code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class __magic_name__ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = BarthezTokenizer __UpperCamelCase = BarthezTokenizerFast __UpperCamelCase = True __UpperCamelCase = True def _lowerCAmelCase ( self ): """simple docstring""" super().setUp() lowerCamelCase = BarthezTokenizerFast.from_pretrained("""moussaKam/mbarthez""" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=_a ) lowerCamelCase = tokenizer def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = """<pad>""" lowerCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(_a ) , 101_122 ) def _lowerCAmelCase ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 101_122 ) @require_torch def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] lowerCamelCase = [0, 57, 3_018, 70_307, 91, 2] lowerCamelCase = self.tokenizer( _a , max_length=len(_a ) , padding=_a , truncation=_a , return_tensors="""pt""" ) self.assertIsInstance(_a , _a ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) lowerCamelCase = batch.input_ids.tolist()[0] self.assertListEqual(_a , _a ) def _lowerCAmelCase ( self ): """simple docstring""" if not self.test_rust_tokenizer: return lowerCamelCase = self.get_tokenizer() lowerCamelCase = self.get_rust_tokenizer() lowerCamelCase = """I was born in 92000, and this is falsé.""" lowerCamelCase = tokenizer.tokenize(_a ) lowerCamelCase = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) lowerCamelCase = tokenizer.encode(_a , add_special_tokens=_a ) lowerCamelCase = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) lowerCamelCase = self.get_rust_tokenizer() lowerCamelCase = tokenizer.encode(_a ) lowerCamelCase = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) @slow def _lowerCAmelCase ( self ): """simple docstring""" # fmt: off lowerCamelCase = {"""input_ids""": [[0, 490, 14_328, 4_507, 354, 47, 43_669, 95, 25, 78_117, 20_215, 19_779, 190, 22, 400, 4, 35_343, 80_310, 603, 86, 24_937, 105, 33_438, 94_762, 196, 39_642, 7, 15, 15_933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10_534, 87, 25, 66, 3_358, 196, 55_289, 8, 82_961, 81, 2_204, 75_203, 7, 15, 763, 12_956, 216, 178, 14_328, 9_595, 1_377, 69_693, 7, 448, 71_021, 196, 18_106, 1_437, 13_974, 108, 9_083, 4, 49_315, 7, 39, 86, 1_326, 2_793, 46_333, 4, 448, 196, 74_588, 7, 49_315, 7, 39, 21, 822, 38_470, 74, 21, 66_723, 62_480, 8, 22_050, 5, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. lowerCamelCase = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=_a , model_name="""moussaKam/mbarthez""" , revision="""c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6""" , sequences=_a , )
291
"""simple docstring""" from collections.abc import Generator def a__ ( ) -> Generator[int, None, None]: lowerCamelCase , lowerCamelCase = 0, 1 while True: lowerCamelCase , lowerCamelCase = b, a + b yield b def a__ ( snake_case__ = 10_00 ) -> int: lowerCamelCase = 1 lowerCamelCase = fibonacci_generator() while len(str(next(snake_case__ ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
291
1
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCAmelCase : """simple docstring""" def __init__( self : Optional[Any] , __snake_case : Tuple , __snake_case : Dict=3 , __snake_case : str=32 , __snake_case : List[str]=3 , __snake_case : Dict=10 , __snake_case : Any=[10, 20, 30, 40] , __snake_case : List[Any]=[1, 1, 2, 1] , __snake_case : List[Any]=True , __snake_case : str=True , __snake_case : Tuple="relu" , __snake_case : List[str]=3 , __snake_case : Optional[Any]=None , )-> Tuple: snake_case = parent snake_case = batch_size snake_case = image_size snake_case = num_channels snake_case = embeddings_size snake_case = hidden_sizes snake_case = depths snake_case = is_training snake_case = use_labels snake_case = hidden_act snake_case = num_labels snake_case = scope snake_case = len(__snake_case ) def lowerCAmelCase ( self : int )-> Union[str, Any]: snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case = None if self.use_labels: snake_case = ids_tensor([self.batch_size] , self.num_labels ) snake_case = self.get_config() return config, pixel_values, labels def lowerCAmelCase ( self : Optional[Any] )-> List[str]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def lowerCAmelCase ( self : List[str] , __snake_case : str , __snake_case : List[Any] , __snake_case : Dict )-> Dict: snake_case = RegNetModel(config=__snake_case ) model.to(__snake_case ) model.eval() snake_case = model(__snake_case ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCAmelCase ( self : Dict , __snake_case : Optional[Any] , __snake_case : Optional[Any] , __snake_case : Union[str, Any] )-> Union[str, Any]: snake_case = self.num_labels snake_case = RegNetForImageClassification(__snake_case ) model.to(__snake_case ) model.eval() snake_case = model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : Dict )-> Optional[int]: snake_case = self.prepare_config_and_inputs() snake_case , snake_case , snake_case = config_and_inputs snake_case = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( A__ , A__ , unittest.TestCase ): """simple docstring""" snake_case_ = (RegNetModel, RegNetForImageClassification) if is_torch_available() else () snake_case_ = ( {"feature-extraction": RegNetModel, "image-classification": RegNetForImageClassification} if is_torch_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def lowerCAmelCase ( self : Dict )-> Optional[int]: snake_case = RegNetModelTester(self ) snake_case = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case ) def lowerCAmelCase ( self : List[str] )-> Tuple: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase ( self : List[str] )-> Dict: return @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def lowerCAmelCase ( self : Dict )-> Dict: pass @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def lowerCAmelCase ( self : Union[str, Any] )-> Any: pass def lowerCAmelCase ( self : Union[str, Any] )-> List[Any]: snake_case , snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case = model_class(__snake_case ) snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case = [*signature.parameters.keys()] snake_case = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __snake_case ) def lowerCAmelCase ( self : List[str] )-> List[Any]: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def lowerCAmelCase ( self : Any )-> Dict: snake_case , snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case = model_class(config=__snake_case ) for name, module in model.named_modules(): if isinstance(__snake_case , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def lowerCAmelCase ( self : List[str] )-> Optional[Any]: def check_hidden_states_output(__snake_case : int , __snake_case : Optional[int] , __snake_case : str ): snake_case = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): snake_case = model(**self._prepare_for_class(__snake_case , __snake_case ) ) snake_case = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case = self.model_tester.num_stages self.assertEqual(len(__snake_case ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) snake_case , snake_case = self.model_tester.prepare_config_and_inputs_for_common() snake_case = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: snake_case = layer_type snake_case = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) def lowerCAmelCase ( self : str )-> List[Any]: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case ) @slow def lowerCAmelCase ( self : Tuple )-> Any: for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case = RegNetModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def __lowerCamelCase ( ) -> Any: snake_case = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCAmelCase ( self : List[str] )-> Dict: return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowerCAmelCase ( self : Optional[Any] )-> Dict: snake_case = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__snake_case ) snake_case = self.default_image_processor snake_case = prepare_img() snake_case = image_processor(images=__snake_case , return_tensors="""pt""" ).to(__snake_case ) # forward pass with torch.no_grad(): snake_case = model(**__snake_case ) # verify the logits snake_case = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __snake_case ) snake_case = torch.tensor([-0.41_80, -1.50_51, -3.48_36] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __snake_case , atol=1e-4 ) )
3
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] ) -> Dict: snake_case = [] embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''', F'''stage{idx}.patch_embed.proj.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''', F'''stage{idx}.patch_embed.proj.bias''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''', F'''stage{idx}.patch_embed.norm.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''', F'''stage{idx}.patch_embed.norm.bias''', ) ) return embed def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] ) -> List[Any]: snake_case = [] attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj.bias''', ) ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', F'''stage{idx}.blocks.{cnt}.norm1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', F'''stage{idx}.blocks.{cnt}.norm1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', F'''stage{idx}.blocks.{cnt}.norm2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', F'''stage{idx}.blocks.{cnt}.norm2.bias''') ) return attention_weights def __lowerCamelCase ( __lowerCAmelCase : Any ) -> Optional[Any]: snake_case = [] token.append((F'''cvt.encoder.stages.{idx}.cls_token''', """stage2.cls_token""") ) return token def __lowerCamelCase ( ) -> Any: snake_case = [] head.append(("""layernorm.weight""", """norm.weight""") ) head.append(("""layernorm.bias""", """norm.bias""") ) head.append(("""classifier.weight""", """head.weight""") ) head.append(("""classifier.bias""", """head.bias""") ) return head def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : str ) -> Optional[int]: snake_case = """imagenet-1k-id2label.json""" snake_case = 10_00 snake_case = """huggingface/label-files""" snake_case = num_labels snake_case = json.load(open(cached_download(hf_hub_url(__lowerCAmelCase , __lowerCAmelCase , repo_type="""dataset""" ) ) , """r""" ) ) snake_case = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} snake_case = idalabel snake_case = {v: k for k, v in idalabel.items()} snake_case = snake_case = CvtConfig(num_labels=__lowerCAmelCase , idalabel=__lowerCAmelCase , labelaid=__lowerCAmelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "13": snake_case = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "21": snake_case = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: snake_case = [2, 2, 20] snake_case = [3, 12, 16] snake_case = [1_92, 7_68, 10_24] snake_case = CvtForImageClassification(__lowerCAmelCase ) snake_case = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) snake_case = image_size snake_case = torch.load(__lowerCAmelCase , map_location=torch.device("""cpu""" ) ) snake_case = OrderedDict() snake_case = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: snake_case = list_of_state_dict + cls_token(__lowerCAmelCase ) snake_case = list_of_state_dict + embeddings(__lowerCAmelCase ) for cnt in range(config.depth[idx] ): snake_case = list_of_state_dict + attention(__lowerCAmelCase , __lowerCAmelCase ) snake_case = list_of_state_dict + final() for gg in list_of_state_dict: print(__lowerCAmelCase ) for i in range(len(__lowerCAmelCase ) ): snake_case = original_weights[list_of_state_dict[i][1]] model.load_state_dict(__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) image_processor.save_pretrained(__lowerCAmelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( "--cvt_model", default="cvt-w24", type=str, help="Name of the cvt model you'd like to convert.", ) parser.add_argument( "--image_size", default=384, type=int, help="Input Image Size", ) parser.add_argument( "--cvt_file_name", default=r"cvtmodels\CvT-w24-384x384-IN-22k.pth", type=str, help="Input Image Size", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
