(lowerCamelCase__ )
lowerCamelCase_ : List[Any] =int(math.floor(math.sqrt(lowerCamelCase__ ) ) )
lowerCamelCase_ : List[Any] =0
while arr[min(lowerCamelCase__ , lowerCamelCase__ ) - 1] < x:
lowerCamelCase_ : str =step
step += int(math.floor(math.sqrt(lowerCamelCase__ ) ) )
if prev >= n:
return -1
while arr[prev] < x:
lowerCamelCase_ : Dict =prev + 1
if prev == min(lowerCamelCase__ , lowerCamelCase__ ):
return -1
if arr[prev] == x:
return prev
return -1
if __name__ == "__main__":
A__ : List[Any] = input('Enter numbers separated by a comma:\n').strip()
A__ : Optional[Any] = [int(item) for item in user_input.split(',')]
A__ : List[str] = int(input('Enter the number to be searched:\n'))
A__ : Any = jump_search(arr, x)
if res == -1:
print('Number not found!')
else:
print(f'Number {x} is at index {res}')
| 144
| 1
|
import unittest
from transformers import GPTSwaTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
_SCREAMING_SNAKE_CASE = get_tests_dir("""fixtures/test_sentencepiece_with_bytefallback.model""")
@require_sentencepiece
@require_tokenizers
class SCREAMING_SNAKE_CASE_ ( snake_case_ , unittest.TestCase ):
__magic_name__: Any = GPTSwaTokenizer
__magic_name__: List[str] = False
__magic_name__: Any = True
__magic_name__: Union[str, Any] = False
def UpperCAmelCase_ ( self : Optional[int] ) -> Dict:
"""simple docstring"""
super().setUp()
# We have a SentencePiece fixture for testing
snake_case_ : Optional[Any] = GPTSwaTokenizer(_A , eos_token='<unk>' , bos_token='<unk>' , pad_token='<unk>' )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCAmelCase_ ( self : int , _A : Any ) -> str:
"""simple docstring"""
snake_case_ : Tuple = 'This is a test'
snake_case_ : Union[str, Any] = 'This is a test'
return input_text, output_text
def UpperCAmelCase_ ( self : List[Any] ) -> Optional[Any]:
"""simple docstring"""
snake_case_ : Optional[int] = '<s>'
snake_case_ : int = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A )
def UpperCAmelCase_ ( self : Dict ) -> List[Any]:
"""simple docstring"""
snake_case_ : int = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<unk>' )
self.assertEqual(vocab_keys[1] , '<s>' )
self.assertEqual(vocab_keys[-1] , 'j' )
self.assertEqual(len(_A ) , 2000 )
def UpperCAmelCase_ ( self : int ) -> int:
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 2000 )
def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
snake_case_ : Optional[Any] = GPTSwaTokenizer(_A )
snake_case_ : Union[str, Any] = tokenizer.tokenize('This is a test' )
self.assertListEqual(_A , ['▁This', '▁is', '▁a', '▁t', 'est'] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , [465, 287, 265, 631, 842] )
snake_case_ : Optional[int] = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
# fmt: off
self.assertListEqual(
_A , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] , )
# fmt: on
snake_case_ : Optional[int] = tokenizer.convert_tokens_to_ids(_A )
self.assertListEqual(
_A , [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , )
snake_case_ : List[str] = tokenizer.convert_ids_to_tokens(_A )
# fmt: off
self.assertListEqual(
_A , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] )
# fmt: on
def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
snake_case_ : Optional[Any] = GPTSwaTokenizer(_A )
snake_case_ : int = ['This is a test', 'I was born in 92000, and this is falsé.']
snake_case_ : int = [
[465, 287, 265, 631, 842],
[262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260],
]
# Test that encode_fast returns the same as tokenize + convert_tokens_to_ids
for text, expected_ids in zip(_A , _A ):
self.assertListEqual(tokenizer.encode_fast(_A ) , _A )
# Test that decode_fast returns the input text
for text, token_ids in zip(_A , _A ):
self.assertEqual(tokenizer.decode_fast(_A ) , _A )
@slow
def UpperCAmelCase_ ( self : Any ) -> str:
"""simple docstring"""
snake_case_ : Optional[int] = [
'<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')',
'Hey there, how are you doing this fine day?',
'This is a text with a trailing spaces followed by a dot .',
'Häj sväjs lillebrör! =)',
'Det är inget fel på Mr. Cool',
]
# fmt: off
snake_case_ : Dict = {'input_ids': [[63423, 5, 6811, 14954, 282, 816, 3821, 63466, 63425, 63462, 18, 63978, 678, 301, 1320, 63423, 63455, 63458, 18, 63982, 4246, 3940, 1901, 47789, 5547, 18994], [19630, 1100, 63446, 1342, 633, 544, 4488, 593, 5102, 2416, 63495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1652, 428, 268, 1936, 515, 268, 58593, 22413, 9106, 546, 268, 33213, 63979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [55130, 63450, 924, 63449, 2249, 4062, 1558, 318, 63504, 21498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2827, 2559, 332, 6575, 63443, 26801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]}
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_A , model_name='AI-Sweden/gpt-sw3-126m' , sequences=_A , )
| 88
|
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class SCREAMING_SNAKE_CASE_ ( snake_case_ ):
__magic_name__: Optional[Any] = ["image_processor", "tokenizer"]
__magic_name__: Optional[Any] = "LayoutLMv3ImageProcessor"
__magic_name__: str = ("LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast")
def __init__( self : int , _A : List[str]=None , _A : Dict=None , **_A : int ) -> List[str]:
"""simple docstring"""
snake_case_ : Any = None
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.' , _A , )
snake_case_ : Any = kwargs.pop('feature_extractor' )
snake_case_ : Optional[int] = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
super().__init__(_A , _A )
def __call__( self : List[str] , _A : Optional[Any] , _A : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _A : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , _A : Union[List[List[int]], List[List[List[int]]]] = None , _A : Optional[Union[List[int], List[List[int]]]] = None , _A : bool = True , _A : Union[bool, str, PaddingStrategy] = False , _A : Union[bool, str, TruncationStrategy] = None , _A : Optional[int] = None , _A : int = 0 , _A : Optional[int] = None , _A : Optional[bool] = None , _A : Optional[bool] = None , _A : bool = False , _A : bool = False , _A : bool = False , _A : bool = False , _A : bool = True , _A : Optional[Union[str, TensorType]] = None , **_A : str , ) -> BatchEncoding:
"""simple docstring"""
if self.image_processor.apply_ocr and (boxes is not None):
raise ValueError(
'You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.' )
if self.image_processor.apply_ocr and (word_labels is not None):
raise ValueError(
'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' )
# first, apply the image processor
snake_case_ : str = self.image_processor(images=_A , return_tensors=_A )
# second, apply the tokenizer
if text is not None and self.image_processor.apply_ocr and text_pair is None:
if isinstance(_A , _A ):
snake_case_ : List[Any] = [text] # add batch dimension (as the image processor always adds a batch dimension)
snake_case_ : str = features['words']
snake_case_ : Optional[int] = self.tokenizer(
text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=_A , add_special_tokens=_A , padding=_A , truncation=_A , max_length=_A , stride=_A , pad_to_multiple_of=_A , return_token_type_ids=_A , return_attention_mask=_A , return_overflowing_tokens=_A , return_special_tokens_mask=_A , return_offsets_mapping=_A , return_length=_A , verbose=_A , return_tensors=_A , **_A , )
# add pixel values
snake_case_ : List[str] = features.pop('pixel_values' )
if return_overflowing_tokens is True:
snake_case_ : Dict = self.get_overflowing_images(_A , encoded_inputs['overflow_to_sample_mapping'] )
snake_case_ : Optional[Any] = images
return encoded_inputs
def UpperCAmelCase_ ( self : Dict , _A : Tuple , _A : Dict ) -> Union[str, Any]:
"""simple docstring"""
snake_case_ : List[str] = []
for sample_idx in overflow_to_sample_mapping:
images_with_overflow.append(images[sample_idx] )
if len(_A ) != len(_A ):
raise ValueError(
'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got'
F""" {len(_A )} and {len(_A )}""" )
return images_with_overflow
def UpperCAmelCase_ ( self : Optional[Any] , *_A : Optional[Any] , **_A : List[Any] ) -> List[str]:
"""simple docstring"""
return self.tokenizer.batch_decode(*_A , **_A )
def UpperCAmelCase_ ( self : Union[str, Any] , *_A : Dict , **_A : str ) -> Any:
"""simple docstring"""
return self.tokenizer.decode(*_A , **_A )
@property
def UpperCAmelCase_ ( self : Optional[int] ) -> int:
"""simple docstring"""
return ["input_ids", "bbox", "attention_mask", "pixel_values"]
@property
def UpperCAmelCase_ ( self : Any ) -> Any:
"""simple docstring"""
warnings.warn(
'`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _A , )
return self.image_processor_class
@property
def UpperCAmelCase_ ( self : List[Any] ) -> int:
"""simple docstring"""
warnings.warn(
'`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _A , )
return self.image_processor
| 88
| 1
|
import copy
import inspect
import unittest
from transformers import PretrainedConfig, SwiftFormerConfig
from transformers.testing_utils import (
require_torch,
require_vision,
slow,
torch_device,
)
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import SwiftFormerForImageClassification, SwiftFormerModel
from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class SCREAMING_SNAKE_CASE_ :
def __init__( self : Tuple , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[int]=13 , lowerCamelCase_ : Union[str, Any]=3 , lowerCamelCase_ : List[str]=True , lowerCamelCase_ : Dict=True , lowerCamelCase_ : str=0.1 , lowerCamelCase_ : Union[str, Any]=0.1 , lowerCamelCase_ : Optional[Any]=224 , lowerCamelCase_ : List[Any]=1000 , lowerCamelCase_ : Dict=[3, 3, 6, 4] , lowerCamelCase_ : Optional[int]=[48, 56, 112, 220] , ):
"""simple docstring"""
UpperCamelCase = parent
UpperCamelCase = batch_size
UpperCamelCase = num_channels
UpperCamelCase = is_training
UpperCamelCase = use_labels
UpperCamelCase = hidden_dropout_prob
UpperCamelCase = attention_probs_dropout_prob
UpperCamelCase = num_labels
UpperCamelCase = image_size
UpperCamelCase = layer_depths
UpperCamelCase = embed_dims
def lowerCamelCase_ ( self : List[str] ):
"""simple docstring"""
UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCamelCase = None
if self.use_labels:
UpperCamelCase = ids_tensor([self.batch_size] , self.num_labels )
UpperCamelCase = self.get_config()
return config, pixel_values, labels
def lowerCamelCase_ ( self : Optional[int] ):
"""simple docstring"""
return SwiftFormerConfig(
depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="""gelu""" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=lowerCamelCase_ , layer_scale_init_value=1E-5 , )
def lowerCamelCase_ ( self : str , lowerCamelCase_ : Tuple , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Tuple ):
"""simple docstring"""
UpperCamelCase = SwiftFormerModel(config=lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
UpperCamelCase = model(lowerCamelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) )
def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Dict ):
"""simple docstring"""
UpperCamelCase = self.num_labels
UpperCamelCase = SwiftFormerForImageClassification(lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
UpperCamelCase = model(lowerCamelCase_ , labels=lowerCamelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
UpperCamelCase = SwiftFormerForImageClassification(lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCamelCase = model(lowerCamelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCamelCase_ ( self : Dict ):
"""simple docstring"""
((UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase)) = self.prepare_config_and_inputs()
UpperCamelCase = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ):
__lowerCAmelCase = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else ()
__lowerCAmelCase = (
{"""feature-extraction""": SwiftFormerModel, """image-classification""": SwiftFormerForImageClassification}
if is_torch_available()
else {}
)
__lowerCAmelCase = False
__lowerCAmelCase = False
__lowerCAmelCase = False
__lowerCAmelCase = False
__lowerCAmelCase = False
def lowerCamelCase_ ( self : Union[str, Any] ):
"""simple docstring"""
UpperCamelCase = SwiftFormerModelTester(self )
UpperCamelCase = ConfigTester(
self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , )
def lowerCamelCase_ ( self : Optional[Any] ):
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason="""SwiftFormer does not use inputs_embeds""" )
def lowerCamelCase_ ( self : Tuple ):
"""simple docstring"""
pass
def lowerCamelCase_ ( self : Dict ):
"""simple docstring"""
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase = model_class(lowerCamelCase_ )
UpperCamelCase = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(lowerCamelCase_ , nn.Linear ) )
def lowerCamelCase_ ( self : Optional[int] ):
"""simple docstring"""
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase = model_class(lowerCamelCase_ )
UpperCamelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCamelCase = [*signature.parameters.keys()]
UpperCamelCase = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , lowerCamelCase_ )
def lowerCamelCase_ ( self : Dict ):
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCamelCase_ )
def lowerCamelCase_ ( self : int ):
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ )
@slow
def lowerCamelCase_ ( self : Tuple ):
"""simple docstring"""
for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase = SwiftFormerModel.from_pretrained(lowerCamelCase_ )
self.assertIsNotNone(lowerCamelCase_ )
@unittest.skip(reason="""SwiftFormer does not output attentions""" )
def lowerCamelCase_ ( self : Union[str, Any] ):
"""simple docstring"""
pass
def lowerCamelCase_ ( self : List[str] ):
"""simple docstring"""
def check_hidden_states_output(lowerCamelCase_ : int , lowerCamelCase_ : List[str] , lowerCamelCase_ : int ):
UpperCamelCase = model_class(lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
with torch.no_grad():
UpperCamelCase = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) )
UpperCamelCase = outputs.hidden_states
UpperCamelCase = 8
self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) # TODO
# SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width)
# with the width and height being successively divided by 2, after every 2 blocks
for i in range(len(lowerCamelCase_ ) ):
self.assertEqual(
hidden_states[i].shape , torch.Size(
[
self.model_tester.batch_size,
self.model_tester.embed_dims[i // 2],
(self.model_tester.image_size // 4) // 2 ** (i // 2),
(self.model_tester.image_size // 4) // 2 ** (i // 2),
] ) , )
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase = True
check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCamelCase = True
check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
def lowerCamelCase_ ( self : str ):
"""simple docstring"""
def _config_zero_init(lowerCamelCase_ : List[Any] ):
UpperCamelCase = copy.deepcopy(lowerCamelCase_ )
for key in configs_no_init.__dict__.keys():
if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key:
setattr(lowerCamelCase_ , lowerCamelCase_ , 1E-10 )
if isinstance(getattr(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) , lowerCamelCase_ ):
UpperCamelCase = _config_zero_init(getattr(lowerCamelCase_ , lowerCamelCase_ ) )
setattr(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
return configs_no_init
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase = _config_zero_init(lowerCamelCase_ )
for model_class in self.all_model_classes:
UpperCamelCase = model_class(config=lowerCamelCase_ )
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , )
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def lowerCamelCase_ ( self : Any ):
"""simple docstring"""
pass
def lowercase( ) -> Any:
'''simple docstring'''
UpperCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
@cached_property
def lowerCamelCase_ ( self : Union[str, Any] ):
"""simple docstring"""
return ViTImageProcessor.from_pretrained("""MBZUAI/swiftformer-xs""" ) if is_vision_available() else None
@slow
def lowerCamelCase_ ( self : Optional[int] ):
"""simple docstring"""
UpperCamelCase = SwiftFormerForImageClassification.from_pretrained("""MBZUAI/swiftformer-xs""" ).to(lowerCamelCase_ )
UpperCamelCase = self.default_image_processor
UpperCamelCase = prepare_img()
UpperCamelCase = image_processor(images=lowerCamelCase_ , return_tensors="""pt""" ).to(lowerCamelCase_ )
# forward pass
with torch.no_grad():
UpperCamelCase = model(**lowerCamelCase_ )
# verify the logits
UpperCamelCase = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , lowerCamelCase_ )
UpperCamelCase = torch.tensor([[-2.1_703E00, 2.1_107E00, -2.0_811E00]] ).to(lowerCamelCase_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase_ , atol=1E-4 ) )
| 343
|
import inspect
import unittest
import numpy as np
from transformers import ViTConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor
if is_flax_available():
import jax
from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
def __init__( self : List[Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[int]=13 , lowerCamelCase_ : Union[str, Any]=30 , lowerCamelCase_ : str=2 , lowerCamelCase_ : Optional[int]=3 , lowerCamelCase_ : Union[str, Any]=True , lowerCamelCase_ : List[str]=True , lowerCamelCase_ : List[str]=32 , lowerCamelCase_ : Union[str, Any]=5 , lowerCamelCase_ : Optional[Any]=4 , lowerCamelCase_ : Any=37 , lowerCamelCase_ : Optional[Any]="gelu" , lowerCamelCase_ : Optional[int]=0.1 , lowerCamelCase_ : str=0.1 , lowerCamelCase_ : Union[str, Any]=10 , lowerCamelCase_ : Optional[Any]=0.0_2 , ):
"""simple docstring"""
UpperCamelCase = parent
UpperCamelCase = batch_size
UpperCamelCase = image_size
UpperCamelCase = patch_size
UpperCamelCase = num_channels
UpperCamelCase = is_training
UpperCamelCase = use_labels
UpperCamelCase = hidden_size
UpperCamelCase = num_hidden_layers
UpperCamelCase = num_attention_heads
UpperCamelCase = intermediate_size
UpperCamelCase = hidden_act
UpperCamelCase = hidden_dropout_prob
UpperCamelCase = attention_probs_dropout_prob
UpperCamelCase = type_sequence_label_size
UpperCamelCase = initializer_range
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
UpperCamelCase = (image_size // patch_size) ** 2
UpperCamelCase = num_patches + 1
def lowerCamelCase_ ( self : str ):
"""simple docstring"""
UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCamelCase = ViTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase_ , initializer_range=self.initializer_range , )
return config, pixel_values
def lowerCamelCase_ ( self : str , lowerCamelCase_ : List[str] , lowerCamelCase_ : Tuple ):
"""simple docstring"""
UpperCamelCase = FlaxViTModel(config=lowerCamelCase_ )
UpperCamelCase = model(lowerCamelCase_ )
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
UpperCamelCase = (self.image_size, self.image_size)
UpperCamelCase = (self.patch_size, self.patch_size)
UpperCamelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) )
def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[Any] ):
"""simple docstring"""
UpperCamelCase = self.type_sequence_label_size
UpperCamelCase = FlaxViTForImageClassification(config=lowerCamelCase_ )
UpperCamelCase = model(lowerCamelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
UpperCamelCase = 1
UpperCamelCase = FlaxViTForImageClassification(lowerCamelCase_ )
UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCamelCase = model(lowerCamelCase_ )
def lowerCamelCase_ ( self : Dict ):
"""simple docstring"""
UpperCamelCase = self.prepare_config_and_inputs()
(
(
UpperCamelCase
) , (
UpperCamelCase
) ,
) = config_and_inputs
UpperCamelCase = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_flax
class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , unittest.TestCase ):
__lowerCAmelCase = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else ()
def lowerCamelCase_ ( self : Optional[int] ):
"""simple docstring"""
UpperCamelCase = FlaxViTModelTester(self )
UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ , hidden_size=37 )
def lowerCamelCase_ ( self : List[Any] ):
"""simple docstring"""
self.config_tester.run_common_tests()
def lowerCamelCase_ ( self : Optional[Any] ):
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCamelCase_ )
def lowerCamelCase_ ( self : Tuple ):
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ )
def lowerCamelCase_ ( self : Any ):
"""simple docstring"""
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase = model_class(lowerCamelCase_ )
UpperCamelCase = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCamelCase = [*signature.parameters.keys()]
UpperCamelCase = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , lowerCamelCase_ )
def lowerCamelCase_ ( self : str ):
"""simple docstring"""
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
UpperCamelCase = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ )
UpperCamelCase = model_class(lowerCamelCase_ )
@jax.jit
def model_jitted(lowerCamelCase_ : Any , **lowerCamelCase_ : Any ):
return model(pixel_values=lowerCamelCase_ , **lowerCamelCase_ )
with self.subTest("""JIT Enabled""" ):
UpperCamelCase = model_jitted(**lowerCamelCase_ ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
UpperCamelCase = model_jitted(**lowerCamelCase_ ).to_tuple()
self.assertEqual(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) )
for jitted_output, output in zip(lowerCamelCase_ , lowerCamelCase_ ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def lowerCamelCase_ ( self : Optional[int] ):
"""simple docstring"""
for model_class_name in self.all_model_classes:
UpperCamelCase = model_class_name.from_pretrained("""google/vit-base-patch16-224""" )
UpperCamelCase = model(np.ones((1, 3, 224, 224) ) )
self.assertIsNotNone(lowerCamelCase_ )
| 343
| 1
|
import math
def lowerCAmelCase__ ( ) -> None:
lowerCAmelCase__ : Optional[Any] = input('Enter message: ' )
lowerCAmelCase__ : Dict = int(input(F'''Enter key [2-{len(SCREAMING_SNAKE_CASE_ ) - 1}]: ''' ) )
lowerCAmelCase__ : Optional[Any] = input('Encryption/Decryption [e/d]: ' )
if mode.lower().startswith('e' ):
lowerCAmelCase__ : Union[str, Any] = encrypt_message(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
elif mode.lower().startswith('d' ):
lowerCAmelCase__ : List[Any] = decrypt_message(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# Append pipe symbol (vertical bar) to identify spaces at the end.
