code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class _A ( ctypes.Structure ): # _fields is a specific attr expected by ctypes _SCREAMING_SNAKE_CASE : List[str] = [("size", ctypes.c_int), ("visible", ctypes.c_byte)] def lowercase_ ( ): """simple docstring""" if os.name == "nt": __UpperCAmelCase : List[str] = CursorInfo() __UpperCAmelCase : List[Any] = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(lowerCAmelCase__ , ctypes.byref(lowerCAmelCase__ ) ) __UpperCAmelCase : Optional[Any] = False ctypes.windll.kernelaa.SetConsoleCursorInfo(lowerCAmelCase__ , ctypes.byref(lowerCAmelCase__ ) ) elif os.name == "posix": sys.stdout.write("""\033[?25l""" ) sys.stdout.flush() def lowercase_ ( ): """simple docstring""" if os.name == "nt": __UpperCAmelCase : int = CursorInfo() __UpperCAmelCase : str = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(lowerCAmelCase__ , ctypes.byref(lowerCAmelCase__ ) ) __UpperCAmelCase : Optional[Any] = True ctypes.windll.kernelaa.SetConsoleCursorInfo(lowerCAmelCase__ , ctypes.byref(lowerCAmelCase__ ) ) elif os.name == "posix": sys.stdout.write("""\033[?25h""" ) sys.stdout.flush() @contextmanager def lowercase_ ( ): """simple docstring""" try: hide_cursor() yield finally: show_cursor()
254
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer _UpperCamelCase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _UpperCamelCase = { '''vocab_file''': { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''unc-nlp/lxmert-base-uncased''': ( '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json''' ), }, } _UpperCamelCase = { '''unc-nlp/lxmert-base-uncased''': 512, } _UpperCamelCase = { '''unc-nlp/lxmert-base-uncased''': {'''do_lower_case''': True}, } class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[Any] = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION _SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : List[str] = LxmertTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Dict: '''simple docstring''' super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , ) __UpperCAmelCase : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , __UpperCAmelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" , __UpperCAmelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , __UpperCAmelCase ) != tokenize_chinese_chars ): __UpperCAmelCase : Any = getattr(__UpperCAmelCase , normalizer_state.pop("""type""" ) ) __UpperCAmelCase : Optional[Any] = do_lower_case __UpperCAmelCase : Optional[Any] = strip_accents __UpperCAmelCase : str = tokenize_chinese_chars __UpperCAmelCase : str = normalizer_class(**__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = do_lower_case def __A ( self , __UpperCAmelCase , __UpperCAmelCase=None ) -> Any: '''simple docstring''' __UpperCAmelCase : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' __UpperCAmelCase : Tuple = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase )
254
1
from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput _SCREAMING_SNAKE_CASE = 8 def lowercase( UpperCamelCase_ , UpperCamelCase_=BITS ) -> int: '''simple docstring''' UpperCamelCase = x.device UpperCamelCase = (x * 255).int().clamp(0 , 255 ) UpperCamelCase = 2 ** torch.arange(bits - 1 , -1 , -1 , device=UpperCamelCase_ ) UpperCamelCase = rearrange(UpperCamelCase_ , """d -> d 1 1""" ) UpperCamelCase = rearrange(UpperCamelCase_ , """b c h w -> b c 1 h w""" ) UpperCamelCase = ((x & mask) != 0).float() UpperCamelCase = rearrange(UpperCamelCase_ , """b c d h w -> b (c d) h w""" ) UpperCamelCase = bits * 2 - 1 return bits def lowercase( UpperCamelCase_ , UpperCamelCase_=BITS ) -> Tuple: '''simple docstring''' UpperCamelCase = x.device UpperCamelCase = (x > 0).int() UpperCamelCase = 2 ** torch.arange(bits - 1 , -1 , -1 , device=UpperCamelCase_ , dtype=torch.intaa ) UpperCamelCase = rearrange(UpperCamelCase_ , """d -> d 1 1""" ) UpperCamelCase = rearrange(UpperCamelCase_ , """b (c d) h w -> b c d h w""" , d=8 ) UpperCamelCase = reduce(x * mask , """b c d h w -> b c h w""" , """sum""" ) return (dec / 255).clamp(0.0 , 1.0 ) def lowercase( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = 0.0 , UpperCamelCase_ = True , UpperCamelCase_=None , UpperCamelCase_ = True , ) -> Union[DDIMSchedulerOutput, Tuple]: '''simple docstring''' if self.num_inference_steps is None: raise ValueError( """Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""" ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) UpperCamelCase = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas UpperCamelCase = self.alphas_cumprod[timestep] UpperCamelCase = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod UpperCamelCase = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf UpperCamelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" UpperCamelCase = self.bit_scale if self.config.clip_sample: UpperCamelCase = torch.clamp(UpperCamelCase_ , -scale , UpperCamelCase_ ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) UpperCamelCase = self._get_variance(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide UpperCamelCase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf UpperCamelCase = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf UpperCamelCase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 UpperCamelCase = model_output.device if torch.is_tensor(UpperCamelCase_ ) else """cpu""" UpperCamelCase = torch.randn(model_output.shape , dtype=model_output.dtype , generator=UpperCamelCase_ ).to(UpperCamelCase_ ) UpperCamelCase = self._get_variance(UpperCamelCase_ , UpperCamelCase_ ) ** 0.5 * eta * noise UpperCamelCase = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=UpperCamelCase_ , pred_original_sample=UpperCamelCase_ ) def lowercase( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_="epsilon" , UpperCamelCase_=None , UpperCamelCase_ = True , ) -> Union[DDPMSchedulerOutput, Tuple]: '''simple docstring''' UpperCamelCase = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: UpperCamelCase , UpperCamelCase = torch.split(UpperCamelCase_ , sample.shape[1] , dim=1 ) else: UpperCamelCase = None # 1. compute alphas, betas UpperCamelCase = self.alphas_cumprod[t] UpperCamelCase = self.alphas_cumprod[t - 1] if t > 0 else self.one UpperCamelCase = 1 - alpha_prod_t UpperCamelCase = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": UpperCamelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": UpperCamelCase = model_output else: raise ValueError(f"""Unsupported prediction_type {prediction_type}.""" ) # 3. Clip "predicted x_0" UpperCamelCase = self.bit_scale if self.config.clip_sample: UpperCamelCase = torch.clamp(UpperCamelCase_ , -scale , UpperCamelCase_ ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCamelCase = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t UpperCamelCase = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCamelCase = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise UpperCamelCase = 0 if t > 0: UpperCamelCase = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=UpperCamelCase_ ).to(model_output.device ) UpperCamelCase = (self._get_variance(UpperCamelCase_ , predicted_variance=UpperCamelCase_ ) ** 0.5) * noise UpperCamelCase = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=UpperCamelCase_ , pred_original_sample=UpperCamelCase_ ) class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): def __init__( self : Any , lowerCamelCase_ : UNetaDConditionModel , lowerCamelCase_ : Union[DDIMScheduler, DDPMScheduler] , lowerCamelCase_ : Optional[float] = 1.0 , ): """simple docstring""" super().__init__() UpperCamelCase = bit_scale UpperCamelCase = ( ddim_bit_scheduler_step if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else ddpm_bit_scheduler_step ) self.register_modules(unet=lowerCamelCase_ , scheduler=lowerCamelCase_ ) @torch.no_grad() def __call__( self : Tuple , lowerCamelCase_ : Optional[int] = 256 , lowerCamelCase_ : Optional[int] = 256 , lowerCamelCase_ : Optional[int] = 50 , lowerCamelCase_ : Optional[torch.Generator] = None , lowerCamelCase_ : Optional[int] = 1 , lowerCamelCase_ : Optional[str] = "pil" , lowerCamelCase_ : bool = True , **lowerCamelCase_ : List[Any] , ): """simple docstring""" UpperCamelCase = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=lowerCamelCase_ , ) UpperCamelCase = decimal_to_bits(lowerCamelCase_ ) * self.bit_scale UpperCamelCase = latents.to(self.device ) self.scheduler.set_timesteps(lowerCamelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual UpperCamelCase = self.unet(lowerCamelCase_ , lowerCamelCase_ ).sample # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase = self.scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).prev_sample UpperCamelCase = bits_to_decimal(lowerCamelCase_ ) if output_type == "pil": UpperCamelCase = self.numpy_to_pil(lowerCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCamelCase_ )
165
from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): def __init__( self : Dict , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[Any] ): """simple docstring""" super().__init__() # make sure scheduler can always be converted to DDIM UpperCamelCase = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=lowerCamelCase_ , scheduler=lowerCamelCase_ ) @torch.no_grad() def __call__( self : Union[str, Any] , lowerCamelCase_ : int = 1 , lowerCamelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase_ : float = 0.0 , lowerCamelCase_ : int = 50 , lowerCamelCase_ : Optional[bool] = None , lowerCamelCase_ : Optional[str] = "pil" , lowerCamelCase_ : bool = True , ): """simple docstring""" if isinstance(self.unet.config.sample_size , lowerCamelCase_ ): UpperCamelCase = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: UpperCamelCase = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) and len(lowerCamelCase_ ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(lowerCamelCase_ )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) UpperCamelCase = randn_tensor(lowerCamelCase_ , generator=lowerCamelCase_ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(lowerCamelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output UpperCamelCase = self.unet(lowerCamelCase_ , lowerCamelCase_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 UpperCamelCase = self.scheduler.step( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , eta=lowerCamelCase_ , use_clipped_model_output=lowerCamelCase_ , generator=lowerCamelCase_ ).prev_sample UpperCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase = self.numpy_to_pil(lowerCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCamelCase_ )
165
1
'''simple docstring''' from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class a__( lowerCAmelCase__ ): '''simple docstring''' UpperCAmelCase_ : "DiagonalGaussianDistribution" class a__( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' UpperCAmelCase_ : str = True @register_to_config def __init__( self , __lowerCAmelCase = 3 , __lowerCAmelCase = 3 , __lowerCAmelCase = ("DownEncoderBlock2D",) , __lowerCAmelCase = ("UpDecoderBlock2D",) , __lowerCAmelCase = (64,) , __lowerCAmelCase = 1 , __lowerCAmelCase = "silu" , __lowerCAmelCase = 4 , __lowerCAmelCase = 32 , __lowerCAmelCase = 32 , __lowerCAmelCase = 0.18215 , ): """simple docstring""" super().__init__() # pass init params to Encoder lowerCAmelCase = Encoder( in_channels=__lowerCAmelCase , out_channels=__lowerCAmelCase , down_block_types=__lowerCAmelCase , block_out_channels=__lowerCAmelCase , layers_per_block=__lowerCAmelCase , act_fn=__lowerCAmelCase , norm_num_groups=__lowerCAmelCase , double_z=__lowerCAmelCase , ) # pass init params to Decoder lowerCAmelCase = Decoder( in_channels=__lowerCAmelCase , out_channels=__lowerCAmelCase , up_block_types=__lowerCAmelCase , block_out_channels=__lowerCAmelCase , layers_per_block=__lowerCAmelCase , norm_num_groups=__lowerCAmelCase , act_fn=__lowerCAmelCase , ) lowerCAmelCase = nn.Convad(2 * latent_channels , 2 * latent_channels , 1) lowerCAmelCase = nn.Convad(__lowerCAmelCase , __lowerCAmelCase , 1) lowerCAmelCase = False lowerCAmelCase = False # only relevant if vae tiling is enabled lowerCAmelCase = self.config.sample_size lowerCAmelCase = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple)) else self.config.sample_size ) lowerCAmelCase = int(sample_size / (2 ** (len(self.config.block_out_channels) - 1))) lowerCAmelCase = 0.25 def a_ ( self , __lowerCAmelCase , __lowerCAmelCase=False): """simple docstring""" if isinstance(__lowerCAmelCase , (Encoder, Decoder)): lowerCAmelCase = value def a_ ( self , __lowerCAmelCase = True): """simple docstring""" lowerCAmelCase = use_tiling def a_ ( self): """simple docstring""" self.enable_tiling(__lowerCAmelCase) def a_ ( self): """simple docstring""" lowerCAmelCase = True def a_ ( self): """simple docstring""" lowerCAmelCase = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def a_ ( self): """simple docstring""" lowerCAmelCase = {} def fn_recursive_add_processors(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase): if hasattr(__lowerCAmelCase , """set_processor"""): lowerCAmelCase = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}" , __lowerCAmelCase , __lowerCAmelCase) return processors for name, module in self.named_children(): fn_recursive_add_processors(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase) return processors def a_ ( self , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = len(self.attn_processors.keys()) if isinstance(__lowerCAmelCase , __lowerCAmelCase) and len(__lowerCAmelCase) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(__lowerCAmelCase)} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes.") def fn_recursive_attn_processor(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase): if hasattr(__lowerCAmelCase , """set_processor"""): if not isinstance(__lowerCAmelCase , __lowerCAmelCase): module.set_processor(__lowerCAmelCase) else: module.set_processor(processor.pop(f"{name}.processor")) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}" , __lowerCAmelCase , __lowerCAmelCase) for name, module in self.named_children(): fn_recursive_attn_processor(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase) def a_ ( self): """simple docstring""" self.set_attn_processor(AttnProcessor()) @apply_forward_hook def a_ ( self , __lowerCAmelCase , __lowerCAmelCase = True): """simple docstring""" if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(__lowerCAmelCase , return_dict=__lowerCAmelCase) if self.use_slicing and x.shape[0] > 1: lowerCAmelCase = [self.encoder(__lowerCAmelCase) for x_slice in x.split(1)] lowerCAmelCase = torch.cat(__lowerCAmelCase) else: lowerCAmelCase = self.encoder(__lowerCAmelCase) lowerCAmelCase = self.quant_conv(__lowerCAmelCase) lowerCAmelCase = DiagonalGaussianDistribution(__lowerCAmelCase) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=__lowerCAmelCase) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase = True): """simple docstring""" if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(__lowerCAmelCase , return_dict=__lowerCAmelCase) lowerCAmelCase = self.post_quant_conv(__lowerCAmelCase) lowerCAmelCase = self.decoder(__lowerCAmelCase) if not return_dict: return (dec,) return DecoderOutput(sample=__lowerCAmelCase) @apply_forward_hook def a_ ( self , __lowerCAmelCase , __lowerCAmelCase = True): """simple docstring""" if self.use_slicing and z.shape[0] > 1: lowerCAmelCase = [self._decode(__lowerCAmelCase).sample for z_slice in z.split(1)] lowerCAmelCase = torch.cat(__lowerCAmelCase) else: lowerCAmelCase = self._decode(__lowerCAmelCase).sample if not return_dict: return (decoded,) return DecoderOutput(sample=__lowerCAmelCase) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = min(a.shape[2] , b.shape[2] , __lowerCAmelCase) for y in range(__lowerCAmelCase): lowerCAmelCase = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = min(a.shape[3] , b.shape[3] , __lowerCAmelCase) for x in range(__lowerCAmelCase): lowerCAmelCase = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def a_ ( self , __lowerCAmelCase , __lowerCAmelCase = True): """simple docstring""" lowerCAmelCase = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor)) lowerCAmelCase = int(self.tile_latent_min_size * self.tile_overlap_factor) lowerCAmelCase = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. lowerCAmelCase = [] for i in range(0 , x.shape[2] , __lowerCAmelCase): lowerCAmelCase = [] for j in range(0 , x.shape[3] , __lowerCAmelCase): lowerCAmelCase = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] lowerCAmelCase = self.encoder(__lowerCAmelCase) lowerCAmelCase = self.quant_conv(__lowerCAmelCase) row.append(__lowerCAmelCase) rows.append(__lowerCAmelCase) lowerCAmelCase = [] for i, row in enumerate(__lowerCAmelCase): lowerCAmelCase = [] for j, tile in enumerate(__lowerCAmelCase): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: lowerCAmelCase = self.blend_v(rows[i - 1][j] , __lowerCAmelCase , __lowerCAmelCase) if j > 0: lowerCAmelCase = self.blend_h(row[j - 1] , __lowerCAmelCase , __lowerCAmelCase) result_row.append(tile[:, :, :row_limit, :row_limit]) result_rows.append(torch.cat(__lowerCAmelCase , dim=3)) lowerCAmelCase = torch.cat(__lowerCAmelCase , dim=2) lowerCAmelCase = DiagonalGaussianDistribution(__lowerCAmelCase) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=__lowerCAmelCase) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase = True): """simple docstring""" lowerCAmelCase = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor)) lowerCAmelCase = int(self.tile_sample_min_size * self.tile_overlap_factor) lowerCAmelCase = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. lowerCAmelCase = [] for i in range(0 , z.shape[2] , __lowerCAmelCase): lowerCAmelCase = [] for j in range(0 , z.shape[3] , __lowerCAmelCase): lowerCAmelCase = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] lowerCAmelCase = self.post_quant_conv(__lowerCAmelCase) lowerCAmelCase = self.decoder(__lowerCAmelCase) row.append(__lowerCAmelCase) rows.append(__lowerCAmelCase) lowerCAmelCase = [] for i, row in enumerate(__lowerCAmelCase): lowerCAmelCase = [] for j, tile in enumerate(__lowerCAmelCase): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: lowerCAmelCase = self.blend_v(rows[i - 1][j] , __lowerCAmelCase , __lowerCAmelCase) if j > 0: lowerCAmelCase = self.blend_h(row[j - 1] , __lowerCAmelCase , __lowerCAmelCase) result_row.append(tile[:, :, :row_limit, :row_limit]) result_rows.append(torch.cat(__lowerCAmelCase , dim=3)) lowerCAmelCase = torch.cat(__lowerCAmelCase , dim=2) if not return_dict: return (dec,) return DecoderOutput(sample=__lowerCAmelCase) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase = False , __lowerCAmelCase = True , __lowerCAmelCase = None , ): """simple docstring""" lowerCAmelCase = sample lowerCAmelCase = self.encode(__lowerCAmelCase).latent_dist if sample_posterior: lowerCAmelCase = posterior.sample(generator=__lowerCAmelCase) else: lowerCAmelCase = posterior.mode() lowerCAmelCase = self.decode(__lowerCAmelCase).sample if not return_dict: return (dec,) return DecoderOutput(sample=__lowerCAmelCase)
272
'''simple docstring''' import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __lowercase = logging.get_logger(__name__) class a__( lowerCAmelCase__ ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = ['''input_features'''] def __init__( self , __lowerCAmelCase=80 , __lowerCAmelCase=16000 , __lowerCAmelCase=160 , __lowerCAmelCase=30 , __lowerCAmelCase=400 , __lowerCAmelCase=0.0 , __lowerCAmelCase=False , **__lowerCAmelCase , ): """simple docstring""" super().__init__( feature_size=__lowerCAmelCase , sampling_rate=__lowerCAmelCase , padding_value=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , **__lowerCAmelCase , ) lowerCAmelCase = n_fft lowerCAmelCase = hop_length lowerCAmelCase = chunk_length lowerCAmelCase = chunk_length * sampling_rate lowerCAmelCase = self.n_samples // hop_length lowerCAmelCase = sampling_rate lowerCAmelCase = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__lowerCAmelCase , min_frequency=0.0 , max_frequency=8000.0 , sampling_rate=__lowerCAmelCase , norm="""slaney""" , mel_scale="""slaney""" , ) def a_ ( self , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = spectrogram( __lowerCAmelCase , window_function(self.n_fft , """hann""") , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel="""log10""" , ) lowerCAmelCase = log_spec[:, :-1] lowerCAmelCase = np.maximum(__lowerCAmelCase , log_spec.max() - 8.0) lowerCAmelCase = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def a_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 0.0): """simple docstring""" if attention_mask is not None: lowerCAmelCase = np.array(__lowerCAmelCase , np.intaa) lowerCAmelCase = [] for vector, length in zip(__lowerCAmelCase , attention_mask.sum(-1)): lowerCAmelCase = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7) if length < normed_slice.shape[0]: lowerCAmelCase = padding_value normed_input_values.append(__lowerCAmelCase) else: lowerCAmelCase = [(x - x.mean()) / np.sqrt(x.var() + 1E-7) for x in input_values] return normed_input_values def __call__( self , __lowerCAmelCase , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = "max_length" , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a" f" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input" f" was sampled with {self.sampling_rate} and not {sampling_rate}.") else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""") lowerCAmelCase = isinstance(__lowerCAmelCase , np.ndarray) and len(raw_speech.shape) > 1 if is_batched_numpy and len(raw_speech.shape) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}") lowerCAmelCase = is_batched_numpy or ( isinstance(__lowerCAmelCase , (list, tuple)) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list))) ) if is_batched: lowerCAmelCase = [np.asarray([speech] , dtype=np.floataa).T for speech in raw_speech] elif not is_batched and not isinstance(__lowerCAmelCase , np.ndarray): lowerCAmelCase = np.asarray(__lowerCAmelCase , dtype=np.floataa) elif isinstance(__lowerCAmelCase , np.ndarray) and raw_speech.dtype is np.dtype(np.floataa): lowerCAmelCase = raw_speech.astype(np.floataa) # always return batch if not is_batched: lowerCAmelCase = [np.asarray([raw_speech]).T] lowerCAmelCase = BatchFeature({"""input_features""": raw_speech}) # convert into correct format for padding lowerCAmelCase = self.pad( __lowerCAmelCase , padding=__lowerCAmelCase , max_length=max_length if max_length else self.n_samples , truncation=__lowerCAmelCase , pad_to_multiple_of=__lowerCAmelCase , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: lowerCAmelCase = self.zero_mean_unit_var_norm( padded_inputs["""input_features"""] , attention_mask=padded_inputs["""attention_mask"""] , padding_value=self.padding_value , ) lowerCAmelCase = np.stack(padded_inputs["""input_features"""] , axis=0) # make sure list is in array format lowerCAmelCase = padded_inputs.get("""input_features""").transpose(2 , 0 , 1) lowerCAmelCase = [self._np_extract_fbank_features(__lowerCAmelCase) for waveform in input_features[0]] if isinstance(input_features[0] , __lowerCAmelCase): lowerCAmelCase = [np.asarray(__lowerCAmelCase , dtype=np.floataa) for feature in input_features] else: lowerCAmelCase = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) lowerCAmelCase = padded_inputs["""attention_mask"""][:, :: self.hop_length] if return_tensors is not None: lowerCAmelCase = padded_inputs.convert_to_tensors(__lowerCAmelCase) return padded_inputs def a_ ( self): """simple docstring""" lowerCAmelCase = copy.deepcopy(self.__dict__) lowerCAmelCase = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
272
1
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging UpperCamelCase__ =logging.get_logger(__name__) def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : Dict = nn.functional.normalize(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = nn.functional.normalize(__lowerCamelCase ) return torch.mm(__lowerCamelCase, normalized_text_embeds.t() ) class lowerCAmelCase__( __A ): '''simple docstring''' __snake_case = CLIPConfig __snake_case = ['CLIPEncoderLayer'] def __init__( self , __lowerCamelCase ) -> int: super().__init__(__lowercase ) _SCREAMING_SNAKE_CASE : List[str] = CLIPVisionModel(config.vision_config ) _SCREAMING_SNAKE_CASE : Dict = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=__lowercase ) _SCREAMING_SNAKE_CASE : List[Any] = nn.Parameter(torch.ones(1_7 , config.projection_dim ) , requires_grad=__lowercase ) _SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=__lowercase ) _SCREAMING_SNAKE_CASE : Tuple = nn.Parameter(torch.ones(1_7 ) , requires_grad=__lowercase ) _SCREAMING_SNAKE_CASE : Optional[int] = nn.Parameter(torch.ones(3 ) , requires_grad=__lowercase ) @torch.no_grad() def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> Tuple: _SCREAMING_SNAKE_CASE : int = self.vision_model(__lowercase )[1] # pooled_output _SCREAMING_SNAKE_CASE : Tuple = self.visual_projection(__lowercase ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _SCREAMING_SNAKE_CASE : Tuple = cosine_distance(__lowercase , self.special_care_embeds ).cpu().float().numpy() _SCREAMING_SNAKE_CASE : Optional[Any] = cosine_distance(__lowercase , self.concept_embeds ).cpu().float().numpy() _SCREAMING_SNAKE_CASE : List[Any] = [] _SCREAMING_SNAKE_CASE : Union[str, Any] = image_embeds.shape[0] for i in range(__lowercase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = {"special_scores": {}, "special_care": [], "concept_scores": {}, "bad_concepts": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images _SCREAMING_SNAKE_CASE : Dict = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): _SCREAMING_SNAKE_CASE : Optional[Any] = special_cos_dist[i][concept_idx] _SCREAMING_SNAKE_CASE : Tuple = self.special_care_embeds_weights[concept_idx].item() _SCREAMING_SNAKE_CASE : List[str] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["special_scores"][concept_idx]} ) _SCREAMING_SNAKE_CASE : Tuple = 0.01 for concept_idx in range(len(cos_dist[0] ) ): _SCREAMING_SNAKE_CASE : str = cos_dist[i][concept_idx] _SCREAMING_SNAKE_CASE : List[Any] = self.concept_embeds_weights[concept_idx].item() _SCREAMING_SNAKE_CASE : Optional[Any] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(__lowercase ) result.append(__lowercase ) _SCREAMING_SNAKE_CASE : str = [len(res["bad_concepts"] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> int: _SCREAMING_SNAKE_CASE : Tuple = self.vision_model(__lowercase )[1] # pooled_output _SCREAMING_SNAKE_CASE : str = self.visual_projection(__lowercase ) _SCREAMING_SNAKE_CASE : Tuple = cosine_distance(__lowercase , self.special_care_embeds ) _SCREAMING_SNAKE_CASE : Tuple = cosine_distance(__lowercase , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images _SCREAMING_SNAKE_CASE : int = 0.0 _SCREAMING_SNAKE_CASE : Optional[int] = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) _SCREAMING_SNAKE_CASE : Optional[Any] = torch.any(special_scores > 0 , dim=1 ) _SCREAMING_SNAKE_CASE : Any = special_care * 0.01 _SCREAMING_SNAKE_CASE : int = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) _SCREAMING_SNAKE_CASE : Dict = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) _SCREAMING_SNAKE_CASE : List[str] = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
359
from timeit import timeit def lowerCamelCase__ (__lowerCamelCase ): if number < 0: raise ValueError("the value of input must not be negative" ) _SCREAMING_SNAKE_CASE : str = 0 while number: number &= number - 1 result += 1 return result def lowerCamelCase__ (__lowerCamelCase ): if number < 0: raise ValueError("the value of input must not be negative" ) _SCREAMING_SNAKE_CASE : str = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def lowerCamelCase__ (): def do_benchmark(__lowerCamelCase ) -> None: _SCREAMING_SNAKE_CASE : Tuple = "import __main__ as z" print(f"""Benchmark when {number = }:""" ) print(f"""{get_set_bits_count_using_modulo_operator(__lowerCamelCase ) = }""" ) _SCREAMING_SNAKE_CASE : str = timeit("z.get_set_bits_count_using_modulo_operator(25)", setup=__lowerCamelCase ) print(f"""timeit() runs in {timing} seconds""" ) print(f"""{get_set_bits_count_using_brian_kernighans_algorithm(__lowerCamelCase ) = }""" ) _SCREAMING_SNAKE_CASE : int = timeit( "z.get_set_bits_count_using_brian_kernighans_algorithm(25)", setup=__lowerCamelCase, ) print(f"""timeit() runs in {timing} seconds""" ) for number in (25, 37, 58, 0): do_benchmark(__lowerCamelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
325
0
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( UpperCamelCase_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase__ : Any = CLIPTokenizer UpperCamelCase__ : str = CLIPTokenizerFast UpperCamelCase__ : Union[str, Any] = True UpperCamelCase__ : Any = {} UpperCamelCase__ : Any = False def _A ( self ): '''simple docstring''' super().setUp() # fmt: off __SCREAMING_SNAKE_CASE = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on __SCREAMING_SNAKE_CASE = dict(zip(_A , range(len(_A ) ) ) ) __SCREAMING_SNAKE_CASE = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>'] __SCREAMING_SNAKE_CASE = {'unk_token': '<unk>'} __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_A ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_A ) ) def _A ( self , **_A ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **_A ) def _A ( self , **_A ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_A ) def _A ( self , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = 'lower newer' __SCREAMING_SNAKE_CASE = 'lower newer' return input_text, output_text def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __SCREAMING_SNAKE_CASE = 'lower newer' __SCREAMING_SNAKE_CASE = ['lo', 'w', 'er</w>', 'n', 'e', 'w', 'er</w>'] __SCREAMING_SNAKE_CASE = tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) __SCREAMING_SNAKE_CASE = tokens + [tokenizer.unk_token] __SCREAMING_SNAKE_CASE = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , _A ) @require_ftfy def _A ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(_A , **_A ) __SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(_A , **_A ) __SCREAMING_SNAKE_CASE = 'A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.' __SCREAMING_SNAKE_CASE = tokenizer_s.tokenize(_A ) __SCREAMING_SNAKE_CASE = tokenizer_r.tokenize(_A ) self.assertListEqual(_A , _A ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways __SCREAMING_SNAKE_CASE = 'xa\u0303y' + ' ' + 'x\xe3y' __SCREAMING_SNAKE_CASE = tokenizer_s.tokenize(_A ) __SCREAMING_SNAKE_CASE = tokenizer_r.tokenize(_A ) self.assertListEqual(_A , _A ) # Test that the tokenization is identical on unicode of space type __SCREAMING_SNAKE_CASE = [ '\u0009', # (horizontal tab, '\t') '\u000B', # (vertical tab) '\u000C', # (form feed) '\u0020', # (space, ' ') '\u200E', # (left-to-right mark):w '\u200F', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: __SCREAMING_SNAKE_CASE = tokenizer_s.tokenize(_A ) __SCREAMING_SNAKE_CASE = tokenizer_r.tokenize(_A ) self.assertListEqual(_A , _A ) # Test that the tokenization is identical on unicode of line break type __SCREAMING_SNAKE_CASE = [ '\u000A', # (line feed, '\n') '\r\n', # (carriage return and line feed, '\r\n') '\u000D', # (carriage return, '\r') '\r', # (carriage return, '\r') '\u000D', # (carriage return, '\r') '\u2028', # (line separator) '\u2029', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: __SCREAMING_SNAKE_CASE = tokenizer_s.tokenize(_A ) __SCREAMING_SNAKE_CASE = tokenizer_r.tokenize(_A ) self.assertListEqual(_A , _A ) def _A ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __SCREAMING_SNAKE_CASE = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` __SCREAMING_SNAKE_CASE = f"""{text_of_1_token} {text_of_1_token}""" __SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained( _A , use_fast=_A , ) __SCREAMING_SNAKE_CASE = tokenizer_r(_A , return_offsets_mapping=_A , add_special_tokens=_A ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_A )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_A ) + 1, len(_A ) + 1 + len(_A )) , ) __SCREAMING_SNAKE_CASE = f""" {text}""" __SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained( _A , use_fast=_A , ) __SCREAMING_SNAKE_CASE = tokenizer_r(_A , return_offsets_mapping=_A , add_special_tokens=_A ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_A )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_A ) + 1, 1 + len(_A ) + 1 + len(_A )) , ) def _A ( self ): '''simple docstring''' with self.assertRaises(_A ) as context: self.rust_tokenizer_class.from_pretrained('robot-test/old-clip-tokenizer' ) self.assertTrue( context.exception.args[0].startswith( 'The `backend_tokenizer` provided does not match the expected format.' ) ) @require_ftfy def _A ( self ): '''simple docstring''' super().test_tokenization_python_rust_equals() def _A ( self ): '''simple docstring''' pass
257
import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _A ( self ): '''simple docstring''' super().tearDown() gc.collect() def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( 'stabilityai/stable-diffusion-2' , revision='bf16' , dtype=jnp.bfloataa , ) __SCREAMING_SNAKE_CASE = 'A painting of a squirrel eating a burger' __SCREAMING_SNAKE_CASE = jax.device_count() __SCREAMING_SNAKE_CASE = num_samples * [prompt] __SCREAMING_SNAKE_CASE = sd_pipe.prepare_inputs(_A ) __SCREAMING_SNAKE_CASE = replicate(_A ) __SCREAMING_SNAKE_CASE = shard(_A ) __SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0 ) __SCREAMING_SNAKE_CASE = jax.random.split(_A , jax.device_count() ) __SCREAMING_SNAKE_CASE = sd_pipe(_A , _A , _A , num_inference_steps=25 , jit=_A )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) __SCREAMING_SNAKE_CASE = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __SCREAMING_SNAKE_CASE = images[0, 253:256, 253:256, -1] __SCREAMING_SNAKE_CASE = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __SCREAMING_SNAKE_CASE = jnp.array([0.4_2_3_8, 0.4_4_1_4, 0.4_3_9_5, 0.4_4_5_3, 0.4_6_2_9, 0.4_5_9_0, 0.4_5_3_1, 0.4_5_5_0_8, 0.4_5_1_2] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = 'stabilityai/stable-diffusion-2' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = FlaxDPMSolverMultistepScheduler.from_pretrained(_A , subfolder='scheduler' ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( _A , scheduler=_A , revision='bf16' , dtype=jnp.bfloataa , ) __SCREAMING_SNAKE_CASE = scheduler_params __SCREAMING_SNAKE_CASE = 'A painting of a squirrel eating a burger' __SCREAMING_SNAKE_CASE = jax.device_count() __SCREAMING_SNAKE_CASE = num_samples * [prompt] __SCREAMING_SNAKE_CASE = sd_pipe.prepare_inputs(_A ) __SCREAMING_SNAKE_CASE = replicate(_A ) __SCREAMING_SNAKE_CASE = shard(_A ) __SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0 ) __SCREAMING_SNAKE_CASE = jax.random.split(_A , jax.device_count() ) __SCREAMING_SNAKE_CASE = sd_pipe(_A , _A , _A , num_inference_steps=25 , jit=_A )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) __SCREAMING_SNAKE_CASE = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __SCREAMING_SNAKE_CASE = images[0, 253:256, 253:256, -1] __SCREAMING_SNAKE_CASE = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __SCREAMING_SNAKE_CASE = jnp.array([0.4_3_3_6, 0.4_2_9_6_9, 0.4_4_5_3, 0.4_1_9_9, 0.4_2_9_7, 0.4_5_3_1, 0.4_4_3_4, 0.4_4_3_4, 0.4_2_9_7] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
257
1
import itertools import os import re a :Any = re.compile(r"([A-Z]+)([A-Z][a-z])") a :Optional[int] = re.compile(r"([a-z\d])([A-Z])") a :str = re.compile(r"(?<!_)_(?!_)") a :Dict = re.compile(r"(_{2,})") a :int = r"^\w+(\.\w+)*$" a :Dict = r"<>:/\|?*" def _lowercase ( __lowerCAmelCase ) -> List[str]: SCREAMING_SNAKE_CASE__ : str = _uppercase_uppercase_re.sub(r"""\1_\2""" , __lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Any = _lowercase_uppercase_re.sub(r"""\1_\2""" , __lowerCAmelCase ) return name.lower() def _lowercase ( __lowerCAmelCase ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ : List[Any] = _single_underscore_re.split(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Any = [_multiple_underscores_re.split(__lowerCAmelCase ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(__lowerCAmelCase ) if n != """""" ) def _lowercase ( __lowerCAmelCase ) -> Optional[Any]: if os.path.basename(__lowerCAmelCase ) != name: raise ValueError(F'''Should be a dataset name, not a path: {name}''' ) return camelcase_to_snakecase(__lowerCAmelCase ) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> Any: if os.path.basename(__lowerCAmelCase ) != name: raise ValueError(F'''Should be a dataset name, not a path: {name}''' ) if not re.match(_split_re , __lowerCAmelCase ): raise ValueError(F'''Split name should match \'{_split_re}\'\' but got \'{split}\'.''' ) return F'''{filename_prefix_for_name(__lowerCAmelCase )}-{split}''' def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ : Dict = filename_prefix_for_split(__lowerCAmelCase , __lowerCAmelCase ) if filetype_suffix: prefix += F'''.{filetype_suffix}''' SCREAMING_SNAKE_CASE__ : Dict = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) return F'''{filepath}*''' def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None ) -> List[str]: SCREAMING_SNAKE_CASE__ : Optional[Any] = filename_prefix_for_split(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Any = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) if shard_lengths: SCREAMING_SNAKE_CASE__ : int = len(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : str = [F'''{prefix}-{shard_id:05d}-of-{num_shards:05d}''' for shard_id in range(__lowerCAmelCase )] if filetype_suffix: SCREAMING_SNAKE_CASE__ : List[str] = [filename + F'''.{filetype_suffix}''' for filename in filenames] return filenames else: SCREAMING_SNAKE_CASE__ : int = prefix if filetype_suffix: filename += F'''.{filetype_suffix}''' return [filename]
351
"""simple docstring""" import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class __a (tf.keras.optimizers.schedules.LearningRateSchedule): '''simple docstring''' def __init__( self , _a , _a , _a , _a = 1.0 , _a = None , ) -> Union[str, Any]: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ : List[Any] = initial_learning_rate SCREAMING_SNAKE_CASE__ : Tuple = warmup_steps SCREAMING_SNAKE_CASE__ : Optional[Any] = power SCREAMING_SNAKE_CASE__ : Optional[Any] = decay_schedule_fn SCREAMING_SNAKE_CASE__ : Any = name def __call__( self , _a ) -> List[Any]: """simple docstring""" with tf.name_scope(self.name or """WarmUp""" ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. SCREAMING_SNAKE_CASE__ : Optional[Any] = tf.cast(_a , tf.floataa ) SCREAMING_SNAKE_CASE__ : Optional[Any] = tf.cast(self.warmup_steps , tf.floataa ) SCREAMING_SNAKE_CASE__ : str = global_step_float / warmup_steps_float SCREAMING_SNAKE_CASE__ : Optional[int] = self.initial_learning_rate * tf.math.pow(_a , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=_a , ) def _a ( self ) -> List[Any]: """simple docstring""" return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 0.9 , __lowerCAmelCase = 0.999 , __lowerCAmelCase = 1E-8 , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 1.0 , __lowerCAmelCase = None , ) -> Dict: SCREAMING_SNAKE_CASE__ : Optional[int] = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=__lowerCAmelCase , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=__lowerCAmelCase , ) if num_warmup_steps: SCREAMING_SNAKE_CASE__ : Dict = WarmUp( initial_learning_rate=__lowerCAmelCase , decay_schedule_fn=__lowerCAmelCase , warmup_steps=__lowerCAmelCase , ) if weight_decay_rate > 0.0: SCREAMING_SNAKE_CASE__ : int = AdamWeightDecay( learning_rate=__lowerCAmelCase , weight_decay_rate=__lowerCAmelCase , beta_a=__lowerCAmelCase , beta_a=__lowerCAmelCase , epsilon=__lowerCAmelCase , clipnorm=__lowerCAmelCase , global_clipnorm=__lowerCAmelCase , exclude_from_weight_decay=["""LayerNorm""", """layer_norm""", """bias"""] , include_in_weight_decay=__lowerCAmelCase , ) else: SCREAMING_SNAKE_CASE__ : int = tf.keras.optimizers.Adam( learning_rate=__lowerCAmelCase , beta_a=__lowerCAmelCase , beta_a=__lowerCAmelCase , epsilon=__lowerCAmelCase , clipnorm=__lowerCAmelCase , global_clipnorm=__lowerCAmelCase , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class __a (UpperCamelCase_): '''simple docstring''' def __init__( self , _a = 0.001 , _a = 0.9 , _a = 0.999 , _a = 1E-7 , _a = False , _a = 0.0 , _a = None , _a = None , _a = "AdamWeightDecay" , **_a , ) -> Union[str, Any]: """simple docstring""" super().__init__(_a , _a , _a , _a , _a , _a , **_a ) SCREAMING_SNAKE_CASE__ : Tuple = weight_decay_rate SCREAMING_SNAKE_CASE__ : Tuple = include_in_weight_decay SCREAMING_SNAKE_CASE__ : Dict = exclude_from_weight_decay @classmethod def _a ( cls , _a ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = {"""WarmUp""": WarmUp} return super(_a , cls ).from_config(_a , custom_objects=_a ) def _a ( self , _a , _a , _a ) -> str: """simple docstring""" super(_a , self )._prepare_local(_a , _a , _a ) SCREAMING_SNAKE_CASE__ : Tuple = tf.constant( self.weight_decay_rate , name="""adam_weight_decay_rate""" ) def _a ( self , _a , _a , _a ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]["""weight_decay_rate"""] , use_locking=self._use_locking , ) return tf.no_op() def _a ( self , _a , _a=None , **_a ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = list(zip(*_a ) ) return super(_a , self ).apply_gradients(zip(_a , _a ) , name=_a , **_a ) def _a ( self , _a , _a , _a ) -> str: """simple docstring""" if apply_state is None: return self._decayed_lr_t[var_dtype], {} SCREAMING_SNAKE_CASE__ : Dict = apply_state or {} SCREAMING_SNAKE_CASE__ : List[str] = apply_state.get((var_device, var_dtype) ) if coefficients is None: SCREAMING_SNAKE_CASE__ : Union[str, Any] = self._fallback_apply_state(_a , _a ) SCREAMING_SNAKE_CASE__ : List[Any] = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def _a ( self , _a , _a , _a=None ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = self._get_lr(var.device , var.dtype.base_dtype , _a ) SCREAMING_SNAKE_CASE__ : Any = self._decay_weights_op(_a , _a , _a ) with tf.control_dependencies([decay] ): return super(_a , self )._resource_apply_dense(_a , _a , **_a ) def _a ( self , _a , _a , _a , _a=None ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = self._get_lr(var.device , var.dtype.base_dtype , _a ) SCREAMING_SNAKE_CASE__ : Dict = self._decay_weights_op(_a , _a , _a ) with tf.control_dependencies([decay] ): return super(_a , self )._resource_apply_sparse(_a , _a , _a , **_a ) def _a ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = super().get_config() config.update({"""weight_decay_rate""": self.weight_decay_rate} ) return config def _a ( self , _a ) -> Tuple: """simple docstring""" if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(_a , _a ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(_a , _a ) is not None: return False return True class __a (UpperCamelCase_): '''simple docstring''' def __init__( self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = [] SCREAMING_SNAKE_CASE__ : List[str] = None @property def _a ( self ) -> str: """simple docstring""" if self._accum_steps is None: SCREAMING_SNAKE_CASE__ : Dict = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=_a , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def _a ( self ) -> List[str]: """simple docstring""" if not self._gradients: raise ValueError("""The accumulator should be called first to initialize the gradients""" ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self , _a ) -> str: """simple docstring""" if not self._gradients: SCREAMING_SNAKE_CASE__ : Optional[Any] = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(_a ) , trainable=_a , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(_a ) != len(self._gradients ): raise ValueError(f'''Expected {len(self._gradients )} gradients, but got {len(_a )}''' ) for accum_gradient, gradient in zip(self._gradients , _a ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(_a ) self._accum_steps.assign_add(1 ) def _a ( self ) -> Any: """simple docstring""" if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(_a ) )
56
0
"""simple docstring""" # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def __lowercase ( _a , _a , _a=0 ): # Format the message. if name is None: snake_case_ : str = None else: snake_case_ : Optional[int] = '''.''' * max(0 , spaces - 2 ) + '''# {:''' + str(50 - spaces ) + '''s}''' snake_case_ : Optional[Any] = fmt.format(_a ) # Print and recurse (if needed). if isinstance(_a , _a ): if msg is not None: print(_a ) for k in val.keys(): recursive_print(_a , val[k] , spaces + 2 ) elif isinstance(_a , torch.Tensor ): print(_a , ''':''' , val.size() ) else: print(_a , ''':''' , _a ) def __lowercase ( _a , _a , _a , _a , _a ): # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. snake_case_ : Tuple = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] snake_case_ : str = (num_heads, hidden_size, num_splits) + input_shape[1:] snake_case_ : Any = param.view(*_a ) snake_case_ : Tuple = param.transpose(0 , 2 ) snake_case_ : int = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] snake_case_ : Tuple = (num_heads, num_splits, hidden_size) + input_shape[1:] snake_case_ : Any = param.view(*_a ) snake_case_ : Optional[Any] = param.transpose(0 , 1 ).contiguous() snake_case_ : Union[str, Any] = param.view(*_a ) return param def __lowercase ( _a , _a , _a ): # The converted output model. snake_case_ : List[str] = {} # old versions did not store training args snake_case_ : List[str] = input_state_dict.get('''args''' , _a ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) snake_case_ : int = ds_args.padded_vocab_size snake_case_ : List[Any] = ds_args.max_position_embeddings snake_case_ : List[Any] = ds_args.hidden_size snake_case_ : str = ds_args.num_layers snake_case_ : int = ds_args.num_attention_heads snake_case_ : int = ds_args.ffn_hidden_size # pprint(config) # The number of heads. snake_case_ : Any = config.n_head # The hidden_size per head. snake_case_ : Any = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): snake_case_ : Any = input_state_dict['''checkpoint_version'''] else: snake_case_ : str = 0.0 # The model. snake_case_ : int = input_state_dict['''model'''] # The language model. snake_case_ : Union[str, Any] = model['''language_model'''] # The embeddings. snake_case_ : str = lm['''embedding'''] # The word embeddings. snake_case_ : Dict = embeddings['''word_embeddings''']['''weight'''] # Truncate the embedding table to vocab_size rows. snake_case_ : List[str] = word_embeddings[: config.vocab_size, :] snake_case_ : int = word_embeddings # The position embeddings. snake_case_ : List[str] = embeddings['''position_embeddings''']['''weight'''] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] snake_case_ : str = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( f"pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don't match" ) # Store the position embeddings. snake_case_ : Dict = pos_embeddings # The transformer. snake_case_ : Union[str, Any] = lm['''transformer'''] if '''transformer''' in lm.keys() else lm['''encoder'''] # The regex to extract layer names. snake_case_ : Dict = re.compile(r'''layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)''' ) # The simple map of names for "automated" rules. snake_case_ : Dict = { '''attention.dense''': '''.attn.c_proj.''', '''self_attention.dense''': '''.attn.c_proj.''', '''mlp.dense_h_to_4h''': '''.mlp.c_fc.''', '''mlp.dense_4h_to_h''': '''.mlp.c_proj.''', } # Extract the layers. for key, val in transformer.items(): # Match the name. snake_case_ : Union[str, Any] = layer_re.match(_a ) # Stop if that's not a layer if m is None: break # The index of the layer. snake_case_ : Tuple = int(m.group(1 ) ) # The name of the operation. snake_case_ : List[Any] = m.group(2 ) # Is it a weight or a bias? snake_case_ : int = m.group(3 ) # The name of the layer. snake_case_ : Any = f"transformer.h.{layer_idx}" # For layernorm(s), simply store the layer norm. if op_name.endswith('''layernorm''' ): snake_case_ : str = '''ln_1''' if op_name.startswith('''input''' ) else '''ln_2''' snake_case_ : Optional[Any] = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. snake_case_ : Any = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , _a , _a ) snake_case_ : List[Any] = causal_mask # Insert a "dummy" tensor for masked_bias. snake_case_ : Optional[Any] = torch.tensor(-1E4 , dtype=torch.floataa ) snake_case_ : List[str] = masked_bias snake_case_ : Any = fix_query_key_value_ordering(_a , _a , 3 , _a , _a ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. snake_case_ : List[Any] = out_val.transpose(0 , 1 ).contiguous() # Store. snake_case_ : Tuple = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": snake_case_ : Tuple = fix_query_key_value_ordering(_a , _a , 3 , _a , _a ) # Store. No change of shape. snake_case_ : List[str] = out_val # Transpose the weights. elif weight_or_bias == "weight": snake_case_ : Union[str, Any] = megatron_to_transformers[op_name] snake_case_ : List[Any] = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": snake_case_ : Optional[int] = megatron_to_transformers[op_name] snake_case_ : Union[str, Any] = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. snake_case_ : Optional[int] = transformer['''final_layernorm.weight'''] snake_case_ : int = transformer['''final_layernorm.bias'''] # For LM head, transformers' wants the matrix to weight embeddings. snake_case_ : str = word_embeddings # It should be done! return output_state_dict def __lowercase ( ): # Create the argument parser. snake_case_ : Dict = argparse.ArgumentParser() parser.add_argument('''--print-checkpoint-structure''' , action='''store_true''' ) parser.add_argument( '''path_to_checkpoint''' , type=_a , help='''Path to the checkpoint file (.zip archive or direct .pt file)''' , ) parser.add_argument( '''--config_file''' , default='''''' , type=_a , help='''An optional config json file describing the pre-trained model.''' , ) snake_case_ : List[str] = parser.parse_args() # Extract the basename. snake_case_ : int = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(f"Extracting PyTorch state dictionary from {args.path_to_checkpoint}" ) if args.path_to_checkpoint.endswith('''.zip''' ): with zipfile.ZipFile(args.path_to_checkpoint , '''r''' ) as checkpoint: with checkpoint.open('''release/mp_rank_00/model_optim_rng.pt''' ) as pytorch_dict: snake_case_ : str = torch.load(_a , map_location='''cpu''' ) else: snake_case_ : Any = torch.load(args.path_to_checkpoint , map_location='''cpu''' ) snake_case_ : Tuple = input_state_dict.get('''args''' , _a ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: snake_case_ : List[Any] = '''gelu_fast''' elif ds_args.openai_gelu: snake_case_ : int = '''gelu_new''' else: snake_case_ : List[str] = '''gelu''' else: # in the very early days this used to be "gelu_new" snake_case_ : List[str] = '''gelu_new''' # Spell out all parameters in case the defaults change. snake_case_ : str = GPTaConfig( vocab_size=50_257 , n_positions=1_024 , n_embd=1_024 , n_layer=24 , n_head=16 , n_inner=4_096 , activation_function=_a , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.02 , summary_type='''cls_index''' , summary_use_proj=_a , summary_activation=_a , summary_proj_to_labels=_a , summary_first_dropout=0.1 , scale_attn_weights=_a , use_cache=_a , bos_token_id=50_256 , eos_token_id=50_256 , ) else: snake_case_ : List[Any] = GPTaConfig.from_json_file(args.config_file ) snake_case_ : str = ['''GPT2LMHeadModel'''] # Convert. print('''Converting''' ) snake_case_ : Union[str, Any] = convert_megatron_checkpoint(_a , _a , _a ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(_a , _a ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: snake_case_ : Dict = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": snake_case_ : List[Any] = '''gpt2''' elif tokenizer_type == "PretrainedFromHF": snake_case_ : int = ds_args.tokenizer_name_or_path else: raise ValueError(f"Unrecognized tokenizer_type {tokenizer_type}" ) else: snake_case_ : str = '''gpt2''' snake_case_ : Optional[int] = AutoTokenizer.from_pretrained(_a ) snake_case_ : Optional[int] = type(_a ).__name__ snake_case_ : List[str] = tokenizer_class # Store the config to file. print('''Saving config''' ) config.save_pretrained(_a ) # Save tokenizer based on args print(f"Adding {tokenizer_class} tokenizer files" ) tokenizer.save_pretrained(_a ) # Store the state_dict to file. snake_case_ : Any = os.path.join(_a , '''pytorch_model.bin''' ) print(f"Saving checkpoint to \"{output_checkpoint_file}\"" ) torch.save(_a , _a ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
264
"""simple docstring""" import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Dict = [ '''word_embeddings_layernorm.weight''', '''word_embeddings_layernorm.bias''', '''input_layernorm.weight''', '''input_layernorm.bias''', '''post_attention_layernorm.weight''', '''post_attention_layernorm.bias''', '''self_attention.dense.bias''', '''mlp.dense_4h_to_h.bias''', '''ln_f.weight''', '''ln_f.bias''', ] lowercase__ : str = [ '''mlp.dense_4h_to_h.weight''', '''self_attention.dense.weight''', ] def __lowercase ( _a , _a ): snake_case_ : Optional[int] = { '''word_embeddings.weight''': '''word_embeddings.weight''', '''word_embeddings.norm.weight''': '''word_embeddings_layernorm.weight''', '''word_embeddings.norm.bias''': '''word_embeddings_layernorm.bias''', '''weight''': '''ln_f.weight''', '''bias''': '''ln_f.bias''', } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks snake_case_ : List[Any] = int(re.match(r'''.*layer_(\d*).*''' , _a )[1] ) layer_number -= 3 return f"h.{layer_number}." + key def __lowercase ( _a ): if dtype == torch.bool: return 1 / 8 snake_case_ : Dict = re.search(r'''[^\d](\d+)$''' , str(_a ) ) if bit_search is None: raise ValueError(f"`dtype` is not a valid dtype: {dtype}." ) snake_case_ : Optional[int] = int(bit_search.groups()[0] ) return bit_size // 8 def __lowercase ( _a , _a , _a , _a , _a ): # Construct model if bloom_config_file == "": snake_case_ : int = BloomConfig() else: snake_case_ : List[str] = BloomConfig.from_json_file(_a ) if shard_model: snake_case_ : List[str] = os.listdir(_a ) snake_case_ : int = sorted(filter(lambda _a : s.startswith('''layer''' ) and "model_00" in s , _a ) ) snake_case_ : List[str] = {'''weight_map''': {}, '''metadata''': {}} snake_case_ : Any = 0 snake_case_ : Union[str, Any] = None snake_case_ : List[str] = BloomConfig() for j, file in enumerate(_a ): print('''Processing file: {}'''.format(_a ) ) snake_case_ : Dict = None for i in range(_a ): # load all TP files snake_case_ : Union[str, Any] = file.replace('''model_00''' , f"model_0{i}" ) snake_case_ : List[str] = torch.load(os.path.join(_a , _a ) , map_location='''cpu''' ) # Rename keys in the transformers names snake_case_ : str = list(temp.keys() ) for key in keys: snake_case_ : Any = temp.pop(_a ) if tensors is None: snake_case_ : Any = temp else: for key in tensors.keys(): if any(key.endswith(_a ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel snake_case_ : Tuple = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks snake_case_ : List[str] = torch.cat([tensors[key], temp[key]] , dim=_a ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(_a ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): snake_case_ : Any = tensors[key] / pretraining_tp torch.save( _a , os.path.join( _a , '''pytorch_model_{}-of-{}.bin'''.format(str(j + 1 ).zfill(5 ) , str(len(_a ) ).zfill(5 ) ) , ) , ) for key in tensors.keys(): snake_case_ : List[str] = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: snake_case_ : List[str] = '''pytorch_model_{}-of-{}.bin'''.format( str(j + 1 ).zfill(5 ) , str(len(_a ) ).zfill(5 ) ) snake_case_ : int = BloomConfig() snake_case_ : Any = pytorch_dump_folder_path + '''/''' + CONFIG_NAME snake_case_ : Dict = total_size with open(_a , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) with open(os.path.join(_a , WEIGHTS_NAME + '''.index.json''' ) , '''w''' , encoding='''utf-8''' ) as f: snake_case_ : Tuple = json.dumps(_a , indent=2 , sort_keys=_a ) + '''\n''' f.write(_a ) else: snake_case_ : Union[str, Any] = BloomModel(_a ) snake_case_ : List[str] = os.listdir(_a ) snake_case_ : Dict = sorted(filter(lambda _a : s.startswith('''layer''' ) and "model_00" in s , _a ) ) snake_case_ : List[Any] = None for i, file in enumerate(_a ): snake_case_ : Optional[Any] = None for i in range(_a ): # load all TP files snake_case_ : List[str] = file.replace('''model_00''' , f"model_0{i}" ) snake_case_ : Optional[Any] = torch.load(os.path.join(_a , _a ) , map_location='''cpu''' ) # Rename keys in the transformers names snake_case_ : str = list(temp.keys() ) for key in keys: snake_case_ : str = temp.pop(_a ) if tensors is None: snake_case_ : int = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(_a ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel snake_case_ : Tuple = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks snake_case_ : Optional[Any] = torch.cat([tensors[key], temp[key]] , dim=_a ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(_a ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): snake_case_ : Union[str, Any] = tensors[key] / pretraining_tp snake_case_ : Any = model.load_state_dict(_a , strict=_a ) assert not other_keys.unexpected_keys, f"The keys {other_keys.unexpected_keys} are unexpected" if missing_keys is None: snake_case_ : Optional[int] = set(other_keys.missing_keys ) else: snake_case_ : Tuple = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, f"The keys {missing_keys} are missing" # Save pytorch-model os.makedirs(_a , exist_ok=_a ) snake_case_ : List[str] = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME snake_case_ : Optional[Any] = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(f"Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}" ) if config.torch_dtype is not None: snake_case_ : Optional[Any] = model.to(config.torch_dtype ) torch.save(model.state_dict() , _a ) print(f"Save configuration file to {pytorch_config_dump_path}" ) with open(_a , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowercase__ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bloom_checkpoint_path''', default=None, type=str, required=True, help='''Path to the Megatron-LM checkpoint path.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--bloom_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--shard_model''', action='''store_true''', help='''An optional setting to shard the output model \nThis enables sharding the converted checkpoint''', ) parser.add_argument( '''--pretraining_tp''', default=4, type=int, help='''Pretraining TP rank that has been used when training the model in Megatron-LM \n''', ) lowercase__ : List[Any] = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
264
1
from __future__ import annotations def _a ( a :dict , a :str ) -> set[str]: a , a = set(a ), [start] while stack: a = stack.pop() explored.add(a ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(a ) return explored UpperCAmelCase__ = { "A": ["B", "C", "D"], "B": ["A", "D", "E"], "C": ["A", "F"], "D": ["B", "D"], "E": ["B", "F"], "F": ["C", "E", "G"], "G": ["F"], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, "A"))
360
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = ['''image_processor''', '''tokenizer'''] __snake_case = '''CLIPImageProcessor''' __snake_case = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : Dict , __UpperCAmelCase : str=None , __UpperCAmelCase : Optional[Any]=None , **__UpperCAmelCase : Optional[Any] ) ->List[str]: """simple docstring""" a = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __UpperCAmelCase , ) a = kwargs.pop('''feature_extractor''' ) a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self : List[str] , __UpperCAmelCase : Any=None , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Any=None , **__UpperCAmelCase : str ) ->Optional[Any]: """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: a = self.tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if images is not None: a = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if text is not None and images is not None: a = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__UpperCAmelCase ) , tensor_type=__UpperCAmelCase ) def __lowerCAmelCase ( self : Tuple , *__UpperCAmelCase : List[str] , **__UpperCAmelCase : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def __lowerCAmelCase ( self : Tuple , *__UpperCAmelCase : str , **__UpperCAmelCase : Tuple ) ->Any: """simple docstring""" return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @property def __lowerCAmelCase ( self : int ) ->List[str]: """simple docstring""" a = self.tokenizer.model_input_names a = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __lowerCAmelCase ( self : Optional[int] ) ->List[str]: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __UpperCAmelCase , ) return self.image_processor_class @property def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]: """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __UpperCAmelCase , ) return self.image_processor
26
0
import numpy as np def UpperCamelCase( __UpperCamelCase : Any ,__UpperCamelCase : List[Any] ,__UpperCamelCase : Dict ,__UpperCamelCase : str ,__UpperCamelCase : Optional[Any] ): lowerCAmelCase_ : Any = int(np.ceil((x_end - xa) / h ) ) lowerCAmelCase_ : Union[str, Any] = np.zeros((n + 1,) ) lowerCAmelCase_ : Tuple = ya lowerCAmelCase_ : Union[str, Any] = xa for k in range(__UpperCamelCase ): lowerCAmelCase_ : int = f(__UpperCamelCase ,y[k] ) lowerCAmelCase_ : List[Any] = f(x + 0.5 * h ,y[k] + 0.5 * h * ka ) lowerCAmelCase_ : List[str] = f(x + 0.5 * h ,y[k] + 0.5 * h * ka ) lowerCAmelCase_ : str = f(x + h ,y[k] + h * ka ) lowerCAmelCase_ : Dict = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
103
import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class __snake_case ( UpperCamelCase_ ,UpperCamelCase_ ,unittest.TestCase ): _a = IFPipeline _a = TEXT_TO_IMAGE_PARAMS - {'''width''', '''height''', '''latents'''} _a = TEXT_TO_IMAGE_BATCH_PARAMS _a = PipelineTesterMixin.required_optional_params - {'''latents'''} def UpperCAmelCase__ ( self : List[str]): return self._get_dummy_components() def UpperCAmelCase__ ( self : List[str] , A_ : List[Any] , A_ : Any=0): if str(A_).startswith('''mps'''): lowerCAmelCase_ : List[Any] = torch.manual_seed(A_) else: lowerCAmelCase_ : List[str] = torch.Generator(device=A_).manual_seed(A_) lowerCAmelCase_ : Optional[Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def UpperCAmelCase__ ( self : int): self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''') def UpperCAmelCase__ ( self : str): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1) def UpperCAmelCase__ ( self : str): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2) def UpperCAmelCase__ ( self : int): self._test_save_load_local() def UpperCAmelCase__ ( self : str): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def UpperCAmelCase__ ( self : Optional[int]): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3) @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self : Optional[Any]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self : List[str]): # if lowerCAmelCase_ : Dict = IFPipeline.from_pretrained('''DeepFloyd/IF-I-XL-v1.0''' , variant='''fp16''' , torch_dtype=torch.floataa) lowerCAmelCase_ : Dict = IFSuperResolutionPipeline.from_pretrained( '''DeepFloyd/IF-II-L-v1.0''' , variant='''fp16''' , torch_dtype=torch.floataa , text_encoder=A_ , tokenizer=A_) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('''cuda''') lowerCAmelCase_ , lowerCAmelCase_ : List[str] = pipe_a.encode_prompt('''anime turtle''' , device='''cuda''') del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() lowerCAmelCase_ : Tuple = None lowerCAmelCase_ : str = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if(A_ , A_ , A_ , A_) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img lowerCAmelCase_ : List[str] = IFImgaImgPipeline(**pipe_a.components) lowerCAmelCase_ : Any = IFImgaImgSuperResolutionPipeline(**pipe_a.components) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_imgaimg(A_ , A_ , A_ , A_) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting lowerCAmelCase_ : int = IFInpaintingPipeline(**pipe_a.components) lowerCAmelCase_ : Union[str, Any] = IFInpaintingSuperResolutionPipeline(**pipe_a.components) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_inpainting(A_ , A_ , A_ , A_) def UpperCAmelCase__ ( self : int , A_ : Optional[int] , A_ : Any , A_ : str , A_ : Union[str, Any]): # pipeline 1 _start_torch_memory_measurement() lowerCAmelCase_ : Optional[Any] = torch.Generator(device='''cpu''').manual_seed(0) lowerCAmelCase_ : Optional[Any] = pipe_a( prompt_embeds=A_ , negative_prompt_embeds=A_ , num_inference_steps=2 , generator=A_ , output_type='''np''' , ) lowerCAmelCase_ : Dict = output.images[0] assert image.shape == (6_4, 6_4, 3) lowerCAmelCase_ : Any = torch.cuda.max_memory_allocated() assert mem_bytes < 1_3 * 1_0**9 lowerCAmelCase_ : List[str] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy''') assert_mean_pixel_difference(A_ , A_) # pipeline 2 _start_torch_memory_measurement() lowerCAmelCase_ : List[str] = torch.Generator(device='''cpu''').manual_seed(0) lowerCAmelCase_ : str = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0)).to(A_) lowerCAmelCase_ : Optional[int] = pipe_a( prompt_embeds=A_ , negative_prompt_embeds=A_ , image=A_ , generator=A_ , num_inference_steps=2 , output_type='''np''' , ) lowerCAmelCase_ : Union[str, Any] = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) lowerCAmelCase_ : Any = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 lowerCAmelCase_ : int = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy''') assert_mean_pixel_difference(A_ , A_) def UpperCAmelCase__ ( self : int , A_ : Optional[int] , A_ : Any , A_ : List[str] , A_ : List[str]): # pipeline 1 _start_torch_memory_measurement() lowerCAmelCase_ : Any = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0)).to(A_) lowerCAmelCase_ : Tuple = torch.Generator(device='''cpu''').manual_seed(0) lowerCAmelCase_ : Any = pipe_a( prompt_embeds=A_ , negative_prompt_embeds=A_ , image=A_ , num_inference_steps=2 , generator=A_ , output_type='''np''' , ) lowerCAmelCase_ : Union[str, Any] = output.images[0] assert image.shape == (6_4, 6_4, 3) lowerCAmelCase_ : str = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 lowerCAmelCase_ : Optional[int] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy''') assert_mean_pixel_difference(A_ , A_) # pipeline 2 _start_torch_memory_measurement() lowerCAmelCase_ : int = torch.Generator(device='''cpu''').manual_seed(0) lowerCAmelCase_ : List[Any] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0)).to(A_) lowerCAmelCase_ : Any = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0)).to(A_) lowerCAmelCase_ : List[str] = pipe_a( prompt_embeds=A_ , negative_prompt_embeds=A_ , image=A_ , original_image=A_ , generator=A_ , num_inference_steps=2 , output_type='''np''' , ) lowerCAmelCase_ : Union[str, Any] = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) lowerCAmelCase_ : str = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 lowerCAmelCase_ : Tuple = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy''') assert_mean_pixel_difference(A_ , A_) def UpperCAmelCase__ ( self : str , A_ : Optional[Any] , A_ : Optional[Any] , A_ : Dict , A_ : List[str]): # pipeline 1 _start_torch_memory_measurement() lowerCAmelCase_ : Union[str, Any] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0)).to(A_) lowerCAmelCase_ : int = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(1)).to(A_) lowerCAmelCase_ : Optional[Any] = torch.Generator(device='''cpu''').manual_seed(0) lowerCAmelCase_ : Any = pipe_a( prompt_embeds=A_ , negative_prompt_embeds=A_ , image=A_ , mask_image=A_ , num_inference_steps=2 , generator=A_ , output_type='''np''' , ) lowerCAmelCase_ : List[Any] = output.images[0] assert image.shape == (6_4, 6_4, 3) lowerCAmelCase_ : str = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 lowerCAmelCase_ : int = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy''') assert_mean_pixel_difference(A_ , A_) # pipeline 2 _start_torch_memory_measurement() lowerCAmelCase_ : Optional[Any] = torch.Generator(device='''cpu''').manual_seed(0) lowerCAmelCase_ : Optional[Any] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0)).to(A_) lowerCAmelCase_ : Union[str, Any] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0)).to(A_) lowerCAmelCase_ : Optional[Any] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(1)).to(A_) lowerCAmelCase_ : int = pipe_a( prompt_embeds=A_ , negative_prompt_embeds=A_ , image=A_ , mask_image=A_ , original_image=A_ , generator=A_ , num_inference_steps=2 , output_type='''np''' , ) lowerCAmelCase_ : Tuple = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) lowerCAmelCase_ : int = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 lowerCAmelCase_ : Any = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy''') assert_mean_pixel_difference(A_ , A_) def UpperCamelCase( ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
103
1
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm __UpperCAmelCase : Optional[int] = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex __UpperCAmelCase : List[str] = 10 __UpperCAmelCase : List[str] = 256 def a ( SCREAMING_SNAKE_CASE_ : List[str] ): """simple docstring""" if len(SCREAMING_SNAKE_CASE_ ) < MIN_NUM_TOKENS: return None UpperCamelCase : Dict = MinHash(num_perm=SCREAMING_SNAKE_CASE_ ) for token in set(SCREAMING_SNAKE_CASE_ ): min_hash.update(token.encode() ) return min_hash def a ( SCREAMING_SNAKE_CASE_ : str ): """simple docstring""" return {t for t in NON_ALPHA.split(SCREAMING_SNAKE_CASE_ ) if len(t.strip() ) > 0} class UpperCAmelCase_ : '''simple docstring''' def __init__( self , *, __SCREAMING_SNAKE_CASE = 0.85 , ): """simple docstring""" UpperCamelCase : Optional[int] = duplication_jaccard_threshold UpperCamelCase : str = NUM_PERM UpperCamelCase : Any = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) UpperCamelCase : int = defaultdict(__SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : str = self._index.query(__SCREAMING_SNAKE_CASE ) if code_key in self._index.keys: print(f"""Duplicate key {code_key}""" ) return self._index.insert(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(__SCREAMING_SNAKE_CASE ) break else: self._duplicate_clusters[close_duplicates[0]].add(__SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : str = [] for base, duplicates in self._duplicate_clusters.items(): UpperCamelCase : Optional[Any] = [base] + list(__SCREAMING_SNAKE_CASE ) # reformat the cluster to be a list of dict UpperCamelCase : Optional[int] = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster] duplicate_clusters.append(__SCREAMING_SNAKE_CASE ) return duplicate_clusters def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : int = self.get_duplicate_clusters() with open(__SCREAMING_SNAKE_CASE , '''w''' ) as f: json.dump(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def a ( SCREAMING_SNAKE_CASE_ : Dict ): """simple docstring""" UpperCamelCase , UpperCamelCase : Dict = element UpperCamelCase : Optional[Any] = get_min_hash([t for t in NON_ALPHA.split(data['''content'''] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def a ( SCREAMING_SNAKE_CASE_ : Type[Dataset] ): """simple docstring""" with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(SCREAMING_SNAKE_CASE_ , max_queue_size=1_0_0_0_0 ) , chunksize=1_0_0 , ): if data is not None: yield data def a ( SCREAMING_SNAKE_CASE_ : Type[Dataset] , SCREAMING_SNAKE_CASE_ : float ): """simple docstring""" UpperCamelCase : Optional[Any] = DuplicationIndex(duplication_jaccard_threshold=SCREAMING_SNAKE_CASE_ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(SCREAMING_SNAKE_CASE_ ) ) , max_queue_size=1_0_0 ) ): di.add(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def a ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ): """simple docstring""" UpperCamelCase : List[Any] = get_tokens(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = get_tokens(SCREAMING_SNAKE_CASE_ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) __UpperCAmelCase : Dict = None def a ( SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Dict ): """simple docstring""" UpperCamelCase : Optional[int] = [] for elementa in cluster: UpperCamelCase : Tuple = _shared_dataset[elementa['''base_index''']]['''content'''] for elementa in extremes: UpperCamelCase : Union[str, Any] = _shared_dataset[elementa['''base_index''']]['''content'''] if jaccard_similarity(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) >= jaccard_threshold: elementa["copies"] += 1 break else: UpperCamelCase : List[Any] = 1 extremes.append(SCREAMING_SNAKE_CASE_ ) return extremes def a ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Dict ): """simple docstring""" global _shared_dataset UpperCamelCase : List[Any] = dataset UpperCamelCase : Tuple = [] UpperCamelCase : List[str] = partial(_find_cluster_extremes_shared , jaccard_threshold=SCREAMING_SNAKE_CASE_ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) , total=len(SCREAMING_SNAKE_CASE_ ) , ): extremes_list.append(SCREAMING_SNAKE_CASE_ ) return extremes_list def a ( SCREAMING_SNAKE_CASE_ : Type[Dataset] , SCREAMING_SNAKE_CASE_ : float = 0.85 ): """simple docstring""" UpperCamelCase : List[str] = make_duplicate_clusters(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster} UpperCamelCase : Optional[Any] = {} UpperCamelCase : Union[str, Any] = find_extremes(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for extremes in extremes_clusters: for element in extremes: UpperCamelCase : Any = element UpperCamelCase : str = duplicate_indices - set(extreme_dict.keys() ) UpperCamelCase : List[str] = dataset.filter(lambda SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : idx not in remove_indices , with_indices=SCREAMING_SNAKE_CASE_ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: UpperCamelCase : Union[str, Any] = element['''base_index'''] in extreme_dict if element["is_extreme"]: UpperCamelCase : Tuple = extreme_dict[element['''base_index''']]['''copies'''] print(F"""Original dataset size: {len(SCREAMING_SNAKE_CASE_ )}""" ) print(F"""Number of duplicate clusters: {len(SCREAMING_SNAKE_CASE_ )}""" ) print(F"""Files in duplicate cluster: {len(SCREAMING_SNAKE_CASE_ )}""" ) print(F"""Unique files in duplicate cluster: {len(SCREAMING_SNAKE_CASE_ )}""" ) print(F"""Filtered dataset size: {len(SCREAMING_SNAKE_CASE_ )}""" ) return ds_filter, duplicate_clusters
315
import glob import os import random from string import ascii_lowercase, digits import cva __UpperCAmelCase : Optional[int] = "" __UpperCAmelCase : Union[str, Any] = "" __UpperCAmelCase : Optional[int] = "" __UpperCAmelCase : Any = 1 # (0 is vertical, 1 is horizontal) def a ( ): """simple docstring""" UpperCamelCase , UpperCamelCase : List[Any] = get_dataset(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) print('''Processing...''' ) UpperCamelCase , UpperCamelCase , UpperCamelCase : Any = update_image_and_anno(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for index, image in enumerate(SCREAMING_SNAKE_CASE_ ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' UpperCamelCase : Optional[int] = random_chars(3_2 ) UpperCamelCase : List[Any] = paths[index].split(os.sep )[-1].rsplit('''.''' , 1 )[0] UpperCamelCase : int = F"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}""" cva.imwrite(F"""/{file_root}.jpg""" , SCREAMING_SNAKE_CASE_ , [cva.IMWRITE_JPEG_QUALITY, 8_5] ) print(F"""Success {index+1}/{len(SCREAMING_SNAKE_CASE_ )} with {file_name}""" ) UpperCamelCase : Any = [] for anno in new_annos[index]: UpperCamelCase : Tuple = F"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}""" annos_list.append(SCREAMING_SNAKE_CASE_ ) with open(F"""/{file_root}.txt""" , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def a ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ): """simple docstring""" UpperCamelCase : Any = [] UpperCamelCase : Union[str, Any] = [] for label_file in glob.glob(os.path.join(SCREAMING_SNAKE_CASE_ , '''*.txt''' ) ): UpperCamelCase : Optional[Any] = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(SCREAMING_SNAKE_CASE_ ) as in_file: UpperCamelCase : List[str] = in_file.readlines() UpperCamelCase : Tuple = os.path.join(SCREAMING_SNAKE_CASE_ , F"""{label_name}.jpg""" ) UpperCamelCase : Union[str, Any] = [] for obj_list in obj_lists: UpperCamelCase : str = obj_list.rstrip('''\n''' ).split(''' ''' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(SCREAMING_SNAKE_CASE_ ) labels.append(SCREAMING_SNAKE_CASE_ ) return img_paths, labels def a ( SCREAMING_SNAKE_CASE_ : list , SCREAMING_SNAKE_CASE_ : list , SCREAMING_SNAKE_CASE_ : int = 1 ): """simple docstring""" UpperCamelCase : List[Any] = [] UpperCamelCase : str = [] UpperCamelCase : int = [] for idx in range(len(SCREAMING_SNAKE_CASE_ ) ): UpperCamelCase : Tuple = [] UpperCamelCase : Optional[int] = img_list[idx] path_list.append(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = anno_list[idx] UpperCamelCase : Optional[Any] = cva.imread(SCREAMING_SNAKE_CASE_ ) if flip_type == 1: UpperCamelCase : Optional[Any] = cva.flip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for bbox in img_annos: UpperCamelCase : Optional[Any] = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: UpperCamelCase : List[str] = cva.flip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for bbox in img_annos: UpperCamelCase : Union[str, Any] = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(SCREAMING_SNAKE_CASE_ ) new_imgs_list.append(SCREAMING_SNAKE_CASE_ ) return new_imgs_list, new_annos_lists, path_list def a ( SCREAMING_SNAKE_CASE_ : int = 3_2 ): """simple docstring""" assert number_char > 1, "The number of character should greater than 1" UpperCamelCase : Any = ascii_lowercase + digits return "".join(random.choice(SCREAMING_SNAKE_CASE_ ) for _ in range(SCREAMING_SNAKE_CASE_ ) ) if __name__ == "__main__": main() print("DONE ✅")
315
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase = { '''configuration_instructblip''': [ '''INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InstructBlipConfig''', '''InstructBlipQFormerConfig''', '''InstructBlipVisionConfig''', ], '''processing_instructblip''': ['''InstructBlipProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ '''INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InstructBlipQFormerModel''', '''InstructBlipPreTrainedModel''', '''InstructBlipForConditionalGeneration''', '''InstructBlipVisionModel''', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
188
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class __magic_name__ : '''simple docstring''' def __init__( self, lowercase_, lowercase_=13, lowercase_=7, lowercase_=True, lowercase_=True, lowercase_=False, lowercase_=True, lowercase_=99, lowercase_=32, lowercase_=5, lowercase_=4, lowercase_=37, lowercase_="gelu", lowercase_=0.1, lowercase_=0.1, lowercase_=512, lowercase_=16, lowercase_=2, lowercase_=0.02, lowercase_=3, lowercase_=4, lowercase_=None, ) -> List[Any]: """simple docstring""" a__ =parent a__ =batch_size a__ =seq_length a__ =is_training a__ =use_input_mask a__ =use_token_type_ids a__ =use_labels a__ =vocab_size a__ =hidden_size a__ =num_hidden_layers a__ =num_attention_heads a__ =intermediate_size a__ =hidden_act a__ =hidden_dropout_prob a__ =attention_probs_dropout_prob a__ =max_position_embeddings a__ =type_vocab_size a__ =type_sequence_label_size a__ =initializer_range a__ =num_labels a__ =num_choices a__ =scope def _UpperCAmelCase ( self ) -> Optional[Any]: """simple docstring""" a__ =ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) a__ =None if self.use_input_mask: a__ =random_attention_mask([self.batch_size, self.seq_length] ) a__ =None if self.use_token_type_ids: a__ =ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) a__ =None a__ =None a__ =None if self.use_labels: a__ =ids_tensor([self.batch_size], self.type_sequence_label_size ) a__ =ids_tensor([self.batch_size, self.seq_length], self.num_labels ) a__ =ids_tensor([self.batch_size], self.num_choices ) a__ =self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self ) -> List[str]: """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=lowercase_, initializer_range=self.initializer_range, use_stable_embedding=lowercase_, ) def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_ ) -> List[str]: """simple docstring""" a__ =OpenLlamaModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() a__ =model(lowercase_, attention_mask=lowercase_ ) a__ =model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, ) -> Any: """simple docstring""" a__ =True a__ =OpenLlamaModel(lowercase_ ) model.to(lowercase_ ) model.eval() a__ =model( lowercase_, attention_mask=lowercase_, encoder_hidden_states=lowercase_, encoder_attention_mask=lowercase_, ) a__ =model( lowercase_, attention_mask=lowercase_, encoder_hidden_states=lowercase_, ) a__ =model(lowercase_, attention_mask=lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, ) -> List[str]: """simple docstring""" a__ =OpenLlamaForCausalLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() a__ =model(lowercase_, attention_mask=lowercase_, labels=lowercase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, ) -> List[Any]: """simple docstring""" a__ =True a__ =True a__ =OpenLlamaForCausalLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() # first forward pass a__ =model( lowercase_, attention_mask=lowercase_, encoder_hidden_states=lowercase_, encoder_attention_mask=lowercase_, use_cache=lowercase_, ) a__ =outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids a__ =ids_tensor((self.batch_size, 3), config.vocab_size ) a__ =ids_tensor((self.batch_size, 3), vocab_size=2 ) # append to next input_ids and a__ =torch.cat([input_ids, next_tokens], dim=-1 ) a__ =torch.cat([input_mask, next_mask], dim=-1 ) a__ =model( lowercase_, attention_mask=lowercase_, encoder_hidden_states=lowercase_, encoder_attention_mask=lowercase_, output_hidden_states=lowercase_, )['''hidden_states'''][0] a__ =model( lowercase_, attention_mask=lowercase_, encoder_hidden_states=lowercase_, encoder_attention_mask=lowercase_, past_key_values=lowercase_, output_hidden_states=lowercase_, )['''hidden_states'''][0] # select random slice a__ =ids_tensor((1,), output_from_past.shape[-1] ).item() a__ =output_from_no_past[:, -3:, random_slice_idx].detach() a__ =output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase_, lowercase_, atol=1E-3 ) ) def _UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" a__ =self.prepare_config_and_inputs() ( ( a__ ), ( a__ ), ( a__ ), ( a__ ), ( a__ ), ( a__ ), ( a__ ), ) =config_and_inputs a__ ={'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __magic_name__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) lowerCamelCase__ : Optional[Any] = (OpenLlamaForCausalLM,) if is_torch_available() else () lowerCamelCase__ : List[str] = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ : int = False lowerCamelCase__ : Any = False def _UpperCAmelCase ( self ) -> List[str]: """simple docstring""" a__ =OpenLlamaModelTester(self ) a__ =ConfigTester(self, config_class=lowercase_, hidden_size=37 ) def _UpperCAmelCase ( self ) -> str: """simple docstring""" self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Optional[Any]: """simple docstring""" a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def _UpperCAmelCase ( self ) -> str: """simple docstring""" a__ =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a__ =type self.model_tester.create_and_check_model(*lowercase_ ) def _UpperCAmelCase ( self ) -> int: """simple docstring""" a__, a__ =self.model_tester.prepare_config_and_inputs_for_common() a__ =3 a__ =input_dict['''input_ids'''] a__ =input_ids.ne(1 ).to(lowercase_ ) a__ =ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size ) a__ =OpenLlamaForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() a__ =model(lowercase_, attention_mask=lowercase_, labels=lowercase_ ) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels) ) def _UpperCAmelCase ( self ) -> Any: """simple docstring""" a__, a__ =self.model_tester.prepare_config_and_inputs_for_common() a__ =3 a__ ='''single_label_classification''' a__ =input_dict['''input_ids'''] a__ =input_ids.ne(1 ).to(lowercase_ ) a__ =ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size ) a__ =OpenLlamaForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() a__ =model(lowercase_, attention_mask=lowercase_, labels=lowercase_ ) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels) ) def _UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" a__, a__ =self.model_tester.prepare_config_and_inputs_for_common() a__ =3 a__ ='''multi_label_classification''' a__ =input_dict['''input_ids'''] a__ =input_ids.ne(1 ).to(lowercase_ ) a__ =ids_tensor( [self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size ).to(torch.float ) a__ =OpenLlamaForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() a__ =model(lowercase_, attention_mask=lowercase_, labels=lowercase_ ) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''Open-Llama buffers include complex numbers, which breaks this test''' ) def _UpperCAmelCase ( self ) -> List[str]: """simple docstring""" pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def _UpperCAmelCase ( self, lowercase_ ) -> Optional[Any]: """simple docstring""" a__, a__ =self.model_tester.prepare_config_and_inputs_for_common() a__ =ids_tensor([1, 10], config.vocab_size ) a__ =ids_tensor([1, int(config.max_position_embeddings * 1.5 )], config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights a__ =OpenLlamaModel(lowercase_ ) original_model.to(lowercase_ ) original_model.eval() a__ =original_model(lowercase_ ).last_hidden_state a__ =original_model(lowercase_ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights a__ ={'''type''': scaling_type, '''factor''': 10.0} a__ =OpenLlamaModel(lowercase_ ) scaled_model.to(lowercase_ ) scaled_model.eval() a__ =scaled_model(lowercase_ ).last_hidden_state a__ =scaled_model(lowercase_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowercase_, lowercase_, atol=1E-5 ) ) else: self.assertFalse(torch.allclose(lowercase_, lowercase_, atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowercase_, lowercase_, atol=1E-5 ) )
188
1
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm lowerCamelCase__ : List[Any] = logging.get_logger(__name__) @dataclass class UpperCAmelCase_ ( A__ ): '''simple docstring''' lowercase_ = [ "no_inference", "no_cuda", "no_tpu", "no_speed", "no_memory", "no_env_print", "no_multi_process", ] def __init__( self : Dict , **_lowerCAmelCase : Optional[int] ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: SCREAMING_SNAKE_CASE_ = deprecated_arg[3:] setattr(self , __A , not kwargs.pop(__A ) ) logger.warning( F"{deprecated_arg} is depreciated. Please use --no_{positive_arg} or" F" {positive_arg}={kwargs[positive_arg]}" ) SCREAMING_SNAKE_CASE_ = kwargs.pop('torchscript' , self.torchscript ) SCREAMING_SNAKE_CASE_ = kwargs.pop('torch_xla_tpu_print_metrics' , self.torch_xla_tpu_print_metrics ) SCREAMING_SNAKE_CASE_ = kwargs.pop('fp16_opt_level' , self.fpaa_opt_level ) super().__init__(**__A ) lowercase_ = field(default=A__ , metadata={"help": "Trace the models using torchscript"} ) lowercase_ = field(default=A__ , metadata={"help": "Print Xla/PyTorch tpu metrics"} ) lowercase_ = field( default="O1" , metadata={ "help": ( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. " "See details at https://nvidia.github.io/apex/amp.html" ) } , ) @cached_property def lowerCAmelCase_ ( self : str ): requires_backends(self , ['torch'] ) logger.info('PyTorch: setting up devices' ) if not self.cuda: SCREAMING_SNAKE_CASE_ = torch.device('cpu' ) SCREAMING_SNAKE_CASE_ = 0 elif is_torch_tpu_available(): SCREAMING_SNAKE_CASE_ = xm.xla_device() SCREAMING_SNAKE_CASE_ = 0 else: SCREAMING_SNAKE_CASE_ = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) SCREAMING_SNAKE_CASE_ = torch.cuda.device_count() return device, n_gpu @property def lowerCAmelCase_ ( self : str ): return is_torch_tpu_available() and self.tpu @property def lowerCAmelCase_ ( self : Optional[Any] ): requires_backends(self , ['torch'] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def lowerCAmelCase_ ( self : Any ): requires_backends(self , ['torch'] ) return self._setup_devices[0] @property def lowerCAmelCase_ ( self : Tuple ): requires_backends(self , ['torch'] ) return self._setup_devices[1] @property def lowerCAmelCase_ ( self : List[Any] ): return self.n_gpu > 0
351
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def UpperCAmelCase_ ( __UpperCAmelCase : str = "isbn/0140328726" ) -> dict: SCREAMING_SNAKE_CASE_ = olid.strip().strip('/' ) # Remove leading/trailing whitespace & slashes if new_olid.count('/' ) != 1: SCREAMING_SNAKE_CASE_ = f"{olid} is not a valid Open Library olid" raise ValueError(__UpperCAmelCase ) return requests.get(f"https://openlibrary.org/{new_olid}.json" ).json() def UpperCAmelCase_ ( __UpperCAmelCase : dict ) -> dict: SCREAMING_SNAKE_CASE_ = { 'title': 'Title', 'publish_date': 'Publish date', 'authors': 'Authors', 'number_of_pages': 'Number of pages:', 'first_sentence': 'First sentence', 'isbn_10': 'ISBN (10)', 'isbn_13': 'ISBN (13)', } SCREAMING_SNAKE_CASE_ = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} SCREAMING_SNAKE_CASE_ = [ get_openlibrary_data(author['key'] )['name'] for author in data['Authors'] ] SCREAMING_SNAKE_CASE_ = data['First sentence']['value'] for key, value in data.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): SCREAMING_SNAKE_CASE_ = ', '.join(__UpperCAmelCase ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: lowerCamelCase__ : Optional[Any] = input('\nEnter the ISBN code to search (or \'quit\' to stop): ').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(f'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''') continue print(f'''\nSearching Open Library for ISBN: {isbn}...\n''') try: lowerCamelCase__ : Union[str, Any] = summarize_book(get_openlibrary_data(f'''isbn/{isbn}''')) print('\n'.join(f'''{key}: {value}''' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(f'''Sorry, there are no results for ISBN: {isbn}.''')