3
1
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __A( a , unittest.TestCase ): snake_case_ = KandinskyVaaPriorPipeline snake_case_ = ['''prompt'''] snake_case_ = ['''prompt''', '''negative_prompt'''] snake_case_ = [ '''num_images_per_prompt''', '''generator''', '''num_inference_steps''', '''latents''', '''negative_prompt''', '''guidance_scale''', '''output_type''', '''return_dict''', ] snake_case_ = False @property def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' return 32 @property def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' return 32 @property def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' return self.time_input_dim @property def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' return self.time_input_dim * 4 @property def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' return 100 @property def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' __a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) __a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(_snake_case ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) __a = { '''num_attention_heads''': 2, '''attention_head_dim''': 12, '''embedding_dim''': self.text_embedder_hidden_size, '''num_layers''': 1, } __a = PriorTransformer(**_snake_case ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 __a = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) __a = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) __a = CLIPVisionModelWithProjection(_snake_case ) return model @property def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' __a = CLIPImageProcessor( crop_size=224 , do_center_crop=_snake_case , do_normalize=_snake_case , do_resize=_snake_case , image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] , image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] , resample=3 , size=224 , ) return image_processor def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' __a = self.dummy_prior __a = self.dummy_image_encoder __a = self.dummy_text_encoder __a = self.dummy_tokenizer __a = self.dummy_image_processor __a = UnCLIPScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1_000 , clip_sample=_snake_case , clip_sample_range=10.0 , ) __a = { '''prior''': prior, '''image_encoder''': image_encoder, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''scheduler''': scheduler, '''image_processor''': image_processor, } return components def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case=0 ) -> Dict: '''simple docstring''' if str(_snake_case ).startswith('''mps''' ): __a = torch.manual_seed(_snake_case ) else: __a = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) __a = { '''prompt''': '''horse''', '''generator''': generator, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' __a = '''cpu''' __a = self.get_dummy_components() __a = self.pipeline_class(**_snake_case ) __a = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) __a = pipe(**self.get_dummy_inputs(_snake_case ) ) __a = output.image_embeds __a = pipe( **self.get_dummy_inputs(_snake_case ) , return_dict=_snake_case , )[0] __a = image[0, -10:] __a = image_from_tuple[0, -10:] assert image.shape == (1, 32) __a = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' __a = torch_device == '''cpu''' __a = True __a = False self._test_inference_batch_single_identical( test_max_difference=_snake_case , relax_max_difference=_snake_case , test_mean_pixel_difference=_snake_case , ) @skip_mps def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' __a = torch_device == '''cpu''' __a = False self._test_attention_slicing_forward_pass( test_max_difference=_snake_case , test_mean_pixel_difference=_snake_case , )
6
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __A( a ): snake_case_ = ['''image_processor''', '''tokenizer'''] snake_case_ = '''ChineseCLIPImageProcessor''' snake_case_ = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self , _snake_case=None , _snake_case=None , **_snake_case ) -> Tuple: '''simple docstring''' __a = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _snake_case , ) __a = kwargs.pop('''feature_extractor''' ) __a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_snake_case , _snake_case ) __a = self.image_processor def __call__( self , _snake_case=None , _snake_case=None , _snake_case=None , **_snake_case ) -> Optional[Any]: '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __a = self.tokenizer(_snake_case , return_tensors=_snake_case , **_snake_case ) if images is not None: __a = self.image_processor(_snake_case , return_tensors=_snake_case , **_snake_case ) if text is not None and images is not None: __a = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_snake_case ) , tensor_type=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , *_snake_case , **_snake_case ) -> str: '''simple docstring''' return self.tokenizer.batch_decode(*_snake_case , **_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , *_snake_case , **_snake_case ) -> Dict: '''simple docstring''' return self.tokenizer.decode(*_snake_case , **_snake_case ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' __a = self.tokenizer.model_input_names __a = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _snake_case , ) return self.image_processor_class
6
1
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() UpperCAmelCase_ = 2 class UpperCamelCase_ : def __init__( self , *, # begin keyword-only arguments lowerCAmelCase_="<s>" , lowerCAmelCase_="<pad>" , lowerCAmelCase_="</s>" , lowerCAmelCase_="<unk>" , lowerCAmelCase_=None , ) -> Tuple: _snake_case , _snake_case , _snake_case , _snake_case = bos, unk, pad, eos _snake_case = [] _snake_case = [] _snake_case = {} _snake_case = self.add_symbol(__lowerCAmelCase ) _snake_case = self.add_symbol(__lowerCAmelCase ) _snake_case = self.add_symbol(__lowerCAmelCase ) _snake_case = self.add_symbol(__lowerCAmelCase ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(__lowerCAmelCase ) _snake_case = len(self.symbols ) def __eq__( self , lowerCAmelCase_ ) -> Tuple: return self.indices == other.indices def __getitem__( self , lowerCAmelCase_ ) -> List[Any]: if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self ) -> Tuple: return len(self.symbols ) def __contains__( self , lowerCAmelCase_ ) -> int: return sym in self.indices @classmethod def lowerCAmelCase ( cls , lowerCAmelCase_ ) -> int: _snake_case = cls() d.add_from_file(__lowerCAmelCase ) return d def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=1 , lowerCAmelCase_=False ) -> List[Any]: if word in self.indices and not overwrite: _snake_case = self.indices[word] _snake_case = self.count[idx] + n return idx else: _snake_case = len(self.symbols ) _snake_case = idx self.symbols.append(__lowerCAmelCase ) self.count.append(__lowerCAmelCase ) return idx def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Any: return 0 def lowerCAmelCase ( self , lowerCAmelCase_ ) -> List[str]: if isinstance(__lowerCAmelCase , __lowerCAmelCase ): try: with open(__lowerCAmelCase , 'r' , encoding='utf-8' ) as fd: self.add_from_file(__lowerCAmelCase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('Incorrect encoding detected in {}, please rebuild the dataset'.format(__lowerCAmelCase ) ) return _snake_case = f.readlines() _snake_case = self._load_meta(__lowerCAmelCase ) for line in lines[indices_start_line:]: try: _snake_case , _snake_case = line.rstrip().rsplit(' ' , 1 ) if field == "#fairseq:overwrite": _snake_case = True _snake_case , _snake_case = line.rsplit(' ' , 1 ) else: _snake_case = False _snake_case = int(__lowerCAmelCase ) _snake_case = line if word in self and not overwrite: raise RuntimeError( 'Duplicate word found when loading Dictionary: \'{}\'. ' 'Duplicate words can overwrite earlier ones by adding the ' '#fairseq:overwrite flag at the end of the corresponding row ' 'in the dictionary file. If using the Camembert model, please ' 'download an updated copy of the model file.'.format(__lowerCAmelCase ) ) self.add_symbol(__lowerCAmelCase , n=__lowerCAmelCase , overwrite=__lowerCAmelCase ) except ValueError: raise ValueError('Incorrect dictionary format, expected \'<token> <cnt> [flags]\'' ) def lowerCamelCase__ ( UpperCamelCase__ : Dict ) -> Any: '''simple docstring''' _snake_case = dict((re.sub(R'@@$' , '' , UpperCamelCase__ ), v) if k.endswith('@@' ) else (re.sub(R'$' , '</w>' , UpperCamelCase__ ), v) for k, v in d.items() ) _snake_case = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[F'''{k}</w>'''] _snake_case = d[k] # restore return da def lowerCamelCase__ ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[Any] ) -> Optional[Any]: '''simple docstring''' if not os.path.exists(UpperCamelCase__ ): raise ValueError(F'''path {biogpt_checkpoint_path} does not exist!''' ) os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) print(F'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models _snake_case = os.path.join(UpperCamelCase__ , 'checkpoint.pt' ) if not os.path.isfile(UpperCamelCase__ ): raise ValueError(F'''path to the file {checkpoint_file} does not exist!''' ) _snake_case = torch.load(UpperCamelCase__ , map_location='cpu' ) _snake_case = chkpt['cfg']['model'] # dicts _snake_case = os.path.join(UpperCamelCase__ , 'dict.txt' ) if not os.path.isfile(UpperCamelCase__ ): raise ValueError(F'''path to the file {dict_file} does not exist!''' ) _snake_case = Dictionary.load(UpperCamelCase__ ) _snake_case = rewrite_dict_keys(src_dict.indices ) _snake_case = len(UpperCamelCase__ ) _snake_case = os.path.join(UpperCamelCase__ , VOCAB_FILES_NAMES['vocab_file'] ) print(F'''Generating {src_vocab_file} of {src_vocab_size} records''' ) with open(UpperCamelCase__ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(UpperCamelCase__ , ensure_ascii=UpperCamelCase__ , indent=UpperCamelCase__ ) ) # merges_file (bpecodes) _snake_case = os.path.join(UpperCamelCase__ , 'bpecodes' ) if not os.path.isfile(UpperCamelCase__ ): raise ValueError(F'''path to the file {bpecodes_file} does not exist!''' ) _snake_case = os.path.join(UpperCamelCase__ , VOCAB_FILES_NAMES['merges_file'] ) shutil.copyfile(UpperCamelCase__ , UpperCamelCase__ ) # model config _snake_case = os.path.join(UpperCamelCase__ , 'config.json' ) _snake_case = { 'activation_dropout': args['activation_dropout'], 'architectures': ['BioGptForCausalLM'], 'attention_probs_dropout_prob': args['attention_dropout'], 'bos_token_id': 0, 'eos_token_id': 2, 'hidden_act': args['activation_fn'], 'hidden_dropout_prob': args['dropout'], 'hidden_size': args['decoder_embed_dim'], 'initializer_range': 0.02, 'intermediate_size': args['decoder_ffn_embed_dim'], 'layer_norm_eps': 1e-12, 'layerdrop': args['decoder_layerdrop'], 'max_position_embeddings': args['max_target_positions'], 'model_type': 'biogpt', 'num_attention_heads': args['decoder_attention_heads'], 'num_hidden_layers': args['decoder_layers'], 'pad_token_id': 1, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_decoder_input_output_embed'], 'vocab_size': src_vocab_size, } # good hparam defaults to start with print(F'''Generating {biogpt_model_config_file}''' ) with open(UpperCamelCase__ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(UpperCamelCase__ , ensure_ascii=UpperCamelCase__ , indent=UpperCamelCase__ ) ) # tokenizer config _snake_case = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) _snake_case = { 'bos_token': '<s>', 'eos_token': '</s>', 'model_max_length': 1_024, 'pad_token': '<pad>', 'special_tokens_map_file': None, 'tokenizer_class': 'BioGptTokenizer', 'unk_token': '<unk>', } print(F'''Generating {biogpt_tokenizer_config_file}''' ) with open(UpperCamelCase__ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(UpperCamelCase__ , ensure_ascii=UpperCamelCase__ , indent=UpperCamelCase__ ) ) # model _snake_case = chkpt['model'] # remove unneeded keys _snake_case = [ 'decoder.version', ] for k in ignore_keys: model_state_dict.pop(UpperCamelCase__ , UpperCamelCase__ ) _snake_case = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('output_projection.weight' ): _snake_case = model_state_dict.pop(UpperCamelCase__ ) else: _snake_case = model_state_dict.pop(UpperCamelCase__ ) _snake_case = BioGptConfig.from_pretrained(UpperCamelCase__ ) _snake_case = BioGptForCausalLM(UpperCamelCase__ ) # check that it loads ok model_new.load_state_dict(UpperCamelCase__ ) # save _snake_case = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) print(F'''Generating {pytorch_weights_dump_path}''' ) torch.save(UpperCamelCase__ , UpperCamelCase__ ) print('Conversion is done!' ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--biogpt_checkpoint_path""", default=None, type=str, required=True, help=( """Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,""" """ bpecodes, etc.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) UpperCAmelCase_ = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