print(F'''Output:\n{text + "|"}''' )
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str:
lowerCAmelCase__ : Optional[int] = [''] * key
for col in range(SCREAMING_SNAKE_CASE_ ):
lowerCAmelCase__ : Optional[int] = col
while pointer < len(SCREAMING_SNAKE_CASE_ ):
cipher_text[col] += message[pointer]
pointer += key
return "".join(SCREAMING_SNAKE_CASE_ )
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str:
lowerCAmelCase__ : str = math.ceil(len(SCREAMING_SNAKE_CASE_ ) / key )
lowerCAmelCase__ : Optional[int] = key
lowerCAmelCase__ : List[str] = (num_cols * num_rows) - len(SCREAMING_SNAKE_CASE_ )
lowerCAmelCase__ : Dict = [''] * num_cols
lowerCAmelCase__ : int = 0
lowerCAmelCase__ : Optional[Any] = 0
for symbol in message:
plain_text[col] += symbol
col += 1
if (
(col == num_cols)
or (col == num_cols - 1)
and (row >= num_rows - num_shaded_boxes)
):
lowerCAmelCase__ : List[Any] = 0
row += 1
return "".join(SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 307
|
import gc
import unittest
import numpy as np
import torch
from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps
from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class A__ ( __magic_name__ , unittest.TestCase ):
lowercase = DanceDiffusionPipeline
lowercase = UNCONDITIONAL_AUDIO_GENERATION_PARAMS
lowercase = PipelineTesterMixin.required_optional_params - {
'callback',
'latents',
'callback_steps',
'output_type',
'num_images_per_prompt',
}
lowercase = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS
lowercase = False
lowercase = False
def _lowerCamelCase ( self : List[str] ):
'''simple docstring'''
torch.manual_seed(0 )
lowerCAmelCase__ : Optional[int] = UNetaDModel(
block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=512 , sample_rate=16_000 , in_channels=2 , out_channels=2 , flip_sin_to_cos=a , use_timestep_embedding=a , time_embedding_type='fourier' , mid_block_type='UNetMidBlock1D' , down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') , up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') , )
lowerCAmelCase__ : Tuple = IPNDMScheduler()
lowerCAmelCase__ : str = {
'unet': unet,
'scheduler': scheduler,
}
return components
def _lowerCamelCase ( self : int , a : Dict , a : List[str]=0 ):
'''simple docstring'''
if str(a ).startswith('mps' ):
lowerCAmelCase__ : Union[str, Any] = torch.manual_seed(a )
else:
lowerCAmelCase__ : Optional[Any] = torch.Generator(device=a ).manual_seed(a )
lowerCAmelCase__ : Optional[Any] = {
'batch_size': 1,
'generator': generator,
'num_inference_steps': 4,
}
return inputs
def _lowerCamelCase ( self : Optional[Any] ):
'''simple docstring'''
lowerCAmelCase__ : Optional[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator
lowerCAmelCase__ : int = self.get_dummy_components()
lowerCAmelCase__ : List[str] = DanceDiffusionPipeline(**a )
lowerCAmelCase__ : Any = pipe.to(a )
pipe.set_progress_bar_config(disable=a )
lowerCAmelCase__ : List[str] = self.get_dummy_inputs(a )
lowerCAmelCase__ : List[Any] = pipe(**a )
lowerCAmelCase__ : List[str] = output.audios
lowerCAmelCase__ : Optional[Any] = audio[0, -3:, -3:]
assert audio.shape == (1, 2, components["unet"].sample_size)
lowerCAmelCase__ : List[Any] = np.array([-0.7_2_6_5, 1.0_0_0_0, -0.8_3_8_8, 0.1_1_7_5, 0.9_4_9_8, -1.0_0_0_0] )
assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
@skip_mps
def _lowerCamelCase ( self : str ):
'''simple docstring'''
return super().test_save_load_local()
@skip_mps
def _lowerCamelCase ( self : Tuple ):
'''simple docstring'''
return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 )
@skip_mps
def _lowerCamelCase ( self : List[str] ):
'''simple docstring'''
return super().test_save_load_optional_components()
@skip_mps
def _lowerCamelCase ( self : Tuple ):
'''simple docstring'''
return super().test_attention_slicing_forward_pass()
def _lowerCamelCase ( self : List[str] ):
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class A__ ( unittest.TestCase ):
def _lowerCamelCase ( self : Dict ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowerCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
lowerCAmelCase__ : Tuple = torch_device
lowerCAmelCase__ : List[str] = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' )
lowerCAmelCase__ : List[str] = pipe.to(a )
pipe.set_progress_bar_config(disable=a )
lowerCAmelCase__ : Optional[int] = torch.manual_seed(0 )
lowerCAmelCase__ : Optional[int] = pipe(generator=a , num_inference_steps=100 , audio_length_in_s=4.0_9_6 )
lowerCAmelCase__ : int = output.audios
lowerCAmelCase__ : List[Any] = audio[0, -3:, -3:]
assert audio.shape == (1, 2, pipe.unet.sample_size)
lowerCAmelCase__ : Dict = np.array([-0.0_1_9_2, -0.0_2_3_1, -0.0_3_1_8, -0.0_0_5_9, 0.0_0_0_2, -0.0_0_2_0] )
assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
def _lowerCamelCase ( self : Tuple ):
'''simple docstring'''
lowerCAmelCase__ : str = torch_device
lowerCAmelCase__ : List[Any] = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' , torch_dtype=torch.floataa )
lowerCAmelCase__ : Optional[int] = pipe.to(a )
pipe.set_progress_bar_config(disable=a )
lowerCAmelCase__ : str = torch.manual_seed(0 )
lowerCAmelCase__ : Optional[int] = pipe(generator=a , num_inference_steps=100 , audio_length_in_s=4.0_9_6 )
lowerCAmelCase__ : str = output.audios
lowerCAmelCase__ : Tuple = audio[0, -3:, -3:]
assert audio.shape == (1, 2, pipe.unet.sample_size)
lowerCAmelCase__ : int = np.array([-0.0_3_6_7, -0.0_4_8_8, -0.0_7_7_1, -0.0_5_2_5, -0.0_4_4_4, -0.0_3_4_1] )
assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
| 307
| 1
|
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_distilbert import DistilBertTokenizer
_snake_case = logging.get_logger(__name__)
_snake_case = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
_snake_case = {
"vocab_file": {
"distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt",
"distilbert-base-uncased-distilled-squad": (
"https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt"
),
"distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt",
"distilbert-base-cased-distilled-squad": (
"https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt"
),
"distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt",
"distilbert-base-multilingual-cased": (
"https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json",
"distilbert-base-uncased-distilled-squad": (
"https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json"
),
"distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json",
"distilbert-base-cased-distilled-squad": (
"https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json"
),
"distilbert-base-german-cased": (
"https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json"
),
"distilbert-base-multilingual-cased": (
"https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json"
),
},
}
_snake_case = {
"distilbert-base-uncased": 512,
"distilbert-base-uncased-distilled-squad": 512,
"distilbert-base-cased": 512,
"distilbert-base-cased-distilled-squad": 512,
"distilbert-base-german-cased": 512,
"distilbert-base-multilingual-cased": 512,
}
_snake_case = {
"distilbert-base-uncased": {"do_lower_case": True},
"distilbert-base-uncased-distilled-squad": {"do_lower_case": True},
"distilbert-base-cased": {"do_lower_case": False},
"distilbert-base-cased-distilled-squad": {"do_lower_case": False},
"distilbert-base-german-cased": {"do_lower_case": False},
"distilbert-base-multilingual-cased": {"do_lower_case": False},
}
class lowercase ( UpperCamelCase__ ):
_a = VOCAB_FILES_NAMES
_a = PRETRAINED_VOCAB_FILES_MAP
_a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_a = PRETRAINED_INIT_CONFIGURATION
_a = ["input_ids", "attention_mask"]
_a = DistilBertTokenizer
def __init__( self , _a=None , _a=None , _a=True , _a="[UNK]" , _a="[SEP]" , _a="[PAD]" , _a="[CLS]" , _a="[MASK]" , _a=True , _a=None , **_a , ) -> Tuple:
super().__init__(
_a , tokenizer_file=_a , do_lower_case=_a , unk_token=_a , sep_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , tokenize_chinese_chars=_a , strip_accents=_a , **_a , )
_A : List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" , _a ) != do_lower_case
or normalizer_state.get("""strip_accents""" , _a ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" , _a ) != tokenize_chinese_chars
):
_A : str = getattr(_a , normalizer_state.pop("""type""" ) )
_A : str = do_lower_case
_A : Any = strip_accents
_A : Optional[int] = tokenize_chinese_chars
_A : int = normalizer_class(**_a )
_A : str = do_lower_case
def a__ ( self , _a , _a=None ) -> Dict:
_A : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def a__ ( self , _a , _a = None ) -> List[int]:
_A : Dict = [self.sep_token_id]
_A : Optional[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def a__ ( self , _a , _a = None ) -> Tuple[str]:
_A : Optional[Any] = self._tokenizer.model.save(_a , name=_a )
return tuple(_a )
| 26
|
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFCamembertModel
@require_tf
@require_sentencepiece
@require_tokenizers
class lowercase ( unittest.TestCase ):
@slow
def a__ ( self ) -> Any:
_A : Tuple = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" )
_A : List[Any] = tf.convert_to_tensor(
[[5, 121, 11, 660, 16, 730, 2_5543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !"
_A : List[str] = model(_a )["""last_hidden_state"""]
_A : Union[str, Any] = tf.TensorShape((1, 10, 768) )
self.assertEqual(output.shape , _a )
# compare the actual values for a slice.
_A : List[Any] = tf.convert_to_tensor(
[[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , )
# camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0')
# camembert.eval()
# expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
| 26
| 1
|
from ...configuration_utils import PretrainedConfig
_A = {
'google/tapas-base-finetuned-sqa': (
'https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json'
),
'google/tapas-base-finetuned-wtq': (
'https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json'
),
'google/tapas-base-finetuned-wikisql-supervised': (
'https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json'
),
'google/tapas-base-finetuned-tabfact': (
'https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json'
),
}
class UpperCAmelCase__ ( __UpperCamelCase ):
"""simple docstring"""
UpperCAmelCase__ : Optional[Any] = "tapas"
def __init__( self , A_=30522 , A_=768 , A_=12 , A_=12 , A_=3072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=1024 , A_=[3, 256, 256, 2, 256, 256, 10] , A_=0.02 , A_=1E-12 , A_=0 , A_=10.0 , A_=0 , A_=1.0 , A_=None , A_=1.0 , A_=False , A_=None , A_=1.0 , A_=1.0 , A_=False , A_=False , A_="ratio" , A_=None , A_=None , A_=64 , A_=32 , A_=False , A_=True , A_=False , A_=False , A_=True , A_=False , A_=None , A_=None , **A_ , ) -> str:
super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase )
# BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes)
__UpperCamelCase =vocab_size
__UpperCamelCase =hidden_size
__UpperCamelCase =num_hidden_layers
__UpperCamelCase =num_attention_heads
__UpperCamelCase =hidden_act
__UpperCamelCase =intermediate_size
__UpperCamelCase =hidden_dropout_prob
__UpperCamelCase =attention_probs_dropout_prob
__UpperCamelCase =max_position_embeddings
__UpperCamelCase =type_vocab_sizes
__UpperCamelCase =initializer_range
__UpperCamelCase =layer_norm_eps
# Fine-tuning task hyperparameters
__UpperCamelCase =positive_label_weight
__UpperCamelCase =num_aggregation_labels
__UpperCamelCase =aggregation_loss_weight
__UpperCamelCase =use_answer_as_supervision
__UpperCamelCase =answer_loss_importance
__UpperCamelCase =use_normalized_answer_loss
__UpperCamelCase =huber_loss_delta
__UpperCamelCase =temperature
__UpperCamelCase =aggregation_temperature
__UpperCamelCase =use_gumbel_for_cells
__UpperCamelCase =use_gumbel_for_aggregation
__UpperCamelCase =average_approximation_function
__UpperCamelCase =cell_selection_preference
__UpperCamelCase =answer_loss_cutoff
__UpperCamelCase =max_num_rows
__UpperCamelCase =max_num_columns
__UpperCamelCase =average_logits_per_cell
__UpperCamelCase =select_one_column
__UpperCamelCase =allow_empty_column_selection
__UpperCamelCase =init_cell_selection_weights_to_zero
__UpperCamelCase =reset_position_index_per_cell
__UpperCamelCase =disable_per_token_loss
# Aggregation hyperparameters
__UpperCamelCase =aggregation_labels
__UpperCamelCase =no_aggregation_label_index
if isinstance(self.aggregation_labels , _lowerCAmelCase ):
__UpperCamelCase ={int(_lowerCAmelCase ): v for k, v in aggregation_labels.items()}
| 370
|
import warnings
from contextlib import contextmanager
from ....processing_utils import ProcessorMixin
class UpperCAmelCase__ ( A_ ):
"""simple docstring"""
UpperCAmelCase__ : Optional[int] = "MCTCTFeatureExtractor"
UpperCAmelCase__ : str = "AutoTokenizer"
def __init__( self , A_ , A_ ) -> Dict:
super().__init__(A_ , A_ )
__UpperCamelCase =self.feature_extractor
__UpperCamelCase =False
def __call__( self , *A_ , **A_ ) -> Optional[Any]:
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor(*A_ , **A_ )
if "raw_speech" in kwargs:
warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' )
__UpperCamelCase =kwargs.pop('raw_speech' )
else:
__UpperCamelCase =kwargs.pop('audio' , A_ )
__UpperCamelCase =kwargs.pop('sampling_rate' , A_ )
__UpperCamelCase =kwargs.pop('text' , A_ )
if len(A_ ) > 0:
__UpperCamelCase =args[0]
__UpperCamelCase =args[1:]
if audio is None and text is None:
raise ValueError('You need to specify either an `audio` or `text` input to process.' )
if audio is not None:
__UpperCamelCase =self.feature_extractor(A_ , *A_ , sampling_rate=A_ , **A_ )
if text is not None:
__UpperCamelCase =self.tokenizer(A_ , **A_ )
if text is None:
return inputs
elif audio is None:
return encodings
else:
__UpperCamelCase =encodings['input_ids']
return inputs
def _a ( self , *A_ , **A_ ) -> str:
return self.tokenizer.batch_decode(*A_ , **A_ )
def _a ( self , *A_ , **A_ ) -> List[Any]:
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor.pad(*A_ , **A_ )
__UpperCamelCase =kwargs.pop('input_features' , A_ )
__UpperCamelCase =kwargs.pop('labels' , A_ )
if len(A_ ) > 0:
__UpperCamelCase =args[0]
__UpperCamelCase =args[1:]
if input_features is not None:
__UpperCamelCase =self.feature_extractor.pad(A_ , *A_ , **A_ )
if labels is not None:
__UpperCamelCase =self.tokenizer.pad(A_ , **A_ )
if labels is None:
return input_features
elif input_features is None:
return labels
else:
__UpperCamelCase =labels['input_ids']
return input_features
def _a ( self , *A_ , **A_ ) -> Optional[int]:
return self.tokenizer.decode(*A_ , **A_ )
@contextmanager
def _a ( self ) -> str:
warnings.warn(
'`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your '
'labels by using the argument `text` of the regular `__call__` method (either in the same call as '
'your audio inputs, or in a separate call.' )
__UpperCamelCase =True
__UpperCamelCase =self.tokenizer
yield
__UpperCamelCase =self.feature_extractor
__UpperCamelCase =False
| 117
| 0
|
from typing import Optional
import torch
import torch.utils.checkpoint
from torch import Tensor, nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_outputs import (
BaseModelOutputWithNoAttention,
BaseModelOutputWithPoolingAndNoAttention,
ImageClassifierOutputWithNoAttention,
)
from ...modeling_utils import PreTrainedModel
from ...utils import logging
from .configuration_regnet import RegNetConfig
_A = logging.get_logger(__name__)
# General docstring
_A = '''RegNetConfig'''
# Base docstring
_A = '''facebook/regnet-y-040'''
_A = [1, 1_088, 7, 7]
# Image classification docstring
_A = '''facebook/regnet-y-040'''
_A = '''tabby, tabby cat'''
_A = [
'''facebook/regnet-y-040''',
# See all regnet models at https://huggingface.co/models?filter=regnet
]
class lowercase_ ( nn.Module ):
def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 3 , __UpperCamelCase = 1 , __UpperCamelCase = 1 , __UpperCamelCase = "relu" , ):
"""simple docstring"""
super().__init__()
UpperCamelCase_ = nn.Convad(
__UpperCamelCase , __UpperCamelCase , kernel_size=__UpperCamelCase , stride=__UpperCamelCase , padding=kernel_size // 2 , groups=__UpperCamelCase , bias=__UpperCamelCase , )
UpperCamelCase_ = nn.BatchNormad(__UpperCamelCase )
UpperCamelCase_ = ACTaFN[activation] if activation is not None else nn.Identity()
def lowerCamelCase_ ( self , __UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ = self.convolution(__UpperCamelCase )
UpperCamelCase_ = self.normalization(__UpperCamelCase )
UpperCamelCase_ = self.activation(__UpperCamelCase )
return hidden_state
class lowercase_ ( nn.Module ):
def __init__( self , __UpperCamelCase ):
"""simple docstring"""
super().__init__()
UpperCamelCase_ = RegNetConvLayer(
config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act )
UpperCamelCase_ = config.num_channels
def lowerCamelCase_ ( self , __UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ = pixel_values.shape[1]
if num_channels != self.num_channels:
raise ValueError(
"""Make sure that the channel dimension of the pixel values match with the one set in the configuration.""" )
UpperCamelCase_ = self.embedder(__UpperCamelCase )
return hidden_state
class lowercase_ ( nn.Module ):
def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 2 ):
"""simple docstring"""
super().__init__()
UpperCamelCase_ = nn.Convad(__UpperCamelCase , __UpperCamelCase , kernel_size=1 , stride=__UpperCamelCase , bias=__UpperCamelCase )
UpperCamelCase_ = nn.BatchNormad(__UpperCamelCase )
def lowerCamelCase_ ( self , __UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ = self.convolution(__UpperCamelCase )
UpperCamelCase_ = self.normalization(__UpperCamelCase )
return hidden_state
class lowercase_ ( nn.Module ):
def __init__( self , __UpperCamelCase , __UpperCamelCase ):
"""simple docstring"""
super().__init__()
UpperCamelCase_ = nn.AdaptiveAvgPoolad((1, 1) )
UpperCamelCase_ = nn.Sequential(
nn.Convad(__UpperCamelCase , __UpperCamelCase , kernel_size=1 ) , nn.ReLU() , nn.Convad(__UpperCamelCase , __UpperCamelCase , kernel_size=1 ) , nn.Sigmoid() , )
def lowerCamelCase_ ( self , __UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ = self.pooler(__UpperCamelCase )
UpperCamelCase_ = self.attention(__UpperCamelCase )
UpperCamelCase_ = hidden_state * attention
return hidden_state
class lowercase_ ( nn.Module ):
def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 1 ):
"""simple docstring"""
super().__init__()
UpperCamelCase_ = in_channels != out_channels or stride != 1
UpperCamelCase_ = max(1 , out_channels // config.groups_width )
UpperCamelCase_ = (
RegNetShortCut(__UpperCamelCase , __UpperCamelCase , stride=__UpperCamelCase ) if should_apply_shortcut else nn.Identity()
)
UpperCamelCase_ = nn.Sequential(
RegNetConvLayer(__UpperCamelCase , __UpperCamelCase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(__UpperCamelCase , __UpperCamelCase , stride=__UpperCamelCase , groups=__UpperCamelCase , activation=config.hidden_act ) , RegNetConvLayer(__UpperCamelCase , __UpperCamelCase , kernel_size=1 , activation=__UpperCamelCase ) , )
UpperCamelCase_ = ACTaFN[config.hidden_act]