210
0
'''simple docstring''' from __future__ import annotations def __a(SCREAMING_SNAKE_CASE_ : list[float] ): '''simple docstring''' _lowerCAmelCase = 0.00 _lowerCAmelCase = 0 for resistor in resistors: if resistor <= 0: _lowerCAmelCase = F'''Resistor at index {index} has a negative or zero value!''' raise ValueError(SCREAMING_SNAKE_CASE_ ) first_sum += 1 / float(SCREAMING_SNAKE_CASE_ ) index += 1 return 1 / first_sum def __a(SCREAMING_SNAKE_CASE_ : list[float] ): '''simple docstring''' _lowerCAmelCase = 0.00 _lowerCAmelCase = 0 for resistor in resistors: sum_r += resistor if resistor < 0: _lowerCAmelCase = F'''Resistor at index {index} has a negative value!''' raise ValueError(SCREAMING_SNAKE_CASE_ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
158
'''simple docstring''' from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] ): '''simple docstring''' return {key.lstrip("-" ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def __a(): '''simple docstring''' _lowerCAmelCase = ArgumentParser( "HuggingFace Datasets CLI tool" , usage="datasets-cli <command> [<args>]" , allow_abbrev=SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = parser.add_subparsers(help="datasets-cli command helpers" ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(SCREAMING_SNAKE_CASE_ ) EnvironmentCommand.register_subcommand(SCREAMING_SNAKE_CASE_ ) TestCommand.register_subcommand(SCREAMING_SNAKE_CASE_ ) RunBeamCommand.register_subcommand(SCREAMING_SNAKE_CASE_ ) DummyDataCommand.register_subcommand(SCREAMING_SNAKE_CASE_ ) # Parse args _lowerCAmelCase , _lowerCAmelCase = parser.parse_known_args() if not hasattr(SCREAMING_SNAKE_CASE_ , "func" ): parser.print_help() exit(1 ) _lowerCAmelCase = parse_unknown_args(SCREAMING_SNAKE_CASE_ ) # Run _lowerCAmelCase = args.func(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) service.run() if __name__ == "__main__": main()
158
1
import math def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = input('''Enter message: ''' ) _lowerCamelCase : Optional[Any] = int(input(F'''Enter key [2-{len(A__ ) - 1}]: ''' ) ) _lowerCamelCase : Union[str, Any] = input('''Encryption/Decryption [e/d]: ''' ) if mode.lower().startswith('''e''' ): _lowerCamelCase : List[str] = encrypt_message(A__, A__ ) elif mode.lower().startswith('''d''' ): _lowerCamelCase : Dict = decrypt_message(A__, A__ ) # Append pipe symbol (vertical bar) to identify spaces at the end. print(F'''Output:\n{text + "|"}''' ) def snake_case_ ( A_ : int, A_ : str ): '''simple docstring''' _lowerCamelCase : List[Any] = [""""""] * key for col in range(A__ ): _lowerCamelCase : Tuple = col while pointer < len(A__ ): cipher_text[col] += message[pointer] pointer += key return "".join(A__ ) def snake_case_ ( A_ : int, A_ : str ): '''simple docstring''' _lowerCamelCase : Tuple = math.ceil(len(A__ ) / key ) _lowerCamelCase : int = key _lowerCamelCase : List[str] = (num_cols * num_rows) - len(A__ ) _lowerCamelCase : Any = [""""""] * num_cols _lowerCamelCase : Dict = 0 _lowerCamelCase : Any = 0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): _lowerCamelCase : Optional[int] = 0 row += 1 return "".join(A__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
351
"""simple docstring""" import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever lowerCAmelCase__ = logging.getLogger(__name__) class __snake_case ( _lowercase): def __init__( self : Union[str, Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : int=None ): """simple docstring""" super().__init__( __lowerCAmelCase , question_encoder_tokenizer=__lowerCAmelCase , generator_tokenizer=__lowerCAmelCase , index=__lowerCAmelCase , init_retrieval=__lowerCAmelCase , ) _lowerCamelCase : Dict = None def SCREAMING_SNAKE_CASE ( self : Dict , __lowerCAmelCase : int ): """simple docstring""" logger.info('''initializing retrieval''' ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info('''dist initialized''' ) # needs to be set manually _lowerCamelCase : List[str] = self._infer_socket_ifname() # avoid clash with the NCCL port _lowerCamelCase : Dict = str(distributed_port + 1 ) _lowerCamelCase : str = dist.new_group(ranks=__lowerCAmelCase , backend='''gloo''' ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info('''dist not initialized / main''' ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" return dist.get_rank(group=self.process_group ) == 0 def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple=torch.floataa ): """simple docstring""" _lowerCamelCase : Optional[Any] = torch.empty(__lowerCAmelCase , dtype=__lowerCAmelCase ) dist.scatter(__lowerCAmelCase , src=0 , scatter_list=__lowerCAmelCase , group=self.process_group ) return target_tensor def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase : List[str] = psutil.net_if_addrs() # a hacky way to deal with varying network interface names _lowerCamelCase : str = next((addr for addr in addrs if addr.startswith('''e''' )) , __lowerCAmelCase ) return ifname def SCREAMING_SNAKE_CASE ( self : str , __lowerCAmelCase : np.ndarray , __lowerCAmelCase : int ): """simple docstring""" if not dist.is_initialized(): _lowerCamelCase , _lowerCamelCase : Any = self._main_retrieve(__lowerCAmelCase , __lowerCAmelCase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__lowerCAmelCase ) # distributed training _lowerCamelCase : Dict = dist.get_world_size(group=self.process_group ) # gather logic _lowerCamelCase : str = None if self._is_main(): _lowerCamelCase : List[Any] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(__lowerCAmelCase )] dist.gather(torch.tensor(__lowerCAmelCase ) , dst=0 , gather_list=__lowerCAmelCase , group=self.process_group ) # scatter logic _lowerCamelCase : int = question_hidden_states.shape[0] _lowerCamelCase : str = [] _lowerCamelCase : Optional[int] = [] if self._is_main(): assert len(__lowerCAmelCase ) == world_size _lowerCamelCase , _lowerCamelCase : Tuple = self._main_retrieve(torch.cat(__lowerCAmelCase ).numpy() , __lowerCAmelCase ) _lowerCamelCase , _lowerCamelCase : List[str] = torch.tensor(__lowerCAmelCase ), torch.tensor(__lowerCAmelCase ) _lowerCamelCase : List[Any] = self._chunk_tensor(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : Optional[Any] = self._chunk_tensor(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : int = self._scattered(__lowerCAmelCase , [n_queries, n_docs] , target_type=torch.intaa ) _lowerCamelCase : str = self._scattered(__lowerCAmelCase , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(__lowerCAmelCase )
175
0
"""simple docstring""" from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class _UpperCAmelCase( lowerCamelCase ): @slow @require_torch def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = EncoderDecoderModel.from_encoder_decoder_pretrained('''prajjwal1/bert-tiny''' , '''prajjwal1/bert-tiny''') _UpperCamelCase = BertTokenizer.from_pretrained('''bert-base-uncased''') _UpperCamelCase = bertabert.config.encoder.vocab_size _UpperCamelCase = tokenizer.sep_token_id _UpperCamelCase = tokenizer.cls_token_id _UpperCamelCase = 1_28 _UpperCamelCase = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''train[:1%]''') _UpperCamelCase = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''validation[:1%]''') _UpperCamelCase = train_dataset.select(range(32)) _UpperCamelCase = val_dataset.select(range(16)) _UpperCamelCase = 4 def _map_to_encoder_decoder_inputs(__a): # Tokenizer will automatically set [BOS] <text> [EOS] _UpperCamelCase = tokenizer(batch['''article'''] , padding='''max_length''' , truncation=__a , max_length=5_12) _UpperCamelCase = tokenizer(batch['''highlights'''] , padding='''max_length''' , truncation=__a , max_length=1_28) _UpperCamelCase = inputs.input_ids _UpperCamelCase = inputs.attention_mask _UpperCamelCase = outputs.input_ids _UpperCamelCase = outputs.input_ids.copy() _UpperCamelCase = [ [-1_00 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['''labels'''] ] _UpperCamelCase = outputs.attention_mask assert all(len(__a) == 5_12 for x in inputs.input_ids) assert all(len(__a) == 1_28 for x in outputs.input_ids) return batch def _compute_metrics(__a): _UpperCamelCase = pred.label_ids _UpperCamelCase = pred.predictions # all unnecessary tokens are removed _UpperCamelCase = tokenizer.batch_decode(__a , skip_special_tokens=__a) _UpperCamelCase = tokenizer.batch_decode(__a , skip_special_tokens=__a) _UpperCamelCase = sum([int(pred_str[i] == label_str[i]) for i in range(len(__a))]) / len(__a) return {"accuracy": accuracy} # map train dataset _UpperCamelCase = train_dataset.map( _map_to_encoder_decoder_inputs , batched=__a , batch_size=__a , remove_columns=['''article''', '''highlights'''] , ) train_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) # same for validation dataset _UpperCamelCase = val_dataset.map( _map_to_encoder_decoder_inputs , batched=__a , batch_size=__a , remove_columns=['''article''', '''highlights'''] , ) val_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = SeqaSeqTrainingArguments( output_dir=__a , per_device_train_batch_size=__a , per_device_eval_batch_size=__a , predict_with_generate=__a , evaluation_strategy='''steps''' , do_train=__a , do_eval=__a , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer _UpperCamelCase = SeqaSeqTrainer( model=__a , args=__a , compute_metrics=_compute_metrics , train_dataset=__a , eval_dataset=__a , tokenizer=__a , ) # start training trainer.train()
194
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a = { """configuration_autoformer""": [ """AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AutoformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ """AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """AutoformerForPrediction""", """AutoformerModel""", """AutoformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys _a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
194
1
"""simple docstring""" import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = s.rsplit(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return new.join(_SCREAMING_SNAKE_CASE ) def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" return sum(param.float().sum() if "encoder.embeddings" not in key else 0 for key, param in state_dict.items() ) def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = {} UpperCamelCase = ["group_1", "group_2", "group_3", "group_4"] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: UpperCamelCase = key.replace(F"{group_key}." , F"{group_key}.group." ) if "res_path" in key: UpperCamelCase = key.replace("res_path." , "res_path.path." ) if key.endswith(".w" ): UpperCamelCase = rreplace(_SCREAMING_SNAKE_CASE , ".w" , ".weight" , 1 ) if key.endswith(".b" ): UpperCamelCase = rreplace(_SCREAMING_SNAKE_CASE , ".b" , ".bias" , 1 ) UpperCamelCase = value.float() return upgrade @torch.no_grad() def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True ): """simple docstring""" from dall_e import Encoder UpperCamelCase = Encoder() if os.path.exists(_SCREAMING_SNAKE_CASE ): UpperCamelCase = torch.load(_SCREAMING_SNAKE_CASE ) else: UpperCamelCase = torch.hub.load_state_dict_from_url(_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase = ckpt.state_dict() encoder.load_state_dict(_SCREAMING_SNAKE_CASE ) if config_path is not None: UpperCamelCase = FlavaImageCodebookConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) else: UpperCamelCase = FlavaImageCodebookConfig() UpperCamelCase = FlavaImageCodebook(_SCREAMING_SNAKE_CASE ).eval() UpperCamelCase = encoder.state_dict() UpperCamelCase = upgrade_state_dict(_SCREAMING_SNAKE_CASE ) hf_model.load_state_dict(_SCREAMING_SNAKE_CASE ) UpperCamelCase = hf_model.state_dict() UpperCamelCase = count_parameters(_SCREAMING_SNAKE_CASE ) UpperCamelCase = count_parameters(_SCREAMING_SNAKE_CASE ) assert torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(_SCREAMING_SNAKE_CASE ) else: return hf_state_dict if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to flava checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') lowerCAmelCase__ = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
244
"""simple docstring""" def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError("The length of profit and weight must be same." ) if max_weight <= 0: raise ValueError("max_weight must greater than zero." ) if any(p < 0 for p in profit ): raise ValueError("Profit can not be negative." ) if any(w < 0 for w in weight ): raise ValueError("Weight can not be negative." ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. UpperCamelCase = [p / w for p, w in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] # Creating a copy of the list and sorting profit/weight in ascending order UpperCamelCase = sorted(_SCREAMING_SNAKE_CASE ) # declaring useful variables UpperCamelCase = len(_SCREAMING_SNAKE_CASE ) UpperCamelCase = 0 UpperCamelCase = 0 UpperCamelCase = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight UpperCamelCase = sorted_profit_by_weight[length - i - 1] UpperCamelCase = profit_by_weight.index(_SCREAMING_SNAKE_CASE ) UpperCamelCase = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( '''Input profits, weights, and then max_weight (all positive ints) separated by ''' '''spaces.''' ) lowerCAmelCase__ = [int(x) for x in input('''Input profits separated by spaces: ''').split()] lowerCAmelCase__ = [int(x) for x in input('''Input weights separated by spaces: ''').split()] lowerCAmelCase__ = int(input('''Max weight allowed: ''')) # Function Call calc_profit(profit, weight, max_weight)
244
1
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=lowerCamelCase__ ) class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A : str = field(default='''image-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) _A : ClassVar[Features] = Features({'''image''': Image()} ) _A : ClassVar[Features] = Features({'''labels''': ClassLabel} ) _A : str = "image" _A : str = "labels" def UpperCamelCase__ ( self : List[str] , lowerCAmelCase__ : List[Any] ): """simple docstring""" if self.label_column not in features: raise ValueError(F"Column {self.label_column} is not present in features." ) if not isinstance(features[self.label_column] , lowerCAmelCase__ ): raise ValueError(F"Column {self.label_column} is not a ClassLabel." ) __SCREAMING_SNAKE_CASE : Tuple = copy.deepcopy(self ) __SCREAMING_SNAKE_CASE : List[Any] = self.label_schema.copy() __SCREAMING_SNAKE_CASE : Dict = features[self.label_column] __SCREAMING_SNAKE_CASE : List[Any] = label_schema return task_template @property def UpperCamelCase__ ( self : Union[str, Any] ): """simple docstring""" return { self.image_column: "image", self.label_column: "labels", }
112
'''simple docstring''' from __future__ import annotations def lowerCAmelCase_ ( _lowerCamelCase: list[int] ): if not nums: return 0 __SCREAMING_SNAKE_CASE : Optional[int] = nums[0] __SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for num in nums[1:]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Any = ( max_excluding + num, max(_lowerCamelCase , _lowerCamelCase ), ) return max(_lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
112
1
"""simple docstring""" from copy import deepcopy class _SCREAMING_SNAKE_CASE : def __init__( self , __A = None , __A = None ) -> None: if arr is None and size is not None: lowerCAmelCase_ :Tuple = size lowerCAmelCase_ :Dict = [0] * size elif arr is not None: self.init(__A ) else: raise ValueError("""Either arr or size must be specified""" ) def __lowerCAmelCase ( self , __A ) -> None: lowerCAmelCase_ :int = len(__A ) lowerCAmelCase_ :List[Any] = deepcopy(__A ) for i in range(1 , self.size ): lowerCAmelCase_ :List[Any] = self.next_(__A ) if j < self.size: self.tree[j] += self.tree[i] def __lowerCAmelCase ( self ) -> list[int]: lowerCAmelCase_ :Tuple = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): lowerCAmelCase_ :Tuple = self.next_(__A ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def __lowerCAmelCase ( __A ) -> int: return index + (index & (-index)) @staticmethod def __lowerCAmelCase ( __A ) -> int: return index - (index & (-index)) def __lowerCAmelCase ( self , __A , __A ) -> None: if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value lowerCAmelCase_ :Optional[Any] = self.next_(__A ) def __lowerCAmelCase ( self , __A , __A ) -> None: self.add(__A , value - self.get(__A ) ) def __lowerCAmelCase ( self , __A ) -> int: if right == 0: return 0 lowerCAmelCase_ :List[Any] = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] lowerCAmelCase_ :List[str] = self.prev(__A ) return result def __lowerCAmelCase ( self , __A , __A ) -> int: return self.prefix(__A ) - self.prefix(__A ) def __lowerCAmelCase ( self , __A ) -> int: return self.query(__A , index + 1 ) def __lowerCAmelCase ( self , __A ) -> int: value -= self.tree[0] if value < 0: return -1 lowerCAmelCase_ :Union[str, Any] = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 lowerCAmelCase_ :str = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
1
"""simple docstring""" from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def _snake_case ( lowercase__ : str = "laptop" ) -> DataFrame: '''simple docstring''' lowerCAmelCase_ :Dict = f"""https://www.amazon.in/laptop/s?k={product}""" lowerCAmelCase_ :List[str] = { """User-Agent""": """Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36""", """Accept-Language""": """en-US, en;q=0.5""", } lowerCAmelCase_ :List[Any] = BeautifulSoup(requests.get(lowercase__ , headers=lowercase__ ).text ) # Initialize a Pandas dataframe with the column titles lowerCAmelCase_ :Union[str, Any] = DataFrame( columns=[ """Product Title""", """Product Link""", """Current Price of the product""", """Product Rating""", """MRP of the product""", """Discount""", ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( """div""" , attrs={"""class""": """s-result-item""", """data-component-type""": """s-search-result"""} , ) , soup.find_all("""div""" , attrs={"""class""": """a-row a-size-base a-color-base"""} ) , ): try: lowerCAmelCase_ :str = item.ha.text lowerCAmelCase_ :Dict = """https://www.amazon.in/""" + item.ha.a["""href"""] lowerCAmelCase_ :int = item.find("""span""" , attrs={"""class""": """a-offscreen"""} ).text try: lowerCAmelCase_ :Dict = item.find("""span""" , attrs={"""class""": """a-icon-alt"""} ).text except AttributeError: lowerCAmelCase_ :int = """Not available""" try: lowerCAmelCase_ :str = ( """₹""" + item.find( """span""" , attrs={"""class""": """a-price a-text-price"""} ).text.split("""₹""" )[1] ) except AttributeError: lowerCAmelCase_ :Optional[Any] = """""" try: lowerCAmelCase_ :str = float( ( ( float(product_mrp.strip("""₹""" ).replace(""",""" , """""" ) ) - float(product_price.strip("""₹""" ).replace(""",""" , """""" ) ) ) / float(product_mrp.strip("""₹""" ).replace(""",""" , """""" ) ) ) * 1_0_0 ) except ValueError: lowerCAmelCase_ :Union[str, Any] = float("""nan""" ) except AttributeError: pass lowerCAmelCase_ :Any = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] lowerCAmelCase_ :List[Any] = """ """ lowerCAmelCase_ :Tuple = """ """ data_frame.index += 1 return data_frame if __name__ == "__main__": __UpperCAmelCase = 'headphones' get_amazon_product_data(product).to_csv(F"""Amazon Product Data for {product}.csv""")
1
1
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { '''google/pix2struct-textcaps-base''': ( '''https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json''' ), } class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Optional[int] = '''pix2struct_text_model''' __lowercase : str = ['''past_key_values'''] __lowercase : Dict = { '''hidden_size''': '''hidden_size''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self ,__UpperCAmelCase=5_0244 ,__UpperCAmelCase=768 ,__UpperCAmelCase=64 ,__UpperCAmelCase=2048 ,__UpperCAmelCase=12 ,__UpperCAmelCase=12 ,__UpperCAmelCase=32 ,__UpperCAmelCase=128 ,__UpperCAmelCase=0.1 ,__UpperCAmelCase=1E-6 ,__UpperCAmelCase=1.0 ,__UpperCAmelCase="gelu_new" ,__UpperCAmelCase=0 ,__UpperCAmelCase=False ,__UpperCAmelCase=0 ,__UpperCAmelCase=1 ,__UpperCAmelCase=False ,__UpperCAmelCase=True ,**__UpperCAmelCase ,) -> Tuple: lowerCAmelCase__ : Optional[Any] = vocab_size lowerCAmelCase__ : List[Any] = hidden_size lowerCAmelCase__ : List[Any] = d_kv lowerCAmelCase__ : Optional[Any] = d_ff lowerCAmelCase__ : Optional[int] = num_layers lowerCAmelCase__ : Optional[Any] = num_heads lowerCAmelCase__ : str = relative_attention_num_buckets lowerCAmelCase__ : Dict = relative_attention_max_distance lowerCAmelCase__ : Optional[Any] = dropout_rate lowerCAmelCase__ : Optional[int] = layer_norm_epsilon lowerCAmelCase__ : List[str] = initializer_factor lowerCAmelCase__ : Dict = use_cache lowerCAmelCase__ : int = eos_token_id lowerCAmelCase__ : Optional[int] = decoder_start_token_id # for backwards compatibility lowerCAmelCase__ : Optional[int] = dense_act_fn super().__init__( pad_token_id=__UpperCAmelCase ,eos_token_id=__UpperCAmelCase ,decoder_start_token_id=__UpperCAmelCase ,tie_word_embeddings=__UpperCAmelCase ,is_decoder=__UpperCAmelCase ,**__UpperCAmelCase ,) @classmethod def UpperCAmelCase_ ( cls ,__UpperCAmelCase ,**__UpperCAmelCase ) -> "PretrainedConfig": cls._set_token_in_kwargs(__UpperCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ : Dict = cls.get_config_dict(__UpperCAmelCase ,**__UpperCAmelCase ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get("""model_type""" ) == "pix2struct": lowerCAmelCase__ : List[str] = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__UpperCAmelCase ,**__UpperCAmelCase ) class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Tuple = '''pix2struct_vision_model''' def __init__( self ,__UpperCAmelCase=768 ,__UpperCAmelCase=768 ,__UpperCAmelCase=2048 ,__UpperCAmelCase=64 ,__UpperCAmelCase=12 ,__UpperCAmelCase=12 ,__UpperCAmelCase="gelu_new" ,__UpperCAmelCase=1E-6 ,__UpperCAmelCase=0.0 ,__UpperCAmelCase=0.0 ,__UpperCAmelCase=1E-10 ,__UpperCAmelCase=1.0 ,__UpperCAmelCase=4096 ,__UpperCAmelCase=32 ,__UpperCAmelCase=128 ,**__UpperCAmelCase ,) -> Union[str, Any]: super().__init__(**__UpperCAmelCase ) lowerCAmelCase__ : Any = hidden_size lowerCAmelCase__ : Dict = patch_embed_hidden_size lowerCAmelCase__ : List[Any] = d_ff lowerCAmelCase__ : Dict = dropout_rate lowerCAmelCase__ : Any = num_hidden_layers lowerCAmelCase__ : List[str] = num_attention_heads lowerCAmelCase__ : Optional[Any] = initializer_range lowerCAmelCase__ : List[Any] = initializer_factor lowerCAmelCase__ : Dict = attention_dropout lowerCAmelCase__ : Any = layer_norm_eps lowerCAmelCase__ : str = dense_act_fn lowerCAmelCase__ : Tuple = seq_len lowerCAmelCase__ : List[Any] = relative_attention_num_buckets lowerCAmelCase__ : Any = relative_attention_max_distance lowerCAmelCase__ : List[Any] = d_kv @classmethod def UpperCAmelCase_ ( cls ,__UpperCAmelCase ,**__UpperCAmelCase ) -> "PretrainedConfig": cls._set_token_in_kwargs(__UpperCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ : Any = cls.get_config_dict(__UpperCAmelCase ,**__UpperCAmelCase ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get("""model_type""" ) == "pix2struct": lowerCAmelCase__ : Optional[Any] = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__UpperCAmelCase ,**__UpperCAmelCase ) class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Union[str, Any] = '''pix2struct''' __lowercase : str = True def __init__( self ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=1.0 ,__UpperCAmelCase=0.0_2 ,__UpperCAmelCase=False ,__UpperCAmelCase=False ,__UpperCAmelCase=True ,**__UpperCAmelCase ,) -> Tuple: super().__init__(tie_word_embeddings=__UpperCAmelCase ,is_encoder_decoder=__UpperCAmelCase ,**__UpperCAmelCase ) if text_config is None: lowerCAmelCase__ : Union[str, Any] = {} logger.info("""text_config is None. Initializing the Pix2StructTextConfig with default values.""" ) if vision_config is None: lowerCAmelCase__ : List[Any] = {} logger.info("""vision_config is None. Initializing the Pix2StructVisionConfig with default values.""" ) lowerCAmelCase__ : Optional[Any] = PixaStructTextConfig(**__UpperCAmelCase ) lowerCAmelCase__ : Any = PixaStructVisionConfig(**__UpperCAmelCase ) lowerCAmelCase__ : Tuple = self.text_config.decoder_start_token_id lowerCAmelCase__ : List[str] = self.text_config.pad_token_id lowerCAmelCase__ : Any = self.text_config.eos_token_id lowerCAmelCase__ : Dict = initializer_factor lowerCAmelCase__ : List[str] = initializer_range lowerCAmelCase__ : int = self.initializer_range lowerCAmelCase__ : Tuple = self.initializer_range lowerCAmelCase__ : Optional[int] = is_vqa @classmethod def UpperCAmelCase_ ( cls ,__UpperCAmelCase ,__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[int]: return cls(text_config=text_config.to_dict() ,vision_config=vision_config.to_dict() ,**__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> str: lowerCAmelCase__ : str = copy.deepcopy(self.__dict__ ) lowerCAmelCase__ : Any = self.text_config.to_dict() lowerCAmelCase__ : Optional[Any] = self.vision_config.to_dict() lowerCAmelCase__ : Any = self.__class__.model_type return output
37
from maths.prime_check import is_prime def snake_case_ ( lowerCAmelCase_ : int ): if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase : Dict = F"Input value of [number={number}] must be an integer" raise TypeError(lowerCAmelCase_ ) if is_prime(lowerCAmelCase_ ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
233
0
from math import pi def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int , __magic_name__ : int ) -> float: """simple docstring""" return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
62
from string import ascii_lowercase, ascii_uppercase def SCREAMING_SNAKE_CASE_ ( __magic_name__ : str ) -> str: """simple docstring""" if not sentence: return "" UpperCamelCase :str = dict(zip(__magic_name__ , __magic_name__ ) ) return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
62
1
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase__ : List[str] = 16 lowercase__ : Any = 32 def __lowercase ( _a , _a = 16 ): snake_case_ : Optional[int] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) snake_case_ : str = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(_a ): # max_length=None => use the model max length (it's actually the default) snake_case_ : Optional[Any] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=_a , max_length=_a ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): snake_case_ : int = datasets.map( _a , batched=_a , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case_ : Optional[int] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(_a ): # On TPU it's best to pad everything to the same length or training will be very slow. snake_case_ : List[Any] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": snake_case_ : Dict = 16 elif accelerator.mixed_precision != "no": snake_case_ : int = 8 else: snake_case_ : Dict = None return tokenizer.pad( _a , padding='''longest''' , max_length=_a , pad_to_multiple_of=_a , return_tensors='''pt''' , ) # Instantiate dataloaders. snake_case_ : Tuple = DataLoader( tokenized_datasets['''train'''] , shuffle=_a , collate_fn=_a , batch_size=_a ) snake_case_ : Dict = DataLoader( tokenized_datasets['''validation'''] , shuffle=_a , collate_fn=_a , batch_size=_a ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowercase__ : Optional[int] = mocked_dataloaders # noqa: F811 def __lowercase ( _a , _a ): # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , _a ) == "1": snake_case_ : Optional[int] = 2 # New Code # snake_case_ : Union[str, Any] = int(args.gradient_accumulation_steps ) snake_case_ : List[Any] = int(args.local_sgd_steps ) # Initialize accelerator snake_case_ : Any = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=_a ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError('''LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)''' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case_ : Optional[int] = config['''lr'''] snake_case_ : Dict = int(config['''num_epochs'''] ) snake_case_ : Optional[int] = int(config['''seed'''] ) snake_case_ : Optional[int] = int(config['''batch_size'''] ) snake_case_ : Optional[int] = evaluate.load('''glue''' , '''mrpc''' ) set_seed(_a ) snake_case_, snake_case_ : Optional[int] = get_dataloaders(_a , _a ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case_ : Tuple = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=_a ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). snake_case_ : Tuple = model.to(accelerator.device ) # Instantiate optimizer snake_case_ : List[str] = AdamW(params=model.parameters() , lr=_a ) # Instantiate scheduler snake_case_ : Union[str, Any] = get_linear_schedule_with_warmup( optimizer=_a , num_warmup_steps=100 , num_training_steps=(len(_a ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ : Union[str, Any] = accelerator.prepare( _a , _a , _a , _a , _a ) # Now we train the model for epoch in range(_a ): model.train() with LocalSGD( accelerator=_a , model=_a , local_sgd_steps=_a , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(_a ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(_a ): snake_case_ : int = model(**_a ) snake_case_ : List[str] = output.loss accelerator.backward(_a ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(_a ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case_ : int = model(**_a ) snake_case_ : Optional[int] = outputs.logits.argmax(dim=-1 ) snake_case_, snake_case_ : List[Any] = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=_a , references=_a , ) snake_case_ : Union[str, Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , _a ) def __lowercase ( ): snake_case_ : List[str] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=_a , default=_a , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) # New Code # parser.add_argument( '''--gradient_accumulation_steps''' , type=_a , default=1 , help='''The number of minibatches to be ran before gradients are accumulated.''' , ) parser.add_argument( '''--local_sgd_steps''' , type=_a , default=8 , help='''Number of local SGD steps or None to disable local SGD''' ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) snake_case_ : Dict = parser.parse_args() snake_case_ : Optional[Any] = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(_a , _a ) if __name__ == "__main__": main()
264
"""simple docstring""" from __future__ import annotations def __lowercase ( _a , _a , _a , ): if (stress, tangential_force, area).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif stress < 0: raise ValueError('''Stress cannot be negative''' ) elif tangential_force < 0: raise ValueError('''Tangential Force cannot be negative''' ) elif area < 0: raise ValueError('''Area cannot be negative''' ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
264
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class UpperCamelCase : """simple docstring""" def __init__( self : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any=1_3 , UpperCAmelCase_ : Optional[int]=7 , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Dict=9_9 , UpperCAmelCase_ : List[Any]=3_2 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : List[str]=4 , UpperCAmelCase_ : Optional[int]=3_7 , UpperCAmelCase_ : Optional[Any]="gelu" , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : str=5_1_2 , UpperCAmelCase_ : List[Any]=1_6 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Union[str, Any]=0.02 , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Optional[int]="None" , UpperCAmelCase_ : Any=3 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : List[Any]=None , ): """simple docstring""" a : Optional[Any] = parent a : List[Any] = batch_size a : Tuple = seq_length a : Optional[Any] = is_training a : str = use_input_mask a : List[Any] = use_token_type_ids a : Any = use_labels a : Any = vocab_size a : Dict = hidden_size a : List[str] = num_hidden_layers a : Tuple = num_attention_heads a : List[str] = intermediate_size a : Union[str, Any] = hidden_act a : Any = hidden_dropout_prob a : Union[str, Any] = attention_probs_dropout_prob a : Optional[Any] = max_position_embeddings a : Any = type_vocab_size a : List[str] = type_sequence_label_size a : Dict = initializer_range a : List[Any] = num_labels a : Dict = num_choices a : Union[str, Any] = relative_attention a : List[str] = position_biased_input a : int = pos_att_type a : Optional[int] = scope def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" a : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a : int = None if self.use_input_mask: a : str = random_attention_mask([self.batch_size, self.seq_length]) a : Optional[int] = None if self.use_token_type_ids: a : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) a : Union[str, Any] = None a : Optional[int] = None a : Any = None if self.use_labels: a : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size) a : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) a : List[Any] = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=_a , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict): """simple docstring""" a : List[Any] = TFDebertaVaModel(config=_a) a : Any = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} a : int = [input_ids, input_mask] a : List[str] = model(_a) a : Dict = model(_a) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE_ ( self : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple): """simple docstring""" a : Union[str, Any] = TFDebertaVaForMaskedLM(config=_a) a : Optional[int] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } a : Any = model(_a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any]): """simple docstring""" a : Union[str, Any] = self.num_labels a : List[Any] = TFDebertaVaForSequenceClassification(config=_a) a : int = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } a : Union[str, Any] = model(_a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any]): """simple docstring""" a : Union[str, Any] = self.num_labels a : str = TFDebertaVaForTokenClassification(config=_a) a : List[Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } a : List[str] = model(_a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict): """simple docstring""" a : List[Any] = TFDebertaVaForQuestionAnswering(config=_a) a : List[Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } a : Dict = model(_a) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" a : str = self.prepare_config_and_inputs() ( a ) : str = config_and_inputs a : Union[str, Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class UpperCamelCase ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): """simple docstring""" A : int = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) A : int = ( { """feature-extraction""": TFDebertaVaModel, """fill-mask""": TFDebertaVaForMaskedLM, """question-answering""": TFDebertaVaForQuestionAnswering, """text-classification""": TFDebertaVaForSequenceClassification, """token-classification""": TFDebertaVaForTokenClassification, """zero-shot""": TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) A : Union[str, Any] = False A : List[str] = False def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" a : Dict = TFDebertaVaModelTester(self) a : Any = ConfigTester(self , config_class=_a , hidden_size=3_7) def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a) def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_a) def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" a : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_a) def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_a) def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_a) @slow def SCREAMING_SNAKE_CASE_ ( self : List[Any]): """simple docstring""" a : Optional[Any] = TFDebertaVaModel.from_pretrained('kamalkraj/deberta-v2-xlarge') self.assertIsNotNone(_a) @require_tf class UpperCamelCase ( unittest.TestCase ): """simple docstring""" @unittest.skip(reason='Model not available yet') def SCREAMING_SNAKE_CASE_ ( self : List[Any]): """simple docstring""" pass @slow def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" a : Optional[Any] = TFDebertaVaModel.from_pretrained('kamalkraj/deberta-v2-xlarge') a : Optional[Any] = tf.constant([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]]) a : Optional[Any] = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) a : Tuple = model(_a , attention_mask=_a)[0] a : List[str] = tf.constant( [[[0.23_56, 0.19_48, 0.03_69], [-0.10_63, 0.35_86, -0.51_52], [-0.63_99, -0.02_59, -0.25_25]]]) tf.debugging.assert_near(output[:, 1:4, 1:4] , _a , atol=1e-4)
362
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase : Tuple = { """configuration_pegasus_x""": ["""PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PegasusXConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Union[str, Any] = [ """PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST""", """PegasusXForConditionalGeneration""", """PegasusXModel""", """PegasusXPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys UpperCamelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
345
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _A = { """configuration_blenderbot_small""": [ """BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlenderbotSmallConfig""", """BlenderbotSmallOnnxConfig""", ], """tokenization_blenderbot_small""": ["""BlenderbotSmallTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ["""BlenderbotSmallTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ """BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlenderbotSmallForCausalLM""", """BlenderbotSmallForConditionalGeneration""", """BlenderbotSmallModel""", """BlenderbotSmallPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ """TFBlenderbotSmallForConditionalGeneration""", """TFBlenderbotSmallModel""", """TFBlenderbotSmallPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ """FlaxBlenderbotSmallForConditionalGeneration""", """FlaxBlenderbotSmallModel""", """FlaxBlenderbotSmallPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
242
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) _snake_case = [ ["attention", "attn"], ["encoder_attention", "encoder_attn"], ["q_lin", "q_proj"], ["k_lin", "k_proj"], ["v_lin", "v_proj"], ["out_lin", "out_proj"], ["norm_embeddings", "layernorm_embedding"], ["position_embeddings", "embed_positions"], ["embeddings", "embed_tokens"], ["ffn.lin", "fc"], ] def lowerCAmelCase_ ( snake_case_ ): if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: _A : str = k.replace(snake_case_,snake_case_ ) if k.startswith("""encoder""" ): _A : Optional[Any] = k.replace(""".attn""",""".self_attn""" ) _A : Dict = k.replace("""norm1""","""self_attn_layer_norm""" ) _A : Optional[Any] = k.replace("""norm2""","""final_layer_norm""" ) elif k.startswith("""decoder""" ): _A : str = k.replace("""norm1""","""self_attn_layer_norm""" ) _A : Any = k.replace("""norm2""","""encoder_attn_layer_norm""" ) _A : Optional[int] = k.replace("""norm3""","""final_layer_norm""" ) return k def lowerCAmelCase_ ( snake_case_ ): _A : List[Any] = [ """model.encoder.layernorm_embedding.weight""", """model.encoder.layernorm_embedding.bias""", """model.decoder.layernorm_embedding.weight""", """model.decoder.layernorm_embedding.bias""", ] for k in keys: _A : str = sd.pop(snake_case_ ) _A : Optional[int] = k.replace("""layernorm_embedding""","""layer_norm""" ) assert new_k not in sd _A : Optional[int] = v _snake_case = ["START"] @torch.no_grad() def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : Tuple = torch.load(snake_case_,map_location="""cpu""" ) _A : List[Any] = model["""model"""] _A : Optional[Any] = BlenderbotConfig.from_json_file(snake_case_ ) _A : List[str] = BlenderbotForConditionalGeneration(snake_case_ ) _A : Tuple = m.model.state_dict().keys() _A : Any = [] _A : Dict = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue _A : Optional[int] = rename_state_dict_key(snake_case_ ) if new_k not in valid_keys: failures.append([k, new_k] ) else: _A : Dict = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(snake_case_ ) m.model.load_state_dict(snake_case_,strict=snake_case_ ) m.half() m.save_pretrained(snake_case_ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin") parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.") parser.add_argument( "--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use" ) _snake_case = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
26
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/image-classification/requirements.txt""") SCREAMING_SNAKE_CASE__ = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) SCREAMING_SNAKE_CASE__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: str ): '''simple docstring''' with open(lowerCAmelCase__ , "rb" ) as f: lowercase_ = Image.open(lowerCAmelCase__ ) return im.convert("RGB" ) @dataclass class __lowerCamelCase : """simple docstring""" lowerCAmelCase__ = field( default=_lowerCAmelCase , metadata={ "help": "Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub)." } , ) lowerCAmelCase__ = field( default=_lowerCAmelCase , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) lowerCAmelCase__ = field(default=_lowerCAmelCase , metadata={"help": "A folder containing the training data."} ) lowerCAmelCase__ = field(default=_lowerCAmelCase , metadata={"help": "A folder containing the validation data."} ) lowerCAmelCase__ = field( default=0.15 , metadata={"help": "Percent to split off of train for validation."} ) lowerCAmelCase__ = field( default=_lowerCAmelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) lowerCAmelCase__ = field( default=_lowerCAmelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def A__ ( self ) -> Tuple: '''simple docstring''' if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( "You must specify either a dataset name from the hub or a train and/or validation directory." ) @dataclass class __lowerCamelCase : """simple docstring""" lowerCAmelCase__ = field( default="google/vit-base-patch16-224-in21k" , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} , ) lowerCAmelCase__ = field( default=_lowerCAmelCase , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(_lowerCAmelCase )} , ) lowerCAmelCase__ = field( default=_lowerCAmelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCAmelCase__ = field( default=_lowerCAmelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) lowerCAmelCase__ = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) lowerCAmelCase__ = field(default=_lowerCAmelCase , metadata={"help": "Name or path of preprocessor config."} ) lowerCAmelCase__ = field( default=_lowerCAmelCase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) lowerCAmelCase__ = field( default=_lowerCAmelCase , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Dict ): '''simple docstring''' lowercase_ = torch.stack([example["pixel_values"] for example in examples] ) lowercase_ = torch.tensor([example["labels"] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase_ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_image_classification" , lowerCAmelCase__ , lowerCAmelCase__ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase_ = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase__ ) transformers.utils.logging.set_verbosity(lowerCAmelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. lowercase_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: lowercase_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task="image-classification" , use_auth_token=True if model_args.use_auth_token else None , ) else: lowercase_ = {} if data_args.train_dir is not None: lowercase_ = os.path.join(data_args.train_dir , "**" ) if data_args.validation_dir is not None: lowercase_ = os.path.join(data_args.validation_dir , "**" ) lowercase_ = load_dataset( "imagefolder" , data_files=lowerCAmelCase__ , cache_dir=model_args.cache_dir , task="image-classification" , ) # If we don't have a validation split, split off a percentage of train as validation. lowercase_ = None if """validation""" in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , lowerCAmelCase__ ) and data_args.train_val_split > 0.0: lowercase_ = dataset["""train"""].train_test_split(data_args.train_val_split ) lowercase_ = split["""train"""] lowercase_ = split["""test"""] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. lowercase_ = dataset["""train"""].features["""labels"""].names lowercase_ = {}, {} for i, label in enumerate(lowerCAmelCase__ ): lowercase_ = str(lowerCAmelCase__ ) lowercase_ = label # Load the accuracy metric from the datasets package lowercase_ = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__lowerCamelCase: Dict ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) lowercase_ = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(lowerCAmelCase__ ) , labelaid=lowerCAmelCase__ , idalabel=lowerCAmelCase__ , finetuning_task="image-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowercase_ = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=lowerCAmelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) lowercase_ = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: lowercase_ = image_processor.size["""shortest_edge"""] else: lowercase_ = (image_processor.size["""height"""], image_processor.size["""width"""]) lowercase_ = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) lowercase_ = Compose( [ RandomResizedCrop(lowerCAmelCase__ ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) lowercase_ = Compose( [ Resize(lowerCAmelCase__ ), CenterCrop(lowerCAmelCase__ ), ToTensor(), normalize, ] ) def train_transforms(__lowerCamelCase: List[str] ): lowercase_ = [ _train_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["""image"""] ] return example_batch def val_transforms(__lowerCamelCase: Optional[Any] ): lowercase_ = [_val_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["""image"""]] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: lowercase_ = ( dataset["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(lowerCAmelCase__ ) if training_args.do_eval: if "validation" not in dataset: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: lowercase_ = ( dataset["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(lowerCAmelCase__ ) # Initalize our trainer lowercase_ = Trainer( model=lowerCAmelCase__ , args=lowerCAmelCase__ , train_dataset=dataset["train"] if training_args.do_train else None , eval_dataset=dataset["validation"] if training_args.do_eval else None , compute_metrics=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , data_collator=lowerCAmelCase__ , ) # Training if training_args.do_train: lowercase_ = None if training_args.resume_from_checkpoint is not None: lowercase_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase_ = last_checkpoint lowercase_ = trainer.train(resume_from_checkpoint=lowerCAmelCase__ ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowercase_ = trainer.evaluate() trainer.log_metrics("eval" , lowerCAmelCase__ ) trainer.save_metrics("eval" , lowerCAmelCase__ ) # Write model card and (optionally) push to hub lowercase_ = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """image-classification""", """dataset""": data_args.dataset_name, """tags""": ["""image-classification""", """vision"""], } if training_args.push_to_hub: trainer.push_to_hub(**lowerCAmelCase__ ) else: trainer.create_model_card(**lowerCAmelCase__ ) if __name__ == "__main__": main()
366
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class __lowerCamelCase ( snake_case_ ): """simple docstring""" def A__ ( self ) -> int: '''simple docstring''' return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = {"col_1": [3, 2, 1, 0], "col_2": ["a", "b", "c", "d"]} return Dataset.from_dict(UpperCAmelCase ) def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase_ = self._create_example_records() lowercase_ = Dataset.from_list(UpperCAmelCase ) self.assertListEqual(dset.column_names , ["col_1", "col_2"] ) for i, r in enumerate(UpperCAmelCase ): self.assertDictEqual(UpperCAmelCase , example_records[i] ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = self._create_example_records() lowercase_ = Dataset.from_list(UpperCAmelCase ) lowercase_ = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def A__ ( self ) -> Any: # checks what happens with missing columns '''simple docstring''' lowercase_ = [{"col_1": 1}, {"col_2": "x"}] lowercase_ = Dataset.from_list(UpperCAmelCase ) self.assertDictEqual(dset[0] , {"col_1": 1} ) self.assertDictEqual(dset[1] , {"col_1": None} ) # NB: first record is used for columns def A__ ( self ) -> List[Any]: # checks if the type can be inferred from the second record '''simple docstring''' lowercase_ = [{"col_1": []}, {"col_1": [1, 2]}] lowercase_ = Dataset.from_list(UpperCAmelCase ) self.assertEqual(dset.info.features["col_1"] , Sequence(Value("int64" ) ) ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = Dataset.from_list([] ) self.assertEqual(len(UpperCAmelCase ) , 0 ) self.assertListEqual(dset.column_names , [] )
297
0
'''simple docstring''' import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib __lowercase = { '''debug''': logging.DEBUG, '''info''': logging.INFO, '''warning''': logging.WARNING, '''error''': logging.ERROR, '''critical''': logging.CRITICAL, } __lowercase = logging.WARNING def snake_case__ ( ) -> Tuple: '''simple docstring''' lowerCAmelCase = os.getenv("""DATASETS_VERBOSITY""" , __lowerCAmelCase ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"Unknown option DATASETS_VERBOSITY={env_level_str}, " f"has to be one of: { ', '.join(log_levels.keys() ) }" ) return _default_log_level def snake_case__ ( ) -> List[str]: '''simple docstring''' return __name__.split(""".""" )[0] def snake_case__ ( ) -> int: '''simple docstring''' return logging.getLogger(_get_library_name() ) def snake_case__ ( ) -> Any: '''simple docstring''' lowerCAmelCase = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level() ) def snake_case__ ( ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET ) def snake_case__ ( _A: Optional[str] = None ) -> Optional[int]: '''simple docstring''' if name is None: lowerCAmelCase = _get_library_name() return logging.getLogger(__lowerCAmelCase ) def snake_case__ ( ) -> Union[str, Any]: '''simple docstring''' return _get_library_root_logger().getEffectiveLevel() def snake_case__ ( _A: int ) -> Optional[int]: '''simple docstring''' _get_library_root_logger().setLevel(__lowerCAmelCase ) def snake_case__ ( ) -> List[Any]: '''simple docstring''' return set_verbosity(__lowerCAmelCase ) def snake_case__ ( ) -> Tuple: '''simple docstring''' return set_verbosity(__lowerCAmelCase ) def snake_case__ ( ) -> List[str]: '''simple docstring''' return set_verbosity(__lowerCAmelCase ) def snake_case__ ( ) -> Tuple: '''simple docstring''' return set_verbosity(__lowerCAmelCase ) def snake_case__ ( ) -> Dict: '''simple docstring''' lowerCAmelCase = False def snake_case__ ( ) -> Optional[int]: '''simple docstring''' lowerCAmelCase = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class a__: '''simple docstring''' def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase): # pylint: disable=unused-argument """simple docstring""" lowerCAmelCase = args[0] if args else None def __iter__( self): """simple docstring""" return iter(self._iterator) def __getattr__( self , __lowerCAmelCase): """simple docstring""" def empty_fn(*__lowerCAmelCase , **__lowerCAmelCase): # pylint: disable=unused-argument return return empty_fn def __enter__( self): """simple docstring""" return self def __exit__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase): """simple docstring""" return __lowercase = True class a__: '''simple docstring''' def __call__( self , *__lowerCAmelCase , __lowerCAmelCase=False , **__lowerCAmelCase): """simple docstring""" if _tqdm_active and not disable: return tqdm_lib.tqdm(*_UpperCamelCase , **_UpperCamelCase) else: return EmptyTqdm(*_UpperCamelCase , **_UpperCamelCase) def a_ ( self , *__lowerCAmelCase , **__lowerCAmelCase): """simple docstring""" lowerCAmelCase = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*_UpperCamelCase , **_UpperCamelCase) def a_ ( self): """simple docstring""" if _tqdm_active: return tqdm_lib.tqdm.get_lock() __lowercase = _tqdm_cls() def snake_case__ ( ) -> Union[str, Any]: '''simple docstring''' global _tqdm_active return bool(_tqdm_active ) def snake_case__ ( ) -> Any: '''simple docstring''' global _tqdm_active lowerCAmelCase = True def snake_case__ ( ) -> Optional[int]: '''simple docstring''' global _tqdm_active lowerCAmelCase = False
272
from pathlib import Path import fire def lowerCamelCase__ ( __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : int ): """simple docstring""" lowerCAmelCase_ = Path(__lowerCAmelCase ) lowerCAmelCase_ = Path(__lowerCAmelCase ) dest_dir.mkdir(exist_ok=__lowerCAmelCase ) for path in src_dir.iterdir(): lowerCAmelCase_ = [x.rstrip() for x in list(path.open().readlines() )][:n] lowerCAmelCase_ = dest_dir.joinpath(path.name ) print(__lowerCAmelCase ) dest_path.open("w" ).write("\n".join(__lowerCAmelCase ) ) if __name__ == "__main__": fire.Fire(minify)
231
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer _a : Any= {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} _a : Dict= { "vocab_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt" ), "google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt", "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt" ), }, "tokenizer_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json" ), "google/electra-base-generator": ( "https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json" ), "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json" ), }, } _a : Optional[int]= { "google/electra-small-generator": 512, "google/electra-base-generator": 512, "google/electra-large-generator": 512, "google/electra-small-discriminator": 512, "google/electra-base-discriminator": 512, "google/electra-large-discriminator": 512, } _a : Union[str, Any]= { "google/electra-small-generator": {"do_lower_case": True}, "google/electra-base-generator": {"do_lower_case": True}, "google/electra-large-generator": {"do_lower_case": True}, "google/electra-small-discriminator": {"do_lower_case": True}, "google/electra-base-discriminator": {"do_lower_case": True}, "google/electra-large-discriminator": {"do_lower_case": True}, } class UpperCamelCase ( lowercase ): UpperCAmelCase : str = VOCAB_FILES_NAMES UpperCAmelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase : List[Any] = ElectraTokenizer def __init__(self : int , _A : int=None , _A : str=None , _A : Optional[int]=True , _A : Optional[int]="[UNK]" , _A : List[Any]="[SEP]" , _A : str="[PAD]" , _A : Union[str, Any]="[CLS]" , _A : List[Any]="[MASK]" , _A : Optional[Any]=True , _A : Any=None , **_A : Dict , ) -> str: super().__init__( _A , tokenizer_file=_A , do_lower_case=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , tokenize_chinese_chars=_A , strip_accents=_A , **_A , ) __snake_case : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get('lowercase' , _A) != do_lower_case or normalizer_state.get('strip_accents' , _A) != strip_accents or normalizer_state.get('handle_chinese_chars' , _A) != tokenize_chinese_chars ): __snake_case : int = getattr(_A , normalizer_state.pop('type')) __snake_case : Optional[int] = do_lower_case __snake_case : List[str] = strip_accents __snake_case : List[Any] = tokenize_chinese_chars __snake_case : Union[str, Any] = normalizer_class(**_A) __snake_case : Optional[int] = do_lower_case def _lowercase (self : int , _A : Optional[int] , _A : str=None) -> Dict: __snake_case : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowercase (self : Tuple , _A : List[int] , _A : Optional[List[int]] = None) -> List[int]: __snake_case : Optional[Any] = [self.sep_token_id] __snake_case : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def _lowercase (self : str , _A : str , _A : Optional[str] = None) -> Tuple[str]: __snake_case : Optional[int] = self._tokenizer.model.save(_A , name=_A) return tuple(_A)
95
"""simple docstring""" import itertools import string from collections.abc import Generator, Iterable def __UpperCAmelCase ( UpperCAmelCase_ : Iterable[str] , UpperCAmelCase_ : int ) -> Generator[tuple[str, ...], None, None]: '''simple docstring''' __snake_case : Optional[int] = iter(UpperCAmelCase_ ) while True: __snake_case : Optional[int] = tuple(itertools.islice(UpperCAmelCase_ , UpperCAmelCase_ ) ) if not chunk: return yield chunk def __UpperCAmelCase ( UpperCAmelCase_ : str ) -> str: '''simple docstring''' __snake_case : Any = ''.join([c.upper() for c in dirty if c in string.ascii_letters] ) __snake_case : Union[str, Any] = '' if len(UpperCAmelCase_ ) < 2: return dirty for i in range(len(UpperCAmelCase_ ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(UpperCAmelCase_ ) & 1: clean += "X" return clean def __UpperCAmelCase ( UpperCAmelCase_ : str ) -> list[str]: '''simple docstring''' __snake_case : List[str] = 'ABCDEFGHIKLMNOPQRSTUVWXYZ' # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler __snake_case : Optional[int] = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(UpperCAmelCase_ ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(UpperCAmelCase_ ) return table def __UpperCAmelCase ( UpperCAmelCase_ : str , UpperCAmelCase_ : str ) -> str: '''simple docstring''' __snake_case : str = generate_table(UpperCAmelCase_ ) __snake_case : Union[str, Any] = prepare_input(UpperCAmelCase_ ) __snake_case : Tuple = '' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(UpperCAmelCase_ , 2 ): __snake_case , __snake_case : Any = divmod(table.index(UpperCAmelCase_ ) , 5 ) __snake_case , __snake_case : Tuple = divmod(table.index(UpperCAmelCase_ ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def __UpperCAmelCase ( UpperCAmelCase_ : str , UpperCAmelCase_ : str ) -> str: '''simple docstring''' __snake_case : Optional[int] = generate_table(UpperCAmelCase_ ) __snake_case : Any = '' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(UpperCAmelCase_ , 2 ): __snake_case , __snake_case : Union[str, Any] = divmod(table.index(UpperCAmelCase_ ) , 5 ) __snake_case , __snake_case : Tuple = divmod(table.index(UpperCAmelCase_ ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
95
1
"""simple docstring""" def a_ ( _lowerCAmelCase : str , _lowerCAmelCase : str ): '''simple docstring''' lowercase__ : List[str] = len(_lowerCAmelCase ) + 1 lowercase__ : Any = len(_lowerCAmelCase ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. lowercase__ : List[str] = [[0 for i in range(_lowerCAmelCase )] for j in range(_lowerCAmelCase )] # since string of zero length match pattern of zero length lowercase__ : Any = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , _lowerCAmelCase ): lowercase__ : Tuple = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , _lowerCAmelCase ): lowercase__ : Union[str, Any] = dp[0][j - 2] if pattern[j - 1] == '*' else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , _lowerCAmelCase ): for j in range(1 , _lowerCAmelCase ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": lowercase__ : List[Any] = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: lowercase__ : Union[str, Any] = 1 elif pattern[j - 2] in (input_string[i - 1], "."): lowercase__ : Tuple = dp[i - 1][j] else: lowercase__ : Tuple = 0 else: lowercase__ : List[Any] = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") _UpperCamelCase : Any = "aab" _UpperCamelCase : int = "c*a*b" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(f'''{input_string} matches the given pattern {pattern}''') else: print(f'''{input_string} does not match with the given pattern {pattern}''')
77
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase : Any = logging.get_logger(__name__) UpperCamelCase : Any = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase : Dict = { "vocab_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/vocab.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/vocab.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/vocab.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/vocab.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/vocab.json", }, "merges_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/merges.txt", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/merges.txt", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/merges.txt", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/merges.txt", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/merges.txt", }, "tokenizer_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/tokenizer.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/tokenizer.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/tokenizer.json", }, } UpperCamelCase : Dict = { "gpt2": 1_0_2_4, "gpt2-medium": 1_0_2_4, "gpt2-large": 1_0_2_4, "gpt2-xl": 1_0_2_4, "distilgpt2": 1_0_2_4, } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ["input_ids", "attention_mask"] lowercase = GPTaTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase=False , **__UpperCAmelCase , ): '''simple docstring''' super().__init__( __UpperCAmelCase , __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , unk_token=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , **__UpperCAmelCase , ) __UpperCamelCase = kwargs.pop('add_bos_token' , __UpperCAmelCase ) __UpperCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , __UpperCAmelCase ) != add_prefix_space: __UpperCamelCase = getattr(__UpperCAmelCase , pre_tok_state.pop('type' ) ) __UpperCamelCase = add_prefix_space __UpperCamelCase = pre_tok_class(**__UpperCAmelCase ) __UpperCamelCase = add_prefix_space def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = kwargs.get('is_split_into_words' , __UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = kwargs.get('is_split_into_words' , __UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' __UpperCamelCase = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) + [self.eos_token_id] ) if len(__UpperCAmelCase ) > self.model_max_length: __UpperCamelCase = input_ids[-self.model_max_length :] return input_ids