358
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def lowerCamelCase__ ( ) -> List[str]: '''simple docstring''' _snake_case , _snake_case = 9, 14 # noqa: F841 _snake_case = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _snake_case = defaultdict(UpperCamelCase__ ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) _snake_case = mst(UpperCamelCase__ ) _snake_case = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: _snake_case = tuple(answer[:2] ) _snake_case = tuple(edge[::-1] ) assert edge in result or reverse in result
295
0
'''simple docstring''' import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' _SCREAMING_SNAKE_CASE : str = CLIPTokenizer _SCREAMING_SNAKE_CASE : Optional[Any] = CLIPTokenizerFast _SCREAMING_SNAKE_CASE : Tuple = True _SCREAMING_SNAKE_CASE : List[str] = {} _SCREAMING_SNAKE_CASE : Dict = False def a ( self : Any ) -> Optional[int]: super().setUp() # fmt: off __lowerCAmelCase = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __lowerCAmelCase = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) __lowerCAmelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>'''] __lowerCAmelCase = {'''unk_token''': '''<unk>'''} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__snake_case ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__snake_case ) ) def a ( self : Optional[int] , **SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[int]: kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **__snake_case ) def a ( self : List[Any] , **SCREAMING_SNAKE_CASE__ : Any ) -> List[Any]: kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__snake_case ) def a ( self : List[str] , SCREAMING_SNAKE_CASE__ : Tuple ) -> int: __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = '''lower newer''' return input_text, output_text def a ( self : Dict ) -> List[Any]: __lowerCAmelCase = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = ['''lo''', '''w''', '''er</w>''', '''n''', '''e''', '''w''', '''er</w>'''] __lowerCAmelCase = tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) __lowerCAmelCase = tokens + [tokenizer.unk_token] __lowerCAmelCase = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) @require_ftfy def a ( self : str ) -> str: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __lowerCAmelCase = self.tokenizer_class.from_pretrained(__snake_case , **__snake_case ) __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) __lowerCAmelCase = '''A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.''' __lowerCAmelCase = tokenizer_s.tokenize(__snake_case ) __lowerCAmelCase = tokenizer_r.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways __lowerCAmelCase = '''xa\u0303y''' + ''' ''' + '''x\xe3y''' __lowerCAmelCase = tokenizer_s.tokenize(__snake_case ) __lowerCAmelCase = tokenizer_r.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) # Test that the tokenization is identical on unicode of space type __lowerCAmelCase = [ '''\u0009''', # (horizontal tab, '\t') '''\u000B''', # (vertical tab) '''\u000C''', # (form feed) '''\u0020''', # (space, ' ') '''\u200E''', # (left-to-right mark):w '''\u200F''', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: __lowerCAmelCase = tokenizer_s.tokenize(__snake_case ) __lowerCAmelCase = tokenizer_r.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) # Test that the tokenization is identical on unicode of line break type __lowerCAmelCase = [ '''\u000A''', # (line feed, '\n') '''\r\n''', # (carriage return and line feed, '\r\n') '''\u000D''', # (carriage return, '\r') '''\r''', # (carriage return, '\r') '''\u000D''', # (carriage return, '\r') '''\u2028''', # (line separator) '''\u2029''', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: __lowerCAmelCase = tokenizer_s.tokenize(__snake_case ) __lowerCAmelCase = tokenizer_r.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) def a ( self : Tuple ) -> Optional[int]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __lowerCAmelCase = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` __lowerCAmelCase = f"""{text_of_1_token} {text_of_1_token}""" __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained( __snake_case , use_fast=__snake_case , ) __lowerCAmelCase = tokenizer_r(__snake_case , return_offsets_mapping=__snake_case , add_special_tokens=__snake_case ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__snake_case )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__snake_case ) + 1, len(__snake_case ) + 1 + len(__snake_case )) , ) __lowerCAmelCase = f""" {text}""" __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained( __snake_case , use_fast=__snake_case , ) __lowerCAmelCase = tokenizer_r(__snake_case , return_offsets_mapping=__snake_case , add_special_tokens=__snake_case ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__snake_case )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__snake_case ) + 1, 1 + len(__snake_case ) + 1 + len(__snake_case )) , ) def a ( self : str ) -> str: # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(__snake_case ) as context: self.rust_tokenizer_class.from_pretrained("""robot-test/old-clip-tokenizer""" ) self.assertTrue( context.exception.args[0].startswith( """The `backend_tokenizer` provided does not match the expected format.""" ) ) @require_ftfy def a ( self : str ) -> Dict: super().test_tokenization_python_rust_equals() def a ( self : Optional[Any] ) -> Optional[Any]: # CLIP always lower cases letters pass
229
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase__: str = { "configuration_lxmert": ["LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LxmertConfig"], "tokenization_lxmert": ["LxmertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__: int = ["LxmertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__: Union[str, Any] = [ "LxmertEncoder", "LxmertForPreTraining", "LxmertForQuestionAnswering", "LxmertModel", "LxmertPreTrainedModel", "LxmertVisualFeatureEncoder", "LxmertXLayer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__: int = [ "TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLxmertForPreTraining", "TFLxmertMainLayer", "TFLxmertModel", "TFLxmertPreTrainedModel", "TFLxmertVisualFeatureEncoder", ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys UpperCamelCase__: Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
0
"""simple docstring""" from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image _UpperCamelCase = ["""text""", """image""", """audio"""] def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = [] for input_type in input_types: if input_type == "text": inputs.append("""Text input""" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png""" ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(_snake_case , _snake_case ): inputs.append(create_inputs(_snake_case ) ) else: raise ValueError(F'''Invalid type requested: {input_type}''' ) return inputs def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = [] for output in outputs: if isinstance(_snake_case , (str, AgentText) ): output_types.append("""text""" ) elif isinstance(_snake_case , (Image.Image, AgentImage) ): output_types.append("""image""" ) elif isinstance(_snake_case , (torch.Tensor, AgentAudio) ): output_types.append("""audio""" ) else: raise ValueError(F'''Invalid output: {output}''' ) return output_types @is_tool_test class lowerCamelCase__ : def _UpperCamelCase ( self ): self.assertTrue(hasattr(self.tool ,"""inputs""" ) ) self.assertTrue(hasattr(self.tool ,"""outputs""" ) ) UpperCAmelCase = self.tool.inputs for _input in inputs: if isinstance(_input ,A ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) UpperCAmelCase = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def _UpperCamelCase ( self ): UpperCAmelCase = create_inputs(self.tool.inputs ) UpperCAmelCase = self.tool(*A ) # There is a single output if len(self.tool.outputs ) == 1: UpperCAmelCase = [outputs] self.assertListEqual(output_types(A ) ,self.tool.outputs ) def _UpperCamelCase ( self ): self.assertTrue(hasattr(self.tool ,"""description""" ) ) self.assertTrue(hasattr(self.tool ,"""default_checkpoint""" ) ) self.assertTrue(self.tool.description.startswith("""This is a tool that""" ) ) def _UpperCamelCase ( self ): UpperCAmelCase = create_inputs(self.tool.inputs ) UpperCAmelCase = self.tool(*A ) if not isinstance(A ,A ): UpperCAmelCase = [outputs] self.assertEqual(len(A ) ,len(self.tool.outputs ) ) for output, output_type in zip(A ,self.tool.outputs ): UpperCAmelCase = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(A ,A ) ) def _UpperCamelCase ( self ): UpperCAmelCase = create_inputs(self.tool.inputs ) UpperCAmelCase = [] for _input, input_type in zip(A ,self.tool.inputs ): if isinstance(A ,A ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error UpperCAmelCase = self.tool(*A ) if not isinstance(A ,A ): UpperCAmelCase = [outputs] self.assertEqual(len(A ) ,len(self.tool.outputs ) )
234
"""simple docstring""" import numpy as np def _a ( _snake_case ): """simple docstring""" return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
234
1
"""simple docstring""" import math def lowercase ( A_ , A_ = 0 , A_ = 0 )-> list: '''simple docstring''' a : Optional[Any] = end or len(A_ ) for i in range(A_ , A_ ): a : Optional[Any] = i a : Dict = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: a : str = array[temp_index - 1] temp_index -= 1 a : Optional[Any] = temp_index_value return array def lowercase ( A_ , A_ , A_ )-> None: # Max Heap '''simple docstring''' a : Union[str, Any] = index a : str = 2 * index + 1 # Left Node a : Optional[int] = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: a : List[Any] = left_index if right_index < heap_size and array[largest] < array[right_index]: a : Optional[int] = right_index if largest != index: a , a : List[Any] = array[largest], array[index] heapify(A_ , A_ , A_ ) def lowercase ( A_ )-> list: '''simple docstring''' a : Optional[int] = len(A_ ) for i in range(n // 2 , -1 , -1 ): heapify(A_ , A_ , A_ ) for i in range(n - 1 , 0 , -1 ): a , a : Any = array[0], array[i] heapify(A_ , 0 , A_ ) return array def lowercase ( A_ , A_ , A_ , A_ )-> int: '''simple docstring''' if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def lowercase ( A_ , A_ , A_ , A_ )-> int: '''simple docstring''' a : str = low a : int = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i a , a : int = array[j], array[i] i += 1 def lowercase ( A_ )-> list: '''simple docstring''' if len(A_ ) == 0: return array a : Union[str, Any] = 2 * math.ceil(math.loga(len(A_ ) ) ) a : Optional[int] = 16 return intro_sort(A_ , 0 , len(A_ ) , A_ , A_ ) def lowercase ( A_ , A_ , A_ , A_ , A_ )-> list: '''simple docstring''' while end - start > size_threshold: if max_depth == 0: return heap_sort(A_ ) max_depth -= 1 a : Tuple = median_of_a(A_ , A_ , start + ((end - start) // 2) + 1 , end - 1 ) a : Optional[Any] = partition(A_ , A_ , A_ , A_ ) intro_sort(A_ , A_ , A_ , A_ , A_ ) a : Dict = p return insertion_sort(A_ , A_ , A_ ) if __name__ == "__main__": import doctest doctest.testmod() __lowercase = input("""Enter numbers separated by a comma : """).strip() __lowercase = [float(item) for item in user_input.split(""",""")] print(sort(unsorted))