def lowerCamelCase_ ( self , __UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ = hidden_state
UpperCamelCase_ = self.layer(__UpperCamelCase )
UpperCamelCase_ = self.shortcut(__UpperCamelCase )
hidden_state += residual
UpperCamelCase_ = self.activation(__UpperCamelCase )
return hidden_state
class lowercase_ ( nn.Module ):
def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 1 ):
"""simple docstring"""
super().__init__()
UpperCamelCase_ = in_channels != out_channels or stride != 1
UpperCamelCase_ = max(1 , out_channels // config.groups_width )
UpperCamelCase_ = (
RegNetShortCut(__UpperCamelCase , __UpperCamelCase , stride=__UpperCamelCase ) if should_apply_shortcut else nn.Identity()
)
UpperCamelCase_ = nn.Sequential(
RegNetConvLayer(__UpperCamelCase , __UpperCamelCase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(__UpperCamelCase , __UpperCamelCase , stride=__UpperCamelCase , groups=__UpperCamelCase , activation=config.hidden_act ) , RegNetSELayer(__UpperCamelCase , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(__UpperCamelCase , __UpperCamelCase , kernel_size=1 , activation=__UpperCamelCase ) , )
UpperCamelCase_ = ACTaFN[config.hidden_act]
def lowerCamelCase_ ( self , __UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ = hidden_state
UpperCamelCase_ = self.layer(__UpperCamelCase )
UpperCamelCase_ = self.shortcut(__UpperCamelCase )
hidden_state += residual
UpperCamelCase_ = self.activation(__UpperCamelCase )
return hidden_state
class lowercase_ ( nn.Module ):
def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 2 , __UpperCamelCase = 2 , ):
"""simple docstring"""
super().__init__()
UpperCamelCase_ = RegNetXLayer if config.layer_type == '''x''' else RegNetYLayer
UpperCamelCase_ = nn.Sequential(
# downsampling is done in the first layer with stride of 2
layer(
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , stride=__UpperCamelCase , ) , *[layer(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) for _ in range(depth - 1 )] , )
def lowerCamelCase_ ( self , __UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ = self.layers(__UpperCamelCase )
return hidden_state
class lowercase_ ( nn.Module ):
def __init__( self , __UpperCamelCase ):
"""simple docstring"""
super().__init__()
UpperCamelCase_ = nn.ModuleList([] )
# based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input
self.stages.append(
RegNetStage(
__UpperCamelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) )
UpperCamelCase_ = zip(config.hidden_sizes , config.hidden_sizes[1:] )
for (in_channels, out_channels), depth in zip(__UpperCamelCase , config.depths[1:] ):
self.stages.append(RegNetStage(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , depth=__UpperCamelCase ) )
def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase = False , __UpperCamelCase = True ):
"""simple docstring"""
UpperCamelCase_ = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
UpperCamelCase_ = hidden_states + (hidden_state,)
UpperCamelCase_ = stage_module(__UpperCamelCase )
if output_hidden_states:
UpperCamelCase_ = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return BaseModelOutputWithNoAttention(last_hidden_state=__UpperCamelCase , hidden_states=__UpperCamelCase )
class lowercase_ ( __lowerCamelCase ):
A__ : Any = RegNetConfig
A__ : Tuple = "regnet"
A__ : int = "pixel_values"
A__ : int = True
def lowerCamelCase_ ( self , __UpperCamelCase ):
"""simple docstring"""
if isinstance(__UpperCamelCase , nn.Convad ):
nn.init.kaiming_normal_(module.weight , mode="""fan_out""" , nonlinearity="""relu""" )
elif isinstance(__UpperCamelCase , (nn.BatchNormad, nn.GroupNorm) ):
nn.init.constant_(module.weight , 1 )
nn.init.constant_(module.bias , 0 )
def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase=False ):
"""simple docstring"""
if isinstance(__UpperCamelCase , __UpperCamelCase ):
UpperCamelCase_ = value
_A = R'''\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n'''
_A = R'''\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n'''
@add_start_docstrings(
"""The bare RegNet model outputting raw features without any specific head on top.""" , __lowerCamelCase , )
# Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet
class lowercase_ ( __lowerCamelCase ):
def __init__( self , __UpperCamelCase ):
"""simple docstring"""
super().__init__(__UpperCamelCase )
UpperCamelCase_ = config
UpperCamelCase_ = RegNetEmbeddings(__UpperCamelCase )
UpperCamelCase_ = RegNetEncoder(__UpperCamelCase )
UpperCamelCase_ = nn.AdaptiveAvgPoolad((1, 1) )
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(__UpperCamelCase )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=__UpperCamelCase , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None ):
"""simple docstring"""
UpperCamelCase_ = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
UpperCamelCase_ = return_dict if return_dict is not None else self.config.use_return_dict
UpperCamelCase_ = self.embedder(__UpperCamelCase )
UpperCamelCase_ = self.encoder(
__UpperCamelCase , output_hidden_states=__UpperCamelCase , return_dict=__UpperCamelCase )
UpperCamelCase_ = encoder_outputs[0]
UpperCamelCase_ = self.pooler(__UpperCamelCase )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=__UpperCamelCase , pooler_output=__UpperCamelCase , hidden_states=encoder_outputs.hidden_states , )
@add_start_docstrings(
"""\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n """ , __lowerCamelCase , )
# Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet
class lowercase_ ( __lowerCamelCase ):
def __init__( self , __UpperCamelCase ):
"""simple docstring"""
super().__init__(__UpperCamelCase )
UpperCamelCase_ = config.num_labels
UpperCamelCase_ = RegNetModel(__UpperCamelCase )
# classification head
UpperCamelCase_ = nn.Sequential(
nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , )
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(__UpperCamelCase )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__UpperCamelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def lowerCamelCase_ ( self , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , ):
"""simple docstring"""
UpperCamelCase_ = return_dict if return_dict is not None else self.config.use_return_dict
UpperCamelCase_ = self.regnet(__UpperCamelCase , output_hidden_states=__UpperCamelCase , return_dict=__UpperCamelCase )
UpperCamelCase_ = outputs.pooler_output if return_dict else outputs[1]
UpperCamelCase_ = self.classifier(__UpperCamelCase )
UpperCamelCase_ = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
UpperCamelCase_ = '''regression'''
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
UpperCamelCase_ = '''single_label_classification'''
else:
UpperCamelCase_ = '''multi_label_classification'''
if self.config.problem_type == "regression":
UpperCamelCase_ = MSELoss()
if self.num_labels == 1:
UpperCamelCase_ = loss_fct(logits.squeeze() , labels.squeeze() )
else:
UpperCamelCase_ = loss_fct(__UpperCamelCase , __UpperCamelCase )
elif self.config.problem_type == "single_label_classification":
UpperCamelCase_ = CrossEntropyLoss()
UpperCamelCase_ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
UpperCamelCase_ = BCEWithLogitsLoss()
UpperCamelCase_ = loss_fct(__UpperCamelCase , __UpperCamelCase )
if not return_dict:
UpperCamelCase_ = (logits,) + outputs[2:]
return (loss,) + output if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=__UpperCamelCase , logits=__UpperCamelCase , hidden_states=outputs.hidden_states )
| 122
|
import random
def lowerCAmelCase_ ( __UpperCAmelCase: list , __UpperCAmelCase: Optional[int] ) -> tuple:
UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : List[Any] = [], [], []
for element in data:
if element < pivot:
less.append(__UpperCAmelCase )
elif element > pivot:
greater.append(__UpperCAmelCase )
else:
equal.append(__UpperCAmelCase )
return less, equal, greater
def lowerCAmelCase_ ( __UpperCAmelCase: list , __UpperCAmelCase: int ) -> List[str]:
# index = len(items) // 2 when trying to find the median
# (value of index when items is sorted)
# invalid input
if index >= len(__UpperCAmelCase ) or index < 0:
return None
UpperCamelCase__ : List[str] = items[random.randint(0 , len(__UpperCAmelCase ) - 1 )]
UpperCamelCase__ : List[Any] = 0
UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : int = _partition(__UpperCAmelCase , __UpperCAmelCase )
UpperCamelCase__ : Union[str, Any] = len(__UpperCAmelCase )
UpperCamelCase__ : Dict = len(__UpperCAmelCase )
# index is the pivot
if m <= index < m + count:
return pivot
# must be in smaller
elif m > index:
return quick_select(__UpperCAmelCase , __UpperCAmelCase )
# must be in larger
else:
return quick_select(__UpperCAmelCase , index - (m + count) )
| 201
| 0
|
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel
from diffusers.utils.testing_utils import (
enable_full_determinism,
load_numpy,
nightly,
require_torch_gpu,
slow,
torch_device,
)
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class a__ ( _lowercase , unittest.TestCase ):
_a : List[Any] = LDMTextToImagePipeline
_a : Tuple = TEXT_TO_IMAGE_PARAMS - {
"""negative_prompt""",
"""negative_prompt_embeds""",
"""cross_attention_kwargs""",
"""prompt_embeds""",
}
_a : Optional[Any] = PipelineTesterMixin.required_optional_params - {
"""num_images_per_prompt""",
"""callback""",
"""callback_steps""",
}
_a : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS
_a : Union[str, Any] = False
def __SCREAMING_SNAKE_CASE( self ):
"""simple docstring"""
torch.manual_seed(0 )
__lowerCAmelCase = UNetaDConditionModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , )
__lowerCAmelCase = DDIMScheduler(
beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , clip_sample=__UpperCamelCase , set_alpha_to_one=__UpperCamelCase , )
torch.manual_seed(0 )
__lowerCAmelCase = AutoencoderKL(
block_out_channels=(3_2, 6_4) , in_channels=3 , out_channels=3 , down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D") , up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D") , latent_channels=4 , )
torch.manual_seed(0 )
__lowerCAmelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , )
__lowerCAmelCase = CLIPTextModel(__UpperCamelCase )
__lowerCAmelCase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
__lowerCAmelCase = {
"unet": unet,
"scheduler": scheduler,
"vqvae": vae,
"bert": text_encoder,
"tokenizer": tokenizer,
}
return components
def __SCREAMING_SNAKE_CASE( self , _A , _A=0 ):
"""simple docstring"""
if str(__UpperCamelCase ).startswith("mps" ):
__lowerCAmelCase = torch.manual_seed(__UpperCamelCase )
else:
__lowerCAmelCase = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase )
__lowerCAmelCase = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"output_type": "numpy",
}
return inputs
def __SCREAMING_SNAKE_CASE( self ):
"""simple docstring"""
__lowerCAmelCase = "cpu" # ensure determinism for the device-dependent torch.Generator
__lowerCAmelCase = self.get_dummy_components()
__lowerCAmelCase = LDMTextToImagePipeline(**__UpperCamelCase )
pipe.to(__UpperCamelCase )
pipe.set_progress_bar_config(disable=__UpperCamelCase )
__lowerCAmelCase = self.get_dummy_inputs(__UpperCamelCase )
__lowerCAmelCase = pipe(**__UpperCamelCase ).images
__lowerCAmelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 1_6, 1_6, 3)
__lowerCAmelCase = np.array([0.61_01, 0.61_56, 0.56_22, 0.48_95, 0.66_61, 0.38_04, 0.57_48, 0.61_36, 0.50_14] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
@slow
@require_torch_gpu
class a__ ( unittest.TestCase ):
def __SCREAMING_SNAKE_CASE( self ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __SCREAMING_SNAKE_CASE( self , _A , _A=torch.floataa , _A=0 ):
"""simple docstring"""
__lowerCAmelCase = torch.manual_seed(__UpperCamelCase )
__lowerCAmelCase = np.random.RandomState(__UpperCamelCase ).standard_normal((1, 4, 3_2, 3_2) )
__lowerCAmelCase = torch.from_numpy(__UpperCamelCase ).to(device=__UpperCamelCase , dtype=__UpperCamelCase )
__lowerCAmelCase = {
"prompt": "A painting of a squirrel eating a burger",
"latents": latents,
"generator": generator,
"num_inference_steps": 3,
"guidance_scale": 6.0,
"output_type": "numpy",
}
return inputs
def __SCREAMING_SNAKE_CASE( self ):
"""simple docstring"""
__lowerCAmelCase = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256" ).to(__UpperCamelCase )
pipe.set_progress_bar_config(disable=__UpperCamelCase )
__lowerCAmelCase = self.get_inputs(__UpperCamelCase )
__lowerCAmelCase = pipe(**__UpperCamelCase ).images
__lowerCAmelCase = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 2_5_6, 2_5_6, 3)
__lowerCAmelCase = np.array([0.5_18_25, 0.5_28_50, 0.5_25_43, 0.5_42_58, 0.5_23_04, 0.5_25_69, 0.5_43_63, 0.5_52_76, 0.5_68_78] )
__lowerCAmelCase = np.abs(expected_slice - image_slice ).max()
assert max_diff < 1E-3
@nightly
@require_torch_gpu
class a__ ( unittest.TestCase ):
def __SCREAMING_SNAKE_CASE( self ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __SCREAMING_SNAKE_CASE( self , _A , _A=torch.floataa , _A=0 ):
"""simple docstring"""
__lowerCAmelCase = torch.manual_seed(__UpperCamelCase )
__lowerCAmelCase = np.random.RandomState(__UpperCamelCase ).standard_normal((1, 4, 3_2, 3_2) )
__lowerCAmelCase = torch.from_numpy(__UpperCamelCase ).to(device=__UpperCamelCase , dtype=__UpperCamelCase )
__lowerCAmelCase = {
"prompt": "A painting of a squirrel eating a burger",
"latents": latents,
"generator": generator,
"num_inference_steps": 5_0,
"guidance_scale": 6.0,
"output_type": "numpy",
}
return inputs
def __SCREAMING_SNAKE_CASE( self ):
"""simple docstring"""
__lowerCAmelCase = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256" ).to(__UpperCamelCase )
pipe.set_progress_bar_config(disable=__UpperCamelCase )
__lowerCAmelCase = self.get_inputs(__UpperCamelCase )
__lowerCAmelCase = pipe(**__UpperCamelCase ).images[0]
__lowerCAmelCase = load_numpy(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy" )
__lowerCAmelCase = np.abs(expected_image - image ).max()
assert max_diff < 1E-3
| 360
|
import tempfile
import unittest
import numpy as np
import transformers
from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel
if is_torch_available():
import torch
class a__ :
def __init__( self , _A , _A=1_4 , _A=7 , _A=True , _A=True , _A=False , _A=True , _A=9_9 , _A=3_2 , _A=4 , _A=4 , _A=4 , _A=3_7 , _A="gelu" , _A=0.1 , _A=0.1 , _A=5_1_2 , _A=0.02 , ):
"""simple docstring"""
__lowerCAmelCase = parent
__lowerCAmelCase = batch_size
__lowerCAmelCase = seq_length
__lowerCAmelCase = is_training
__lowerCAmelCase = use_input_mask
__lowerCAmelCase = use_token_type_ids
__lowerCAmelCase = use_labels
__lowerCAmelCase = vocab_size
__lowerCAmelCase = hidden_size
__lowerCAmelCase = rotary_dim
__lowerCAmelCase = num_hidden_layers
__lowerCAmelCase = num_attention_heads
__lowerCAmelCase = intermediate_size
__lowerCAmelCase = hidden_act
__lowerCAmelCase = hidden_dropout_prob
__lowerCAmelCase = attention_probs_dropout_prob
__lowerCAmelCase = max_position_embeddings
__lowerCAmelCase = initializer_range
__lowerCAmelCase = None
__lowerCAmelCase = vocab_size - 1
__lowerCAmelCase = vocab_size - 1
__lowerCAmelCase = vocab_size - 1
def __SCREAMING_SNAKE_CASE( self ):
"""simple docstring"""
__lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowerCAmelCase = None
if self.use_input_mask:
__lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
__lowerCAmelCase = GPTJConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=_A , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , )
return (config, input_ids, input_mask)
def __SCREAMING_SNAKE_CASE( self ):
"""simple docstring"""
__lowerCAmelCase = self.prepare_config_and_inputs()
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = config_and_inputs
__lowerCAmelCase = {"input_ids": input_ids, "attention_mask": attention_mask}
return config, inputs_dict
def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A ):
"""simple docstring"""
__lowerCAmelCase = 2_0
__lowerCAmelCase = model_class_name(_A )
__lowerCAmelCase = model.init_cache(input_ids.shape[0] , _A )
__lowerCAmelCase = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="i4" )
__lowerCAmelCase = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
__lowerCAmelCase = model(
input_ids[:, :-1] , attention_mask=_A , past_key_values=_A , position_ids=_A , )
__lowerCAmelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="i4" )
__lowerCAmelCase = model(
input_ids[:, -1:] , attention_mask=_A , past_key_values=outputs_cache.past_key_values , position_ids=_A , )
__lowerCAmelCase = model(_A )
__lowerCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=f"""Max diff is {diff}""" )
def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A ):
"""simple docstring"""
__lowerCAmelCase = 2_0
__lowerCAmelCase = model_class_name(_A )
__lowerCAmelCase = jnp.concatenate(
[attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , )
__lowerCAmelCase = model.init_cache(input_ids.shape[0] , _A )
__lowerCAmelCase = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
__lowerCAmelCase = model(
input_ids[:, :-1] , attention_mask=_A , past_key_values=_A , position_ids=_A , )
__lowerCAmelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="i4" )
__lowerCAmelCase = model(
input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=_A , position_ids=_A , )
__lowerCAmelCase = model(_A , attention_mask=_A )
__lowerCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=f"""Max diff is {diff}""" )
@require_flax
class a__ ( snake_case__ , snake_case__ , unittest.TestCase ):
_a : str = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else ()
_a : Any = (FlaxGPTJForCausalLM,) if is_flax_available() else ()
def __SCREAMING_SNAKE_CASE( self ):
"""simple docstring"""
__lowerCAmelCase = FlaxGPTJModelTester(self )
def __SCREAMING_SNAKE_CASE( self ):
"""simple docstring"""
for model_class_name in self.all_model_classes:
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward(_A , _A , _A , _A )
def __SCREAMING_SNAKE_CASE( self ):
"""simple docstring"""
for model_class_name in self.all_model_classes:
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward_with_attn_mask(
_A , _A , _A , _A )
@tooslow
def __SCREAMING_SNAKE_CASE( self ):
"""simple docstring"""
__lowerCAmelCase = GPTaTokenizer.from_pretrained("gpt2" , pad_token="<|endoftext|>" , padding_side="left" )
__lowerCAmelCase = tokenizer(["Hello this is a long string", "Hey"] , return_tensors="np" , padding=_A , truncation=_A )
__lowerCAmelCase = FlaxGPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B" )
__lowerCAmelCase = False
__lowerCAmelCase = model.config.eos_token_id
__lowerCAmelCase = jax.jit(model.generate )
__lowerCAmelCase = jit_generate(
inputs["input_ids"] , attention_mask=inputs["attention_mask"] , pad_token_id=tokenizer.pad_token_id ).sequences
__lowerCAmelCase = tokenizer.batch_decode(_A , skip_special_tokens=_A )
__lowerCAmelCase = [
"Hello this is a long string of text.\n\nI'm trying to get the text of the",
"Hey, I'm a little late to the party. I'm going to",
]
self.assertListEqual(_A , _A )
@is_pt_flax_cross_test
def __SCREAMING_SNAKE_CASE( self ):
"""simple docstring"""
__lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
__lowerCAmelCase = self._prepare_for_class(_A , _A )
__lowerCAmelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
__lowerCAmelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning
__lowerCAmelCase = getattr(_A , _A )
__lowerCAmelCase , __lowerCAmelCase = pt_inputs["input_ids"].shape
__lowerCAmelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(_A ):
__lowerCAmelCase = 0
__lowerCAmelCase = 1
__lowerCAmelCase = 0
__lowerCAmelCase = 1
__lowerCAmelCase = pt_model_class(_A ).eval()
__lowerCAmelCase = model_class(_A , dtype=jnp.floataa )
__lowerCAmelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , _A )
__lowerCAmelCase = fx_state
with torch.no_grad():
__lowerCAmelCase = pt_model(**_A ).to_tuple()
__lowerCAmelCase = fx_model(**_A ).to_tuple()
self.assertEqual(len(_A ) , len(_A ) , "Output lengths differ between Flax and PyTorch" )
for fx_output, pt_output in zip(_A , _A ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(_A )
__lowerCAmelCase = model_class.from_pretrained(_A , from_pt=_A )
__lowerCAmelCase = fx_model_loaded(**_A ).to_tuple()
self.assertEqual(
len(_A ) , len(_A ) , "Output lengths differ between Flax and PyTorch" )
for fx_output_loaded, pt_output in zip(_A , _A ):
self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 )
@is_pt_flax_cross_test
def __SCREAMING_SNAKE_CASE( self ):
"""simple docstring"""
__lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
__lowerCAmelCase = self._prepare_for_class(_A , _A )
__lowerCAmelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
__lowerCAmelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning
__lowerCAmelCase = getattr(_A , _A )
__lowerCAmelCase = pt_model_class(_A ).eval()
__lowerCAmelCase = model_class(_A , dtype=jnp.floataa )
__lowerCAmelCase = load_flax_weights_in_pytorch_model(_A , fx_model.params )
__lowerCAmelCase , __lowerCAmelCase = pt_inputs["input_ids"].shape
__lowerCAmelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(_A ):
__lowerCAmelCase = 0
__lowerCAmelCase = 1
__lowerCAmelCase = 0
__lowerCAmelCase = 1
# make sure weights are tied in PyTorch
pt_model.tie_weights()
with torch.no_grad():
__lowerCAmelCase = pt_model(**_A ).to_tuple()
__lowerCAmelCase = fx_model(**_A ).to_tuple()
self.assertEqual(len(_A ) , len(_A ) , "Output lengths differ between Flax and PyTorch" )
for fx_output, pt_output in zip(_A , _A ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(_A )
__lowerCAmelCase = pt_model_class.from_pretrained(_A , from_flax=_A )
with torch.no_grad():
__lowerCAmelCase = pt_model_loaded(**_A ).to_tuple()
self.assertEqual(
len(_A ) , len(_A ) , "Output lengths differ between Flax and PyTorch" )
for fx_output, pt_output in zip(_A , _A ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 )
@tooslow
def __SCREAMING_SNAKE_CASE( self ):
"""simple docstring"""
for model_class_name in self.all_model_classes:
__lowerCAmelCase = model_class_name.from_pretrained("EleutherAI/gpt-j-6B" )
__lowerCAmelCase = model(np.ones((1, 1) ) )
self.assertIsNotNone(_A )
| 102
| 0
|
from __future__ import annotations
from typing import Any
def __lowercase ( _UpperCamelCase ) ->int:
"""simple docstring"""
if not postfix_notation:
return 0
lowercase : List[str] = {'''+''', '''-''', '''*''', '''/'''}
lowercase : list[Any] = []
for token in postfix_notation:
if token in operations:
lowercase , lowercase : Union[str, Any] = stack.pop(), stack.pop()
if token == "+":
stack.append(a + b )
elif token == "-":
stack.append(a - b )
elif token == "*":
stack.append(a * b )
else:
if a * b < 0 and a % b != 0:
stack.append(a // b + 1 )
else:
stack.append(a // b )
else:
stack.append(int(_UpperCamelCase ) )
return stack.pop()
if __name__ == "__main__":
import doctest
doctest.testmod()
| 337
|
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__a = logging.get_logger(__name__)
__a = {
'''hustvl/yolos-small''': '''https://huggingface.co/hustvl/yolos-small/resolve/main/config.json''',
# See all YOLOS models at https://huggingface.co/models?filter=yolos
}
class __SCREAMING_SNAKE_CASE ( A__ ):
A : Any = 'yolos'
def __init__( self , SCREAMING_SNAKE_CASE__=768 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=3072 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1E-12 , SCREAMING_SNAKE_CASE__=[512, 864] , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=100 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=5 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=5 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=0.1 , **SCREAMING_SNAKE_CASE__ , ):
super().__init__(**SCREAMING_SNAKE_CASE__ )
lowercase : Union[str, Any] = hidden_size
lowercase : int = num_hidden_layers
lowercase : str = num_attention_heads
lowercase : str = intermediate_size
lowercase : Dict = hidden_act
lowercase : int = hidden_dropout_prob
lowercase : Optional[Any] = attention_probs_dropout_prob
lowercase : List[Any] = initializer_range
lowercase : Optional[int] = layer_norm_eps
lowercase : str = image_size
lowercase : Dict = patch_size
lowercase : str = num_channels
lowercase : Optional[int] = qkv_bias
lowercase : List[str] = num_detection_tokens
lowercase : List[str] = use_mid_position_embeddings
lowercase : Dict = auxiliary_loss
# Hungarian matcher
lowercase : Optional[Any] = class_cost
lowercase : Any = bbox_cost
lowercase : int = giou_cost
# Loss coefficients
lowercase : Dict = bbox_loss_coefficient
lowercase : Optional[Any] = giou_loss_coefficient
lowercase : Tuple = eos_coefficient
class __SCREAMING_SNAKE_CASE ( A__ ):
A : List[str] = version.parse('1.11' )
@property
def __lowerCamelCase ( self ):
return OrderedDict(
[
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
] )
@property
def __lowerCamelCase ( self ):
return 1E-4
@property
def __lowerCamelCase ( self ):
return 12
| 337
| 1
|
"""simple docstring"""
import math
import os
from copy import deepcopy
import datasets
import evaluate
import torch
import transformers
from datasets import load_dataset
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from accelerate import Accelerator
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import is_tpu_available, set_seed
UpperCAmelCase__ = 'true'
def _UpperCAmelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : str=82 , __lowerCamelCase : str=16 ) -> List[str]:
set_seed(42 )
_snake_case = RegressionModel()
_snake_case = deepcopy(__lowerCamelCase )
_snake_case = RegressionDataset(length=__lowerCamelCase )
_snake_case = DataLoader(__lowerCamelCase , batch_size=__lowerCamelCase )
model.to(accelerator.device )
_snake_case , _snake_case = accelerator.prepare(__lowerCamelCase , __lowerCamelCase )
return model, ddp_model, dataloader
def _UpperCAmelCase ( __lowerCamelCase : Accelerator , __lowerCamelCase : Optional[Any]=False ) -> Union[str, Any]:
_snake_case = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''' )
_snake_case = load_dataset('''glue''' , '''mrpc''' , split='''validation''' )
def tokenize_function(__lowerCamelCase : Union[str, Any] ):
_snake_case = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowerCamelCase , max_length=__lowerCamelCase )
return outputs
with accelerator.main_process_first():
_snake_case = dataset.map(
__lowerCamelCase , batched=__lowerCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , )
_snake_case = tokenized_datasets.rename_column('''label''' , '''labels''' )
def collate_fn(__lowerCamelCase : str ):
if use_longest:
return tokenizer.pad(__lowerCamelCase , padding='''longest''' , return_tensors='''pt''' )
return tokenizer.pad(__lowerCamelCase , padding='''max_length''' , max_length=1_28 , return_tensors='''pt''' )
return DataLoader(__lowerCamelCase , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=16 )
def _UpperCAmelCase ( __lowerCamelCase : Any , __lowerCamelCase : Tuple ) -> str:
_snake_case = Accelerator(dispatch_batches=__lowerCamelCase , split_batches=__lowerCamelCase )
_snake_case = get_dataloader(__lowerCamelCase , not dispatch_batches )
_snake_case = AutoModelForSequenceClassification.from_pretrained(
'''hf-internal-testing/mrpc-bert-base-cased''' , return_dict=__lowerCamelCase )
_snake_case , _snake_case = accelerator.prepare(__lowerCamelCase , __lowerCamelCase )
return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator
def _UpperCAmelCase ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : List[str] ) -> str:
_snake_case = []
for batch in dataloader:
_snake_case , _snake_case = batch.values()
with torch.no_grad():
_snake_case = model(__lowerCamelCase )
_snake_case , _snake_case = accelerator.gather_for_metrics((logit, target) )
logits_and_targets.append((logit, target) )
_snake_case , _snake_case = [], []
for logit, targ in logits_and_targets:
logits.append(__lowerCamelCase )
targs.append(__lowerCamelCase )
_snake_case , _snake_case = torch.cat(__lowerCamelCase ), torch.cat(__lowerCamelCase )
return logits, targs
def _UpperCAmelCase ( __lowerCamelCase : Accelerator , __lowerCamelCase : Dict=82 , __lowerCamelCase : List[Any]=False , __lowerCamelCase : List[str]=False , __lowerCamelCase : List[str]=16 ) -> List[Any]:
_snake_case , _snake_case , _snake_case = get_basic_setup(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
_snake_case , _snake_case = generate_predictions(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
assert (
len(__lowerCamelCase ) == num_samples
), f'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(__lowerCamelCase )}'''
def _UpperCAmelCase ( __lowerCamelCase : bool = False , __lowerCamelCase : bool = False ) -> Optional[int]:
_snake_case = evaluate.load('''glue''' , '''mrpc''' )
_snake_case , _snake_case = get_mrpc_setup(__lowerCamelCase , __lowerCamelCase )
# First do baseline
_snake_case , _snake_case , _snake_case = setup['''no''']
model.to(__lowerCamelCase )
model.eval()
for batch in dataloader:
batch.to(__lowerCamelCase )
with torch.inference_mode():
_snake_case = model(**__lowerCamelCase )
_snake_case = outputs.logits.argmax(dim=-1 )
metric.add_batch(predictions=__lowerCamelCase , references=batch['''labels'''] )
_snake_case = metric.compute()
# Then do distributed
_snake_case , _snake_case , _snake_case = setup['''ddp''']
model.eval()
for batch in dataloader:
with torch.inference_mode():
_snake_case = model(**__lowerCamelCase )
_snake_case = outputs.logits.argmax(dim=-1 )
_snake_case = batch['''labels''']
_snake_case , _snake_case = accelerator.gather_for_metrics((preds, references) )
metric.add_batch(predictions=__lowerCamelCase , references=__lowerCamelCase )
_snake_case = metric.compute()
for key in "accuracy f1".split():
assert math.isclose(
baseline[key] , distributed[key] ), f'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n'''
def _UpperCAmelCase ( ) -> Union[str, Any]:
_snake_case = Accelerator(split_batches=__lowerCamelCase , dispatch_batches=__lowerCamelCase )
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_warning()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# These are a bit slower so they should only be ran on the GPU or TPU
if torch.cuda.is_available() or is_tpu_available():
if accelerator.is_local_main_process:
print('''**Testing gather_for_metrics**''' )
for split_batches in [True, False]:
for dispatch_batches in [True, False]:
if accelerator.is_local_main_process:
print(f'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' )
test_mrpc(__lowerCamelCase , __lowerCamelCase )
accelerator.state._reset_state()
if accelerator.is_local_main_process:
print('''**Test torch metrics**''' )
for split_batches in [True, False]:
for dispatch_batches in [True, False]:
_snake_case = Accelerator(split_batches=__lowerCamelCase , dispatch_batches=__lowerCamelCase )
if accelerator.is_local_main_process:
print(f'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' )
test_torch_metrics(__lowerCamelCase , 99 )
accelerator.state._reset_state()
if accelerator.is_local_main_process:
print('''**Test last batch is not dropped when perfectly divisible**''' )
_snake_case = Accelerator()
test_torch_metrics(__lowerCamelCase , 5_12 )
accelerator.state._reset_state()
def _UpperCAmelCase ( __lowerCamelCase : List[Any] ) -> Optional[int]:
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 40
|
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
UpperCAmelCase__ = logging.get_logger(__name__)
UpperCAmelCase__ = {
'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/config.json',
'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/config.json',
'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/config.json',
'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/config.json',
'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json',
'roberta-large-openai-detector': 'https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json',
}
class lowerCAmelCase__ ( A_ ):
__a = """roberta"""
def __init__( self : str , _lowerCamelCase : Dict=50265 , _lowerCamelCase : Tuple=768 , _lowerCamelCase : List[Any]=12 , _lowerCamelCase : Any=12 , _lowerCamelCase : Optional[int]=3072 , _lowerCamelCase : Union[str, Any]="gelu" , _lowerCamelCase : Tuple=0.1 , _lowerCamelCase : Tuple=0.1 , _lowerCamelCase : Dict=512 , _lowerCamelCase : int=2 , _lowerCamelCase : str=0.0_2 , _lowerCamelCase : List[Any]=1e-12 , _lowerCamelCase : int=1 , _lowerCamelCase : int=0 , _lowerCamelCase : Union[str, Any]=2 , _lowerCamelCase : List[Any]="absolute" , _lowerCamelCase : Union[str, Any]=True , _lowerCamelCase : str=None , **_lowerCamelCase : Union[str, Any] , ):
super().__init__(pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , **_lowerCamelCase )
_snake_case = vocab_size
_snake_case = hidden_size
_snake_case = num_hidden_layers
_snake_case = num_attention_heads
_snake_case = hidden_act
_snake_case = intermediate_size
_snake_case = hidden_dropout_prob
_snake_case = attention_probs_dropout_prob
_snake_case = max_position_embeddings
_snake_case = type_vocab_size
_snake_case = initializer_range
_snake_case = layer_norm_eps
_snake_case = position_embedding_type
_snake_case = use_cache
_snake_case = classifier_dropout
class lowerCAmelCase__ ( A_ ):
@property
def lowercase ( self : Dict ):
if self.task == "multiple-choice":
_snake_case = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
_snake_case = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
] )
| 40
| 1
|
from ..utils import (
OptionalDependencyNotAvailable,
is_flax_available,
is_scipy_available,
is_torch_available,
is_torchsde_available,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_pt_objects import * # noqa F403
else:
from .scheduling_consistency_models import CMStochasticIterativeScheduler
from .scheduling_ddim import DDIMScheduler
from .scheduling_ddim_inverse import DDIMInverseScheduler
from .scheduling_ddim_parallel import DDIMParallelScheduler
from .scheduling_ddpm import DDPMScheduler
from .scheduling_ddpm_parallel import DDPMParallelScheduler
from .scheduling_deis_multistep import DEISMultistepScheduler
from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler
from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler
from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler
from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler
from .scheduling_euler_discrete import EulerDiscreteScheduler
from .scheduling_heun_discrete import HeunDiscreteScheduler
from .scheduling_ipndm import IPNDMScheduler
from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler
from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler
from .scheduling_karras_ve import KarrasVeScheduler
from .scheduling_pndm import PNDMScheduler
from .scheduling_repaint import RePaintScheduler
from .scheduling_sde_ve import ScoreSdeVeScheduler
from .scheduling_sde_vp import ScoreSdeVpScheduler
from .scheduling_unclip import UnCLIPScheduler
from .scheduling_unipc_multistep import UniPCMultistepScheduler
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
from .scheduling_vq_diffusion import VQDiffusionScheduler
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_flax_objects import * # noqa F403
else:
from .scheduling_ddim_flax import FlaxDDIMScheduler
from .scheduling_ddpm_flax import FlaxDDPMScheduler
from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler
from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler
from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler
from .scheduling_pndm_flax import FlaxPNDMScheduler
from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler
from .scheduling_utils_flax import (
FlaxKarrasDiffusionSchedulers,
FlaxSchedulerMixin,
FlaxSchedulerOutput,
broadcast_to_shape_from_left,
)
try:
if not (is_torch_available() and is_scipy_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_torch_and_scipy_objects import * # noqa F403
else:
from .scheduling_lms_discrete import LMSDiscreteScheduler
try:
if not (is_torch_available() and is_torchsde_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403
else:
from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
| 11
|
import pickle
import numpy as np
from matplotlib import pyplot as plt
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=0.2 , __lowerCamelCase=0.2) -> str:
_A : Optional[int] = bp_numa
_A : Dict = bp_numa
_A : Tuple = bp_numa
_A : List[str] = conva_get[:2]
_A : Tuple = conva_get[2]
_A : Optional[int] = size_pa
_A : Optional[Any] = rate_w
_A : Optional[Any] = rate_t
_A : Union[str, Any] = [
np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0]) + 0.5)
for i in range(self.conva[1])
]
_A : int = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa) + 0.5)
_A : Dict = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa) + 0.5)
_A : Any = -2 * np.random.rand(self.conva[1]) + 1
_A : Optional[int] = -2 * np.random.rand(self.num_bpa) + 1
_A : Optional[Any] = -2 * np.random.rand(self.num_bpa) + 1
def _lowerCamelCase ( self , __lowerCamelCase) -> Dict:
# save model dict with pickle
_A : Dict = {
"num_bp1": self.num_bpa,
"num_bp2": self.num_bpa,
"num_bp3": self.num_bpa,
"conv1": self.conva,
"step_conv1": self.step_conva,
"size_pooling1": self.size_poolinga,
"rate_weight": self.rate_weight,
"rate_thre": self.rate_thre,
"w_conv1": self.w_conva,
"wkj": self.wkj,
"vji": self.vji,
"thre_conv1": self.thre_conva,
"thre_bp2": self.thre_bpa,
"thre_bp3": self.thre_bpa,
}
with open(__lowerCamelCase , "wb") as f:
pickle.dump(__lowerCamelCase , __lowerCamelCase)
print(F"Model saved: {save_path}")
@classmethod
def _lowerCamelCase ( cls , __lowerCamelCase) -> Any:
# read saved model
with open(__lowerCamelCase , "rb") as f:
_A : Any = pickle.load(__lowerCamelCase) # noqa: S301
_A : Optional[int] = model_dic.get("conv1")
conv_get.append(model_dic.get("step_conv1"))
_A : str = model_dic.get("size_pooling1")
_A : List[str] = model_dic.get("num_bp1")
_A : Union[str, Any] = model_dic.get("num_bp2")
_A : List[Any] = model_dic.get("num_bp3")
_A : Dict = model_dic.get("rate_weight")
_A : List[Any] = model_dic.get("rate_thre")
# create model instance
_A : str = CNN(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase)
# modify model parameter
_A : List[Any] = model_dic.get("w_conv1")
_A : Union[str, Any] = model_dic.get("wkj")
_A : str = model_dic.get("vji")
_A : List[str] = model_dic.get("thre_conv1")
_A : Optional[Any] = model_dic.get("thre_bp2")