316
0
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_=0 ): # Format the message. if name is None: _A : Union[str, Any] = None else: _A : Dict = """.""" * max(0,spaces - 2 ) + """# {:""" + str(50 - spaces ) + """s}""" _A : Tuple = fmt.format(snake_case_ ) # Print and recurse (if needed). if isinstance(snake_case_,snake_case_ ): if msg is not None: print(snake_case_ ) for k in val.keys(): recursive_print(snake_case_,val[k],spaces + 2 ) elif isinstance(snake_case_,torch.Tensor ): print(snake_case_,""":""",val.size() ) else: print(snake_case_,""":""",snake_case_ ) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_ ): # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. _A : str = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] _A : Union[str, Any] = (num_heads, hidden_size, num_splits) + input_shape[1:] _A : Tuple = param.view(*snake_case_ ) _A : Any = param.transpose(0,2 ) _A : int = param.transpose(1,2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] _A : Optional[Any] = (num_heads, num_splits, hidden_size) + input_shape[1:] _A : int = param.view(*snake_case_ ) _A : Any = param.transpose(0,1 ).contiguous() _A : Optional[int] = param.view(*snake_case_ ) return param def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): # The converted output model. _A : Any = {} # old versions did not store training args _A : str = input_state_dict.get("""args""",snake_case_ ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) _A : Union[str, Any] = ds_args.padded_vocab_size _A : List[Any] = ds_args.max_position_embeddings _A : Optional[int] = ds_args.hidden_size _A : List[Any] = ds_args.num_layers _A : List[str] = ds_args.num_attention_heads _A : int = ds_args.ffn_hidden_size # pprint(config) # The number of heads. _A : Union[str, Any] = config.n_head # The hidden_size per head. _A : List[Any] = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): _A : Tuple = input_state_dict["""checkpoint_version"""] else: _A : Any = 0.0 # The model. _A : Any = input_state_dict["""model"""] # The language model. _A : Tuple = model["""language_model"""] # The embeddings. _A : Any = lm["""embedding"""] # The word embeddings. _A : Dict = embeddings["""word_embeddings"""]["""weight"""] # Truncate the embedding table to vocab_size rows. _A : Union[str, Any] = word_embeddings[: config.vocab_size, :] _A : Tuple = word_embeddings # The position embeddings. _A : Tuple = embeddings["""position_embeddings"""]["""weight"""] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] _A : Any = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( f'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' ) # Store the position embeddings. _A : Optional[int] = pos_embeddings # The transformer. _A : Any = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""] # The regex to extract layer names. _A : Optional[int] = re.compile(r"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" ) # The simple map of names for "automated" rules. _A : Union[str, Any] = { """attention.dense""": """.attn.c_proj.""", """self_attention.dense""": """.attn.c_proj.""", """mlp.dense_h_to_4h""": """.mlp.c_fc.""", """mlp.dense_4h_to_h""": """.mlp.c_proj.""", } # Extract the layers. for key, val in transformer.items(): # Match the name. _A : List[str] = layer_re.match(snake_case_ ) # Stop if that's not a layer if m is None: break # The index of the layer. _A : Tuple = int(m.group(1 ) ) # The name of the operation. _A : Optional[Any] = m.group(2 ) # Is it a weight or a bias? _A : Dict = m.group(3 ) # The name of the layer. _A : Optional[Any] = f'''transformer.h.{layer_idx}''' # For layernorm(s), simply store the layer norm. if op_name.endswith("""layernorm""" ): _A : Union[str, Any] = """ln_1""" if op_name.startswith("""input""" ) else """ln_2""" _A : List[str] = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. _A : List[str] = torch.tril(torch.ones((n_positions, n_positions),dtype=torch.floataa ) ).view( 1,1,snake_case_,snake_case_ ) _A : Any = causal_mask # Insert a "dummy" tensor for masked_bias. _A : List[str] = torch.tensor(-1e4,dtype=torch.floataa ) _A : Tuple = masked_bias _A : Tuple = fix_query_key_value_ordering(snake_case_,snake_case_,3,snake_case_,snake_case_ ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. _A : Tuple = out_val.transpose(0,1 ).contiguous() # Store. _A : Any = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": _A : List[str] = fix_query_key_value_ordering(snake_case_,snake_case_,3,snake_case_,snake_case_ ) # Store. No change of shape. _A : Tuple = out_val # Transpose the weights. elif weight_or_bias == "weight": _A : List[str] = megatron_to_transformers[op_name] _A : Any = val.transpose(0,1 ) # Copy the bias. elif weight_or_bias == "bias": _A : Dict = megatron_to_transformers[op_name] _A : List[Any] = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. _A : Optional[Any] = transformer["""final_layernorm.weight"""] _A : Dict = transformer["""final_layernorm.bias"""] # For LM head, transformers' wants the matrix to weight embeddings. _A : List[str] = word_embeddings # It should be done! return output_state_dict def lowerCAmelCase_ ( ): # Create the argument parser. _A : Any = argparse.ArgumentParser() parser.add_argument("""--print-checkpoint-structure""",action="""store_true""" ) parser.add_argument( """path_to_checkpoint""",type=snake_case_,help="""Path to the checkpoint file (.zip archive or direct .pt file)""",) parser.add_argument( """--config_file""",default="""""",type=snake_case_,help="""An optional config json file describing the pre-trained model.""",) _A : Optional[int] = parser.parse_args() # Extract the basename. _A : Any = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(f'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' ) if args.path_to_checkpoint.endswith(""".zip""" ): with zipfile.ZipFile(args.path_to_checkpoint,"""r""" ) as checkpoint: with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict: _A : Tuple = torch.load(snake_case_,map_location="""cpu""" ) else: _A : Tuple = torch.load(args.path_to_checkpoint,map_location="""cpu""" ) _A : Optional[Any] = input_state_dict.get("""args""",snake_case_ ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: _A : Union[str, Any] = """gelu_fast""" elif ds_args.openai_gelu: _A : int = """gelu_new""" else: _A : Optional[Any] = """gelu""" else: # in the very early days this used to be "gelu_new" _A : Any = """gelu_new""" # Spell out all parameters in case the defaults change. _A : Any = GPTaConfig( vocab_size=50257,n_positions=1024,n_embd=1024,n_layer=24,n_head=16,n_inner=4096,activation_function=snake_case_,resid_pdrop=0.1,embd_pdrop=0.1,attn_pdrop=0.1,layer_norm_epsilon=1e-5,initializer_range=0.02,summary_type="""cls_index""",summary_use_proj=snake_case_,summary_activation=snake_case_,summary_proj_to_labels=snake_case_,summary_first_dropout=0.1,scale_attn_weights=snake_case_,use_cache=snake_case_,bos_token_id=50256,eos_token_id=50256,) else: _A : Union[str, Any] = GPTaConfig.from_json_file(args.config_file ) _A : List[str] = ["""GPT2LMHeadModel"""] # Convert. print("""Converting""" ) _A : Optional[Any] = convert_megatron_checkpoint(snake_case_,snake_case_,snake_case_ ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(snake_case_,snake_case_ ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: _A : int = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": _A : Any = """gpt2""" elif tokenizer_type == "PretrainedFromHF": _A : List[Any] = ds_args.tokenizer_name_or_path else: raise ValueError(f'''Unrecognized tokenizer_type {tokenizer_type}''' ) else: _A : Optional[Any] = """gpt2""" _A : List[str] = AutoTokenizer.from_pretrained(snake_case_ ) _A : Tuple = type(snake_case_ ).__name__ _A : Union[str, Any] = tokenizer_class # Store the config to file. print("""Saving config""" ) config.save_pretrained(snake_case_ ) # Save tokenizer based on args print(f'''Adding {tokenizer_class} tokenizer files''' ) tokenizer.save_pretrained(snake_case_ ) # Store the state_dict to file. _A : Union[str, Any] = os.path.join(snake_case_,"""pytorch_model.bin""" ) print(f'''Saving checkpoint to "{output_checkpoint_file}"''' ) torch.save(snake_case_,snake_case_ ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
356
import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowercase : def __init__( self , _a , _a=13 , _a=30 , _a=2 , _a=3 , _a=True , _a=True , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=10 , _a=0.02 , _a=None , ) -> Union[str, Any]: _A : Optional[int] = parent _A : Dict = batch_size _A : Any = image_size _A : Optional[int] = patch_size _A : Optional[int] = num_channels _A : List[Any] = is_training _A : Optional[Any] = use_labels _A : Any = hidden_size _A : Any = num_hidden_layers _A : List[Any] = num_attention_heads _A : int = intermediate_size _A : Dict = hidden_act _A : Optional[int] = hidden_dropout_prob _A : str = attention_probs_dropout_prob _A : Any = type_sequence_label_size _A : str = initializer_range _A : Tuple = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _A : List[Any] = (image_size // patch_size) ** 2 _A : str = num_patches + 1 def a__ ( self ) -> Dict: _A : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A : List[str] = None if self.use_labels: _A : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A : List[Any] = self.get_config() return config, pixel_values, labels def a__ ( self ) -> Union[str, Any]: return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def a__ ( self , _a , _a , _a ) -> Dict: _A : List[str] = ViTMSNModel(config=_a ) model.to(_a ) model.eval() _A : List[str] = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self , _a , _a , _a ) -> List[str]: _A : Union[str, Any] = self.type_sequence_label_size _A : Tuple = ViTMSNForImageClassification(_a ) model.to(_a ) model.eval() _A : Optional[int] = model(_a , labels=_a ) print("""Pixel and labels shape: {pixel_values.shape}, {labels.shape}""" ) print("""Labels: {labels}""" ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _A : Dict = 1 _A : str = ViTMSNForImageClassification(_a ) model.to(_a ) model.eval() _A : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _A : int = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a__ ( self ) -> Any: _A : Optional[int] = self.prepare_config_and_inputs() _A , _A , _A : Dict = config_and_inputs _A : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowercase ( UpperCamelCase__,UpperCamelCase__,unittest.TestCase ): _a = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () _a = ( {"feature-extraction": ViTMSNModel, "image-classification": ViTMSNForImageClassification} if is_torch_available() else {} ) _a = False _a = False _a = False _a = False def a__ ( self ) -> Tuple: _A : Tuple = ViTMSNModelTester(self ) _A : List[Any] = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 ) def a__ ( self ) -> Optional[int]: self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMSN does not use inputs_embeds""" ) def a__ ( self ) -> int: pass def a__ ( self ) -> Any: _A , _A : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : Tuple = model_class(_a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _A : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a , nn.Linear ) ) def a__ ( self ) -> str: _A , _A : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : int = model_class(_a ) _A : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A : str = [*signature.parameters.keys()] _A : Optional[int] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _a ) def a__ ( self ) -> List[Any]: _A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def a__ ( self ) -> Any: _A : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def a__ ( self ) -> int: for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A : int = ViTMSNModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def lowerCAmelCase_ ( ): _A : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): @cached_property def a__ ( self ) -> int: return ViTImageProcessor.from_pretrained("""facebook/vit-msn-small""" ) if is_vision_available() else None @slow def a__ ( self ) -> Optional[int]: torch.manual_seed(2 ) _A : Tuple = ViTMSNForImageClassification.from_pretrained("""facebook/vit-msn-small""" ).to(_a ) _A : Tuple = self.default_image_processor _A : Dict = prepare_img() _A : Optional[Any] = image_processor(images=_a , return_tensors="""pt""" ).to(_a ) # forward pass with torch.no_grad(): _A : int = model(**_a ) # verify the logits _A : Union[str, Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _a ) _A : Optional[int] = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
343
0
import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) __snake_case = """hf-internal-testing/tiny-random-bert""" __snake_case = os.path.join(TRANSFORMERS_CACHE, """models--hf-internal-testing--tiny-random-bert""") __snake_case = """9b8c223d42b2188cb49d29af482996f9d0f3e5a6""" class lowercase__ ( unittest.TestCase ): def A_ ( self : Tuple ): SCREAMING_SNAKE_CASE__ = cached_file(UpperCAmelCase_ , UpperCAmelCase_ ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(UpperCAmelCase_ ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) ) ) with open(os.path.join(UpperCAmelCase_ , 'refs' , 'main' ) ) as f: SCREAMING_SNAKE_CASE__ = f.read() self.assertEqual(UpperCAmelCase_ , os.path.join(UpperCAmelCase_ , 'snapshots' , UpperCAmelCase_ , UpperCAmelCase_ ) ) self.assertTrue(os.path.isfile(UpperCAmelCase_ ) ) # File is cached at the same place the second time. SCREAMING_SNAKE_CASE__ = cached_file(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) # Using a specific revision to test the full commit hash. SCREAMING_SNAKE_CASE__ = cached_file(UpperCAmelCase_ , UpperCAmelCase_ , revision='9b8c223' ) self.assertEqual(UpperCAmelCase_ , os.path.join(UpperCAmelCase_ , 'snapshots' , UpperCAmelCase_ , UpperCAmelCase_ ) ) def A_ ( self : Any ): with self.assertRaisesRegex(UpperCAmelCase_ , 'is not a valid model identifier' ): SCREAMING_SNAKE_CASE__ = cached_file('tiny-random-bert' , UpperCAmelCase_ ) with self.assertRaisesRegex(UpperCAmelCase_ , 'is not a valid git identifier' ): SCREAMING_SNAKE_CASE__ = cached_file(UpperCAmelCase_ , UpperCAmelCase_ , revision='aaaa' ) with self.assertRaisesRegex(UpperCAmelCase_ , 'does not appear to have a file named' ): SCREAMING_SNAKE_CASE__ = cached_file(UpperCAmelCase_ , 'conf' ) def A_ ( self : Optional[int] ): with self.assertRaisesRegex(UpperCAmelCase_ , 'does not appear to have a file named' ): SCREAMING_SNAKE_CASE__ = cached_file(UpperCAmelCase_ , 'conf' ) with open(os.path.join(UpperCAmelCase_ , 'refs' , 'main' ) ) as f: SCREAMING_SNAKE_CASE__ = f.read() self.assertTrue(os.path.isfile(os.path.join(UpperCAmelCase_ , '.no_exist' , UpperCAmelCase_ , 'conf' ) ) ) SCREAMING_SNAKE_CASE__ = cached_file(UpperCAmelCase_ , 'conf' , _raise_exceptions_for_missing_entries=UpperCAmelCase_ ) self.assertIsNone(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = cached_file(UpperCAmelCase_ , 'conf' , local_files_only=UpperCAmelCase_ , _raise_exceptions_for_missing_entries=UpperCAmelCase_ ) self.assertIsNone(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = mock.Mock() SCREAMING_SNAKE_CASE__ = 500 SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = HTTPError SCREAMING_SNAKE_CASE__ = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=UpperCAmelCase_ ) as mock_head: SCREAMING_SNAKE_CASE__ = cached_file(UpperCAmelCase_ , 'conf' , _raise_exceptions_for_connection_errors=UpperCAmelCase_ ) self.assertIsNone(UpperCAmelCase_ ) # This check we did call the fake head request mock_head.assert_called() def A_ ( self : Tuple ): self.assertTrue(has_file('hf-internal-testing/tiny-bert-pt-only' , UpperCAmelCase_ ) ) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , UpperCAmelCase_ ) ) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , UpperCAmelCase_ ) ) def A_ ( self : Dict ): # `get_file_from_repo` returns None if the file does not exist self.assertIsNone(get_file_from_repo('bert-base-cased' , 'ahah.txt' ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(UpperCAmelCase_ , 'is not a valid model identifier' ): get_file_from_repo('bert-base-case' , UpperCAmelCase_ ) # The function raises if the revision does not exist. with self.assertRaisesRegex(UpperCAmelCase_ , 'is not a valid git identifier' ): get_file_from_repo('bert-base-cased' , UpperCAmelCase_ , revision='ahaha' ) SCREAMING_SNAKE_CASE__ = get_file_from_repo('bert-base-cased' , UpperCAmelCase_ ) # The name is the cached name which is not very easy to test, so instead we load the content. SCREAMING_SNAKE_CASE__ = json.loads(open(UpperCAmelCase_ , 'r' ).read() ) self.assertEqual(config['hidden_size'] , 768 ) def A_ ( self : Union[str, Any] ): with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE__ = Path(UpperCAmelCase_ ) / 'a.txt' filename.touch() self.assertEqual(get_file_from_repo(UpperCAmelCase_ , 'a.txt' ) , str(UpperCAmelCase_ ) ) self.assertIsNone(get_file_from_repo(UpperCAmelCase_ , 'b.txt' ) )
176
import os def _lowercase ( ) -> List[str]: '''simple docstring''' with open(os.path.dirname(UpperCamelCase_ ) + '/p022_names.txt' ) as file: SCREAMING_SNAKE_CASE__ = str(file.readlines()[0] ) SCREAMING_SNAKE_CASE__ = names.replace('"' , '' ).split(',' ) names.sort() SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 for i, name in enumerate(UpperCamelCase_ ): for letter in name: name_score += ord(UpperCamelCase_ ) - 64 total_score += (i + 1) * name_score SCREAMING_SNAKE_CASE__ = 0 return total_score if __name__ == "__main__": print(solution())
176
1
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) UpperCAmelCase_ = [ 'cross_validation.py', 'gradient_accumulation.py', 'local_sgd.py', 'multi_process_metrics.py', 'memory.py', 'automatic_gradient_accumulation.py', 'fsdp_with_peak_mem_tracking.py', 'deepspeed_with_config_support.py', 'megatron_lm_gpt_pretraining.py', ] class lowercase__ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__ = None, __magic_name__ = None ) -> List[Any]: """simple docstring""" UpperCamelCase__ : int = None UpperCamelCase__ : str = os.path.abspath(os.path.join('''examples''', '''by_feature''' ) ) UpperCamelCase__ : List[str] = os.path.abspath('''examples''' ) for item in os.listdir(__magic_name__ ): if item not in EXCLUDE_EXAMPLES: UpperCamelCase__ : Tuple = os.path.join(__magic_name__, __magic_name__ ) if os.path.isfile(__magic_name__ ) and ".py" in item_path: with self.subTest( tested_script=__magic_name__, feature_script=__magic_name__, tested_section='''main()''' if parser_only else '''training_function()''', ): UpperCamelCase__ : List[Any] = compare_against_test( os.path.join(__magic_name__, __magic_name__ ), __magic_name__, __magic_name__, __magic_name__ ) UpperCamelCase__ : Optional[int] = '''\n'''.join(__magic_name__ ) if special_strings is not None: for string in special_strings: UpperCamelCase__ : Tuple = diff.replace(__magic_name__, '''''' ) self.assertEqual(__magic_name__, '''''' ) def UpperCamelCase__ ( self ) -> Optional[int]: """simple docstring""" self.one_complete_example('''complete_nlp_example.py''', __magic_name__ ) self.one_complete_example('''complete_nlp_example.py''', __magic_name__ ) def UpperCamelCase__ ( self ) -> str: """simple docstring""" UpperCamelCase__ : Optional[Any] = os.path.abspath(os.path.join('''examples''', '''cv_example.py''' ) ) UpperCamelCase__ : Tuple = [ ''' ''' * 16 + '''{\n\n''', ''' ''' * 20 + '''"accuracy": eval_metric["accuracy"],\n\n''', ''' ''' * 20 + '''"f1": eval_metric["f1"],\n\n''', ''' ''' * 20 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''', ''' ''' * 20 + '''"epoch": epoch,\n\n''', ''' ''' * 16 + '''},\n\n''', ''' ''' * 16 + '''step=epoch,\n''', ''' ''' * 12, ''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''', ] self.one_complete_example('''complete_cv_example.py''', __magic_name__, __magic_name__, __magic_name__ ) self.one_complete_example('''complete_cv_example.py''', __magic_name__, __magic_name__, __magic_name__ ) @mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "1"} ) class lowercase__ ( __lowerCamelCase ): '''simple docstring''' a : List[str] = False @classmethod def UpperCamelCase__ ( cls ) -> List[Any]: """simple docstring""" super().setUpClass() UpperCamelCase__ : Optional[int] = tempfile.mkdtemp() UpperCamelCase__ : Optional[Any] = os.path.join(cls._tmpdir, '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) UpperCamelCase__ : Optional[int] = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def UpperCamelCase__ ( cls ) -> Union[str, Any]: """simple docstring""" super().tearDownClass() shutil.rmtree(cls._tmpdir ) def UpperCamelCase__ ( self ) -> List[str]: """simple docstring""" UpperCamelCase__ : str = f"\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir, '''epoch_0''' ) ) ) def UpperCamelCase__ ( self ) -> List[Any]: """simple docstring""" UpperCamelCase__ : Dict = f"\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n ".split() UpperCamelCase__ : Dict = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir, '''step_2''' ) ) ) def UpperCamelCase__ ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : int = f"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir, 'epoch_0' )}\n ".split() UpperCamelCase__ : Any = run_command(self._launch_args + testargs, return_stdout=__magic_name__ ) self.assertNotIn('''epoch 0:''', __magic_name__ ) self.assertIn('''epoch 1:''', __magic_name__ ) def UpperCamelCase__ ( self ) -> List[str]: """simple docstring""" UpperCamelCase__ : Dict = f"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir, 'step_2' )}\n ".split() UpperCamelCase__ : List[str] = run_command(self._launch_args + testargs, return_stdout=__magic_name__ ) if torch.cuda.is_available(): UpperCamelCase__ : str = torch.cuda.device_count() else: UpperCamelCase__ : Tuple = 1 if num_processes > 1: self.assertNotIn('''epoch 0:''', __magic_name__ ) self.assertIn('''epoch 1:''', __magic_name__ ) else: self.assertIn('''epoch 0:''', __magic_name__ ) self.assertIn('''epoch 1:''', __magic_name__ ) @slow def UpperCamelCase__ ( self ) -> List[Any]: """simple docstring""" UpperCamelCase__ : List[str] = ''' examples/by_feature/cross_validation.py --num_folds 2 '''.split() with mock.patch.dict(os.environ, {'''TESTING_MOCKED_DATALOADERS''': '''0'''} ): UpperCamelCase__ : Dict = run_command(self._launch_args + testargs, return_stdout=__magic_name__ ) UpperCamelCase__ : Any = re.findall('''({.+})''', __magic_name__ ) UpperCamelCase__ : Any = [r for r in results if '''accuracy''' in r][-1] UpperCamelCase__ : List[str] = ast.literal_eval(__magic_name__ ) self.assertGreaterEqual(results['''accuracy'''], 0.75 ) def UpperCamelCase__ ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase__ : List[Any] = ['''examples/by_feature/multi_process_metrics.py'''] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ, {'''WANDB_MODE''': '''offline'''} ) def UpperCamelCase__ ( self ) -> List[Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: UpperCamelCase__ : int = f"\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(__magic_name__, '''tracking''' ) ) ) def UpperCamelCase__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : Tuple = ['''examples/by_feature/gradient_accumulation.py'''] run_command(self._launch_args + testargs ) def UpperCamelCase__ ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : Dict = ['''examples/by_feature/local_sgd.py'''] run_command(self._launch_args + testargs )
247
from collections import deque def lowerCAmelCase_ ( __UpperCAmelCase: int ) -> str: UpperCamelCase__ : Optional[int] = len(__UpperCAmelCase ) UpperCamelCase__ : str = deque() UpperCamelCase__ : int = [False for _ in range(__UpperCAmelCase )] UpperCamelCase__ : Optional[int] = [-1 for _ in range(__UpperCAmelCase )] UpperCamelCase__ : str = index_of[:] def strong_connect(__UpperCAmelCase: Optional[int] , __UpperCAmelCase: Union[str, Any] , __UpperCAmelCase: Union[str, Any] ): UpperCamelCase__ : str = index # the number when this node is seen UpperCamelCase__ : Any = index # lowest rank node reachable from here index += 1 stack.append(__UpperCAmelCase ) UpperCamelCase__ : Optional[Any] = True for w in g[v]: if index_of[w] == -1: UpperCamelCase__ : str = strong_connect(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) UpperCamelCase__ : List[str] = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: UpperCamelCase__ : Dict = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: UpperCamelCase__ : Tuple = [] UpperCamelCase__ : str = stack.pop() UpperCamelCase__ : int = False component.append(__UpperCAmelCase ) while w != v: UpperCamelCase__ : int = stack.pop() UpperCamelCase__ : Optional[Any] = False component.append(__UpperCAmelCase ) components.append(__UpperCAmelCase ) return index UpperCamelCase__ : Optional[Any] = [] for v in range(__UpperCAmelCase ): if index_of[v] == -1: strong_connect(__UpperCAmelCase , 0 , __UpperCAmelCase ) return components def lowerCAmelCase_ ( __UpperCAmelCase: Union[str, Any] , __UpperCAmelCase: List[Any] ) -> str: UpperCamelCase__ : Dict = [[] for _ in range(__UpperCAmelCase )] for u, v in edges: g[u].append(__UpperCAmelCase ) return g if __name__ == "__main__": # Test UpperCAmelCase_ = 7 UpperCAmelCase_ = [0, 0, 1, 2, 3, 3, 4, 4, 6] UpperCAmelCase_ = [1, 3, 2, 0, 1, 4, 5, 6, 5] UpperCAmelCase_ = [(u, v) for u, v in zip(source, target)] UpperCAmelCase_ = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
247
1
'''simple docstring''' from collections import deque from .hash_table import HashTable class snake_case__ ( UpperCamelCase): def __init__( self : List[Any] , *_A : Any , **_A : List[str] ) -> str: super().__init__(*_A , **_A ) def A ( self : List[str] , _A : Any , _A : Any ) -> int: UpperCAmelCase_ : Union[str, Any] = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(_A ) UpperCAmelCase_ : Union[str, Any] = self.values[key] def A ( self : int ) -> Union[str, Any]: return ( sum(self.charge_factor - len(_A ) for slot in self.values ) / self.size_table * self.charge_factor ) def A ( self : Optional[Any] , _A : Union[str, Any] , _A : Optional[Any]=None ) -> int: if not ( len(self.values[key] ) == self.charge_factor and self.values.count(_A ) == 0 ): return key return super()._collision_resolution(_A , _A )
304
'''simple docstring''' import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class snake_case__ ( unittest.TestCase): def __init__( self : int , _A : List[str] , _A : Dict=7 , _A : List[str]=3 , _A : List[str]=18 , _A : Dict=30 , _A : Union[str, Any]=4_00 , _A : List[str]=True , _A : List[str]=None , _A : int=True , _A : Tuple=None , _A : Union[str, Any]=True , _A : Tuple=[0.5, 0.5, 0.5] , _A : Union[str, Any]=[0.5, 0.5, 0.5] , _A : Tuple=False , ) -> List[Any]: UpperCAmelCase_ : Union[str, Any] = size if size is not None else {'''height''': 20, '''width''': 20} UpperCAmelCase_ : List[Any] = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} UpperCAmelCase_ : Tuple = parent UpperCAmelCase_ : Optional[int] = batch_size UpperCAmelCase_ : Any = num_channels UpperCAmelCase_ : Optional[Any] = image_size UpperCAmelCase_ : Tuple = min_resolution UpperCAmelCase_ : Tuple = max_resolution UpperCAmelCase_ : Optional[int] = do_resize UpperCAmelCase_ : Tuple = size UpperCAmelCase_ : Optional[Any] = do_center_crop UpperCAmelCase_ : Optional[int] = crop_size UpperCAmelCase_ : Tuple = do_normalize UpperCAmelCase_ : Optional[Any] = image_mean UpperCAmelCase_ : int = image_std UpperCAmelCase_ : List[Any] = do_reduce_labels def A ( self : Union[str, Any] ) -> str: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def __UpperCAmelCase ( ) -> Optional[Any]: UpperCAmelCase_ : Union[str, Any] = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) UpperCAmelCase_ : Optional[Any] = Image.open(dataset[0]['''file'''] ) UpperCAmelCase_ : str = Image.open(dataset[1]['''file'''] ) return image, map def __UpperCAmelCase ( ) -> Any: UpperCAmelCase_ : int = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) UpperCAmelCase_ : int = Image.open(ds[0]['''file'''] ) UpperCAmelCase_ : Optional[Any] = Image.open(ds[1]['''file'''] ) UpperCAmelCase_ : Dict = Image.open(ds[2]['''file'''] ) UpperCAmelCase_ : List[str] = Image.open(ds[3]['''file'''] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class snake_case__ ( UpperCamelCase , unittest.TestCase): a_ = BeitImageProcessor if is_vision_available() else None def A ( self : Optional[Any] ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = BeitImageProcessingTester(self ) @property def A ( self : List[Any] ) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def A ( self : List[Any] ) -> Optional[Any]: UpperCAmelCase_ : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , '''do_resize''' ) ) self.assertTrue(hasattr(_A , '''size''' ) ) self.assertTrue(hasattr(_A , '''do_center_crop''' ) ) self.assertTrue(hasattr(_A , '''center_crop''' ) ) self.assertTrue(hasattr(_A , '''do_normalize''' ) ) self.assertTrue(hasattr(_A , '''image_mean''' ) ) self.assertTrue(hasattr(_A , '''image_std''' ) ) def A ( self : List[str] ) -> Optional[int]: UpperCAmelCase_ : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 20, '''width''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) self.assertEqual(image_processor.do_reduce_labels , _A ) UpperCAmelCase_ : Union[str, Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=_A ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) self.assertEqual(image_processor.do_reduce_labels , _A ) def A ( self : Optional[Any] ) -> Any: pass def A ( self : List[str] ) -> Optional[int]: # Initialize image_processing UpperCAmelCase_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input UpperCAmelCase_ : Tuple = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ : Any = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def A ( self : Union[str, Any] ) -> Union[str, Any]: # Initialize image_processing UpperCAmelCase_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input UpperCAmelCase_ : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ : int = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def A ( self : Optional[int] ) -> str: # Initialize image_processing UpperCAmelCase_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input UpperCAmelCase_ : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ : int = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def A ( self : Any ) -> Optional[Any]: # Initialize image_processing UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) UpperCAmelCase_ : Union[str, Any] = [] for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input UpperCAmelCase_ : str = image_processing(image_inputs[0] , maps[0] , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) # Test batched UpperCAmelCase_ : List[Any] = image_processing(_A , _A , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) # Test not batched input (PIL images) UpperCAmelCase_ , UpperCAmelCase_ : Any = prepare_semantic_single_inputs() UpperCAmelCase_ : List[str] = image_processing(_A , _A , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) # Test batched input (PIL images) UpperCAmelCase_ , UpperCAmelCase_ : List[str] = prepare_semantic_batch_inputs() UpperCAmelCase_ : int = image_processing(_A , _A , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 2, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) def A ( self : List[Any] ) -> Union[str, Any]: # Initialize image_processing UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 UpperCAmelCase_ , UpperCAmelCase_ : Any = prepare_semantic_single_inputs() UpperCAmelCase_ : Dict = image_processing(_A , _A , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 1_50 ) UpperCAmelCase_ : int = True UpperCAmelCase_ : Dict = image_processing(_A , _A , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 )
304
1
'''simple docstring''' import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __magic_name__ ( _UpperCAmelCase): def __init__( self : Union[str, Any] , *lowercase_ : Optional[Any] , lowercase_ : Optional[Any]=None , lowercase_ : Any=None , **lowercase_ : int ): super().__init__(*lowercase_ , **lowercase_ ) lowercase_ : Dict = eval_examples lowercase_ : List[Any] = post_process_function def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : Union[str, Any]=None , lowercase_ : int=None , lowercase_ : int=None , lowercase_ : str = "eval" ): lowercase_ : Optional[Any] = self.eval_dataset if eval_dataset is None else eval_dataset lowercase_ : str = self.get_eval_dataloader(lowercase_ ) lowercase_ : Tuple = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowercase_ : Optional[Any] = self.compute_metrics lowercase_ : List[Any] = None lowercase_ : Optional[Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop lowercase_ : Dict = time.time() try: lowercase_ : Any = eval_loop( lowercase_ , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase_ , metric_key_prefix=lowercase_ , ) finally: lowercase_ : int = compute_metrics lowercase_ : List[Any] = self.args.eval_batch_size * self.args.world_size if f'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[f'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( lowercase_ , lowercase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default lowercase_ : Optional[int] = self.post_process_function(lowercase_ , lowercase_ , output.predictions ) lowercase_ : Union[str, Any] = self.compute_metrics(lowercase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'''{metric_key_prefix}_''' ): lowercase_ : str = metrics.pop(lowercase_ ) metrics.update(output.metrics ) else: lowercase_ : List[str] = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(lowercase_ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) lowercase_ : Optional[int] = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowercase_ ) return metrics def SCREAMING_SNAKE_CASE_ ( self : int , lowercase_ : List[str] , lowercase_ : Optional[int] , lowercase_ : Dict=None , lowercase_ : str = "test" ): lowercase_ : Tuple = self.get_test_dataloader(lowercase_ ) # Temporarily disable metric computation, we will do it in the loop here. lowercase_ : str = self.compute_metrics lowercase_ : Union[str, Any] = None lowercase_ : Union[str, Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop lowercase_ : Any = time.time() try: lowercase_ : Optional[int] = eval_loop( lowercase_ , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase_ , metric_key_prefix=lowercase_ , ) finally: lowercase_ : Optional[int] = compute_metrics lowercase_ : int = self.args.eval_batch_size * self.args.world_size if f'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[f'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( lowercase_ , lowercase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output lowercase_ : Any = self.post_process_function(lowercase_ , lowercase_ , output.predictions , """predict""" ) lowercase_ : Dict = self.compute_metrics(lowercase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'''{metric_key_prefix}_''' ): lowercase_ : int = metrics.pop(lowercase_ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowercase_ )
21
'''simple docstring''' class __magic_name__ : def __init__( self : int , lowercase_ : list ): lowercase_ : Dict = set_counts lowercase_ : List[Any] = max(lowercase_ ) lowercase_ : str = len(lowercase_ ) lowercase_ : str = [1] * num_sets lowercase_ : Dict = list(range(lowercase_ ) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : int , lowercase_ : int ): lowercase_ : List[Any] = self.get_parent(lowercase_ ) lowercase_ : Union[str, Any] = self.get_parent(lowercase_ ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] lowercase_ : List[str] = 0 lowercase_ : Optional[int] = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 lowercase_ : int = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] lowercase_ : int = 0 lowercase_ : List[Any] = src_parent lowercase_ : List[Any] = self.set_counts[src_parent] lowercase_ : Tuple = max(self.max_set , lowercase_ ) return True def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : int ): if self.parents[disj_set] == disj_set: return disj_set lowercase_ : int = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
21
1
'''simple docstring''' from copy import deepcopy class __A : def __init__(self : Dict , __a : list[int] | None = None , __a : int | None = None ): if arr is None and size is not None: UpperCAmelCase_ = size UpperCAmelCase_ = [0] * size elif arr is not None: self.init(__a ) else: raise ValueError("Either arr or size must be specified" ) def _lowercase (self : int , __a : list[int] ): UpperCAmelCase_ = len(__a ) UpperCAmelCase_ = deepcopy(__a ) for i in range(1 , self.size ): UpperCAmelCase_ = self.next_(__a ) if j < self.size: self.tree[j] += self.tree[i] def _lowercase (self : Optional[int] ): UpperCAmelCase_ = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): UpperCAmelCase_ = self.next_(__a ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def _lowercase (__a : int ): return index + (index & (-index)) @staticmethod def _lowercase (__a : int ): return index - (index & (-index)) def _lowercase (self : Tuple , __a : int , __a : int ): if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value UpperCAmelCase_ = self.next_(__a ) def _lowercase (self : Optional[Any] , __a : int , __a : int ): self.add(__a , value - self.get(__a ) ) def _lowercase (self : Dict , __a : int ): if right == 0: return 0 UpperCAmelCase_ = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] UpperCAmelCase_ = self.prev(__a ) return result def _lowercase (self : int , __a : int , __a : int ): return self.prefix(__a ) - self.prefix(__a ) def _lowercase (self : str , __a : int ): return self.query(__a , index + 1 ) def _lowercase (self : List[str] , __a : int ): value -= self.tree[0] if value < 0: return -1 UpperCAmelCase_ = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 UpperCAmelCase_ = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
1
'''simple docstring''' from __future__ import annotations def lowerCAmelCase_ ( snake_case_ : list , snake_case_ : int | None = None , snake_case_ : int | None = None ) -> None: '''simple docstring''' if start is None: UpperCAmelCase_ = 0 if end is None: UpperCAmelCase_ = len(snake_case_ ) - 1 if start >= end: return UpperCAmelCase_ = (start + end) // 2 slowsort(snake_case_ , snake_case_ , snake_case_ ) slowsort(snake_case_ , mid + 1 , snake_case_ ) if sequence[end] < sequence[mid]: UpperCAmelCase_ , UpperCAmelCase_ = sequence[mid], sequence[end] slowsort(snake_case_ , snake_case_ , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
1
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { """microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""", } class a_ ( a_ ): '''simple docstring''' __a: Dict = '''git_vision_model''' def __init__( self , lowercase_=7_6_8 , lowercase_=3_0_7_2 , lowercase_=1_2 , lowercase_=1_2 , lowercase_=3 , lowercase_=2_2_4 , lowercase_=1_6 , lowercase_="quick_gelu" , lowercase_=1e-5 , lowercase_=0.0 , lowercase_=0.02 , **lowercase_ , ) -> int: '''simple docstring''' super().__init__(**lowercase_ ) lowerCAmelCase_ = hidden_size lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = num_channels lowerCAmelCase_ = patch_size lowerCAmelCase_ = image_size lowerCAmelCase_ = initializer_range lowerCAmelCase_ = attention_dropout lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = hidden_act @classmethod def _lowercase ( cls , lowercase_ , **lowercase_ ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(lowercase_ ) lowerCAmelCase_ , lowerCAmelCase_ = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the vision config dict if we are loading from GITConfig if config_dict.get('model_type' ) == "git": lowerCAmelCase_ = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowercase_ , **lowercase_ ) class a_ ( a_ ): '''simple docstring''' __a: List[str] = '''git''' def __init__( self , lowercase_=None , lowercase_=3_0_5_2_2 , lowercase_=7_6_8 , lowercase_=6 , lowercase_=1_2 , lowercase_=3_0_7_2 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=1_0_2_4 , lowercase_=0.02 , lowercase_=1e-12 , lowercase_=0 , lowercase_="absolute" , lowercase_=True , lowercase_=False , lowercase_=1_0_1 , lowercase_=1_0_2 , lowercase_=None , **lowercase_ , ) -> Any: '''simple docstring''' super().__init__(bos_token_id=lowercase_ , eos_token_id=lowercase_ , pad_token_id=lowercase_ , **lowercase_ ) if vision_config is None: lowerCAmelCase_ = {} logger.info('vision_config is None. initializing the GitVisionConfig with default values.' ) lowerCAmelCase_ = GitVisionConfig(**lowercase_ ) lowerCAmelCase_ = vocab_size lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = hidden_act lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = initializer_range lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = position_embedding_type lowerCAmelCase_ = use_cache lowerCAmelCase_ = tie_word_embeddings lowerCAmelCase_ = num_image_with_embedding lowerCAmelCase_ = bos_token_id lowerCAmelCase_ = eos_token_id def _lowercase ( self ) -> Dict: '''simple docstring''' lowerCAmelCase_ = copy.deepcopy(self.__dict__ ) lowerCAmelCase_ = self.vision_config.to_dict() lowerCAmelCase_ = self.__class__.model_type return output
14
import baseaa def lowerCamelCase ( a_ ) -> bytes: return baseaa.baaencode(string.encode('utf-8' ) ) def lowerCamelCase ( a_ ) -> str: return baseaa.baadecode(a_ ).decode('utf-8' ) if __name__ == "__main__": lowerCamelCase_ = """Hello World!""" lowerCamelCase_ = baseaa_encode(test) print(encoded) lowerCamelCase_ = baseaa_decode(encoded) print(decoded)
14
1
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __A =logging.get_logger(__name__) def a ( _UpperCAmelCase : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : List[str] = torch.load(_UpperCAmelCase , map_location='''cpu''' ) if "model" in sd.keys(): __UpperCAmelCase : Dict = torch.load(_UpperCAmelCase , map_location='''cpu''' )['''model'''] # pop unnecessary weights __UpperCAmelCase : int = [ '''decoder.version''', '''decoder.output_projection.weight''', ] for key in keys_to_delete: if key in sd: sd.pop(_UpperCAmelCase ) __UpperCAmelCase : List[str] = { '''decoder.project_in_dim.weight''': '''decoder.project_in.weight''', '''decoder.project_out_dim.weight''': '''decoder.project_out.weight''', '''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: __UpperCAmelCase : Tuple = sd.pop(_UpperCAmelCase ) __UpperCAmelCase : Tuple = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: __UpperCAmelCase : Tuple = sd[key] # We split QKV in separate Q,K,V __UpperCAmelCase : List[str] = key.replace('''.qkv_proj.''' , '''.q_proj.''' ) __UpperCAmelCase : List[Any] = key.replace('''.qkv_proj.''' , '''.k_proj.''' ) __UpperCAmelCase : List[str] = key.replace('''.qkv_proj.''' , '''.v_proj.''' ) __UpperCAmelCase : Optional[Any] = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = torch.split(_UpperCAmelCase , depth // 3 , dim=0 ) __UpperCAmelCase : Dict = q __UpperCAmelCase : Any = k __UpperCAmelCase : Any = v del sd[key] return sd @torch.no_grad() def a ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any]=None ): '''simple docstring''' __UpperCAmelCase : int = load_checkpoint(_UpperCAmelCase ) if config is not None: __UpperCAmelCase : Optional[Any] = OPTConfig.from_pretrained(_UpperCAmelCase ) else: __UpperCAmelCase : str = OPTConfig() __UpperCAmelCase : Any = OPTModel(_UpperCAmelCase ).half().eval() model.load_state_dict(_UpperCAmelCase ) # Check results Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": __A =argparse.ArgumentParser() # Required parameters parser.add_argument( "--fairseq_path", type=str, help=( "path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:" " https://huggingface.co/models?other=opt_metasq" ), ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--hf_config", default=None, type=str, help="Define HF config.") __A =parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
226
import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values __A =argparse.ArgumentParser() parser.add_argument("--user", type=str, default="ubuntu") parser.add_argument("--host", type=str, default="localhost") parser.add_argument("--key_path", type=str, default=None) parser.add_argument("--instance", type=str, default="V100:1") parser.add_argument("--provider", type=str, default="cheapest") parser.add_argument("--use_spot", type=bool, default=False) parser.add_argument("--example", type=str, default="pytorch/text-generation/run_generation.py") __A , __A =parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError("Cannot specify both BYO and on-demand cluster args") __A =rh.cluster( name="rh-cluster", ips=[args.host], ssh_creds={"ssh_user": args.user, "ssh_private_key": args.key_path} ) else: __A =rh.cluster( name="rh-cluster", instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) __A =args.example.rsplit("/", 1)[0] # Set up remote environment cluster.install_packages(["pip:./"]) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([f'''pip install -r transformers/examples/{example_dir}/requirements.txt''']) cluster.run(["pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117"]) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([f'''python transformers/examples/{args.example} {" ".join(shlex.quote(arg) for arg in unknown)}''']) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
226
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case :Dict = logging.get_logger(__name__) __snake_case :List[Any] = { '''tanreinama/GPTSAN-2.8B-spout_is_uniform''': ( '''https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json''' ), } class _A ( __UpperCAmelCase ): UpperCamelCase__ : List[str] = '''gptsan-japanese''' UpperCamelCase__ : Dict = [ '''past_key_values''', ] UpperCamelCase__ : Dict = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any]=36_000 , __SCREAMING_SNAKE_CASE : Tuple=1_280 , __SCREAMING_SNAKE_CASE : List[Any]=1_024 , __SCREAMING_SNAKE_CASE : List[Any]=8_192 , __SCREAMING_SNAKE_CASE : str=4_096 , __SCREAMING_SNAKE_CASE : Any=128 , __SCREAMING_SNAKE_CASE : int=10 , __SCREAMING_SNAKE_CASE : Optional[int]=0 , __SCREAMING_SNAKE_CASE : Optional[Any]=16 , __SCREAMING_SNAKE_CASE : List[Any]=16 , __SCREAMING_SNAKE_CASE : Optional[Any]=128 , __SCREAMING_SNAKE_CASE : Tuple=0.0 , __SCREAMING_SNAKE_CASE : List[Any]=1E-5 , __SCREAMING_SNAKE_CASE : str=False , __SCREAMING_SNAKE_CASE : Optional[int]=0.0 , __SCREAMING_SNAKE_CASE : List[str]="float32" , __SCREAMING_SNAKE_CASE : List[str]=False , __SCREAMING_SNAKE_CASE : Any=False , __SCREAMING_SNAKE_CASE : Any=False , __SCREAMING_SNAKE_CASE : int=0.0_02 , __SCREAMING_SNAKE_CASE : Any=False , __SCREAMING_SNAKE_CASE : Tuple=True , __SCREAMING_SNAKE_CASE : int=35_998 , __SCREAMING_SNAKE_CASE : Optional[int]=35_995 , __SCREAMING_SNAKE_CASE : List[str]=35_999 , **__SCREAMING_SNAKE_CASE : List[str] , ): '''simple docstring''' __a = vocab_size __a = max_position_embeddings __a = d_model __a = d_ff __a = d_ext __a = d_spout __a = num_switch_layers __a = num_ext_layers __a = num_switch_layers + num_ext_layers __a = num_heads __a = num_experts __a = expert_capacity __a = dropout_rate __a = layer_norm_epsilon __a = router_bias __a = router_jitter_noise __a = router_dtype __a = router_ignore_padding_tokens __a = output_hidden_states __a = output_attentions __a = initializer_factor __a = output_router_logits __a = use_cache super().__init__( separator_token_id=__SCREAMING_SNAKE_CASE , pad_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , )
131
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _A ( __UpperCAmelCase ,unittest.TestCase ): UpperCamelCase__ : str = KandinskyVaaImgaImgPipeline UpperCamelCase__ : Optional[Any] = ['''image_embeds''', '''negative_image_embeds''', '''image'''] UpperCamelCase__ : Dict = [ '''image_embeds''', '''negative_image_embeds''', '''image''', ] UpperCamelCase__ : Any = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] UpperCamelCase__ : List[Any] = False @property def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' return 32 @property def _lowerCamelCase ( self : List[str]): '''simple docstring''' return 32 @property def _lowerCamelCase ( self : List[Any]): '''simple docstring''' return self.time_input_dim @property def _lowerCamelCase ( self : int): '''simple docstring''' return self.time_input_dim * 4 @property def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' return 100 @property def _lowerCamelCase ( self : Any): '''simple docstring''' torch.manual_seed(0) __a = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } __a = UNetaDConditionModel(**__SCREAMING_SNAKE_CASE) return model @property def _lowerCamelCase ( self : Tuple): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' torch.manual_seed(0) __a = VQModel(**self.dummy_movq_kwargs) return model def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' __a = self.dummy_unet __a = self.dummy_movq __a = { '''num_train_timesteps''': 1_000, '''beta_schedule''': '''linear''', '''beta_start''': 0.0_00_85, '''beta_end''': 0.0_12, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } __a = DDIMScheduler(**__SCREAMING_SNAKE_CASE) __a = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def _lowerCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]=0): '''simple docstring''' __a = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__SCREAMING_SNAKE_CASE)).to(__SCREAMING_SNAKE_CASE) __a = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1)).to( __SCREAMING_SNAKE_CASE) # create init_image __a = floats_tensor((1, 3, 64, 64) , rng=random.Random(__SCREAMING_SNAKE_CASE)).to(__SCREAMING_SNAKE_CASE) __a = image.cpu().permute(0 , 2 , 3 , 1)[0] __a = Image.fromarray(np.uinta(__SCREAMING_SNAKE_CASE)).convert('''RGB''').resize((256, 256)) if str(__SCREAMING_SNAKE_CASE).startswith('''mps'''): __a = torch.manual_seed(__SCREAMING_SNAKE_CASE) else: __a = torch.Generator(device=__SCREAMING_SNAKE_CASE).manual_seed(__SCREAMING_SNAKE_CASE) __a = { '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = '''cpu''' __a = self.get_dummy_components() __a = self.pipeline_class(**__SCREAMING_SNAKE_CASE) __a = pipe.to(__SCREAMING_SNAKE_CASE) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE) __a = pipe(**self.get_dummy_inputs(__SCREAMING_SNAKE_CASE)) __a = output.images __a = pipe( **self.get_dummy_inputs(__SCREAMING_SNAKE_CASE) , return_dict=__SCREAMING_SNAKE_CASE , )[0] __a = image[0, -3:, -3:, -1] __a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __a = np.array( [0.6_19_97_78, 0.63_98_44_06, 0.46_14_57_85, 0.62_94_49_84, 0.5_62_22_15, 0.47_30_61_32, 0.47_44_14_56, 0.4_60_76_06, 0.48_71_92_63]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class _A ( unittest.TestCase ): def _lowerCamelCase ( self : Dict): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : str): '''simple docstring''' __a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_img2img_frog.npy''') __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''') __a = '''A red cartoon frog, 4k''' __a = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa) pipe_prior.to(__SCREAMING_SNAKE_CASE) __a = KandinskyVaaImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder''' , torch_dtype=torch.floataa) __a = pipeline.to(__SCREAMING_SNAKE_CASE) pipeline.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE) __a = torch.Generator(device='''cpu''').manual_seed(0) __a , __a = pipe_prior( __SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() __a = pipeline( image=__SCREAMING_SNAKE_CASE , image_embeds=__SCREAMING_SNAKE_CASE , negative_image_embeds=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='''np''' , ) __a = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)
131
1
def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> str: if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) __lowercase : List[Any] = str(bin(__lowerCAmelCase ) )[2:] # remove the leading "0b" __lowercase : Any = str(bin(__lowerCAmelCase ) )[2:] __lowercase : Dict = max(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) ) return "0b" + "".join( str(int('''1''' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(__lowerCAmelCase ) , b_binary.zfill(__lowerCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
156
import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel __lowerCAmelCase : str = False __lowerCAmelCase : List[str] = True __lowerCAmelCase : Union[str, Any] = False if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( "--repo_path", default=None, type=str, required=True, help="The config json file corresponding to the architecture.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") __lowerCAmelCase : List[str] = parser.parse_args() __lowerCAmelCase : str = { "image_size": "sample_size", "num_res_blocks": "layers_per_block", "block_channels": "block_out_channels", "down_blocks": "down_block_types", "up_blocks": "up_block_types", "downscale_freq_shift": "freq_shift", "resnet_num_groups": "norm_num_groups", "resnet_act_fn": "act_fn", "resnet_eps": "norm_eps", "num_head_channels": "attention_head_dim", } __lowerCAmelCase : Optional[int] = { "time_steps": "time_proj", "mid": "mid_block", "downsample_blocks": "down_blocks", "upsample_blocks": "up_blocks", } __lowerCAmelCase : str = "" if has_file(args.repo_path, "config.json") else "unet" with open(os.path.join(args.repo_path, subfolder, "config.json"), "r", encoding="utf-8") as reader: __lowerCAmelCase : Any = reader.read() __lowerCAmelCase : int = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, "config.json"): __lowerCAmelCase : Any = UNetaDModel(**config) else: __lowerCAmelCase : List[str] = UNetaDConditionModel if "ldm-text2im-large-256" in args.repo_path else UNetaDModel __lowerCAmelCase : str = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) __lowerCAmelCase : Union[str, Any] = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: __lowerCAmelCase : Dict = config[key] del config[key] __lowerCAmelCase : int = [k.replace("UNetRes", "") for k in config["down_block_types"]] __lowerCAmelCase : Optional[Any] = [k.replace("UNetRes", "") for k in config["up_block_types"]] if do_only_weights: __lowerCAmelCase : Any = torch.load(os.path.join(args.repo_path, subfolder, "diffusion_pytorch_model.bin")) __lowerCAmelCase : Tuple = {} for param_key, param_value in state_dict.items(): if param_key.endswith(".op.bias") or param_key.endswith(".op.weight"): continue __lowerCAmelCase : Dict = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split(".")[0] == key: __lowerCAmelCase : Union[str, Any] = param_value __lowerCAmelCase : str = True if not has_changed: __lowerCAmelCase : Union[str, Any] = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
156
1
from __future__ import annotations from math import pi def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if inductance < 0: raise ValueError("Inductance cannot be negative" ) if frequency < 0: raise ValueError("Frequency cannot be negative" ) if reactance < 0: raise ValueError("Inductive reactance cannot be negative" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
354
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch a__ : Optional[int] = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" snake_case__ : Optional[Any] = ["pixel_values"] def __init__( self : Dict , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Dict[str, int] = None , UpperCAmelCase__ : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Union[int, float] = 1 / 2_5_5 , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Dict[str, int] = None , UpperCAmelCase__ : bool = True , **UpperCAmelCase__ : Dict , ) -> None: super().__init__(**UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = size if size is not None else {"shortest_edge": 2_2_4} __SCREAMING_SNAKE_CASE = get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else {"height": 2_5_6, "width": 2_5_6} __SCREAMING_SNAKE_CASE = get_size_dict(UpperCAmelCase__ , param_name="crop_size" ) __SCREAMING_SNAKE_CASE = do_resize __SCREAMING_SNAKE_CASE = size __SCREAMING_SNAKE_CASE = resample __SCREAMING_SNAKE_CASE = do_rescale __SCREAMING_SNAKE_CASE = rescale_factor __SCREAMING_SNAKE_CASE = do_center_crop __SCREAMING_SNAKE_CASE = crop_size __SCREAMING_SNAKE_CASE = do_flip_channel_order def UpperCAmelCase_ ( self : Any , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Dict[str, int] , UpperCAmelCase__ : PILImageResampling = PIL.Image.BILINEAR , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : Optional[Any] , ) -> np.ndarray: __SCREAMING_SNAKE_CASE = get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__ ) if "shortest_edge" not in size: raise ValueError(F"""The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}""" ) __SCREAMING_SNAKE_CASE = get_resize_output_image_size(UpperCAmelCase__ , size=size["shortest_edge"] , default_to_square=UpperCAmelCase__ ) return resize(UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def UpperCAmelCase_ ( self : str , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Dict[str, int] , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : Any , ) -> np.ndarray: __SCREAMING_SNAKE_CASE = get_size_dict(UpperCAmelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(UpperCAmelCase__ , size=(size["height"], size["width"]) , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Union[int, float] , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : Dict , ) -> Dict: return rescale(UpperCAmelCase__ , scale=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None ) -> np.ndarray: return flip_channel_order(UpperCAmelCase__ , data_format=UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] , UpperCAmelCase__ : ImageInput , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : Dict[str, int] = None , UpperCAmelCase__ : PILImageResampling = None , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : float = None , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : Dict[str, int] = None , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , UpperCAmelCase__ : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase__ : str , ) -> PIL.Image.Image: __SCREAMING_SNAKE_CASE = do_resize if do_resize is not None else self.do_resize __SCREAMING_SNAKE_CASE = resample if resample is not None else self.resample __SCREAMING_SNAKE_CASE = do_rescale if do_rescale is not None else self.do_rescale __SCREAMING_SNAKE_CASE = rescale_factor if rescale_factor is not None else self.rescale_factor __SCREAMING_SNAKE_CASE = do_center_crop if do_center_crop is not None else self.do_center_crop __SCREAMING_SNAKE_CASE = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) __SCREAMING_SNAKE_CASE = size if size is not None else self.size __SCREAMING_SNAKE_CASE = get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else self.crop_size __SCREAMING_SNAKE_CASE = get_size_dict(UpperCAmelCase__ , param_name="crop_size" ) __SCREAMING_SNAKE_CASE = make_list_of_images(UpperCAmelCase__ ) if not valid_images(UpperCAmelCase__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) # All transformations expect numpy arrays. __SCREAMING_SNAKE_CASE = [to_numpy_array(UpperCAmelCase__ ) for image in images] if do_resize: __SCREAMING_SNAKE_CASE = [self.resize(image=UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__ ) for image in images] if do_center_crop: __SCREAMING_SNAKE_CASE = [self.center_crop(image=UpperCAmelCase__ , size=UpperCAmelCase__ ) for image in images] if do_rescale: __SCREAMING_SNAKE_CASE = [self.rescale(image=UpperCAmelCase__ , scale=UpperCAmelCase__ ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: __SCREAMING_SNAKE_CASE = [self.flip_channel_order(image=UpperCAmelCase__ ) for image in images] __SCREAMING_SNAKE_CASE = [to_channel_dimension_format(UpperCAmelCase__ , UpperCAmelCase__ ) for image in images] __SCREAMING_SNAKE_CASE = {"pixel_values": images} return BatchFeature(data=UpperCAmelCase__ , tensor_type=UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[Tuple] = None ) -> Optional[int]: __SCREAMING_SNAKE_CASE = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = target_sizes.numpy() __SCREAMING_SNAKE_CASE = [] for idx in range(len(UpperCAmelCase__ ) ): __SCREAMING_SNAKE_CASE = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(UpperCAmelCase__ ) else: __SCREAMING_SNAKE_CASE = logits.argmax(dim=1 ) __SCREAMING_SNAKE_CASE = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
195
0
import argparse import importlib from pathlib import Path # Test all the extensions added in the setup A : Tuple = [ "kernels/rwkv/wkv_cuda.cu", "kernels/rwkv/wkv_op.cpp", "kernels/deformable_detr/ms_deform_attn.h", "kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh", "models/graphormer/algos_graphormer.pyx", ] def a__ ( __UpperCamelCase ): # Test all the extensions added in the setup for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": A : Tuple = argparse.ArgumentParser() parser.add_argument("--check_lib", action="store_true", help="Whether to check the build or the actual package.") A : int = parser.parse_args() if args.check_lib: A : List[str] = importlib.import_module("transformers") A : Optional[int] = Path(transformers_module.__file__).parent else: A : Union[str, Any] = Path.cwd() / "build/lib/transformers" if not test_custom_files_are_present(transformers_path): raise ValueError("The built release does not contain the custom files. Fix this before going further!")