40
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _A ( _a ,_a ,_a ,unittest.TestCase ): """simple docstring""" UpperCAmelCase : str = StableDiffusionInpaintPipeline UpperCAmelCase : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS UpperCAmelCase : Any = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCAmelCase : Union[str, Any] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCAmelCase : int = frozenset([] ) def __snake_case ( self : Dict): torch.manual_seed(0) a : List[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=__UpperCAmelCase , ) a : Tuple = PNDMScheduler(skip_prk_steps=__UpperCAmelCase) torch.manual_seed(0) a : str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0) a : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=512 , ) a : Any = CLIPTextModel(__UpperCAmelCase) a : List[str] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") a : Optional[Any] = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def __snake_case ( self : Union[str, Any] , __UpperCAmelCase : Any , __UpperCAmelCase : Union[str, Any]=0): # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched a : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCAmelCase)).to(__UpperCAmelCase) a : List[str] = image.cpu().permute(0 , 2 , 3 , 1)[0] a : Union[str, Any] = Image.fromarray(np.uinta(__UpperCAmelCase)).convert("RGB").resize((64, 64)) a : Dict = Image.fromarray(np.uinta(image + 4)).convert("RGB").resize((64, 64)) if str(__UpperCAmelCase).startswith("mps"): a : Tuple = torch.manual_seed(__UpperCAmelCase) else: a : Tuple = torch.Generator(device=__UpperCAmelCase).manual_seed(__UpperCAmelCase) a : Optional[Any] = { "prompt": "A painting of a squirrel eating a burger", "image": init_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def __snake_case ( self : List[str]): a : Union[str, Any] = "cpu" # ensure determinism for the device-dependent torch.Generator a : Tuple = self.get_dummy_components() a : Optional[int] = StableDiffusionInpaintPipeline(**__UpperCAmelCase) a : int = sd_pipe.to(__UpperCAmelCase) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase) a : Any = self.get_dummy_inputs(__UpperCAmelCase) a : Optional[int] = sd_pipe(**__UpperCAmelCase).images a : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) a : int = np.array([0.4_727, 0.5_735, 0.3_941, 0.5_446, 0.5_926, 0.4_394, 0.5_062, 0.4_654, 0.4_476]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def __snake_case ( self : str): super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class _A ( unittest.TestCase ): """simple docstring""" def __snake_case ( self : Union[str, Any]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case ( self : Dict): a : str = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png") a : str = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png") a : List[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint" "/yellow_cat_sitting_on_a_park_bench.npy") a : Tuple = "stabilityai/stable-diffusion-2-inpainting" a : Optional[Any] = StableDiffusionInpaintPipeline.from_pretrained(__UpperCAmelCase , safety_checker=__UpperCAmelCase) pipe.to(__UpperCAmelCase) pipe.set_progress_bar_config(disable=__UpperCAmelCase) pipe.enable_attention_slicing() a : Any = "Face of a yellow cat, high resolution, sitting on a park bench" a : str = torch.manual_seed(0) a : Union[str, Any] = pipe( prompt=__UpperCAmelCase , image=__UpperCAmelCase , mask_image=__UpperCAmelCase , generator=__UpperCAmelCase , output_type="np" , ) a : List[str] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 9e-3 def __snake_case ( self : Any): a : str = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png") a : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png") a : str = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint" "/yellow_cat_sitting_on_a_park_bench_fp16.npy") a : Optional[Any] = "stabilityai/stable-diffusion-2-inpainting" a : Any = StableDiffusionInpaintPipeline.from_pretrained( __UpperCAmelCase , torch_dtype=torch.floataa , safety_checker=__UpperCAmelCase , ) pipe.to(__UpperCAmelCase) pipe.set_progress_bar_config(disable=__UpperCAmelCase) pipe.enable_attention_slicing() a : Optional[int] = "Face of a yellow cat, high resolution, sitting on a park bench" a : Dict = torch.manual_seed(0) a : List[Any] = pipe( prompt=__UpperCAmelCase , image=__UpperCAmelCase , mask_image=__UpperCAmelCase , generator=__UpperCAmelCase , output_type="np" , ) a : Optional[Any] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 5e-1 def __snake_case ( self : int): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() a : Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png") a : Optional[int] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png") a : Optional[Any] = "stabilityai/stable-diffusion-2-inpainting" a : Optional[int] = PNDMScheduler.from_pretrained(__UpperCAmelCase , subfolder="scheduler") a : int = StableDiffusionInpaintPipeline.from_pretrained( __UpperCAmelCase , safety_checker=__UpperCAmelCase , scheduler=__UpperCAmelCase , torch_dtype=torch.floataa , ) pipe.to(__UpperCAmelCase) pipe.set_progress_bar_config(disable=__UpperCAmelCase) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() a : Optional[int] = "Face of a yellow cat, high resolution, sitting on a park bench" a : Optional[int] = torch.manual_seed(0) a : str = pipe( prompt=__UpperCAmelCase , image=__UpperCAmelCase , mask_image=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=2 , output_type="np" , ) a : int = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
40
1
"""simple docstring""" def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> Tuple: if height >= 1: move_tower(height - 1 , snake_case__ , snake_case__ , snake_case__ ) move_disk(snake_case__ , snake_case__ ) move_tower(height - 1 , snake_case__ , snake_case__ , snake_case__ ) def a__ ( snake_case__ , snake_case__ ) -> int: print("""moving disk from""" , snake_case__ , """to""" , snake_case__ ) def a__ ( ) -> Optional[int]: lowerCamelCase = int(input("""Height of hanoi: """ ).strip() ) move_tower(snake_case__ , """A""" , """B""" , """C""" ) if __name__ == "__main__": main()
168
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class __magic_name__ ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = 1 @register_to_config def __init__( self , _a=2_000 , _a=0.1 , _a=20 , _a=1e-3 ): """simple docstring""" lowerCamelCase = None lowerCamelCase = None lowerCamelCase = None def _lowerCAmelCase ( self , _a , _a = None ): """simple docstring""" lowerCamelCase = torch.linspace(1 , self.config.sampling_eps , _a , device=_a ) def _lowerCAmelCase ( self , _a , _a , _a , _a=None ): """simple docstring""" if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score lowerCamelCase = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) lowerCamelCase = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) lowerCamelCase = std.flatten() while len(std.shape ) < len(score.shape ): lowerCamelCase = std.unsqueeze(-1 ) lowerCamelCase = -score / std # compute lowerCamelCase = -1.0 / len(self.timesteps ) lowerCamelCase = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) lowerCamelCase = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): lowerCamelCase = beta_t.unsqueeze(-1 ) lowerCamelCase = -0.5 * beta_t * x lowerCamelCase = torch.sqrt(_a ) lowerCamelCase = drift - diffusion**2 * score lowerCamelCase = x + drift * dt # add noise lowerCamelCase = randn_tensor(x.shape , layout=x.layout , generator=_a , device=x.device , dtype=x.dtype ) lowerCamelCase = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self ): """simple docstring""" return self.config.num_train_timesteps
168
1
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a ( lowercase__ , unittest.TestCase ): """simple docstring""" a : Union[str, Any] = DiTPipeline a : Union[str, Any] = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS a : int = PipelineTesterMixin.required_optional_params - { 'latents', 'num_images_per_prompt', 'callback', 'callback_steps', } a : int = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS a : List[str] = False def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: torch.manual_seed(0 ) __UpperCAmelCase : Tuple = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=__lowercase , activation_fn="""gelu-approximate""" , num_embeds_ada_norm=1000 , norm_type="""ada_norm_zero""" , norm_elementwise_affine=__lowercase , ) __UpperCAmelCase : List[Any] = AutoencoderKL() __UpperCAmelCase : List[Any] = DDIMScheduler() __UpperCAmelCase : List[Any] = {"""transformer""": transformer.eval(), """vae""": vae.eval(), """scheduler""": scheduler} return components def UpperCAmelCase ( self : Any , __lowercase : Optional[Any] , __lowercase : List[Any]=0 ) -> Union[str, Any]: if str(__lowercase ).startswith("""mps""" ): __UpperCAmelCase : int = torch.manual_seed(__lowercase ) else: __UpperCAmelCase : List[str] = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __UpperCAmelCase : List[Any] = { """class_labels""": [1], """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def UpperCAmelCase ( self : Dict ) -> List[Any]: __UpperCAmelCase : str = """cpu""" __UpperCAmelCase : Dict = self.get_dummy_components() __UpperCAmelCase : Optional[Any] = self.pipeline_class(**__lowercase ) pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __UpperCAmelCase : Dict = self.get_dummy_inputs(__lowercase ) __UpperCAmelCase : Union[str, Any] = pipe(**__lowercase ).images __UpperCAmelCase : Tuple = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) __UpperCAmelCase : str = np.array([0.2_946, 0.6_601, 0.4_329, 0.3_296, 0.4_144, 0.5_319, 0.7_273, 0.5_013, 0.4_457] ) __UpperCAmelCase : List[Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__lowercase , 1e-3 ) def UpperCAmelCase ( self : Dict ) -> Tuple: self._test_inference_batch_single_identical(relax_max_difference=__lowercase , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def UpperCAmelCase ( self : List[Any] ) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class a ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self : str ) -> str: super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self : str ) -> List[str]: __UpperCAmelCase : Union[str, Any] = torch.manual_seed(0 ) __UpperCAmelCase : Union[str, Any] = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-256""" ) pipe.to("""cuda""" ) __UpperCAmelCase : str = ["""vase""", """umbrella""", """white shark""", """white wolf"""] __UpperCAmelCase : Optional[int] = pipe.get_label_ids(__lowercase ) __UpperCAmelCase : List[Any] = pipe(__lowercase , generator=__lowercase , num_inference_steps=40 , output_type="""np""" ).images for word, image in zip(__lowercase , __lowercase ): __UpperCAmelCase : Dict = load_numpy( f"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy""" ) assert np.abs((expected_image - image).max() ) < 1e-2 def UpperCAmelCase ( self : Optional[int] ) -> List[str]: __UpperCAmelCase : List[str] = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-512""" ) __UpperCAmelCase : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("""cuda""" ) __UpperCAmelCase : Any = ["""vase""", """umbrella"""] __UpperCAmelCase : Optional[int] = pipe.get_label_ids(__lowercase ) __UpperCAmelCase : Any = torch.manual_seed(0 ) __UpperCAmelCase : Any = pipe(__lowercase , generator=__lowercase , num_inference_steps=25 , output_type="""np""" ).images for word, image in zip(__lowercase , __lowercase ): __UpperCAmelCase : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" f"""/dit/{word}_512.npy""" ) assert np.abs((expected_image - image).max() ) < 1e-1