_A : Dict = model_dic.get("thre_bp3")
return conv_ins
def _lowerCamelCase ( self , __lowerCamelCase) -> Dict:
return 1 / (1 + np.exp(-1 * x))
def _lowerCamelCase ( self , __lowerCamelCase) -> Union[str, Any]:
return round(__lowerCamelCase , 3)
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> Union[str, Any]:
# convolution process
_A : Tuple = convs[0]
_A : Union[str, Any] = convs[1]
_A : List[Any] = np.shape(__lowerCamelCase)[0]
# get the data slice of original image data, data_focus
_A : Tuple = []
for i_focus in range(0 , size_data - size_conv + 1 , __lowerCamelCase):
for j_focus in range(0 , size_data - size_conv + 1 , __lowerCamelCase):
_A : Optional[int] = data[
i_focus : i_focus + size_conv, j_focus : j_focus + size_conv
]
data_focus.append(__lowerCamelCase)
# calculate the feature map of every single kernel, and saved as list of matrix
_A : Optional[Any] = []
_A : Optional[int] = int((size_data - size_conv) / conv_step + 1)
for i_map in range(__lowerCamelCase):
_A : Optional[int] = []
for i_focus in range(len(__lowerCamelCase)):
_A : Any = (
np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map]))
- thre_convs[i_map]
)
featuremap.append(self.sig(__lowerCamelCase))
_A : Optional[Any] = np.asmatrix(__lowerCamelCase).reshape(
__lowerCamelCase , __lowerCamelCase)
data_featuremap.append(__lowerCamelCase)
# expanding the data slice to One dimenssion
_A : Optional[Any] = []
for each_focus in data_focus:
focusa_list.extend(self.Expand_Mat(__lowerCamelCase))
_A : Dict = np.asarray(__lowerCamelCase)
return focus_list, data_featuremap
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase="average_pool") -> Dict:
# pooling process
_A : Optional[Any] = len(featuremaps[0])
_A : str = int(size_map / size_pooling)
_A : Optional[int] = []
for i_map in range(len(__lowerCamelCase)):
_A : int = featuremaps[i_map]
_A : Optional[int] = []
for i_focus in range(0 , __lowerCamelCase , __lowerCamelCase):
for j_focus in range(0 , __lowerCamelCase , __lowerCamelCase):
_A : str = feature_map[
i_focus : i_focus + size_pooling,
j_focus : j_focus + size_pooling,
]
if pooling_type == "average_pool":
# average pooling
map_pooled.append(np.average(__lowerCamelCase))
elif pooling_type == "max_pooling":
# max pooling
map_pooled.append(np.max(__lowerCamelCase))
_A : Tuple = np.asmatrix(__lowerCamelCase).reshape(__lowerCamelCase , __lowerCamelCase)
featuremap_pooled.append(__lowerCamelCase)
return featuremap_pooled
def _lowerCamelCase ( self , __lowerCamelCase) -> Tuple:
# expanding three dimension data to one dimension list
_A : Tuple = []
for i in range(len(__lowerCamelCase)):
_A : Union[str, Any] = np.shape(data[i])
_A : List[Any] = data[i].reshape(1 , shapes[0] * shapes[1])
_A : Optional[Any] = data_listed.getA().tolist()[0]
data_expanded.extend(__lowerCamelCase)
_A : Optional[Any] = np.asarray(__lowerCamelCase)
return data_expanded
def _lowerCamelCase ( self , __lowerCamelCase) -> Union[str, Any]:
# expanding matrix to one dimension list
_A : List[Any] = np.asarray(__lowerCamelCase)
_A : Union[str, Any] = np.shape(__lowerCamelCase)
_A : Dict = data_mat.reshape(1 , shapes[0] * shapes[1])
return data_expanded
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> Optional[int]:
_A : Dict = []
_A : Any = 0
for i_map in range(__lowerCamelCase):
_A : Union[str, Any] = np.ones((size_map, size_map))
for i in range(0 , __lowerCamelCase , __lowerCamelCase):
for j in range(0 , __lowerCamelCase , __lowerCamelCase):
_A : List[Any] = pd_pool[
i_pool
]
_A : Tuple = i_pool + 1
_A : Optional[Any] = np.multiply(
__lowerCamelCase , np.multiply(out_map[i_map] , (1 - out_map[i_map])))
pd_all.append(__lowerCamelCase)
return pd_all
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=bool) -> Union[str, Any]:
# model traning
print("----------------------Start Training-------------------------")
print((" - - Shape: Train_Data ", np.shape(__lowerCamelCase)))
print((" - - Shape: Teach_Data ", np.shape(__lowerCamelCase)))
_A : Tuple = 0
_A : Dict = []
_A : Optional[Any] = 1_0_0_0_0
while rp < n_repeat and mse >= error_accuracy:
_A : Union[str, Any] = 0
print(F"-------------Learning Time {rp}--------------")
for p in range(len(__lowerCamelCase)):
# print('------------Learning Image: %d--------------'%p)
_A : str = np.asmatrix(datas_train[p])
_A : Union[str, Any] = np.asarray(datas_teach[p])
_A , _A : Any = self.convolute(
__lowerCamelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , )
_A : Optional[Any] = self.pooling(__lowerCamelCase , self.size_poolinga)
_A : Optional[int] = np.shape(__lowerCamelCase)
_A : List[str] = self._expand(__lowerCamelCase)
_A : Tuple = data_bp_input
_A : int = np.dot(__lowerCamelCase , self.vji.T) - self.thre_bpa
_A : List[Any] = self.sig(__lowerCamelCase)
_A : Union[str, Any] = np.dot(__lowerCamelCase , self.wkj.T) - self.thre_bpa
_A : List[str] = self.sig(__lowerCamelCase)
# --------------Model Leaning ------------------------
# calculate error and gradient---------------
_A : int = np.multiply(
(data_teach - bp_outa) , np.multiply(__lowerCamelCase , (1 - bp_outa)))
_A : Optional[Any] = np.multiply(
np.dot(__lowerCamelCase , self.wkj) , np.multiply(__lowerCamelCase , (1 - bp_outa)))
_A : Union[str, Any] = np.dot(__lowerCamelCase , self.vji)
_A : Any = pd_i_all / (self.size_poolinga * self.size_poolinga)
_A : Dict = pd_conva_pooled.T.getA().tolist()
_A : Optional[Any] = self._calculate_gradient_from_pool(
__lowerCamelCase , __lowerCamelCase , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , )
# weight and threshold learning process---------
# convolution layer
for k_conv in range(self.conva[1]):
_A : int = self._expand_mat(pd_conva_all[k_conv])
_A : Optional[int] = self.rate_weight * np.dot(__lowerCamelCase , __lowerCamelCase)
_A : List[Any] = self.w_conva[k_conv] + delta_w.reshape(
(self.conva[0], self.conva[0]))
_A : Any = (
self.thre_conva[k_conv]
- np.sum(pd_conva_all[k_conv]) * self.rate_thre
)
# all connected layer
_A : Tuple = self.wkj + pd_k_all.T * bp_outa * self.rate_weight
_A : int = self.vji + pd_j_all.T * bp_outa * self.rate_weight
_A : Tuple = self.thre_bpa - pd_k_all * self.rate_thre
_A : List[str] = self.thre_bpa - pd_j_all * self.rate_thre
# calculate the sum error of all single image
_A : Optional[int] = np.sum(abs(data_teach - bp_outa))
error_count += errors
# print(' ----Teach ',data_teach)
# print(' ----BP_output ',bp_out3)
_A : Any = rp + 1
_A : Dict = error_count / patterns
all_mse.append(__lowerCamelCase)
def draw_error():
_A : Optional[int] = [error_accuracy for i in range(int(n_repeat * 1.2))]
plt.plot(__lowerCamelCase , "+-")
plt.plot(__lowerCamelCase , "r--")
plt.xlabel("Learning Times")
plt.ylabel("All_mse")
plt.grid(__lowerCamelCase , alpha=0.5)
plt.show()
print("------------------Training Complished---------------------")
print((" - - Training epoch: ", rp, F" - - Mse: {mse:.6f}"))
if draw_e:
draw_error()
return mse
def _lowerCamelCase ( self , __lowerCamelCase) -> int:
# model predict
_A : Union[str, Any] = []
print("-------------------Start Testing-------------------------")
print((" - - Shape: Test_Data ", np.shape(__lowerCamelCase)))
for p in range(len(__lowerCamelCase)):
_A : int = np.asmatrix(datas_test[p])
_A , _A : List[Any] = self.convolute(
__lowerCamelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , )
_A : str = self.pooling(__lowerCamelCase , self.size_poolinga)
_A : Optional[int] = self._expand(__lowerCamelCase)
_A : List[Any] = data_bp_input
_A : Optional[int] = bp_outa * self.vji.T - self.thre_bpa
_A : int = self.sig(__lowerCamelCase)
_A : int = bp_outa * self.wkj.T - self.thre_bpa
_A : Optional[int] = self.sig(__lowerCamelCase)
produce_out.extend(bp_outa.getA().tolist())
_A : int = [list(map(self.do_round , __lowerCamelCase)) for each in produce_out]
return np.asarray(__lowerCamelCase)
def _lowerCamelCase ( self , __lowerCamelCase) -> Dict:
# return the data of image after convoluting process so we can check it out
_A : Optional[int] = np.asmatrix(__lowerCamelCase)
_A , _A : Tuple = self.convolute(
__lowerCamelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , )
_A : Union[str, Any] = self.pooling(__lowerCamelCase , self.size_poolinga)
return data_conveda, data_pooleda
if __name__ == "__main__":
pass
| 11
| 1
|
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import SeqaSeqTrainer
from seqaseq_training_args import SeqaSeqTrainingArguments
import transformers
from transformers import (
AutoConfig,
AutoModelForSeqaSeqLM,
AutoTokenizer,
HfArgumentParser,
MBartTokenizer,
MBartTokenizerFast,
set_seed,
)
from transformers.trainer_utils import EvaluationStrategy, is_main_process
from transformers.training_args import ParallelMode
from utils import (
SeqaSeqDataCollator,
SeqaSeqDataset,
assert_all_frozen,
build_compute_metrics_fn,
check_output_dir,
freeze_embeds,
freeze_params,
lmap,
save_json,
use_task_specific_params,
write_txt_file,
)
__A = logging.getLogger(__name__)
@dataclass
class lowercase_ :
UpperCamelCase_ : str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
UpperCamelCase_ : Optional[str] = field(
default=__lowercase , metadata={"help": "Pretrained config name or path if not the same as model_name"} )
UpperCamelCase_ : Optional[str] = field(
default=__lowercase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
UpperCamelCase_ : Optional[str] = field(
default=__lowercase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
UpperCamelCase_ : bool = field(default=__lowercase , metadata={"help": "Whether tp freeze the encoder."} )
UpperCamelCase_ : bool = field(default=__lowercase , metadata={"help": "Whether to freeze the embeddings."} )
@dataclass
class lowercase_ :
UpperCamelCase_ : str = field(
metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} )
UpperCamelCase_ : Optional[str] = field(
default="summarization" , metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"} , )
UpperCamelCase_ : Optional[int] = field(
default=1_0_2_4 , metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
UpperCamelCase_ : Optional[int] = field(
default=1_2_8 , metadata={
"help": (
"The maximum total sequence length for target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
UpperCamelCase_ : Optional[int] = field(
default=1_4_2 , metadata={
"help": (
"The maximum total sequence length for validation target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded. "
"This argument is also used to override the ``max_length`` param of ``model.generate``, which is used "
"during ``evaluate`` and ``predict``."
)
} , )
UpperCamelCase_ : Optional[int] = field(
default=1_4_2 , metadata={
"help": (
"The maximum total sequence length for test target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
UpperCamelCase_ : Optional[int] = field(default=-1 , metadata={"help": "# training examples. -1 means use all."} )
UpperCamelCase_ : Optional[int] = field(default=-1 , metadata={"help": "# validation examples. -1 means use all."} )
UpperCamelCase_ : Optional[int] = field(default=-1 , metadata={"help": "# test examples. -1 means use all."} )
UpperCamelCase_ : Optional[str] = field(default=__lowercase , metadata={"help": "Source language id for translation."} )
UpperCamelCase_ : Optional[str] = field(default=__lowercase , metadata={"help": "Target language id for translation."} )
UpperCamelCase_ : Optional[int] = field(default=__lowercase , metadata={"help": "# num_beams to use for evaluation."} )
UpperCamelCase_ : bool = field(
default=__lowercase , metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."} , )
def snake_case_(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> List[Any]:
"""simple docstring"""
logger.info(F"""***** {split} metrics *****""" )
for key in sorted(metrics.keys() ):
logger.info(F""" {key} = {metrics[key]}""" )
save_json(_UpperCamelCase , os.path.join(_UpperCamelCase , F"""{split}_results.json""" ) )
def snake_case_() -> List[Any]:
"""simple docstring"""
_snake_case = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
_snake_case, _snake_case, _snake_case = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
_snake_case, _snake_case, _snake_case = parser.parse_args_into_dataclasses()
check_output_dir(_UpperCamelCase )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
logger.info('''Training/evaluation parameters %s''' , _UpperCamelCase )
# Set seed
set_seed(training_args.seed )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
_snake_case = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
_snake_case = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''')
for p in extra_model_params:
if getattr(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ):
assert hasattr(_UpperCamelCase , _UpperCamelCase ), F"""({config.__class__.__name__}) doesn't have a `{p}` attribute"""
setattr(_UpperCamelCase , _UpperCamelCase , getattr(_UpperCamelCase , _UpperCamelCase ) )
_snake_case = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
_snake_case = AutoModelForSeqaSeqLM.from_pretrained(
model_args.model_name_or_path , from_tf='''.ckpt''' in model_args.model_name_or_path , config=_UpperCamelCase , cache_dir=model_args.cache_dir , )
# use task specific params
use_task_specific_params(_UpperCamelCase , data_args.task )
# set num_beams for evaluation
if data_args.eval_beams is None:
_snake_case = model.config.num_beams
# set decoder_start_token_id for MBart
if model.config.decoder_start_token_id is None and isinstance(_UpperCamelCase , (MBartTokenizer, MBartTokenizerFast) ):
assert (
data_args.tgt_lang is not None and data_args.src_lang is not None
), "mBart requires --tgt_lang and --src_lang"
if isinstance(_UpperCamelCase , _UpperCamelCase ):
_snake_case = tokenizer.lang_code_to_id[data_args.tgt_lang]
else:
_snake_case = tokenizer.convert_tokens_to_ids(data_args.tgt_lang )
if model_args.freeze_embeds:
freeze_embeds(_UpperCamelCase )
if model_args.freeze_encoder:
freeze_params(model.get_encoder() )
assert_all_frozen(model.get_encoder() )
_snake_case = SeqaSeqDataset
# Get datasets
_snake_case = (
dataset_class(
_UpperCamelCase , type_path='''train''' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , )
if training_args.do_train
else None
)
_snake_case = (
dataset_class(
_UpperCamelCase , type_path='''val''' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , )
if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO
else None
)
_snake_case = (
dataset_class(
_UpperCamelCase , type_path='''test''' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , )
if training_args.do_predict
else None
)
# Initialize our Trainer
_snake_case = (
build_compute_metrics_fn(data_args.task , _UpperCamelCase ) if training_args.predict_with_generate else None
)
_snake_case = SeqaSeqTrainer(
model=_UpperCamelCase , args=_UpperCamelCase , data_args=_UpperCamelCase , train_dataset=_UpperCamelCase , eval_dataset=_UpperCamelCase , data_collator=SeqaSeqDataCollator(
_UpperCamelCase , _UpperCamelCase , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=_UpperCamelCase , tokenizer=_UpperCamelCase , )
_snake_case = {}
# Training
if training_args.do_train:
logger.info('''*** Train ***''' )
_snake_case = trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
_snake_case = train_result.metrics
_snake_case = data_args.n_train
trainer.save_model() # this also saves the tokenizer
if trainer.is_world_process_zero():
handle_metrics('''train''' , _UpperCamelCase , training_args.output_dir )
all_metrics.update(_UpperCamelCase )
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) )
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
_snake_case = trainer.evaluate(metric_key_prefix='''val''' )
_snake_case = data_args.n_val
_snake_case = round(metrics['''val_loss'''] , 4 )
if trainer.is_world_process_zero():
handle_metrics('''val''' , _UpperCamelCase , training_args.output_dir )
all_metrics.update(_UpperCamelCase )
if training_args.do_predict:
logger.info('''*** Predict ***''' )
_snake_case = trainer.predict(test_dataset=_UpperCamelCase , metric_key_prefix='''test''' )
_snake_case = test_output.metrics
_snake_case = data_args.n_test
if trainer.is_world_process_zero():
_snake_case = round(metrics['''test_loss'''] , 4 )
handle_metrics('''test''' , _UpperCamelCase , training_args.output_dir )
all_metrics.update(_UpperCamelCase )
if training_args.predict_with_generate:
_snake_case = tokenizer.batch_decode(
test_output.predictions , skip_special_tokens=_UpperCamelCase , clean_up_tokenization_spaces=_UpperCamelCase )
_snake_case = lmap(str.strip , _UpperCamelCase )
write_txt_file(_UpperCamelCase , os.path.join(training_args.output_dir , '''test_generations.txt''' ) )
if trainer.is_world_process_zero():
save_json(_UpperCamelCase , os.path.join(training_args.output_dir , '''all_results.json''' ) )
return all_metrics
def snake_case_(_UpperCamelCase ) -> List[str]:
"""simple docstring"""
main()
if __name__ == "__main__":
main()
| 358
|
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import SeqaSeqTrainer
from seqaseq_training_args import SeqaSeqTrainingArguments
import transformers
from transformers import (
AutoConfig,
AutoModelForSeqaSeqLM,
AutoTokenizer,
HfArgumentParser,
MBartTokenizer,
MBartTokenizerFast,
set_seed,
)
from transformers.trainer_utils import EvaluationStrategy, is_main_process
from transformers.training_args import ParallelMode
from utils import (
SeqaSeqDataCollator,
SeqaSeqDataset,
assert_all_frozen,
build_compute_metrics_fn,
check_output_dir,
freeze_embeds,
freeze_params,
lmap,
save_json,
use_task_specific_params,
write_txt_file,
)
__A = logging.getLogger(__name__)
@dataclass
class lowercase_ :
UpperCamelCase_ : str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
UpperCamelCase_ : Optional[str] = field(
default=__lowercase , metadata={"help": "Pretrained config name or path if not the same as model_name"} )
UpperCamelCase_ : Optional[str] = field(
default=__lowercase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
UpperCamelCase_ : Optional[str] = field(
default=__lowercase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
UpperCamelCase_ : bool = field(default=__lowercase , metadata={"help": "Whether tp freeze the encoder."} )
UpperCamelCase_ : bool = field(default=__lowercase , metadata={"help": "Whether to freeze the embeddings."} )
@dataclass
class lowercase_ :
UpperCamelCase_ : str = field(
metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} )
UpperCamelCase_ : Optional[str] = field(
default="summarization" , metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"} , )
UpperCamelCase_ : Optional[int] = field(
default=1_0_2_4 , metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
UpperCamelCase_ : Optional[int] = field(
default=1_2_8 , metadata={
"help": (
"The maximum total sequence length for target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
UpperCamelCase_ : Optional[int] = field(
default=1_4_2 , metadata={
"help": (
"The maximum total sequence length for validation target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded. "
"This argument is also used to override the ``max_length`` param of ``model.generate``, which is used "
"during ``evaluate`` and ``predict``."