118
'''simple docstring''' import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class A__ ( _snake_case , unittest.TestCase ): lowercase = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline" def snake_case_ ( self , UpperCamelCase__=0 ) -> Tuple: '''simple docstring''' A_ = np.random.RandomState(UpperCamelCase__ ) A_ = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = self.get_dummy_inputs() A_ = pipe(**UpperCamelCase__ ).images A_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A_ = np.array([0.65072, 0.58492, 0.48219, 0.55521, 0.53180, 0.55939, 0.50697, 0.39800, 0.46455] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) A_ = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = self.get_dummy_inputs() A_ = pipe(**UpperCamelCase__ ).images A_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A_ = np.array([0.65863, 0.59425, 0.49326, 0.56313, 0.53875, 0.56627, 0.51065, 0.39777, 0.46330] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) A_ = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = self.get_dummy_inputs() A_ = pipe(**UpperCamelCase__ ).images A_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A_ = np.array([0.53755, 0.60786, 0.47402, 0.49488, 0.51869, 0.49819, 0.47985, 0.38957, 0.44279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' A_ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) A_ = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = self.get_dummy_inputs() A_ = pipe(**UpperCamelCase__ ).images A_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A_ = np.array([0.53755, 0.60786, 0.47402, 0.49488, 0.51869, 0.49819, 0.47985, 0.38957, 0.44279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) A_ = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = self.get_dummy_inputs() A_ = pipe(**UpperCamelCase__ ).images A_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A_ = np.array([0.53817, 0.60812, 0.47384, 0.49530, 0.51894, 0.49814, 0.47984, 0.38958, 0.44271] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) A_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = self.get_dummy_inputs() A_ = pipe(**UpperCamelCase__ ).images A_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A_ = np.array([0.53895, 0.60808, 0.47933, 0.49608, 0.51886, 0.49950, 0.48053, 0.38957, 0.44200] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = self.get_dummy_inputs() A_ = 3 * [inputs["""prompt"""]] # forward A_ = pipe(**UpperCamelCase__ ) A_ = output.images[0, -3:, -3:, -1] A_ = self.get_dummy_inputs() A_ = 3 * [inputs.pop("""prompt""" )] A_ = pipe.tokenizer( UpperCamelCase__ , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=UpperCamelCase__ , return_tensors="""np""" , ) A_ = text_inputs["""input_ids"""] A_ = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] A_ = prompt_embeds # forward A_ = pipe(**UpperCamelCase__ ) A_ = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = self.get_dummy_inputs() A_ = 3 * ["""this is a negative prompt"""] A_ = negative_prompt A_ = 3 * [inputs["""prompt"""]] # forward A_ = pipe(**UpperCamelCase__ ) A_ = output.images[0, -3:, -3:, -1] A_ = self.get_dummy_inputs() A_ = 3 * [inputs.pop("""prompt""" )] A_ = [] for p in [prompt, negative_prompt]: A_ = pipe.tokenizer( UpperCamelCase__ , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=UpperCamelCase__ , return_tensors="""np""" , ) A_ = text_inputs["""input_ids"""] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) A_ , A_ = embeds # forward A_ = pipe(**UpperCamelCase__ ) A_ = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @nightly @require_onnxruntime @require_torch_gpu class A__ ( unittest.TestCase ): @property def snake_case_ ( self ) -> List[Any]: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = ort.SessionOptions() A_ = False return options def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' # using the PNDM scheduler by default A_ = OnnxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = """A painting of a squirrel eating a burger""" np.random.seed(0 ) A_ = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type="""np""" ) A_ = output.images A_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A_ = np.array([0.0452, 0.0390, 0.0087, 0.0350, 0.0617, 0.0364, 0.0544, 0.0523, 0.0720] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = DDIMScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) A_ = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=UpperCamelCase__ , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = """open neural network exchange""" A_ = np.random.RandomState(0 ) A_ = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=UpperCamelCase__ , output_type="""np""" ) A_ = output.images A_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A_ = np.array([0.2867, 0.1974, 0.1481, 0.7294, 0.7251, 0.6667, 0.4194, 0.5642, 0.6486] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) A_ = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=UpperCamelCase__ , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = """open neural network exchange""" A_ = np.random.RandomState(0 ) A_ = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=UpperCamelCase__ , output_type="""np""" ) A_ = output.images A_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A_ = np.array([0.2306, 0.1959, 0.1593, 0.6549, 0.6394, 0.5408, 0.5065, 0.6010, 0.6161] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = 0 def test_callback_fn(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> None: A_ = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) A_ = latents[0, -3:, -3:, -1] A_ = np.array( [-0.6772, -0.3835, -1.2456, 0.1905, -1.0974, 0.6967, -1.9353, 0.0178, 1.0167] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) A_ = latents[0, -3:, -3:, -1] A_ = np.array( [-0.3351, 0.2241, -0.1837, -0.2325, -0.6577, 0.3393, -0.0241, 0.5899, 1.3875] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 A_ = False A_ = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = """Andromeda galaxy in a bottle""" A_ = np.random.RandomState(0 ) pipe( prompt=UpperCamelCase__ , num_inference_steps=5 , guidance_scale=7.5 , generator=UpperCamelCase__ , callback=UpperCamelCase__ , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) assert pipe.safety_checker is None A_ = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(UpperCamelCase__ ) A_ = OnnxStableDiffusionPipeline.from_pretrained(UpperCamelCase__ ) # sanity check that the pipeline still works assert pipe.safety_checker is None A_ = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None
162
0
"""simple docstring""" import json import os import torch from diffusers import UNetaDModel os.makedirs("hub/hopper-medium-v2/unet/hor32", exist_ok=True) os.makedirs("hub/hopper-medium-v2/unet/hor128", exist_ok=True) os.makedirs("hub/hopper-medium-v2/value_function", exist_ok=True) def A ( lowercase ) -> List[Any]: '''simple docstring''' if hor == 128: UpperCamelCase = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') UpperCamelCase = (32, 128, 256) UpperCamelCase = ('UpResnetBlock1D', 'UpResnetBlock1D') elif hor == 32: UpperCamelCase = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') UpperCamelCase = (32, 64, 128, 256) UpperCamelCase = ('UpResnetBlock1D', 'UpResnetBlock1D', 'UpResnetBlock1D') UpperCamelCase = torch.load(f'''/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch''' ) UpperCamelCase = model.state_dict() UpperCamelCase = { 'down_block_types': down_block_types, 'block_out_channels': block_out_channels, 'up_block_types': up_block_types, 'layers_per_block': 1, 'use_timestep_embedding': True, 'out_block_type': 'OutConv1DBlock', 'norm_num_groups': 8, 'downsample_each_block': False, 'in_channels': 14, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'flip_sin_to_cos': False, 'freq_shift': 1, 'sample_size': 65_536, 'mid_block_type': 'MidResTemporalBlock1D', 'act_fn': 'mish', } UpperCamelCase = UNetaDModel(**lowercase ) print(f'''length of state dict: {len(state_dict.keys() )}''' ) print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) UpperCamelCase = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): UpperCamelCase = state_dict.pop(lowercase ) hf_value_function.load_state_dict(lowercase ) torch.save(hf_value_function.state_dict() , f'''hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin''' ) with open(f'''hub/hopper-medium-v2/unet/hor{hor}/config.json''' , 'w' ) as f: json.dump(lowercase , lowercase ) def A ( ) -> str: '''simple docstring''' UpperCamelCase = { 'in_channels': 14, 'down_block_types': ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D'), 'up_block_types': (), 'out_block_type': 'ValueFunction', 'mid_block_type': 'ValueFunctionMidBlock1D', 'block_out_channels': (32, 64, 128, 256), 'layers_per_block': 1, 'downsample_each_block': True, 'sample_size': 65_536, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'use_timestep_embedding': True, 'flip_sin_to_cos': False, 'freq_shift': 1, 'norm_num_groups': 8, 'act_fn': 'mish', } UpperCamelCase = torch.load('/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch' ) UpperCamelCase = model UpperCamelCase = UNetaDModel(**lowercase ) print(f'''length of state dict: {len(state_dict.keys() )}''' ) print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) UpperCamelCase = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): UpperCamelCase = state_dict.pop(lowercase ) hf_value_function.load_state_dict(lowercase ) torch.save(hf_value_function.state_dict() , 'hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin' ) with open('hub/hopper-medium-v2/value_function/config.json' , 'w' ) as f: json.dump(lowercase , lowercase ) if __name__ == "__main__": unet(32) # unet(128) value_function()
354
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): @register_to_config def __init__( self , A_ = 768 , ) -> List[Any]: """simple docstring""" super().__init__() UpperCamelCase = nn.Parameter(torch.zeros(1 , A_ ) ) UpperCamelCase = nn.Parameter(torch.ones(1 , A_ ) ) def __UpperCamelCase ( self , A_ = None , A_ = None , ) -> Any: """simple docstring""" UpperCamelCase = nn.Parameter(self.mean.to(A_ ).to(A_ ) ) UpperCamelCase = nn.Parameter(self.std.to(A_ ).to(A_ ) ) return self def __UpperCamelCase ( self , A_ ) -> Dict: """simple docstring""" UpperCamelCase = (embeds - self.mean) * 1.0 / self.std return embeds def __UpperCamelCase ( self , A_ ) -> Dict: """simple docstring""" UpperCamelCase = (embeds * self.std) + self.mean return embeds
110
0
import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( 'files' , [ ['full:README.md', 'dataset_infos.json'], ['empty:README.md', 'dataset_infos.json'], ['dataset_infos.json'], ['full:README.md'], ] , ) def a_ ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] ): '''simple docstring''' _lowerCamelCase : str =tmp_path_factory.mktemp('dset_infos_dir' ) if "full:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('---\ndataset_info:\n dataset_size: 42\n---' ) if "empty:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / 'dataset_infos.json' , 'w' ) as f: f.write('{"default": {"dataset_size": 42}}' ) _lowerCamelCase : str =DatasetInfosDict.from_directory(SCREAMING_SNAKE_CASE__ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( 'dataset_info' , [ DatasetInfo(), DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ), ] , ) def a_ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : DatasetInfo ): '''simple docstring''' _lowerCamelCase : Tuple =str(SCREAMING_SNAKE_CASE__ ) dataset_info.write_to_directory(SCREAMING_SNAKE_CASE__ ) _lowerCamelCase : List[Any] =DatasetInfo.from_directory(SCREAMING_SNAKE_CASE__ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(SCREAMING_SNAKE_CASE__ , 'dataset_info.json' ) ) def a_ ( ): '''simple docstring''' _lowerCamelCase : Any =DatasetInfo( description='foo' , citation='bar' , homepage='https://foo.bar' , license='CC0' , features=Features({'a': Value('int32' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train', 'num_examples': 42}] , download_checksums={} , download_size=1_337 , post_processing_size=442 , dataset_size=1_234 , size_in_bytes=1_337 + 442 + 1_234 , ) _lowerCamelCase : List[str] =dataset_info._to_yaml_dict() assert sorted(SCREAMING_SNAKE_CASE__ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) _lowerCamelCase : Optional[Any] =yaml.safe_dump(SCREAMING_SNAKE_CASE__ ) _lowerCamelCase : str =yaml.safe_load(SCREAMING_SNAKE_CASE__ ) assert dataset_info_yaml_dict == reloaded def a_ ( ): '''simple docstring''' _lowerCamelCase : Tuple =DatasetInfo() _lowerCamelCase : Optional[int] =dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( 'dataset_infos_dict' , [ DatasetInfosDict(), DatasetInfosDict({'default': DatasetInfo()} ), DatasetInfosDict({'my_config_name': DatasetInfo()} ), DatasetInfosDict( { 'default': DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ) } ), DatasetInfosDict( { 'v1': DatasetInfo(dataset_size=42 ), 'v2': DatasetInfo(dataset_size=1_337 ), } ), ] , ) def a_ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : DatasetInfosDict ): '''simple docstring''' _lowerCamelCase : Tuple =str(SCREAMING_SNAKE_CASE__ ) dataset_infos_dict.write_to_directory(SCREAMING_SNAKE_CASE__ ) _lowerCamelCase : Tuple =DatasetInfosDict.from_directory(SCREAMING_SNAKE_CASE__ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): _lowerCamelCase : List[Any] =config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml _lowerCamelCase : Dict =DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(SCREAMING_SNAKE_CASE__ , 'README.md' ) )
199
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('1.6'): lowerCamelCase = True from torch.cuda.amp import autocast lowerCamelCase = logging.getLogger(__name__) def a_ ( SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : List[Any]=None ): '''simple docstring''' return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE__ ) @dataclass class A : UpperCamelCase__ : str =field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) UpperCamelCase__ : Optional[str] =field( default=UpperCamelCase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) UpperCamelCase__ : Optional[bool] =field( default=UpperCamelCase_ , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'} ) UpperCamelCase__ : Optional[float] =field( default=0.1 , metadata={'help': 'The dropout ratio for the attention probabilities.'} ) UpperCamelCase__ : Optional[float] =field( default=0.1 , metadata={'help': 'The dropout ratio for activations inside the fully connected layer.'} ) UpperCamelCase__ : Optional[float] =field( default=0.1 , metadata={ 'help': 'The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.' } , ) UpperCamelCase__ : Optional[float] =field( default=0.1 , metadata={'help': 'The dropout probabilitiy for all 1D convolutional layers in feature extractor.'} , ) UpperCamelCase__ : Optional[float] =field( default=0.05 , metadata={ 'help': ( 'Propability of each feature vector along the time axis to be chosen as the start of the vector' 'span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature' 'vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``.' ) } , ) UpperCamelCase__ : Optional[float] =field(default=0.0 , metadata={'help': 'The LayerDrop probability.'} ) @dataclass class A : UpperCamelCase__ : Optional[str] =field( default=UpperCamelCase_ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) UpperCamelCase__ : Optional[str] =field( default='train+validation' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) UpperCamelCase__ : bool =field( default=UpperCamelCase_ , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) UpperCamelCase__ : Optional[int] =field( default=UpperCamelCase_ , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) UpperCamelCase__ : Optional[int] =field( default=UpperCamelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) UpperCamelCase__ : Optional[int] =field( default=UpperCamelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of validation examples to this ' 'value if set.' ) } , ) UpperCamelCase__ : List[str] =list_field( default=[',', '?', '.', '!', '-', ';', ':', '""', '%', '\'', '"', '�'] , metadata={'help': 'A list of characters to remove from the transcripts.'} , ) @dataclass class A : UpperCamelCase__ : WavaVecaProcessor UpperCamelCase__ : Union[bool, str] =True UpperCamelCase__ : Optional[int] =None UpperCamelCase__ : Optional[int] =None UpperCamelCase__ : Optional[int] =None UpperCamelCase__ : Optional[int] =None def __call__( self : str , lowercase_ : List[Dict[str, Union[List[int], torch.Tensor]]] ) -> Dict[str, torch.Tensor]: """simple docstring""" _lowerCamelCase : List[Any] =[{'input_values': feature['input_values']} for feature in features] _lowerCamelCase : str =[{'input_ids': feature['labels']} for feature in features] _lowerCamelCase : Union[str, Any] =self.processor.pad( lowercase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) _lowerCamelCase : Any =self.processor.pad( labels=lowercase_ , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='pt' , ) # replace padding with -100 to ignore loss correctly _lowerCamelCase : str =labels_batch['input_ids'].masked_fill(labels_batch.attention_mask.ne(1 ) , -100 ) _lowerCamelCase : List[Any] =labels return batch class A ( UpperCamelCase_ ): def lowerCamelCase ( self : Optional[Any] , lowercase_ : nn.Module , lowercase_ : Dict[str, Union[torch.Tensor, Any]] ) -> torch.Tensor: """simple docstring""" model.train() _lowerCamelCase : List[Any] =self._prepare_inputs(lowercase_ ) if self.use_amp: with autocast(): _lowerCamelCase : List[Any] =self.compute_loss(lowercase_ , lowercase_ ) else: _lowerCamelCase : Optional[int] =self.compute_loss(lowercase_ , lowercase_ ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": _lowerCamelCase : Optional[Any] =loss.mean() elif model.module.config.ctc_loss_reduction == "sum": _lowerCamelCase : int =loss.sum() / (inputs['labels'] >= 0).sum() else: raise ValueError(F'''{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']''' ) if self.args.gradient_accumulation_steps > 1: _lowerCamelCase : Dict =loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(lowercase_ ).backward() elif self.use_apex: with amp.scale_loss(lowercase_ , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(lowercase_ ) else: loss.backward() return loss.detach() def a_ ( ): '''simple docstring''' _lowerCamelCase : Union[str, Any] =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Tuple =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Any =parser.parse_args_into_dataclasses() # Detecting last checkpoint. _lowerCamelCase : Dict =None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _lowerCamelCase : List[str] =get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('Training/evaluation parameters %s' , SCREAMING_SNAKE_CASE__ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: _lowerCamelCase : str =datasets.load_dataset( 'common_voice' , data_args.dataset_config_name , split=data_args.train_split_name ) _lowerCamelCase : int =datasets.load_dataset('common_voice' , data_args.dataset_config_name , split='test' ) # Create and save tokenizer _lowerCamelCase : Dict =F'''[{''.join(data_args.chars_to_ignore )}]''' def remove_special_characters(SCREAMING_SNAKE_CASE__ : Tuple ): _lowerCamelCase : Optional[Any] =re.sub(SCREAMING_SNAKE_CASE__ , '' , batch['sentence'] ).lower() + ' ' return batch _lowerCamelCase : int =train_dataset.map(SCREAMING_SNAKE_CASE__ , remove_columns=['sentence'] ) _lowerCamelCase : Tuple =eval_dataset.map(SCREAMING_SNAKE_CASE__ , remove_columns=['sentence'] ) def extract_all_chars(SCREAMING_SNAKE_CASE__ : Tuple ): _lowerCamelCase : int =' '.join(batch['text'] ) _lowerCamelCase : Union[str, Any] =list(set(SCREAMING_SNAKE_CASE__ ) ) return {"vocab": [vocab], "all_text": [all_text]} _lowerCamelCase : Tuple =train_dataset.map( SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , batch_size=-1 , keep_in_memory=SCREAMING_SNAKE_CASE__ , remove_columns=train_dataset.column_names , ) _lowerCamelCase : Union[str, Any] =train_dataset.map( SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , batch_size=-1 , keep_in_memory=SCREAMING_SNAKE_CASE__ , remove_columns=eval_dataset.column_names , ) _lowerCamelCase : Optional[int] =list(set(vocab_train['vocab'][0] ) | set(vocab_test['vocab'][0] ) ) _lowerCamelCase : Tuple ={v: k for k, v in enumerate(SCREAMING_SNAKE_CASE__ )} _lowerCamelCase : int =vocab_dict[' '] del vocab_dict[" "] _lowerCamelCase : Optional[Any] =len(SCREAMING_SNAKE_CASE__ ) _lowerCamelCase : int =len(SCREAMING_SNAKE_CASE__ ) with open('vocab.json' , 'w' ) as vocab_file: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCamelCase : int =WavaVecaCTCTokenizer( 'vocab.json' , unk_token='[UNK]' , pad_token='[PAD]' , word_delimiter_token='|' , ) _lowerCamelCase : Optional[int] =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0.0 , do_normalize=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ ) _lowerCamelCase : Optional[int] =WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ ) _lowerCamelCase : Any =WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction='mean' , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: _lowerCamelCase : List[str] =min(len(SCREAMING_SNAKE_CASE__ ) , data_args.max_train_samples ) _lowerCamelCase : Any =train_dataset.select(range(SCREAMING_SNAKE_CASE__ ) ) if data_args.max_val_samples is not None: _lowerCamelCase : Optional[int] =eval_dataset.select(range(data_args.max_val_samples ) ) _lowerCamelCase : str =torchaudio.transforms.Resample(48_000 , 16_000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(SCREAMING_SNAKE_CASE__ : List[Any] ): _lowerCamelCase , _lowerCamelCase : Tuple =torchaudio.load(batch['path'] ) _lowerCamelCase : Optional[int] =resampler(SCREAMING_SNAKE_CASE__ ).squeeze().numpy() _lowerCamelCase : Optional[Any] =16_000 _lowerCamelCase : Tuple =batch['text'] return batch _lowerCamelCase : Any =train_dataset.map( SCREAMING_SNAKE_CASE__ , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) _lowerCamelCase : Optional[int] =eval_dataset.map( SCREAMING_SNAKE_CASE__ , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(SCREAMING_SNAKE_CASE__ : Union[str, Any] ): # check that all files have the correct sampling rate assert ( len(set(batch['sampling_rate'] ) ) == 1 ), F'''Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.''' _lowerCamelCase : int =processor( audio=batch['speech'] , text=batch['target_text'] , sampling_rate=batch['sampling_rate'][0] ) batch.update(SCREAMING_SNAKE_CASE__ ) return batch _lowerCamelCase : str =train_dataset.map( SCREAMING_SNAKE_CASE__ , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=SCREAMING_SNAKE_CASE__ , num_proc=data_args.preprocessing_num_workers , ) _lowerCamelCase : Tuple =eval_dataset.map( SCREAMING_SNAKE_CASE__ , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=SCREAMING_SNAKE_CASE__ , num_proc=data_args.preprocessing_num_workers , ) # Metric _lowerCamelCase : Union[str, Any] =datasets.load_metric('wer' ) def compute_metrics(SCREAMING_SNAKE_CASE__ : str ): _lowerCamelCase : Union[str, Any] =pred.predictions _lowerCamelCase : Optional[int] =np.argmax(SCREAMING_SNAKE_CASE__ , axis=-1 ) _lowerCamelCase : Any =processor.tokenizer.pad_token_id _lowerCamelCase : Any =processor.batch_decode(SCREAMING_SNAKE_CASE__ ) # we do not want to group tokens when computing the metrics _lowerCamelCase : List[Any] =processor.batch_decode(pred.label_ids , group_tokens=SCREAMING_SNAKE_CASE__ ) _lowerCamelCase : Any =wer_metric.compute(predictions=SCREAMING_SNAKE_CASE__ , references=SCREAMING_SNAKE_CASE__ ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator _lowerCamelCase : Optional[int] =DataCollatorCTCWithPadding(processor=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ ) # Initialize our Trainer _lowerCamelCase : Optional[Any] =CTCTrainer( model=SCREAMING_SNAKE_CASE__ , data_collator=SCREAMING_SNAKE_CASE__ , args=SCREAMING_SNAKE_CASE__ , compute_metrics=SCREAMING_SNAKE_CASE__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: _lowerCamelCase : Optional[Any] =last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): _lowerCamelCase : Dict =model_args.model_name_or_path else: _lowerCamelCase : int =None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) _lowerCamelCase : Optional[int] =trainer.train(resume_from_checkpoint=SCREAMING_SNAKE_CASE__ ) trainer.save_model() _lowerCamelCase : Any =train_result.metrics _lowerCamelCase : Optional[int] =( data_args.max_train_samples if data_args.max_train_samples is not None else len(SCREAMING_SNAKE_CASE__ ) ) _lowerCamelCase : List[Any] =min(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) ) trainer.log_metrics('train' , SCREAMING_SNAKE_CASE__ ) trainer.save_metrics('train' , SCREAMING_SNAKE_CASE__ ) trainer.save_state() # Evaluation _lowerCamelCase : str ={} if training_args.do_eval: logger.info('*** Evaluate ***' ) _lowerCamelCase : Tuple =trainer.evaluate() _lowerCamelCase : List[Any] =data_args.max_val_samples if data_args.max_val_samples is not None else len(SCREAMING_SNAKE_CASE__ ) _lowerCamelCase : Union[str, Any] =min(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) ) trainer.log_metrics('eval' , SCREAMING_SNAKE_CASE__ ) trainer.save_metrics('eval' , SCREAMING_SNAKE_CASE__ ) return results if __name__ == "__main__": main()
199
1
"""simple docstring""" import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL lowerCamelCase = version.parse(version.parse(torch.__version__).base_version) < version.parse("""1.11""") def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False , ): output_path.parent.mkdir(parents=lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( lowerCAmelCase__ , lowerCAmelCase__ , f=output_path.as_posix() , input_names=lowerCAmelCase__ , output_names=lowerCAmelCase__ , dynamic_axes=lowerCAmelCase__ , do_constant_folding=lowerCAmelCase__ , use_external_data_format=lowerCAmelCase__ , enable_onnx_checker=lowerCAmelCase__ , opset_version=lowerCAmelCase__ , ) else: export( lowerCAmelCase__ , lowerCAmelCase__ , f=output_path.as_posix() , input_names=lowerCAmelCase__ , output_names=lowerCAmelCase__ , dynamic_axes=lowerCAmelCase__ , do_constant_folding=lowerCAmelCase__ , opset_version=lowerCAmelCase__ , ) @torch.no_grad() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = False ): UpperCAmelCase_ = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): UpperCAmelCase_ = "cuda" elif fpaa and not torch.cuda.is_available(): raise ValueError("`float16` model export is only supported on GPUs with CUDA" ) else: UpperCAmelCase_ = "cpu" UpperCAmelCase_ = Path(lowerCAmelCase__ ) # VAE DECODER UpperCAmelCase_ = AutoencoderKL.from_pretrained(model_path + "/vae" ) UpperCAmelCase_ = vae_decoder.config.latent_channels # forward only through the decoder part UpperCAmelCase_ = vae_decoder.decode onnx_export( lowerCAmelCase__ , model_args=( torch.randn(1 , lowerCAmelCase__ , 25 , 25 ).to(device=lowerCAmelCase__ , dtype=lowerCAmelCase__ ), False, ) , output_path=output_path / "vae_decoder" / "model.onnx" , ordered_input_names=["latent_sample", "return_dict"] , output_names=["sample"] , dynamic_axes={ "latent_sample": {0: "batch", 1: "channels", 2: "height", 3: "width"}, } , opset=lowerCAmelCase__ , ) del vae_decoder if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() parser.add_argument( """--model_path""", type=str, required=True, help="""Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).""", ) parser.add_argument("""--output_path""", type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--opset""", default=14, type=int, help="""The version of the ONNX operator set to use.""", ) parser.add_argument("""--fp16""", action="""store_true""", default=False, help="""Export the models in `float16` mode""") lowerCamelCase = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("""SD: Done: ONNX""")
350
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""", """roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""", } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''roberta''' def __init__( self : int , _UpperCAmelCase : List[Any]=50265 , _UpperCAmelCase : str=768 , _UpperCAmelCase : List[str]=12 , _UpperCAmelCase : int=12 , _UpperCAmelCase : Tuple=3072 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Optional[int]=512 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Optional[int]=0.02 , _UpperCAmelCase : Optional[Any]=1e-12 , _UpperCAmelCase : Dict=1 , _UpperCAmelCase : str=0 , _UpperCAmelCase : int=2 , _UpperCAmelCase : Tuple="absolute" , _UpperCAmelCase : Any=True , _UpperCAmelCase : int=None , **_UpperCAmelCase : List[str] , ) -> Any: '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = position_embedding_type UpperCAmelCase_ = use_cache UpperCAmelCase_ = classifier_dropout class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def lowercase__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase_ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
241
0
import pickle import numpy as np from matplotlib import pyplot as plt class __lowerCAmelCase : def __init__(self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=0.2 , __magic_name__=0.2 ) -> Optional[Any]: '''simple docstring''' snake_case_ : Tuple = bp_numa snake_case_ : Union[str, Any] = bp_numa snake_case_ : Dict = bp_numa snake_case_ : Optional[Any] = conva_get[:2] snake_case_ : int = conva_get[2] snake_case_ : Optional[int] = size_pa snake_case_ : int = rate_w snake_case_ : int = rate_t snake_case_ : Optional[int] = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] snake_case_ : Dict = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) snake_case_ : Tuple = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) snake_case_ : int = -2 * np.random.rand(self.conva[1] ) + 1 snake_case_ : Any = -2 * np.random.rand(self.num_bpa ) + 1 snake_case_ : Optional[int] = -2 * np.random.rand(self.num_bpa ) + 1 def lowerCamelCase (self , __magic_name__ ) -> Optional[Any]: '''simple docstring''' snake_case_ : Optional[int] = { '''num_bp1''': self.num_bpa, '''num_bp2''': self.num_bpa, '''num_bp3''': self.num_bpa, '''conv1''': self.conva, '''step_conv1''': self.step_conva, '''size_pooling1''': self.size_poolinga, '''rate_weight''': self.rate_weight, '''rate_thre''': self.rate_thre, '''w_conv1''': self.w_conva, '''wkj''': self.wkj, '''vji''': self.vji, '''thre_conv1''': self.thre_conva, '''thre_bp2''': self.thre_bpa, '''thre_bp3''': self.thre_bpa, } with open(__magic_name__ , '''wb''' ) as f: pickle.dump(__magic_name__ , __magic_name__ ) print(F'''Model saved: {save_path}''' ) @classmethod def lowerCamelCase (cls , __magic_name__ ) -> Optional[int]: '''simple docstring''' with open(__magic_name__ , '''rb''' ) as f: snake_case_ : str = pickle.load(__magic_name__ ) # noqa: S301 snake_case_ : List[Any] = model_dic.get('''conv1''' ) conv_get.append(model_dic.get('''step_conv1''' ) ) snake_case_ : str = model_dic.get('''size_pooling1''' ) snake_case_ : Any = model_dic.get('''num_bp1''' ) snake_case_ : Tuple = model_dic.get('''num_bp2''' ) snake_case_ : str = model_dic.get('''num_bp3''' ) snake_case_ : List[str] = model_dic.get('''rate_weight''' ) snake_case_ : Dict = model_dic.get('''rate_thre''' ) # create model instance snake_case_ : Optional[Any] = CNN(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # modify model parameter snake_case_ : Union[str, Any] = model_dic.get('''w_conv1''' ) snake_case_ : Union[str, Any] = model_dic.get('''wkj''' ) snake_case_ : int = model_dic.get('''vji''' ) snake_case_ : List[Any] = model_dic.get('''thre_conv1''' ) snake_case_ : Optional[Any] = model_dic.get('''thre_bp2''' ) snake_case_ : Optional[Any] = model_dic.get('''thre_bp3''' ) return conv_ins def lowerCamelCase (self , __magic_name__ ) -> str: '''simple docstring''' return 1 / (1 + np.exp(-1 * x )) def lowerCamelCase (self , __magic_name__ ) -> Optional[int]: '''simple docstring''' return round(__magic_name__ , 3 ) def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> List[str]: '''simple docstring''' snake_case_ : int = convs[0] snake_case_ : Dict = convs[1] snake_case_ : Optional[int] = np.shape(__magic_name__ )[0] # get the data slice of original image data, data_focus snake_case_ : Optional[Any] = [] for i_focus in range(0 , size_data - size_conv + 1 , __magic_name__ ): for j_focus in range(0 , size_data - size_conv + 1 , __magic_name__ ): snake_case_ : List[Any] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(__magic_name__ ) # calculate the feature map of every single kernel, and saved as list of matrix snake_case_ : Optional[int] = [] snake_case_ : List[Any] = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(__magic_name__ ): snake_case_ : List[str] = [] for i_focus in range(len(__magic_name__ ) ): snake_case_ : Dict = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(__magic_name__ ) ) snake_case_ : Any = np.asmatrix(__magic_name__ ).reshape( __magic_name__ , __magic_name__ ) data_featuremap.append(__magic_name__ ) # expanding the data slice to One dimenssion snake_case_ : Optional[int] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(__magic_name__ ) ) snake_case_ : List[str] = np.asarray(__magic_name__ ) return focus_list, data_featuremap def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__="average_pool" ) -> List[str]: '''simple docstring''' snake_case_ : Any = len(featuremaps[0] ) snake_case_ : Dict = int(size_map / size_pooling ) snake_case_ : Dict = [] for i_map in range(len(__magic_name__ ) ): snake_case_ : List[str] = featuremaps[i_map] snake_case_ : List[Any] = [] for i_focus in range(0 , __magic_name__ , __magic_name__ ): for j_focus in range(0 , __magic_name__ , __magic_name__ ): snake_case_ : List[str] = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(__magic_name__ ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(__magic_name__ ) ) snake_case_ : Any = np.asmatrix(__magic_name__ ).reshape(__magic_name__ , __magic_name__ ) featuremap_pooled.append(__magic_name__ ) return featuremap_pooled def lowerCamelCase (self , __magic_name__ ) -> Any: '''simple docstring''' snake_case_ : int = [] for i in range(len(__magic_name__ ) ): snake_case_ : Optional[int] = np.shape(data[i] ) snake_case_ : int = data[i].reshape(1 , shapes[0] * shapes[1] ) snake_case_ : Optional[int] = data_listed.getA().tolist()[0] data_expanded.extend(__magic_name__ ) snake_case_ : Dict = np.asarray(__magic_name__ ) return data_expanded def lowerCamelCase (self , __magic_name__ ) -> str: '''simple docstring''' snake_case_ : Optional[Any] = np.asarray(__magic_name__ ) snake_case_ : Optional[int] = np.shape(__magic_name__ ) snake_case_ : Union[str, Any] = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> str: '''simple docstring''' snake_case_ : Optional[Any] = [] snake_case_ : Dict = 0 for i_map in range(__magic_name__ ): snake_case_ : List[Any] = np.ones((size_map, size_map) ) for i in range(0 , __magic_name__ , __magic_name__ ): for j in range(0 , __magic_name__ , __magic_name__ ): snake_case_ : Optional[int] = pd_pool[ i_pool ] snake_case_ : int = i_pool + 1 snake_case_ : Optional[int] = np.multiply( __magic_name__ , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(__magic_name__ ) return pd_all def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=bool ) -> Optional[int]: '''simple docstring''' print('''----------------------Start Training-------------------------''' ) print((''' - - Shape: Train_Data ''', np.shape(__magic_name__ )) ) print((''' - - Shape: Teach_Data ''', np.shape(__magic_name__ )) ) snake_case_ : int = 0 snake_case_ : Union[str, Any] = [] snake_case_ : List[str] = 1_0000 while rp < n_repeat and mse >= error_accuracy: snake_case_ : Dict = 0 print(F'''-------------Learning Time {rp}--------------''' ) for p in range(len(__magic_name__ ) ): # print('------------Learning Image: %d--------------'%p) snake_case_ : Optional[int] = np.asmatrix(datas_train[p] ) snake_case_ : List[str] = np.asarray(datas_teach[p] ) snake_case_ , snake_case_ : Any = self.convolute( __magic_name__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) snake_case_ : List[str] = self.pooling(__magic_name__ , self.size_poolinga ) snake_case_ : str = np.shape(__magic_name__ ) snake_case_ : List[str] = self._expand(__magic_name__ ) snake_case_ : Optional[int] = data_bp_input snake_case_ : Tuple = np.dot(__magic_name__ , self.vji.T ) - self.thre_bpa snake_case_ : List[Any] = self.sig(__magic_name__ ) snake_case_ : Union[str, Any] = np.dot(__magic_name__ , self.wkj.T ) - self.thre_bpa snake_case_ : Tuple = self.sig(__magic_name__ ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- snake_case_ : str = np.multiply( (data_teach - bp_outa) , np.multiply(__magic_name__ , (1 - bp_outa) ) ) snake_case_ : Union[str, Any] = np.multiply( np.dot(__magic_name__ , self.wkj ) , np.multiply(__magic_name__ , (1 - bp_outa) ) ) snake_case_ : Tuple = np.dot(__magic_name__ , self.vji ) snake_case_ : List[Any] = pd_i_all / (self.size_poolinga * self.size_poolinga) snake_case_ : List[Any] = pd_conva_pooled.T.getA().tolist() snake_case_ : str = self._calculate_gradient_from_pool( __magic_name__ , __magic_name__ , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): snake_case_ : Optional[int] = self._expand_mat(pd_conva_all[k_conv] ) snake_case_ : Union[str, Any] = self.rate_weight * np.dot(__magic_name__ , __magic_name__ ) snake_case_ : List[str] = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) snake_case_ : List[str] = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer snake_case_ : Dict = self.wkj + pd_k_all.T * bp_outa * self.rate_weight snake_case_ : List[Any] = self.vji + pd_j_all.T * bp_outa * self.rate_weight snake_case_ : Any = self.thre_bpa - pd_k_all * self.rate_thre snake_case_ : Any = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image snake_case_ : int = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) snake_case_ : Optional[Any] = rp + 1 snake_case_ : Union[str, Any] = error_count / patterns all_mse.append(__magic_name__ ) def draw_error(): snake_case_ : Union[str, Any] = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(__magic_name__ , '''+-''' ) plt.plot(__magic_name__ , '''r--''' ) plt.xlabel('''Learning Times''' ) plt.ylabel('''All_mse''' ) plt.grid(__magic_name__ , alpha=0.5 ) plt.show() print('''------------------Training Complished---------------------''' ) print((''' - - Training epoch: ''', rp, F''' - - Mse: {mse:.6f}''') ) if draw_e: draw_error() return mse def lowerCamelCase (self , __magic_name__ ) -> Optional[Any]: '''simple docstring''' snake_case_ : List[str] = [] print('''-------------------Start Testing-------------------------''' ) print((''' - - Shape: Test_Data ''', np.shape(__magic_name__ )) ) for p in range(len(__magic_name__ ) ): snake_case_ : Optional[int] = np.asmatrix(datas_test[p] ) snake_case_ , snake_case_ : int = self.convolute( __magic_name__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) snake_case_ : Union[str, Any] = self.pooling(__magic_name__ , self.size_poolinga ) snake_case_ : List[Any] = self._expand(__magic_name__ ) snake_case_ : Optional[Any] = data_bp_input snake_case_ : int = bp_outa * self.vji.T - self.thre_bpa snake_case_ : List[Any] = self.sig(__magic_name__ ) snake_case_ : List[str] = bp_outa * self.wkj.T - self.thre_bpa snake_case_ : Tuple = self.sig(__magic_name__ ) produce_out.extend(bp_outa.getA().tolist() ) snake_case_ : List[str] = [list(map(self.do_round , __magic_name__ ) ) for each in produce_out] return np.asarray(__magic_name__ ) def lowerCamelCase (self , __magic_name__ ) -> Tuple: '''simple docstring''' snake_case_ : Dict = np.asmatrix(__magic_name__ ) snake_case_ , snake_case_ : Union[str, Any] = self.convolute( __magic_name__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) snake_case_ : Optional[Any] = self.pooling(__magic_name__ , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
279
import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase_ = get_tests_dir('''fixtures/test_sentencepiece_bpe_char.model''') @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( _a, unittest.TestCase ): lowerCamelCase_ : Optional[int] = SpeechTaTokenizer lowerCamelCase_ : int = False lowerCamelCase_ : Dict = True def lowerCamelCase (self ) -> Optional[Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing snake_case_ : Tuple = SpeechTaTokenizer(__magic_name__ ) snake_case_ : Any = AddedToken('''<mask>''' , lstrip=__magic_name__ , rstrip=__magic_name__ ) snake_case_ : int = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase (self , __magic_name__ ) -> Dict: '''simple docstring''' snake_case_ : Dict = '''this is a test''' snake_case_ : int = '''this is a test''' return input_text, output_text def lowerCamelCase (self , __magic_name__ , __magic_name__=False , __magic_name__=20 , __magic_name__=5 ) -> List[Any]: '''simple docstring''' snake_case_ , snake_case_ : int = self.get_input_output_texts(__magic_name__ ) snake_case_ : Optional[Any] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) snake_case_ : Any = tokenizer.decode(__magic_name__ , clean_up_tokenization_spaces=__magic_name__ ) return text, ids def lowerCamelCase (self ) -> Optional[int]: '''simple docstring''' snake_case_ : List[str] = '''<pad>''' snake_case_ : Any = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__magic_name__ ) , __magic_name__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__magic_name__ ) , __magic_name__ ) def lowerCamelCase (self ) -> Any: '''simple docstring''' snake_case_ : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-4] , '''œ''' ) self.assertEqual(vocab_keys[-2] , '''<mask>''' ) self.assertEqual(vocab_keys[-1] , '''<ctc_blank>''' ) self.assertEqual(len(__magic_name__ ) , 81 ) def lowerCamelCase (self ) -> Dict: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 79 ) def lowerCamelCase (self ) -> Tuple: '''simple docstring''' snake_case_ : int = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): snake_case_ : int = tokenizer.vocab_size snake_case_ : Optional[Any] = len(__magic_name__ ) self.assertNotEqual(__magic_name__ , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) snake_case_ : List[Any] = ['''aaaaa bbbbbb''', '''cccccccccdddddddd'''] snake_case_ : List[Any] = tokenizer.add_tokens(__magic_name__ ) snake_case_ : Dict = tokenizer.vocab_size snake_case_ : Optional[Any] = len(__magic_name__ ) self.assertNotEqual(__magic_name__ , 0 ) self.assertEqual(__magic_name__ , __magic_name__ ) self.assertEqual(__magic_name__ , len(__magic_name__ ) ) self.assertEqual(__magic_name__ , all_size + len(__magic_name__ ) ) snake_case_ : Union[str, Any] = tokenizer.encode('''aaaaa bbbbbb low cccccccccdddddddd l''' , add_special_tokens=__magic_name__ ) self.assertGreaterEqual(len(__magic_name__ ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) snake_case_ : Union[str, Any] = {'''eos_token''': '''>>>>|||<||<<|<<''', '''pad_token''': '''<<<<<|||>|>>>>|>'''} snake_case_ : List[str] = tokenizer.add_special_tokens(__magic_name__ ) snake_case_ : Dict = tokenizer.vocab_size snake_case_ : Dict = len(__magic_name__ ) self.assertNotEqual(__magic_name__ , 0 ) self.assertEqual(__magic_name__ , __magic_name__ ) self.assertEqual(__magic_name__ , len(__magic_name__ ) ) self.assertEqual(__magic_name__ , all_size_a + len(__magic_name__ ) ) snake_case_ : Tuple = tokenizer.encode( '''>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l''' , add_special_tokens=__magic_name__ ) self.assertGreaterEqual(len(__magic_name__ ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) def lowerCamelCase (self ) -> Union[str, Any]: '''simple docstring''' pass def lowerCamelCase (self ) -> List[str]: '''simple docstring''' pass def lowerCamelCase (self ) -> int: '''simple docstring''' snake_case_ : Dict = self.get_tokenizer() snake_case_ : Optional[Any] = tokenizer.tokenize('''This is a test''' ) # fmt: off self.assertListEqual(__magic_name__ , [SPIECE_UNDERLINE, '''T''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''a''', SPIECE_UNDERLINE, '''t''', '''e''', '''s''', '''t'''] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(__magic_name__ ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , ) snake_case_ : List[Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __magic_name__ , [SPIECE_UNDERLINE, '''I''', SPIECE_UNDERLINE, '''w''', '''a''', '''s''', SPIECE_UNDERLINE, '''b''', '''o''', '''r''', '''n''', SPIECE_UNDERLINE, '''i''', '''n''', SPIECE_UNDERLINE, '''92000''', ''',''', SPIECE_UNDERLINE, '''a''', '''n''', '''d''', SPIECE_UNDERLINE, '''t''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''f''', '''a''', '''l''', '''s''', '''é''', '''.'''] ) snake_case_ : List[str] = tokenizer.convert_tokens_to_ids(__magic_name__ ) # fmt: off self.assertListEqual(__magic_name__ , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on snake_case_ : int = tokenizer.convert_ids_to_tokens(__magic_name__ ) self.assertListEqual( __magic_name__ , [SPIECE_UNDERLINE, '''I''', SPIECE_UNDERLINE, '''w''', '''a''', '''s''', SPIECE_UNDERLINE, '''b''', '''o''', '''r''', '''n''', SPIECE_UNDERLINE, '''i''', '''n''', SPIECE_UNDERLINE, '''<unk>''', ''',''', SPIECE_UNDERLINE, '''a''', '''n''', '''d''', SPIECE_UNDERLINE, '''t''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''f''', '''a''', '''l''', '''s''', '''é''', '''.'''] ) @slow def lowerCamelCase (self ) -> Tuple: '''simple docstring''' snake_case_ : Tuple = [ '''Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides ''' '''general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural ''' '''Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained ''' '''models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.''', '''BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly ''' '''conditioning on both left and right context in all layers.''', '''The quick brown fox jumps over the lazy dog.''', ] # fmt: off snake_case_ : List[Any] = { '''input_ids''': [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=__magic_name__ , model_name='''microsoft/speecht5_asr''' , revision='''c5ef64c71905caeccde0e4462ef3f9077224c524''' , sequences=__magic_name__ , )
279
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json', # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : List[Any] = '''convbert''' def __init__( self : Optional[int] , lowerCAmelCase__ : str=3_0_5_2_2 , lowerCAmelCase__ : str=7_6_8 , lowerCAmelCase__ : Tuple=1_2 , lowerCAmelCase__ : Dict=1_2 , lowerCAmelCase__ : Tuple=3_0_7_2 , lowerCAmelCase__ : Dict="gelu" , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Optional[int]=0.1 , lowerCAmelCase__ : Optional[Any]=5_1_2 , lowerCAmelCase__ : Optional[int]=2 , lowerCAmelCase__ : int=0.02 , lowerCAmelCase__ : Tuple=1e-12 , lowerCAmelCase__ : str=1 , lowerCAmelCase__ : Optional[int]=0 , lowerCAmelCase__ : str=2 , lowerCAmelCase__ : int=7_6_8 , lowerCAmelCase__ : Union[str, Any]=2 , lowerCAmelCase__ : Union[str, Any]=9 , lowerCAmelCase__ : Optional[int]=1 , lowerCAmelCase__ : Optional[int]=None , **lowerCAmelCase__ : Optional[int] , ) -> List[Any]: """simple docstring""" super().__init__( pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ , ) _UpperCAmelCase : Tuple = vocab_size _UpperCAmelCase : List[str] = hidden_size _UpperCAmelCase : Any = num_hidden_layers _UpperCAmelCase : Tuple = num_attention_heads _UpperCAmelCase : List[Any] = intermediate_size _UpperCAmelCase : List[str] = hidden_act _UpperCAmelCase : Union[str, Any] = hidden_dropout_prob _UpperCAmelCase : List[str] = attention_probs_dropout_prob _UpperCAmelCase : Tuple = max_position_embeddings _UpperCAmelCase : List[str] = type_vocab_size _UpperCAmelCase : Dict = initializer_range _UpperCAmelCase : Optional[int] = layer_norm_eps _UpperCAmelCase : Any = embedding_size _UpperCAmelCase : Tuple = head_ratio _UpperCAmelCase : int = conv_kernel_size _UpperCAmelCase : List[str] = num_groups _UpperCAmelCase : Any = classifier_dropout class A__ ( UpperCamelCase ): """simple docstring""" @property def _lowerCAmelCase ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _UpperCAmelCase : Tuple = {0: "batch", 1: "choice", 2: "sequence"} else: _UpperCAmelCase : str = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
17
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __a = { 'configuration_layoutlmv2': ['LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv2Config'], 'processing_layoutlmv2': ['LayoutLMv2Processor'], 'tokenization_layoutlmv2': ['LayoutLMv2Tokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['LayoutLMv2TokenizerFast'] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['LayoutLMv2FeatureExtractor'] __a = ['LayoutLMv2ImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'LayoutLMv2ForQuestionAnswering', 'LayoutLMv2ForSequenceClassification', 'LayoutLMv2ForTokenClassification', 'LayoutLMv2Layer', 'LayoutLMv2Model', 'LayoutLMv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
17
1
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch _a : List[str] = logging.get_logger(__name__) class __A ( __UpperCAmelCase ): _UpperCamelCase : Optional[Any] = ["pixel_values"] def __init__( self , a__ = True , a__ = None , a__ = PILImageResampling.BILINEAR , a__ = True , a__ = None , a__ = True , a__ = 1 / 255 , a__ = True , a__ = None , a__ = None , **a__ , ): super().__init__(**lowerCamelCase__ ) _lowerCAmelCase : List[Any] = size if size is not None else {"""shortest_edge""": 256} _lowerCAmelCase : int = get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ ) _lowerCAmelCase : Union[str, Any] = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} _lowerCAmelCase : Optional[Any] = get_size_dict(lowerCamelCase__ , param_name="""crop_size""" ) _lowerCAmelCase : Dict = do_resize _lowerCAmelCase : List[str] = size _lowerCAmelCase : Tuple = resample _lowerCAmelCase : Optional[Any] = do_center_crop _lowerCAmelCase : str = crop_size _lowerCAmelCase : Tuple = do_rescale _lowerCAmelCase : int = rescale_factor _lowerCAmelCase : Union[str, Any] = do_normalize _lowerCAmelCase : Optional[int] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowerCAmelCase : List[str] = image_std if image_std is not None else IMAGENET_STANDARD_STD def __A ( self , a__ , a__ , a__ = PILImageResampling.BICUBIC , a__ = None , **a__ , ): _lowerCAmelCase : Dict = get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ ) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) _lowerCAmelCase : int = get_resize_output_image_size(lowerCamelCase__ , size=size["""shortest_edge"""] , default_to_square=lowerCamelCase__ ) return resize(lowerCamelCase__ , size=lowerCamelCase__ , resample=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def __A ( self , a__ , a__ , a__ = None , **a__ , ): _lowerCAmelCase : List[Any] = get_size_dict(lowerCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}" ) return center_crop(lowerCamelCase__ , size=(size["""height"""], size["""width"""]) , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def __A ( self , a__ , a__ , a__ = None , **a__ ): return rescale(lowerCamelCase__ , scale=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def __A ( self , a__ , a__ , a__ , a__ = None , **a__ , ): return normalize(lowerCamelCase__ , mean=lowerCamelCase__ , std=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def __A ( self , a__ , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = ChannelDimension.FIRST , **a__ , ): _lowerCAmelCase : str = do_resize if do_resize is not None else self.do_resize _lowerCAmelCase : Any = size if size is not None else self.size _lowerCAmelCase : Optional[int] = get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ ) _lowerCAmelCase : int = resample if resample is not None else self.resample _lowerCAmelCase : List[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCAmelCase : List[Any] = crop_size if crop_size is not None else self.crop_size _lowerCAmelCase : Optional[int] = get_size_dict(lowerCamelCase__ , param_name="""crop_size""" ) _lowerCAmelCase : Any = do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase : Any = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCAmelCase : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize _lowerCAmelCase : List[Any] = image_mean if image_mean is not None else self.image_mean _lowerCAmelCase : Dict = image_std if image_std is not None else self.image_std _lowerCAmelCase : Tuple = make_list_of_images(lowerCamelCase__ ) if not valid_images(lowerCamelCase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. _lowerCAmelCase : int = [to_numpy_array(lowerCamelCase__ ) for image in images] if do_resize: _lowerCAmelCase : List[Any] = [self.resize(image=lowerCamelCase__ , size=lowerCamelCase__ , resample=lowerCamelCase__ ) for image in images] if do_center_crop: _lowerCAmelCase : Union[str, Any] = [self.center_crop(image=lowerCamelCase__ , size=lowerCamelCase__ ) for image in images] if do_rescale: _lowerCAmelCase : Optional[int] = [self.rescale(image=lowerCamelCase__ , scale=lowerCamelCase__ ) for image in images] if do_normalize: _lowerCAmelCase : List[Any] = [self.normalize(image=lowerCamelCase__ , mean=lowerCamelCase__ , std=lowerCamelCase__ ) for image in images] _lowerCAmelCase : Optional[Any] = [to_channel_dimension_format(lowerCamelCase__ , lowerCamelCase__ ) for image in images] _lowerCAmelCase : List[Any] = {"""pixel_values""": images} return BatchFeature(data=lowerCamelCase__ , tensor_type=lowerCamelCase__ ) def __A ( self , a__ , a__ = None ): _lowerCAmelCase : List[Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowerCamelCase__ ) != len(lowerCamelCase__ ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(lowerCamelCase__ ): _lowerCAmelCase : Union[str, Any] = target_sizes.numpy() _lowerCAmelCase : int = [] for idx in range(len(lowerCamelCase__ ) ): _lowerCAmelCase : Union[str, Any] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=lowerCamelCase__ ) _lowerCAmelCase : str = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowerCamelCase__ ) else: _lowerCAmelCase : Optional[int] = logits.argmax(dim=1 ) _lowerCAmelCase : List[str] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
44
"""simple docstring""" import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ : Optional[int] = logging.get_logger(__name__) class snake_case ( __UpperCAmelCase ): """simple docstring""" snake_case__ = ["input_ids", "attention_mask"] def __init__( self : Optional[int] ,lowerCamelCase__ : int="</s>" ,lowerCamelCase__ : str="<unk>" ,lowerCamelCase__ : Union[str, Any]="<pad>" ,lowerCamelCase__ : int=125 ,lowerCamelCase__ : str=None ,**lowerCamelCase__ : Union[str, Any] ,): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: UpperCAmelCase__ = [f'''<extra_id_{i}>''' for i in range(lowerCamelCase__ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens UpperCAmelCase__ = len(set(filter(lambda lowerCamelCase__ : bool('extra_id' in str(lowerCamelCase__ ) ) ,lowerCamelCase__ ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ' provided to ByT5Tokenizer. In this case the additional_special_tokens must include the' ' extra_ids tokens' ) UpperCAmelCase__ = AddedToken(lowerCamelCase__ ,lstrip=lowerCamelCase__ ,rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ ,lowerCamelCase__ ) else pad_token UpperCAmelCase__ = AddedToken(lowerCamelCase__ ,lstrip=lowerCamelCase__ ,rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ ,lowerCamelCase__ ) else eos_token UpperCAmelCase__ = AddedToken(lowerCamelCase__ ,lstrip=lowerCamelCase__ ,rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ ,lowerCamelCase__ ) else unk_token super().__init__( eos_token=lowerCamelCase__ ,unk_token=lowerCamelCase__ ,pad_token=lowerCamelCase__ ,extra_ids=lowerCamelCase__ ,additional_special_tokens=lowerCamelCase__ ,**lowerCamelCase__ ,) UpperCAmelCase__ = extra_ids UpperCAmelCase__ = 2**8 # utf is 8 bits # define special tokens dict UpperCAmelCase__ = { self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } UpperCAmelCase__ = len(self.special_tokens_encoder ) UpperCAmelCase__ = len(lowerCamelCase__ ) for i, token in enumerate(lowerCamelCase__ ): UpperCAmelCase__ = self.vocab_size + i - n UpperCAmelCase__ = {v: k for k, v in self.special_tokens_encoder.items()} @property def __lowerCAmelCase ( self : Union[str, Any] ): return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def __lowerCAmelCase ( self : Optional[Any] ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ,lowerCamelCase__ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ ,token_ids_a=lowerCamelCase__ ,already_has_special_tokens=lowerCamelCase__ ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(lowerCamelCase__ )) + [1] return ([0] * len(lowerCamelCase__ )) + [1] + ([0] * len(lowerCamelCase__ )) + [1] def __lowerCAmelCase ( self : str ,lowerCamelCase__ : List[int] ): if len(lowerCamelCase__ ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' ' eos tokens being added.' ) return token_ids else: return token_ids + [self.eos_token_id] def __lowerCAmelCase ( self : str ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ): UpperCAmelCase__ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def __lowerCAmelCase ( self : Dict ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ): UpperCAmelCase__ = self._add_eos_if_not_present(lowerCamelCase__ ) if token_ids_a is None: return token_ids_a else: UpperCAmelCase__ = self._add_eos_if_not_present(lowerCamelCase__ ) return token_ids_a + token_ids_a def __lowerCAmelCase ( self : Optional[Any] ,lowerCamelCase__ : str ): UpperCAmelCase__ = [chr(lowerCamelCase__ ) for i in text.encode('utf-8' )] return tokens def __lowerCAmelCase ( self : List[Any] ,lowerCamelCase__ : str ): if token in self.special_tokens_encoder: UpperCAmelCase__ = self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: UpperCAmelCase__ = self.added_tokens_encoder[token] elif len(lowerCamelCase__ ) != 1: UpperCAmelCase__ = self.unk_token_id else: UpperCAmelCase__ = ord(lowerCamelCase__ ) + self._num_special_tokens return token_id def __lowerCAmelCase ( self : Union[str, Any] ,lowerCamelCase__ : Any ): if index in self.special_tokens_decoder: UpperCAmelCase__ = self.special_tokens_decoder[index] else: UpperCAmelCase__ = chr(index - self._num_special_tokens ) return token def __lowerCAmelCase ( self : Optional[Any] ,lowerCamelCase__ : Union[str, Any] ): UpperCAmelCase__ = b'' for token in tokens: if token in self.special_tokens_decoder: UpperCAmelCase__ = self.special_tokens_decoder[token].encode('utf-8' ) elif token in self.added_tokens_decoder: UpperCAmelCase__ = self.special_tokens_decoder[token].encode('utf-8' ) elif token in self.special_tokens_encoder: UpperCAmelCase__ = token.encode('utf-8' ) elif token in self.added_tokens_encoder: UpperCAmelCase__ = token.encode('utf-8' ) else: UpperCAmelCase__ = bytes([ord(lowerCamelCase__ )] ) bstring += tok_string UpperCAmelCase__ = bstring.decode('utf-8' ,errors='ignore' ) return string def __lowerCAmelCase ( self : str ,lowerCamelCase__ : str ,lowerCamelCase__ : Optional[str] = None ): return ()
98
0
from heapq import heappop, heappush import numpy as np def UpperCamelCase ( snake_case__ : np.ndarray , snake_case__ : tuple[int, int] , snake_case__ : tuple[int, int] , snake_case__ : bool , ) -> tuple[float | int, list[tuple[int, int]]]: UpperCamelCase , UpperCamelCase : List[Any] = grid.shape UpperCamelCase : Tuple = [-1, 1, 0, 0] UpperCamelCase : List[str] = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] UpperCamelCase , UpperCamelCase : List[str] = [(0, source)], set() UpperCamelCase : Optional[Any] = np.full((rows, cols) , np.inf ) UpperCamelCase : Union[str, Any] = 0 UpperCamelCase : Optional[Any] = np.empty((rows, cols) , dtype=snake_case__ ) UpperCamelCase : List[str] = None while queue: ((UpperCamelCase) , (UpperCamelCase)) : Optional[int] = heappop(snake_case__ ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: UpperCamelCase : str = [] while (x, y) != source: path.append((x, y) ) UpperCamelCase , UpperCamelCase : Any = predecessors[x, y] path.append(snake_case__ ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(snake_case__ ) ): UpperCamelCase , UpperCamelCase : int = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: UpperCamelCase : str = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(snake_case__ , (dist + 1, (nx, ny)) ) UpperCamelCase : Optional[int] = dist + 1 UpperCamelCase : Optional[Any] = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
103
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : int = "data2vec-text" def __init__( self, SCREAMING_SNAKE_CASE_=3_0522, SCREAMING_SNAKE_CASE_=768, SCREAMING_SNAKE_CASE_=12, SCREAMING_SNAKE_CASE_=12, SCREAMING_SNAKE_CASE_=3072, SCREAMING_SNAKE_CASE_="gelu", SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=512, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=1e-12, SCREAMING_SNAKE_CASE_=1, SCREAMING_SNAKE_CASE_=0, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_="absolute", SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=None, **SCREAMING_SNAKE_CASE_, ) -> Optional[int]: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_, bos_token_id=SCREAMING_SNAKE_CASE_, eos_token_id=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = vocab_size UpperCamelCase : Tuple = hidden_size UpperCamelCase : int = num_hidden_layers UpperCamelCase : Dict = num_attention_heads UpperCamelCase : str = hidden_act UpperCamelCase : List[str] = intermediate_size UpperCamelCase : Optional[int] = hidden_dropout_prob UpperCamelCase : Dict = attention_probs_dropout_prob UpperCamelCase : int = max_position_embeddings UpperCamelCase : List[str] = type_vocab_size UpperCamelCase : List[Any] = initializer_range UpperCamelCase : List[str] = layer_norm_eps UpperCamelCase : List[str] = position_embedding_type UpperCamelCase : Any = use_cache UpperCamelCase : Any = classifier_dropout class lowerCAmelCase_ ( a__ ): @property def snake_case_ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": UpperCamelCase : List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCamelCase : int = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
103
1
import functools def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> int: # Validation if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or not all(isinstance(lowerCamelCase_ , lowerCamelCase_ ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(lowerCamelCase_ ) != 3 or not all(isinstance(lowerCamelCase_ , lowerCamelCase_ ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(lowerCamelCase_ ) == 0: return 0 if min(lowerCamelCase_ ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(lowerCamelCase_ ) >= 366: raise ValueError('All days elements should be less than 366' ) _lowercase : Optional[int] = set(lowerCamelCase_ ) @functools.cache def dynamic_programming(lowerCamelCase_ ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
21
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Optional[Any] = 1 _lowercase : Any = 3 _lowercase : Tuple = (32, 32) _lowercase : Tuple = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(lowerCamelCase) return image @property def UpperCamelCase ( self) -> str: """simple docstring""" torch.manual_seed(0) _lowercase : Dict = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), cross_attention_dim=32, ) return model @property def UpperCamelCase ( self) -> List[Any]: """simple docstring""" torch.manual_seed(0) _lowercase : str = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, ) return model @property def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" torch.manual_seed(0) _lowercase : Optional[int] = RobertaSeriesConfig( hidden_size=32, project_dim=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=50_06, ) return RobertaSeriesModelWithTransformation(lowerCamelCase) @property def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" def extract(*lowerCamelCase, **lowerCamelCase): class _lowerCamelCase: def __init__( self) -> Optional[Any]: """simple docstring""" _lowercase : Optional[int] = torch.ones([0]) def UpperCamelCase ( self, lowerCamelCase) -> int: """simple docstring""" self.pixel_values.to(lowerCamelCase) return self return Out() return extract def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Any = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowercase : List[Any] = self.dummy_cond_unet _lowercase : Union[str, Any] = PNDMScheduler(skip_prk_steps=lowerCamelCase) _lowercase : Optional[Any] = self.dummy_vae _lowercase : List[Any] = self.dummy_text_encoder _lowercase : Any = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta') _lowercase : Tuple = 77 _lowercase : int = self.dummy_image.to(lowerCamelCase) _lowercase : int = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk _lowercase : Union[str, Any] = AltDiffusionImgaImgPipeline( unet=lowerCamelCase, scheduler=lowerCamelCase, vae=lowerCamelCase, text_encoder=lowerCamelCase, tokenizer=lowerCamelCase, safety_checker=lowerCamelCase, feature_extractor=self.dummy_extractor, ) _lowercase : List[Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor, do_normalize=lowerCamelCase) _lowercase : Optional[int] = alt_pipe.to(lowerCamelCase) alt_pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Optional[Any] = 'A painting of a squirrel eating a burger' _lowercase : Dict = torch.Generator(device=lowerCamelCase).manual_seed(0) _lowercase : Any = alt_pipe( [prompt], generator=lowerCamelCase, guidance_scale=6.0, num_inference_steps=2, output_type='np', image=lowerCamelCase, ) _lowercase : Optional[int] = output.images _lowercase : Optional[Any] = torch.Generator(device=lowerCamelCase).manual_seed(0) _lowercase : Optional[Any] = alt_pipe( [prompt], generator=lowerCamelCase, guidance_scale=6.0, num_inference_steps=2, output_type='np', image=lowerCamelCase, return_dict=lowerCamelCase, )[0] _lowercase : Optional[int] = image[0, -3:, -3:, -1] _lowercase : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _lowercase : int = np.array([0.4_4_2_7, 0.3_7_3_1, 0.4_2_4_9, 0.4_9_4_1, 0.4_5_4_6, 0.4_1_4_8, 0.4_1_9_3, 0.4_6_6_6, 0.4_4_9_9]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 5E-3 @unittest.skipIf(torch_device != 'cuda', 'This test requires a GPU') def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : List[Any] = self.dummy_cond_unet _lowercase : Tuple = PNDMScheduler(skip_prk_steps=lowerCamelCase) _lowercase : str = self.dummy_vae _lowercase : Optional[Any] = self.dummy_text_encoder _lowercase : Optional[Any] = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta') _lowercase : Optional[Any] = 77 _lowercase : str = self.dummy_image.to(lowerCamelCase) # put models in fp16 _lowercase : List[str] = unet.half() _lowercase : List[Any] = vae.half() _lowercase : Any = bert.half() # make sure here that pndm scheduler skips prk _lowercase : Union[str, Any] = AltDiffusionImgaImgPipeline( unet=lowerCamelCase, scheduler=lowerCamelCase, vae=lowerCamelCase, text_encoder=lowerCamelCase, tokenizer=lowerCamelCase, safety_checker=lowerCamelCase, feature_extractor=self.dummy_extractor, ) _lowercase : List[str] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor, do_normalize=lowerCamelCase) _lowercase : Any = alt_pipe.to(lowerCamelCase) alt_pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : int = 'A painting of a squirrel eating a burger' _lowercase : Optional[Any] = torch.manual_seed(0) _lowercase : Union[str, Any] = alt_pipe( [prompt], generator=lowerCamelCase, num_inference_steps=2, output_type='np', image=lowerCamelCase, ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != 'cuda', 'This test requires a GPU') def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg') # resize to resolution that is divisible by 8 but not 16 or 32 _lowercase : str = init_image.resize((7_60, 5_04)) _lowercase : Optional[int] = 'BAAI/AltDiffusion' _lowercase : str = AltDiffusionImgaImgPipeline.from_pretrained( lowerCamelCase, safety_checker=lowerCamelCase, ) pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) pipe.enable_attention_slicing() _lowercase : List[str] = 'A fantasy landscape, trending on artstation' _lowercase : Any = torch.manual_seed(0) _lowercase : Dict = pipe( prompt=lowerCamelCase, image=lowerCamelCase, strength=0.7_5, guidance_scale=7.5, generator=lowerCamelCase, output_type='np', ) _lowercase : List[str] = output.images[0] _lowercase : Tuple = image[2_55:2_58, 3_83:3_86, -1] assert image.shape == (5_04, 7_60, 3) _lowercase : Optional[Any] = np.array([0.9_3_5_8, 0.9_3_9_7, 0.9_5_9_9, 0.9_9_0_1, 1.0_0_0_0, 1.0_0_0_0, 0.9_8_8_2, 1.0_0_0_0, 1.0_0_0_0]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 @slow @require_torch_gpu class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : Union[str, Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg') _lowercase : str = init_image.resize((7_68, 5_12)) _lowercase : Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy') _lowercase : str = 'BAAI/AltDiffusion' _lowercase : Optional[Any] = AltDiffusionImgaImgPipeline.from_pretrained( lowerCamelCase, safety_checker=lowerCamelCase, ) pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) pipe.enable_attention_slicing() _lowercase : int = 'A fantasy landscape, trending on artstation' _lowercase : List[Any] = torch.manual_seed(0) _lowercase : int = pipe( prompt=lowerCamelCase, image=lowerCamelCase, strength=0.7_5, guidance_scale=7.5, generator=lowerCamelCase, output_type='np', ) _lowercase : Union[str, Any] = output.images[0] assert image.shape == (5_12, 7_68, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image).max() < 1E-2