114
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a : Union[str, Any] = {"configuration_timm_backbone": ["TimmBackboneConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Tuple = ["TimmBackbone"] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys a : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
114
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { 'facebook/levit-128S': 'https://huggingface.co/facebook/levit-128S/resolve/main/config.json', # See all LeViT models at https://huggingface.co/models?filter=levit } class _lowercase ( __UpperCAmelCase ): lowercase_ = 'levit' def __init__( self , UpperCAmelCase_=224 , UpperCAmelCase_=3 , UpperCAmelCase_=3 , UpperCAmelCase_=2 , UpperCAmelCase_=1 , UpperCAmelCase_=16 , UpperCAmelCase_=[128, 256, 384] , UpperCAmelCase_=[4, 8, 12] , UpperCAmelCase_=[4, 4, 4] , UpperCAmelCase_=[16, 16, 16] , UpperCAmelCase_=0 , UpperCAmelCase_=[2, 2, 2] , UpperCAmelCase_=[2, 2, 2] , UpperCAmelCase_=0.02 , **UpperCAmelCase_ , ) -> Tuple: super().__init__(**UpperCAmelCase_ ) lowerCamelCase : Any = image_size lowerCamelCase : int = num_channels lowerCamelCase : Tuple = kernel_size lowerCamelCase : Any = stride lowerCamelCase : Union[str, Any] = padding lowerCamelCase : Any = hidden_sizes lowerCamelCase : Optional[Any] = num_attention_heads lowerCamelCase : int = depths lowerCamelCase : int = key_dim lowerCamelCase : Tuple = drop_path_rate lowerCamelCase : Any = patch_size lowerCamelCase : Tuple = attention_ratio lowerCamelCase : List[str] = mlp_ratio lowerCamelCase : Optional[Any] = initializer_range lowerCamelCase : Any = [ ['Subsample', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['Subsample', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class _lowercase ( __UpperCAmelCase ): lowercase_ = version.parse('1.11' ) @property def _UpperCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def _UpperCamelCase ( self ) -> float: return 1E-4
205
"""simple docstring""" from __future__ import annotations _A = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def UpperCAmelCase ( a_, a_, a_, a_, a_, ): '''simple docstring''' lowerCamelCase : Dict = [ [0 for col in range(len(grid[0] ) )] for row in range(len(a_ ) ) ] # the reference grid lowerCamelCase : Union[str, Any] = 1 lowerCamelCase : Any = [ [0 for col in range(len(grid[0] ) )] for row in range(len(a_ ) ) ] # the action grid lowerCamelCase : List[str] = init[0] lowerCamelCase : Optional[Any] = init[1] lowerCamelCase : List[Any] = 0 lowerCamelCase : List[str] = g + heuristic[x][y] # cost from starting cell to destination cell lowerCamelCase : Union[str, Any] = [[f, g, x, y]] lowerCamelCase : Union[str, Any] = False # flag that is set when search is complete lowerCamelCase : str = False # flag set if we can't find expand while not found and not resign: if len(a_ ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() lowerCamelCase : int = cell.pop() lowerCamelCase : str = next_cell[2] lowerCamelCase : Union[str, Any] = next_cell[3] lowerCamelCase : List[str] = next_cell[1] if x == goal[0] and y == goal[1]: lowerCamelCase : Any = True else: for i in range(len(a_ ) ): # to try out different valid actions lowerCamelCase : Tuple = x + DIRECTIONS[i][0] lowerCamelCase : Union[str, Any] = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(a_ ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: lowerCamelCase : str = g + cost lowerCamelCase : Tuple = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) lowerCamelCase : Union[str, Any] = 1 lowerCamelCase : Any = i lowerCamelCase : Any = [] lowerCamelCase : Optional[int] = goal[0] lowerCamelCase : Dict = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: lowerCamelCase : Dict = x - DIRECTIONS[action[x][y]][0] lowerCamelCase : Dict = y - DIRECTIONS[action[x][y]][1] lowerCamelCase : Optional[Any] = xa lowerCamelCase : Union[str, Any] = ya invpath.append([x, y] ) lowerCamelCase : Optional[int] = [] for i in range(len(a_ ) ): path.append(invpath[len(a_ ) - 1 - i] ) return path, action if __name__ == "__main__": _A = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] _A = [0, 0] # all coordinates are given in format [y,x] _A = [len(grid) - 1, len(grid[0]) - 1] _A = 1 # the cost map which pushes the path closer to the goal _A = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): _A = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map _A = 9_9 _A , _A = search(grid, init, goal, cost, heuristic) print('ACTION MAP') for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
205
1
'''simple docstring''' def __UpperCAmelCase ( a_: int, a_: List[Any] ): if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) _UpperCAmelCase : Union[str, Any] = str(bin(__a ) )[2:] # remove the leading "0b" _UpperCAmelCase : Dict = str(bin(__a ) )[2:] # remove the leading "0b" _UpperCAmelCase : List[str] = max(len(__a ), len(__a ) ) return "0b" + "".join( str(int(char_a == "1" and char_b == "1" ) ) for char_a, char_b in zip(a_binary.zfill(__a ), b_binary.zfill(__a ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
145
"""simple docstring""" import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(lowercase_)) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(lowercase_)) def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(lowercase_)) def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] self.assertTrue(is_safetensors_compatible(lowercase_)) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', # Removed: 'text_encoder/model.safetensors', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertFalse(is_safetensors_compatible(lowercase_)) def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] SCREAMING_SNAKE_CASE_ : Any = '''fp16''' self.assertTrue(is_safetensors_compatible(lowercase_ , variant=lowercase_)) def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = [ '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] SCREAMING_SNAKE_CASE_ : Dict = '''fp16''' self.assertTrue(is_safetensors_compatible(lowercase_ , variant=lowercase_)) def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] SCREAMING_SNAKE_CASE_ : Any = '''fp16''' self.assertTrue(is_safetensors_compatible(lowercase_ , variant=lowercase_)) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] SCREAMING_SNAKE_CASE_ : List[Any] = '''fp16''' self.assertFalse(is_safetensors_compatible(lowercase_ , variant=lowercase_)) def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = [ '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', ] SCREAMING_SNAKE_CASE_ : Any = '''fp16''' self.assertTrue(is_safetensors_compatible(lowercase_ , variant=lowercase_)) def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] SCREAMING_SNAKE_CASE_ : List[Any] = '''fp16''' self.assertTrue(is_safetensors_compatible(lowercase_ , variant=lowercase_)) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', # 'text_encoder/model.fp16.safetensors', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] SCREAMING_SNAKE_CASE_ : str = '''fp16''' self.assertFalse(is_safetensors_compatible(lowercase_ , variant=lowercase_))
91
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase : Dict = logging.get_logger(__name__) lowercase : Optional[Any] = {"vocab_file": "spiece.model"} lowercase : Optional[Any] = { "vocab_file": { "bert_for_seq_generation": ( "https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model" ), } } lowercase : Union[str, Any] = {"bert_for_seq_generation": 512} class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ): """simple docstring""" lowercase : Tuple = VOCAB_FILES_NAMES lowercase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : List[int] = [] lowercase : Dict = ['input_ids', 'attention_mask'] def __init__( self , __UpperCamelCase , __UpperCamelCase="<s>" , __UpperCamelCase="</s>" , __UpperCamelCase="<unk>" , __UpperCamelCase="<pad>" , __UpperCamelCase="<::::>" , __UpperCamelCase = None , **__UpperCamelCase , ) -> None: '''simple docstring''' __UpperCamelCase : Dict = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , unk_token=__UpperCamelCase , pad_token=__UpperCamelCase , sep_token=__UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCamelCase , ) __UpperCamelCase : Optional[Any] = vocab_file __UpperCamelCase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCamelCase ) @property def __lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' return self.sp_model.get_piece_size() def __lowerCamelCase ( self ) -> List[str]: '''simple docstring''' __UpperCamelCase : Any = {self.convert_ids_to_tokens(__UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase : int = self.__dict__.copy() __UpperCamelCase : Optional[Any] = None return state def __setstate__( self , __UpperCamelCase ) -> int: '''simple docstring''' __UpperCamelCase : Any = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __UpperCamelCase : Optional[Any] = {} __UpperCamelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCamelCase ( self , __UpperCamelCase ) -> List[str]: '''simple docstring''' return self.sp_model.encode(__UpperCamelCase , out_type=__UpperCamelCase ) def __lowerCamelCase ( self , __UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' return self.sp_model.piece_to_id(__UpperCamelCase ) def __lowerCamelCase ( self , __UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase : str = self.sp_model.IdToPiece(__UpperCamelCase ) return token def __lowerCamelCase ( self , __UpperCamelCase ) -> str: '''simple docstring''' __UpperCamelCase : Dict = [] __UpperCamelCase : Any = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__UpperCamelCase ) + token __UpperCamelCase : Tuple = [] else: current_sub_tokens.append(__UpperCamelCase ) out_string += self.sp_model.decode(__UpperCamelCase ) return out_string.strip() def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(__UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __UpperCamelCase : Optional[Any] = os.path.join( __UpperCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCamelCase , "wb" ) as fi: __UpperCamelCase : Any = self.sp_model.serialized_model_proto() fi.write(__UpperCamelCase ) return (out_vocab_file,)
171
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
171
1
import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( "kwargs, expected" , [ ({"num_shards": 0, "max_num_jobs": 1}, []), ({"num_shards": 10, "max_num_jobs": 1}, [range(10 )]), ({"num_shards": 10, "max_num_jobs": 10}, [range(__lowerCamelCase , i + 1 ) for i in range(10 )]), ({"num_shards": 1, "max_num_jobs": 10}, [range(1 )]), ({"num_shards": 10, "max_num_jobs": 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({"num_shards": 3, "max_num_jobs": 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def UpperCamelCase ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any ): snake_case : Union[str, Any] = _distribute_shards(**__lowerCamelCase ) assert out == expected @pytest.mark.parametrize( "gen_kwargs, max_num_jobs, expected" , [ ({"foo": 0}, 10, [{"foo": 0}]), ({"shards": [0, 1, 2, 3]}, 1, [{"shards": [0, 1, 2, 3]}]), ({"shards": [0, 1, 2, 3]}, 4, [{"shards": [0]}, {"shards": [1]}, {"shards": [2]}, {"shards": [3]}]), ({"shards": [0, 1]}, 4, [{"shards": [0]}, {"shards": [1]}]), ({"shards": [0, 1, 2, 3]}, 2, [{"shards": [0, 1]}, {"shards": [2, 3]}]), ] , ) def UpperCamelCase ( __lowerCamelCase : Dict , __lowerCamelCase : str , __lowerCamelCase : Dict ): snake_case : str = _split_gen_kwargs(__lowerCamelCase , __lowerCamelCase ) assert out == expected @pytest.mark.parametrize( "gen_kwargs, expected" , [ ({"foo": 0}, 1), ({"shards": [0]}, 1), ({"shards": [0, 1, 2, 3]}, 4), ({"shards": [0, 1, 2, 3], "foo": 0}, 4), ({"shards": [0, 1, 2, 3], "other": (0, 1)}, 4), ({"shards": [0, 1, 2, 3], "shards2": [0, 1]}, RuntimeError), ] , ) def UpperCamelCase ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int] ): if expected is RuntimeError: with pytest.raises(__lowerCamelCase ): _number_of_shards_in_gen_kwargs(__lowerCamelCase ) else: snake_case : Optional[Any] = _number_of_shards_in_gen_kwargs(__lowerCamelCase ) assert out == expected