)
} , )
UpperCamelCase_ : Optional[int] = field(
default=1_4_2 , metadata={
"help": (
"The maximum total sequence length for test target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
UpperCamelCase_ : Optional[int] = field(default=-1 , metadata={"help": "# training examples. -1 means use all."} )
UpperCamelCase_ : Optional[int] = field(default=-1 , metadata={"help": "# validation examples. -1 means use all."} )
UpperCamelCase_ : Optional[int] = field(default=-1 , metadata={"help": "# test examples. -1 means use all."} )
UpperCamelCase_ : Optional[str] = field(default=__lowercase , metadata={"help": "Source language id for translation."} )
UpperCamelCase_ : Optional[str] = field(default=__lowercase , metadata={"help": "Target language id for translation."} )
UpperCamelCase_ : Optional[int] = field(default=__lowercase , metadata={"help": "# num_beams to use for evaluation."} )
UpperCamelCase_ : bool = field(
default=__lowercase , metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."} , )
def snake_case_(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> List[Any]:
"""simple docstring"""
logger.info(F"""***** {split} metrics *****""" )
for key in sorted(metrics.keys() ):
logger.info(F""" {key} = {metrics[key]}""" )
save_json(_UpperCamelCase , os.path.join(_UpperCamelCase , F"""{split}_results.json""" ) )
def snake_case_() -> List[Any]:
"""simple docstring"""
_snake_case = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
_snake_case, _snake_case, _snake_case = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
_snake_case, _snake_case, _snake_case = parser.parse_args_into_dataclasses()
check_output_dir(_UpperCamelCase )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
logger.info('''Training/evaluation parameters %s''' , _UpperCamelCase )
# Set seed
set_seed(training_args.seed )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
_snake_case = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
_snake_case = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''')
for p in extra_model_params:
if getattr(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ):
assert hasattr(_UpperCamelCase , _UpperCamelCase ), F"""({config.__class__.__name__}) doesn't have a `{p}` attribute"""
setattr(_UpperCamelCase , _UpperCamelCase , getattr(_UpperCamelCase , _UpperCamelCase ) )
_snake_case = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
_snake_case = AutoModelForSeqaSeqLM.from_pretrained(
model_args.model_name_or_path , from_tf='''.ckpt''' in model_args.model_name_or_path , config=_UpperCamelCase , cache_dir=model_args.cache_dir , )
# use task specific params
use_task_specific_params(_UpperCamelCase , data_args.task )
# set num_beams for evaluation
if data_args.eval_beams is None:
_snake_case = model.config.num_beams
# set decoder_start_token_id for MBart
if model.config.decoder_start_token_id is None and isinstance(_UpperCamelCase , (MBartTokenizer, MBartTokenizerFast) ):
assert (
data_args.tgt_lang is not None and data_args.src_lang is not None
), "mBart requires --tgt_lang and --src_lang"
if isinstance(_UpperCamelCase , _UpperCamelCase ):
_snake_case = tokenizer.lang_code_to_id[data_args.tgt_lang]
else:
_snake_case = tokenizer.convert_tokens_to_ids(data_args.tgt_lang )
if model_args.freeze_embeds:
freeze_embeds(_UpperCamelCase )
if model_args.freeze_encoder:
freeze_params(model.get_encoder() )
assert_all_frozen(model.get_encoder() )
_snake_case = SeqaSeqDataset
# Get datasets
_snake_case = (
dataset_class(
_UpperCamelCase , type_path='''train''' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , )
if training_args.do_train
else None
)
_snake_case = (
dataset_class(
_UpperCamelCase , type_path='''val''' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , )
if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO
else None
)
_snake_case = (
dataset_class(
_UpperCamelCase , type_path='''test''' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , )
if training_args.do_predict
else None
)
# Initialize our Trainer
_snake_case = (
build_compute_metrics_fn(data_args.task , _UpperCamelCase ) if training_args.predict_with_generate else None
)
_snake_case = SeqaSeqTrainer(
model=_UpperCamelCase , args=_UpperCamelCase , data_args=_UpperCamelCase , train_dataset=_UpperCamelCase , eval_dataset=_UpperCamelCase , data_collator=SeqaSeqDataCollator(
_UpperCamelCase , _UpperCamelCase , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=_UpperCamelCase , tokenizer=_UpperCamelCase , )
_snake_case = {}
# Training
if training_args.do_train:
logger.info('''*** Train ***''' )
_snake_case = trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
_snake_case = train_result.metrics
_snake_case = data_args.n_train
trainer.save_model() # this also saves the tokenizer
if trainer.is_world_process_zero():
handle_metrics('''train''' , _UpperCamelCase , training_args.output_dir )
all_metrics.update(_UpperCamelCase )
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) )
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
_snake_case = trainer.evaluate(metric_key_prefix='''val''' )
_snake_case = data_args.n_val
_snake_case = round(metrics['''val_loss'''] , 4 )
if trainer.is_world_process_zero():
handle_metrics('''val''' , _UpperCamelCase , training_args.output_dir )
all_metrics.update(_UpperCamelCase )
if training_args.do_predict:
logger.info('''*** Predict ***''' )
_snake_case = trainer.predict(test_dataset=_UpperCamelCase , metric_key_prefix='''test''' )
_snake_case = test_output.metrics
_snake_case = data_args.n_test
if trainer.is_world_process_zero():
_snake_case = round(metrics['''test_loss'''] , 4 )
handle_metrics('''test''' , _UpperCamelCase , training_args.output_dir )
all_metrics.update(_UpperCamelCase )
if training_args.predict_with_generate:
_snake_case = tokenizer.batch_decode(
test_output.predictions , skip_special_tokens=_UpperCamelCase , clean_up_tokenization_spaces=_UpperCamelCase )
_snake_case = lmap(str.strip , _UpperCamelCase )
write_txt_file(_UpperCamelCase , os.path.join(training_args.output_dir , '''test_generations.txt''' ) )
if trainer.is_world_process_zero():
save_json(_UpperCamelCase , os.path.join(training_args.output_dir , '''all_results.json''' ) )
return all_metrics
def snake_case_(_UpperCamelCase ) -> List[str]:
"""simple docstring"""
main()
if __name__ == "__main__":
main()
| 278
| 0
|
def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ = " " ):
'''simple docstring'''
snake_case_ = []
snake_case_ = 0
for index, char in enumerate(UpperCamelCase__ ):
if char == separator:
split_words.append(string[last_index:index] )
snake_case_ = index + 1
elif index + 1 == len(UpperCamelCase__ ):
split_words.append(string[last_index : index + 1] )
return split_words
if __name__ == "__main__":
from doctest import testmod
testmod()
| 285
|
from __future__ import annotations
import numpy as np
def __lowerCamelCase ( UpperCamelCase__ ):
'''simple docstring'''
snake_case_ , snake_case_ = np.shape(UpperCamelCase__ )
if rows != columns:
snake_case_ = (
'\'table\' has to be of square shaped array but got a '
F'''{rows}x{columns} array:\n{table}'''
)
raise ValueError(UpperCamelCase__ )
snake_case_ = np.zeros((rows, columns) )
snake_case_ = np.zeros((rows, columns) )
for i in range(UpperCamelCase__ ):
for j in range(UpperCamelCase__ ):
snake_case_ = sum(lower[i][k] * upper[k][j] for k in range(UpperCamelCase__ ) )
if upper[j][j] == 0:
raise ArithmeticError('No LU decomposition exists' )
snake_case_ = (table[i][j] - total) / upper[j][j]
snake_case_ = 1
for j in range(UpperCamelCase__ , UpperCamelCase__ ):
snake_case_ = sum(lower[i][k] * upper[k][j] for k in range(UpperCamelCase__ ) )
snake_case_ = table[i][j] - total
return lower, upper
if __name__ == "__main__":
import doctest
doctest.testmod()
| 285
| 1
|
def __UpperCAmelCase ( __a : List[str] ) -> Any:
"""simple docstring"""
_a : int = len(__A )
while cur > 1:
# Find the maximum number in arr
_a : int = arr.index(max(arr[0:cur] ) )
# Reverse from 0 to mi
_a : List[str] = arr[mi::-1] + arr[mi + 1 : len(__A )]
# Reverse whole list
_a : Dict = arr[cur - 1 :: -1] + arr[cur : len(__A )]
cur -= 1
return arr
if __name__ == "__main__":
a__ = input('''Enter numbers separated by a comma:\n''').strip()
a__ = [int(item) for item in user_input.split(''',''')]
print(pancake_sort(unsorted))
| 357
|
import argparse
import os
import re
import packaging.version
a__ = '''examples/'''
a__ = {
'''examples''': (re.compile(R'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''),
'''init''': (re.compile(R'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''),
'''setup''': (re.compile(R'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), R'''\1version="VERSION",'''),
'''doc''': (re.compile(R'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''),
}
a__ = {
'''init''': '''src/transformers/__init__.py''',
'''setup''': '''setup.py''',
}
a__ = '''README.md'''
def __UpperCAmelCase ( __a : List[str] ,__a : int ,__a : Optional[Any] ) -> int:
"""simple docstring"""
with open(__a ,'''r''' ,encoding='''utf-8''' ,newline='''\n''' ) as f:
_a : Tuple = f.read()
_a , _a : str = REPLACE_PATTERNS[pattern]
_a : List[str] = replace.replace('''VERSION''' ,__a )
_a : List[Any] = re_pattern.sub(__a ,__a )
with open(__a ,'''w''' ,encoding='''utf-8''' ,newline='''\n''' ) as f:
f.write(__a )
def __UpperCAmelCase ( __a : Any ) -> List[Any]:
"""simple docstring"""
for folder, directories, fnames in os.walk(__a ):
# Removing some of the folders with non-actively maintained examples from the walk
if "research_projects" in directories:
directories.remove('''research_projects''' )
if "legacy" in directories:
directories.remove('''legacy''' )
for fname in fnames:
if fname.endswith('''.py''' ):
update_version_in_file(os.path.join(__a ,__a ) ,__a ,pattern='''examples''' )
def __UpperCAmelCase ( __a : List[Any] ,__a : List[str]=False ) -> int:
"""simple docstring"""
for pattern, fname in REPLACE_FILES.items():
update_version_in_file(__a ,__a ,__a )
if not patch:
update_version_in_examples(__a )
def __UpperCAmelCase ( ) -> List[str]:
"""simple docstring"""
_a : Optional[Any] = '''🤗 Transformers currently provides the following architectures'''
_a : str = '''1. Want to contribute a new model?'''
with open(__a ,'''r''' ,encoding='''utf-8''' ,newline='''\n''' ) as f:
_a : Optional[int] = f.readlines()
# Find the start of the list.
_a : Optional[int] = 0
while not lines[start_index].startswith(_start_prompt ):
start_index += 1
start_index += 1
_a : List[Any] = start_index
# Update the lines in the model list.
while not lines[index].startswith(_end_prompt ):
if lines[index].startswith('''1.''' ):
_a : Tuple = lines[index].replace(
'''https://huggingface.co/docs/transformers/main/model_doc''' ,'''https://huggingface.co/docs/transformers/model_doc''' ,)
index += 1
with open(__a ,'''w''' ,encoding='''utf-8''' ,newline='''\n''' ) as f:
f.writelines(__a )
def __UpperCAmelCase ( ) -> List[str]:
"""simple docstring"""
with open(REPLACE_FILES['''init'''] ,'''r''' ) as f:
_a : Optional[Any] = f.read()
_a : Optional[Any] = REPLACE_PATTERNS['''init'''][0].search(__a ).groups()[0]
return packaging.version.parse(__a )
def __UpperCAmelCase ( __a : Dict=False ) -> str:
"""simple docstring"""
_a : Optional[Any] = get_version()
if patch and default_version.is_devrelease:
raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' )
if default_version.is_devrelease:
_a : List[Any] = default_version.base_version
elif patch:
_a : str = F"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}"""
else:
_a : List[str] = F"""{default_version.major}.{default_version.minor + 1}.0"""
# Now let's ask nicely if that's the right one.
_a : Dict = input(F"""Which version are you releasing? [{default_version}]""" )
if len(__a ) == 0:
_a : int = default_version
print(F"""Updating version to {version}.""" )
global_version_update(__a ,patch=__a )
if not patch:
print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' )
clean_main_ref_in_model_list()
def __UpperCAmelCase ( ) -> Tuple:
"""simple docstring"""
_a : str = get_version()
_a : int = F"""{current_version.major}.{current_version.minor + 1}.0.dev0"""
_a : List[Any] = current_version.base_version
# Check with the user we got that right.
_a : Union[str, Any] = input(F"""Which version are we developing now? [{dev_version}]""" )
if len(__a ) == 0:
_a : List[str] = dev_version
print(F"""Updating version to {version}.""" )
global_version_update(__a )
print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' )
clean_main_ref_in_model_list()
if __name__ == "__main__":
a__ = argparse.ArgumentParser()
parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''')
parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''')
a__ = parser.parse_args()
if not args.post_release:
pre_release_work(patch=args.patch)
elif args.patch:
print('''Nothing to do after a patch :-)''')
else:
post_release_work()
| 15
| 0
|
import os
import tempfile
from functools import partial
from unittest import TestCase
from unittest.mock import patch
import numpy as np
import pytest
from datasets.arrow_dataset import Dataset
from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex
from .utils import require_elasticsearch, require_faiss
SCREAMING_SNAKE_CASE :Dict = pytest.mark.integration
@require_faiss
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def UpperCamelCase_ ( self : Tuple ):
__A = Dataset.from_dict({"filename": ["my_name-train" + "_" + str(A ) for x in np.arange(30 ).tolist()]} )
return dset
def UpperCamelCase_ ( self : Optional[Any] ):
import faiss
__A = self._create_dummy_dataset()
__A = dset.map(
lambda A ,A : {"vecs": i * np.ones(5 ,dtype=np.floataa )} ,with_indices=A ,keep_in_memory=A )
__A = dset.add_faiss_index("vecs" ,batch_size=1_00 ,metric_type=faiss.METRIC_INNER_PRODUCT )
__A , __A = dset.get_nearest_examples("vecs" ,np.ones(5 ,dtype=np.floataa ) )
self.assertEqual(examples["filename"][0] ,"my_name-train_29" )
dset.drop_index("vecs" )
def UpperCamelCase_ ( self : Tuple ):
import faiss
__A = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 ,1 ) ,index_name="vecs" ,batch_size=1_00 ,metric_type=faiss.METRIC_INNER_PRODUCT ,)
__A , __A = dset.get_nearest_examples("vecs" ,np.ones(5 ,dtype=np.floataa ) )
self.assertEqual(examples["filename"][0] ,"my_name-train_29" )
def UpperCamelCase_ ( self : List[str] ):
import faiss
__A = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 ,1 ) ,index_name="vecs" ,metric_type=faiss.METRIC_INNER_PRODUCT ,)
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=A ) as tmp_file:
dset.save_faiss_index("vecs" ,tmp_file.name )
dset.load_faiss_index("vecs2" ,tmp_file.name )
os.unlink(tmp_file.name )
__A , __A = dset.get_nearest_examples("vecs2" ,np.ones(5 ,dtype=np.floataa ) )
self.assertEqual(examples["filename"][0] ,"my_name-train_29" )
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 ,1 ) ,index_name="vecs" )
dset.drop_index("vecs" )
self.assertRaises(A ,partial(dset.get_nearest_examples ,"vecs2" ,np.ones(5 ,dtype=np.floataa ) ) )
def UpperCamelCase_ ( self : Dict ):
from elasticsearch import Elasticsearch
__A = self._create_dummy_dataset()
with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch(
"elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk:
__A = {"acknowledged": True}
mocked_bulk.return_value([(True, None)] * 30 )
__A = {"hits": {"hits": [{"_score": 1, "_id": 29}]}}
__A = Elasticsearch()
dset.add_elasticsearch_index("filename" ,es_client=A )
__A , __A = dset.get_nearest_examples("filename" ,"my_name-train_29" )
self.assertEqual(examples["filename"][0] ,"my_name-train_29" )
@require_faiss
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def UpperCamelCase_ ( self : Optional[int] ):
import faiss
__A = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
# add vectors
index.add_vectors(np.eye(5 ,dtype=np.floataa ) )
self.assertIsNotNone(index.faiss_index )
self.assertEqual(index.faiss_index.ntotal ,5 )
index.add_vectors(np.zeros((5, 5) ,dtype=np.floataa ) )
self.assertEqual(index.faiss_index.ntotal ,10 )
# single query
__A = np.zeros(5 ,dtype=np.floataa )
__A = 1
__A , __A = index.search(A )
self.assertRaises(A ,index.search ,query.reshape(-1 ,1 ) )
self.assertGreater(scores[0] ,0 )
self.assertEqual(indices[0] ,1 )
# batched queries
__A = np.eye(5 ,dtype=np.floataa )[::-1]
__A , __A = index.search_batch(A )
self.assertRaises(A ,index.search_batch ,queries[0] )
__A = [scores[0] for scores in total_scores]
__A = [indices[0] for indices in total_indices]
self.assertGreater(np.min(A ) ,0 )
self.assertListEqual([4, 3, 2, 1, 0] ,A )
def UpperCamelCase_ ( self : Tuple ):
import faiss
__A = FaissIndex(string_factory="Flat" )
index.add_vectors(np.eye(5 ,dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index ,faiss.IndexFlat )
__A = FaissIndex(string_factory="LSH" )
index.add_vectors(np.eye(5 ,dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index ,faiss.IndexLSH )
with self.assertRaises(A ):
__A = FaissIndex(string_factory="Flat" ,custom_index=faiss.IndexFlat(5 ) )
def UpperCamelCase_ ( self : Any ):
import faiss
__A = faiss.IndexFlat(5 )
__A = FaissIndex(custom_index=A )
index.add_vectors(np.eye(5 ,dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index ,faiss.IndexFlat )
def UpperCamelCase_ ( self : Union[str, Any] ):
import faiss
__A = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
index.add_vectors(np.eye(5 ,dtype=np.floataa ) )
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=A ) as tmp_file:
index.save(tmp_file.name )
__A = FaissIndex.load(tmp_file.name )
os.unlink(tmp_file.name )
__A = np.zeros(5 ,dtype=np.floataa )
__A = 1
__A , __A = index.search(A )
self.assertGreater(scores[0] ,0 )
self.assertEqual(indices[0] ,1 )
@require_faiss
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
import faiss
__A = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
__A = "index.faiss"
__A = F'''mock://{index_name}'''
index.save(a_ , storage_options=mockfs.storage_options )
__A = FaissIndex.load(a_ , storage_options=mockfs.storage_options )
__A = np.zeros(5 , dtype=np.floataa )
__A = 1
__A , __A = index.search(a_ )
assert scores[0] > 0
assert indices[0] == 1
@require_elasticsearch
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def UpperCamelCase_ ( self : Dict ):
from elasticsearch import Elasticsearch
with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch(
"elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk:
__A = Elasticsearch()
__A = {"acknowledged": True}
__A = ElasticSearchIndex(es_client=A )
mocked_bulk.return_value([(True, None)] * 3 )
index.add_documents(["foo", "bar", "foobar"] )
# single query
__A = "foo"
__A = {"hits": {"hits": [{"_score": 1, "_id": 0}]}}
__A , __A = index.search(A )
self.assertEqual(scores[0] ,1 )
self.assertEqual(indices[0] ,0 )
# single query with timeout
__A = "foo"
__A = {"hits": {"hits": [{"_score": 1, "_id": 0}]}}
__A , __A = index.search(A ,request_timeout=30 )
self.assertEqual(scores[0] ,1 )
self.assertEqual(indices[0] ,0 )
# batched queries
__A = ["foo", "bar", "foobar"]
__A = {"hits": {"hits": [{"_score": 1, "_id": 1}]}}
__A , __A = index.search_batch(A )
__A = [scores[0] for scores in total_scores]
__A = [indices[0] for indices in total_indices]
self.assertGreater(np.min(A ) ,0 )
self.assertListEqual([1, 1, 1] ,A )
# batched queries with timeout
__A = ["foo", "bar", "foobar"]
__A = {"hits": {"hits": [{"_score": 1, "_id": 1}]}}
__A , __A = index.search_batch(A ,request_timeout=30 )
__A = [scores[0] for scores in total_scores]
__A = [indices[0] for indices in total_indices]
self.assertGreater(np.min(A ) ,0 )