21
1
"""simple docstring""" from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) UpperCamelCase_ =logging.get_logger(__name__) # pylint: disable=invalid-name UpperCamelCase_ =""" Examples: ```py >>> import torch >>> import numpy as np >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline >>> from transformers import pipeline >>> from diffusers.utils import load_image >>> def make_hint(image, depth_estimator): ... image = depth_estimator(image)[\"depth\"] ... image = np.array(image) ... image = image[:, :, None] ... image = np.concatenate([image, image, image], axis=2) ... detected_map = torch.from_numpy(image).float() / 255.0 ... hint = detected_map.permute(2, 0, 1) ... return hint >>> depth_estimator = pipeline(\"depth-estimation\") >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior = pipe_prior.to(\"cuda\") >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to(\"cuda\") >>> img = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/cat.png\" ... ).resize((768, 768)) >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\") >>> prompt = \"A robot, 4k photo\" >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\" >>> generator = torch.Generator(device=\"cuda\").manual_seed(43) >>> image_emb, zero_image_emb = pipe_prior( ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator ... ).to_tuple() >>> images = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... hint=hint, ... num_inference_steps=50, ... generator=generator, ... height=768, ... width=768, ... ).images >>> images[0].save(\"robot_cat.png\") ``` """ def a_ ( _lowercase , _lowercase , _lowercase=8 ): _UpperCamelCase : str = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _UpperCamelCase : Optional[Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class _a ( _lowerCAmelCase ): def __init__( self : List[str], lowerCAmelCase__ : UNetaDConditionModel, lowerCAmelCase__ : DDPMScheduler, lowerCAmelCase__ : VQModel, ) -> Dict: '''simple docstring''' super().__init__() self.register_modules( unet=lowerCAmelCase__, scheduler=lowerCAmelCase__, movq=lowerCAmelCase__, ) _UpperCamelCase : Optional[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def snake_case ( self : List[str], lowerCAmelCase__ : int, lowerCAmelCase__ : Tuple, lowerCAmelCase__ : Optional[Any], lowerCAmelCase__ : Optional[Any], lowerCAmelCase__ : Any, lowerCAmelCase__ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' if latents is None: _UpperCamelCase : Any = randn_tensor(lowerCAmelCase__, generator=lowerCAmelCase__, device=lowerCAmelCase__, dtype=lowerCAmelCase__ ) else: if latents.shape != shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) _UpperCamelCase : int = latents.to(lowerCAmelCase__ ) _UpperCamelCase : Optional[Any] = latents * scheduler.init_noise_sigma return latents def snake_case ( self : List[Any], lowerCAmelCase__ : str=0 ) -> Tuple: '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) _UpperCamelCase : str = torch.device(f"""cuda:{gpu_id}""" ) _UpperCamelCase : Optional[int] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowerCAmelCase__, lowerCAmelCase__ ) def snake_case ( self : Any, lowerCAmelCase__ : Optional[Any]=0 ) -> Dict: '''simple docstring''' if is_accelerate_available() and is_accelerate_version('''>=''', '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) _UpperCamelCase : Optional[int] = torch.device(f"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to('''cpu''', silence_dtype_warnings=lowerCAmelCase__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _UpperCamelCase : str = None for cpu_offloaded_model in [self.unet, self.movq]: _UpperCamelCase , _UpperCamelCase : Union[str, Any] = cpu_offload_with_hook(lowerCAmelCase__, lowerCAmelCase__, prev_module_hook=lowerCAmelCase__ ) # We'll offload the last model manually. _UpperCamelCase : Optional[int] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def snake_case ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' if not hasattr(self.unet, '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(lowerCAmelCase__, '''_hf_hook''' ) and hasattr(module._hf_hook, '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowerCAmelCase__ ) def __call__( self : Tuple, lowerCAmelCase__ : Union[torch.FloatTensor, List[torch.FloatTensor]], lowerCAmelCase__ : Union[torch.FloatTensor, List[torch.FloatTensor]], lowerCAmelCase__ : torch.FloatTensor, lowerCAmelCase__ : int = 5_1_2, lowerCAmelCase__ : int = 5_1_2, lowerCAmelCase__ : int = 1_0_0, lowerCAmelCase__ : float = 4.0, lowerCAmelCase__ : int = 1, lowerCAmelCase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None, lowerCAmelCase__ : Optional[torch.FloatTensor] = None, lowerCAmelCase__ : Optional[str] = "pil", lowerCAmelCase__ : bool = True, ) -> Dict: '''simple docstring''' _UpperCamelCase : Optional[int] = self._execution_device _UpperCamelCase : Any = guidance_scale > 1.0 if isinstance(lowerCAmelCase__, lowerCAmelCase__ ): _UpperCamelCase : str = torch.cat(lowerCAmelCase__, dim=0 ) if isinstance(lowerCAmelCase__, lowerCAmelCase__ ): _UpperCamelCase : Tuple = torch.cat(lowerCAmelCase__, dim=0 ) if isinstance(lowerCAmelCase__, lowerCAmelCase__ ): _UpperCamelCase : Optional[int] = torch.cat(lowerCAmelCase__, dim=0 ) _UpperCamelCase : List[Any] = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: _UpperCamelCase : Union[str, Any] = image_embeds.repeat_interleave(lowerCAmelCase__, dim=0 ) _UpperCamelCase : List[Any] = negative_image_embeds.repeat_interleave(lowerCAmelCase__, dim=0 ) _UpperCamelCase : str = hint.repeat_interleave(lowerCAmelCase__, dim=0 ) _UpperCamelCase : Tuple = torch.cat([negative_image_embeds, image_embeds], dim=0 ).to(dtype=self.unet.dtype, device=lowerCAmelCase__ ) _UpperCamelCase : List[Any] = torch.cat([hint, hint], dim=0 ).to(dtype=self.unet.dtype, device=lowerCAmelCase__ ) self.scheduler.set_timesteps(lowerCAmelCase__, device=lowerCAmelCase__ ) _UpperCamelCase : Union[str, Any] = self.scheduler.timesteps _UpperCamelCase : Dict = self.movq.config.latent_channels _UpperCamelCase , _UpperCamelCase : str = downscale_height_and_width(lowerCAmelCase__, lowerCAmelCase__, self.movq_scale_factor ) # create initial latent _UpperCamelCase : List[Any] = self.prepare_latents( (batch_size, num_channels_latents, height, width), image_embeds.dtype, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, self.scheduler, ) for i, t in enumerate(self.progress_bar(lowerCAmelCase__ ) ): # expand the latents if we are doing classifier free guidance _UpperCamelCase : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _UpperCamelCase : Tuple = {'''image_embeds''': image_embeds, '''hint''': hint} _UpperCamelCase : List[str] = self.unet( sample=lowerCAmelCase__, timestep=lowerCAmelCase__, encoder_hidden_states=lowerCAmelCase__, added_cond_kwargs=lowerCAmelCase__, return_dict=lowerCAmelCase__, )[0] if do_classifier_free_guidance: _UpperCamelCase , _UpperCamelCase : str = noise_pred.split(latents.shape[1], dim=1 ) _UpperCamelCase , _UpperCamelCase : Dict = noise_pred.chunk(2 ) _UpperCamelCase , _UpperCamelCase : str = variance_pred.chunk(2 ) _UpperCamelCase : Any = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _UpperCamelCase : List[str] = torch.cat([noise_pred, variance_pred_text], dim=1 ) if not ( hasattr(self.scheduler.config, '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _UpperCamelCase , _UpperCamelCase : str = noise_pred.split(latents.shape[1], dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _UpperCamelCase : List[str] = self.scheduler.step( lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, generator=lowerCAmelCase__, )[0] # post-processing _UpperCamelCase : Tuple = self.movq.decode(lowerCAmelCase__, force_not_quantize=lowerCAmelCase__ )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: _UpperCamelCase : str = image * 0.5 + 0.5 _UpperCamelCase : Optional[int] = image.clamp(0, 1 ) _UpperCamelCase : Dict = image.cpu().permute(0, 2, 3, 1 ).float().numpy() if output_type == "pil": _UpperCamelCase : List[str] = self.numpy_to_pil(lowerCAmelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase__ )
128
"""simple docstring""" def a_ ( _lowercase , _lowercase ): if discount_rate < 0: raise ValueError('''Discount rate cannot be negative''' ) if not cash_flows: raise ValueError('''Cash flows list cannot be empty''' ) _UpperCamelCase : Optional[int] = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(_lowercase ) ) return round(_lowercase , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
128
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Tuple = logging.get_logger(__name__) _lowerCamelCase : str = { """microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""", } class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''git_vision_model''' def __init__( self : Any , UpperCAmelCase__ : Any=768 , UpperCAmelCase__ : int=3_072 , UpperCAmelCase__ : List[str]=12 , UpperCAmelCase__ : Dict=12 , UpperCAmelCase__ : Optional[int]=3 , UpperCAmelCase__ : List[Any]=224 , UpperCAmelCase__ : Union[str, Any]=16 , UpperCAmelCase__ : Union[str, Any]="quick_gelu" , UpperCAmelCase__ : Dict=1e-5 , UpperCAmelCase__ : Union[str, Any]=0.0 , UpperCAmelCase__ : Any=0.02 , **UpperCAmelCase__ : Any , ) ->Optional[int]: '''simple docstring''' super().__init__(**UpperCAmelCase__) A__ = hidden_size A__ = intermediate_size A__ = num_hidden_layers A__ = num_attention_heads A__ = num_channels A__ = patch_size A__ = image_size A__ = initializer_range A__ = attention_dropout A__ = layer_norm_eps A__ = hidden_act @classmethod def SCREAMING_SNAKE_CASE ( cls : Any , UpperCAmelCase__ : Union[str, os.PathLike] , **UpperCAmelCase__ : int) ->"PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(UpperCAmelCase__) A__ , A__ = cls.get_config_dict(UpperCAmelCase__ , **UpperCAmelCase__) # get the vision config dict if we are loading from GITConfig if config_dict.get('''model_type''') == "git": A__ = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""") return cls.from_dict(UpperCAmelCase__ , **UpperCAmelCase__) class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''git''' def __init__( self : Dict , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : int=30_522 , UpperCAmelCase__ : Optional[int]=768 , UpperCAmelCase__ : Dict=6 , UpperCAmelCase__ : int=12 , UpperCAmelCase__ : List[str]=3_072 , UpperCAmelCase__ : str="gelu" , UpperCAmelCase__ : int=0.1 , UpperCAmelCase__ : Union[str, Any]=0.1 , UpperCAmelCase__ : List[Any]=1_024 , UpperCAmelCase__ : List[str]=0.02 , UpperCAmelCase__ : Any=1e-12 , UpperCAmelCase__ : Union[str, Any]=0 , UpperCAmelCase__ : List[Any]="absolute" , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Any=False , UpperCAmelCase__ : int=101 , UpperCAmelCase__ : Tuple=102 , UpperCAmelCase__ : Dict=None , **UpperCAmelCase__ : List[str] , ) ->Any: '''simple docstring''' super().__init__(bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , pad_token_id=UpperCAmelCase__ , **UpperCAmelCase__) if vision_config is None: A__ = {} logger.info('''vision_config is None. initializing the GitVisionConfig with default values.''') A__ = GitVisionConfig(**UpperCAmelCase__) A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = hidden_act A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = initializer_range A__ = layer_norm_eps A__ = position_embedding_type A__ = use_cache A__ = tie_word_embeddings A__ = num_image_with_embedding A__ = bos_token_id A__ = eos_token_id def SCREAMING_SNAKE_CASE ( self : Any) ->List[Any]: '''simple docstring''' A__ = copy.deepcopy(self.__dict__) A__ = self.vision_config.to_dict() A__ = self.__class__.model_type return output
14
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Any = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''encoder-decoder''' UpperCAmelCase__ = True def __init__( self : List[str] , **UpperCAmelCase__ : Union[str, Any]) ->List[Any]: '''simple docstring''' super().__init__(**UpperCAmelCase__) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" A__ = kwargs.pop('''encoder''') A__ = encoder_config.pop('''model_type''') A__ = kwargs.pop('''decoder''') A__ = decoder_config.pop('''model_type''') from ..auto.configuration_auto import AutoConfig A__ = AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__) A__ = AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__) A__ = True @classmethod def SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , UpperCAmelCase__ : PretrainedConfig , UpperCAmelCase__ : PretrainedConfig , **UpperCAmelCase__ : Union[str, Any]) ->PretrainedConfig: '''simple docstring''' logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''') A__ = True A__ = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : str) ->Optional[Any]: '''simple docstring''' A__ = copy.deepcopy(self.__dict__) A__ = self.encoder.to_dict() A__ = self.decoder.to_dict() A__ = self.__class__.model_type return output
14
1
'''simple docstring''' import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters _UpperCamelCase = logging.get_logger(__name__) def lowercase_ ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any]=None , lowerCAmelCase__ : Any=None ): """simple docstring""" if "." in tensor_name: __UpperCAmelCase : Union[str, Any] = tensor_name.split(""".""" ) for split in splits[:-1]: __UpperCAmelCase : Tuple = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) if new_module is None: raise ValueError(f'{module} has no attribute {split}.' ) __UpperCAmelCase : Tuple = new_module __UpperCAmelCase : List[Any] = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(f'{module} does not have a parameter or a buffer named {tensor_name}.' ) __UpperCAmelCase : Tuple = tensor_name in module._buffers __UpperCAmelCase : Tuple = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) if old_value.device == torch.device("""meta""" ) and device not in ["meta", torch.device("""meta""" )] and value is None: raise ValueError(f'{tensor_name} is on the meta device, we need a `value` to put in on {device}.' ) __UpperCAmelCase : Any = False __UpperCAmelCase : Tuple = False if is_buffer or not is_bitsandbytes_available(): __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : Dict = False else: __UpperCAmelCase : Optional[Any] = hasattr(bnb.nn , """Params4bit""" ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) __UpperCAmelCase : Tuple = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: __UpperCAmelCase : List[str] = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: __UpperCAmelCase : str = old_value.to(lowerCAmelCase__ ) elif isinstance(lowerCAmelCase__ , torch.Tensor ): __UpperCAmelCase : Tuple = value.to("""cpu""" ) if value.dtype == torch.inta: __UpperCAmelCase : List[str] = version.parse(importlib.metadata.version("""bitsandbytes""" ) ) > version.parse( """0.37.2""" ) if not is_abit_serializable: raise ValueError( """Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. """ """Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.""" ) else: __UpperCAmelCase : Optional[Any] = torch.tensor(lowerCAmelCase__ , device="""cpu""" ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , lowerCAmelCase__ ) and fpaa_statistics is None: __UpperCAmelCase : Union[str, Any] = new_value.T __UpperCAmelCase : List[str] = old_value.__dict__ if is_abit: __UpperCAmelCase : int = bnb.nn.IntaParams(lowerCAmelCase__ , requires_grad=lowerCAmelCase__ , **lowerCAmelCase__ ).to(lowerCAmelCase__ ) elif is_abit: __UpperCAmelCase : Union[str, Any] = bnb.nn.Paramsabit(lowerCAmelCase__ , requires_grad=lowerCAmelCase__ , **lowerCAmelCase__ ).to(lowerCAmelCase__ ) __UpperCAmelCase : List[str] = new_value if fpaa_statistics is not None: setattr(module.weight , """SCB""" , fpaa_statistics.to(lowerCAmelCase__ ) ) else: if value is None: __UpperCAmelCase : Optional[Any] = old_value.to(lowerCAmelCase__ ) elif isinstance(lowerCAmelCase__ , torch.Tensor ): __UpperCAmelCase : Tuple = value.to(lowerCAmelCase__ ) else: __UpperCAmelCase : Optional[int] = torch.tensor(lowerCAmelCase__ , device=lowerCAmelCase__ ) if is_buffer: __UpperCAmelCase : Any = new_value else: __UpperCAmelCase : Union[str, Any] = nn.Parameter(lowerCAmelCase__ , requires_grad=old_value.requires_grad ) __UpperCAmelCase : Dict = new_value def lowercase_ ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : int=False ): """simple docstring""" for name, module in model.named_children(): if current_key_name is None: __UpperCAmelCase : Any = [] current_key_name.append(lowerCAmelCase__ ) if (isinstance(lowerCAmelCase__ , nn.Linear ) or isinstance(lowerCAmelCase__ , lowerCAmelCase__ )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in """.""".join(lowerCAmelCase__ ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __UpperCAmelCase , __UpperCAmelCase : str = module.weight.shape else: __UpperCAmelCase : Optional[int] = module.in_features __UpperCAmelCase : Tuple = module.out_features if quantization_config.quantization_method() == "llm_int8": __UpperCAmelCase : Optional[Any] = bnb.nn.LinearabitLt( lowerCAmelCase__ , lowerCAmelCase__ , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) __UpperCAmelCase : int = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: __UpperCAmelCase : Optional[Any] = bnb.nn.Linearabit( lowerCAmelCase__ , lowerCAmelCase__ , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) __UpperCAmelCase : str = True # Store the module class in case we need to transpose the weight later __UpperCAmelCase : Optional[Any] = type(lowerCAmelCase__ ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(lowerCAmelCase__ ) if len(list(module.children() ) ) > 0: __UpperCAmelCase , __UpperCAmelCase : Dict = _replace_with_bnb_linear( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , has_been_replaced=lowerCAmelCase__ , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict=None , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : Union[str, Any]=None ): """simple docstring""" __UpperCAmelCase : List[Any] = ["""lm_head"""] if modules_to_not_convert is None else modules_to_not_convert __UpperCAmelCase , __UpperCAmelCase : Any = _replace_with_bnb_linear( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if not has_been_replaced: logger.warning( """You are loading your model in 8bit or 4bit but no linear modules were found in your model.""" """ Please double check your model architecture, or submit an issue on github if you think this is""" """ a bug.""" ) return model def lowercase_ ( *lowerCAmelCase__ : Any , **lowerCAmelCase__ : List[Any] ): """simple docstring""" warnings.warn( """`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead""" , lowerCAmelCase__ , ) return replace_with_bnb_linear(*lowerCAmelCase__ , **lowerCAmelCase__ ) def lowercase_ ( *lowerCAmelCase__ : int , **lowerCAmelCase__ : Tuple ): """simple docstring""" warnings.warn( """`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead""" , lowerCAmelCase__ , ) return set_module_quantized_tensor_to_device(*lowerCAmelCase__ , **lowerCAmelCase__ ) def lowercase_ ( lowerCAmelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase : str = deepcopy(lowerCAmelCase__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() __UpperCAmelCase : Optional[int] = find_tied_parameters(lowerCAmelCase__ ) # For compatibility with Accelerate < 0.18 if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __UpperCAmelCase : Tuple = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: __UpperCAmelCase : List[str] = sum(lowerCAmelCase__ , [] ) __UpperCAmelCase : Union[str, Any] = len(lowerCAmelCase__ ) > 0 # Check if it is a base model __UpperCAmelCase : Optional[Any] = not hasattr(lowerCAmelCase__ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head __UpperCAmelCase : Tuple = list(model.named_children() ) __UpperCAmelCase : Dict = [list_modules[-1][0]] # add last module together with tied weights __UpperCAmelCase : str = set(lowerCAmelCase__ ) - set(lowerCAmelCase__ ) __UpperCAmelCase : Optional[int] = list(set(lowerCAmelCase__ ) ) + list(lowerCAmelCase__ ) # remove ".weight" from the keys __UpperCAmelCase : Any = [""".weight""", """.bias"""] __UpperCAmelCase : Dict = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: __UpperCAmelCase : List[str] = name.replace(lowerCAmelCase__ , """""" ) filtered_module_names.append(lowerCAmelCase__ ) return filtered_module_names
16
'''simple docstring''' import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip _UpperCamelCase = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def lowercase_ ( lowerCAmelCase__ : str ): """simple docstring""" if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str ): """simple docstring""" return max(metric_fn(lowerCAmelCase__ , lowerCAmelCase__ ) for gt in ground_truths ) def lowercase_ ( lowerCAmelCase__ : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] ): """simple docstring""" __UpperCAmelCase : Optional[int] = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()] __UpperCAmelCase : Union[str, Any] = [] if args.gold_data_mode == "qa": __UpperCAmelCase : Tuple = pd.read_csv(lowerCAmelCase__ , sep="""\t""" , header=lowerCAmelCase__ ) for answer_list in data[1]: __UpperCAmelCase : Optional[int] = ast.literal_eval(lowerCAmelCase__ ) answers.append(lowerCAmelCase__ ) else: __UpperCAmelCase : Optional[int] = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()] __UpperCAmelCase : str = [[reference] for reference in references] __UpperCAmelCase : Optional[int] = 0 for prediction, ground_truths in zip(lowerCAmelCase__ , lowerCAmelCase__ ): total += 1 em += metric_max_over_ground_truths(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) fa += metric_max_over_ground_truths(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __UpperCAmelCase : int = 100.0 * em / total __UpperCAmelCase : Dict = 100.0 * fa / total logger.info(f'F1: {fa:.2f}' ) logger.info(f'EM: {em:.2f}' ) def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] ): """simple docstring""" __UpperCAmelCase : Tuple = args.k __UpperCAmelCase : Dict = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()] __UpperCAmelCase : Dict = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()] __UpperCAmelCase : Union[str, Any] = 0 for hypo, reference in zip(lowerCAmelCase__ , lowerCAmelCase__ ): __UpperCAmelCase : List[str] = set(hypo.split("""\t""" )[:k] ) __UpperCAmelCase : List[Any] = set(reference.split("""\t""" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k __UpperCAmelCase : List[str] = 100.0 * em / total logger.info(f'Precision@{k}: {em: .2f}' ) def lowercase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict ): """simple docstring""" def strip_title(lowerCAmelCase__ : Optional[int] ): if title.startswith("""\"""" ): __UpperCAmelCase : List[Any] = title[1:] if title.endswith("""\"""" ): __UpperCAmelCase : int = title[:-1] return title __UpperCAmelCase : int = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowerCAmelCase__ , return_tensors="""pt""" , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , )["""input_ids"""].to(args.device ) __UpperCAmelCase : str = rag_model.rag.question_encoder(lowerCAmelCase__ ) __UpperCAmelCase : int = question_enc_outputs[0] __UpperCAmelCase : Dict = rag_model.retriever( lowerCAmelCase__ , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="""pt""" , ) __UpperCAmelCase : Union[str, Any] = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) __UpperCAmelCase : Union[str, Any] = [] for docs in all_docs: __UpperCAmelCase : int = [strip_title(lowerCAmelCase__ ) for title in docs["""title"""]] provenance_strings.append("""\t""".join(lowerCAmelCase__ ) ) return provenance_strings def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple ): """simple docstring""" with torch.no_grad(): __UpperCAmelCase : int = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowerCAmelCase__ , return_tensors="""pt""" , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ ) __UpperCAmelCase : List[str] = inputs_dict.input_ids.to(args.device ) __UpperCAmelCase : List[Any] = inputs_dict.attention_mask.to(args.device ) __UpperCAmelCase : List[str] = rag_model.generate( # rag_model overwrites generate lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=lowerCAmelCase__ , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) __UpperCAmelCase : str = rag_model.retriever.generator_tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) if args.print_predictions: for q, a in zip(lowerCAmelCase__ , lowerCAmelCase__ ): logger.info("""Q: {} - A: {}""".format(lowerCAmelCase__ , lowerCAmelCase__ ) ) return answers def lowercase_ ( ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--model_type""" , choices=["""rag_sequence""", """rag_token""", """bart"""] , type=lowerCAmelCase__ , help=( """RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the""" """ model_name_or_path""" ) , ) parser.add_argument( """--index_name""" , default=lowerCAmelCase__ , choices=["""exact""", """compressed""", """legacy"""] , type=lowerCAmelCase__ , help="""RAG model retriever type""" , ) parser.add_argument( """--index_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , help="""Path to the retrieval index""" , ) parser.add_argument("""--n_docs""" , default=5 , type=lowerCAmelCase__ , help="""Number of retrieved docs""" ) parser.add_argument( """--model_name_or_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to pretrained checkpoints or model identifier from huggingface.co/models""" , ) parser.add_argument( """--eval_mode""" , choices=["""e2e""", """retrieval"""] , default="""e2e""" , type=lowerCAmelCase__ , help=( """Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates""" """ precision@k.""" ) , ) parser.add_argument("""--k""" , default=1 , type=lowerCAmelCase__ , help="""k for the precision@k calculation""" ) parser.add_argument( """--evaluation_set""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to a file containing evaluation samples""" , ) parser.add_argument( """--gold_data_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to a tab-separated file with gold samples""" , ) parser.add_argument( """--gold_data_mode""" , default="""qa""" , type=lowerCAmelCase__ , choices=["""qa""", """ans"""] , help=( """Format of the gold data file""" """qa - a single line in the following format: question [tab] answer_list""" """ans - a single line of the gold file contains the expected answer string""" ) , ) parser.add_argument( """--predictions_path""" , type=lowerCAmelCase__ , default="""predictions.txt""" , help="""Name of the predictions file, to be stored in the checkpoints directory""" , ) parser.add_argument( """--eval_all_checkpoints""" , action="""store_true""" , help="""Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number""" , ) parser.add_argument( """--eval_batch_size""" , default=8 , type=lowerCAmelCase__ , help="""Batch size per GPU/CPU for evaluation.""" , ) parser.add_argument( """--recalculate""" , help="""Recalculate predictions even if the prediction file exists""" , action="""store_true""" , ) parser.add_argument( """--num_beams""" , default=4 , type=lowerCAmelCase__ , help="""Number of beams to be used when generating answers""" , ) parser.add_argument("""--min_length""" , default=1 , type=lowerCAmelCase__ , help="""Min length of the generated answers""" ) parser.add_argument("""--max_length""" , default=50 , type=lowerCAmelCase__ , help="""Max length of the generated answers""" ) parser.add_argument( """--print_predictions""" , action="""store_true""" , help="""If True, prints predictions while evaluating.""" , ) parser.add_argument( """--print_docs""" , action="""store_true""" , help="""If True, prints docs retried while generating.""" , ) __UpperCAmelCase : str = parser.parse_args() __UpperCAmelCase : Optional[Any] = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) return args def lowercase_ ( lowerCAmelCase__ : List[Any] ): """simple docstring""" __UpperCAmelCase : Optional[Any] = {} if args.model_type is None: __UpperCAmelCase : str = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("""rag""" ): __UpperCAmelCase : Tuple = RagTokenForGeneration if args.model_type == """rag_token""" else RagSequenceForGeneration __UpperCAmelCase : Dict = args.n_docs if args.index_name is not None: __UpperCAmelCase : Union[str, Any] = args.index_name if args.index_path is not None: __UpperCAmelCase : Dict = args.index_path else: __UpperCAmelCase : str = BartForConditionalGeneration __UpperCAmelCase : str = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("""Evaluate the following checkpoints: %s""" , lowerCAmelCase__ ) __UpperCAmelCase : Optional[int] = get_scores if args.eval_mode == """e2e""" else get_precision_at_k __UpperCAmelCase : Any = evaluate_batch_eae if args.eval_mode == """e2e""" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("""Calculating metrics based on an existing predictions file: {}""".format(args.predictions_path ) ) score_fn(lowerCAmelCase__ , args.predictions_path , args.gold_data_path ) continue logger.info("""***** Running evaluation for {} *****""".format(lowerCAmelCase__ ) ) logger.info(""" Batch size = %d""" , args.eval_batch_size ) logger.info(""" Predictions will be stored under {}""".format(args.predictions_path ) ) if args.model_type.startswith("""rag""" ): __UpperCAmelCase : Optional[int] = RagRetriever.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) __UpperCAmelCase : Any = model_class.from_pretrained(lowerCAmelCase__ , retriever=lowerCAmelCase__ , **lowerCAmelCase__ ) model.retriever.init_retrieval() else: __UpperCAmelCase : Tuple = model_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) model.to(args.device ) with open(args.evaluation_set , """r""" ) as eval_file, open(args.predictions_path , """w""" ) as preds_file: __UpperCAmelCase : Union[str, Any] = [] for line in tqdm(lowerCAmelCase__ ): questions.append(line.strip() ) if len(lowerCAmelCase__ ) == args.eval_batch_size: __UpperCAmelCase : Any = evaluate_batch_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) preds_file.write("""\n""".join(lowerCAmelCase__ ) + """\n""" ) preds_file.flush() __UpperCAmelCase : List[str] = [] if len(lowerCAmelCase__ ) > 0: __UpperCAmelCase : Optional[Any] = evaluate_batch_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) preds_file.write("""\n""".join(lowerCAmelCase__ ) ) preds_file.flush() score_fn(lowerCAmelCase__ , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": _UpperCamelCase = get_args() main(args)
16
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _snake_case ( a__ , unittest.TestCase ): snake_case__ = KandinskyVaaControlnetPipeline snake_case__ = ["image_embeds", "negative_image_embeds", "hint"] snake_case__ = ["image_embeds", "negative_image_embeds", "hint"] snake_case__ = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] snake_case__ = False @property def lowerCamelCase__ ( self : Tuple ): return 32 @property def lowerCamelCase__ ( self : Union[str, Any] ): return 32 @property def lowerCamelCase__ ( self : Dict ): return self.time_input_dim @property def lowerCamelCase__ ( self : Optional[Any] ): return self.time_input_dim * 4 @property def lowerCamelCase__ ( self : Any ): return 100 @property def lowerCamelCase__ ( self : Optional[int] ): torch.manual_seed(0 ) __lowerCamelCase : List[Any] = { "in_channels": 8, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image_hint", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } __lowerCamelCase : str = UNetaDConditionModel(**UpperCAmelCase ) return model @property def lowerCamelCase__ ( self : Optional[int] ): return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def lowerCamelCase__ ( self : Any ): torch.manual_seed(0 ) __lowerCamelCase : Any = VQModel(**self.dummy_movq_kwargs ) return model def lowerCamelCase__ ( self : Optional[Any] ): __lowerCamelCase : List[str] = self.dummy_unet __lowerCamelCase : Union[str, Any] = self.dummy_movq __lowerCamelCase : Optional[int] = DDIMScheduler( num_train_timesteps=1000 , beta_schedule="linear" , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=UpperCAmelCase , set_alpha_to_one=UpperCAmelCase , steps_offset=1 , prediction_type="epsilon" , thresholding=UpperCAmelCase , ) __lowerCamelCase : List[Any] = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def lowerCamelCase__ ( self : Union[str, Any] , UpperCAmelCase : Tuple , UpperCAmelCase : int=0 ): __lowerCamelCase : List[str] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase ) __lowerCamelCase : Optional[int] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( UpperCAmelCase ) # create hint __lowerCamelCase : str = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase ) if str(UpperCAmelCase ).startswith("mps" ): __lowerCamelCase : Any = torch.manual_seed(UpperCAmelCase ) else: __lowerCamelCase : Tuple = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) __lowerCamelCase : Any = { "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "hint": hint, "generator": generator, "height": 64, "width": 64, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs def lowerCamelCase__ ( self : Dict ): __lowerCamelCase : Union[str, Any] = "cpu" __lowerCamelCase : List[str] = self.get_dummy_components() __lowerCamelCase : Optional[Any] = self.pipeline_class(**UpperCAmelCase ) __lowerCamelCase : str = pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) __lowerCamelCase : str = pipe(**self.get_dummy_inputs(UpperCAmelCase ) ) __lowerCamelCase : List[str] = output.images __lowerCamelCase : Any = pipe( **self.get_dummy_inputs(UpperCAmelCase ) , return_dict=UpperCAmelCase , )[0] __lowerCamelCase : Tuple = image[0, -3:, -3:, -1] __lowerCamelCase : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __lowerCamelCase : str = np.array( [0.6_9_5_9_8_2_6, 0.8_6_8_2_7_9, 0.7_5_5_8_0_9_2, 0.6_8_7_6_9_4_6_7, 0.8_5_8_0_5_8_0_4, 0.6_5_9_7_7_4_9_6, 0.4_4_8_8_5_3_0_2, 0.5_9_5_9_1_1_1, 0.4_2_5_1_5_9_5] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class _snake_case ( unittest.TestCase ): def lowerCamelCase__ ( self : List[str] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self : int ): __lowerCamelCase : Union[str, Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy" ) __lowerCamelCase : Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/hint_image_cat.png" ) __lowerCamelCase : List[str] = torch.from_numpy(np.array(UpperCAmelCase ) ).float() / 2_5_5.0 __lowerCamelCase : List[Any] = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) __lowerCamelCase : List[Any] = KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(UpperCAmelCase ) __lowerCamelCase : Optional[Any] = KandinskyVaaControlnetPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-controlnet-depth" , torch_dtype=torch.floataa ) __lowerCamelCase : Optional[int] = pipeline.to(UpperCAmelCase ) pipeline.set_progress_bar_config(disable=UpperCAmelCase ) __lowerCamelCase : Union[str, Any] = "A robot, 4k photo" __lowerCamelCase : List[str] = torch.Generator(device="cuda" ).manual_seed(0 ) __lowerCamelCase , __lowerCamelCase : Tuple = pipe_prior( UpperCAmelCase , generator=UpperCAmelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple() __lowerCamelCase : Any = torch.Generator(device="cuda" ).manual_seed(0 ) __lowerCamelCase : int = pipeline( image_embeds=UpperCAmelCase , negative_image_embeds=UpperCAmelCase , hint=UpperCAmelCase , generator=UpperCAmelCase , num_inference_steps=100 , output_type="np" , ) __lowerCamelCase : List[Any] = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(UpperCAmelCase , UpperCAmelCase )
135
"""simple docstring""" import numpy as np from PIL import Image def lowercase_ ( _lowerCamelCase: np.ndarray , _lowerCamelCase: int , _lowerCamelCase: int ) -> np.ndarray: '''simple docstring''' __lowerCamelCase : Dict = np.array(_lowerCamelCase ) if arr.shape[0] != arr.shape[1]: raise ValueError("The input array is not a square matrix" ) __lowerCamelCase : Optional[int] = 0 __lowerCamelCase : Optional[int] = 0 __lowerCamelCase : List[Any] = 0 __lowerCamelCase : Union[str, Any] = 0 # compute the shape of the output matrix __lowerCamelCase : Any = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape __lowerCamelCase : Dict = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix __lowerCamelCase : int = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 __lowerCamelCase : Any = 0 __lowerCamelCase : Optional[int] = 0 return updated_arr def lowercase_ ( _lowerCamelCase: np.ndarray , _lowerCamelCase: int , _lowerCamelCase: int ) -> np.ndarray: '''simple docstring''' __lowerCamelCase : Union[str, Any] = np.array(_lowerCamelCase ) if arr.shape[0] != arr.shape[1]: raise ValueError("The input array is not a square matrix" ) __lowerCamelCase : List[Any] = 0 __lowerCamelCase : Tuple = 0 __lowerCamelCase : Optional[int] = 0 __lowerCamelCase : str = 0 # compute the shape of the output matrix __lowerCamelCase : List[Any] = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape __lowerCamelCase : List[str] = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix __lowerCamelCase : Optional[Any] = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 __lowerCamelCase : List[Any] = 0 __lowerCamelCase : Tuple = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='''avgpooling''', verbose=True) # Loading the image __A = Image.open('''path_to_image''') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
135
1
def UpperCamelCase ( _a ) -> int: '''simple docstring''' if divisor % 5 == 0 or divisor % 2 == 0: return 0 lowercase_ :List[Any] = 1 lowercase_ :str = 1 while repunit: lowercase_ :Union[str, Any] = (1_0 * repunit + 1) % divisor repunit_index += 1 return repunit_index def UpperCamelCase ( _a = 1_0_0_0_0_0_0 ) -> int: '''simple docstring''' lowercase_ :Union[str, Any] = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(_a ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(f"{solution() = }")
252
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Dict = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class UpperCamelCase ( lowercase__ ): '''simple docstring''' lowercase : List[Any] ="""gpt_bigcode""" lowercase : Dict =["""past_key_values"""] lowercase : List[Any] ={ """hidden_size""": """n_embd""", """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , UpperCamelCase_=5_0257 , UpperCamelCase_=1024 , UpperCamelCase_=768 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=None , UpperCamelCase_="gelu_pytorch_tanh" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=1E-5 , UpperCamelCase_=0.02 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=5_0256 , UpperCamelCase_=5_0256 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=True , **UpperCamelCase_ , ): lowercase_ :Any = vocab_size lowercase_ :List[str] = n_positions lowercase_ :Union[str, Any] = n_embd lowercase_ :Dict = n_layer lowercase_ :Optional[int] = n_head lowercase_ :List[str] = n_inner lowercase_ :List[str] = activation_function lowercase_ :Optional[int] = resid_pdrop lowercase_ :Union[str, Any] = embd_pdrop lowercase_ :Any = attn_pdrop lowercase_ :Optional[Any] = layer_norm_epsilon lowercase_ :str = initializer_range lowercase_ :Optional[Any] = scale_attn_weights lowercase_ :Any = use_cache lowercase_ :Union[str, Any] = attention_softmax_in_fpaa lowercase_ :int = scale_attention_softmax_in_fpaa lowercase_ :Union[str, Any] = multi_query lowercase_ :List[str] = bos_token_id lowercase_ :Optional[int] = eos_token_id super().__init__(bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ )
252
1
"""simple docstring""" import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: _lowerCAmelCase :Any = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , A , A=7 , A=3 , A=1_8 , A=3_0 , A=4_0_0 , A=None , A=True , A=True , A=None , ) -> List[Any]: _UpperCAmelCase : Any = size if size is not None else {'''height''': 2_0, '''width''': 2_0} _UpperCAmelCase : int = parent _UpperCAmelCase : Any = batch_size _UpperCAmelCase : Optional[int] = num_channels _UpperCAmelCase : Dict = image_size _UpperCAmelCase : List[str] = min_resolution _UpperCAmelCase : List[str] = max_resolution _UpperCAmelCase : str = size _UpperCAmelCase : Dict = do_normalize _UpperCAmelCase : Dict = do_convert_rgb _UpperCAmelCase : Any = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6] _UpperCAmelCase : Dict = patch_size if patch_size is not None else {'''height''': 1_6, '''width''': 1_6} def __lowerCAmelCase ( self ) -> Any: return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def __lowerCAmelCase ( self ) -> int: _UpperCAmelCase : str = '''https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg''' _UpperCAmelCase : Any = Image.open(requests.get(A , stream=A ).raw ).convert('''RGB''' ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 ,reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' ,) @require_torch @require_vision class _UpperCAmelCase ( a ,unittest.TestCase ): '''simple docstring''' a__ =PixaStructImageProcessor if is_vision_available() else None def __lowerCAmelCase ( self ) -> Optional[int]: _UpperCAmelCase : Optional[Any] = PixaStructImageProcessingTester(self ) @property def __lowerCAmelCase ( self ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self ) -> Optional[Any]: _UpperCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A , '''do_normalize''' ) ) self.assertTrue(hasattr(A , '''do_convert_rgb''' ) ) def __lowerCAmelCase ( self ) -> Any: _UpperCAmelCase : int = self.image_processor_tester.prepare_dummy_image() _UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) _UpperCAmelCase : Any = 2_0_4_8 _UpperCAmelCase : Optional[Any] = image_processor(A , return_tensors='''pt''' , max_patches=A ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0_606 ) , atol=1E-3 , rtol=1E-3 ) ) def __lowerCAmelCase ( self ) -> Optional[Any]: # Initialize image_processor _UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A , Image.Image ) # Test not batched input _UpperCAmelCase : Dict = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : Optional[Any] = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=A ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : List[Any] = image_processor( A , return_tensors='''pt''' , max_patches=A ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __lowerCAmelCase ( self ) -> Any: # Initialize image_processor _UpperCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A , Image.Image ) # Test not batched input _UpperCAmelCase : Optional[Any] = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 _UpperCAmelCase : Optional[Any] = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(A ): _UpperCAmelCase : Optional[int] = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=A ).flattened_patches _UpperCAmelCase : Union[str, Any] = '''Hello''' _UpperCAmelCase : Optional[int] = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=A , header_text=A ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : int = image_processor( A , return_tensors='''pt''' , max_patches=A , header_text=A ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __lowerCAmelCase ( self ) -> str: # Initialize image_processor _UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , numpify=A ) for image in image_inputs: self.assertIsInstance(A , np.ndarray ) _UpperCAmelCase : Tuple = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : Optional[Any] = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=A ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : Tuple = image_processor( A , return_tensors='''pt''' , max_patches=A ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __lowerCAmelCase ( self ) -> List[Any]: # Initialize image_processor _UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , torchify=A ) for image in image_inputs: self.assertIsInstance(A , torch.Tensor ) # Test not batched input _UpperCAmelCase : str = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : Optional[int] = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=A ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : Union[str, Any] = image_processor( A , return_tensors='''pt''' , max_patches=A ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 ,reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' ,) @require_torch @require_vision class _UpperCAmelCase ( a ,unittest.TestCase ): '''simple docstring''' a__ =PixaStructImageProcessor if is_vision_available() else None def __lowerCAmelCase ( self ) -> Union[str, Any]: _UpperCAmelCase : Any = PixaStructImageProcessingTester(self , num_channels=4 ) _UpperCAmelCase : Optional[Any] = 3 @property def __lowerCAmelCase ( self ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self ) -> List[str]: _UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A , '''do_normalize''' ) ) self.assertTrue(hasattr(A , '''do_convert_rgb''' ) ) def __lowerCAmelCase ( self ) -> Union[str, Any]: # Initialize image_processor _UpperCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A , Image.Image ) # Test not batched input _UpperCAmelCase : Optional[Any] = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : Optional[Any] = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=A ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : Any = image_processor( A , return_tensors='''pt''' , max_patches=A ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
263
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowerCAmelCase :str = { 'configuration_squeezebert': [ 'SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SqueezeBertConfig', 'SqueezeBertOnnxConfig', ], 'tokenization_squeezebert': ['SqueezeBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase :Optional[int] = ['SqueezeBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase :str = [ 'SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'SqueezeBertForMaskedLM', 'SqueezeBertForMultipleChoice', 'SqueezeBertForQuestionAnswering', 'SqueezeBertForSequenceClassification', 'SqueezeBertForTokenClassification', 'SqueezeBertModel', 'SqueezeBertModule', 'SqueezeBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys _lowerCAmelCase :Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
263
1
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class _a ( tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__(self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = 1.0, SCREAMING_SNAKE_CASE_ = None, ) -> int: super().__init__() UpperCAmelCase_: Union[str, Any] = initial_learning_rate UpperCAmelCase_: Optional[int] = warmup_steps UpperCAmelCase_: List[Any] = power UpperCAmelCase_: Any = decay_schedule_fn UpperCAmelCase_: Dict = name def __call__(self, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: with tf.name_scope(self.name or """WarmUp""" ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. UpperCAmelCase_: Tuple = tf.cast(SCREAMING_SNAKE_CASE_, tf.floataa ) UpperCAmelCase_: Optional[Any] = tf.cast(self.warmup_steps, tf.floataa ) UpperCAmelCase_: int = global_step_float / warmup_steps_float UpperCAmelCase_: Union[str, Any] = self.initial_learning_rate * tf.math.pow(SCREAMING_SNAKE_CASE_, self.power ) return tf.cond( global_step_float < warmup_steps_float, lambda: warmup_learning_rate, lambda: self.decay_schedule_fn(step - self.warmup_steps ), name=SCREAMING_SNAKE_CASE_, ) def __snake_case (self ) -> Any: return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def lowerCAmelCase_ (lowerCAmelCase__: float , lowerCAmelCase__: int , lowerCAmelCase__: int , lowerCAmelCase__: float = 0.0 , lowerCAmelCase__: float = 0.9 , lowerCAmelCase__: float = 0.999 , lowerCAmelCase__: float = 1e-8 , lowerCAmelCase__: Optional[float] = None , lowerCAmelCase__: Optional[float] = None , lowerCAmelCase__: float = 0.0 , lowerCAmelCase__: float = 1.0 , lowerCAmelCase__: Optional[List[str]] = None , ): """simple docstring""" UpperCAmelCase_: Optional[int] = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=lowerCAmelCase__ , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=lowerCAmelCase__ , ) if num_warmup_steps: UpperCAmelCase_: int = WarmUp( initial_learning_rate=lowerCAmelCase__ , decay_schedule_fn=lowerCAmelCase__ , warmup_steps=lowerCAmelCase__ , ) if weight_decay_rate > 0.0: UpperCAmelCase_: List[Any] = AdamWeightDecay( learning_rate=lowerCAmelCase__ , weight_decay_rate=lowerCAmelCase__ , beta_a=lowerCAmelCase__ , beta_a=lowerCAmelCase__ , epsilon=lowerCAmelCase__ , clipnorm=lowerCAmelCase__ , global_clipnorm=lowerCAmelCase__ , exclude_from_weight_decay=["""LayerNorm""", """layer_norm""", """bias"""] , include_in_weight_decay=lowerCAmelCase__ , ) else: UpperCAmelCase_: List[Any] = tf.keras.optimizers.Adam( learning_rate=lowerCAmelCase__ , beta_a=lowerCAmelCase__ , beta_a=lowerCAmelCase__ , epsilon=lowerCAmelCase__ , clipnorm=lowerCAmelCase__ , global_clipnorm=lowerCAmelCase__ , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class _a ( _lowerCAmelCase ): def __init__(self, SCREAMING_SNAKE_CASE_ = 0.0_0_1, SCREAMING_SNAKE_CASE_ = 0.9, SCREAMING_SNAKE_CASE_ = 0.9_9_9, SCREAMING_SNAKE_CASE_ = 1E-7, SCREAMING_SNAKE_CASE_ = False, SCREAMING_SNAKE_CASE_ = 0.0, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = "AdamWeightDecay", **SCREAMING_SNAKE_CASE_, ) -> List[Any]: super().__init__(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Any = weight_decay_rate UpperCAmelCase_: Optional[int] = include_in_weight_decay UpperCAmelCase_: List[str] = exclude_from_weight_decay @classmethod def __snake_case (cls, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: UpperCAmelCase_: Optional[int] = {"""WarmUp""": WarmUp} return super(SCREAMING_SNAKE_CASE_, cls ).from_config(SCREAMING_SNAKE_CASE_, custom_objects=SCREAMING_SNAKE_CASE_ ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> int: super(SCREAMING_SNAKE_CASE_, self )._prepare_local(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Any = tf.constant( self.weight_decay_rate, name="""adam_weight_decay_rate""" ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> List[Any]: UpperCAmelCase_: Union[str, Any] = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]["""weight_decay_rate"""], use_locking=self._use_locking, ) return tf.no_op() def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=None, **SCREAMING_SNAKE_CASE_ ) -> Dict: UpperCAmelCase_ , UpperCAmelCase_: Dict = list(zip(*SCREAMING_SNAKE_CASE_ ) ) return super(SCREAMING_SNAKE_CASE_, self ).apply_gradients(zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ), name=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: if apply_state is None: return self._decayed_lr_t[var_dtype], {} UpperCAmelCase_: Optional[Any] = apply_state or {} UpperCAmelCase_: Dict = apply_state.get((var_device, var_dtype) ) if coefficients is None: UpperCAmelCase_: Any = self._fallback_apply_state(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[str] = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=None ) -> List[Any]: UpperCAmelCase_ , UpperCAmelCase_: int = self._get_lr(var.device, var.dtype.base_dtype, SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Union[str, Any] = self._decay_weights_op(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) with tf.control_dependencies([decay] ): return super(SCREAMING_SNAKE_CASE_, self )._resource_apply_dense(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=None ) -> Optional[Any]: UpperCAmelCase_ , UpperCAmelCase_: int = self._get_lr(var.device, var.dtype.base_dtype, SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[Any] = self._decay_weights_op(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) with tf.control_dependencies([decay] ): return super(SCREAMING_SNAKE_CASE_, self )._resource_apply_sparse(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> int: UpperCAmelCase_: Dict = super().get_config() config.update({"""weight_decay_rate""": self.weight_decay_rate} ) return config def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) is not None: return False return True class _a ( _lowerCAmelCase ): def __init__(self ) -> str: UpperCAmelCase_: int = [] UpperCAmelCase_: Union[str, Any] = None @property def __snake_case (self ) -> int: if self._accum_steps is None: UpperCAmelCase_: Dict = tf.Variable( tf.constant(0, dtype=tf.intaa ), trainable=SCREAMING_SNAKE_CASE_, synchronization=tf.VariableSynchronization.ON_READ, aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA, ) return self._accum_steps.value() @property def __snake_case (self ) -> int: if not self._gradients: raise ValueError("""The accumulator should be called first to initialize the gradients""" ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__(self, SCREAMING_SNAKE_CASE_ ) -> Any: if not self._gradients: UpperCAmelCase_: int = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(SCREAMING_SNAKE_CASE_ ), trainable=SCREAMING_SNAKE_CASE_, synchronization=tf.VariableSynchronization.ON_READ, aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA, ) if gradient is not None else gradient for gradient in gradients ] ) if len(SCREAMING_SNAKE_CASE_ ) != len(self._gradients ): raise ValueError(f'Expected {len(self._gradients )} gradients, but got {len(SCREAMING_SNAKE_CASE_ )}' ) for accum_gradient, gradient in zip(self._gradients, SCREAMING_SNAKE_CASE_ ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(SCREAMING_SNAKE_CASE_ ) self._accum_steps.assign_add(1 ) def __snake_case (self ) -> List[Any]: if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(SCREAMING_SNAKE_CASE_ ) )
82
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel a : Optional[int] = { 'text_branch': 'text_model', 'audio_branch': 'audio_model.audio_encoder', 'attn': 'attention.self', 'self.proj': 'output.dense', 'attention.self_mask': 'attn_mask', 'mlp.fc1': 'intermediate.dense', 'mlp.fc2': 'output.dense', 'norm1': 'layernorm_before', 'norm2': 'layernorm_after', 'bn0': 'batch_norm', } a : Any = AutoFeatureExtractor.from_pretrained('laion/clap-htsat-unfused', truncation='rand_trunc') def lowerCAmelCase_ (lowerCAmelCase__: Optional[Any] , lowerCAmelCase__: int=False ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_: int = create_model( """HTSAT-tiny""" , """roberta""" , lowerCAmelCase__ , precision="""fp32""" , device="""cuda:0""" if torch.cuda.is_available() else """cpu""" , enable_fusion=lowerCAmelCase__ , fusion_type="""aff_2d""" if enable_fusion else None , ) return model, model_cfg def lowerCAmelCase_ (lowerCAmelCase__: List[Any] ): """simple docstring""" UpperCAmelCase_: List[Any] = {} UpperCAmelCase_: Optional[Any] = r""".*sequential.(\d+).*""" UpperCAmelCase_: str = r""".*_projection.(\d+).*""" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: UpperCAmelCase_: Optional[int] = key.replace(lowerCAmelCase__ , lowerCAmelCase__ ) if re.match(lowerCAmelCase__ , lowerCAmelCase__ ): # replace sequential layers with list UpperCAmelCase_: int = re.match(lowerCAmelCase__ , lowerCAmelCase__ ).group(1 ) UpperCAmelCase_: Dict = key.replace(F'sequential.{sequential_layer}.' , F'layers.{int(lowerCAmelCase__ )//3}.linear.' ) elif re.match(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_: int = int(re.match(lowerCAmelCase__ , lowerCAmelCase__ ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... UpperCAmelCase_: Optional[Any] = 1 if projecton_layer == 0 else 2 UpperCAmelCase_: Tuple = key.replace(F'_projection.{projecton_layer}.' , F'_projection.linear{transformers_projection_layer}.' ) if "audio" and "qkv" in key: # split qkv into query key and value UpperCAmelCase_: str = value UpperCAmelCase_: Optional[int] = mixed_qkv.size(0 ) // 3 UpperCAmelCase_: Optional[int] = mixed_qkv[:qkv_dim] UpperCAmelCase_: List[Any] = mixed_qkv[qkv_dim : qkv_dim * 2] UpperCAmelCase_: int = mixed_qkv[qkv_dim * 2 :] UpperCAmelCase_: str = query_layer UpperCAmelCase_: List[Any] = key_layer UpperCAmelCase_: str = value_layer else: UpperCAmelCase_: Tuple = value return model_state_dict def lowerCAmelCase_ (lowerCAmelCase__: Optional[Any] , lowerCAmelCase__: List[Any] , lowerCAmelCase__: Union[str, Any] , lowerCAmelCase__: List[Any]=False ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_: Union[str, Any] = init_clap(lowerCAmelCase__ , enable_fusion=lowerCAmelCase__ ) clap_model.eval() UpperCAmelCase_: Optional[Any] = clap_model.state_dict() UpperCAmelCase_: Optional[Any] = rename_state_dict(lowerCAmelCase__ ) UpperCAmelCase_: Dict = ClapConfig() UpperCAmelCase_: Tuple = enable_fusion UpperCAmelCase_: int = ClapModel(lowerCAmelCase__ ) # ignore the spectrogram embedding layer model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) transformers_config.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument('--enable_fusion', action='store_true', help='Whether to enable fusion or not') a : Optional[Any] = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
82
1
import random from .binary_exp_mod import bin_exp_mod def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__=1000 ): '''simple docstring''' if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd lowercase = n - 1 lowercase = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) lowercase = 0 while count < prec: lowercase = random.randint(2 , n - 1 ) lowercase = bin_exp_mod(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if b != 1: lowercase = True for _ in range(lowerCAmelCase__ ): if b == n - 1: lowercase = False break lowercase = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": lowercase__ :Tuple = abs(int(input("Enter bound : ").strip())) print("Here's the list of primes:") print(", ".join(str(i) for i in range(n + 1) if is_prime_big(i)))
101
def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' if edge <= 0 or not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError('''Length must be a positive.''' ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' if edge <= 0 or not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError('''Length must be a positive.''' ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
101
1
"""simple docstring""" import math def a__ ( snake_case__ : list , snake_case__ : int = 0 , snake_case__ : int = 0 ) -> list: lowerCamelCase = end or len(__lowerCAmelCase ) for i in range(__lowerCAmelCase , __lowerCAmelCase ): lowerCamelCase = i lowerCamelCase = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: lowerCamelCase = array[temp_index - 1] temp_index -= 1 lowerCamelCase = temp_index_value return array def a__ ( snake_case__ : list , snake_case__ : int , snake_case__ : int ) -> None: # Max Heap lowerCamelCase = index lowerCamelCase = 2 * index + 1 # Left Node lowerCamelCase = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: lowerCamelCase = left_index if right_index < heap_size and array[largest] < array[right_index]: lowerCamelCase = right_index if largest != index: lowerCamelCase , lowerCamelCase = array[largest], array[index] heapify(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def a__ ( snake_case__ : list ) -> list: lowerCamelCase = len(__lowerCAmelCase ) for i in range(n // 2 , -1 , -1 ): heapify(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) for i in range(n - 1 , 0 , -1 ): lowerCamelCase , lowerCamelCase = array[0], array[i] heapify(__lowerCAmelCase , 0 , __lowerCAmelCase ) return array def a__ ( snake_case__ : list , snake_case__ : int , snake_case__ : int , snake_case__ : int ) -> int: if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def a__ ( snake_case__ : list , snake_case__ : int , snake_case__ : int , snake_case__ : int ) -> int: lowerCamelCase = low lowerCamelCase = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i lowerCamelCase , lowerCamelCase = array[j], array[i] i += 1 def a__ ( snake_case__ : list ) -> list: if len(__lowerCAmelCase ) == 0: return array lowerCamelCase = 2 * math.ceil(math.loga(len(__lowerCAmelCase ) ) ) lowerCamelCase = 16 return intro_sort(__lowerCAmelCase , 0 , len(__lowerCAmelCase ) , __lowerCAmelCase , __lowerCAmelCase ) def a__ ( snake_case__ : list , snake_case__ : int , snake_case__ : int , snake_case__ : int , snake_case__ : int ) -> list: while end - start > size_threshold: if max_depth == 0: return heap_sort(__lowerCAmelCase ) max_depth -= 1 lowerCamelCase = median_of_a(__lowerCAmelCase , __lowerCAmelCase , start + ((end - start) // 2) + 1 , end - 1 ) lowerCamelCase = partition(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) intro_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase = p return insertion_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase : Optional[int] = input("""Enter numbers separated by a comma : """).strip() lowerCAmelCase : Dict = [float(item) for item in user_input.split(""",""")] print(sort(unsorted))
353
"""simple docstring""" import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , *_a , _a=None , _a=None , **_a ): """simple docstring""" super().__init__(*_a , **_a ) lowerCamelCase = eval_examples lowerCamelCase = post_process_function def _lowerCAmelCase ( self , _a=None , _a=None , _a=None , _a = "eval" ): """simple docstring""" lowerCamelCase = self.eval_dataset if eval_dataset is None else eval_dataset lowerCamelCase = self.get_eval_dataloader(_a ) lowerCamelCase = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowerCamelCase = self.compute_metrics lowerCamelCase = None lowerCamelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop lowerCamelCase = time.time() try: lowerCamelCase = eval_loop( _a , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_a , metric_key_prefix=_a , ) finally: lowerCamelCase = compute_metrics lowerCamelCase = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( _a , _a , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default lowerCamelCase = self.post_process_function(_a , _a , output.predictions ) lowerCamelCase = self.compute_metrics(_a ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): lowerCamelCase = metrics.pop(_a ) metrics.update(output.metrics ) else: lowerCamelCase = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_a ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) lowerCamelCase = self.callback_handler.on_evaluate(self.args , self.state , self.control , _a ) return metrics def _lowerCAmelCase ( self , _a , _a , _a=None , _a = "test" ): """simple docstring""" lowerCamelCase = self.get_test_dataloader(_a ) # Temporarily disable metric computation, we will do it in the loop here. lowerCamelCase = self.compute_metrics lowerCamelCase = None lowerCamelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop lowerCamelCase = time.time() try: lowerCamelCase = eval_loop( _a , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_a , metric_key_prefix=_a , ) finally: lowerCamelCase = compute_metrics lowerCamelCase = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( _a , _a , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output lowerCamelCase = self.post_process_function(_a , _a , output.predictions , """predict""" ) lowerCamelCase = self.compute_metrics(_a ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): lowerCamelCase = metrics.pop(_a ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_a )
168
0
import math import sys def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" if number != int(lowerCAmelCase_ ): raise ValueError('the value of input must be a natural number' ) if number < 0: raise ValueError('the value of input must not be a negative number' ) if number == 0: return 1 SCREAMING_SNAKE_CASE =[-1] * (number + 1) SCREAMING_SNAKE_CASE =0 for i in range(1, number + 1 ): SCREAMING_SNAKE_CASE =sys.maxsize SCREAMING_SNAKE_CASE =int(math.sqrt(lowerCAmelCase_ ) ) for j in range(1, root + 1 ): SCREAMING_SNAKE_CASE =1 + answers[i - (j**2)] SCREAMING_SNAKE_CASE =min(lowerCAmelCase_, lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
334
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase =logging.get_logger() @dataclass class a_ : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) def _lowerCAmelCase ( self : Any ,snake_case : Any ,snake_case : Tensor ,snake_case : Tensor ): SCREAMING_SNAKE_CASE =len(list(m.modules() ) ) == 1 or isinstance(snake_case ,nn.Convad ) or isinstance(snake_case ,nn.BatchNormad ) if has_not_submodules: self.traced.append(snake_case ) def __call__( self : int ,snake_case : Tensor ): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(snake_case ) [x.remove() for x in self.handles] return self @property def _lowerCAmelCase ( self : Tuple ): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda snake_case : len(list(x.state_dict().keys() ) ) > 0 ,self.traced ) ) @dataclass class a_ : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = 42 __UpperCAmelCase = 0 __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) def __call__( self : int ,snake_case : Tensor ): SCREAMING_SNAKE_CASE =Tracker(self.dest )(snake_case ).parametrized SCREAMING_SNAKE_CASE =Tracker(self.src )(snake_case ).parametrized SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.src_skip ,snake_case ) ) SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.dest_skip ,snake_case ) ) if len(snake_case ) != len(snake_case ): raise Exception( f'Numbers of operations are different. Source module has {len(snake_case )} operations while' f' destination module has {len(snake_case )}.' ) for dest_m, src_m in zip(snake_case ,snake_case ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'Transfered from={src_m} to={dest_m}' ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = True ): """simple docstring""" print(F'Converting {name}...' ) with torch.no_grad(): SCREAMING_SNAKE_CASE =timm.create_model(lowerCAmelCase_, pretrained=lowerCAmelCase_ ).eval() SCREAMING_SNAKE_CASE =ResNetForImageClassification(lowerCAmelCase_ ).eval() SCREAMING_SNAKE_CASE =ModuleTransfer(src=lowerCAmelCase_, dest=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =torch.randn((1, 3, 224, 224) ) module_transfer(lowerCAmelCase_ ) assert torch.allclose(from_model(lowerCAmelCase_ ), our_model(lowerCAmelCase_ ).logits ), "The model logits don't match the original one." SCREAMING_SNAKE_CASE =F'resnet{"-".join(name.split("resnet" ) )}' print(lowerCAmelCase_ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name, commit_message='Add model', use_temp_dir=lowerCAmelCase_, ) # we can use the convnext one SCREAMING_SNAKE_CASE =AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name, commit_message='Add image processor', use_temp_dir=lowerCAmelCase_, ) print(F'Pushed {checkpoint_name}' ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ = None, lowerCAmelCase_ = True ): """simple docstring""" SCREAMING_SNAKE_CASE ='imagenet-1k-id2label.json' SCREAMING_SNAKE_CASE =1000 SCREAMING_SNAKE_CASE =(1, num_labels) SCREAMING_SNAKE_CASE ='huggingface/label-files' SCREAMING_SNAKE_CASE =num_labels SCREAMING_SNAKE_CASE =json.load(open(hf_hub_download(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ), 'r' ) ) SCREAMING_SNAKE_CASE ={int(lowerCAmelCase_ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE =idalabel SCREAMING_SNAKE_CASE ={v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE =partial(lowerCAmelCase_, num_labels=lowerCAmelCase_, idalabel=lowerCAmelCase_, labelaid=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE ={ 'resnet18': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2], hidden_sizes=[64, 128, 256, 512], layer_type='basic' ), 'resnet26': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ), 'resnet34': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3], hidden_sizes=[64, 128, 256, 512], layer_type='basic' ), 'resnet50': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ), 'resnet101': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ), 'resnet152': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ), } if model_name: convert_weight_and_push(lowerCAmelCase_, names_to_config[model_name], lowerCAmelCase_, lowerCAmelCase_ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) return config, expected_shape if __name__ == "__main__": _lowerCamelCase =argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported resnet* architecture," " currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) _lowerCamelCase =parser.parse_args() _lowerCamelCase =args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