59
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class __snake_case ( lowerCAmelCase ): _a : BigBirdConfig _a : jnp.dtype= jnp.floataa _a : bool= True def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' super().setup() lowercase : List[str] = nn.Dense(5 ,dtype=self.dtype ) def __call__( self ,*snake_case ,**snake_case ): '''simple docstring''' lowercase : int = super().__call__(*snake_case ,**snake_case ) lowercase : Any = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class __snake_case ( lowerCAmelCase ): _a : List[Any]= FlaxBigBirdForNaturalQuestionsModule def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]: def cross_entropy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ): lowercase : int = logits.shape[-1] lowercase : Dict = (labels[..., None] == jnp.arange(SCREAMING_SNAKE_CASE__ )[None]).astype("""f4""" ) lowercase : Any = jax.nn.log_softmax(SCREAMING_SNAKE_CASE__ , axis=-1 ) lowercase : Optional[Any] = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: lowercase : Any = reduction(SCREAMING_SNAKE_CASE__ ) return loss lowercase : Optional[Any] = partial(SCREAMING_SNAKE_CASE__ , reduction=jnp.mean ) lowercase : Optional[int] = cross_entropy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : Dict = cross_entropy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : int = cross_entropy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class __snake_case : _a : str= "google/bigbird-roberta-base" _a : int= 3000 _a : int= 1_0500 _a : int= 128 _a : int= 3 _a : int= 1 _a : int= 5 # tx_args _a : float= 3E-5 _a : float= 0.0 _a : int= 2_0000 _a : float= 0.00_95 _a : str= "bigbird-roberta-natural-questions" _a : str= "training-expt" _a : str= "data/nq-training.jsonl" _a : str= "data/nq-validation.jsonl" def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' os.makedirs(self.base_dir ,exist_ok=snake_case ) lowercase : Optional[int] = os.path.join(self.base_dir ,self.save_dir ) lowercase : Optional[int] = self.batch_size_per_device * jax.device_count() @dataclass class __snake_case : _a : int _a : int= 4096 # no dynamic padding on TPUs def __call__( self ,snake_case ): '''simple docstring''' lowercase : int = self.collate_fn(snake_case ) lowercase : Union[str, Any] = jax.tree_util.tree_map(snake_case ,snake_case ) return batch def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase , lowercase : Union[str, Any] = self.fetch_inputs(features["""input_ids"""] ) lowercase : Tuple = { """input_ids""": jnp.array(snake_case ,dtype=jnp.intaa ), """attention_mask""": jnp.array(snake_case ,dtype=jnp.intaa ), """start_labels""": jnp.array(features["""start_token"""] ,dtype=jnp.intaa ), """end_labels""": jnp.array(features["""end_token"""] ,dtype=jnp.intaa ), """pooled_labels""": jnp.array(features["""category"""] ,dtype=jnp.intaa ), } return batch def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Tuple = [self._fetch_inputs(snake_case ) for ids in input_ids] return zip(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Union[str, Any] = [1 for _ in range(len(snake_case ) )] while len(snake_case ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ) -> Any: if seed is not None: lowercase : Optional[int] = dataset.shuffle(seed=SCREAMING_SNAKE_CASE__ ) for i in range(len(SCREAMING_SNAKE_CASE__ ) // batch_size ): lowercase : Optional[Any] = dataset[i * batch_size : (i + 1) * batch_size] yield dict(SCREAMING_SNAKE_CASE__ ) @partial(jax.pmap , axis_name="""batch""" ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> List[Any]: def loss_fn(SCREAMING_SNAKE_CASE__ ): lowercase : List[str] = model_inputs.pop("""start_labels""" ) lowercase : Optional[int] = model_inputs.pop("""end_labels""" ) lowercase : str = model_inputs.pop("""pooled_labels""" ) lowercase : Union[str, Any] = state.apply_fn(**SCREAMING_SNAKE_CASE__ , params=SCREAMING_SNAKE_CASE__ , dropout_rng=SCREAMING_SNAKE_CASE__ , train=SCREAMING_SNAKE_CASE__ ) lowercase , lowercase , lowercase : List[str] = outputs return state.loss_fn( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) lowercase , lowercase : int = jax.random.split(SCREAMING_SNAKE_CASE__ ) lowercase : Dict = jax.value_and_grad(SCREAMING_SNAKE_CASE__ ) lowercase , lowercase : Union[str, Any] = grad_fn(state.params ) lowercase : List[Any] = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) lowercase : List[Any] = jax.lax.pmean(SCREAMING_SNAKE_CASE__ , """batch""" ) lowercase : str = state.apply_gradients(grads=SCREAMING_SNAKE_CASE__ ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name="""batch""" ) def _snake_case( SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> List[str]: lowercase : int = model_inputs.pop("""start_labels""" ) lowercase : Dict = model_inputs.pop("""end_labels""" ) lowercase : Optional[Any] = model_inputs.pop("""pooled_labels""" ) lowercase : Optional[int] = state.apply_fn(**SCREAMING_SNAKE_CASE__ , params=state.params , train=SCREAMING_SNAKE_CASE__ ) lowercase , lowercase , lowercase : List[Any] = outputs lowercase : Dict = state.loss_fn(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : str = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) return metrics class __snake_case ( train_state.TrainState ): _a : Callable= struct.field(pytree_node=lowerCAmelCase ) @dataclass class __snake_case : _a : Args _a : Callable _a : Callable _a : Callable _a : Callable _a : wandb _a : Callable= None def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case=None ): '''simple docstring''' lowercase : Tuple = model.params lowercase : Any = TrainState.create( apply_fn=model.__call__ ,params=snake_case ,tx=snake_case ,loss_fn=snake_case ,) if ckpt_dir is not None: lowercase , lowercase , lowercase , lowercase , lowercase : Tuple = restore_checkpoint(snake_case ,snake_case ) lowercase : List[str] = { """lr""": args.lr, """init_lr""": args.init_lr, """warmup_steps""": args.warmup_steps, """num_train_steps""": num_train_steps, """weight_decay""": args.weight_decay, } lowercase , lowercase : Tuple = build_tx(**snake_case ) lowercase : str = train_state.TrainState( step=snake_case ,apply_fn=model.__call__ ,params=snake_case ,tx=snake_case ,opt_state=snake_case ,) lowercase : Any = args lowercase : Optional[Any] = data_collator lowercase : List[str] = lr lowercase : str = params lowercase : Tuple = jax_utils.replicate(snake_case ) return state def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : Dict = self.args lowercase : Optional[Any] = len(snake_case ) // args.batch_size lowercase : int = jax.random.PRNGKey(0 ) lowercase : List[str] = jax.random.split(snake_case ,jax.device_count() ) for epoch in range(args.max_epochs ): lowercase : List[Any] = jnp.array(0 ,dtype=jnp.floataa ) lowercase : List[str] = get_batched_dataset(snake_case ,args.batch_size ,seed=snake_case ) lowercase : int = 0 for batch in tqdm(snake_case ,total=snake_case ,desc=f"Running EPOCH-{epoch}" ): lowercase : Dict = self.data_collator(snake_case ) lowercase , lowercase , lowercase : Optional[int] = self.train_step_fn(snake_case ,snake_case ,**snake_case ) running_loss += jax_utils.unreplicate(metrics["""loss"""] ) i += 1 if i % args.logging_steps == 0: lowercase : Optional[Any] = jax_utils.unreplicate(state.step ) lowercase : List[str] = running_loss.item() / i lowercase : List[str] = self.scheduler_fn(state_step - 1 ) lowercase : int = self.evaluate(snake_case ,snake_case ) lowercase : Tuple = { """step""": state_step.item(), """eval_loss""": eval_loss.item(), """tr_loss""": tr_loss, """lr""": lr.item(), } tqdm.write(str(snake_case ) ) self.logger.log(snake_case ,commit=snake_case ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f"-e{epoch}-s{i}" ,state=snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : List[str] = get_batched_dataset(snake_case ,self.args.batch_size ) lowercase : Any = len(snake_case ) // self.args.batch_size lowercase : List[Any] = jnp.array(0 ,dtype=jnp.floataa ) lowercase : Optional[int] = 0 for batch in tqdm(snake_case ,total=snake_case ,desc="""Evaluating ... """ ): lowercase : Tuple = self.data_collator(snake_case ) lowercase : Optional[int] = self.val_step_fn(snake_case ,**snake_case ) running_loss += jax_utils.unreplicate(metrics["""loss"""] ) i += 1 return running_loss / i def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : str = jax_utils.unreplicate(snake_case ) print(f"SAVING CHECKPOINT IN {save_dir}" ,end=""" ... """ ) self.model_save_fn(snake_case ,params=state.params ) with open(os.path.join(snake_case ,"""opt_state.msgpack""" ) ,"""wb""" ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args ,os.path.join(snake_case ,"""args.joblib""" ) ) joblib.dump(self.data_collator ,os.path.join(snake_case ,"""data_collator.joblib""" ) ) with open(os.path.join(snake_case ,"""training_state.json""" ) ,"""w""" ) as f: json.dump({"""step""": state.step.item()} ,snake_case ) print("""DONE""" ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: print(f"RESTORING CHECKPOINT FROM {save_dir}" , end=""" ... """ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , """flax_model.msgpack""" ) , """rb""" ) as f: lowercase : str = from_bytes(state.params , f.read() ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , """opt_state.msgpack""" ) , """rb""" ) as f: lowercase : Optional[int] = from_bytes(state.opt_state , f.read() ) lowercase : Optional[Any] = joblib.load(os.path.join(SCREAMING_SNAKE_CASE__ , """args.joblib""" ) ) lowercase : int = joblib.load(os.path.join(SCREAMING_SNAKE_CASE__ , """data_collator.joblib""" ) ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , """training_state.json""" ) , """r""" ) as f: lowercase : Tuple = json.load(SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = training_state["""step"""] print("""DONE""" ) return params, opt_state, step, args, data_collator def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: lowercase : List[str] = num_train_steps - warmup_steps lowercase : Dict = optax.linear_schedule(init_value=SCREAMING_SNAKE_CASE__ , end_value=SCREAMING_SNAKE_CASE__ , transition_steps=SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = optax.linear_schedule(init_value=SCREAMING_SNAKE_CASE__ , end_value=1e-7 , transition_steps=SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: def weight_decay_mask(SCREAMING_SNAKE_CASE__ ): lowercase : List[Any] = traverse_util.flatten_dict(SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()} return traverse_util.unflatten_dict(SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = scheduler_fn(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = optax.adamw(learning_rate=SCREAMING_SNAKE_CASE__ , weight_decay=SCREAMING_SNAKE_CASE__ , mask=SCREAMING_SNAKE_CASE__ ) return tx, lr
20
0