self.assertListEqual([1, 1, 1] ,A )
| 15
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
_UpperCAmelCase = {"""configuration_encoder_decoder""": ["""EncoderDecoderConfig"""]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCAmelCase = ["""EncoderDecoderModel"""]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCAmelCase = ["""TFEncoderDecoderModel"""]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCAmelCase = ["""FlaxEncoderDecoderModel"""]
if TYPE_CHECKING:
from .configuration_encoder_decoder import EncoderDecoderConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_encoder_decoder import EncoderDecoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_encoder_decoder import TFEncoderDecoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel
else:
import sys
_UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 140
| 0
|
'''simple docstring'''
import string
from math import logaa
def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ) -> int:
__lowerCamelCase = document.translate(
str.maketrans('''''' , '''''' , string.punctuation ) ).replace('''\n''' , '''''' )
__lowerCamelCase = document_without_punctuation.split(''' ''' ) # word tokenization
return len([word for word in tokenize_document if word.lower() == term.lower()] )
def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ) -> tuple[int, int]:
__lowerCamelCase = corpus.lower().translate(
str.maketrans('''''' , '''''' , string.punctuation ) ) # strip all punctuation and replace it with ''
__lowerCamelCase = corpus_without_punctuation.split('''\n''' )
__lowerCamelCase = term.lower()
return (len([doc for doc in docs if term in doc] ), len(UpperCamelCase__ ))
def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False ) -> float:
if smoothing:
if n == 0:
raise ValueError('''log10(0) is undefined.''' )
return round(1 + logaa(n / (1 + df) ) , 3 )
if df == 0:
raise ZeroDivisionError('''df must be > 0''' )
elif n == 0:
raise ValueError('''log10(0) is undefined.''' )
return round(logaa(n / df ) , 3 )
def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ) -> float:
return round(tf * idf , 3 )
| 364
|
'''simple docstring'''
from __future__ import annotations
def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ) -> list[list[int]]:
__lowerCamelCase = []
create_all_state(1 , UpperCamelCase__ , UpperCamelCase__ , [] , UpperCamelCase__ )
return result
def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) -> None:
if level == 0:
total_list.append(current_list[:] )
return
for i in range(UpperCamelCase__ , total_number - level + 2 ):
current_list.append(UpperCamelCase__ )
create_all_state(i + 1 , UpperCamelCase__ , level - 1 , UpperCamelCase__ , UpperCamelCase__ )
current_list.pop()
def __lowerCAmelCase ( UpperCamelCase__ ) -> None:
for i in total_list:
print(*UpperCamelCase__ )
if __name__ == "__main__":
__UpperCAmelCase =4
__UpperCAmelCase =2
__UpperCAmelCase =generate_all_combinations(n, k)
print_all_state(total_list)
| 237
| 0
|
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
lowercase__ :List[str] = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ :Union[str, Any] = ["MLukeTokenizer"]
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mluke import MLukeTokenizer
else:
import sys
lowercase__ :List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 101
|
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class lowercase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ):
lowercase_ : Tuple =ShapEPipeline
lowercase_ : List[Any] =['''prompt''']
lowercase_ : int =['''prompt''']
lowercase_ : Union[str, Any] =[
'''num_images_per_prompt''',
'''num_inference_steps''',
'''generator''',
'''latents''',
'''guidance_scale''',
'''frame_size''',
'''output_type''',
'''return_dict''',
]
lowercase_ : Optional[int] =False
@property
def A__ ( self):
return 3_2
@property
def A__ ( self):
return 3_2
@property
def A__ ( self):
return self.time_input_dim * 4
@property
def A__ ( self):
return 8
@property
def A__ ( self):
lowercase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''')
return tokenizer
@property
def A__ ( self):
torch.manual_seed(0)
lowercase = CLIPTextConfig(
bos_token_id=0 ,eos_token_id=2 ,hidden_size=self.text_embedder_hidden_size ,projection_dim=self.text_embedder_hidden_size ,intermediate_size=3_7 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_0_0_0 ,)
return CLIPTextModelWithProjection(A__)
@property
def A__ ( self):
torch.manual_seed(0)
lowercase = {
'''num_attention_heads''': 2,
'''attention_head_dim''': 1_6,
'''embedding_dim''': self.time_input_dim,
'''num_embeddings''': 3_2,
'''embedding_proj_dim''': self.text_embedder_hidden_size,
'''time_embed_dim''': self.time_embed_dim,
'''num_layers''': 1,
'''clip_embed_dim''': self.time_input_dim * 2,
'''additional_embeddings''': 0,
'''time_embed_act_fn''': '''gelu''',
'''norm_in_type''': '''layer''',
'''encoder_hid_proj_type''': None,
'''added_emb_type''': None,
}
lowercase = PriorTransformer(**A__)
return model
@property
def A__ ( self):
torch.manual_seed(0)
lowercase = {
'''param_shapes''': (
(self.renderer_dim, 9_3),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
'''d_latent''': self.time_input_dim,
'''d_hidden''': self.renderer_dim,
'''n_output''': 1_2,
'''background''': (
0.1,
0.1,
0.1,
),
}
lowercase = ShapERenderer(**A__)
return model
def A__ ( self):
lowercase = self.dummy_prior
lowercase = self.dummy_text_encoder
lowercase = self.dummy_tokenizer
lowercase = self.dummy_renderer
lowercase = HeunDiscreteScheduler(
beta_schedule='''exp''' ,num_train_timesteps=1_0_2_4 ,prediction_type='''sample''' ,use_karras_sigmas=A__ ,clip_sample=A__ ,clip_sample_range=1.0 ,)
lowercase = {
'''prior''': prior,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''renderer''': renderer,
'''scheduler''': scheduler,
}
return components
def A__ ( self ,A__ ,A__=0):
if str(A__).startswith('''mps'''):
lowercase = torch.manual_seed(A__)
else:
lowercase = torch.Generator(device=A__).manual_seed(A__)
lowercase = {
'''prompt''': '''horse''',
'''generator''': generator,
'''num_inference_steps''': 1,
'''frame_size''': 3_2,
'''output_type''': '''np''',
}
return inputs
def A__ ( self):
lowercase = '''cpu'''
lowercase = self.get_dummy_components()
lowercase = self.pipeline_class(**A__)
lowercase = pipe.to(A__)
pipe.set_progress_bar_config(disable=A__)
lowercase = pipe(**self.get_dummy_inputs(A__))
lowercase = output.images[0]
lowercase = image[0, -3:, -3:, -1]
assert image.shape == (2_0, 3_2, 3_2, 3)
lowercase = np.array(
[
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
def A__ ( self):
# NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches
self._test_inference_batch_consistent(batch_sizes=[1, 2])
def A__ ( self):
lowercase = torch_device == '''cpu'''
lowercase = True
self._test_inference_batch_single_identical(
batch_size=2 ,test_max_difference=A__ ,relax_max_difference=A__ ,)
def A__ ( self):
lowercase = self.get_dummy_components()
lowercase = self.pipeline_class(**A__)
lowercase = pipe.to(A__)
pipe.set_progress_bar_config(disable=A__)
lowercase = 1
lowercase = 2
lowercase = self.get_dummy_inputs(A__)
for key in inputs.keys():
if key in self.batch_params:
lowercase = batch_size * [inputs[key]]
lowercase = pipe(**A__ ,num_images_per_prompt=A__)[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class lowercase ( unittest.TestCase ):
def A__ ( self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def A__ ( self):
lowercase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/shap_e/test_shap_e_np_out.npy''')
lowercase = ShapEPipeline.from_pretrained('''openai/shap-e''')
lowercase = pipe.to(A__)
pipe.set_progress_bar_config(disable=A__)
lowercase = torch.Generator(device=A__).manual_seed(0)
lowercase = pipe(
'''a shark''' ,generator=A__ ,guidance_scale=15.0 ,num_inference_steps=6_4 ,frame_size=6_4 ,output_type='''np''' ,).images[0]
assert images.shape == (2_0, 6_4, 6_4, 3)
assert_mean_pixel_difference(A__ ,A__)
| 101
| 1
|
import logging
from pathlib import Path
import numpy as np
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.utilities import rank_zero_only
from utils_rag import save_json
def lowerCAmelCase_ ( UpperCamelCase_ ):
UpperCamelCase_ = filter(lambda UpperCamelCase_ : p.requires_grad , model.parameters() )
UpperCamelCase_ = sum([np.prod(p.size() ) for p in model_parameters] )
return params
_UpperCAmelCase = logging.getLogger(__name__)
def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ):
if metric == "rouge2":
UpperCamelCase_ = "{val_avg_rouge2:.4f}-{step_count}"
elif metric == "bleu":
UpperCamelCase_ = "{val_avg_bleu:.4f}-{step_count}"
elif metric == "em":
UpperCamelCase_ = "{val_avg_em:.4f}-{step_count}"
else:
raise NotImplementedError(
F'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this'''
" function." )
UpperCamelCase_ = ModelCheckpoint(
dirpath=_lowerCamelCase , filename=_lowerCamelCase , monitor=F'''val_{metric}''' , mode="max" , save_top_k=3 , every_n_epochs=1 , )
return checkpoint_callback
def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ):
return EarlyStopping(
monitor=F'''val_{metric}''' , mode="min" if "loss" in metric else "max" , patience=_lowerCamelCase , verbose=_lowerCamelCase , )
class _UpperCamelCase ( pl.Callback ):
def lowercase ( self: List[Any] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Dict ) -> Tuple:
"""simple docstring"""
UpperCamelCase_ = {f'''lr_group_{i}''': param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )}
pl_module.logger.log_metrics(_SCREAMING_SNAKE_CASE )
@rank_zero_only
def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: pl.Trainer , _SCREAMING_SNAKE_CASE: pl.LightningModule , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: str=True ) -> List[Any]:
"""simple docstring"""
logger.info(f'''***** {type_path} results at step {trainer.global_step:05d} *****''' )
UpperCamelCase_ = trainer.callback_metrics
trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} )
# Log results
UpperCamelCase_ = Path(pl_module.hparams.output_dir )
if type_path == "test":
UpperCamelCase_ = od / "test_results.txt"
UpperCamelCase_ = od / "test_generations.txt"
else:
# this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json
# If people want this it will be easy enough to add back.
UpperCamelCase_ = od / f'''{type_path}_results/{trainer.global_step:05d}.txt'''
UpperCamelCase_ = od / f'''{type_path}_generations/{trainer.global_step:05d}.txt'''
results_file.parent.mkdir(exist_ok=_SCREAMING_SNAKE_CASE )
generations_file.parent.mkdir(exist_ok=_SCREAMING_SNAKE_CASE )
with open(_SCREAMING_SNAKE_CASE , "a+" ) as writer:
for key in sorted(_SCREAMING_SNAKE_CASE ):
if key in ["log", "progress_bar", "preds"]:
continue
UpperCamelCase_ = metrics[key]
if isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ):
UpperCamelCase_ = val.item()
UpperCamelCase_ = f'''{key}: {val:.6f}\n'''
writer.write(_SCREAMING_SNAKE_CASE )
if not save_generations:
return
if "preds" in metrics:
UpperCamelCase_ = "\n".join(metrics["preds"] )
generations_file.open("w+" ).write(_SCREAMING_SNAKE_CASE )
@rank_zero_only
def lowercase ( self: int , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: int ) -> Optional[int]:
"""simple docstring"""
try:
UpperCamelCase_ = pl_module.model.model.num_parameters()
except AttributeError:
UpperCamelCase_ = pl_module.model.num_parameters()
UpperCamelCase_ = count_trainable_parameters(_SCREAMING_SNAKE_CASE )
# mp stands for million parameters
trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1e6, "grad_mp": n_trainable_pars / 1e6} )
@rank_zero_only
def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: pl.Trainer , _SCREAMING_SNAKE_CASE: pl.LightningModule ) -> Dict:
"""simple docstring"""
save_json(pl_module.metrics , pl_module.metrics_save_path )
return self._write_logs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , "test" )
@rank_zero_only
def lowercase ( self: int , _SCREAMING_SNAKE_CASE: pl.Trainer , _SCREAMING_SNAKE_CASE: Optional[int] ) -> Optional[int]:
"""simple docstring"""
save_json(pl_module.metrics , pl_module.metrics_save_path )
# Uncommenting this will save val generations
# return self._write_logs(trainer, pl_module, "valid")
| 370
|
import gc
import unittest
import numpy as np
import torch
from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel
from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS,
CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class _UpperCamelCase ( lowerCAmelCase_ , unittest.TestCase ):
_UpperCamelCase : Optional[Any] = DiTPipeline
_UpperCamelCase : Any = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS
_UpperCamelCase : Dict = PipelineTesterMixin.required_optional_params - {
'''latents''',
'''num_images_per_prompt''',
'''callback''',
'''callback_steps''',
}
_UpperCamelCase : Optional[int] = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS
_UpperCamelCase : Dict = False
def lowercase ( self: str ) -> List[str]:
"""simple docstring"""
torch.manual_seed(0 )
UpperCamelCase_ = TransformeraDModel(
sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=_SCREAMING_SNAKE_CASE , activation_fn="gelu-approximate" , num_embeds_ada_norm=1000 , norm_type="ada_norm_zero" , norm_elementwise_affine=_SCREAMING_SNAKE_CASE , )
UpperCamelCase_ = AutoencoderKL()
UpperCamelCase_ = DDIMScheduler()
UpperCamelCase_ = {"transformer": transformer.eval(), "vae": vae.eval(), "scheduler": scheduler}
return components
def lowercase ( self: str , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: List[str]=0 ) -> Dict:
"""simple docstring"""
if str(_SCREAMING_SNAKE_CASE ).startswith("mps" ):
UpperCamelCase_ = torch.manual_seed(_SCREAMING_SNAKE_CASE )
else:
UpperCamelCase_ = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE )
UpperCamelCase_ = {
"class_labels": [1],
"generator": generator,
"num_inference_steps": 2,
"output_type": "numpy",
}
return inputs
def lowercase ( self: Any ) -> List[str]:
"""simple docstring"""
UpperCamelCase_ = "cpu"
UpperCamelCase_ = self.get_dummy_components()
UpperCamelCase_ = self.pipeline_class(**_SCREAMING_SNAKE_CASE )
pipe.to(_SCREAMING_SNAKE_CASE )
pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE )
UpperCamelCase_ = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE )
UpperCamelCase_ = pipe(**_SCREAMING_SNAKE_CASE ).images
UpperCamelCase_ = image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 16, 16, 3) )
UpperCamelCase_ = np.array([0.29_46, 0.66_01, 0.43_29, 0.32_96, 0.41_44, 0.53_19, 0.72_73, 0.50_13, 0.44_57] )
UpperCamelCase_ = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1e-3 )
def lowercase ( self: Optional[int] ) -> Any:
"""simple docstring"""
self._test_inference_batch_single_identical(relax_max_difference=_SCREAMING_SNAKE_CASE , expected_max_diff=1e-3 )
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , )
def lowercase ( self: Optional[Any] ) -> Optional[int]:
"""simple docstring"""
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 )
@require_torch_gpu
@slow
class _UpperCamelCase ( unittest.TestCase ):
def lowercase ( self: Optional[int] ) -> List[str]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowercase ( self: Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
UpperCamelCase_ = torch.manual_seed(0 )
UpperCamelCase_ = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256" )
pipe.to("cuda" )
UpperCamelCase_ = ["vase", "umbrella", "white shark", "white wolf"]
UpperCamelCase_ = pipe.get_label_ids(_SCREAMING_SNAKE_CASE )
UpperCamelCase_ = pipe(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=40 , output_type="np" ).images
for word, image in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
UpperCamelCase_ = load_numpy(
f'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' )
assert np.abs((expected_image - image).max() ) < 1e-2
def lowercase ( self: int ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase_ = DiTPipeline.from_pretrained("facebook/DiT-XL-2-512" )
UpperCamelCase_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.to("cuda" )
UpperCamelCase_ = ["vase", "umbrella"]
UpperCamelCase_ = pipe.get_label_ids(_SCREAMING_SNAKE_CASE )
UpperCamelCase_ = torch.manual_seed(0 )
UpperCamelCase_ = pipe(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=25 , output_type="np" ).images
for word, image in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
UpperCamelCase_ = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
f'''/dit/{word}_512.npy''' )
assert np.abs((expected_image - image).max() ) < 1e-1
| 328
| 0
|
"""simple docstring"""
from importlib import import_module
from .logging import get_logger
lowerCAmelCase__ = get_logger(__name__)
class __snake_case :
def __init__( self : int , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[Any]=None ):
"""simple docstring"""
_lowerCamelCase : Tuple = attrs or []
if module is not None:
for key in module.__dict__:
if key in attrs or not key.startswith('''__''' ):
setattr(self , __lowerCAmelCase , getattr(__lowerCAmelCase , __lowerCAmelCase ) )
_lowerCamelCase : Any = module._original_module if isinstance(__lowerCAmelCase , _PatchedModuleObj ) else module
class __snake_case :
snake_case__ : Dict = []
def __init__( self : Union[str, Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : str , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str]=None ):
"""simple docstring"""
_lowerCamelCase : Optional[Any] = obj
_lowerCamelCase : int = target
_lowerCamelCase : int = new
_lowerCamelCase : Tuple = target.split('''.''' )[0]
_lowerCamelCase : Optional[Any] = {}
_lowerCamelCase : Optional[int] = attrs or []
def __enter__( self : Optional[Any] ):
"""simple docstring"""
*_lowerCamelCase , _lowerCamelCase : Optional[int] = self.target.split('''.''' )
# Patch modules:
# it's used to patch attributes of submodules like "os.path.join";
# in this case we need to patch "os" and "os.path"
for i in range(len(__lowerCAmelCase ) ):
try:
_lowerCamelCase : Union[str, Any] = import_module('''.'''.join(submodules[: i + 1] ) )
except ModuleNotFoundError:
continue
# We iterate over all the globals in self.obj in case we find "os" or "os.path"
for attr in self.obj.__dir__():
_lowerCamelCase : Dict = getattr(self.obj , __lowerCAmelCase )
# We don't check for the name of the global, but rather if its value *is* "os" or "os.path".
# This allows to patch renamed modules like "from os import path as ospath".
if obj_attr is submodule or (
(isinstance(__lowerCAmelCase , _PatchedModuleObj ) and obj_attr._original_module is submodule)
):
_lowerCamelCase : Dict = obj_attr
# patch at top level
setattr(self.obj , __lowerCAmelCase , _PatchedModuleObj(__lowerCAmelCase , attrs=self.attrs ) )
_lowerCamelCase : Tuple = getattr(self.obj , __lowerCAmelCase )
# construct lower levels patches
for key in submodules[i + 1 :]:
setattr(__lowerCAmelCase , __lowerCAmelCase , _PatchedModuleObj(getattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) , attrs=self.attrs ) )
_lowerCamelCase : int = getattr(__lowerCAmelCase , __lowerCAmelCase )
# finally set the target attribute
setattr(__lowerCAmelCase , __lowerCAmelCase , self.new )
# Patch attribute itself:
# it's used for builtins like "open",
# and also to patch "os.path.join" we may also need to patch "join"
# itself if it was imported as "from os.path import join".
if submodules: # if it's an attribute of a submodule like "os.path.join"
try:
_lowerCamelCase : Optional[int] = getattr(import_module('''.'''.join(__lowerCAmelCase ) ) , __lowerCAmelCase )
except (AttributeError, ModuleNotFoundError):
return
# We iterate over all the globals in self.obj in case we find "os.path.join"
for attr in self.obj.__dir__():