334
1
'''simple docstring''' import argparse import hashlib # hashlib is only used inside the Test class import struct class lowercase_ : """simple docstring""" def __init__( self : Any ,lowercase__ : int ): __lowercase = data __lowercase = [0x67_452_301, 0xef_cda_b89, 0x98_bad_cfe, 0x10_325_476, 0xc3_d2e_1f0] @staticmethod def SCREAMING_SNAKE_CASE ( lowercase__ : Tuple ,lowercase__ : Any ): return ((n << b) | (n >> (3_2 - b))) & 0xff_fff_fff def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = b'''\x80''' + b'''\x00''' * (6_3 - (len(self.data ) + 8) % 6_4) __lowercase = self.data + padding + struct.pack('''>Q''' ,8 * len(self.data ) ) return padded_data def SCREAMING_SNAKE_CASE ( self : Tuple ): return [ self.padded_data[i : i + 6_4] for i in range(0 ,len(self.padded_data ) ,6_4 ) ] def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : Any ): __lowercase = list(struct.unpack('''>16L''' ,lowercase__ ) ) + [0] * 6_4 for i in range(1_6 ,8_0 ): __lowercase = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 1_4] ^ w[i - 1_6]) ,1 ) return w def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.padding() __lowercase = self.split_blocks() for block in self.blocks: __lowercase = self.expand_block(lowercase__ ) __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = self.h for i in range(0 ,8_0 ): if 0 <= i < 2_0: __lowercase = (b & c) | ((~b) & d) __lowercase = 0x5a_827_999 elif 2_0 <= i < 4_0: __lowercase = b ^ c ^ d __lowercase = 0x6e_d9e_ba1 elif 4_0 <= i < 6_0: __lowercase = (b & c) | (b & d) | (c & d) __lowercase = 0x8f_1bb_cdc elif 6_0 <= i < 8_0: __lowercase = b ^ c ^ d __lowercase = 0xca_62c_1d6 __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = ( self.rotate(lowercase__ ,5 ) + f + e + k + expanded_block[i] & 0xff_fff_fff, a, self.rotate(lowercase__ ,3_0 ), c, d, ) __lowercase = ( self.h[0] + a & 0xff_fff_fff, self.h[1] + b & 0xff_fff_fff, self.h[2] + c & 0xff_fff_fff, self.h[3] + d & 0xff_fff_fff, self.h[4] + e & 0xff_fff_fff, ) return ("{:08x}" * 5).format(*self.h ) def _A ( ): """simple docstring""" __lowercase = b'''Test String''' assert SHAaHash(A__ ).final_hash() == hashlib.shaa(A__ ).hexdigest() # noqa: S324 def _A ( ): """simple docstring""" __lowercase = argparse.ArgumentParser(description='''Process some strings or files''' ) parser.add_argument( '''--string''' , dest='''input_string''' , default='''Hello World!! Welcome to Cryptography''' , help='''Hash the string''' , ) parser.add_argument('''--file''' , dest='''input_file''' , help='''Hash contents of a file''' ) __lowercase = parser.parse_args() __lowercase = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , '''rb''' ) as f: __lowercase = f.read() else: __lowercase = bytes(A__ , '''utf-8''' ) print(SHAaHash(A__ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
52
'''simple docstring''' def _A ( A__ ): """simple docstring""" stooge(A__ , 0 , len(A__ ) - 1 ) return arr def _A ( A__ , A__ , A__ ): """simple docstring""" if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: __lowercase , __lowercase = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: __lowercase = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(A__ , A__ , (h - t) ) # Recursively sort last 2/3 elements stooge(A__ , i + t , (A__) ) # Recursively sort first 2/3 elements stooge(A__ , A__ , (h - t) ) if __name__ == "__main__": lowerCAmelCase__ = input('''Enter numbers separated by a comma:\n''').strip() lowerCAmelCase__ = [int(item) for item in user_input.split(''',''')] print(stooge_sort(unsorted))
52
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json', # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : Any = "convbert" def __init__( self : List[str], UpperCAmelCase__ : Tuple=3_0_5_2_2, UpperCAmelCase__ : Tuple=7_6_8, UpperCAmelCase__ : int=1_2, UpperCAmelCase__ : Tuple=1_2, UpperCAmelCase__ : Any=3_0_7_2, UpperCAmelCase__ : List[str]="gelu", UpperCAmelCase__ : Union[str, Any]=0.1, UpperCAmelCase__ : str=0.1, UpperCAmelCase__ : Tuple=5_1_2, UpperCAmelCase__ : Any=2, UpperCAmelCase__ : int=0.02, UpperCAmelCase__ : List[str]=1E-12, UpperCAmelCase__ : Union[str, Any]=1, UpperCAmelCase__ : Union[str, Any]=0, UpperCAmelCase__ : Dict=2, UpperCAmelCase__ : Any=7_6_8, UpperCAmelCase__ : List[Any]=2, UpperCAmelCase__ : int=9, UpperCAmelCase__ : Optional[Any]=1, UpperCAmelCase__ : Optional[int]=None, **UpperCAmelCase__ : List[str], ): super().__init__( pad_token_id=UpperCAmelCase__, bos_token_id=UpperCAmelCase__, eos_token_id=UpperCAmelCase__, **UpperCAmelCase__, ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = embedding_size __lowercase = head_ratio __lowercase = conv_kernel_size __lowercase = num_groups __lowercase = classifier_dropout class _lowerCAmelCase ( lowercase ): """simple docstring""" @property def _lowercase ( self : Union[str, Any] ): if self.task == "multiple-choice": __lowercase = {0: "batch", 1: "choice", 2: "sequence"} else: __lowercase = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
17
"""simple docstring""" import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : str, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : int=1_0_0, UpperCAmelCase__ : Any=1_3, UpperCAmelCase__ : List[Any]=3_0, UpperCAmelCase__ : Dict=2, UpperCAmelCase__ : Any=3, UpperCAmelCase__ : Optional[Any]=True, UpperCAmelCase__ : List[str]=True, UpperCAmelCase__ : Optional[Any]=3_2, UpperCAmelCase__ : Any=5, UpperCAmelCase__ : Any=4, UpperCAmelCase__ : Any=3_7, UpperCAmelCase__ : Optional[int]="gelu", UpperCAmelCase__ : Dict=0.1, UpperCAmelCase__ : Optional[int]=0.1, UpperCAmelCase__ : Dict=1_0, UpperCAmelCase__ : Tuple=0.02, UpperCAmelCase__ : List[Any]=3, ): __lowercase = parent __lowercase = vocab_size __lowercase = batch_size __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = is_training __lowercase = use_labels __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = type_sequence_label_size __lowercase = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __lowercase = (image_size // patch_size) ** 2 __lowercase = num_patches + 1 def _lowercase ( self : int ): __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size], self.type_sequence_label_size ) __lowercase = BeitConfig( vocab_size=self.vocab_size, image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=UpperCAmelCase__, initializer_range=self.initializer_range, ) return config, pixel_values, labels def _lowercase ( self : Any, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[str], UpperCAmelCase__ : List[str] ): __lowercase = FlaxBeitModel(config=UpperCAmelCase__ ) __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : List[Any] ): __lowercase = FlaxBeitForMaskedImageModeling(config=UpperCAmelCase__ ) __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length - 1, self.vocab_size) ) def _lowercase ( self : Dict, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Any, UpperCAmelCase__ : Union[str, Any] ): __lowercase = self.type_sequence_label_size __lowercase = FlaxBeitForImageClassification(config=UpperCAmelCase__ ) __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowercase = 1 __lowercase = FlaxBeitForImageClassification(UpperCAmelCase__ ) __lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowercase = model(UpperCAmelCase__ ) def _lowercase ( self : List[str] ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) ,( __lowercase ) ,( __lowercase ) , ) = config_and_inputs __lowercase = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class _lowerCAmelCase ( lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : str = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def _lowercase ( self : List[Any] ): __lowercase = FlaxBeitModelTester(self ) __lowercase = ConfigTester(self, config_class=UpperCAmelCase__, has_text_modality=UpperCAmelCase__, hidden_size=3_7 ) def _lowercase ( self : Union[str, Any] ): self.config_tester.run_common_tests() def _lowercase ( self : Optional[int] ): __lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(UpperCAmelCase__ ) __lowercase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["pixel_values"] self.assertListEqual(arg_names[:1], UpperCAmelCase__ ) def _lowercase ( self : Tuple ): __lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowercase = self._prepare_for_class(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = model_class(UpperCAmelCase__ ) @jax.jit def model_jitted(UpperCAmelCase__ : str, **UpperCAmelCase__ : Dict ): return model(pixel_values=UpperCAmelCase__, **UpperCAmelCase__ ) with self.subTest("JIT Enabled" ): __lowercase = model_jitted(**UpperCAmelCase__ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __lowercase = model_jitted(**UpperCAmelCase__ ).to_tuple() self.assertEqual(len(UpperCAmelCase__ ), len(UpperCAmelCase__ ) ) for jitted_output, output in zip(UpperCAmelCase__, UpperCAmelCase__ ): self.assertEqual(jitted_output.shape, output.shape ) def _lowercase ( self : List[str] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def _lowercase ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase__ ) def _lowercase ( self : Tuple ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__ ) @slow def _lowercase ( self : Union[str, Any] ): for model_class_name in self.all_model_classes: __lowercase = model_class_name.from_pretrained("microsoft/beit-base-patch16-224" ) __lowercase = model(np.ones((1, 3, 2_2_4, 2_2_4) ) ) self.assertIsNotNone(UpperCAmelCase__ ) def _A ( ) -> str: '''simple docstring''' __lowercase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_vision @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def _lowercase ( self : Optional[int] ): return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def _lowercase ( self : Any ): __lowercase = FlaxBeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" ).pixel_values # prepare bool_masked_pos __lowercase = np.ones((1, 1_9_6), dtype=UpperCAmelCase__ ) # forward pass __lowercase = model(pixel_values=UpperCAmelCase__, bool_masked_pos=UpperCAmelCase__ ) __lowercase = outputs.logits # verify the logits __lowercase = (1, 1_9_6, 8_1_9_2) self.assertEqual(logits.shape, UpperCAmelCase__ ) __lowercase = np.array( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3], UpperCAmelCase__, atol=1E-2 ) ) @slow def _lowercase ( self : Any ): __lowercase = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" ) # forward pass __lowercase = model(**UpperCAmelCase__ ) __lowercase = outputs.logits # verify the logits __lowercase = (1, 1_0_0_0) self.assertEqual(logits.shape, UpperCAmelCase__ ) __lowercase = np.array([-1.2_385, -1.0_987, -1.0_108] ) self.assertTrue(np.allclose(logits[0, :3], UpperCAmelCase__, atol=1E-4 ) ) __lowercase = 2_8_1 self.assertEqual(logits.argmax(-1 ).item(), UpperCAmelCase__ ) @slow def _lowercase ( self : List[str] ): __lowercase = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" ) # forward pass __lowercase = model(**UpperCAmelCase__ ) __lowercase = outputs.logits # verify the logits __lowercase = (1, 2_1_8_4_1) self.assertEqual(logits.shape, UpperCAmelCase__ ) __lowercase = np.array([1.6_881, -0.2_787, 0.5_901] ) self.assertTrue(np.allclose(logits[0, :3], UpperCAmelCase__, atol=1E-4 ) ) __lowercase = 2_3_9_6 self.assertEqual(logits.argmax(-1 ).item(), UpperCAmelCase__ )
17
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) _lowerCAmelCase : int = { """kssteven/ibert-roberta-base""": """https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json""", """kssteven/ibert-roberta-large""": """https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json""", """kssteven/ibert-roberta-large-mnli""": ( """https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json""" ), } class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ ='''ibert''' def __init__( self : Any , snake_case__ : Dict=3_0_5_2_2 , snake_case__ : Any=7_6_8 , snake_case__ : Any=1_2 , snake_case__ : Tuple=1_2 , snake_case__ : Tuple=3_0_7_2 , snake_case__ : Dict="gelu" , snake_case__ : int=0.1 , snake_case__ : Optional[int]=0.1 , snake_case__ : Dict=5_1_2 , snake_case__ : int=2 , snake_case__ : Dict=0.02 , snake_case__ : Union[str, Any]=1e-12 , snake_case__ : List[str]=1 , snake_case__ : str=0 , snake_case__ : Dict=2 , snake_case__ : Dict="absolute" , snake_case__ : List[Any]=False , snake_case__ : Dict="none" , **snake_case__ : List[str] , ): '''simple docstring''' super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) UpperCAmelCase__ : Union[str, Any] = vocab_size UpperCAmelCase__ : Tuple = hidden_size UpperCAmelCase__ : Union[str, Any] = num_hidden_layers UpperCAmelCase__ : Tuple = num_attention_heads UpperCAmelCase__ : Any = hidden_act UpperCAmelCase__ : List[Any] = intermediate_size UpperCAmelCase__ : Optional[Any] = hidden_dropout_prob UpperCAmelCase__ : Dict = attention_probs_dropout_prob UpperCAmelCase__ : List[str] = max_position_embeddings UpperCAmelCase__ : Optional[int] = type_vocab_size UpperCAmelCase__ : Union[str, Any] = initializer_range UpperCAmelCase__ : Tuple = layer_norm_eps UpperCAmelCase__ : List[Any] = position_embedding_type UpperCAmelCase__ : Any = quant_mode UpperCAmelCase__ : int = force_dequant class lowerCAmelCase__ ( __magic_name__ ): @property def __a ( self : Tuple ): '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase__ : str = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase__ : List[Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
356
"""simple docstring""" import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) _lowerCAmelCase : Optional[int] = { """vocab_file""": """vocab.txt""", """merges_file""": """bpe.codes""", } _lowerCAmelCase : List[Any] = { """vocab_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt""", }, """merges_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes""", }, } _lowerCAmelCase : int = { """vinai/phobert-base""": 256, """vinai/phobert-large""": 256, } def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] )-> str: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = set() UpperCAmelCase__ : Optional[int] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase__ : Dict = char UpperCAmelCase__ : Tuple = set(snake_case ) return pairs class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ =VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ =PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : List[Any] , snake_case__ : int , snake_case__ : Union[str, Any] , snake_case__ : Tuple="<s>" , snake_case__ : List[Any]="</s>" , snake_case__ : Union[str, Any]="</s>" , snake_case__ : Union[str, Any]="<s>" , snake_case__ : Any="<unk>" , snake_case__ : int="<pad>" , snake_case__ : List[str]="<mask>" , **snake_case__ : Optional[int] , ): '''simple docstring''' super().__init__( bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , **snake_case__ , ) UpperCAmelCase__ : Dict = vocab_file UpperCAmelCase__ : Tuple = merges_file UpperCAmelCase__ : List[Any] = {} UpperCAmelCase__ : Dict = 0 UpperCAmelCase__ : int = 1 UpperCAmelCase__ : Dict = 2 UpperCAmelCase__ : Dict = 3 self.add_from_file(snake_case__ ) UpperCAmelCase__ : Optional[Any] = {v: k for k, v in self.encoder.items()} with open(snake_case__ , encoding="utf-8" ) as merges_handle: UpperCAmelCase__ : Tuple = merges_handle.read().split("\n" )[:-1] UpperCAmelCase__ : Optional[Any] = [tuple(merge.split()[:-1] ) for merge in merges] UpperCAmelCase__ : List[Any] = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) UpperCAmelCase__ : Dict = {} def __a ( self : int , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase__ : str = [self.cls_token_id] UpperCAmelCase__ : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __a ( self : List[str] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1, 1] + ([0] * len(snake_case__ )) + [1] def __a ( self : Union[str, Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase__ : Tuple = [self.sep_token_id] UpperCAmelCase__ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __a ( self : List[str] ): '''simple docstring''' return len(self.encoder ) def __a ( self : Any ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def __a ( self : Dict , snake_case__ : Tuple ): '''simple docstring''' if token in self.cache: return self.cache[token] UpperCAmelCase__ : Optional[Any] = tuple(snake_case__ ) UpperCAmelCase__ : Optional[Any] = tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) UpperCAmelCase__ : Any = get_pairs(snake_case__ ) if not pairs: return token while True: UpperCAmelCase__ : List[Any] = min(snake_case__ , key=lambda snake_case__ : self.bpe_ranks.get(snake_case__ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase__ , UpperCAmelCase__ : Tuple = bigram UpperCAmelCase__ : Optional[Any] = [] UpperCAmelCase__ : Tuple = 0 while i < len(snake_case__ ): try: UpperCAmelCase__ : Union[str, Any] = word.index(snake_case__ , snake_case__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase__ : Dict = j if word[i] == first and i < len(snake_case__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase__ : Dict = tuple(snake_case__ ) UpperCAmelCase__ : List[Any] = new_word if len(snake_case__ ) == 1: break else: UpperCAmelCase__ : Dict = get_pairs(snake_case__ ) UpperCAmelCase__ : List[Any] = "@@ ".join(snake_case__ ) UpperCAmelCase__ : Optional[int] = word[:-4] UpperCAmelCase__ : Union[str, Any] = word return word def __a ( self : List[Any] , snake_case__ : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = [] UpperCAmelCase__ : int = re.findall(R"\S+\n?" , snake_case__ ) for token in words: split_tokens.extend(list(self.bpe(snake_case__ ).split(" " ) ) ) return split_tokens def __a ( self : Dict , snake_case__ : List[str] ): '''simple docstring''' return self.encoder.get(snake_case__ , self.encoder.get(self.unk_token ) ) def __a ( self : List[Any] , snake_case__ : Any ): '''simple docstring''' return self.decoder.get(snake_case__ , self.unk_token ) def __a ( self : str , snake_case__ : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = " ".join(snake_case__ ).replace("@@ " , "" ).strip() return out_string def __a ( self : Any , snake_case__ : str , snake_case__ : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(snake_case__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return UpperCAmelCase__ : Tuple = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase__ : str = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ): copyfile(self.vocab_file , snake_case__ ) if os.path.abspath(self.merges_file ) != os.path.abspath(snake_case__ ): copyfile(self.merges_file , snake_case__ ) return out_vocab_file, out_merge_file def __a ( self : List[Any] , snake_case__ : Union[str, Any] ): '''simple docstring''' if isinstance(snake_case__ , snake_case__ ): try: with open(snake_case__ , "r" , encoding="utf-8" ) as fd: self.add_from_file(snake_case__ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f'Incorrect encoding detected in {f}, please rebuild the dataset' ) return UpperCAmelCase__ : Dict = f.readlines() for lineTmp in lines: UpperCAmelCase__ : Optional[int] = lineTmp.strip() UpperCAmelCase__ : Tuple = line.rfind(" " ) if idx == -1: raise ValueError("Incorrect dictionary format, expected '<token> <cnt>'" ) UpperCAmelCase__ : Any = line[:idx] UpperCAmelCase__ : str = len(self.encoder )
298
0
"""simple docstring""" # Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def _A (__a , __a , __a , __a ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ : int = { '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, nicht wahr?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] SCREAMING_SNAKE_CASE_ : Tuple = { '''wmt16-en-de-dist-12-1''': [28.3, 27.52], '''wmt16-en-de-dist-6-1''': [27.4, 27.11], '''wmt16-en-de-12-1''': [26.9, 25.75], } SCREAMING_SNAKE_CASE_ : List[str] = f'{src_lang}-{tgt_lang}' SCREAMING_SNAKE_CASE_ : List[Any] = f'\n---\nlanguage:\n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt16\n- allenai\nlicense: apache-2.0\ndatasets:\n- wmt16\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}.\n\nFor more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369).\n\nAll 3 models are available:\n\n* [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1)\n* [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1)\n* [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1)\n\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = "allenai/{model_name}"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = "{texts[src_lang]}"\ninput_ids = tokenizer.encode(input, return_tensors="pt")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n\n## Training data\n\nPretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369).\n\n## Eval results\n\nHere are the BLEU scores:\n\nmodel | fairseq | transformers\n-------|---------|----------\n{model_name} | {scores[model_name][0]} | {scores[model_name][1]}\n\nThe score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs.\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=5\nmkdir -p $DATA_DIR\nsacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt16/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372)\n\n\n### BibTeX entry and citation info\n\n```\n@misc{{kasai2020deep,\n title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}},\n author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}},\n year={{2020}},\n eprint={{2006.10369}},\n archivePrefix={{arXiv}},\n primaryClass={{cs.CL}}\n}}\n```\n\n' model_card_dir.mkdir(parents=__a , exist_ok=__a ) SCREAMING_SNAKE_CASE_ : List[Any] = os.path.join(__a , '''README.md''' ) print(f'Generating {path}' ) with open(__a , '''w''' , encoding='''utf-8''' ) as f: f.write(__a ) # make sure we are under the root of the project UpperCAmelCase_ : Union[str, Any] = Path(__file__).resolve().parent.parent.parent UpperCAmelCase_ : Optional[int] = repo_dir / """model_cards""" for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: UpperCAmelCase_ : int = model_cards_dir / """allenai""" / model_name write_model_card(model_card_dir, src_lang="""en""", tgt_lang="""de""", model_name=model_name)
91
"""simple docstring""" import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor UpperCAmelCase_ : Any = logging.get_logger(__name__) class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : Union[str, Any] , *lowercase_ : List[str] , **lowercase_ : List[str]): '''simple docstring''' warnings.warn( '''The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use SegformerImageProcessor instead.''' , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_)
91
1
"""simple docstring""" from __future__ import annotations def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): # noqa: E741 '''simple docstring''' while r - l > 1: __SCREAMING_SNAKE_CASE = (l + r) // 2 if v[m] >= key: __SCREAMING_SNAKE_CASE = m else: __SCREAMING_SNAKE_CASE = m # noqa: E741 return r def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' if len(lowerCAmelCase_ ) == 0: return 0 __SCREAMING_SNAKE_CASE = [0] * len(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = v[0] for i in range(1 , len(lowerCAmelCase_ ) ): if v[i] < tail[0]: __SCREAMING_SNAKE_CASE = v[i] elif v[i] > tail[length - 1]: __SCREAMING_SNAKE_CASE = v[i] length += 1 else: __SCREAMING_SNAKE_CASE = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
195
"""simple docstring""" def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [0 for i in range(r + 1 )] # nc0 = 1 __SCREAMING_SNAKE_CASE = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. __SCREAMING_SNAKE_CASE = min(lowerCAmelCase_ , lowerCAmelCase_ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=1_0, r=5))
195
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase : int = logging.get_logger(__name__) UpperCamelCase : List[str] = { '''microsoft/trocr-base-handwritten''': ( '''https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json''' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class __lowerCAmelCase ( UpperCAmelCase__ ): lowercase = "trocr" lowercase = ["past_key_values"] lowercase = { "num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model", "num_hidden_layers": "decoder_layers", } def __init__( self , __UpperCAmelCase=5_0265 , __UpperCAmelCase=1024 , __UpperCAmelCase=12 , __UpperCAmelCase=16 , __UpperCAmelCase=4096 , __UpperCAmelCase="gelu" , __UpperCAmelCase=512 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=2 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=0.0 , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = vocab_size __UpperCamelCase = d_model __UpperCamelCase = decoder_layers __UpperCamelCase = decoder_attention_heads __UpperCamelCase = decoder_ffn_dim __UpperCamelCase = activation_function __UpperCamelCase = max_position_embeddings __UpperCamelCase = dropout __UpperCamelCase = attention_dropout __UpperCamelCase = activation_dropout __UpperCamelCase = init_std __UpperCamelCase = decoder_layerdrop __UpperCamelCase = use_cache __UpperCamelCase = scale_embedding __UpperCamelCase = use_learned_position_embeddings __UpperCamelCase = layernorm_embedding super().__init__( pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , decoder_start_token_id=__UpperCAmelCase , **__UpperCAmelCase , )
316
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__: List[str] = logging.get_logger(__name__) A__: Union[str, Any] = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class A__ ( UpperCAmelCase__ ): __UpperCamelCase : int = "data2vec-text" def __init__( self :str , SCREAMING_SNAKE_CASE :Optional[Any]=3_0_5_2_2 , SCREAMING_SNAKE_CASE :Any=7_6_8 , SCREAMING_SNAKE_CASE :List[Any]=1_2 , SCREAMING_SNAKE_CASE :List[str]=1_2 , SCREAMING_SNAKE_CASE :Dict=3_0_7_2 , SCREAMING_SNAKE_CASE :List[str]="gelu" , SCREAMING_SNAKE_CASE :Any=0.1 , SCREAMING_SNAKE_CASE :List[str]=0.1 , SCREAMING_SNAKE_CASE :int=5_1_2 , SCREAMING_SNAKE_CASE :int=2 , SCREAMING_SNAKE_CASE :Union[str, Any]=0.02 , SCREAMING_SNAKE_CASE :Dict=1e-12 , SCREAMING_SNAKE_CASE :int=1 , SCREAMING_SNAKE_CASE :Dict=0 , SCREAMING_SNAKE_CASE :List[Any]=2 , SCREAMING_SNAKE_CASE :str="absolute" , SCREAMING_SNAKE_CASE :Tuple=True , SCREAMING_SNAKE_CASE :Union[str, Any]=None , **SCREAMING_SNAKE_CASE :Union[str, Any] , ) -> List[str]: '''simple docstring''' super().__init__(pad_token_id=SCREAMING_SNAKE_CASE , bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) _a : Optional[Any] =vocab_size _a : Optional[Any] =hidden_size _a : Any =num_hidden_layers _a : List[str] =num_attention_heads _a : Union[str, Any] =hidden_act _a : Any =intermediate_size _a : str =hidden_dropout_prob _a : Optional[Any] =attention_probs_dropout_prob _a : Optional[Any] =max_position_embeddings _a : Union[str, Any] =type_vocab_size _a : Tuple =initializer_range _a : Optional[int] =layer_norm_eps _a : Tuple =position_embedding_type _a : int =use_cache _a : List[str] =classifier_dropout class A__ ( UpperCAmelCase__ ): @property def __UpperCAmelCase ( self :int ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": _a : Tuple ={0: """batch""", 1: """choice""", 2: """sequence"""} else: _a : List[Any] ={0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
276
0
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image lowerCAmelCase_ = ['text', 'image', 'audio'] def snake_case( __magic_name__ ) -> str: '''simple docstring''' lowercase : Optional[Any] = [] for input_type in input_types: if input_type == "text": inputs.append('''Text input''' ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' ).resize((5_12, 5_12) ) ) elif input_type == "audio": inputs.append(torch.ones(30_00 ) ) elif isinstance(__magic_name__ , __magic_name__ ): inputs.append(create_inputs(__magic_name__ ) ) else: raise ValueError(F"""Invalid type requested: {input_type}""" ) return inputs def snake_case( __magic_name__ ) -> Any: '''simple docstring''' lowercase : Any = [] for output in outputs: if isinstance(__magic_name__ , (str, AgentText) ): output_types.append('''text''' ) elif isinstance(__magic_name__ , (Image.Image, AgentImage) ): output_types.append('''image''' ) elif isinstance(__magic_name__ , (torch.Tensor, AgentAudio) ): output_types.append('''audio''' ) else: raise ValueError(F"""Invalid output: {output}""" ) return output_types @is_tool_test class _A : def __a ( self : List[Any] ) -> Optional[int]: """simple docstring""" self.assertTrue(hasattr(self.tool , '''inputs''' ) ) self.assertTrue(hasattr(self.tool , '''outputs''' ) ) lowercase : List[Any] = self.tool.inputs for _input in inputs: if isinstance(_input , _A ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) lowercase : Tuple = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def __a ( self : Dict ) -> Any: """simple docstring""" lowercase : Union[str, Any] = create_inputs(self.tool.inputs ) lowercase : Dict = self.tool(*_A ) # There is a single output if len(self.tool.outputs ) == 1: lowercase : str = [outputs] self.assertListEqual(output_types(_A ) , self.tool.outputs ) def __a ( self : List[str] ) -> List[Any]: """simple docstring""" self.assertTrue(hasattr(self.tool , '''description''' ) ) self.assertTrue(hasattr(self.tool , '''default_checkpoint''' ) ) self.assertTrue(self.tool.description.startswith('''This is a tool that''' ) ) def __a ( self : Any ) -> Optional[int]: """simple docstring""" lowercase : str = create_inputs(self.tool.inputs ) lowercase : int = self.tool(*_A ) if not isinstance(_A , _A ): lowercase : Optional[int] = [outputs] self.assertEqual(len(_A ) , len(self.tool.outputs ) ) for output, output_type in zip(_A , self.tool.outputs ): lowercase : List[Any] = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(_A , _A ) ) def __a ( self : List[str] ) -> Any: """simple docstring""" lowercase : int = create_inputs(self.tool.inputs ) lowercase : Tuple = [] for _input, input_type in zip(_A , self.tool.inputs ): if isinstance(_A , _A ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error lowercase : int = self.tool(*_A ) if not isinstance(_A , _A ): lowercase : Union[str, Any] = [outputs] self.assertEqual(len(_A ) , len(self.tool.outputs ) )
116
import os from collections.abc import Iterator def snake_case( __magic_name__ = "." ) -> Iterator[str]: '''simple docstring''' for dir_path, dir_names, filenames in os.walk(__magic_name__ ): lowercase : Tuple = [d for d in dir_names if d != '''scripts''' and d[0] not in '''._'''] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(__magic_name__ )[1] in (".py", ".ipynb"): yield os.path.join(__magic_name__ , __magic_name__ ).lstrip('''./''' ) def snake_case( __magic_name__ ) -> Dict: '''simple docstring''' return F"""{i * ' '}*""" if i else "\n##" def snake_case( __magic_name__ , __magic_name__ ) -> str: '''simple docstring''' lowercase : Dict = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(__magic_name__ ) or old_parts[i] != new_part) and new_part: print(F"""{md_prefix(__magic_name__ )} {new_part.replace('_' , ' ' ).title()}""" ) return new_path def snake_case( __magic_name__ = "." ) -> None: '''simple docstring''' lowercase : str = '''''' for filepath in sorted(good_file_paths(__magic_name__ ) ): lowercase , lowercase : Optional[int] = os.path.split(__magic_name__ ) if filepath != old_path: lowercase : str = print_path(__magic_name__ , __magic_name__ ) lowercase : Optional[int] = (filepath.count(os.sep ) + 1) if filepath else 0 lowercase : Optional[Any] = F"""{filepath}/{filename}""".replace(''' ''' , '''%20''' ) lowercase : List[str] = os.path.splitext(filename.replace('''_''' , ''' ''' ).title() )[0] print(F"""{md_prefix(__magic_name__ )} [{filename}]({url})""" ) if __name__ == "__main__": print_directory_md('.')
116
1
"""simple docstring""" import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters lowerCAmelCase_ = logging.get_logger(__name__) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None ) -> Tuple: # Recurse if needed if "." in tensor_name: lowercase__ : List[str] = tensor_name.split('''.''' ) for split in splits[:-1]: lowercase__ : List[Any] = getattr(__lowerCamelCase , __lowerCamelCase ) if new_module is None: raise ValueError(f"""{module} has no attribute {split}.""" ) lowercase__ : Optional[int] = new_module lowercase__ : Tuple = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(f"""{module} does not have a parameter or a buffer named {tensor_name}.""" ) lowercase__ : List[Any] = tensor_name in module._buffers lowercase__ : Any = getattr(__lowerCamelCase , __lowerCamelCase ) if old_value.device == torch.device('''meta''' ) and device not in ["meta", torch.device('''meta''' )] and value is None: raise ValueError(f"""{tensor_name} is on the meta device, we need a `value` to put in on {device}.""" ) lowercase__ : Any = False lowercase__ : List[str] = False if is_buffer or not is_bitsandbytes_available(): lowercase__ : Union[str, Any] = False lowercase__ : str = False else: lowercase__ : Any = hasattr(bnb.nn , '''Params4bit''' ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) lowercase__ : int = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: lowercase__ : Tuple = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: lowercase__ : List[Any] = old_value.to(__lowerCamelCase ) elif isinstance(__lowerCamelCase , torch.Tensor ): lowercase__ : str = value.to('''cpu''' ) if value.dtype == torch.inta: lowercase__ : str = version.parse(importlib.metadata.version('''bitsandbytes''' ) ) > version.parse( '''0.37.2''' ) if not is_abit_serializable: raise ValueError( '''Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ''' '''Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.''' ) else: lowercase__ : Tuple = torch.tensor(__lowerCamelCase , device='''cpu''' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , __lowerCamelCase ) and fpaa_statistics is None: lowercase__ : str = new_value.T lowercase__ : str = old_value.__dict__ if is_abit: lowercase__ : Union[str, Any] = bnb.nn.IntaParams(__lowerCamelCase , requires_grad=__lowerCamelCase , **__lowerCamelCase ).to(__lowerCamelCase ) elif is_abit: lowercase__ : Optional[int] = bnb.nn.Paramsabit(__lowerCamelCase , requires_grad=__lowerCamelCase , **__lowerCamelCase ).to(__lowerCamelCase ) lowercase__ : Tuple = new_value if fpaa_statistics is not None: setattr(module.weight , '''SCB''' , fpaa_statistics.to(__lowerCamelCase ) ) else: if value is None: lowercase__ : Union[str, Any] = old_value.to(__lowerCamelCase ) elif isinstance(__lowerCamelCase , torch.Tensor ): lowercase__ : List[Any] = value.to(__lowerCamelCase ) else: lowercase__ : Optional[Any] = torch.tensor(__lowerCamelCase , device=__lowerCamelCase ) if is_buffer: lowercase__ : Tuple = new_value else: lowercase__ : List[Any] = nn.Parameter(__lowerCamelCase , requires_grad=old_value.requires_grad ) lowercase__ : int = new_value def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=False ) -> List[str]: for name, module in model.named_children(): if current_key_name is None: lowercase__ : Tuple = [] current_key_name.append(__lowerCamelCase ) if (isinstance(__lowerCamelCase , nn.Linear ) or isinstance(__lowerCamelCase , __lowerCamelCase )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '''.'''.join(__lowerCamelCase ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(__lowerCamelCase , __lowerCamelCase ): lowercase__ , lowercase__ : str = module.weight.shape else: lowercase__ : str = module.in_features lowercase__ : Union[str, Any] = module.out_features if quantization_config.quantization_method() == "llm_int8": lowercase__ : Union[str, Any] = bnb.nn.LinearabitLt( __lowerCamelCase , __lowerCamelCase , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) lowercase__ : List[Any] = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: lowercase__ : Tuple = bnb.nn.Linearabit( __lowerCamelCase , __lowerCamelCase , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) lowercase__ : Optional[int] = True # Store the module class in case we need to transpose the weight later lowercase__ : str = type(__lowerCamelCase ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(__lowerCamelCase ) if len(list(module.children() ) ) > 0: lowercase__ , lowercase__ : Any = _replace_with_bnb_linear( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , has_been_replaced=__lowerCamelCase , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None ) -> Optional[Any]: lowercase__ : Dict = ['''lm_head'''] if modules_to_not_convert is None else modules_to_not_convert lowercase__ , lowercase__ : str = _replace_with_bnb_linear( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def __UpperCAmelCase ( *__lowerCamelCase , **__lowerCamelCase ) -> Union[str, Any]: warnings.warn( '''`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead''' , __lowerCamelCase , ) return replace_with_bnb_linear(*__lowerCamelCase , **__lowerCamelCase ) def __UpperCAmelCase ( *__lowerCamelCase , **__lowerCamelCase ) -> str: warnings.warn( '''`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead''' , __lowerCamelCase , ) return set_module_quantized_tensor_to_device(*__lowerCamelCase , **__lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[Any]: lowercase__ : List[str] = deepcopy(__lowerCamelCase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() lowercase__ : Union[str, Any] = find_tied_parameters(__lowerCamelCase ) # For compatibility with Accelerate < 0.18 if isinstance(__lowerCamelCase , __lowerCamelCase ): lowercase__ : Optional[int] = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: lowercase__ : Union[str, Any] = sum(__lowerCamelCase , [] ) lowercase__ : Dict = len(__lowerCamelCase ) > 0 # Check if it is a base model lowercase__ : Optional[Any] = not hasattr(__lowerCamelCase , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head lowercase__ : Optional[int] = list(model.named_children() ) lowercase__ : int = [list_modules[-1][0]] # add last module together with tied weights lowercase__ : int = set(__lowerCamelCase ) - set(__lowerCamelCase ) lowercase__ : Dict = list(set(__lowerCamelCase ) ) + list(__lowerCamelCase ) # remove ".weight" from the keys lowercase__ : Dict = ['''.weight''', '''.bias'''] lowercase__ : Dict = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: lowercase__ : List[str] = name.replace(__lowerCamelCase , '''''' ) filtered_module_names.append(__lowerCamelCase ) return filtered_module_names
16
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowerCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(A_ ) class __A ( A_ ): '''simple docstring''' def __init__( self : List[str] ,**_snake_case : Dict ) -> List[Any]: """simple docstring""" super().__init__(**_snake_case ) requires_backends(self ,'''vision''' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Optional[int] ,_snake_case : Union[str, List[str], "Image", List["Image"]] ,**_snake_case : int ) -> Optional[Any]: """simple docstring""" return super().__call__(_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Dict ,**_snake_case : Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ : List[str] = {} if "candidate_labels" in kwargs: lowercase__ : Any = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: lowercase__ : Optional[Any] = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Optional[int] ,_snake_case : Dict=None ,_snake_case : Union[str, Any]="This is a photo of {}." ) -> List[str]: """simple docstring""" lowercase__ : List[Any] = load_image(_snake_case ) lowercase__ : int = self.image_processor(images=[image] ,return_tensors=self.framework ) lowercase__ : str = candidate_labels lowercase__ : Dict = [hypothesis_template.format(_snake_case ) for x in candidate_labels] lowercase__ : Any = self.tokenizer(_snake_case ,return_tensors=self.framework ,padding=_snake_case ) lowercase__ : Optional[int] = [text_inputs] return inputs def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ : Optional[int] = model_inputs.pop('''candidate_labels''' ) lowercase__ : Union[str, Any] = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] ,_snake_case ): lowercase__ : List[str] = text_inputs[0] else: # Batching case. lowercase__ : int = text_inputs[0][0] lowercase__ : Tuple = self.model(**_snake_case ,**_snake_case ) lowercase__ : Union[str, Any] = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def UpperCAmelCase ( self : Any ,_snake_case : Tuple ) -> Any: """simple docstring""" lowercase__ : Dict = model_outputs.pop('''candidate_labels''' ) lowercase__ : Optional[Any] = model_outputs['''logits'''][0] if self.framework == "pt": lowercase__ : Optional[int] = logits.softmax(dim=-1 ).squeeze(-1 ) lowercase__ : Tuple = probs.tolist() if not isinstance(_snake_case ,_snake_case ): lowercase__ : Any = [scores] elif self.framework == "tf": lowercase__ : List[str] = stable_softmax(_snake_case ,axis=-1 ) lowercase__ : Optional[Any] = probs.numpy().tolist() else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) lowercase__ : Union[str, Any] = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(_snake_case ,_snake_case ) ,key=lambda _snake_case : -x[0] ) ] return result
16
1
import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def lowercase( UpperCamelCase_ ) -> Union[str, Any]: '''simple docstring''' return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> List[str]: '''simple docstring''' UpperCamelCase = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue UpperCamelCase = key.replace("""heads.cmd.mim_head.cls.predictions""" , """mmm_image_head""" ) UpperCamelCase = key.replace("""heads.cmd.mlm_head.cls.predictions""" , """mmm_text_head""" ) UpperCamelCase = key.replace("""heads.cmd.itm_head.cls""" , """itm_head""" ) UpperCamelCase = key.replace("""heads.cmd.itm_head.pooler""" , """itm_head.pooler""" ) UpperCamelCase = key.replace("""heads.cmd.clip_head.logit_scale""" , """flava.logit_scale""" ) UpperCamelCase = key.replace("""heads.fairseq_mlm.cls.predictions""" , """mlm_head""" ) UpperCamelCase = key.replace("""heads.imagenet.mim_head.cls.predictions""" , """mim_head""" ) UpperCamelCase = key.replace("""mm_text_projection""" , """flava.text_to_mm_projection""" ) UpperCamelCase = key.replace("""mm_image_projection""" , """flava.image_to_mm_projection""" ) UpperCamelCase = key.replace("""image_encoder.module""" , """flava.image_model""" ) UpperCamelCase = key.replace("""text_encoder.module""" , """flava.text_model""" ) UpperCamelCase = key.replace("""mm_encoder.module.encoder.cls_token""" , """flava.multimodal_model.cls_token""" ) UpperCamelCase = key.replace("""mm_encoder.module""" , """flava.multimodal_model""" ) UpperCamelCase = key.replace("""text_projection""" , """flava.text_projection""" ) UpperCamelCase = key.replace("""image_projection""" , """flava.image_projection""" ) UpperCamelCase = value.float() for key, value in codebook_state_dict.items(): UpperCamelCase = value return upgrade @torch.no_grad() def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None ) -> List[str]: '''simple docstring''' if config_path is not None: UpperCamelCase = FlavaConfig.from_pretrained(__SCREAMING_SNAKE_CASE ) else: UpperCamelCase = FlavaConfig() UpperCamelCase = FlavaForPreTraining(__SCREAMING_SNAKE_CASE ).eval() UpperCamelCase = convert_dalle_checkpoint(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , save_checkpoint=__SCREAMING_SNAKE_CASE ) if os.path.exists(__SCREAMING_SNAKE_CASE ): UpperCamelCase = torch.load(__SCREAMING_SNAKE_CASE , map_location="""cpu""" ) else: UpperCamelCase = torch.hub.load_state_dict_from_url(__SCREAMING_SNAKE_CASE , map_location="""cpu""" ) UpperCamelCase = upgrade_state_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) hf_model.load_state_dict(__SCREAMING_SNAKE_CASE ) UpperCamelCase = hf_model.state_dict() UpperCamelCase = count_parameters(__SCREAMING_SNAKE_CASE ) UpperCamelCase = count_parameters(__SCREAMING_SNAKE_CASE ) + count_parameters(__SCREAMING_SNAKE_CASE ) assert torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1E-3 ) hf_model.save_pretrained(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""") parser.add_argument("""--codebook_path""", default=None, type=str, help="""Path to flava codebook checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") _SCREAMING_SNAKE_CASE = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
370
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _SCREAMING_SNAKE_CASE = {"""configuration_yolos""": ["""YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """YolosConfig""", """YolosOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ["""YolosFeatureExtractor"""] _SCREAMING_SNAKE_CASE = ["""YolosImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST""", """YolosForObjectDetection""", """YolosModel""", """YolosPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
165
0
import math def __lowerCamelCase ( lowerCamelCase__ : int ): '''simple docstring''' if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase = f'Input value of [number={number}] must be an integer' raise TypeError(lowerCamelCase__ ) if number < 1: lowerCamelCase = f'Input value of [number={number}] must be > 0' raise ValueError(lowerCamelCase__ ) elif number == 1: return 3 elif number == 2: return 5 else: lowerCamelCase = int(math.log(number // 3 , 2 ) ) + 2 lowerCamelCase = [3, 5] lowerCamelCase = 2 lowerCamelCase = 3 for block in range(1 , lowerCamelCase__ ): for _ in range(lowerCamelCase__ ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(11): UpperCAmelCase : Optional[Any] = 0 try: UpperCAmelCase : Optional[Any] = proth(number) except ValueError: print(f"""ValueError: there is no {number}th Proth number""") continue print(f"""The {number}th Proth number: {value}""")
252
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: UpperCAmelCase : Any = None UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase : Any = {"vocab_file": "sentencepiece.model", "tokenizer_file": "tokenizer.json"} UpperCAmelCase : Optional[int] = { "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, "tokenizer_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/tokenizer.json", }, } UpperCAmelCase : List[str] = { "google/rembert": 2_56, } UpperCAmelCase : List[str] = "▁" class __lowercase ( a_ ): """simple docstring""" UpperCamelCase : Dict = VOCAB_FILES_NAMES UpperCamelCase : Dict = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase : Tuple = RemBertTokenizer def __init__( self , A=None , A=None , A=True , A=True , A=False , A="[CLS]" , A="[SEP]" , A="<unk>" , A="[SEP]" , A="<pad>" , A="[CLS]" , A="[MASK]" , **A , ) -> Any: '''simple docstring''' lowerCamelCase = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token super().__init__( A , tokenizer_file=A , do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , **A , ) lowerCamelCase = do_lower_case lowerCamelCase = remove_space lowerCamelCase = keep_accents lowerCamelCase = vocab_file lowerCamelCase = False if not self.vocab_file else True def __A ( self , A , A = None ) -> List[int]: '''simple docstring''' lowerCamelCase = [self.sep_token_id] lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __A ( self , A , A = None , A = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(A )) + [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1] def __A ( self , A , A = None ) -> List[int]: '''simple docstring''' lowerCamelCase = [self.sep_token_id] lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self , A , A = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(A ): logger.error("""Vocabulary path ({}) should be a directory""".format(A ) ) return lowerCamelCase = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file , A ) return (out_vocab_file,)
252
1
import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel _UpperCAmelCase = { 'gwf-440k': { 'url': 'https://model-server.zqevans2.workers.dev/gwf-440k.ckpt', 'sample_rate': 4_8000, 'sample_size': 6_5536, }, 'jmann-small-190k': { 'url': 'https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt', 'sample_rate': 4_8000, 'sample_size': 6_5536, }, 'jmann-large-580k': { 'url': 'https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt', 'sample_rate': 4_8000, 'sample_size': 13_1072, }, 'maestro-uncond-150k': { 'url': 'https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt', 'sample_rate': 1_6000, 'sample_size': 6_5536, }, 'unlocked-uncond-250k': { 'url': 'https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt', 'sample_rate': 1_6000, 'sample_size': 6_5536, }, 'honk-140k': { 'url': 'https://model-server.zqevans2.workers.dev/honk-140k.ckpt', 'sample_rate': 1_6000, 'sample_size': 6_5536, }, } def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :Dict , SCREAMING_SNAKE_CASE :int ) -> List[str]: return torch.atana(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) / math.pi * 2 def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :Optional[int] ) -> int: __lowerCAmelCase : Any = torch.sin(t * math.pi / 2 ) ** 2 __lowerCAmelCase : str = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) class snake_case_ ( __lowercase ): pass class snake_case_ ( nn.Module ): def __init__( self : Union[str, Any] , _snake_case : Optional[int] )->Any: '''simple docstring''' super().__init__() __lowerCAmelCase : Dict = DiffusionAttnUnetaD(_snake_case , n_attn_layers=4 ) __lowerCAmelCase : Union[str, Any] = deepcopy(self.diffusion ) __lowerCAmelCase : int = torch.quasirandom.SobolEngine(1 , scramble=_snake_case ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int ) -> List[str]: __lowerCAmelCase : Optional[Any] = MODELS_MAP[model_name]["""url"""] os.system(F'''wget {url} ./''' ) return F'''./{model_name}.ckpt''' _UpperCAmelCase = { '1': 'resnets.0', '2': 'attentions.0', '3': 'resnets.1', '4': 'attentions.1', '5': 'resnets.2', '6': 'attentions.2', } _UpperCAmelCase = { '8': 'resnets.0', '9': 'attentions.0', '10': 'resnets.1', '11': 'attentions.1', '12': 'resnets.2', '13': 'attentions.2', } _UpperCAmelCase = { '1': 'resnets.0', '2': 'attentions.0', '3': 'resnets.1', '4': 'attentions.1', '5': 'resnets.2', '6': 'attentions.2', '8': 'resnets.3', '9': 'attentions.3', '10': 'resnets.4', '11': 'attentions.4', '12': 'resnets.5', '13': 'attentions.5', } _UpperCAmelCase = { '0': 'resnets.0', '1': 'resnets.1', '2': 'resnets.2', '4': 'resnets.0', '5': 'resnets.1', '6': 'resnets.2', } _UpperCAmelCase = { 'skip': 'conv_skip', 'main.0': 'conv_1', 'main.1': 'group_norm_1', 'main.3': 'conv_2', 'main.4': 'group_norm_2', } _UpperCAmelCase = { 'norm': 'group_norm', 'qkv_proj': ['query', 'key', 'value'], 'out_proj': ['proj_attn'], } def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :List[str] ) -> Dict: if name.startswith("""skip""" ): return name.replace("""skip""" , RES_CONV_MAP["""skip"""] ) # name has to be of format main.{digit} if not name.startswith("""main.""" ): raise ValueError(F'''ResConvBlock error with {name}''' ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :Any ) -> Optional[int]: for key, value in ATTN_MAP.items(): if name.startswith(SCREAMING_SNAKE_CASE ) and not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return name.replace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif name.startswith(SCREAMING_SNAKE_CASE ): return [name.replace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for v in value] raise ValueError(F'''Attn error with {name}''' ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :Tuple , SCREAMING_SNAKE_CASE :Optional[int]=13 ) -> Dict: __lowerCAmelCase : List[Any] = input_string if string.split(""".""" )[0] == "timestep_embed": return string.replace("""timestep_embed""" , """time_proj""" ) __lowerCAmelCase : Tuple = 0 if string.startswith("""net.3.""" ): depth += 1 __lowerCAmelCase : Dict = string[6:] elif string.startswith("""net.""" ): __lowerCAmelCase : int = string[4:] while string.startswith("""main.7.""" ): depth += 1 __lowerCAmelCase : Tuple = string[7:] if string.startswith("""main.""" ): __lowerCAmelCase : List[Any] = string[5:] # mid block if string[:2].isdigit(): __lowerCAmelCase : Optional[Any] = string[:2] __lowerCAmelCase : Union[str, Any] = string[2:] else: __lowerCAmelCase : List[str] = string[0] __lowerCAmelCase : Optional[int] = string[1:] if depth == max_depth: __lowerCAmelCase : Optional[Any] = MID_NUM_TO_LAYER[layer_num] __lowerCAmelCase : Any = """mid_block""" elif depth > 0 and int(SCREAMING_SNAKE_CASE ) < 7: __lowerCAmelCase : str = DOWN_NUM_TO_LAYER[layer_num] __lowerCAmelCase : Tuple = F'''down_blocks.{depth}''' elif depth > 0 and int(SCREAMING_SNAKE_CASE ) > 7: __lowerCAmelCase : Tuple = UP_NUM_TO_LAYER[layer_num] __lowerCAmelCase : Tuple = F'''up_blocks.{max_depth - depth - 1}''' elif depth == 0: __lowerCAmelCase : Optional[Any] = DEPTH_0_TO_LAYER[layer_num] __lowerCAmelCase : List[Any] = F'''up_blocks.{max_depth - 1}''' if int(SCREAMING_SNAKE_CASE ) > 3 else """down_blocks.0""" if not string_left.startswith(""".""" ): raise ValueError(F'''Naming error with {input_string} and string_left: {string_left}.''' ) __lowerCAmelCase : List[Any] = string_left[1:] if "resnets" in new_layer: __lowerCAmelCase : Optional[int] = convert_resconv_naming(SCREAMING_SNAKE_CASE ) elif "attentions" in new_layer: __lowerCAmelCase : str = convert_attn_naming(SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = new_string_left if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowerCAmelCase : List[Any] = prefix + """.""" + new_layer + """.""" + string_left else: __lowerCAmelCase : Optional[int] = [prefix + """.""" + new_layer + """.""" + s for s in string_left] return new_string def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int ) -> Optional[Any]: __lowerCAmelCase : Optional[int] = {} for k, v in state_dict.items(): if k.endswith("""kernel""" ): # up- and downsample layers, don't have trainable weights continue __lowerCAmelCase : str = rename(SCREAMING_SNAKE_CASE ) # check if we need to transform from Conv => Linear for attention if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Optional[int] = transform_conv_attns(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase : List[str] = v return new_state_dict def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :Dict , SCREAMING_SNAKE_CASE :Dict , SCREAMING_SNAKE_CASE :Any ) -> str: if len(SCREAMING_SNAKE_CASE ) == 1: if len(v.shape ) == 3: # weight __lowerCAmelCase : Tuple = v[:, :, 0] else: # bias __lowerCAmelCase : List[str] = v else: # qkv matrices __lowerCAmelCase : Tuple = v.shape[0] __lowerCAmelCase : Any = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: __lowerCAmelCase : str = v[i * single_shape : (i + 1) * single_shape, :, 0] else: __lowerCAmelCase : Any = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int ) -> List[Any]: __lowerCAmelCase : int = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) __lowerCAmelCase : Any = args.model_path.split("""/""" )[-1].split(""".""" )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), F'''Make sure to provide one of the official model names {MODELS_MAP.keys()}''' __lowerCAmelCase : Union[str, Any] = download(SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = MODELS_MAP[model_name]["""sample_rate"""] __lowerCAmelCase : Optional[Any] = MODELS_MAP[model_name]["""sample_size"""] __lowerCAmelCase : Dict = Object() __lowerCAmelCase : int = sample_size __lowerCAmelCase : Tuple = sample_rate __lowerCAmelCase : int = 0 __lowerCAmelCase : Tuple = UNetaDModel(sample_size=SCREAMING_SNAKE_CASE , sample_rate=SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = diffusers_model.state_dict() __lowerCAmelCase : Tuple = DiffusionUncond(SCREAMING_SNAKE_CASE ) orig_model.load_state_dict(torch.load(args.model_path , map_location=SCREAMING_SNAKE_CASE )["""state_dict"""] ) __lowerCAmelCase : List[Any] = orig_model.diffusion_ema.eval() __lowerCAmelCase : Optional[Any] = orig_model.state_dict() __lowerCAmelCase : Union[str, Any] = rename_orig_weights(SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) __lowerCAmelCase : int = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(SCREAMING_SNAKE_CASE ) == 0, F'''Problem with {renamed_minus_diffusers}''' assert all(k.endswith("""kernel""" ) for k in list(SCREAMING_SNAKE_CASE ) ), F'''Problem with {diffusers_minus_renamed}''' for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), F'''Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}''' if key == "time_proj.weight": __lowerCAmelCase : List[Any] = value.squeeze() __lowerCAmelCase : Optional[int] = value diffusers_model.load_state_dict(SCREAMING_SNAKE_CASE ) __lowerCAmelCase : str = 100 __lowerCAmelCase : int = 33 __lowerCAmelCase : Tuple = IPNDMScheduler(num_train_timesteps=SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = torch.manual_seed(SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = torch.randn([1, 2, config.sample_size] , generator=SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = torch.linspace(1 , 0 , steps + 1 , device=SCREAMING_SNAKE_CASE )[:-1] __lowerCAmelCase : List[Any] = get_crash_schedule(SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = DanceDiffusionPipeline(unet=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = torch.manual_seed(33 ) __lowerCAmelCase : Any = pipe(num_inference_steps=SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE ).audios __lowerCAmelCase : Union[str, Any] = sampling.iplms_sample(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , {} ) __lowerCAmelCase : Union[str, Any] = generated.clamp(-1 , 1 ) __lowerCAmelCase : List[Any] = (generated - audio).abs().sum() __lowerCAmelCase : Optional[int] = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print("""Diff sum""" , SCREAMING_SNAKE_CASE ) print("""Diff max""" , SCREAMING_SNAKE_CASE ) assert diff_max < 1e-3, F'''Diff max: {diff_max} is too much :-/''' print(F'''Conversion for {model_name} successful!''' ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('--model_path', default=None, type=str, required=True, help='Path to the model to convert.') parser.add_argument( '--save', default=True, type=bool, required=False, help='Whether to save the converted model or not.' ) parser.add_argument('--checkpoint_path', default=None, type=str, required=True, help='Path to the output model.') _UpperCAmelCase = parser.parse_args() main(args)
232
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets _UpperCAmelCase = '\\n@inproceedings{snover-etal-2006-study,\n title = "A Study of Translation Edit Rate with Targeted Human Annotation",\n author = "Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John",\n booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers",\n month = aug # " 8-12",\n year = "2006",\n address = "Cambridge, Massachusetts, USA",\n publisher = "Association for Machine Translation in the Americas",\n url = "https://aclanthology.org/2006.amta-papers.25",\n pages = "223--231",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' _UpperCAmelCase = '\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n' _UpperCAmelCase = '\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n \'score\' (float): TER score (num_edits / sum_ref_lengths * 100)\n \'num_edits\' (int): The cumulative number of edits\n \'ref_length\' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0}\n\n Example 2:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0}\n\n Example 3:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5}\n\n Example 4:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0}\n\n Example 5:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): def UpperCAmelCase__ ( self : Tuple )->str: '''simple docstring''' if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""http://www.cs.umd.edu/~snover/tercom/""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#ter"""] , reference_urls=[ """https://github.com/jhclark/tercom""", ] , ) def UpperCAmelCase__ ( self : Dict , _snake_case : List[Any] , _snake_case : int , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = False , )->str: '''simple docstring''' __lowerCAmelCase : List[str] = len(references[0] ) if any(len(_snake_case ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) __lowerCAmelCase : str = [[refs[i] for refs in references] for i in range(_snake_case )] __lowerCAmelCase : Tuple = TER( normalized=_snake_case , no_punct=_snake_case , asian_support=_snake_case , case_sensitive=_snake_case , ) __lowerCAmelCase : List[Any] = sb_ter.corpus_score(_snake_case , _snake_case ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
232
1
from typing import TYPE_CHECKING from ....utils import _LazyModule _lowerCAmelCase : Union[str, Any] = {"tokenization_tapex": ["TapexTokenizer"]} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys _lowerCAmelCase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure)
169
_lowerCAmelCase : Dict = {"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []} _lowerCAmelCase : str = ["a", "b", "c", "d", "e"] def lowerCAmelCase ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : int ): """simple docstring""" UpperCAmelCase__ = start # add current to visited visited.append(_lowerCAmelCase ) UpperCAmelCase__ = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: UpperCAmelCase__ = topological_sort(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # if all neighbors visited add current to sort sort.append(_lowerCAmelCase ) # if all vertices haven't been visited select a new one to visit if len(_lowerCAmelCase ) != len(_lowerCAmelCase ): for vertice in vertices: if vertice not in visited: UpperCAmelCase__ = topological_sort(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # return sort return sort if __name__ == "__main__": _lowerCAmelCase : Optional[int] = topological_sort("a", [], []) print(sort)
169
1
"""simple docstring""" import os import sys import unittest __SCREAMING_SNAKE_CASE = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __SCREAMING_SNAKE_CASE = os.path.join(git_repo_path, """src""", """diffusers""") class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Tuple: A : List[Any] = find_backend(" if not is_torch_available():" ) self.assertEqual(__lowerCamelCase , "torch" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") A : List[Any] = find_backend(" if not (is_torch_available() and is_transformers_available()):" ) self.assertEqual(__lowerCamelCase , "torch_and_transformers" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") A : Optional[int] = find_backend( " if not (is_torch_available() and is_transformers_available() and is_onnx_available()):" ) self.assertEqual(__lowerCamelCase , "torch_and_transformers_and_onnx" ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> str: A : List[str] = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("torch" , __lowerCamelCase ) self.assertIn("torch_and_transformers" , __lowerCamelCase ) self.assertIn("flax_and_transformers" , __lowerCamelCase ) self.assertIn("torch_and_transformers_and_onnx" , __lowerCamelCase ) # Likewise, we can't assert on the exact content of a key self.assertIn("UNet2DModel" , objects["torch"] ) self.assertIn("FlaxUNet2DConditionModel" , objects["flax"] ) self.assertIn("StableDiffusionPipeline" , objects["torch_and_transformers"] ) self.assertIn("FlaxStableDiffusionPipeline" , objects["flax_and_transformers"] ) self.assertIn("LMSDiscreteScheduler" , objects["torch_and_scipy"] ) self.assertIn("OnnxStableDiffusionPipeline" , objects["torch_and_transformers_and_onnx"] ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Optional[int]: A : int = create_dummy_object("CONSTANT" , "'torch'" ) self.assertEqual(__lowerCamelCase , "\nCONSTANT = None\n" ) A : str = create_dummy_object("function" , "'torch'" ) self.assertEqual( __lowerCamelCase , "\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n" ) A : Optional[int] = "\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n" A : Union[str, Any] = create_dummy_object("FakeClass" , "'torch'" ) self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Union[str, Any]: A : Optional[int] = "# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n" A : str = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]} ) self.assertEqual(dummy_files["torch"] , __lowerCamelCase )
354
from math import factorial def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if successes > trials: raise ValueError("successes must be lower or equal to trials" ) if trials < 0 or successes < 0: raise ValueError("the function is defined for non-negative integers" ) if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError("the function is defined for non-negative integers" ) if not 0 < prob < 1: raise ValueError("prob has to be in range of 1 - 0" ) A : Union[str, Any] = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! A : Union[str, Any] = float(factorial(_lowerCamelCase ) ) coefficient /= factorial(_lowerCamelCase ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print("""Probability of 2 successes out of 4 trails""") print("""with probability of 0.75 is:""", end=""" """) print(binomial_distribution(2, 4, 0.75))
256
0
'''simple docstring''' import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _snake_case ( _a , unittest.TestCase ): _A : str = LayoutLMTokenizer _A : Dict = LayoutLMTokenizerFast _A : Dict = True _A : List[Any] = True def __UpperCamelCase ( self : Union[str, Any] ): super().setUp() SCREAMING_SNAKE_CASE:Dict = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] SCREAMING_SNAKE_CASE:Tuple = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def __UpperCamelCase ( self : Any ,**SCREAMING_SNAKE_CASE__ : Optional[Any] ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname ,**SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : Any ): SCREAMING_SNAKE_CASE:List[Any] = "UNwant\u00E9d,running" SCREAMING_SNAKE_CASE:str = "unwanted, running" return input_text, output_text def __UpperCamelCase ( self : Any ): SCREAMING_SNAKE_CASE:Tuple = self.tokenizer_class(self.vocab_file ) SCREAMING_SNAKE_CASE:Any = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(SCREAMING_SNAKE_CASE__ ,["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) ,[7, 4, 5, 10, 8, 9] ) def __UpperCamelCase ( self : Tuple ): pass
139
'''simple docstring''' def A_ ( snake_case ): if not all(x.isalpha() for x in string ): raise ValueError("String must only contain alphabetic characters." ) SCREAMING_SNAKE_CASE:Optional[int] = sorted(string.lower() ) return len(snake_case ) == len(set(snake_case ) ) if __name__ == "__main__": A_ = input("Enter a string ").strip() A_ = is_isogram(input_str) print(f'''{input_str} is {"an" if isogram else "not an"} isogram.''')