import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def __lowerCAmelCase ( a__ , a__ , a__ , a__ , a__ ) -> Optional[Any]: # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file __a = TapasConfig.from_json_file(a__ ) # set absolute/relative position embeddings parameter __a = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": __a = TapasForQuestionAnswering(config=a__ ) elif task == "WTQ": # run_task_main.py hparams __a = 4 __a = True # hparam_utils.py hparams __a = 0.664_694 __a = 0.207_951 __a = 0.121_194 __a = True __a = True __a = False __a = 0.0_352_513 __a = TapasForQuestionAnswering(config=a__ ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams __a = 4 __a = False # hparam_utils.py hparams __a = 36.4_519 __a = 0.903_421 __a = 222.088 __a = True __a = True __a = True __a = 0.763_141 __a = TapasForQuestionAnswering(config=a__ ) elif task == "TABFACT": __a = TapasForSequenceClassification(config=a__ ) elif task == "MLM": __a = TapasForMaskedLM(config=a__ ) elif task == "INTERMEDIATE_PRETRAINING": __a = TapasModel(config=a__ ) else: raise ValueError(F"""Task {task} not supported.""" ) print(F"""Building PyTorch model from configuration: {config}""" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(a__ , a__ , a__ ) # Save pytorch-model (weights and configuration) print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(a__ ) # Save tokenizer files print(F"""Save tokenizer files to {pytorch_dump_path}""" ) __a = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + '''vocab.txt''' , model_max_length=512 ) tokenizer.save_pretrained(a__ ) print('''Used relative position embeddings:''' , model.config.reset_position_index_per_cell ) if __name__ == "__main__": A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--task', default='SQA', type=str, help='Model task for which to convert a checkpoint. Defaults to SQA.' ) parser.add_argument( '--reset_position_index_per_cell', default=False, action='store_true', help='Whether to use relative position embeddings or not. Defaults to True.', ) parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--tapas_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained TAPAS model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) A : int = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
33
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) A : str = { 'configuration_perceiver': ['PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PerceiverConfig', 'PerceiverOnnxConfig'], 'tokenization_perceiver': ['PerceiverTokenizer'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = ['PerceiverFeatureExtractor'] A : int = ['PerceiverImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ 'PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PerceiverForImageClassificationConvProcessing', 'PerceiverForImageClassificationFourier', 'PerceiverForImageClassificationLearned', 'PerceiverForMaskedLM', 'PerceiverForMultimodalAutoencoding', 'PerceiverForOpticalFlow', 'PerceiverForSequenceClassification', 'PerceiverLayer', 'PerceiverModel', 'PerceiverPreTrainedModel', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys A : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
33
1
"""simple docstring""" from collections import deque def lowercase ( a__ : Optional[int] ) -> str: _UpperCamelCase = len(a__ ) _UpperCamelCase = deque() _UpperCamelCase = [False for _ in range(a__ )] _UpperCamelCase = [-1 for _ in range(a__ )] _UpperCamelCase = index_of[:] def strong_connect(a__ : List[str] , a__ : List[Any] , a__ : Optional[Any] ): _UpperCamelCase = index # the number when this node is seen _UpperCamelCase = index # lowest rank node reachable from here index += 1 stack.append(a__ ) _UpperCamelCase = True for w in g[v]: if index_of[w] == -1: _UpperCamelCase = strong_connect(a__ , a__ , a__ ) _UpperCamelCase = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: _UpperCamelCase = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: _UpperCamelCase = [] _UpperCamelCase = stack.pop() _UpperCamelCase = False component.append(a__ ) while w != v: _UpperCamelCase = stack.pop() _UpperCamelCase = False component.append(a__ ) components.append(a__ ) return index _UpperCamelCase = [] for v in range(a__ ): if index_of[v] == -1: strong_connect(a__ , 0 , a__ ) return components def lowercase ( a__ : Union[str, Any] , a__ : str ) -> Tuple: _UpperCamelCase = [[] for _ in range(a__ )] for u, v in edges: g[u].append(a__ ) return g if __name__ == "__main__": # Test UpperCAmelCase = 7 UpperCAmelCase = [0, 0, 1, 2, 3, 3, 4, 4, 6] UpperCAmelCase = [1, 3, 2, 0, 1, 4, 5, 6, 5] UpperCAmelCase = [(u, v) for u, v in zip(source, target)] UpperCAmelCase = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
256
"""simple docstring""" from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) UpperCAmelCase = 299_792_458 # Symbols UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = symbols("""ct x y z""") def lowercase ( a__ : float ) -> float: if velocity > c: raise ValueError('''Speed must not exceed light speed 299,792,458 [m/s]!''' ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError('''Speed must be greater than or equal to 1!''' ) return velocity / c def lowercase ( a__ : float ) -> float: return 1 / sqrt(1 - beta(a__ ) ** 2 ) def lowercase ( a__ : float ) -> np.ndarray: return np.array( [ [gamma(a__ ), -gamma(a__ ) * beta(a__ ), 0, 0], [-gamma(a__ ) * beta(a__ ), gamma(a__ ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def lowercase ( a__ : float , a__ : np.ndarray | None = None ) -> np.ndarray: # Ensure event is not empty if event is None: _UpperCamelCase = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(a__ ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: UpperCAmelCase = transform(29_979_245) print("""Example of four vector: """) print(F'''ct\' = {four_vector[0]}''') print(F'''x\' = {four_vector[1]}''') print(F'''y\' = {four_vector[2]}''') print(F'''z\' = {four_vector[3]}''') # Substitute symbols with numerical values UpperCAmelCase = {ct: c, x: 1, y: 1, z: 1} UpperCAmelCase = [four_vector[i].subs(sub_dict) for i in range(4)] print(F'''\n{numerical_vector}''')
256
1
"""simple docstring""" _a : Tuple= [ "DownloadConfig", "DownloadManager", "DownloadMode", "StreamingDownloadManager", ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
95
"""simple docstring""" import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() _a : Optional[int]= logging.get_logger() @dataclass class UpperCamelCase : UpperCAmelCase : nn.Module UpperCAmelCase : List[nn.Module] = field(default_factory=lowercase ) UpperCAmelCase : list = field(default_factory=lowercase ) def _lowercase (self : str , _A : Optional[Any] , _A : Tensor , _A : Tensor) -> Any: __snake_case : str = len(list(m.modules())) == 1 or isinstance(_A , nn.Convad) or isinstance(_A , nn.BatchNormad) if has_not_submodules: self.traced.append(_A) def __call__(self : Dict , _A : Tensor) -> Optional[Any]: for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook)) self.module(_A) [x.remove() for x in self.handles] return self @property def _lowercase (self : Union[str, Any]) -> List[str]: # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda _A: len(list(x.state_dict().keys())) > 0 , self.traced)) @dataclass class UpperCamelCase : UpperCAmelCase : nn.Module UpperCAmelCase : nn.Module UpperCAmelCase : int = 0 UpperCAmelCase : List = field(default_factory=lowercase ) UpperCAmelCase : List = field(default_factory=lowercase ) def __call__(self : List[str] , _A : Tensor) -> List[Any]: __snake_case : Any = Tracker(self.dest)(_A).parametrized __snake_case : int = Tracker(self.src)(_A).parametrized __snake_case : List[Any] = list(filter(lambda _A: type(_A) not in self.src_skip , _A)) __snake_case : Any = list(filter(lambda _A: type(_A) not in self.dest_skip , _A)) if len(_A) != len(_A): raise Exception( f"Numbers of operations are different. Source module has {len(_A)} operations while" f" destination module has {len(_A)}.") for dest_m, src_m in zip(_A , _A): dest_m.load_state_dict(src_m.state_dict()) if self.verbose == 1: print(f"Transfered from={src_m} to={dest_m}") def __UpperCAmelCase ( UpperCAmelCase_ : str , UpperCAmelCase_ : ResNetConfig , UpperCAmelCase_ : Path , UpperCAmelCase_ : bool = True ) -> List[str]: '''simple docstring''' print(F"Converting {name}..." ) with torch.no_grad(): __snake_case : Dict = timm.create_model(UpperCAmelCase_ , pretrained=UpperCAmelCase_ ).eval() __snake_case : List[Any] = ResNetForImageClassification(UpperCAmelCase_ ).eval() __snake_case : int = ModuleTransfer(src=UpperCAmelCase_ , dest=UpperCAmelCase_ ) __snake_case : Optional[Any] = torch.randn((1, 3, 2_24, 2_24) ) module_transfer(UpperCAmelCase_ ) assert torch.allclose(from_model(UpperCAmelCase_ ) , our_model(UpperCAmelCase_ ).logits ), "The model logits don't match the original one." __snake_case : str = F"resnet{'-'.join(name.split('resnet' ) )}" print(UpperCAmelCase_ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='Add model' , use_temp_dir=UpperCAmelCase_ , ) # we can use the convnext one __snake_case : int = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='Add image processor' , use_temp_dir=UpperCAmelCase_ , ) print(F"Pushed {checkpoint_name}" ) def __UpperCAmelCase ( UpperCAmelCase_ : Path , UpperCAmelCase_ : str = None , UpperCAmelCase_ : bool = True ) -> Union[str, Any]: '''simple docstring''' __snake_case : str = 'imagenet-1k-id2label.json' __snake_case : Optional[Any] = 10_00 __snake_case : Any = (1, num_labels) __snake_case : List[Any] = 'huggingface/label-files' __snake_case : Dict = num_labels __snake_case : Any = json.load(open(hf_hub_download(UpperCAmelCase_ , UpperCAmelCase_ , repo_type='dataset' ) , 'r' ) ) __snake_case : Any = {int(UpperCAmelCase_ ): v for k, v in idalabel.items()} __snake_case : Optional[Any] = idalabel __snake_case : Optional[Any] = {v: k for k, v in idalabel.items()} __snake_case : Optional[int] = partial(UpperCAmelCase_ , num_labels=UpperCAmelCase_ , idalabel=UpperCAmelCase_ , labelaid=UpperCAmelCase_ ) __snake_case : str = { 'resnet18': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 1_28, 2_56, 5_12] , layer_type='basic' ), 'resnet26': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type='bottleneck' ), 'resnet34': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 1_28, 2_56, 5_12] , layer_type='basic' ), 'resnet50': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type='bottleneck' ), 'resnet101': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type='bottleneck' ), 'resnet152': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type='bottleneck' ), } if model_name: convert_weight_and_push(UpperCAmelCase_ , names_to_config[model_name] , UpperCAmelCase_ , UpperCAmelCase_ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) return config, expected_shape if __name__ == "__main__": _a : Optional[Any]= argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported resnet* architecture," " currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) _a : Union[str, Any]= parser.parse_args() _a : Path= args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
95
1