# We don't check for the name of the global, but rather if its value *is* "os.path.join".
# This allows to patch renamed attributes like "from os.path import join as pjoin".
if getattr(self.obj , __lowerCAmelCase ) is attr_value:
_lowerCamelCase : str = getattr(self.obj , __lowerCAmelCase )
setattr(self.obj , __lowerCAmelCase , self.new )
elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open"
_lowerCamelCase : List[str] = globals()['''__builtins__'''][target_attr]
setattr(self.obj , __lowerCAmelCase , self.new )
else:
raise RuntimeError(f'''Tried to patch attribute {target_attr} instead of a submodule.''' )
def __exit__( self : Any , *__lowerCAmelCase : Dict ):
"""simple docstring"""
for attr in list(self.original ):
setattr(self.obj , __lowerCAmelCase , self.original.pop(__lowerCAmelCase ) )
def SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
self.__enter__()
self._active_patches.append(self )
def SCREAMING_SNAKE_CASE ( self : List[str] ):
"""simple docstring"""
try:
self._active_patches.remove(self )
except ValueError:
# If the patch hasn't been started this will fail
return None
return self.__exit__()
| 72
|
"""simple docstring"""
import warnings
from contextlib import contextmanager
from ...processing_utils import ProcessorMixin
class __snake_case ( _lowercase):
snake_case__ : List[Any] = "Speech2TextFeatureExtractor"
snake_case__ : Union[str, Any] = "Speech2TextTokenizer"
def __init__( self : int , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] ):
"""simple docstring"""
super().__init__(__lowerCAmelCase , __lowerCAmelCase )
_lowerCamelCase : List[str] = self.feature_extractor
_lowerCamelCase : str = False
def __call__( self : List[Any] , *__lowerCAmelCase : int , **__lowerCAmelCase : List[str] ):
"""simple docstring"""
if self._in_target_context_manager:
return self.current_processor(*__lowerCAmelCase , **__lowerCAmelCase )
if "raw_speech" in kwargs:
warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' )
_lowerCamelCase : str = kwargs.pop('''raw_speech''' )
else:
_lowerCamelCase : Tuple = kwargs.pop('''audio''' , __lowerCAmelCase )
_lowerCamelCase : Optional[Any] = kwargs.pop('''sampling_rate''' , __lowerCAmelCase )
_lowerCamelCase : Union[str, Any] = kwargs.pop('''text''' , __lowerCAmelCase )
if len(__lowerCAmelCase ) > 0:
_lowerCamelCase : List[Any] = args[0]
_lowerCamelCase : int = args[1:]
if audio is None and text is None:
raise ValueError('''You need to specify either an `audio` or `text` input to process.''' )
if audio is not None:
_lowerCamelCase : List[Any] = self.feature_extractor(__lowerCAmelCase , *__lowerCAmelCase , sampling_rate=__lowerCAmelCase , **__lowerCAmelCase )
if text is not None:
_lowerCamelCase : List[Any] = self.tokenizer(__lowerCAmelCase , **__lowerCAmelCase )
if text is None:
return inputs
elif audio is None:
return encodings
else:
_lowerCamelCase : List[str] = encodings['''input_ids''']
return inputs
def SCREAMING_SNAKE_CASE ( self : Any , *__lowerCAmelCase : List[Any] , **__lowerCAmelCase : Tuple ):
"""simple docstring"""
return self.tokenizer.batch_decode(*__lowerCAmelCase , **__lowerCAmelCase )
def SCREAMING_SNAKE_CASE ( self : Any , *__lowerCAmelCase : List[str] , **__lowerCAmelCase : int ):
"""simple docstring"""
return self.tokenizer.decode(*__lowerCAmelCase , **__lowerCAmelCase )
@contextmanager
def SCREAMING_SNAKE_CASE ( self : str ):
"""simple docstring"""
warnings.warn(
'''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your '''
'''labels by using the argument `text` of the regular `__call__` method (either in the same call as '''
'''your audio inputs, or in a separate call.''' )
_lowerCamelCase : Union[str, Any] = True
_lowerCamelCase : Any = self.tokenizer
yield
_lowerCamelCase : List[str] = self.feature_extractor
_lowerCamelCase : Tuple = False
| 72
| 1
|
from __future__ import annotations
from fractions import Fraction
from math import gcd, sqrt
def __UpperCamelCase ( lowerCAmelCase__ : Tuple ):
__a : int = int(number**0.5 )
return number == sq * sq
def __UpperCamelCase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[str] ):
__a : int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den
__a : int = x_den * y_den * z_den
__a : int = gcd(__lowerCamelCase , __lowerCamelCase )
top //= hcf
bottom //= hcf
return top, bottom
def __UpperCamelCase ( lowerCAmelCase__ : List[str] = 3_5 ):
__a : set = set()
__a : int
__a : Fraction = Fraction(0 )
__a : tuple[int, int]
for x_num in range(1 , order + 1 ):
for x_den in range(x_num + 1 , order + 1 ):
for y_num in range(1 , order + 1 ):
for y_den in range(y_num + 1 , order + 1 ):
# n=1
__a : Union[str, Any] = x_num * y_den + x_den * y_num
__a : List[str] = x_den * y_den
__a : Tuple = gcd(__lowerCamelCase , __lowerCamelCase )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
__a : Union[str, Any] = add_three(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
unique_s.add(__lowerCamelCase )
# n=2
__a : Union[str, Any] = (
x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num
)
__a : int = x_den * x_den * y_den * y_den
if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ):
__a : List[Any] = int(sqrt(__lowerCamelCase ) )
__a : List[str] = int(sqrt(__lowerCamelCase ) )
__a : Tuple = gcd(__lowerCamelCase , __lowerCamelCase )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
__a : Tuple = add_three(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
unique_s.add(__lowerCamelCase )
# n=-1
__a : Any = x_num * y_num
__a : Dict = x_den * y_num + x_num * y_den
__a : Any = gcd(__lowerCamelCase , __lowerCamelCase )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
__a : List[Any] = add_three(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
unique_s.add(__lowerCamelCase )
# n=2
__a : Optional[Any] = x_num * x_num * y_num * y_num
__a : Union[str, Any] = (
x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den
)
if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ):
__a : Tuple = int(sqrt(__lowerCamelCase ) )
__a : List[Any] = int(sqrt(__lowerCamelCase ) )
__a : List[Any] = gcd(__lowerCamelCase , __lowerCamelCase )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
__a : List[str] = add_three(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
unique_s.add(__lowerCamelCase )
for num, den in unique_s:
total += Fraction(__lowerCamelCase , __lowerCamelCase )
return total.denominator + total.numerator
if __name__ == "__main__":
print(F"""{solution() = }""")
| 351
|
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
if is_torch_available():
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
@require_torch
@require_sentencepiece
@require_tokenizers
class UpperCamelCase__ ( unittest.TestCase ):
@slow
def lowerCAmelCase (self : Tuple ):
__a : List[str] = AutoModelForSeqaSeqLM.from_pretrained('''google/mt5-small''' , return_dict=snake_case_ ).to(snake_case_ )
__a : List[Any] = AutoTokenizer.from_pretrained('''google/mt5-small''' )
__a : Optional[int] = tokenizer('''Hello there''' , return_tensors='''pt''' ).input_ids
__a : Dict = tokenizer('''Hi I am''' , return_tensors='''pt''' ).input_ids
__a : Optional[Any] = model(input_ids.to(snake_case_ ) , labels=labels.to(snake_case_ ) ).loss
__a : Tuple = -(labels.shape[-1] * loss.item())
__a : Dict = -84.9127
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
| 90
| 0
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__a = {
"configuration_timesformer": ["TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimesformerConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a = [
"TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TimesformerModel",
"TimesformerForVideoClassification",
"TimesformerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_timesformer import (
TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TimesformerForVideoClassification,
TimesformerModel,
TimesformerPreTrainedModel,
)
else:
import sys
__a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 35
|
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
snake_case__ : Optional[Any] = {'configuration_ibert': ['IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'IBertConfig', 'IBertOnnxConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : List[str] = [
'IBERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'IBertForMaskedLM',
'IBertForMultipleChoice',
'IBertForQuestionAnswering',
'IBertForSequenceClassification',
'IBertForTokenClassification',
'IBertModel',
'IBertPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_ibert import (
IBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
IBertForMaskedLM,
IBertForMultipleChoice,
IBertForQuestionAnswering,
IBertForSequenceClassification,
IBertForTokenClassification,
IBertModel,
IBertPreTrainedModel,
)
else:
import sys
snake_case__ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 117
| 0
|
'''simple docstring'''
from __future__ import annotations
from typing import Any
class lowerCAmelCase_( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
pass
class lowerCAmelCase_:
'''simple docstring'''
def __init__( self ,__UpperCAmelCase ) -> None:
lowerCAmelCase__ : Any = data
lowerCAmelCase__ : Node | None = None
def __iter__( self ) -> int:
lowerCAmelCase__ : Any = self
lowerCAmelCase__ : Union[str, Any] = []
while node:
if node in visited:
raise ContainsLoopError
visited.append(__UpperCAmelCase )
yield node.data
lowerCAmelCase__ : str = node.next_node
@property
def UpperCAmelCase_ ( self ) -> bool:
try:
list(self )
return False
except ContainsLoopError:
return True
if __name__ == "__main__":
_lowerCAmelCase = Node(1)
_lowerCAmelCase = Node(2)
_lowerCAmelCase = Node(3)
_lowerCAmelCase = Node(4)
print(root_node.has_loop) # False
_lowerCAmelCase = root_node.next_node
print(root_node.has_loop) # True
_lowerCAmelCase = Node(5)
_lowerCAmelCase = Node(6)
_lowerCAmelCase = Node(5)
_lowerCAmelCase = Node(6)
print(root_node.has_loop) # False
_lowerCAmelCase = Node(1)
print(root_node.has_loop) # False
| 359
|
'''simple docstring'''
import random
import unittest
import torch
from diffusers import IFInpaintingSuperResolutionPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ):
'''simple docstring'''
__lowercase : List[str] = IFInpaintingSuperResolutionPipeline
__lowercase : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''}
__lowercase : List[str] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'''original_image'''} )
__lowercase : Optional[Any] = PipelineTesterMixin.required_optional_params - {'''latents'''}
def UpperCAmelCase_ ( self ) -> Any:
return self._get_superresolution_dummy_components()
def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase=0 ) -> List[Any]:
if str(__UpperCAmelCase ).startswith("""mps""" ):
lowerCAmelCase__ : Any = torch.manual_seed(__UpperCAmelCase )
else:
lowerCAmelCase__ : Dict = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase )
lowerCAmelCase__ : Tuple = floats_tensor((1, 3, 16, 16) ,rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase )
lowerCAmelCase__ : Union[str, Any] = floats_tensor((1, 3, 32, 32) ,rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase )
lowerCAmelCase__ : Any = floats_tensor((1, 3, 32, 32) ,rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase )
lowerCAmelCase__ : Dict = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""image""": image,
"""original_image""": original_image,
"""mask_image""": mask_image,
"""generator""": generator,
"""num_inference_steps""": 2,
"""output_type""": """numpy""",
}
return inputs
@unittest.skipIf(
torch_device != """cuda""" or not is_xformers_available() ,reason="""XFormers attention is only available with CUDA and `xformers` installed""" ,)
def UpperCAmelCase_ ( self ) -> Union[str, Any]:
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
def UpperCAmelCase_ ( self ) -> Optional[int]:
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != """cuda""" ,reason="""float16 requires CUDA""" )
def UpperCAmelCase_ ( self ) -> List[Any]:
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_floataa(expected_max_diff=1E-1 )
def UpperCAmelCase_ ( self ) -> str:
self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 )
def UpperCAmelCase_ ( self ) -> List[Any]:
self._test_save_load_local()
def UpperCAmelCase_ ( self ) -> int:
self._test_inference_batch_single_identical(
expected_max_diff=1E-2 ,)
| 184
| 0
|
"""simple docstring"""
from argparse import ArgumentParser, Namespace
from ..utils import logging
from . import BaseTransformersCLICommand
def snake_case ( A__ ):
return ConvertCommand(
args.model_type ,args.tf_checkpoint ,args.pytorch_dump_output ,args.config ,args.finetuning_task_name )
lowerCamelCase_ = '''
transformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires
TensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.
'''
class UpperCamelCase_ (__A ):
@staticmethod
def _SCREAMING_SNAKE_CASE ( lowerCAmelCase_ : ArgumentParser ) -> List[Any]:
UpperCAmelCase_ : Dict = parser.add_parser(
"convert" , help="CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints." , )
train_parser.add_argument("--model_type" , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help="Model's type." )
train_parser.add_argument(
"--tf_checkpoint" , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help="TensorFlow checkpoint path or folder." )
train_parser.add_argument(
"--pytorch_dump_output" , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help="Path to the PyTorch saved model output." )
train_parser.add_argument("--config" , type=lowerCAmelCase_ , default="" , help="Configuration file path or folder." )
train_parser.add_argument(
"--finetuning_task_name" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , help="Optional fine-tuning task name if the TF model was a finetuned model." , )
train_parser.set_defaults(func=lowerCAmelCase_ )
def __init__( self : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : str , *lowerCAmelCase_ : Optional[int] , ) -> Tuple:
UpperCAmelCase_ : List[Any] = logging.get_logger("transformers-cli/converting" )
self._logger.info(f"""Loading model {model_type}""" )
UpperCAmelCase_ : Any = model_type
UpperCAmelCase_ : Dict = tf_checkpoint
UpperCAmelCase_ : Dict = pytorch_dump_output
UpperCAmelCase_ : str = config
UpperCAmelCase_ : Optional[int] = finetuning_task_name
def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]:
if self._model_type == "albert":
try:
from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import (
convert_tf_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(lowerCAmelCase_ )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "bert":
try:
from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import (
convert_tf_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(lowerCAmelCase_ )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "funnel":
try:
from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import (
convert_tf_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(lowerCAmelCase_ )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "t5":
try:
from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch
except ImportError:
raise ImportError(lowerCAmelCase_ )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "gpt":
from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import (
convert_openai_checkpoint_to_pytorch,
)
convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "transfo_xl":
try:
from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import (
convert_transfo_xl_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(lowerCAmelCase_ )
if "ckpt" in self._tf_checkpoint.lower():
UpperCAmelCase_ : Dict = self._tf_checkpoint
UpperCAmelCase_ : Optional[int] = ""
else:
UpperCAmelCase_ : str = self._tf_checkpoint
UpperCAmelCase_ : str = ""
convert_transfo_xl_checkpoint_to_pytorch(
lowerCAmelCase_ , self._config , self._pytorch_dump_output , lowerCAmelCase_ )
elif self._model_type == "gpt2":
try:
from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import (
convert_gpta_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(lowerCAmelCase_ )
convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "xlnet":
try:
from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import (
convert_xlnet_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(lowerCAmelCase_ )
convert_xlnet_checkpoint_to_pytorch(
self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name )
elif self._model_type == "xlm":
from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import (
convert_xlm_checkpoint_to_pytorch,
)
convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output )
elif self._model_type == "lxmert":
from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import (
convert_lxmert_checkpoint_to_pytorch,
)
convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output )
elif self._model_type == "rembert":
from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import (
convert_rembert_tf_checkpoint_to_pytorch,
)
convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
else:
raise ValueError(
"--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]" )
| 268
|
"""simple docstring"""
import os
def snake_case ( ):
with open(os.path.dirname(A__ ) + "/grid.txt" ) as f:
UpperCAmelCase_ : Any = [] # noqa: E741
for _ in range(20 ):
l.append([int(A__ ) for x in f.readline().split()] )
UpperCAmelCase_ : Any = 0
# right
for i in range(20 ):
for j in range(17 ):
UpperCAmelCase_ : Union[str, Any] = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3]
if temp > maximum:
UpperCAmelCase_ : Any = temp
# down
for i in range(17 ):
for j in range(20 ):
UpperCAmelCase_ : List[Any] = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j]
if temp > maximum:
UpperCAmelCase_ : Tuple = temp
# diagonal 1
for i in range(17 ):
for j in range(17 ):
UpperCAmelCase_ : str = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3]
if temp > maximum:
UpperCAmelCase_ : List[str] = temp
# diagonal 2
for i in range(17 ):
for j in range(3 ,20 ):
UpperCAmelCase_ : List[Any] = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3]
if temp > maximum:
UpperCAmelCase_ : List[str] = temp
return maximum
if __name__ == "__main__":
print(solution())
| 268
| 1
|
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
__snake_case : Tuple = logging.get_logger(__name__)
__snake_case : int = {
'Salesforce/codegen-350M-nl': 'https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json',
'Salesforce/codegen-350M-multi': 'https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json',
'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json',
'Salesforce/codegen-2B-nl': 'https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json',
'Salesforce/codegen-2B-multi': 'https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json',
'Salesforce/codegen-2B-mono': 'https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json',
'Salesforce/codegen-6B-nl': 'https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json',
'Salesforce/codegen-6B-multi': 'https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json',
'Salesforce/codegen-6B-mono': 'https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json',
'Salesforce/codegen-16B-nl': 'https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json',
'Salesforce/codegen-16B-multi': 'https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json',
'Salesforce/codegen-16B-mono': 'https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json',
}
class A__ ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
SCREAMING_SNAKE_CASE = 'codegen'
SCREAMING_SNAKE_CASE = {
'max_position_embeddings': 'n_positions',
'hidden_size': 'n_embd',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self: Any , _SCREAMING_SNAKE_CASE: Dict=5_0400 , _SCREAMING_SNAKE_CASE: Optional[Any]=2048 , _SCREAMING_SNAKE_CASE: List[str]=2048 , _SCREAMING_SNAKE_CASE: Optional[int]=4096 , _SCREAMING_SNAKE_CASE: List[Any]=28 , _SCREAMING_SNAKE_CASE: Dict=16 , _SCREAMING_SNAKE_CASE: Dict=64 , _SCREAMING_SNAKE_CASE: Any=None , _SCREAMING_SNAKE_CASE: Optional[Any]="gelu_new" , _SCREAMING_SNAKE_CASE: str=0.0 , _SCREAMING_SNAKE_CASE: int=0.0 , _SCREAMING_SNAKE_CASE: Dict=0.0 , _SCREAMING_SNAKE_CASE: Union[str, Any]=1e-5 , _SCREAMING_SNAKE_CASE: Any=0.02 , _SCREAMING_SNAKE_CASE: List[str]=True , _SCREAMING_SNAKE_CASE: int=5_0256 , _SCREAMING_SNAKE_CASE: Optional[int]=5_0256 , _SCREAMING_SNAKE_CASE: Dict=False , **_SCREAMING_SNAKE_CASE: Union[str, Any] , ) -> int:
"""simple docstring"""
__lowerCAmelCase : List[Any] = vocab_size
__lowerCAmelCase : Any = n_ctx
__lowerCAmelCase : Tuple = n_positions
__lowerCAmelCase : Dict = n_embd
__lowerCAmelCase : Optional[Any] = n_layer
__lowerCAmelCase : Tuple = n_head
__lowerCAmelCase : List[str] = n_inner
__lowerCAmelCase : Union[str, Any] = rotary_dim
__lowerCAmelCase : Optional[Any] = activation_function
__lowerCAmelCase : str = resid_pdrop
__lowerCAmelCase : List[Any] = embd_pdrop
__lowerCAmelCase : Any = attn_pdrop
__lowerCAmelCase : Optional[int] = layer_norm_epsilon
__lowerCAmelCase : List[str] = initializer_range
__lowerCAmelCase : List[Any] = use_cache
__lowerCAmelCase : List[Any] = bos_token_id
__lowerCAmelCase : Optional[int] = eos_token_id
super().__init__(
bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , tie_word_embeddings=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE)
class A__ ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self: List[str] , _SCREAMING_SNAKE_CASE: PretrainedConfig , _SCREAMING_SNAKE_CASE: str = "default" , _SCREAMING_SNAKE_CASE: List[PatchingSpec] = None , _SCREAMING_SNAKE_CASE: bool = False , ) -> Tuple:
"""simple docstring"""
super().__init__(_SCREAMING_SNAKE_CASE , task=_SCREAMING_SNAKE_CASE , patching_specs=_SCREAMING_SNAKE_CASE , use_past=_SCREAMING_SNAKE_CASE)
if not getattr(self._config , "pad_token_id" , _SCREAMING_SNAKE_CASE):
# TODO: how to do that better?
__lowerCAmelCase : List[str] = 0
@property
def _SCREAMING_SNAKE_CASE ( self: int) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
__lowerCAmelCase : Optional[Any] = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}})
if self.use_past:
self.fill_with_past_key_values_(_SCREAMING_SNAKE_CASE , direction="inputs")
__lowerCAmelCase : Dict = {0: "batch", 1: "past_sequence + sequence"}
else:
__lowerCAmelCase : Tuple = {0: "batch", 1: "sequence"}
return common_inputs
@property
def _SCREAMING_SNAKE_CASE ( self: Dict) -> int:
"""simple docstring"""
return self._config.n_layer
@property
def _SCREAMING_SNAKE_CASE ( self: Optional[int]) -> int:
"""simple docstring"""
return self._config.n_head
def _SCREAMING_SNAKE_CASE ( self: List[Any] , _SCREAMING_SNAKE_CASE: PreTrainedTokenizer , _SCREAMING_SNAKE_CASE: int = -1 , _SCREAMING_SNAKE_CASE: int = -1 , _SCREAMING_SNAKE_CASE: bool = False , _SCREAMING_SNAKE_CASE: Optional[TensorType] = None , ) -> Mapping[str, Any]:
"""simple docstring"""
__lowerCAmelCase : List[Any] = super(_SCREAMING_SNAKE_CASE , self).generate_dummy_inputs(
_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , seq_length=_SCREAMING_SNAKE_CASE , is_pair=_SCREAMING_SNAKE_CASE , framework=_SCREAMING_SNAKE_CASE)
# We need to order the input in the way they appears in the forward()
__lowerCAmelCase : Optional[Any] = OrderedDict({"input_ids": common_inputs["input_ids"]})
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
else:
import torch
__lowerCAmelCase : int = common_inputs["input_ids"].shape
# Not using the same length for past_key_values
__lowerCAmelCase : Optional[int] = seqlen + 2
__lowerCAmelCase : int = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
__lowerCAmelCase : Optional[int] = [
(torch.zeros(_SCREAMING_SNAKE_CASE), torch.zeros(_SCREAMING_SNAKE_CASE)) for _ in range(self.num_layers)
]
__lowerCAmelCase : Any = common_inputs["attention_mask"]
if self.use_past:
__lowerCAmelCase : Union[str, Any] = ordered_inputs["attention_mask"].dtype
__lowerCAmelCase : Tuple = torch.cat(
[ordered_inputs["attention_mask"], torch.ones(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE)] , dim=1)
return ordered_inputs
@property
def _SCREAMING_SNAKE_CASE ( self: Tuple) -> int:
"""simple docstring"""
return 13
| 352
|
"""simple docstring"""
from argparse import ArgumentParser
from datasets.commands.convert import ConvertCommand
from datasets.commands.dummy_data import DummyDataCommand
from datasets.commands.env import EnvironmentCommand
from datasets.commands.run_beam import RunBeamCommand
from datasets.commands.test import TestCommand
from datasets.utils.logging import set_verbosity_info
def _lowercase ( __snake_case ) -> Dict:
return {key.lstrip("-" ): value for key, value in zip(unknown_args[::2] ,unknown_args[1::2] )}
def _lowercase ( ) -> Union[str, Any]:
__lowerCAmelCase : List[str] = ArgumentParser(
"HuggingFace Datasets CLI tool" ,usage="datasets-cli <command> [<args>]" ,allow_abbrev=__snake_case )
__lowerCAmelCase : str = parser.add_subparsers(help="datasets-cli command helpers" )
set_verbosity_info()
# Register commands
ConvertCommand.register_subcommand(__snake_case )
EnvironmentCommand.register_subcommand(__snake_case )
TestCommand.register_subcommand(__snake_case )
RunBeamCommand.register_subcommand(__snake_case )
DummyDataCommand.register_subcommand(__snake_case )
# Parse args
__lowerCAmelCase , __lowerCAmelCase : Any = parser.parse_known_args()
if not hasattr(__snake_case ,"func" ):
parser.print_help()
exit(1 )
__lowerCAmelCase : List[Any] = parse_unknown_args(__snake_case )
# Run
__lowerCAmelCase : Union[str, Any] = args.func(__snake_case ,**__snake_case )
service.run()
if __name__ == "__main__":
main()
| 58
| 0
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.