139
1
"""simple docstring""" from __future__ import annotations def _lowerCamelCase( a , a ): print(F"Vertex\tShortest Distance from vertex {src}" ) for i, d in enumerate(snake_case_ ): print(F"{i}\t\t{d}" ) def _lowerCamelCase( a , a , a ): for j in range(snake_case_ ): __a , __a , __a = (graph[j][k] for k in ["src", "dst", "weight"]) if distance[u] != float("inf" ) and distance[u] + w < distance[v]: return True return False def _lowerCamelCase( a , a , a , a ): __a = [float("inf" )] * vertex_count __a = 0.0 for _ in range(vertex_count - 1 ): for j in range(snake_case_ ): __a , __a , __a = (graph[j][k] for k in ["src", "dst", "weight"]) if distance[u] != float("inf" ) and distance[u] + w < distance[v]: __a = distance[u] + w __a = check_negative_cycle(snake_case_ , snake_case_ , snake_case_ ) if negative_cycle_exists: raise Exception("Negative cycle found" ) return distance if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE__:Tuple = int(input("""Enter number of vertices: """).strip()) SCREAMING_SNAKE_CASE__:Dict = int(input("""Enter number of edges: """).strip()) SCREAMING_SNAKE_CASE__:list[dict[str, int]] = [{} for _ in range(E)] for i in range(E): print("""Edge """, i + 1) SCREAMING_SNAKE_CASE__:str = ( int(x) for x in input("""Enter source, destination, weight: """).strip().split(""" """) ) SCREAMING_SNAKE_CASE__:int = {'src': src, 'dst': dest, 'weight': weight} SCREAMING_SNAKE_CASE__:Any = int(input("""\nEnter shortest path source:""").strip()) SCREAMING_SNAKE_CASE__:int = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
368
"""simple docstring""" SCREAMING_SNAKE_CASE__:Any = { """A""": """.-""", """B""": """-...""", """C""": """-.-.""", """D""": """-..""", """E""": """.""", """F""": """..-.""", """G""": """--.""", """H""": """....""", """I""": """..""", """J""": """.---""", """K""": """-.-""", """L""": """.-..""", """M""": """--""", """N""": """-.""", """O""": """---""", """P""": """.--.""", """Q""": """--.-""", """R""": """.-.""", """S""": """...""", """T""": """-""", """U""": """..-""", """V""": """...-""", """W""": """.--""", """X""": """-..-""", """Y""": """-.--""", """Z""": """--..""", """1""": """.----""", """2""": """..---""", """3""": """...--""", """4""": """....-""", """5""": """.....""", """6""": """-....""", """7""": """--...""", """8""": """---..""", """9""": """----.""", """0""": """-----""", """&""": """.-...""", """@""": """.--.-.""", """:""": """---...""", """,""": """--..--""", """.""": """.-.-.-""", """'""": """.----.""", """\"""": """.-..-.""", """?""": """..--..""", """/""": """-..-.""", """=""": """-...-""", """+""": """.-.-.""", """-""": """-....-""", """(""": """-.--.""", """)""": """-.--.-""", """!""": """-.-.--""", """ """: """/""" } # Exclamation mark is not in ITU-R recommendation # fmt: on SCREAMING_SNAKE_CASE__:Any = {value: key for key, value in MORSE_CODE_DICT.items()} def _lowerCamelCase( a ): return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def _lowerCamelCase( a ): return "".join(REVERSE_DICT[char] for char in message.split() ) def _lowerCamelCase( ): __a = "Morse code here!" print(a ) __a = encrypt(a ) print(a ) __a = decrypt(a ) print(a ) if __name__ == "__main__": main()
268
0
'''simple docstring''' def _UpperCamelCase ( __A ) -> list: '''simple docstring''' def merge(__A , __A ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(__A ) <= 1: return collection UpperCamelCase__ = len(__A ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() a__ : List[str] = input('Enter numbers separated by a comma:\n').strip() a__ : Tuple = [int(item) for item in user_input.split(',')] print(*merge_sort(unsorted), sep=',')
80
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : Any = logging.get_logger(__name__) a__ : str = { 'SCUT-DLVCLab/lilt-roberta-en-base': ( 'https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json' ), } class lowercase_ ( a__ ): __UpperCAmelCase = 'lilt' def __init__( self , a=3_05_22 , a=7_68 , a=12 , a=12 , a=30_72 , a="gelu" , a=0.1 , a=0.1 , a=5_12 , a=2 , a=0.02 , a=1e-12 , a=0 , a="absolute" , a=None , a=4 , a=10_24 , **a , ): super().__init__(pad_token_id=a , **a ) UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = hidden_act UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = position_embedding_type UpperCamelCase__ = classifier_dropout UpperCamelCase__ = channel_shrink_ratio UpperCamelCase__ = max_ad_position_embeddings
80
1
import numpy as np import torch from torch.utils.data import Dataset from utils import logger class __UpperCAmelCase ( lowerCamelCase__ ): def __init__( self : int, __A : Tuple, __A : int ): UpperCAmelCase : Optional[Any] = params UpperCAmelCase : str = np.array(__A ) UpperCAmelCase : List[Any] = np.array([len(__A ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self : Tuple, __A : Any ): return (self.token_ids[index], self.lengths[index]) def __len__( self : Tuple ): return len(self.lengths ) def __magic_name__ ( self : Union[str, Any] ): assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def __magic_name__ ( self : List[Any] ): UpperCAmelCase : Optional[Any] = self.params.max_model_input_size UpperCAmelCase : Dict = self.lengths > max_len logger.info(F'''Splitting {sum(__A )} too long sequences.''' ) def divide_chunks(__A : int, __A : Tuple ): return [l[i : i + n] for i in range(0, len(__A ), __A )] UpperCAmelCase : Union[str, Any] = [] UpperCAmelCase : Optional[int] = [] if self.params.mlm: UpperCAmelCase , UpperCAmelCase : Optional[int] = self.params.special_tok_ids['''cls_token'''], self.params.special_tok_ids['''sep_token'''] else: UpperCAmelCase , UpperCAmelCase : List[str] = self.params.special_tok_ids['''bos_token'''], self.params.special_tok_ids['''eos_token'''] for seq_, len_ in zip(self.token_ids, self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: UpperCAmelCase : Optional[int] = [] for sub_s in divide_chunks(seq_, max_len - 2 ): if sub_s[0] != cls_id: UpperCAmelCase : List[Any] = np.insert(__A, 0, __A ) if sub_s[-1] != sep_id: UpperCAmelCase : Optional[int] = np.insert(__A, len(__A ), __A ) assert len(__A ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(__A ) new_tok_ids.extend(__A ) new_lengths.extend([len(__A ) for l in sub_seqs] ) UpperCAmelCase : List[str] = np.array(__A ) UpperCAmelCase : List[Any] = np.array(__A ) def __magic_name__ ( self : str ): UpperCAmelCase : Tuple = len(self ) UpperCAmelCase : str = self.lengths > 1_1 UpperCAmelCase : Optional[Any] = self.token_ids[indices] UpperCAmelCase : str = self.lengths[indices] UpperCAmelCase : Union[str, Any] = len(self ) logger.info(F'''Remove {init_size - new_size} too short (<=11 tokens) sequences.''' ) def __magic_name__ ( self : str ): if "unk_token" not in self.params.special_tok_ids: return else: UpperCAmelCase : Dict = self.params.special_tok_ids['''unk_token'''] UpperCAmelCase : List[Any] = len(self ) UpperCAmelCase : List[Any] = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) UpperCAmelCase : Optional[Any] = (unk_occs / self.lengths) < 0.5 UpperCAmelCase : List[Any] = self.token_ids[indices] UpperCAmelCase : int = self.lengths[indices] UpperCAmelCase : List[str] = len(self ) logger.info(F'''Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).''' ) def __magic_name__ ( self : List[Any] ): if not self.params.is_master: return logger.info(F'''{len(self )} sequences''' ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def __magic_name__ ( self : List[Any], __A : Tuple ): UpperCAmelCase : Dict = [t[0] for t in batch] UpperCAmelCase : List[str] = [t[1] for t in batch] assert len(__A ) == len(__A ) # Max for paddings UpperCAmelCase : Union[str, Any] = max(__A ) # Pad token ids if self.params.mlm: UpperCAmelCase : List[Any] = self.params.special_tok_ids['''pad_token'''] else: UpperCAmelCase : List[str] = self.params.special_tok_ids['''unk_token'''] UpperCAmelCase : List[str] = [list(t.astype(__A ) ) + [pad_idx] * (max_seq_len_ - len(__A )) for t in token_ids] assert len(tk_ ) == len(__A ) assert all(len(__A ) == max_seq_len_ for t in tk_ ) UpperCAmelCase : Optional[Any] = torch.tensor(tk_ ) # (bs, max_seq_len_) UpperCAmelCase : Dict = torch.tensor(__A ) # (bs) return tk_t, lg_t
99
import torch from torch import nn class __UpperCAmelCase ( nn.Module ): def __init__( self : List[Any], __A : List[Any], __A : Optional[Any], __A : int, __A : List[Any], __A : int=1, __A : List[str]=False ): super().__init__() UpperCAmelCase : Union[str, Any] = n_token UpperCAmelCase : List[str] = d_embed UpperCAmelCase : Dict = d_proj UpperCAmelCase : List[Any] = cutoffs + [n_token] UpperCAmelCase : Dict = [0] + self.cutoffs UpperCAmelCase : int = div_val UpperCAmelCase : Union[str, Any] = self.cutoffs[0] UpperCAmelCase : str = len(self.cutoffs ) - 1 UpperCAmelCase : Optional[int] = self.shortlist_size + self.n_clusters if self.n_clusters > 0: UpperCAmelCase : str = nn.Parameter(torch.zeros(self.n_clusters, self.d_embed ) ) UpperCAmelCase : List[str] = nn.Parameter(torch.zeros(self.n_clusters ) ) UpperCAmelCase : Dict = nn.ModuleList() UpperCAmelCase : Optional[int] = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(__A, __A ) ) ) else: self.out_projs.append(__A ) self.out_layers.append(nn.Linear(__A, __A ) ) else: for i in range(len(self.cutoffs ) ): UpperCAmelCase , UpperCAmelCase : Dict = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCAmelCase : str = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(__A, __A ) ) ) self.out_layers.append(nn.Linear(__A, r_idx - l_idx ) ) UpperCAmelCase : Optional[int] = keep_order def __magic_name__ ( self : Union[str, Any], __A : List[str], __A : Any, __A : Dict, __A : Optional[Any] ): if proj is None: UpperCAmelCase : List[Any] = nn.functional.linear(__A, __A, bias=__A ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: UpperCAmelCase : Union[str, Any] = nn.functional.linear(__A, proj.t().contiguous() ) UpperCAmelCase : Optional[int] = nn.functional.linear(__A, __A, bias=__A ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def __magic_name__ ( self : int, __A : int, __A : List[Any]=None, __A : Dict=False ): if labels is not None: # Shift so that tokens < n predict n UpperCAmelCase : List[Any] = hidden[..., :-1, :].contiguous() UpperCAmelCase : Any = labels[..., 1:].contiguous() UpperCAmelCase : Optional[Any] = hidden.view(-1, hidden.size(-1 ) ) UpperCAmelCase : Union[str, Any] = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError('''Input and labels should have the same size in the batch dimension.''' ) else: UpperCAmelCase : str = hidden.view(-1, hidden.size(-1 ) ) if self.n_clusters == 0: UpperCAmelCase : List[str] = self._compute_logit(__A, self.out_layers[0].weight, self.out_layers[0].bias, self.out_projs[0] ) if labels is not None: UpperCAmelCase : Optional[int] = labels != -1_0_0 UpperCAmelCase : Dict = torch.zeros_like(__A, dtype=hidden.dtype, device=hidden.device ) UpperCAmelCase : Any = ( -nn.functional.log_softmax(__A, dim=-1 )[mask].gather(1, labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: UpperCAmelCase : Any = nn.functional.log_softmax(__A, dim=-1 ) else: # construct weights and biases UpperCAmelCase , UpperCAmelCase : Union[str, Any] = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: UpperCAmelCase , UpperCAmelCase : List[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCAmelCase : List[str] = self.out_layers[0].weight[l_idx:r_idx] UpperCAmelCase : Optional[int] = self.out_layers[0].bias[l_idx:r_idx] else: UpperCAmelCase : List[Any] = self.out_layers[i].weight UpperCAmelCase : Dict = self.out_layers[i].bias if i == 0: UpperCAmelCase : List[str] = torch.cat([weight_i, self.cluster_weight], dim=0 ) UpperCAmelCase : List[Any] = torch.cat([bias_i, self.cluster_bias], dim=0 ) weights.append(__A ) biases.append(__A ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : str = weights[0], biases[0], self.out_projs[0] UpperCAmelCase : Dict = self._compute_logit(__A, __A, __A, __A ) UpperCAmelCase : int = nn.functional.log_softmax(__A, dim=1 ) if labels is None: UpperCAmelCase : Optional[int] = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: UpperCAmelCase : Union[str, Any] = torch.zeros_like(__A, dtype=hidden.dtype, device=hidden.device ) UpperCAmelCase : Union[str, Any] = 0 UpperCAmelCase : Any = [0] + self.cutoffs for i in range(len(__A ) - 1 ): UpperCAmelCase , UpperCAmelCase : Optional[int] = cutoff_values[i], cutoff_values[i + 1] if labels is not None: UpperCAmelCase : List[str] = (labels >= l_idx) & (labels < r_idx) UpperCAmelCase : Tuple = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue UpperCAmelCase : Any = labels.index_select(0, __A ) - l_idx UpperCAmelCase : Dict = head_logprob.index_select(0, __A ) UpperCAmelCase : List[str] = hidden.index_select(0, __A ) else: UpperCAmelCase : Tuple = hidden if i == 0: if labels is not None: UpperCAmelCase : Union[str, Any] = head_logprob_i.gather(1, target_i[:, None] ).squeeze(1 ) else: UpperCAmelCase : Optional[int] = head_logprob[:, : self.cutoffs[0]] else: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = weights[i], biases[i], self.out_projs[i] UpperCAmelCase : List[str] = self._compute_logit(__A, __A, __A, __A ) UpperCAmelCase : Dict = nn.functional.log_softmax(__A, dim=1 ) UpperCAmelCase : int = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: UpperCAmelCase : Union[str, Any] = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1, target_i[:, None] ).squeeze(1 ) else: UpperCAmelCase : int = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i UpperCAmelCase : Optional[Any] = logprob_i if labels is not None: if (hasattr(self, '''keep_order''' ) and self.keep_order) or keep_order: out.index_copy_(0, __A, -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def __magic_name__ ( self : Tuple, __A : List[str] ): if self.n_clusters == 0: UpperCAmelCase : int = self._compute_logit(__A, self.out_layers[0].weight, self.out_layers[0].bias, self.out_projs[0] ) return nn.functional.log_softmax(__A, dim=-1 ) else: # construct weights and biases UpperCAmelCase , UpperCAmelCase : Any = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: UpperCAmelCase , UpperCAmelCase : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCAmelCase : List[Any] = self.out_layers[0].weight[l_idx:r_idx] UpperCAmelCase : List[str] = self.out_layers[0].bias[l_idx:r_idx] else: UpperCAmelCase : List[str] = self.out_layers[i].weight UpperCAmelCase : Dict = self.out_layers[i].bias if i == 0: UpperCAmelCase : Dict = torch.cat([weight_i, self.cluster_weight], dim=0 ) UpperCAmelCase : str = torch.cat([bias_i, self.cluster_bias], dim=0 ) weights.append(__A ) biases.append(__A ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Tuple = weights[0], biases[0], self.out_projs[0] UpperCAmelCase : int = self._compute_logit(__A, __A, __A, __A ) UpperCAmelCase : Optional[int] = hidden.new_empty((head_logit.size(0 ), self.n_token) ) UpperCAmelCase : Dict = nn.functional.log_softmax(__A, dim=1 ) UpperCAmelCase : List[str] = [0] + self.cutoffs for i in range(len(__A ) - 1 ): UpperCAmelCase , UpperCAmelCase : Optional[Any] = cutoff_values[i], cutoff_values[i + 1] if i == 0: UpperCAmelCase : Any = head_logprob[:, : self.cutoffs[0]] else: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = weights[i], biases[i], self.out_projs[i] UpperCAmelCase : Tuple = self._compute_logit(__A, __A, __A, __A ) UpperCAmelCase : List[Any] = nn.functional.log_softmax(__A, dim=1 ) UpperCAmelCase : Optional[int] = head_logprob[:, -i] + tail_logprob_i UpperCAmelCase : Optional[Any] = logprob_i return out
99
1
from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig __snake_case : Optional[int] = logging.get_logger(__name__) __snake_case : int = """T5Config""" class A__(SCREAMING_SNAKE_CASE__ ): """simple docstring""" _A : Optional[Any] = '''mt5''' _A : List[str] = MTaConfig class A__(SCREAMING_SNAKE_CASE__ ): """simple docstring""" _A : List[Any] = '''mt5''' _A : Optional[Any] = MTaConfig class A__(SCREAMING_SNAKE_CASE__ ): """simple docstring""" _A : Dict = '''mt5''' _A : Any = MTaConfig
248
'''simple docstring''' import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) _lowerCAmelCase = logging.getLogger() def __lowerCAmelCase ( ): __UpperCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument("-f" ) __UpperCamelCase : Any = parser.parse_args() return args.f def __lowerCAmelCase ( snake_case__ ): __UpperCamelCase : Dict = {} __UpperCamelCase : Dict = os.path.join(snake_case__ , "all_results.json" ) if os.path.exists(snake_case__ ): with open(snake_case__ , "r" ) as f: __UpperCamelCase : Any = json.load(snake_case__ ) else: raise ValueError(F"can't find {path}" ) return results def __lowerCAmelCase ( ): __UpperCamelCase : Any = torch.cuda.is_available() and torch_device == "cuda" return is_using_cuda and is_apex_available() _lowerCAmelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class A ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' @classmethod def a_ (cls ) -> Union[str, Any]: # Write Accelerate config, will pick up on CPU, GPU, and multi-GPU __UpperCamelCase : Optional[Any] = tempfile.mkdtemp() __UpperCamelCase : List[str] = os.path.join(cls.tmpdir , "default_config.yml" ) write_basic_config(save_location=cls.configPath ) __UpperCamelCase : Optional[Any] = ["accelerate", "launch", "--config_file", cls.configPath] @classmethod def a_ (cls ) -> Union[str, Any]: shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def a_ (self ) -> Optional[int]: __UpperCamelCase : List[Any] = self.get_auto_remove_tmp_dir() __UpperCamelCase : List[Any] = f"\n {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --seed=42\n --checkpointing_steps epoch\n --with_tracking\n ".split() if is_cuda_and_apex_available(): testargs.append("--fp16" ) run_command(self._launch_args + testargs ) __UpperCamelCase : Tuple = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "glue_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def a_ (self ) -> Dict: __UpperCamelCase : Optional[Any] = self.get_auto_remove_tmp_dir() __UpperCamelCase : List[Any] = f"\n {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --block_size 128\n --per_device_train_batch_size 5\n --per_device_eval_batch_size 5\n --num_train_epochs 2\n --output_dir {tmp_dir}\n --checkpointing_steps epoch\n --with_tracking\n ".split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) __UpperCamelCase : int = get_results(_UpperCAmelCase ) self.assertLess(result["perplexity"] , 1_0_0 ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "clm_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def a_ (self ) -> Any: __UpperCamelCase : List[Any] = self.get_auto_remove_tmp_dir() __UpperCamelCase : Optional[Any] = f"\n {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --num_train_epochs=1\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) __UpperCamelCase : Optional[Any] = get_results(_UpperCAmelCase ) self.assertLess(result["perplexity"] , 4_2 ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "mlm_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def a_ (self ) -> int: # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu __UpperCamelCase : int = 7 if get_gpu_count() > 1 else 2 __UpperCamelCase : int = self.get_auto_remove_tmp_dir() __UpperCamelCase : str = f"\n {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) __UpperCamelCase : List[Any] = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) self.assertLess(result["train_loss"] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "ner_no_trainer" ) ) ) @unittest.skip(reason="Fix me @muellerzr" ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def a_ (self ) -> Any: __UpperCamelCase : Tuple = self.get_auto_remove_tmp_dir() __UpperCamelCase : str = f"\n {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --seed=42\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) __UpperCamelCase : Optional[int] = get_results(_UpperCAmelCase ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result["eval_f1"] , 2_8 ) self.assertGreaterEqual(result["eval_exact"] , 2_8 ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "qa_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def a_ (self ) -> Dict: __UpperCamelCase : Tuple = self.get_auto_remove_tmp_dir() __UpperCamelCase : List[str] = f"\n {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/swag/sample.json\n --validation_file tests/fixtures/tests_samples/swag/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=20\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) __UpperCamelCase : Tuple = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["eval_accuracy"] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "swag_no_trainer" ) ) ) @slow @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def a_ (self ) -> Union[str, Any]: __UpperCamelCase : str = self.get_auto_remove_tmp_dir() __UpperCamelCase : Dict = f"\n {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) __UpperCamelCase : Dict = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["eval_rouge1"] , 1_0 ) self.assertGreaterEqual(result["eval_rouge2"] , 2 ) self.assertGreaterEqual(result["eval_rougeL"] , 7 ) self.assertGreaterEqual(result["eval_rougeLsum"] , 7 ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "summarization_no_trainer" ) ) ) @slow @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def a_ (self ) -> Tuple: __UpperCamelCase : Optional[int] = self.get_auto_remove_tmp_dir() __UpperCamelCase : List[Any] = f"\n {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py\n --model_name_or_path sshleifer/student_marian_en_ro_6_1\n --source_lang en\n --target_lang ro\n --train_file tests/fixtures/tests_samples/wmt16/sample.json\n --validation_file tests/fixtures/tests_samples/wmt16/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --num_beams=6\n --learning_rate=3e-3\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --source_lang en_XX\n --target_lang ro_RO\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) __UpperCamelCase : List[Any] = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["eval_bleu"] , 3_0 ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "translation_no_trainer" ) ) ) @slow def a_ (self ) -> List[Any]: __UpperCamelCase : Tuple = logging.StreamHandler(sys.stdout ) logger.addHandler(_UpperCAmelCase ) __UpperCamelCase : Dict = self.get_auto_remove_tmp_dir() __UpperCamelCase : List[Any] = f"\n {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py\n --dataset_name huggingface/semantic-segmentation-test-sample\n --output_dir {tmp_dir}\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n ".split() run_command(self._launch_args + testargs ) __UpperCamelCase : Optional[int] = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["eval_overall_accuracy"] , 0.10 ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def a_ (self ) -> Tuple: __UpperCamelCase : List[Any] = self.get_auto_remove_tmp_dir() __UpperCamelCase : Optional[Any] = f"\n {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py\n --model_name_or_path google/vit-base-patch16-224-in21k\n --dataset_name hf-internal-testing/cats_vs_dogs_sample\n --learning_rate 1e-4\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 1\n --max_train_steps 2\n --train_val_split 0.1\n --seed 42\n --output_dir {tmp_dir}\n --with_tracking\n --checkpointing_steps 1\n ".split() if is_cuda_and_apex_available(): testargs.append("--fp16" ) run_command(self._launch_args + testargs ) __UpperCamelCase : str = get_results(_UpperCAmelCase ) # The base model scores a 25% self.assertGreaterEqual(result["eval_accuracy"] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "step_1" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "image_classification_no_trainer" ) ) )
298
0
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if len(_lowerCamelCase ) != len(_lowerCamelCase ): raise ValueError('The length of profit and weight must be same.' ) if max_weight <= 0: raise ValueError('max_weight must greater than zero.' ) if any(p < 0 for p in profit ): raise ValueError('Profit can not be negative.' ) if any(w < 0 for w in weight ): raise ValueError('Weight can not be negative.' ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. lowerCamelCase__ : Optional[int] = [p / w for p, w in zip(_lowerCamelCase , _lowerCamelCase )] # Creating a copy of the list and sorting profit/weight in ascending order lowerCamelCase__ : Tuple = sorted(_lowerCamelCase ) # declaring useful variables lowerCamelCase__ : Tuple = len(_lowerCamelCase ) lowerCamelCase__ : Tuple = 0 lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : int = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight lowerCamelCase__ : Union[str, Any] = sorted_profit_by_weight[length - i - 1] lowerCamelCase__ : Optional[Any] = profit_by_weight.index(_lowerCamelCase ) lowerCamelCase__ : Optional[Any] = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( "Input profits, weights, and then max_weight (all positive ints) separated by " "spaces." ) A_ : str = [int(x) for x in input("Input profits separated by spaces: ").split()] A_ : Optional[int] = [int(x) for x in input("Input weights separated by spaces: ").split()] A_ : Union[str, Any] = int(input("Max weight allowed: ")) # Function Call calc_profit(profit, weight, max_weight)
316
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) A_ : int = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Union[str, Any] = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : int = ["CLIPFeatureExtractor"] A_ : Any = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys A_ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
316
1
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :int = 6_0_0_8_5_1_4_7_5_1_4_3 ) -> int: '''simple docstring''' try: lowercase = int(a_ ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) lowercase = 1 lowercase = 2 while i * i <= n: while n % i == 0: lowercase = i n //= i i += 1 if n > 1: lowercase = n return int(a_ ) if __name__ == "__main__": print(F"""{solution() = }""")
197
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def __A ( a_ :List[Any]) -> Any: __a : Optional[int] = SwinvaConfig() __a : Optional[Any] = swinva_name.split('''_''') __a : str = name_split[1] if "to" in name_split[3]: __a : Any = int(name_split[3][-3:]) else: __a : str = int(name_split[3]) if "to" in name_split[2]: __a : str = int(name_split[2][-2:]) else: __a : Union[str, Any] = int(name_split[2][6:]) if model_size == "tiny": __a : str = 96 __a : List[Any] = (2, 2, 6, 2) __a : Any = (3, 6, 12, 24) elif model_size == "small": __a : int = 96 __a : int = (2, 2, 18, 2) __a : List[Any] = (3, 6, 12, 24) elif model_size == "base": __a : List[str] = 1_28 __a : List[Any] = (2, 2, 18, 2) __a : str = (4, 8, 16, 32) else: __a : str = 1_92 __a : List[str] = (2, 2, 18, 2) __a : List[str] = (6, 12, 24, 48) if "to" in swinva_name: __a : Tuple = (12, 12, 12, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): __a : str = 2_18_41 __a : Any = '''huggingface/label-files''' __a : Any = '''imagenet-22k-id2label.json''' __a : Optional[Any] = json.load(open(hf_hub_download(a_ , a_ , repo_type='''dataset''') , '''r''')) __a : Any = {int(a_): v for k, v in idalabel.items()} __a : Dict = idalabel __a : Dict = {v: k for k, v in idalabel.items()} else: __a : List[Any] = 10_00 __a : Any = '''huggingface/label-files''' __a : Union[str, Any] = '''imagenet-1k-id2label.json''' __a : Tuple = json.load(open(hf_hub_download(a_ , a_ , repo_type='''dataset''') , '''r''')) __a : Optional[Any] = {int(a_): v for k, v in idalabel.items()} __a : Dict = idalabel __a : Optional[Any] = {v: k for k, v in idalabel.items()} __a : Any = img_size __a : Tuple = num_classes __a : str = embed_dim __a : List[str] = depths __a : Dict = num_heads __a : List[Any] = window_size return config def __A ( a_ :Optional[int]) -> Dict: if "patch_embed.proj" in name: __a : Tuple = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''') if "patch_embed.norm" in name: __a : Any = name.replace('''patch_embed.norm''' , '''embeddings.norm''') if "layers" in name: __a : Optional[int] = '''encoder.''' + name if "attn.proj" in name: __a : Tuple = name.replace('''attn.proj''' , '''attention.output.dense''') if "attn" in name: __a : Dict = name.replace('''attn''' , '''attention.self''') if "norm1" in name: __a : List[Any] = name.replace('''norm1''' , '''layernorm_before''') if "norm2" in name: __a : Tuple = name.replace('''norm2''' , '''layernorm_after''') if "mlp.fc1" in name: __a : Any = name.replace('''mlp.fc1''' , '''intermediate.dense''') if "mlp.fc2" in name: __a : str = name.replace('''mlp.fc2''' , '''output.dense''') if "q_bias" in name: __a : Any = name.replace('''q_bias''' , '''query.bias''') if "k_bias" in name: __a : Tuple = name.replace('''k_bias''' , '''key.bias''') if "v_bias" in name: __a : List[Any] = name.replace('''v_bias''' , '''value.bias''') if "cpb_mlp" in name: __a : Union[str, Any] = name.replace('''cpb_mlp''' , '''continuous_position_bias_mlp''') if name == "norm.weight": __a : Union[str, Any] = '''layernorm.weight''' if name == "norm.bias": __a : Optional[Any] = '''layernorm.bias''' if "head" in name: __a : Optional[int] = name.replace('''head''' , '''classifier''') else: __a : Optional[Any] = '''swinv2.''' + name return name def __A ( a_ :Dict , a_ :Dict) -> Dict: for key in orig_state_dict.copy().keys(): __a : Optional[int] = orig_state_dict.pop(a_) if "mask" in key: continue elif "qkv" in key: __a : Dict = key.split('''.''') __a : Union[str, Any] = int(key_split[1]) __a : List[str] = int(key_split[3]) __a : Optional[int] = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __a : int = val[:dim, :] __a : Any = val[dim : dim * 2, :] __a : Dict = val[-dim:, :] else: __a : str = val[:dim] __a : Optional[int] = val[ dim : dim * 2 ] __a : List[Any] = val[-dim:] else: __a : Any = val return orig_state_dict def __A ( a_ :Tuple , a_ :int) -> Union[str, Any]: __a : Dict = timm.create_model(a_ , pretrained=a_) timm_model.eval() __a : int = get_swinva_config(a_) __a : int = SwinvaForImageClassification(a_) model.eval() __a : Dict = convert_state_dict(timm_model.state_dict() , a_) model.load_state_dict(a_) __a : List[str] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __a : int = AutoImageProcessor.from_pretrained('''microsoft/{}'''.format(swinva_name.replace('''_''' , '''-'''))) __a : Optional[Any] = Image.open(requests.get(a_ , stream=a_).raw) __a : Optional[Any] = image_processor(images=a_ , return_tensors='''pt''') __a : Optional[Any] = timm_model(inputs['''pixel_values''']) __a : int = model(**a_).logits assert torch.allclose(a_ , a_ , atol=1e-3) print(F"""Saving model {swinva_name} to {pytorch_dump_folder_path}""") model.save_pretrained(a_) print(F"""Saving image processor to {pytorch_dump_folder_path}""") image_processor.save_pretrained(a_) model.push_to_hub( repo_path_or_name=Path(a_ , a_) , organization='''nandwalritik''' , commit_message='''Add model''' , ) if __name__ == "__main__": A = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swinv2_name''', default='''swinv2_tiny_patch4_window8_256''', type=str, help='''Name of the Swinv2 timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) A = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
160
0
"""simple docstring""" import os from distutils.util import strtobool def UpperCAmelCase_ (_lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any] ): for e in env_keys: __UpperCamelCase : int = int(os.environ.get(UpperCAmelCase_ , -1 ) ) if val >= 0: return val return default def UpperCAmelCase_ (_lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int=False ): __UpperCamelCase : Dict = os.environ.get(UpperCAmelCase_ , str(UpperCAmelCase_ ) ) return strtobool(UpperCAmelCase_ ) == 1 # As its name indicates `strtobool` actually returns an int... def UpperCAmelCase_ (_lowerCAmelCase : Dict , _lowerCAmelCase : Tuple="no" ): __UpperCamelCase : Optional[Any] = os.environ.get(UpperCAmelCase_ , str(UpperCAmelCase_ ) ) return value
357
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
171
0
'''simple docstring''' import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() __lowercase : Union[str, Any] = logging.get_logger(__name__) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[str] ): __a : Any = UniSpeechSatForSequenceClassification.from_pretrained(_SCREAMING_SNAKE_CASE , config=_SCREAMING_SNAKE_CASE ) __a : Union[str, Any] = downstream_dict['projector.weight'] __a : Dict = downstream_dict['projector.bias'] __a : int = downstream_dict['model.post_net.linear.weight'] __a : List[str] = downstream_dict['model.post_net.linear.bias'] return model def lowerCamelCase (_SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : str ): __a : Tuple = UniSpeechSatForAudioFrameClassification.from_pretrained(_SCREAMING_SNAKE_CASE , config=_SCREAMING_SNAKE_CASE ) __a : Tuple = downstream_dict['model.linear.weight'] __a : str = downstream_dict['model.linear.bias'] return model def lowerCamelCase (_SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Tuple ): __a : Union[str, Any] = UniSpeechSatForXVector.from_pretrained(_SCREAMING_SNAKE_CASE , config=_SCREAMING_SNAKE_CASE ) __a : List[Any] = downstream_dict['connector.weight'] __a : Union[str, Any] = downstream_dict['connector.bias'] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): __a : List[Any] = downstream_dict[ F"""model.framelevel_feature_extractor.module.{i}.kernel.weight""" ] __a : str = downstream_dict[F"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""] __a : Optional[Any] = downstream_dict['model.utterancelevel_feature_extractor.linear1.weight'] __a : List[Any] = downstream_dict['model.utterancelevel_feature_extractor.linear1.bias'] __a : Optional[int] = downstream_dict['model.utterancelevel_feature_extractor.linear2.weight'] __a : Union[str, Any] = downstream_dict['model.utterancelevel_feature_extractor.linear2.bias'] __a : List[str] = downstream_dict['objective.W'] return model @torch.no_grad() def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[str] ): __a : Tuple = torch.load(_SCREAMING_SNAKE_CASE , map_location='cpu' ) __a : List[Any] = checkpoint['Downstream'] __a : Any = UniSpeechSatConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) __a : Tuple = WavaVecaFeatureExtractor.from_pretrained( _SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , do_normalize=_SCREAMING_SNAKE_CASE ) __a : str = hf_config.architectures[0] if arch.endswith('ForSequenceClassification' ): __a : Any = convert_classification(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif arch.endswith('ForAudioFrameClassification' ): __a : Union[str, Any] = convert_diarization(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif arch.endswith('ForXVector' ): __a : List[Any] = convert_xvector(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: raise NotImplementedError(F"""S3PRL weights conversion is not supported for {arch}""" ) if hf_config.use_weighted_layer_sum: __a : int = checkpoint['Featurizer']['weights'] hf_feature_extractor.save_pretrained(_SCREAMING_SNAKE_CASE ) hf_model.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowercase : int = argparse.ArgumentParser() parser.add_argument( '--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.' ) parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.') parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.') __lowercase : Optional[int] = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
27
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase = { '''configuration_instructblip''': [ '''INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InstructBlipConfig''', '''InstructBlipQFormerConfig''', '''InstructBlipVisionConfig''', ], '''processing_instructblip''': ['''InstructBlipProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InstructBlipQFormerModel''', '''InstructBlipPreTrainedModel''', '''InstructBlipForConditionalGeneration''', '''InstructBlipVisionModel''', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
272
0
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def lowerCAmelCase_ ( __lowerCAmelCase )-> Tuple: '''simple docstring''' return x + 2 class __snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : List[Any] ='''x = 3''' UpperCAmelCase : Tuple ={} UpperCAmelCase : Union[str, Any] =evaluate(a__ , {} , state=a__ ) assert result == 3 self.assertDictEqual(a__ , {'''x''': 3} ) UpperCAmelCase : Union[str, Any] ='''x = y''' UpperCAmelCase : Tuple ={'''y''': 5} UpperCAmelCase : int =evaluate(a__ , {} , state=a__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(a__ , {'''x''': 5, '''y''': 5} ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' UpperCAmelCase : Dict ='''y = add_two(x)''' UpperCAmelCase : int ={'''x''': 3} UpperCAmelCase : Tuple =evaluate(a__ , {'''add_two''': add_two} , state=a__ ) assert result == 5 self.assertDictEqual(a__ , {'''x''': 3, '''y''': 5} ) # Won't work without the tool with CaptureStdout() as out: UpperCAmelCase : str =evaluate(a__ , {} , state=a__ ) assert result is None assert "tried to execute add_two" in out.out def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' UpperCAmelCase : List[Any] ='''x = 3''' UpperCAmelCase : Dict ={} UpperCAmelCase : int =evaluate(a__ , {} , state=a__ ) assert result == 3 self.assertDictEqual(a__ , {'''x''': 3} ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : int ='''test_dict = {\'x\': x, \'y\': add_two(x)}''' UpperCAmelCase : int ={'''x''': 3} UpperCAmelCase : int =evaluate(a__ , {'''add_two''': add_two} , state=a__ ) self.assertDictEqual(a__ , {'''x''': 3, '''y''': 5} ) self.assertDictEqual(a__ , {'''x''': 3, '''test_dict''': {'''x''': 3, '''y''': 5}} ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' UpperCAmelCase : str ='''x = 3\ny = 5''' UpperCAmelCase : Optional[Any] ={} UpperCAmelCase : List[str] =evaluate(a__ , {} , state=a__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(a__ , {'''x''': 3, '''y''': 5} ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' UpperCAmelCase : str ='''text = f\'This is x: {x}.\'''' UpperCAmelCase : Optional[int] ={'''x''': 3} UpperCAmelCase : Tuple =evaluate(a__ , {} , state=a__ ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(a__ , {'''x''': 3, '''text''': '''This is x: 3.'''} ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : Dict ='''if x <= 3:\n y = 2\nelse:\n y = 5''' UpperCAmelCase : int ={'''x''': 3} UpperCAmelCase : Optional[Any] =evaluate(a__ , {} , state=a__ ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(a__ , {'''x''': 3, '''y''': 2} ) UpperCAmelCase : Optional[Any] ={'''x''': 8} UpperCAmelCase : Any =evaluate(a__ , {} , state=a__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(a__ , {'''x''': 8, '''y''': 5} ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : List[Any] ='''test_list = [x, add_two(x)]''' UpperCAmelCase : Optional[int] ={'''x''': 3} UpperCAmelCase : Tuple =evaluate(a__ , {'''add_two''': add_two} , state=a__ ) self.assertListEqual(a__ , [3, 5] ) self.assertDictEqual(a__ , {'''x''': 3, '''test_list''': [3, 5]} ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : Tuple ='''y = x''' UpperCAmelCase : str ={'''x''': 3} UpperCAmelCase : Optional[int] =evaluate(a__ , {} , state=a__ ) assert result == 3 self.assertDictEqual(a__ , {'''x''': 3, '''y''': 3} ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' UpperCAmelCase : Tuple ='''test_list = [x, add_two(x)]\ntest_list[1]''' UpperCAmelCase : List[Any] ={'''x''': 3} UpperCAmelCase : List[Any] =evaluate(a__ , {'''add_two''': add_two} , state=a__ ) assert result == 5 self.assertDictEqual(a__ , {'''x''': 3, '''test_list''': [3, 5]} ) UpperCAmelCase : Any ='''test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']''' UpperCAmelCase : Tuple ={'''x''': 3} UpperCAmelCase : Optional[Any] =evaluate(a__ , {'''add_two''': add_two} , state=a__ ) assert result == 5 self.assertDictEqual(a__ , {'''x''': 3, '''test_dict''': {'''x''': 3, '''y''': 5}} ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : str ='''x = 0\nfor i in range(3):\n x = i''' UpperCAmelCase : Tuple ={} UpperCAmelCase : Tuple =evaluate(a__ , {'''range''': range} , state=a__ ) assert result == 2 self.assertDictEqual(a__ , {'''x''': 2, '''i''': 2} )
359
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __snake_case = logging.get_logger(__name__) class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : List[str] = ["""pixel_values"""] def __init__( self , snake_case__ = True , snake_case__ = None , snake_case__ = PILImageResampling.BICUBIC , snake_case__ = True , snake_case__ = 1 / 255 , snake_case__ = True , snake_case__ = None , snake_case__ = None , snake_case__ = True , **snake_case__ , ) -> None: '''simple docstring''' super().__init__(**snake_case__ ) UpperCAmelCase : List[str] =size if size is not None else {'''height''': 384, '''width''': 384} UpperCAmelCase : List[str] =get_size_dict(snake_case__ , default_to_square=snake_case__ ) UpperCAmelCase : List[str] =do_resize UpperCAmelCase : Tuple =size UpperCAmelCase : Optional[Any] =resample UpperCAmelCase : Optional[Any] =do_rescale UpperCAmelCase : Dict =rescale_factor UpperCAmelCase : Union[str, Any] =do_normalize UpperCAmelCase : Dict =image_mean if image_mean is not None else OPENAI_CLIP_MEAN UpperCAmelCase : Any =image_std if image_std is not None else OPENAI_CLIP_STD UpperCAmelCase : List[Any] =do_convert_rgb def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ = PILImageResampling.BICUBIC , snake_case__ = None , **snake_case__ , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase : int =get_size_dict(snake_case__ , default_to_square=snake_case__ ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''' ) UpperCAmelCase : Union[str, Any] =(size['''height'''], size['''width''']) return resize(snake_case__ , size=snake_case__ , resample=snake_case__ , data_format=snake_case__ , **snake_case__ ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ = None , **snake_case__ , ) -> Optional[int]: '''simple docstring''' return rescale(snake_case__ , scale=snake_case__ , data_format=snake_case__ , **snake_case__ ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , **snake_case__ , ) -> np.ndarray: '''simple docstring''' return normalize(snake_case__ , mean=snake_case__ , std=snake_case__ , data_format=snake_case__ , **snake_case__ ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = ChannelDimension.FIRST , **snake_case__ , ) -> PIL.Image.Image: '''simple docstring''' UpperCAmelCase : List[str] =do_resize if do_resize is not None else self.do_resize UpperCAmelCase : Union[str, Any] =resample if resample is not None else self.resample UpperCAmelCase : Any =do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase : int =rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase : Union[str, Any] =do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase : List[str] =image_mean if image_mean is not None else self.image_mean UpperCAmelCase : List[Any] =image_std if image_std is not None else self.image_std UpperCAmelCase : Optional[Any] =do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCAmelCase : List[Any] =size if size is not None else self.size UpperCAmelCase : Tuple =get_size_dict(snake_case__ , default_to_square=snake_case__ ) UpperCAmelCase : int =make_list_of_images(snake_case__ ) if not valid_images(snake_case__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCAmelCase : Optional[int] =[convert_to_rgb(snake_case__ ) for image in images] # All transformations expect numpy arrays. UpperCAmelCase : str =[to_numpy_array(snake_case__ ) for image in images] if do_resize: UpperCAmelCase : List[Any] =[self.resize(image=snake_case__ , size=snake_case__ , resample=snake_case__ ) for image in images] if do_rescale: UpperCAmelCase : int =[self.rescale(image=snake_case__ , scale=snake_case__ ) for image in images] if do_normalize: UpperCAmelCase : Dict =[self.normalize(image=snake_case__ , mean=snake_case__ , std=snake_case__ ) for image in images] UpperCAmelCase : Optional[int] =[to_channel_dimension_format(snake_case__ , snake_case__ ) for image in images] UpperCAmelCase : str =BatchFeature(data={'''pixel_values''': images} , tensor_type=snake_case__ ) return encoded_outputs
78
0
from datetime import datetime import matplotlib.pyplot as plt import torch def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[Any] ): for param in module.parameters(): __UpperCamelCase =False def _UpperCAmelCase ( ): __UpperCamelCase ='cuda' if torch.cuda.is_available() else 'cpu' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): __UpperCamelCase ='mps' if device == "mps": print( 'WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch' ' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues' ' with generations.' ) return device def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Dict ): __UpperCamelCase =plt.imshow(SCREAMING_SNAKE_CASE__ ) fig.axes.get_xaxis().set_visible(SCREAMING_SNAKE_CASE__ ) fig.axes.get_yaxis().set_visible(SCREAMING_SNAKE_CASE__ ) plt.show() def _UpperCAmelCase ( ): __UpperCamelCase =datetime.now() __UpperCamelCase =current_time.strftime('%H:%M:%S' ) return timestamp
62
"""simple docstring""" from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Base model mapping ('''albert''', '''FlaxAlbertModel'''), ('''bart''', '''FlaxBartModel'''), ('''beit''', '''FlaxBeitModel'''), ('''bert''', '''FlaxBertModel'''), ('''big_bird''', '''FlaxBigBirdModel'''), ('''blenderbot''', '''FlaxBlenderbotModel'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallModel'''), ('''clip''', '''FlaxCLIPModel'''), ('''distilbert''', '''FlaxDistilBertModel'''), ('''electra''', '''FlaxElectraModel'''), ('''gpt-sw3''', '''FlaxGPT2Model'''), ('''gpt2''', '''FlaxGPT2Model'''), ('''gpt_neo''', '''FlaxGPTNeoModel'''), ('''gptj''', '''FlaxGPTJModel'''), ('''longt5''', '''FlaxLongT5Model'''), ('''marian''', '''FlaxMarianModel'''), ('''mbart''', '''FlaxMBartModel'''), ('''mt5''', '''FlaxMT5Model'''), ('''opt''', '''FlaxOPTModel'''), ('''pegasus''', '''FlaxPegasusModel'''), ('''regnet''', '''FlaxRegNetModel'''), ('''resnet''', '''FlaxResNetModel'''), ('''roberta''', '''FlaxRobertaModel'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormModel'''), ('''roformer''', '''FlaxRoFormerModel'''), ('''t5''', '''FlaxT5Model'''), ('''vision-text-dual-encoder''', '''FlaxVisionTextDualEncoderModel'''), ('''vit''', '''FlaxViTModel'''), ('''wav2vec2''', '''FlaxWav2Vec2Model'''), ('''whisper''', '''FlaxWhisperModel'''), ('''xglm''', '''FlaxXGLMModel'''), ('''xlm-roberta''', '''FlaxXLMRobertaModel'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for pre-training mapping ('''albert''', '''FlaxAlbertForPreTraining'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForPreTraining'''), ('''big_bird''', '''FlaxBigBirdForPreTraining'''), ('''electra''', '''FlaxElectraForPreTraining'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ('''wav2vec2''', '''FlaxWav2Vec2ForPreTraining'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Masked LM mapping ('''albert''', '''FlaxAlbertForMaskedLM'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForMaskedLM'''), ('''big_bird''', '''FlaxBigBirdForMaskedLM'''), ('''distilbert''', '''FlaxDistilBertForMaskedLM'''), ('''electra''', '''FlaxElectraForMaskedLM'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''blenderbot''', '''FlaxBlenderbotForConditionalGeneration'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallForConditionalGeneration'''), ('''encoder-decoder''', '''FlaxEncoderDecoderModel'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''marian''', '''FlaxMarianMTModel'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''pegasus''', '''FlaxPegasusForConditionalGeneration'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Image-classsification ('''beit''', '''FlaxBeitForImageClassification'''), ('''regnet''', '''FlaxRegNetForImageClassification'''), ('''resnet''', '''FlaxResNetForImageClassification'''), ('''vit''', '''FlaxViTForImageClassification'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('''vision-encoder-decoder''', '''FlaxVisionEncoderDecoderModel'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Causal LM mapping ('''bart''', '''FlaxBartForCausalLM'''), ('''bert''', '''FlaxBertForCausalLM'''), ('''big_bird''', '''FlaxBigBirdForCausalLM'''), ('''electra''', '''FlaxElectraForCausalLM'''), ('''gpt-sw3''', '''FlaxGPT2LMHeadModel'''), ('''gpt2''', '''FlaxGPT2LMHeadModel'''), ('''gpt_neo''', '''FlaxGPTNeoForCausalLM'''), ('''gptj''', '''FlaxGPTJForCausalLM'''), ('''opt''', '''FlaxOPTForCausalLM'''), ('''roberta''', '''FlaxRobertaForCausalLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForCausalLM'''), ('''xglm''', '''FlaxXGLMForCausalLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForCausalLM'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Sequence Classification mapping ('''albert''', '''FlaxAlbertForSequenceClassification'''), ('''bart''', '''FlaxBartForSequenceClassification'''), ('''bert''', '''FlaxBertForSequenceClassification'''), ('''big_bird''', '''FlaxBigBirdForSequenceClassification'''), ('''distilbert''', '''FlaxDistilBertForSequenceClassification'''), ('''electra''', '''FlaxElectraForSequenceClassification'''), ('''mbart''', '''FlaxMBartForSequenceClassification'''), ('''roberta''', '''FlaxRobertaForSequenceClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForSequenceClassification'''), ('''roformer''', '''FlaxRoFormerForSequenceClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForSequenceClassification'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Question Answering mapping ('''albert''', '''FlaxAlbertForQuestionAnswering'''), ('''bart''', '''FlaxBartForQuestionAnswering'''), ('''bert''', '''FlaxBertForQuestionAnswering'''), ('''big_bird''', '''FlaxBigBirdForQuestionAnswering'''), ('''distilbert''', '''FlaxDistilBertForQuestionAnswering'''), ('''electra''', '''FlaxElectraForQuestionAnswering'''), ('''mbart''', '''FlaxMBartForQuestionAnswering'''), ('''roberta''', '''FlaxRobertaForQuestionAnswering'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForQuestionAnswering'''), ('''roformer''', '''FlaxRoFormerForQuestionAnswering'''), ('''xlm-roberta''', '''FlaxXLMRobertaForQuestionAnswering'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Token Classification mapping ('''albert''', '''FlaxAlbertForTokenClassification'''), ('''bert''', '''FlaxBertForTokenClassification'''), ('''big_bird''', '''FlaxBigBirdForTokenClassification'''), ('''distilbert''', '''FlaxDistilBertForTokenClassification'''), ('''electra''', '''FlaxElectraForTokenClassification'''), ('''roberta''', '''FlaxRobertaForTokenClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForTokenClassification'''), ('''roformer''', '''FlaxRoFormerForTokenClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForTokenClassification'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Multiple Choice mapping ('''albert''', '''FlaxAlbertForMultipleChoice'''), ('''bert''', '''FlaxBertForMultipleChoice'''), ('''big_bird''', '''FlaxBigBirdForMultipleChoice'''), ('''distilbert''', '''FlaxDistilBertForMultipleChoice'''), ('''electra''', '''FlaxElectraForMultipleChoice'''), ('''roberta''', '''FlaxRobertaForMultipleChoice'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMultipleChoice'''), ('''roformer''', '''FlaxRoFormerForMultipleChoice'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMultipleChoice'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('''bert''', '''FlaxBertForNextSentencePrediction'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('''speech-encoder-decoder''', '''FlaxSpeechEncoderDecoderModel'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('''whisper''', '''FlaxWhisperForAudioClassification'''), ] ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModel) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_PRETRAINING_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForPreTraining, head_doc='''pretraining''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForCausalLM, head_doc='''causal language modeling''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_MASKED_LM_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='''masked language modeling''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='''sequence-to-sequence language modeling''', checkpoint_for_example='''t5-base''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='''sequence classification''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='''question answering''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='''token classification''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='''multiple choice''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='''next sentence prediction''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForImageClassification, head_doc='''image classification''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='''vision-to-text modeling''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='''sequence-to-sequence speech-to-text modeling''' )
301
0
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=_UpperCAmelCase ) class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = field(default='automatic-speech-recognition' , metadata={'include_in_asdict_even_if_is_default': True} ) lowerCamelCase = Features({'audio': Audio()} ) lowerCamelCase = Features({'transcription': Value('string' )} ) lowerCamelCase = 'audio' lowerCamelCase = 'transcription' def snake_case__ ( self : Optional[int],lowercase_ : Any )-> List[Any]: '''simple docstring''' if self.audio_column not in features: raise ValueError(F'Column {self.audio_column} is not present in features.' ) if not isinstance(features[self.audio_column],lowercase_ ): raise ValueError(F'Column {self.audio_column} is not an Audio type.' ) A__ = copy.deepcopy(self ) A__ = self.input_schema.copy() A__ = features[self.audio_column] A__ = input_schema return task_template @property def snake_case__ ( self : Optional[int] )-> Dict[str, str]: '''simple docstring''' return {self.audio_column: "audio", self.transcription_column: "transcription"}
363
import random def _snake_case( SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : str ) -> tuple: '''simple docstring''' A__ , A__ , A__ = [], [], [] for element in data: if element < pivot: less.append(SCREAMING_SNAKE_CASE__ ) elif element > pivot: greater.append(SCREAMING_SNAKE_CASE__ ) else: equal.append(SCREAMING_SNAKE_CASE__ ) return less, equal, greater def _snake_case( SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : int ) -> str: '''simple docstring''' if index >= len(SCREAMING_SNAKE_CASE__ ) or index < 0: return None A__ = items[random.randint(0 , len(SCREAMING_SNAKE_CASE__ ) - 1 )] A__ = 0 A__ , A__ , A__ = _partition(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A__ = len(SCREAMING_SNAKE_CASE__ ) A__ = len(SCREAMING_SNAKE_CASE__ ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # must be in larger else: return quick_select(SCREAMING_SNAKE_CASE__ , index - (m + count) )
282
0
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = {"configuration_focalnet": ["FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FocalNetConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FocalNetForImageClassification", "FocalNetForMaskedImageModeling", "FocalNetBackbone", "FocalNetModel", "FocalNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
217
"""simple docstring""" import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[int]: # Construct model if gpta_config_file == "": __lowerCAmelCase: Optional[int] = GPTaConfig() else: __lowerCAmelCase: List[str] = GPTaConfig.from_json_file(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Optional[int] = GPTaModel(__SCREAMING_SNAKE_CASE ) # Load weights from numpy load_tf_weights_in_gpta(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Save pytorch-model __lowerCAmelCase: str = pytorch_dump_folder_path + "/" + WEIGHTS_NAME __lowerCAmelCase: List[Any] = pytorch_dump_folder_path + "/" + CONFIG_NAME print(F"Save PyTorch model to {pytorch_weights_dump_path}" ) torch.save(model.state_dict() , __SCREAMING_SNAKE_CASE ) print(F"Save configuration file to {pytorch_config_dump_path}" ) with open(__SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--gpt2_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--gpt2_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained OpenAI model. \n" "This specifies the model architecture." ), ) __A = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
217
1
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def UpperCamelCase ( __magic_name__ : Any , __magic_name__ : List[Any]=False ) -> Union[str, Any]: """simple docstring""" try: lowercase__ = os.environ[key] except KeyError: # KEY isn't set, default to `default`. lowercase__ = default else: # KEY is set, convert it to True or False. try: lowercase__ = strtobool(a_ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'''If set, {key} must be yes or no.''' ) return _value A : Optional[int] = parse_flag_from_env('RUN_SLOW', default=False) def UpperCamelCase ( __magic_name__ : Any ) -> Tuple: """simple docstring""" return unittest.skip("""Test was skipped""" )(a_ ) def UpperCamelCase ( __magic_name__ : Dict ) -> Union[str, Any]: """simple docstring""" return unittest.skipUnless(_run_slow_tests , """test is slow""" )(a_ ) def UpperCamelCase ( __magic_name__ : Union[str, Any] ) -> int: """simple docstring""" return unittest.skipUnless(not torch.cuda.is_available() , """test requires only a CPU""" )(a_ ) def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" return unittest.skipUnless(torch.cuda.is_available() , """test requires a GPU""" )(a_ ) def UpperCamelCase ( __magic_name__ : Any ) -> Any: """simple docstring""" return unittest.skipUnless(is_xpu_available() , """test requires a XPU""" )(a_ ) def UpperCamelCase ( __magic_name__ : List[Any] ) -> Any: """simple docstring""" return unittest.skipUnless(is_mps_available() , """test requires a `mps` backend support in `torch`""" )(a_ ) def UpperCamelCase ( __magic_name__ : Tuple ) -> Union[str, Any]: """simple docstring""" return unittest.skipUnless( is_transformers_available() and is_datasets_available() , """test requires the Hugging Face suite""" )(a_ ) def UpperCamelCase ( __magic_name__ : Any ) -> Dict: """simple docstring""" return unittest.skipUnless(is_bnb_available() , """test requires the bitsandbytes library""" )(a_ ) def UpperCamelCase ( __magic_name__ : Dict ) -> List[str]: """simple docstring""" return unittest.skipUnless(is_tpu_available() , """test requires TPU""" )(a_ ) def UpperCamelCase ( __magic_name__ : int ) -> str: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() == 1 , """test requires a GPU""" )(a_ ) def UpperCamelCase ( __magic_name__ : Union[str, Any] ) -> int: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() == 1 , """test requires a XPU""" )(a_ ) def UpperCamelCase ( __magic_name__ : Tuple ) -> Optional[int]: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() > 1 , """test requires multiple GPUs""" )(a_ ) def UpperCamelCase ( __magic_name__ : Union[str, Any] ) -> Tuple: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() > 1 , """test requires multiple XPUs""" )(a_ ) def UpperCamelCase ( __magic_name__ : Union[str, Any] ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless(is_safetensors_available() , """test requires safetensors""" )(a_ ) def UpperCamelCase ( __magic_name__ : Dict ) -> Dict: """simple docstring""" return unittest.skipUnless(is_deepspeed_available() , """test requires DeepSpeed""" )(a_ ) def UpperCamelCase ( __magic_name__ : Tuple ) -> Union[str, Any]: """simple docstring""" return unittest.skipUnless(is_torch_version(""">=""" , """1.12.0""" ) , """test requires torch version >= 1.12.0""" )(a_ ) def UpperCamelCase ( __magic_name__ : int=None , __magic_name__ : Union[str, Any]=None ) -> List[Any]: """simple docstring""" if test_case is None: return partial(a_ , version=a_ ) return unittest.skipUnless(is_torch_version(""">=""" , a_ ) , f'''test requires torch version >= {version}''' )(a_ ) def UpperCamelCase ( __magic_name__ : Dict ) -> List[str]: """simple docstring""" return unittest.skipUnless(is_tensorboard_available() , """test requires Tensorboard""" )(a_ ) def UpperCamelCase ( __magic_name__ : int ) -> Tuple: """simple docstring""" return unittest.skipUnless(is_wandb_available() , """test requires wandb""" )(a_ ) def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> str: """simple docstring""" return unittest.skipUnless(is_comet_ml_available() , """test requires comet_ml""" )(a_ ) A : List[Any] = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def UpperCamelCase ( __magic_name__ : Dict ) -> Optional[int]: """simple docstring""" return unittest.skipUnless( _atleast_one_tracker_available , """test requires at least one tracker to be available and for `comet_ml` to not be installed""" , )(a_ ) class A ( unittest.TestCase ): '''simple docstring''' A__ = True @classmethod def lowerCamelCase__ (cls : str ) -> str: """simple docstring""" lowercase__ = tempfile.mkdtemp() @classmethod def lowerCamelCase__ (cls : int ) -> Tuple: """simple docstring""" if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def lowerCamelCase__ (self : Optional[int] ) -> str: """simple docstring""" if self.clear_on_setup: for path in Path(self.tmpdir ).glob("""**/*""" ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(lowerCAmelCase__ ) class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Tuple ) -> Optional[int]: """simple docstring""" super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Union[mock.Mock, List[mock.Mock]] ) -> Optional[int]: """simple docstring""" lowercase__ = mocks if isinstance(lowerCAmelCase__ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def UpperCamelCase ( __magic_name__ : Any ) -> Union[str, Any]: """simple docstring""" lowercase__ = AcceleratorState() lowercase__ = tensor[None].clone().to(state.device ) lowercase__ = gather(a_ ).cpu() lowercase__ = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , a_ ): return False return True class A : '''simple docstring''' def __init__(self : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = returncode lowercase__ = stdout lowercase__ = stderr async def UpperCamelCase ( __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] ) -> int: """simple docstring""" while True: lowercase__ = await stream.readline() if line: callback(a_ ) else: break async def UpperCamelCase ( __magic_name__ : Optional[Any] , __magic_name__ : Dict=None , __magic_name__ : Dict=None , __magic_name__ : List[Any]=None , __magic_name__ : Optional[Any]=False , __magic_name__ : Optional[Any]=False ) -> List[Any]: """simple docstring""" if echo: print("""\nRunning: """ , """ """.join(a_ ) ) lowercase__ = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=a_ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=a_ , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) lowercase__ = [] lowercase__ = [] def tee(__magic_name__ : Union[str, Any] , __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : Union[str, Any]="" ): lowercase__ = line.decode("""utf-8""" ).rstrip() sink.append(a_ ) if not quiet: print(a_ , a_ , file=a_ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda __magic_name__ : tee(a_ , a_ , sys.stdout , label="""stdout:""" ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda __magic_name__ : tee(a_ , a_ , sys.stderr , label="""stderr:""" ) ) ), ] , timeout=a_ , ) return _RunOutput(await p.wait() , a_ , a_ ) def UpperCamelCase ( __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any]=None , __magic_name__ : int=None , __magic_name__ : Any=180 , __magic_name__ : Optional[int]=False , __magic_name__ : int=True ) -> Optional[int]: """simple docstring""" lowercase__ = asyncio.get_event_loop() lowercase__ = loop.run_until_complete( _stream_subprocess(a_ , env=a_ , stdin=a_ , timeout=a_ , quiet=a_ , echo=a_ ) ) lowercase__ = " ".join(a_ ) if result.returncode > 0: lowercase__ = "\n".join(result.stderr ) raise RuntimeError( f'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' f'''The combined stderr from workers follows:\n{stderr}''' ) return result class A ( UpperCAmelCase__ ): '''simple docstring''' pass def UpperCamelCase ( __magic_name__ : List[str] , __magic_name__ : str=False ) -> Any: """simple docstring""" try: lowercase__ = subprocess.check_output(a_ , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(a_ , """decode""" ): lowercase__ = output.decode("""utf-8""" ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( f'''Command `{" ".join(a_ )}` failed with the following error:\n\n{e.output.decode()}''' ) from e
367
import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A : '''simple docstring''' def __init__(self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int]=13 , _UpperCAmelCase : List[str]=32 , _UpperCAmelCase : Dict=3 , _UpperCAmelCase : Dict=4 , _UpperCAmelCase : Union[str, Any]=[10, 20, 30, 40] , _UpperCAmelCase : Optional[int]=[2, 2, 3, 2] , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Tuple=37 , _UpperCAmelCase : str="gelu" , _UpperCAmelCase : Dict=10 , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : List[Any]=["stage2", "stage3", "stage4"] , _UpperCAmelCase : List[Any]=[2, 3, 4] , _UpperCAmelCase : Optional[Any]=None , ) -> Optional[Any]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = num_channels lowercase__ = num_stages lowercase__ = hidden_sizes lowercase__ = depths lowercase__ = is_training lowercase__ = use_labels lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = num_labels lowercase__ = initializer_range lowercase__ = out_features lowercase__ = out_indices lowercase__ = scope def lowerCamelCase__ (self : Any ) -> Dict: """simple docstring""" lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.num_labels ) lowercase__ = self.get_config() return config, pixel_values, labels def lowerCamelCase__ (self : int ) -> Dict: """simple docstring""" return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple ) -> Any: """simple docstring""" lowercase__ = ConvNextVaModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCamelCase__ (self : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] ) -> Any: """simple docstring""" lowercase__ = ConvNextVaForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict ) -> Optional[Any]: """simple docstring""" lowercase__ = ConvNextVaBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowercase__ = None lowercase__ = ConvNextVaBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowerCamelCase__ (self : List[Any] ) -> int: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {"""pixel_values""": pixel_values} return config, inputs_dict def lowerCamelCase__ (self : Optional[Any] ) -> Tuple: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class A ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) A__ = ( {'''feature-extraction''': ConvNextVaModel, '''image-classification''': ConvNextVaForImageClassification} if is_torch_available() else {} ) A__ = False A__ = False A__ = False A__ = False A__ = False def lowerCamelCase__ (self : int ) -> List[Any]: """simple docstring""" lowercase__ = ConvNextVaModelTester(self ) lowercase__ = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 ) def lowerCamelCase__ (self : int ) -> Tuple: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase__ (self : Tuple ) -> int: """simple docstring""" return @unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" ) def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" ) def lowerCamelCase__ (self : Tuple ) -> Any: """simple docstring""" pass @unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" ) def lowerCamelCase__ (self : int ) -> str: """simple docstring""" pass def lowerCamelCase__ (self : Tuple ) -> Any: """simple docstring""" if not self.model_tester.is_training: return for model_class in self.all_model_classes: lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_with_labels() lowercase__ = True if model_class.__name__ in [ *get_values(_UpperCAmelCase ), *get_values(_UpperCAmelCase ), ]: continue lowercase__ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.train() lowercase__ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) lowercase__ = model(**_UpperCAmelCase ).loss loss.backward() def lowerCamelCase__ (self : Optional[Any] ) -> int: """simple docstring""" if not self.model_tester.is_training: return for model_class in self.all_model_classes: lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_with_labels() lowercase__ = False lowercase__ = True if ( model_class.__name__ in [*get_values(_UpperCAmelCase ), *get_values(_UpperCAmelCase )] or not model_class.supports_gradient_checkpointing ): continue lowercase__ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.gradient_checkpointing_enable() model.train() lowercase__ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) lowercase__ = model(**_UpperCAmelCase ).loss loss.backward() def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(_UpperCAmelCase ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def lowerCamelCase__ (self : int ) -> Tuple: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> str: """simple docstring""" def check_hidden_states_output(_UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str ): lowercase__ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) lowercase__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase__ = self.model_tester.num_stages self.assertEqual(len(_UpperCAmelCase ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : List[Any] ) -> str: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) @slow def lowerCamelCase__ (self : int ) -> Any: """simple docstring""" for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = ConvNextVaModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def UpperCamelCase ( ) -> int: """simple docstring""" lowercase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class A ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCamelCase__ (self : Optional[Any] ) -> Optional[Any]: """simple docstring""" return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None @slow def lowerCamelCase__ (self : Any ) -> Any: """simple docstring""" lowercase__ = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(_UpperCAmelCase ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = preprocessor(images=_UpperCAmelCase , return_tensors="""pt""" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): lowercase__ = model(**_UpperCAmelCase ) # verify the logits lowercase__ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) lowercase__ = torch.tensor([0.9_996, 0.1_966, -0.4_386] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) )
146
0
'''simple docstring''' import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class _lowerCAmelCase ( unittest.TestCase ): def __init__(self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=True , lowercase=True , lowercase=True , lowercase=99 , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=16 , lowercase=2 , lowercase=0.02 , lowercase=4 , ): A_ : Any = parent A_ : Tuple = batch_size A_ : int = seq_length A_ : Tuple = is_training A_ : str = use_attention_mask A_ : List[Any] = use_token_type_ids A_ : str = use_labels A_ : List[Any] = vocab_size A_ : Optional[int] = hidden_size A_ : str = num_hidden_layers A_ : int = num_attention_heads A_ : Any = intermediate_size A_ : str = hidden_act A_ : int = hidden_dropout_prob A_ : List[Any] = attention_probs_dropout_prob A_ : List[Any] = max_position_embeddings A_ : str = type_vocab_size A_ : Union[str, Any] = type_sequence_label_size A_ : List[Any] = initializer_range A_ : Union[str, Any] = num_choices def _a (self ): A_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ : Dict = None if self.use_attention_mask: A_ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) A_ : Union[str, Any] = None if self.use_token_type_ids: A_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ : Any = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _a (self ): A_ : Union[str, Any] = self.prepare_config_and_inputs() A_, A_, A_, A_ : Tuple = config_and_inputs A_ : List[Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def _a (self ): A_ : Tuple = self.prepare_config_and_inputs() A_, A_, A_, A_ : Union[str, Any] = config_and_inputs A_ : List[str] = True A_ : Any = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) A_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Any = True __SCREAMING_SNAKE_CASE : List[Any] = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def _a (self ): A_ : int = FlaxBertModelTester(self ) @slow def _a (self ): # Only check this for base model, not necessary for all model classes. # This will also help speed-up tests. A_ : int = FlaxBertModel.from_pretrained("""bert-base-cased""" ) A_ : List[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowercase )
206
'''simple docstring''' import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _lowerCAmelCase : def __init__(self , lowercase , lowercase=13 , lowercase=3 , lowercase=True , lowercase=True , lowercase=0.1 , lowercase=0.1 , lowercase=224 , lowercase=1000 , lowercase=[3, 3, 6, 4] , lowercase=[48, 56, 112, 220] , ): A_ : Dict = parent A_ : List[Any] = batch_size A_ : Dict = num_channels A_ : Optional[Any] = is_training A_ : List[str] = use_labels A_ : List[Any] = hidden_dropout_prob A_ : Optional[int] = attention_probs_dropout_prob A_ : Tuple = num_labels A_ : List[str] = image_size A_ : str = layer_depths A_ : Optional[int] = embed_dims def _a (self ): A_ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : int = None if self.use_labels: A_ : Tuple = ids_tensor([self.batch_size] , self.num_labels ) A_ : int = self.get_config() return config, pixel_values, labels def _a (self ): return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="""gelu""" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=lowercase , layer_scale_init_value=1E-5 , ) def _a (self , lowercase , lowercase , lowercase ): A_ : List[Any] = SwiftFormerModel(config=lowercase ) model.to(lowercase ) model.eval() A_ : Union[str, Any] = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def _a (self , lowercase , lowercase , lowercase ): A_ : Any = self.num_labels A_ : Any = SwiftFormerForImageClassification(lowercase ) model.to(lowercase ) model.eval() A_ : Optional[int] = model(lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) A_ : int = SwiftFormerForImageClassification(lowercase ) model.to(lowercase ) model.eval() A_ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : Dict = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a (self ): ((A_), (A_), (A_)) : int = self.prepare_config_and_inputs() A_ : Any = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Optional[Any] = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () __SCREAMING_SNAKE_CASE : Optional[Any] = ( {'feature-extraction': SwiftFormerModel, 'image-classification': SwiftFormerForImageClassification} if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : int = False __SCREAMING_SNAKE_CASE : List[Any] = False __SCREAMING_SNAKE_CASE : List[str] = False __SCREAMING_SNAKE_CASE : Union[str, Any] = False __SCREAMING_SNAKE_CASE : Union[str, Any] = False def _a (self ): A_ : Optional[int] = SwiftFormerModelTester(self ) A_ : Any = ConfigTester( self , config_class=lowercase , has_text_modality=lowercase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def _a (self ): self.config_tester.run_common_tests() @unittest.skip(reason="""SwiftFormer does not use inputs_embeds""" ) def _a (self ): pass def _a (self ): A_, A_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Optional[Any] = model_class(lowercase ) A_ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase , nn.Linear ) ) def _a (self ): A_, A_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : str = model_class(lowercase ) A_ : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : int = [*signature.parameters.keys()] A_ : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowercase ) def _a (self ): A_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def _a (self ): A_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase ) @slow def _a (self ): for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Optional[Any] = SwiftFormerModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) @unittest.skip(reason="""SwiftFormer does not output attentions""" ) def _a (self ): pass def _a (self ): def check_hidden_states_output(lowercase , lowercase , lowercase ): A_ : str = model_class(lowercase ) model.to(lowercase ) model.eval() with torch.no_grad(): A_ : Optional[int] = model(**self._prepare_for_class(lowercase , lowercase ) ) A_ : Any = outputs.hidden_states A_ : Any = 8 self.assertEqual(len(lowercase ) , lowercase ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(lowercase ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) A_, A_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : str = True check_hidden_states_output(lowercase , lowercase , lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A_ : str = True check_hidden_states_output(lowercase , lowercase , lowercase ) def _a (self ): def _config_zero_init(lowercase ): A_ : Optional[Any] = copy.deepcopy(lowercase ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(lowercase , lowercase , 1E-10 ) if isinstance(getattr(lowercase , lowercase , lowercase ) , lowercase ): A_ : Any = _config_zero_init(getattr(lowercase , lowercase ) ) setattr(lowercase , lowercase , lowercase ) return configs_no_init A_, A_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() A_ : Any = _config_zero_init(lowercase ) for model_class in self.all_model_classes: A_ : List[str] = model_class(config=lowercase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _a (self ): pass def a ( ): '''simple docstring''' A_ : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): @cached_property def _a (self ): return ViTImageProcessor.from_pretrained("""MBZUAI/swiftformer-xs""" ) if is_vision_available() else None @slow def _a (self ): A_ : Any = SwiftFormerForImageClassification.from_pretrained("""MBZUAI/swiftformer-xs""" ).to(lowercase ) A_ : Dict = self.default_image_processor A_ : Dict = prepare_img() A_ : int = image_processor(images=lowercase , return_tensors="""pt""" ).to(lowercase ) # forward pass with torch.no_grad(): A_ : int = model(**lowercase ) # verify the logits A_ : int = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowercase ) A_ : List[str] = torch.tensor([[-2.1_703E00, 2.1_107E00, -2.0_811E00]] ).to(lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase , atol=1E-4 ) )
206
1
'''simple docstring''' from datetime import datetime as dt import os from github import Github UpperCAmelCase : Any = [ 'good first issue', 'good second issue', 'good difficult issue', 'feature request', 'new model', 'wip', ] def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE = Github(os.environ["""GITHUB_TOKEN"""] ) __SCREAMING_SNAKE_CASE = g.get_repo("""huggingface/transformers""" ) __SCREAMING_SNAKE_CASE = repo.get_issues(state="""open""" ) for issue in open_issues: __SCREAMING_SNAKE_CASE = sorted([comment for comment in issue.get_comments()] , key=lambda a__ : i.created_at , reverse=a__ ) __SCREAMING_SNAKE_CASE = comments[0] if len(a__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="""closed""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
331
'''simple docstring''' import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast UpperCAmelCase : List[str] = datasets.utils.logging.get_logger(__name__) @dataclass class lowerCAmelCase__ ( datasets.BuilderConfig ): """simple docstring""" lowerCAmelCase__ = 10000 lowerCAmelCase__ = None lowerCAmelCase__ = None class lowerCAmelCase__ ( datasets.ArrowBasedBuilder ): """simple docstring""" lowerCAmelCase__ = ParquetConfig def UpperCAmelCase__ ( self : List[str] ) -> List[Any]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def UpperCAmelCase__ ( self : str , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Tuple: """simple docstring""" if not self.config.data_files: raise ValueError(f'At least one data file must be specified, but got data_files={self.config.data_files}' ) __SCREAMING_SNAKE_CASE = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__SCREAMING_SNAKE_CASE , (str, list, tuple) ): __SCREAMING_SNAKE_CASE = data_files if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __SCREAMING_SNAKE_CASE = [dl_manager.iter_files(__SCREAMING_SNAKE_CASE ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] __SCREAMING_SNAKE_CASE = [] for split_name, files in data_files.items(): if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __SCREAMING_SNAKE_CASE = [dl_manager.iter_files(__SCREAMING_SNAKE_CASE ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(__SCREAMING_SNAKE_CASE ): with open(__SCREAMING_SNAKE_CASE , """rb""" ) as f: __SCREAMING_SNAKE_CASE = datasets.Features.from_arrow_schema(pq.read_schema(__SCREAMING_SNAKE_CASE ) ) break splits.append(datasets.SplitGenerator(name=__SCREAMING_SNAKE_CASE , gen_kwargs={"""files""": files} ) ) return splits def UpperCAmelCase__ ( self : Optional[int] , __SCREAMING_SNAKE_CASE : pa.Table ) -> pa.Table: """simple docstring""" if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __SCREAMING_SNAKE_CASE = table_cast(__SCREAMING_SNAKE_CASE , self.info.features.arrow_schema ) return pa_table def UpperCAmelCase__ ( self : Tuple , __SCREAMING_SNAKE_CASE : int ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( f'Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'' ) for file_idx, file in enumerate(itertools.chain.from_iterable(__SCREAMING_SNAKE_CASE ) ): with open(__SCREAMING_SNAKE_CASE , """rb""" ) as f: __SCREAMING_SNAKE_CASE = pq.ParquetFile(__SCREAMING_SNAKE_CASE ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): __SCREAMING_SNAKE_CASE = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f'{file_idx}_{batch_idx}', self._cast_table(__SCREAMING_SNAKE_CASE ) except ValueError as e: logger.error(f'Failed to read file \'{file}\' with error {type(__SCREAMING_SNAKE_CASE )}: {e}' ) raise
331
1
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ = 0 , snake_case__ = 0 ) -> Tuple: lowerCAmelCase = right or len(A__ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(A__ , A__ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
338
"""simple docstring""" from torch import nn def snake_case ( A__ ): if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(F"""Unsupported activation function: {act_fn}""" )
268
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class snake_case_ ( __A ): __A : Dict = "facebook/bart-large-mnli" __A : Any = ( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) __A : Tuple = "text_classifier" __A : int = AutoTokenizer __A : List[Any] = AutoModelForSequenceClassification __A : List[str] = ["text", ["text"]] __A : int = ["text"] def __UpperCamelCase ( self : Dict ) -> Any: super().setup() lowercase__ : Any = self.model.config lowercase__ : Tuple = -1 for idx, label in config.idalabel.items(): if label.lower().startswith("entail" ): lowercase__ : Any = int(lowercase_ ) if self.entailment_id == -1: raise ValueError("Could not determine the entailment ID from the model config, please pass it at init." ) def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : Optional[Any] , lowercase_ : Optional[int] ) -> Dict: lowercase__ : Any = labels return self.pre_processor( [text] * len(lowercase_ ) , [F'''This example is {label}''' for label in labels] , return_tensors="pt" , padding="max_length" , ) def __UpperCamelCase ( self : int , lowercase_ : str ) -> Optional[int]: lowercase__ : Dict = outputs.logits lowercase__ : str = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
333
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class snake_case_ ( __A ): __A : List[str] = "vit_mae" def __init__( self : List[Any] , lowercase_ : List[Any]=7_68 , lowercase_ : Tuple=12 , lowercase_ : Tuple=12 , lowercase_ : Optional[Any]=30_72 , lowercase_ : str="gelu" , lowercase_ : Tuple=0.0 , lowercase_ : int=0.0 , lowercase_ : Dict=0.02 , lowercase_ : int=1E-12 , lowercase_ : Tuple=2_24 , lowercase_ : Any=16 , lowercase_ : Dict=3 , lowercase_ : List[Any]=True , lowercase_ : Dict=16 , lowercase_ : List[str]=5_12 , lowercase_ : Tuple=8 , lowercase_ : Any=20_48 , lowercase_ : int=0.75 , lowercase_ : Tuple=False , **lowercase_ : Optional[int] , ) -> Optional[Any]: super().__init__(**lowercase_ ) lowercase__ : List[str] = hidden_size lowercase__ : str = num_hidden_layers lowercase__ : Optional[int] = num_attention_heads lowercase__ : List[Any] = intermediate_size lowercase__ : str = hidden_act lowercase__ : List[str] = hidden_dropout_prob lowercase__ : Optional[Any] = attention_probs_dropout_prob lowercase__ : Any = initializer_range lowercase__ : Optional[Any] = layer_norm_eps lowercase__ : Optional[Any] = image_size lowercase__ : Optional[int] = patch_size lowercase__ : Any = num_channels lowercase__ : str = qkv_bias lowercase__ : Optional[Any] = decoder_num_attention_heads lowercase__ : Any = decoder_hidden_size lowercase__ : Any = decoder_num_hidden_layers lowercase__ : Union[str, Any] = decoder_intermediate_size lowercase__ : int = mask_ratio lowercase__ : Tuple = norm_pix_loss
333
1
import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model lowercase : Optional[Any] = """0.12""" # assumed parallelism: 8 if is_torch_available(): import torch def A_ ( A__ , A__ , A__=None ) -> Optional[int]: if rng is None: a__ : Optional[Any] = random.Random() a__ : int = 1 for dim in shape: total_dims *= dim a__ : Union[str, Any] = [] for _ in range(A__ ): values.append(rng.randint(0 , vocab_size - 1 ) ) a__ : List[Any] = np.array(A__ , dtype=jnp.intaa ).reshape(A__ ) return output def A_ ( A__ , A__=None ) -> Union[str, Any]: a__ : str = ids_tensor(A__ , vocab_size=2 , rng=A__ ) # make sure that at least one token is attended to for each batch a__ : str = 1 return attn_mask @require_flax class A__ : """simple docstring""" __A : str = None __A : Tuple = () def __lowercase ( self) -> int: '''simple docstring''' a__ , a__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 a__ : Optional[Any] = 2 a__ : Dict = inputs['input_ids'].shape[-1] // 2 a__ : Optional[int] = inputs['input_ids'][:max_batch_size, :sequence_length] a__ : Optional[Any] = jnp.ones_like(lowercase) a__ : Optional[int] = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens a__ : Optional[Any] = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` a__ : Tuple = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def __lowercase ( self) -> Dict: '''simple docstring''' a__ , a__ , a__ , a__ : List[str] = self._get_input_ids_and_config() a__ : int = False a__ : Optional[int] = max_length a__ : Optional[int] = 0 for model_class in self.all_generative_model_classes: a__ : Union[str, Any] = model_class(lowercase) a__ : Union[str, Any] = model_class.__name__[4:] # Skip the "Flax" at the beginning a__ : int = getattr(lowercase , lowercase) a__ : List[Any] = pt_model_class(lowercase).eval() a__ : Tuple = load_flax_weights_in_pytorch_model(lowercase , flax_model.params) a__ : Optional[Any] = flax_model.generate(lowercase).sequences a__ : List[Any] = pt_model.generate(torch.tensor(lowercase , dtype=torch.long)) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: a__ : Optional[Any] = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist()) def __lowercase ( self) -> Any: '''simple docstring''' a__ , a__ , a__ , a__ : Tuple = self._get_input_ids_and_config() a__ : Optional[int] = False a__ : Union[str, Any] = max_length for model_class in self.all_generative_model_classes: a__ : Optional[int] = model_class(lowercase) a__ : Optional[int] = model.generate(lowercase).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase) a__ : List[Any] = jit(model.generate) a__ : Any = jit_generate(lowercase).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' a__ , a__ , a__ , a__ : List[str] = self._get_input_ids_and_config() a__ : Dict = True a__ : Union[str, Any] = max_length for model_class in self.all_generative_model_classes: a__ : Union[str, Any] = model_class(lowercase) a__ : List[Any] = model.generate(lowercase).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase) a__ : str = jit(model.generate) a__ : str = jit_generate(lowercase).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def __lowercase ( self) -> str: '''simple docstring''' a__ , a__ , a__ , a__ : Optional[int] = self._get_input_ids_and_config() a__ : Optional[int] = False a__ : str = max_length a__ : Optional[int] = 2 for model_class in self.all_generative_model_classes: a__ : Union[str, Any] = model_class(lowercase) a__ : str = model.generate(lowercase).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase) a__ : List[Any] = jit(model.generate) a__ : Dict = jit_generate(lowercase).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def __lowercase ( self) -> List[str]: '''simple docstring''' a__ , a__ , a__ , a__ : Optional[Any] = self._get_input_ids_and_config() a__ : List[str] = False a__ : Optional[int] = max_length a__ : Optional[Any] = 2 a__ : int = 2 for model_class in self.all_generative_model_classes: a__ : Dict = model_class(lowercase) a__ : Optional[Any] = model.generate(lowercase).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences) def __lowercase ( self) -> Any: '''simple docstring''' a__ , a__ , a__ , a__ : Union[str, Any] = self._get_input_ids_and_config() a__ : int = True a__ : Optional[Any] = max_length a__ : List[Any] = 0.8 a__ : List[str] = 10 a__ : Tuple = 0.3 a__ : List[Any] = 1 a__ : Any = 8 a__ : Union[str, Any] = 9 for model_class in self.all_generative_model_classes: a__ : str = model_class(lowercase) a__ : str = model.generate(lowercase).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase) a__ : List[str] = jit(model.generate) a__ : Dict = jit_generate(lowercase).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def __lowercase ( self) -> Optional[Any]: '''simple docstring''' a__ , a__ , a__ , a__ : str = self._get_input_ids_and_config() a__ : int = max_length a__ : Dict = 1 a__ : Optional[Any] = 8 a__ : Union[str, Any] = 9 for model_class in self.all_generative_model_classes: a__ : Union[str, Any] = model_class(lowercase) a__ : Optional[int] = model.generate(lowercase).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase) a__ : Tuple = jit(model.generate) a__ : Optional[int] = jit_generate(lowercase).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' a__ , a__ , a__ , a__ : int = self._get_input_ids_and_config() a__ : int = max_length a__ : Optional[int] = 2 a__ : int = 1 a__ : Tuple = 8 a__ : Optional[int] = 9 for model_class in self.all_generative_model_classes: a__ : List[str] = model_class(lowercase) a__ : List[Any] = model.generate(lowercase).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase) a__ : Any = jit(model.generate) a__ : Dict = jit_generate(lowercase).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def __lowercase ( self) -> str: '''simple docstring''' a__ , a__ , a__ , a__ : Optional[int] = self._get_input_ids_and_config() # pad attention mask on the left a__ : int = attention_mask.at[(0, 0)].set(0) a__ : Union[str, Any] = False a__ : Dict = max_length for model_class in self.all_generative_model_classes: a__ : Optional[Any] = model_class(lowercase) a__ : str = model.generate(lowercase , attention_mask=lowercase).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase) a__ : Union[str, Any] = jit(model.generate) a__ : Union[str, Any] = jit_generate(lowercase , attention_mask=lowercase).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' a__ , a__ , a__ , a__ : Dict = self._get_input_ids_and_config() # pad attention mask on the left a__ : Union[str, Any] = attention_mask.at[(0, 0)].set(0) a__ : Union[str, Any] = True a__ : Tuple = max_length for model_class in self.all_generative_model_classes: a__ : List[str] = model_class(lowercase) a__ : int = model.generate(lowercase , attention_mask=lowercase).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase) a__ : Optional[int] = jit(model.generate) a__ : Any = jit_generate(lowercase , attention_mask=lowercase).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def __lowercase ( self) -> Optional[int]: '''simple docstring''' a__ , a__ , a__ , a__ : str = self._get_input_ids_and_config() # pad attention mask on the left a__ : List[Any] = attention_mask.at[(0, 0)].set(0) a__ : int = 2 a__ : Tuple = max_length for model_class in self.all_generative_model_classes: a__ : int = model_class(lowercase) a__ : Optional[int] = model.generate(lowercase , attention_mask=lowercase).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase) a__ : Any = jit(model.generate) a__ : Union[str, Any] = jit_generate(lowercase , attention_mask=lowercase).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) @require_flax class A__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self) -> Any: '''simple docstring''' a__ : Tuple = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-bert') a__ : int = FlaxAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-bert-flax-only') a__ : Optional[int] = 'Hello world' a__ : Any = tokenizer(lowercase , return_tensors='np').input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(lowercase , 'do_samples'): model.generate(lowercase , do_samples=lowercase) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(lowercase , 'foo'): a__ : Dict = {'foo': 'bar'} model.generate(lowercase , **lowercase)
99
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() lowercase : Any = logging.get_logger(__name__) def A_ ( A__ ) -> List[str]: a__ : Union[str, Any] = torch.load(A__ , map_location='cpu' ) if "model" in sd.keys(): a__ : Tuple = torch.load(A__ , map_location='cpu' )['model'] # pop unnecessary weights a__ : Optional[Any] = [ 'decoder.version', 'decoder.output_projection.weight', ] for key in keys_to_delete: if key in sd: sd.pop(A__ ) a__ : Union[str, Any] = { 'decoder.project_in_dim.weight': 'decoder.project_in.weight', 'decoder.project_out_dim.weight': 'decoder.project_out.weight', 'decoder.layer_norm.weight': 'decoder.final_layer_norm.weight', 'decoder.layer_norm.bias': 'decoder.final_layer_norm.bias', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: a__ : Any = sd.pop(A__ ) a__ : Optional[int] = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: a__ : str = sd[key] # We split QKV in separate Q,K,V a__ : Union[str, Any] = key.replace('.qkv_proj.' , '.q_proj.' ) a__ : int = key.replace('.qkv_proj.' , '.k_proj.' ) a__ : Optional[int] = key.replace('.qkv_proj.' , '.v_proj.' ) a__ : List[Any] = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 a__ , a__ , a__ : Any = torch.split(A__ , depth // 3 , dim=0 ) a__ : int = q a__ : List[Any] = k a__ : int = v del sd[key] return sd @torch.no_grad() def A_ ( A__ , A__ , A__=None ) -> Union[str, Any]: a__ : Union[str, Any] = load_checkpoint(A__ ) if config is not None: a__ : List[Any] = OPTConfig.from_pretrained(A__ ) else: a__ : int = OPTConfig() a__ : Optional[int] = OPTModel(A__ ).half().eval() model.load_state_dict(A__ ) # Check results Path(A__ ).mkdir(exist_ok=A__ ) model.save_pretrained(A__ ) if __name__ == "__main__": lowercase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( """--fairseq_path""", type=str, help=( """path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:""" """ https://huggingface.co/models?other=opt_metasq""" ), ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""") lowercase : Any = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
99
1
from __future__ import annotations def snake_case__ ( SCREAMING_SNAKE_CASE_ : list[float] , SCREAMING_SNAKE_CASE_ : list[float] ): '''simple docstring''' lowercase__ : Union[str, Any] = sorted(numsa + numsa ) lowercase__ , lowercase__ : int = divmod(len(SCREAMING_SNAKE_CASE_ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() snake_case_ = [float(x) for x in input('''Enter the elements of first array: ''').split()] snake_case_ = [float(x) for x in input('''Enter the elements of second array: ''').split()] print(F'''The median of two arrays is: {median_of_two_arrays(array_a, array_a)}''')
216
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) snake_case_ = {'''configuration_encoder_decoder''': ['''EncoderDecoderConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = ['''EncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = ['''TFEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = ['''FlaxEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys snake_case_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
216
1
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() _UpperCAmelCase : Optional[int] = logging.get_logger("transformers.models.speecht5") def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase, lowerCamelCase ): hf_model.apply_weight_norm() lowercase :str = checkpoint["input_conv.weight_g"] lowercase :str = checkpoint["input_conv.weight_v"] lowercase :Optional[int] = checkpoint["input_conv.bias"] for i in range(len(config.upsample_rates ) ): lowercase :Optional[int] = checkpoint[F"upsamples.{i}.1.weight_g"] lowercase :List[Any] = checkpoint[F"upsamples.{i}.1.weight_v"] lowercase :List[str] = checkpoint[F"upsamples.{i}.1.bias"] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): lowercase :List[str] = checkpoint[F"blocks.{i}.convs1.{j}.1.weight_g"] lowercase :Dict = checkpoint[F"blocks.{i}.convs1.{j}.1.weight_v"] lowercase :int = checkpoint[F"blocks.{i}.convs1.{j}.1.bias"] lowercase :Any = checkpoint[F"blocks.{i}.convs2.{j}.1.weight_g"] lowercase :Union[str, Any] = checkpoint[F"blocks.{i}.convs2.{j}.1.weight_v"] lowercase :Optional[int] = checkpoint[F"blocks.{i}.convs2.{j}.1.bias"] lowercase :Union[str, Any] = checkpoint["output_conv.1.weight_g"] lowercase :Any = checkpoint["output_conv.1.weight_v"] lowercase :List[str] = checkpoint["output_conv.1.bias"] hf_model.remove_weight_norm() @torch.no_grad() def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, lowerCamelCase=None, ): if config_path is not None: lowercase :Optional[Any] = SpeechTaHifiGanConfig.from_pretrained(lowerCamelCase ) else: lowercase :Union[str, Any] = SpeechTaHifiGanConfig() lowercase :int = SpeechTaHifiGan(lowerCamelCase ) lowercase :Optional[Any] = torch.load(lowerCamelCase ) load_weights(orig_checkpoint["model"]["generator"], lowerCamelCase, lowerCamelCase ) lowercase :Optional[int] = np.load(lowerCamelCase ) lowercase :Tuple = stats[0].reshape(-1 ) lowercase :Union[str, Any] = stats[1].reshape(-1 ) lowercase :Tuple = torch.from_numpy(lowerCamelCase ).float() lowercase :Dict = torch.from_numpy(lowerCamelCase ).float() model.save_pretrained(lowerCamelCase ) if repo_id: print("Pushing to the hub..." ) model.push_to_hub(lowerCamelCase ) if __name__ == "__main__": _UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) _UpperCAmelCase : Tuple = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
236
def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase ): lowercase :List[str] = "" for word_or_phrase in separated: if not isinstance(lowerCamelCase, lowerCamelCase ): raise Exception("join() accepts only strings to be joined" ) joined += word_or_phrase + separator return joined.strip(lowerCamelCase ) if __name__ == "__main__": from doctest import testmod testmod()
236
1
'''simple docstring''' import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## snake_case__ : int = 16 snake_case__ : Optional[Any] = 32 def _lowerCamelCase ( lowerCamelCase_ : Accelerator , lowerCamelCase_ : int = 16 ): """simple docstring""" UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained('bert-base-cased' ) UpperCAmelCase_ : int = load_dataset('glue' , 'mrpc' ) def tokenize_function(lowerCamelCase_ : Tuple ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase_ : Union[str, Any] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCAmelCase_ : Any = datasets.map( lowerCamelCase_ , batched=lowerCamelCase_ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase_ : List[Any] = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(lowerCamelCase_ : int ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCAmelCase_ : Optional[int] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCAmelCase_ : Tuple = 16 elif accelerator.mixed_precision != "no": UpperCAmelCase_ : Tuple = 8 else: UpperCAmelCase_ : List[str] = None return tokenizer.pad( lowerCamelCase_ , padding='longest' , max_length=lowerCamelCase_ , pad_to_multiple_of=lowerCamelCase_ , return_tensors='pt' , ) # Instantiate dataloaders. UpperCAmelCase_ : List[str] = DataLoader( tokenized_datasets['train'] , shuffle=lowerCamelCase_ , collate_fn=lowerCamelCase_ , batch_size=lowerCamelCase_ , drop_last=lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = DataLoader( tokenized_datasets['validation'] , shuffle=lowerCamelCase_ , collate_fn=lowerCamelCase_ , batch_size=lowerCamelCase_ , drop_last=(accelerator.mixed_precision == 'fp8') , ) return train_dataloader, eval_dataloader def _lowerCamelCase ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : str ): """simple docstring""" UpperCAmelCase_ : str = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase_ : str = config['lr'] UpperCAmelCase_ : Optional[Any] = int(config['num_epochs'] ) UpperCAmelCase_ : List[str] = int(config['seed'] ) UpperCAmelCase_ : List[Any] = int(config['batch_size'] ) UpperCAmelCase_ : int = evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation UpperCAmelCase_ : Union[str, Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCAmelCase_ : List[str] = batch_size // MAX_GPU_BATCH_SIZE UpperCAmelCase_ : str = MAX_GPU_BATCH_SIZE set_seed(lowerCamelCase_ ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = get_dataloaders(lowerCamelCase_ , lowerCamelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase_ : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=lowerCamelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase_ : Tuple = model.to(accelerator.device ) # Instantiate optimizer UpperCAmelCase_ : str = AdamW(params=model.parameters() , lr=lowerCamelCase_ ) # Instantiate scheduler UpperCAmelCase_ : int = get_linear_schedule_with_warmup( optimizer=lowerCamelCase_ , num_warmup_steps=100 , num_training_steps=(len(lowerCamelCase_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[str] = accelerator.prepare( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # Now we train the model for epoch in range(lowerCamelCase_ ): model.train() for step, batch in enumerate(lowerCamelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCAmelCase_ : str = model(**lowerCamelCase_ ) UpperCAmelCase_ : List[str] = outputs.loss UpperCAmelCase_ : int = loss / gradient_accumulation_steps accelerator.backward(lowerCamelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCamelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase_ : Dict = model(**lowerCamelCase_ ) UpperCAmelCase_ : Tuple = outputs.logits.argmax(dim=-1 ) UpperCAmelCase_ , UpperCAmelCase_ : str = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=lowerCamelCase_ , references=lowerCamelCase_ , ) UpperCAmelCase_ : Optional[int] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , lowerCamelCase_ ) def _lowerCamelCase ( ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=lowerCamelCase_ , default=lowerCamelCase_ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) UpperCAmelCase_ : Any = parser.parse_args() UpperCAmelCase_ : str = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": main()
274
'''simple docstring''' import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class __SCREAMING_SNAKE_CASE : '''simple docstring''' @staticmethod def _UpperCamelCase ( *snake_case_ , **snake_case_ ): '''simple docstring''' pass def _lowerCamelCase ( lowerCamelCase_ : Image ): """simple docstring""" UpperCAmelCase_ : Dict = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' lowerCamelCase_ :Optional[int] = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : str = DepthEstimationPipeline(model=snake_case_ , image_processor=snake_case_ ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def _UpperCamelCase ( self , snake_case_ , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Dict = depth_estimator('./tests/fixtures/tests_samples/COCO/000000039769.png' ) self.assertEqual({'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )} , snake_case_ ) import datasets UpperCAmelCase_ : Optional[int] = datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test' ) UpperCAmelCase_ : Union[str, Any] = depth_estimator( [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] ) self.assertEqual( [ {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, ] , snake_case_ , ) @require_tf @unittest.skip('Depth estimation is not implemented in TF' ) def _UpperCamelCase ( self ): '''simple docstring''' pass @slow @require_torch def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : Any = 'Intel/dpt-large' UpperCAmelCase_ : Dict = pipeline('depth-estimation' , model=snake_case_ ) UpperCAmelCase_ : Optional[int] = depth_estimator('http://images.cocodataset.org/val2017/000000039769.jpg' ) UpperCAmelCase_ : Union[str, Any] = hashimage(outputs['depth'] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['predicted_depth'].max().item() ) , 29.3_04 ) self.assertEqual(nested_simplify(outputs['predicted_depth'].min().item() ) , 2.6_62 ) @require_torch def _UpperCamelCase ( self ): '''simple docstring''' self.skipTest('There is not hf-internal-testing tiny model for either GLPN nor DPT' )
274
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : Optional[int] = logging.get_logger(__name__) __lowerCamelCase : List[str] = { '''BridgeTower/bridgetower-base''': '''https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json''', '''BridgeTower/bridgetower-base-itm-mlm''': ( '''https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json''' ), } class __snake_case ( __UpperCAmelCase ): lowerCAmelCase_ = "bridgetower_vision_model" def __init__( self : Optional[Any] , _lowercase : Optional[int]=7_68 , _lowercase : List[Any]=12 , _lowercase : List[str]=3 , _lowercase : List[Any]=16 , _lowercase : List[str]=2_88 , _lowercase : Tuple=1 , _lowercase : str=1E-05 , _lowercase : Optional[int]=False , _lowercase : Dict=True , _lowercase : Tuple=False , **_lowercase : List[Any] , ): """simple docstring""" super().__init__(**UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = patch_size SCREAMING_SNAKE_CASE__ = image_size SCREAMING_SNAKE_CASE__ = initializer_factor SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = stop_gradient SCREAMING_SNAKE_CASE__ = share_layernorm SCREAMING_SNAKE_CASE__ = remove_last_layer @classmethod def __a ( cls : Any , _lowercase : Optional[int] , **_lowercase : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = cls.get_config_dict(UpperCamelCase__ , **UpperCamelCase__ ) if config_dict.get("""model_type""" ) == "bridgetower": SCREAMING_SNAKE_CASE__ = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCamelCase__ , **UpperCamelCase__ ) class __snake_case ( __UpperCAmelCase ): lowerCAmelCase_ = "bridgetower_text_model" def __init__( self : Dict , _lowercase : Dict=5_02_65 , _lowercase : Dict=7_68 , _lowercase : str=12 , _lowercase : Optional[Any]=12 , _lowercase : List[str]=1 , _lowercase : Optional[Any]=30_72 , _lowercase : int="gelu" , _lowercase : List[str]=0.1 , _lowercase : List[str]=0.1 , _lowercase : List[Any]=5_14 , _lowercase : Any=1 , _lowercase : Dict=1E-05 , _lowercase : Tuple=1 , _lowercase : Tuple=0 , _lowercase : Any=2 , _lowercase : Dict="absolute" , _lowercase : Any=True , **_lowercase : int , ): """simple docstring""" super().__init__(**UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = initializer_factor SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = position_embedding_type SCREAMING_SNAKE_CASE__ = use_cache SCREAMING_SNAKE_CASE__ = pad_token_id SCREAMING_SNAKE_CASE__ = bos_token_id SCREAMING_SNAKE_CASE__ = eos_token_id @classmethod def __a ( cls : Union[str, Any] , _lowercase : Optional[int] , **_lowercase : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = cls.get_config_dict(UpperCamelCase__ , **UpperCamelCase__ ) if config_dict.get("""model_type""" ) == "bridgetower": SCREAMING_SNAKE_CASE__ = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCamelCase__ , **UpperCamelCase__ ) class __snake_case ( __UpperCAmelCase ): lowerCAmelCase_ = "bridgetower" def __init__( self : int , _lowercase : List[Any]=True , _lowercase : str="gelu" , _lowercase : Tuple=7_68 , _lowercase : Dict=1 , _lowercase : Any=1E-05 , _lowercase : Tuple=False , _lowercase : Optional[int]="add" , _lowercase : str=12 , _lowercase : List[str]=6 , _lowercase : Tuple=False , _lowercase : str=False , _lowercase : Dict=None , _lowercase : List[Any]=None , **_lowercase : str , ): """simple docstring""" SCREAMING_SNAKE_CASE__ = kwargs.pop("""text_config_dict""" , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = kwargs.pop("""vision_config_dict""" , UpperCamelCase__ ) super().__init__(**UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = share_cross_modal_transformer_layers SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = initializer_factor SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = share_link_tower_layers SCREAMING_SNAKE_CASE__ = link_tower_type SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = tie_word_embeddings SCREAMING_SNAKE_CASE__ = init_layernorm_from_vision_encoder if text_config is None: SCREAMING_SNAKE_CASE__ = {} logger.info("""`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.""" ) if vision_config is None: SCREAMING_SNAKE_CASE__ = {} logger.info("""`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.""" ) SCREAMING_SNAKE_CASE__ = BridgeTowerTextConfig(**UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = BridgeTowerVisionConfig(**UpperCamelCase__ ) @classmethod def __a ( cls : Dict , _lowercase : Union[str, Any] , _lowercase : List[str] , **_lowercase : List[str] ): """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **UpperCamelCase__ ) def __a ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE__ = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE__ = self.text_config.to_dict() SCREAMING_SNAKE_CASE__ = self.vision_config.to_dict() SCREAMING_SNAKE_CASE__ = self.__class__.model_type return output
219
from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _A = logging.get_logger(__name__) _A = { '''nielsr/canine-s''': 2_048, } # Unicode defines 1,114,112 total “codepoints” _A = 1_114_112 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py _A = 0 _A = 0xe0_00 _A = 0xe0_01 _A = 0xe0_02 _A = 0xe0_03 _A = 0xe0_04 # Maps special codepoints to human-readable names. _A = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. _A = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class A ( __UpperCAmelCase ): __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self, UpperCamelCase__=chr(UpperCamelCase__ ), UpperCamelCase__=chr(UpperCamelCase__ ), UpperCamelCase__=chr(UpperCamelCase__ ), UpperCamelCase__=chr(UpperCamelCase__ ), UpperCamelCase__=chr(UpperCamelCase__ ), UpperCamelCase__=chr(UpperCamelCase__ ), UpperCamelCase__=False, UpperCamelCase__=2048, **UpperCamelCase__, ): """simple docstring""" lowerCAmelCase_ = AddedToken(UpperCamelCase__, lstrip=UpperCamelCase__, rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__, UpperCamelCase__ ) else bos_token lowerCAmelCase_ = AddedToken(UpperCamelCase__, lstrip=UpperCamelCase__, rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__, UpperCamelCase__ ) else eos_token lowerCAmelCase_ = AddedToken(UpperCamelCase__, lstrip=UpperCamelCase__, rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__, UpperCamelCase__ ) else sep_token lowerCAmelCase_ = AddedToken(UpperCamelCase__, lstrip=UpperCamelCase__, rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__, UpperCamelCase__ ) else cls_token lowerCAmelCase_ = AddedToken(UpperCamelCase__, lstrip=UpperCamelCase__, rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__, UpperCamelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase_ = AddedToken(UpperCamelCase__, lstrip=UpperCamelCase__, rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__, UpperCamelCase__ ) else mask_token super().__init__( bos_token=UpperCamelCase__, eos_token=UpperCamelCase__, sep_token=UpperCamelCase__, cls_token=UpperCamelCase__, pad_token=UpperCamelCase__, mask_token=UpperCamelCase__, add_prefix_space=UpperCamelCase__, model_max_length=UpperCamelCase__, **UpperCamelCase__, ) # Creates a mapping for looking up the IDs of special symbols. lowerCAmelCase_ = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): lowerCAmelCase_ = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. lowerCAmelCase_ = { codepoint: name for name, codepoint in self._special_codepoints.items() } lowerCAmelCase_ = UNICODE_VOCAB_SIZE lowerCAmelCase_ = len(self._special_codepoints ) @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return self._unicode_vocab_size def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" return list(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" try: return ord(UpperCamelCase__ ) except TypeError: raise ValueError(f"invalid token: '{token}'" ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(UpperCamelCase__ ) except TypeError: raise ValueError(f"invalid id: {index}" ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" return "".join(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ = None ): """simple docstring""" lowerCAmelCase_ = [self.sep_token_id] lowerCAmelCase_ = [self.cls_token_id] lowerCAmelCase_ = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ = None, UpperCamelCase__ = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase__, token_ids_a=UpperCamelCase__, already_has_special_tokens=UpperCamelCase__ ) lowerCAmelCase_ = [1] + ([0] * len(UpperCamelCase__ )) + [1] if token_ids_a is not None: result += ([0] * len(UpperCamelCase__ )) + [1] return result def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ = None ): """simple docstring""" lowerCAmelCase_ = [self.sep_token_id] lowerCAmelCase_ = [self.cls_token_id] lowerCAmelCase_ = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ = None ): """simple docstring""" return ()
278
0
import csv import tweepy # Twitter API credentials _lowercase: Dict = "" _lowercase: Optional[int] = "" _lowercase: str = "" _lowercase: List[str] = "" def a( A : str ) -> None: """simple docstring""" a = tweepy.OAuthHandler(A , A ) auth.set_access_token(A , A ) a = tweepy.API(A ) # initialize a list to hold all the tweepy Tweets a = [] # make initial request for most recent tweets (200 is the maximum allowed count) a = api.user_timeline(screen_name=A , count=200 ) # save most recent tweets alltweets.extend(A ) # save the id of the oldest tweet less one a = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(A ) > 0: print(f'''getting tweets before {oldest}''' ) # all subsequent requests use the max_id param to prevent duplicates a = api.user_timeline( screen_name=A , count=200 , max_id=A ) # save most recent tweets alltweets.extend(A ) # update the id of the oldest tweet less one a = alltweets[-1].id - 1 print(f'''...{len(A )} tweets downloaded so far''' ) # transform the tweepy tweets into a 2D array that will populate the csv a = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(f'''new_{screen_name}_tweets.csv''' , "w" ) as f: a = csv.writer(A ) writer.writerow(["id", "created_at", "text"] ) writer.writerows(A ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("FirePing32")
71
from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
71
1
import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger(__name__) def lowerCamelCase_ ( _a : Tuple ): '''simple docstring''' UpperCAmelCase_ : str = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: UpperCAmelCase_ : Optional[Any] = 128 elif "12-12" in model_name: UpperCAmelCase_ : List[str] = 12 UpperCAmelCase_ : Optional[int] = 12 elif "14-14" in model_name: UpperCAmelCase_ : Any = 14 UpperCAmelCase_ : List[Any] = 14 elif "16-16" in model_name: UpperCAmelCase_ : Dict = 16 UpperCAmelCase_ : Optional[int] = 16 else: raise ValueError("""Model not supported""" ) UpperCAmelCase_ : str = """huggingface/label-files""" if "speech-commands" in model_name: UpperCAmelCase_ : Union[str, Any] = 35 UpperCAmelCase_ : Tuple = """speech-commands-v2-id2label.json""" else: UpperCAmelCase_ : int = 527 UpperCAmelCase_ : Tuple = """audioset-id2label.json""" UpperCAmelCase_ : int = json.load(open(hf_hub_download(_a , _a , repo_type="""dataset""" ) , """r""" ) ) UpperCAmelCase_ : Tuple = {int(_a ): v for k, v in idalabel.items()} UpperCAmelCase_ : Any = idalabel UpperCAmelCase_ : int = {v: k for k, v in idalabel.items()} return config def lowerCamelCase_ ( _a : Union[str, Any] ): '''simple docstring''' if "module.v" in name: UpperCAmelCase_ : List[str] = name.replace("""module.v""" , """audio_spectrogram_transformer""" ) if "cls_token" in name: UpperCAmelCase_ : List[Any] = name.replace("""cls_token""" , """embeddings.cls_token""" ) if "dist_token" in name: UpperCAmelCase_ : Dict = name.replace("""dist_token""" , """embeddings.distillation_token""" ) if "pos_embed" in name: UpperCAmelCase_ : Any = name.replace("""pos_embed""" , """embeddings.position_embeddings""" ) if "patch_embed.proj" in name: UpperCAmelCase_ : Dict = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) # transformer blocks if "blocks" in name: UpperCAmelCase_ : int = name.replace("""blocks""" , """encoder.layer""" ) if "attn.proj" in name: UpperCAmelCase_ : Any = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: UpperCAmelCase_ : Union[str, Any] = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: UpperCAmelCase_ : Optional[Any] = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: UpperCAmelCase_ : Dict = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: UpperCAmelCase_ : str = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: UpperCAmelCase_ : Tuple = name.replace("""mlp.fc2""" , """output.dense""" ) # final layernorm if "audio_spectrogram_transformer.norm" in name: UpperCAmelCase_ : str = name.replace("""audio_spectrogram_transformer.norm""" , """audio_spectrogram_transformer.layernorm""" ) # classifier head if "module.mlp_head.0" in name: UpperCAmelCase_ : List[str] = name.replace("""module.mlp_head.0""" , """classifier.layernorm""" ) if "module.mlp_head.1" in name: UpperCAmelCase_ : Dict = name.replace("""module.mlp_head.1""" , """classifier.dense""" ) return name def lowerCamelCase_ ( _a : Optional[int] , _a : List[str] ): '''simple docstring''' for key in orig_state_dict.copy().keys(): UpperCAmelCase_ : Tuple = orig_state_dict.pop(_a ) if "qkv" in key: UpperCAmelCase_ : Optional[Any] = key.split(""".""" ) UpperCAmelCase_ : Union[str, Any] = int(key_split[3] ) UpperCAmelCase_ : str = config.hidden_size if "weight" in key: UpperCAmelCase_ : Any = val[:dim, :] UpperCAmelCase_ : Optional[Any] = val[dim : dim * 2, :] UpperCAmelCase_ : Optional[Any] = val[-dim:, :] else: UpperCAmelCase_ : str = val[:dim] UpperCAmelCase_ : str = val[dim : dim * 2] UpperCAmelCase_ : Dict = val[-dim:] else: UpperCAmelCase_ : Tuple = val return orig_state_dict def lowerCamelCase_ ( _a : Tuple ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = [ """module.v.head.weight""", """module.v.head.bias""", """module.v.head_dist.weight""", """module.v.head_dist.bias""", ] for k in ignore_keys: state_dict.pop(_a , _a ) @torch.no_grad() def lowerCamelCase_ ( _a : str , _a : Any , _a : List[str]=False ): '''simple docstring''' UpperCAmelCase_ : Dict = get_audio_spectrogram_transformer_config(_a ) UpperCAmelCase_ : List[str] = { """ast-finetuned-audioset-10-10-0.4593""": ( """https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.450""": ( """https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.448""": ( """https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.448-v2""": ( """https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1""" ), """ast-finetuned-audioset-12-12-0.447""": ( """https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1""" ), """ast-finetuned-audioset-14-14-0.443""": ( """https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1""" ), """ast-finetuned-audioset-16-16-0.442""": ( """https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1""" ), """ast-finetuned-speech-commands-v2""": ( """https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1""" ), } # load original state_dict UpperCAmelCase_ : Optional[Any] = model_name_to_url[model_name] UpperCAmelCase_ : Tuple = torch.hub.load_state_dict_from_url(_a , map_location="""cpu""" ) # remove some keys remove_keys(_a ) # rename some keys UpperCAmelCase_ : List[str] = convert_state_dict(_a , _a ) # load 🤗 model UpperCAmelCase_ : Optional[Any] = ASTForAudioClassification(_a ) model.eval() model.load_state_dict(_a ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 UpperCAmelCase_ : List[str] = -4.2_6_7_7_3_9_3 if """speech-commands""" not in model_name else -6.8_4_5_9_7_8 UpperCAmelCase_ : Union[str, Any] = 4.5_6_8_9_9_7_4 if """speech-commands""" not in model_name else 5.5_6_5_4_5_2_6 UpperCAmelCase_ : Any = 1024 if """speech-commands""" not in model_name else 128 UpperCAmelCase_ : Optional[int] = ASTFeatureExtractor(mean=_a , std=_a , max_length=_a ) if "speech-commands" in model_name: UpperCAmelCase_ : str = load_dataset("""speech_commands""" , """v0.02""" , split="""validation""" ) UpperCAmelCase_ : List[str] = dataset[0]["""audio"""]["""array"""] else: UpperCAmelCase_ : Dict = hf_hub_download( repo_id="""nielsr/audio-spectogram-transformer-checkpoint""" , filename="""sample_audio.flac""" , repo_type="""dataset""" , ) UpperCAmelCase_ , UpperCAmelCase_ : Any = torchaudio.load(_a ) UpperCAmelCase_ : str = waveform.squeeze().numpy() UpperCAmelCase_ : Any = feature_extractor(_a , sampling_rate=1_6000 , return_tensors="""pt""" ) # forward pass UpperCAmelCase_ : Union[str, Any] = model(**_a ) UpperCAmelCase_ : Union[str, Any] = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": UpperCAmelCase_ : Any = torch.tensor([-0.8_7_6_0, -7.0_0_4_2, -8.6_6_0_2] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": UpperCAmelCase_ : List[Any] = torch.tensor([-1.1_9_8_6, -7.0_9_0_3, -8.2_7_1_8] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": UpperCAmelCase_ : Union[str, Any] = torch.tensor([-2.6_1_2_8, -8.0_0_8_0, -9.4_3_4_4] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": UpperCAmelCase_ : Dict = torch.tensor([-1.5_0_8_0, -7.4_5_3_4, -8.8_9_1_7] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": UpperCAmelCase_ : Tuple = torch.tensor([-0.5_0_5_0, -6.5_8_3_3, -8.0_8_4_3] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": UpperCAmelCase_ : Union[str, Any] = torch.tensor([-0.3_8_2_6, -7.0_3_3_6, -8.2_4_1_3] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": UpperCAmelCase_ : str = torch.tensor([-1.2_1_1_3, -6.9_1_0_1, -8.3_4_7_0] ) elif model_name == "ast-finetuned-speech-commands-v2": UpperCAmelCase_ : List[Any] = torch.tensor([6.1_5_8_9, -8.0_5_6_6, -8.7_9_8_4] ) else: raise ValueError("""Unknown model name""" ) if not torch.allclose(logits[0, :3] , _a , atol=1E-4 ): raise ValueError("""Logits don't match""" ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(_a ).mkdir(exist_ok=_a ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_a ) print(F'''Saving feature extractor to {pytorch_dump_folder_path}''' ) feature_extractor.save_pretrained(_a ) if push_to_hub: print("""Pushing model and feature extractor to the hub...""" ) model.push_to_hub(F'''MIT/{model_name}''' ) feature_extractor.push_to_hub(F'''MIT/{model_name}''' ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''ast-finetuned-audioset-10-10-0.4593''', type=str, help='''Name of the Audio Spectrogram Transformer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) UpperCamelCase_ = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
345
import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _snake_case : '''simple docstring''' def __init__( self: Tuple ,lowerCamelCase_: List[str] ,lowerCamelCase_: int=13 ,lowerCamelCase_: int=32 ,lowerCamelCase_: Optional[int]=2 ,lowerCamelCase_: Any=3 ,lowerCamelCase_: str=16 ,lowerCamelCase_: Optional[Any]=[1, 2, 1] ,lowerCamelCase_: Tuple=[2, 2, 4] ,lowerCamelCase_: int=2 ,lowerCamelCase_: List[Any]=2.0 ,lowerCamelCase_: str=True ,lowerCamelCase_: Optional[int]=0.0 ,lowerCamelCase_: List[Any]=0.0 ,lowerCamelCase_: List[str]=0.1 ,lowerCamelCase_: Tuple="gelu" ,lowerCamelCase_: Union[str, Any]=False ,lowerCamelCase_: Union[str, Any]=True ,lowerCamelCase_: Optional[int]=0.0_2 ,lowerCamelCase_: int=1e-5 ,lowerCamelCase_: Optional[int]=True ,lowerCamelCase_: Union[str, Any]=None ,lowerCamelCase_: Union[str, Any]=True ,lowerCamelCase_: Optional[int]=10 ,lowerCamelCase_: Tuple=8 ,) -> List[Any]: UpperCAmelCase_ : List[str] = parent UpperCAmelCase_ : int = batch_size UpperCAmelCase_ : int = image_size UpperCAmelCase_ : Union[str, Any] = patch_size UpperCAmelCase_ : Optional[Any] = num_channels UpperCAmelCase_ : int = embed_dim UpperCAmelCase_ : Union[str, Any] = depths UpperCAmelCase_ : List[str] = num_heads UpperCAmelCase_ : int = window_size UpperCAmelCase_ : List[str] = mlp_ratio UpperCAmelCase_ : Tuple = qkv_bias UpperCAmelCase_ : Tuple = hidden_dropout_prob UpperCAmelCase_ : str = attention_probs_dropout_prob UpperCAmelCase_ : Tuple = drop_path_rate UpperCAmelCase_ : List[str] = hidden_act UpperCAmelCase_ : int = use_absolute_embeddings UpperCAmelCase_ : Any = patch_norm UpperCAmelCase_ : Optional[int] = layer_norm_eps UpperCAmelCase_ : Tuple = initializer_range UpperCAmelCase_ : Optional[Any] = is_training UpperCAmelCase_ : Dict = scope UpperCAmelCase_ : int = use_labels UpperCAmelCase_ : Optional[Any] = type_sequence_label_size UpperCAmelCase_ : List[str] = encoder_stride def A__ ( self: Any ) -> int: UpperCAmelCase_ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : List[Any] = None if self.use_labels: UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase_ : str = self.get_config() return config, pixel_values, labels def A__ ( self: List[Any] ) -> Union[str, Any]: return SwinvaConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,depths=self.depths ,num_heads=self.num_heads ,window_size=self.window_size ,mlp_ratio=self.mlp_ratio ,qkv_bias=self.qkv_bias ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,drop_path_rate=self.drop_path_rate ,hidden_act=self.hidden_act ,use_absolute_embeddings=self.use_absolute_embeddings ,path_norm=self.patch_norm ,layer_norm_eps=self.layer_norm_eps ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def A__ ( self: Dict ,lowerCamelCase_: Tuple ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: List[str] ) -> str: UpperCAmelCase_ : str = SwinvaModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Optional[Any] = model(lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) UpperCAmelCase_ : List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, expected_seq_len, expected_dim) ) def A__ ( self: List[Any] ,lowerCamelCase_: List[Any] ,lowerCamelCase_: int ,lowerCamelCase_: int ) -> int: UpperCAmelCase_ : Any = SwinvaForMaskedImageModeling(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase_ ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCAmelCase_ : str = 1 UpperCAmelCase_ : Optional[Any] = SwinvaForMaskedImageModeling(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ : int = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def A__ ( self: int ,lowerCamelCase_: int ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Optional[Any] ) -> int: UpperCAmelCase_ : Union[str, Any] = self.type_sequence_label_size UpperCAmelCase_ : int = SwinvaForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Optional[int] = model(lowerCamelCase_ ,labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def A__ ( self: str ) -> Union[str, Any]: UpperCAmelCase_ : Optional[Any] = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = config_and_inputs UpperCAmelCase_ : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _snake_case ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' A__ : Tuple = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) A__ : Optional[Any] = ( {"feature-extraction": SwinvaModel, "image-classification": SwinvaForImageClassification} if is_torch_available() else {} ) A__ : List[Any] = False A__ : Tuple = False A__ : int = False A__ : Union[str, Any] = False def A__ ( self: List[str] ) -> Optional[Any]: UpperCAmelCase_ : Any = SwinvaModelTester(self ) UpperCAmelCase_ : str = ConfigTester(self ,config_class=lowerCamelCase_ ,embed_dim=37 ) def A__ ( self: Optional[int] ) -> List[Any]: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self: Any ) -> Dict: UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) @unittest.skip(reason="""Got `CUDA error: misaligned address` with PyTorch 2.0.0.""" ) def A__ ( self: int ) -> Dict: pass @unittest.skip(reason="""Swinv2 does not use inputs_embeds""" ) def A__ ( self: Tuple ) -> List[str]: pass def A__ ( self: str ) -> List[Any]: UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : int = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) UpperCAmelCase_ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_ ,nn.Linear ) ) def A__ ( self: Optional[Any] ) -> Optional[int]: UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Dict = model_class(lowerCamelCase_ ) UpperCAmelCase_ : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : int = [*signature.parameters.keys()] UpperCAmelCase_ : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,lowerCamelCase_ ) def A__ ( self: Union[str, Any] ) -> Optional[Any]: UpperCAmelCase_ , UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Any = True for model_class in self.all_model_classes: UpperCAmelCase_ : Optional[Any] = True UpperCAmelCase_ : Union[str, Any] = False UpperCAmelCase_ : str = True UpperCAmelCase_ : List[Any] = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Optional[int] = model(**self._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ) ) UpperCAmelCase_ : Optional[Any] = outputs.attentions UpperCAmelCase_ : List[str] = len(self.model_tester.depths ) self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCAmelCase_ : str = True UpperCAmelCase_ : Optional[Any] = config.window_size**2 UpperCAmelCase_ : Optional[int] = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Optional[Any] = model(**self._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ) ) UpperCAmelCase_ : List[Any] = outputs.attentions self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ ) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_heads[0], window_size_squared, window_size_squared] ,) UpperCAmelCase_ : Optional[Any] = len(lowerCamelCase_ ) # Check attention is always last and order is fine UpperCAmelCase_ : Tuple = True UpperCAmelCase_ : List[Any] = True UpperCAmelCase_ : Tuple = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(**self._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ) ) if hasattr(self.model_tester ,"""num_hidden_states_types""" ): UpperCAmelCase_ : List[Any] = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states UpperCAmelCase_ : List[str] = 2 self.assertEqual(out_len + added_hidden_states ,len(lowerCamelCase_ ) ) UpperCAmelCase_ : Any = outputs.attentions self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_heads[0], window_size_squared, window_size_squared] ,) def A__ ( self: List[str] ,lowerCamelCase_: Dict ,lowerCamelCase_: Tuple ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Optional[int] ) -> List[Any]: UpperCAmelCase_ : str = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): UpperCAmelCase_ : int = model(**self._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ) ) UpperCAmelCase_ : List[str] = outputs.hidden_states UpperCAmelCase_ : Optional[Any] = getattr( self.model_tester ,"""expected_num_hidden_layers""" ,len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ ) # Swinv2 has a different seq_length UpperCAmelCase_ : Optional[Any] = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase_ : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) UpperCAmelCase_ : Optional[int] = outputs.reshaped_hidden_states self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = reshaped_hidden_states[0].shape UpperCAmelCase_ : Optional[Any] = ( reshaped_hidden_states[0].view(lowerCamelCase_ ,lowerCamelCase_ ,height * width ).permute(0 ,2 ,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) def A__ ( self: Any ) -> int: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Dict = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: UpperCAmelCase_ : Any = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : str = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) def A__ ( self: List[str] ) -> Dict: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Union[str, Any] = 3 UpperCAmelCase_ : Optional[int] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) UpperCAmelCase_ : List[str] = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase_ : List[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) UpperCAmelCase_ : Optional[Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: UpperCAmelCase_ : Optional[Any] = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : List[str] = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,(padded_height, padded_width) ) def A__ ( self: Optional[int] ) -> str: UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase_ ) def A__ ( self: Union[str, Any] ) -> Dict: UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) @slow def A__ ( self: str ) -> Tuple: for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Dict = SwinvaModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def A__ ( self: Any ) -> int: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : List[str] = _config_zero_init(lowerCamelCase_ ) for model_class in self.all_model_classes: UpperCAmelCase_ : int = model_class(config=lowerCamelCase_ ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' ,) @require_vision @require_torch class _snake_case ( unittest.TestCase ): '''simple docstring''' @cached_property def A__ ( self: Dict ) -> Optional[Any]: return ( AutoImageProcessor.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ) if is_vision_available() else None ) @slow def A__ ( self: str ) -> List[Any]: UpperCAmelCase_ : Tuple = SwinvaForImageClassification.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ).to( lowerCamelCase_ ) UpperCAmelCase_ : Any = self.default_image_processor UpperCAmelCase_ : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) UpperCAmelCase_ : Optional[int] = image_processor(images=lowerCamelCase_ ,return_tensors="""pt""" ).to(lowerCamelCase_ ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Optional[Any] = model(**lowerCamelCase_ ) # verify the logits UpperCAmelCase_ : Dict = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,lowerCamelCase_ ) UpperCAmelCase_ : Any = torch.tensor([-0.3_9_4_7, -0.4_3_0_6, 0.0_0_2_6] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,lowerCamelCase_ ,atol=1e-4 ) )
345
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase__ = {"""configuration_unispeech""": ["""UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP""", """UniSpeechConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST""", """UniSpeechForCTC""", """UniSpeechForPreTraining""", """UniSpeechForSequenceClassification""", """UniSpeechModel""", """UniSpeechPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
370
"""simple docstring""" from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def __lowerCamelCase ( __UpperCamelCase ) -> Any: """simple docstring""" if not is_accelerate_available(): return method lowerCAmelCase_ : Union[str, Any] = version.parse(accelerate.__version__ ).base_version if version.parse(__UpperCamelCase ) < version.parse("0.17.0" ): return method def wrapper(self , *__UpperCamelCase , **__UpperCamelCase ): if hasattr(self , "_hf_hook" ) and hasattr(self._hf_hook , "pre_forward" ): self._hf_hook.pre_forward(self ) return method(self , *__UpperCamelCase , **__UpperCamelCase ) return wrapper
161
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict=7 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : Tuple=1_8 , _lowerCAmelCase : Tuple=3_0 , _lowerCAmelCase : int=4_0_0 , _lowerCAmelCase : int=True , _lowerCAmelCase : List[Any]=3_2 , _lowerCAmelCase : List[Any]=True , ) -> Any: """simple docstring""" snake_case_ = parent snake_case_ = batch_size snake_case_ = num_channels snake_case_ = image_size snake_case_ = min_resolution snake_case_ = max_resolution snake_case_ = do_resize snake_case_ = size_divisor snake_case_ = do_rescale def lowerCAmelCase__ ( self : str ) -> Tuple: """simple docstring""" return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class __lowerCAmelCase ( snake_case_ , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = GLPNImageProcessor if is_vision_available() else None def lowerCAmelCase__ ( self : Optional[Any] ) -> Dict: """simple docstring""" snake_case_ = GLPNImageProcessingTester(self ) @property def lowerCAmelCase__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" snake_case_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCAmelCase , "do_resize" ) ) self.assertTrue(hasattr(__UpperCAmelCase , "size_divisor" ) ) self.assertTrue(hasattr(__UpperCAmelCase , "resample" ) ) self.assertTrue(hasattr(__UpperCAmelCase , "do_rescale" ) ) def lowerCAmelCase__ ( self : Tuple ) -> int: """simple docstring""" pass def lowerCAmelCase__ ( self : List[str] ) -> List[str]: """simple docstring""" snake_case_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) snake_case_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def lowerCAmelCase__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" snake_case_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , numpify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) snake_case_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def lowerCAmelCase__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" snake_case_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , torchify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) snake_case_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
159
'''simple docstring''' # Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version lowerCamelCase_ = get_logger(__name__) class _UpperCAmelCase : """simple docstring""" snake_case = '''dummy_data''' snake_case = '''datasets''' snake_case = False def __init__( self : List[Any] , __UpperCAmelCase : str , __UpperCAmelCase : str , __UpperCAmelCase : Union[Version, str] , __UpperCAmelCase : Optional[str] = None , __UpperCAmelCase : bool = False , __UpperCAmelCase : bool = True , __UpperCAmelCase : Optional[List[Callable]] = None , ): '''simple docstring''' _A = 0 _A = dataset_name _A = cache_dir _A = use_local_dummy_data _A = config # download_callbacks take a single url as input _A = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root _A = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general _A = str(__UpperCAmelCase ) # to be downloaded _A = None _A = None @property def lowerCAmelCase ( self : List[str] ): '''simple docstring''' if self._dummy_file is None: _A = self.download_dummy_data() return self._dummy_file @property def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("dummy" , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join("dummy" , self.version_name ) @property def lowerCAmelCase ( self : int ): '''simple docstring''' return os.path.join(self.dummy_data_folder , "dummy_data.zip" ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' _A = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) _A = cached_path( __UpperCAmelCase , cache_dir=self.cache_dir , extract_compressed_file=__UpperCAmelCase , force_extract=__UpperCAmelCase ) return os.path.join(__UpperCAmelCase , self.dummy_file_name ) @property def lowerCAmelCase ( self : List[str] ): '''simple docstring''' return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def lowerCAmelCase ( self : int ): '''simple docstring''' if self._bucket_url is None: _A = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , "/" ) ) return self._bucket_url @property def lowerCAmelCase ( self : str ): '''simple docstring''' if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , "/" ).split("/" )[:-1] ) def lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : Optional[Any] , *__UpperCAmelCase : Dict ): '''simple docstring''' if self.load_existing_dummy_data: # dummy data is downloaded and tested _A = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned _A = self.dummy_file_name # special case when data_url is a dict if isinstance(__UpperCAmelCase , __UpperCAmelCase ): return self.create_dummy_data_dict(__UpperCAmelCase , __UpperCAmelCase ) elif isinstance(__UpperCAmelCase , (list, tuple) ): return self.create_dummy_data_list(__UpperCAmelCase , __UpperCAmelCase ) else: return self.create_dummy_data_single(__UpperCAmelCase , __UpperCAmelCase ) def lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Optional[int] , *__UpperCAmelCase : Any ): '''simple docstring''' return self.download_and_extract(__UpperCAmelCase ) def lowerCAmelCase ( self : Any , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : str ): '''simple docstring''' return self.download_and_extract(__UpperCAmelCase ) def lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Optional[int] , *__UpperCAmelCase : List[str] , **__UpperCAmelCase : List[str] ): '''simple docstring''' return path def lowerCAmelCase ( self : str ): '''simple docstring''' return {} def lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Any , __UpperCAmelCase : Optional[int] ): '''simple docstring''' _A = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(__UpperCAmelCase , __UpperCAmelCase ): for single_url in single_urls: download_callback(__UpperCAmelCase ) else: _A = single_urls download_callback(__UpperCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(__UpperCAmelCase , __UpperCAmelCase ): _A = [os.path.join(__UpperCAmelCase , urllib.parse.quote_plus(Path(__UpperCAmelCase ).name ) ) for x in single_urls] else: _A = single_urls _A = os.path.join(__UpperCAmelCase , urllib.parse.quote_plus(Path(__UpperCAmelCase ).name ) ) _A = value # make sure that values are unique if all(isinstance(__UpperCAmelCase , __UpperCAmelCase ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique _A = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[Any] ): '''simple docstring''' _A = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one _A = all(bool(re.findall("[0-9]{3,}-of-[0-9]{3,}" , __UpperCAmelCase ) ) for url in data_url ) _A = all( url.startswith("https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed" ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): _A = [data_url[0]] * len(__UpperCAmelCase ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(__UpperCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus _A = os.path.join(__UpperCAmelCase , urllib.parse.quote_plus(single_url.split("/" )[-1] ) ) dummy_data_list.append(__UpperCAmelCase ) return dummy_data_list def lowerCAmelCase ( self : str , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[str] ): '''simple docstring''' for download_callback in self.download_callbacks: download_callback(__UpperCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus _A = os.path.join(__UpperCAmelCase , urllib.parse.quote_plus(data_url.split("/" )[-1] ) ) if os.path.exists(__UpperCAmelCase ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' pass def lowerCAmelCase ( self : Dict ): '''simple docstring''' pass def lowerCAmelCase ( self : Any , __UpperCAmelCase : Optional[Any] ): '''simple docstring''' def _iter_archive_members(__UpperCAmelCase : List[Any] ): # this preserves the order of the members inside the ZIP archive _A = Path(self.dummy_file ).parent _A = path.relative_to(__UpperCAmelCase ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: _A = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(__UpperCAmelCase ) _A = Path(__UpperCAmelCase ) _A = _iter_archive_members(__UpperCAmelCase ) if self.use_local_dummy_data else path.rglob("*" ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((".", "__") ): yield file_path.relative_to(__UpperCAmelCase ).as_posix(), file_path.open("rb" ) def lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : str ): '''simple docstring''' if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): _A = [paths] for path in paths: if os.path.isfile(__UpperCAmelCase ): if os.path.basename(__UpperCAmelCase ).startswith((".", "__") ): return yield path else: for dirpath, dirnames, filenames in os.walk(__UpperCAmelCase ): if os.path.basename(__UpperCAmelCase ).startswith((".", "__") ): continue dirnames.sort() for filename in sorted(__UpperCAmelCase ): if filename.startswith((".", "__") ): continue yield os.path.join(__UpperCAmelCase , __UpperCAmelCase )
79
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ : Optional[int] = { '''configuration_chinese_clip''': [ '''CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ChineseCLIPConfig''', '''ChineseCLIPOnnxConfig''', '''ChineseCLIPTextConfig''', '''ChineseCLIPVisionConfig''', ], '''processing_chinese_clip''': ['''ChineseCLIPProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Union[str, Any] = ['''ChineseCLIPFeatureExtractor'''] lowerCAmelCase_ : List[Any] = ['''ChineseCLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : List[Any] = [ '''CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ChineseCLIPModel''', '''ChineseCLIPPreTrainedModel''', '''ChineseCLIPTextModel''', '''ChineseCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys lowerCAmelCase_ : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
362
'''simple docstring''' import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __lowerCAmelCase ( __a ): def snake_case_ (self ): _UpperCAmelCase : int = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , """tf_padding""" ) ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , """depth_multiplier""" ) ) class __lowerCAmelCase : def __init__(self , lowerCAmelCase__ , lowerCAmelCase__=1_3 , lowerCAmelCase__=3 , lowerCAmelCase__=3_2 , lowerCAmelCase__=0.2_5 , lowerCAmelCase__=8 , lowerCAmelCase__=True , lowerCAmelCase__=1_0_2_4 , lowerCAmelCase__=3_2 , lowerCAmelCase__="relu6" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=1_0 , lowerCAmelCase__=None , ): _UpperCAmelCase : Optional[int] = parent _UpperCAmelCase : Any = batch_size _UpperCAmelCase : List[str] = num_channels _UpperCAmelCase : int = image_size _UpperCAmelCase : List[str] = depth_multiplier _UpperCAmelCase : Any = min_depth _UpperCAmelCase : Dict = tf_padding _UpperCAmelCase : Dict = int(last_hidden_size * depth_multiplier ) _UpperCAmelCase : Dict = output_stride _UpperCAmelCase : Optional[int] = hidden_act _UpperCAmelCase : Optional[Any] = classifier_dropout_prob _UpperCAmelCase : Optional[Any] = use_labels _UpperCAmelCase : Any = is_training _UpperCAmelCase : int = num_labels _UpperCAmelCase : Dict = initializer_range _UpperCAmelCase : Any = scope def snake_case_ (self ): _UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase : int = None _UpperCAmelCase : Optional[int] = None if self.use_labels: _UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.num_labels ) _UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _UpperCAmelCase : Union[str, Any] = self.get_config() return config, pixel_values, labels, pixel_labels def snake_case_ (self ): return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Optional[int] = MobileNetVaModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : Tuple = model(lowerCAmelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : List[str] = self.num_labels _UpperCAmelCase : Tuple = MobileNetVaForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : List[str] = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case_ (self ): _UpperCAmelCase : List[str] = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Tuple = config_and_inputs _UpperCAmelCase : str = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( __a , __a , unittest.TestCase ): snake_case : Tuple = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () snake_case : Optional[Any] = ( {"""feature-extraction""": MobileNetVaModel, """image-classification""": MobileNetVaForImageClassification} if is_torch_available() else {} ) snake_case : str = False snake_case : str = False snake_case : Optional[Any] = False snake_case : Optional[int] = False def snake_case_ (self ): _UpperCAmelCase : Optional[int] = MobileNetVaModelTester(self ) _UpperCAmelCase : str = MobileNetVaConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ ) def snake_case_ (self ): self.config_tester.run_common_tests() @unittest.skip(reason="""MobileNetV1 does not use inputs_embeds""" ) def snake_case_ (self ): pass @unittest.skip(reason="""MobileNetV1 does not support input and output embeddings""" ) def snake_case_ (self ): pass @unittest.skip(reason="""MobileNetV1 does not output attentions""" ) def snake_case_ (self ): pass def snake_case_ (self ): _UpperCAmelCase , _UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : Dict = model_class(lowerCAmelCase__ ) _UpperCAmelCase : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase : str = [*signature.parameters.keys()] _UpperCAmelCase : Optional[int] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def snake_case_ (self ): _UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def snake_case_ (self ): def check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Any = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): _UpperCAmelCase : Union[str, Any] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) _UpperCAmelCase : Optional[Any] = outputs.hidden_states _UpperCAmelCase : Tuple = 2_6 self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) _UpperCAmelCase , _UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : Union[str, Any] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase : Optional[Any] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case_ (self ): _UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @slow def snake_case_ (self ): for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : List[str] = MobileNetVaModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def __A ( ): _UpperCAmelCase : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): @cached_property def snake_case_ (self ): return ( MobileNetVaImageProcessor.from_pretrained("""google/mobilenet_v1_1.0_224""" ) if is_vision_available() else None ) @slow def snake_case_ (self ): _UpperCAmelCase : Optional[int] = MobileNetVaForImageClassification.from_pretrained("""google/mobilenet_v1_1.0_224""" ).to(lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = self.default_image_processor _UpperCAmelCase : List[Any] = prepare_img() _UpperCAmelCase : Tuple = image_processor(images=lowerCAmelCase__ , return_tensors="""pt""" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): _UpperCAmelCase : List[str] = model(**lowerCAmelCase__ ) # verify the logits _UpperCAmelCase : Optional[int] = torch.Size((1, 1_0_0_1) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) _UpperCAmelCase : str = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
170
0
def lowerCAmelCase ( _lowerCAmelCase : int = 1 , _lowerCAmelCase : int = 1000 ): """simple docstring""" UpperCAmelCase__ = 1 UpperCAmelCase__ = 0 for divide_by_number in range(_lowerCAmelCase , digit + 1 ): UpperCAmelCase__ = [] UpperCAmelCase__ = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(_lowerCAmelCase ): UpperCAmelCase__ = len(_lowerCAmelCase ) UpperCAmelCase__ = divide_by_number else: has_been_divided.append(_lowerCAmelCase ) UpperCAmelCase__ = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
169
import math class _UpperCamelCase : def __init__( self :Union[str, Any] , lowerCamelCase :Union[str, Any]=0 ) -> Tuple: # a graph with Node 0,1,...,N-1 UpperCAmelCase__ = n UpperCAmelCase__ = [ [math.inf for j in range(0 , lowerCamelCase )] for i in range(0 , lowerCamelCase ) ] # adjacency matrix for weight UpperCAmelCase__ = [ [math.inf for j in range(0 , lowerCamelCase )] for i in range(0 , lowerCamelCase ) ] # dp[i][j] stores minimum distance from i to j def UpperCAmelCase_ ( self :Tuple , lowerCamelCase :List[Any] , lowerCamelCase :Optional[Any] , lowerCamelCase :int ) -> List[Any]: UpperCAmelCase__ = w def UpperCAmelCase_ ( self :Optional[int] ) -> Optional[Any]: for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): UpperCAmelCase__ = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def UpperCAmelCase_ ( self :int , lowerCamelCase :List[Any] , lowerCamelCase :Dict ) -> List[str]: return self.dp[u][v] if __name__ == "__main__": _lowerCAmelCase : Optional[int] = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 1_0) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 1_0) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
169
1
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging a : Optional[Any] = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): lowercase = 'linear' lowercase = 'cosine' lowercase = 'cosine_with_restarts' lowercase = 'polynomial' lowercase = 'constant' lowercase = 'constant_with_warmup' lowercase = 'piecewise_constant' def __lowerCamelCase ( _lowercase , _lowercase = -1 ) -> List[str]: return LambdaLR(_lowercase , lambda _lowercase : 1 , last_epoch=_lowercase ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase = -1 ) -> List[str]: def lr_lambda(_lowercase ): if current_step < num_warmup_steps: return float(_lowercase ) / float(max(1.0 , _lowercase ) ) return 1.0 return LambdaLR(_lowercase , _lowercase , last_epoch=_lowercase ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase = -1 ) -> List[Any]: UpperCAmelCase : List[Any] = {} UpperCAmelCase : Tuple = step_rules.split(""",""" ) for rule_str in rule_list[:-1]: UpperCAmelCase , UpperCAmelCase : Optional[Any] = rule_str.split(""":""" ) UpperCAmelCase : Optional[Any] = int(_lowercase ) UpperCAmelCase : Any = float(_lowercase ) UpperCAmelCase : Union[str, Any] = value UpperCAmelCase : List[str] = float(rule_list[-1] ) def create_rules_function(_lowercase , _lowercase ): def rule_func(_lowercase ) -> float: UpperCAmelCase : Dict = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(_lowercase ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func UpperCAmelCase : Tuple = create_rules_function(_lowercase , _lowercase ) return LambdaLR(_lowercase , _lowercase , last_epoch=_lowercase ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=-1 ) -> Union[str, Any]: def lr_lambda(_lowercase ): if current_step < num_warmup_steps: return float(_lowercase ) / float(max(1 , _lowercase ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(_lowercase , _lowercase , _lowercase ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase = 0.5 , _lowercase = -1 ) -> Any: def lr_lambda(_lowercase ): if current_step < num_warmup_steps: return float(_lowercase ) / float(max(1 , _lowercase ) ) UpperCAmelCase : List[Any] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(_lowercase ) * 2.0 * progress )) ) return LambdaLR(_lowercase , _lowercase , _lowercase ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase = 1 , _lowercase = -1 ) -> int: def lr_lambda(_lowercase ): if current_step < num_warmup_steps: return float(_lowercase ) / float(max(1 , _lowercase ) ) UpperCAmelCase : str = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(_lowercase ) * progress) % 1.0) )) ) return LambdaLR(_lowercase , _lowercase , _lowercase ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=1e-7 , _lowercase=1.0 , _lowercase=-1 ) -> Optional[Any]: UpperCAmelCase : str = optimizer.defaults["""lr"""] if not (lr_init > lr_end): raise ValueError(F'''lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})''' ) def lr_lambda(_lowercase ): if current_step < num_warmup_steps: return float(_lowercase ) / float(max(1 , _lowercase ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: UpperCAmelCase : Union[str, Any] = lr_init - lr_end UpperCAmelCase : List[str] = num_training_steps - num_warmup_steps UpperCAmelCase : Optional[Any] = 1 - (current_step - num_warmup_steps) / decay_steps UpperCAmelCase : Tuple = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(_lowercase , _lowercase , _lowercase ) a : Any = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __lowerCamelCase ( _lowercase , _lowercase , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = 1 , _lowercase = 1.0 , _lowercase = -1 , ) -> Union[str, Any]: UpperCAmelCase : Any = SchedulerType(_lowercase ) UpperCAmelCase : Optional[int] = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(_lowercase , last_epoch=_lowercase ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(_lowercase , step_rules=_lowercase , last_epoch=_lowercase ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(F'''{name} requires `num_warmup_steps`, please provide that argument.''' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(_lowercase , num_warmup_steps=_lowercase , last_epoch=_lowercase ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(F'''{name} requires `num_training_steps`, please provide that argument.''' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( _lowercase , num_warmup_steps=_lowercase , num_training_steps=_lowercase , num_cycles=_lowercase , last_epoch=_lowercase , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( _lowercase , num_warmup_steps=_lowercase , num_training_steps=_lowercase , power=_lowercase , last_epoch=_lowercase , ) return schedule_func( _lowercase , num_warmup_steps=_lowercase , num_training_steps=_lowercase , last_epoch=_lowercase )
338
'''simple docstring''' import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A , A = None , A = None , A = False , **A , ) -> Tuple: super().__init__(features=A , cache_dir=A , keep_in_memory=A , **A ) UpperCAmelCase : Any = Sql( cache_dir=A , features=A , sql=A , con=A , **A , ) def _lowercase( self ) -> Dict: UpperCAmelCase : Any = None UpperCAmelCase : Any = None UpperCAmelCase : int = None UpperCAmelCase : int = None self.builder.download_and_prepare( download_config=A , download_mode=A , verification_mode=A , base_path=A , ) # Build dataset for splits UpperCAmelCase : str = self.builder.as_dataset( split="""train""" , verification_mode=A , in_memory=self.keep_in_memory ) return dataset class UpperCamelCase_ : def __init__( self , A , A , A , A = None , A = None , **A , ) -> str: if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) UpperCAmelCase : Dict = dataset UpperCAmelCase : List[Any] = name UpperCAmelCase : Any = con UpperCAmelCase : Optional[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE UpperCAmelCase : Optional[Any] = num_proc UpperCAmelCase : str = to_sql_kwargs def _lowercase( self ) -> int: UpperCAmelCase : Any = self.to_sql_kwargs.pop("""sql""" , A ) UpperCAmelCase : str = self.to_sql_kwargs.pop("""con""" , A ) UpperCAmelCase : Union[str, Any] = self.to_sql_kwargs.pop("""index""" , A ) UpperCAmelCase : str = self._write(index=A , **self.to_sql_kwargs ) return written def _lowercase( self , A ) -> Any: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = args UpperCAmelCase : Union[str, Any] = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs UpperCAmelCase : int = query_table( table=self.dataset.data , key=slice(A , offset + self.batch_size ) , indices=self.dataset._indices , ) UpperCAmelCase : Any = batch.to_pandas() UpperCAmelCase : List[Any] = df.to_sql(self.name , self.con , index=A , **A ) return num_rows or len(A ) def _lowercase( self , A , **A ) -> int: UpperCAmelCase : Optional[int] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: UpperCAmelCase , UpperCAmelCase : List[str] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , A , A )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += num_rows return written
338
1