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=10 , SCREAMING_SNAKE_CASE=[10, 20, 30, 40] , SCREAMING_SNAKE_CASE=[1, 1, 2, 1] , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE="relu" , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=None , ) -> Dict: """simple docstring""" A : List[str] = parent A : int = batch_size A : Optional[int] = image_size A : int = num_channels A : List[Any] = embeddings_size A : str = hidden_sizes A : Any = depths A : List[str] = is_training A : Any = use_labels A : Any = hidden_act A : Tuple = num_labels A : List[str] = scope A : Union[str, Any] = len(SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> str: """simple docstring""" A : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A : Optional[Any] = None if self.use_labels: A : str = ids_tensor([self.batch_size] , self.num_labels ) A : List[Any] = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" A : int = RegNetModel(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() A : List[str] = model(SCREAMING_SNAKE_CASE ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" A : str = self.num_labels A : List[Any] = RegNetForImageClassification(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() A : Optional[Any] = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" A : Tuple = self.prepare_config_and_inputs() A, A, A : Optional[int] = config_and_inputs A : Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class A ( __snake_case , __snake_case , unittest.TestCase ): __magic_name__ = (RegNetModel, RegNetForImageClassification) if is_torch_available() else () __magic_name__ = ( {'''feature-extraction''': RegNetModel, '''image-classification''': RegNetForImageClassification} if is_torch_available() else {} ) __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = False def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" A : Any = RegNetModelTester(self ) A : List[str] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , has_text_modality=SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" return @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def __lowerCAmelCase ( self ) -> Any: """simple docstring""" pass def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" A, A : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A : Optional[int] = model_class(SCREAMING_SNAKE_CASE ) A : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A : Dict = [*signature.parameters.keys()] A : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A, A : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A : Tuple = model_class(config=SCREAMING_SNAKE_CASE ) for name, module in model.named_modules(): if isinstance(SCREAMING_SNAKE_CASE , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" def check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A : Dict = model_class(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): A : Any = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) A : Any = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A : Any = self.model_tester.num_stages self.assertEqual(len(SCREAMING_SNAKE_CASE ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) A, A : str = self.model_tester.prepare_config_and_inputs_for_common() A : Dict = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: A : Dict = layer_type A : Union[str, Any] = True check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A : Dict = True check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE ) @slow def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A : Dict = RegNetModel.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) def lowerCAmelCase_ ( ): '''simple docstring''' A : Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class A ( unittest.TestCase ): @cached_property def __lowerCAmelCase ( self ) -> str: """simple docstring""" return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" A : Optional[Any] = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(SCREAMING_SNAKE_CASE ) A : Dict = self.default_image_processor A : int = prepare_img() A : Optional[Any] = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): A : List[str] = model(**SCREAMING_SNAKE_CASE ) # verify the logits A : Dict = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE ) A : Tuple = torch.tensor([-0.4_180, -1.5_051, -3.4_836] ).to(SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) )
3
'''simple docstring''' import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize('''dataset_size''' , [None, 400 * 2**20, 600 * 2**20] ) @pytest.mark.parametrize('''input_in_memory_max_size''' , ['''default''', 0, 100 * 2**20, 900 * 2**20] ) def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , '''IN_MEMORY_MAX_SIZE''' , snake_case__ ) A : Dict = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: A : Dict = dataset_size < in_memory_max_size else: A : Tuple = False A : int = is_small_dataset(snake_case__ ) assert result == expected
3
1
'''simple docstring''' def _UpperCamelCase ( UpperCamelCase__ ): for i in range(len(UpperCamelCase__ ) - 1 , 0 , -1 ): UpperCAmelCase__ : Dict = False for j in range(UpperCamelCase__ , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: UpperCAmelCase__ : str = unsorted[j - 1], unsorted[j] UpperCAmelCase__ : List[str] = True for j in range(UpperCamelCase__ ): if unsorted[j] > unsorted[j + 1]: UpperCAmelCase__ : List[str] = unsorted[j + 1], unsorted[j] UpperCAmelCase__ : Optional[int] = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() __A =input('Enter numbers separated by a comma:\n').strip() __A =[int(item) for item in user_input.split(',')] print(f"""{cocktail_shaker_sort(unsorted) = }""")
367
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __A =logging.get_logger(__name__) __A ='▁' __A ={'vocab_file': 'sentencepiece.bpe.model'} __A ={ 'vocab_file': { 'facebook/mbart-large-50-one-to-many-mmt': ( 'https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model' ), } } __A ={ 'facebook/mbart-large-50-one-to-many-mmt': 10_24, } # fmt: off __A =['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN', 'af_ZA', 'az_AZ', 'bn_IN', 'fa_IR', 'he_IL', 'hr_HR', 'id_ID', 'ka_GE', 'km_KH', 'mk_MK', 'ml_IN', 'mn_MN', 'mr_IN', 'pl_PL', 'ps_AF', 'pt_XX', 'sv_SE', 'sw_KE', 'ta_IN', 'te_IN', 'th_TH', 'tl_XX', 'uk_UA', 'ur_PK', 'xh_ZA', 'gl_ES', 'sl_SI'] class _snake_case ( a__ ): lowerCAmelCase :int = VOCAB_FILES_NAMES lowerCAmelCase :Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase :str = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase :List[str] = ['''input_ids''', '''attention_mask'''] lowerCAmelCase :List[int] = [] lowerCAmelCase :List[int] = [] def __init__( self , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<mask>" , _lowerCamelCase = None , **_lowerCamelCase , ): # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase__ : List[str] = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase) if isinstance(_lowerCamelCase , _lowerCamelCase) else mask_token UpperCAmelCase__ : Dict = {} if sp_model_kwargs is None else sp_model_kwargs UpperCAmelCase__ : Dict = kwargs.get("""additional_special_tokens""" , []) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=_lowerCamelCase , tgt_lang=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) UpperCAmelCase__ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(_lowerCamelCase)) UpperCAmelCase__ : int = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token UpperCAmelCase__ : Union[str, Any] = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCAmelCase__ : List[str] = 1 UpperCAmelCase__ : Optional[int] = len(self.sp_model) UpperCAmelCase__ : List[str] = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_lowerCamelCase) } UpperCAmelCase__ : Optional[int] = {v: k for k, v in self.lang_code_to_id.items()} UpperCAmelCase__ : Optional[int] = len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id) UpperCAmelCase__ : Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} UpperCAmelCase__ : Dict = src_lang if src_lang is not None else """en_XX""" UpperCAmelCase__ : str = self.lang_code_to_id[self._src_lang] UpperCAmelCase__ : Tuple = tgt_lang self.set_src_lang_special_tokens(self._src_lang) @property def snake_case__ ( self): return len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def snake_case__ ( self): return self._src_lang @src_lang.setter def snake_case__ ( self , _lowerCamelCase): UpperCAmelCase__ : str = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def __getstate__( self): UpperCAmelCase__ : int = self.__dict__.copy() UpperCAmelCase__ : Tuple = None return state def __setstate__( self , _lowerCamelCase): UpperCAmelCase__ : Union[str, Any] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs"""): UpperCAmelCase__ : Optional[Any] = {} UpperCAmelCase__ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def snake_case__ ( self): UpperCAmelCase__ : Dict = {self.convert_ids_to_tokens(_lowerCamelCase): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def snake_case__ ( self , _lowerCamelCase): return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase) def snake_case__ ( self , _lowerCamelCase): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase__ : Dict = self.sp_model.PieceToId(_lowerCamelCase) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def snake_case__ ( self , _lowerCamelCase): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def snake_case__ ( self , _lowerCamelCase): UpperCAmelCase__ : Optional[Any] = [] UpperCAmelCase__ : List[Any] = """""" UpperCAmelCase__ : Optional[int] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_lowerCamelCase) + token UpperCAmelCase__ : Tuple = True UpperCAmelCase__ : List[str] = [] else: current_sub_tokens.append(_lowerCamelCase) UpperCAmelCase__ : Dict = False out_string += self.sp_model.decode(_lowerCamelCase) return out_string.strip() def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase = None): if not os.path.isdir(_lowerCamelCase): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''') return UpperCAmelCase__ : Any = os.path.join( _lowerCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""]) if os.path.abspath(self.vocab_file) != os.path.abspath(_lowerCamelCase) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , _lowerCamelCase) elif not os.path.isfile(self.vocab_file): with open(_lowerCamelCase , """wb""") as fi: UpperCAmelCase__ : List[str] = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase) return (out_vocab_file,) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase) UpperCAmelCase__ : Tuple = [1] * len(self.prefix_tokens) UpperCAmelCase__ : Dict = [1] * len(self.suffix_tokens) if token_ids_a is None: return prefix_ones + ([0] * len(_lowerCamelCase)) + suffix_ones return prefix_ones + ([0] * len(_lowerCamelCase)) + ([0] * len(_lowerCamelCase)) + suffix_ones def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase = None): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""") UpperCAmelCase__ : Any = src_lang UpperCAmelCase__ : Dict = self(_lowerCamelCase , add_special_tokens=_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase) UpperCAmelCase__ : List[Any] = self.convert_tokens_to_ids(_lowerCamelCase) UpperCAmelCase__ : List[str] = tgt_lang_id return inputs def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase = "en_XX" , _lowerCamelCase = None , _lowerCamelCase = "ro_RO" , **_lowerCamelCase , ): UpperCAmelCase__ : Tuple = src_lang UpperCAmelCase__ : Optional[Any] = tgt_lang return super().prepare_seqaseq_batch(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase) def snake_case__ ( self): return self.set_src_lang_special_tokens(self.src_lang) def snake_case__ ( self): return self.set_tgt_lang_special_tokens(self.tgt_lang) def snake_case__ ( self , _lowerCamelCase): UpperCAmelCase__ : Tuple = self.lang_code_to_id[src_lang] UpperCAmelCase__ : Optional[int] = [self.cur_lang_code_id] UpperCAmelCase__ : Optional[int] = [self.eos_token_id] def snake_case__ ( self , _lowerCamelCase): UpperCAmelCase__ : List[Any] = self.lang_code_to_id[tgt_lang] UpperCAmelCase__ : Dict = [self.cur_lang_code_id] UpperCAmelCase__ : Optional[int] = [self.eos_token_id]
283
0
'''simple docstring''' def __snake_case( _lowerCAmelCase ) -> int: if n == 1 or not isinstance(_lowerCAmelCase , _lowerCAmelCase ): return 0 elif n == 2: return 1 else: snake_case__ : Optional[int] = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def __snake_case( _lowerCAmelCase ) -> int: snake_case__ : Union[str, Any] = 0 snake_case__ : List[str] = 2 while digits < n: index += 1 snake_case__ : Any = len(str(fibonacci(_lowerCAmelCase ) ) ) return index def __snake_case( _lowerCAmelCase = 1_000 ) -> int: return fibonacci_digits_index(_lowerCAmelCase ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
35
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def UpperCamelCase ( __magic_name__ : Any ) -> Optional[int]: """simple docstring""" return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def UpperCamelCase ( __magic_name__ : int ) -> Union[str, Any]: """simple docstring""" lowercase__ = create_tensor(__magic_name__ ) lowercase__ = gather(__magic_name__ ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def UpperCamelCase ( __magic_name__ : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ = [state.process_index] lowercase__ = gather_object(__magic_name__ ) assert len(__magic_name__ ) == state.num_processes, f'''{gathered_obj}, {len(__magic_name__ )} != {state.num_processes}''' assert gathered_obj == list(range(state.num_processes ) ), f'''{gathered_obj} != {list(range(state.num_processes ) )}''' def UpperCamelCase ( __magic_name__ : str ) -> Dict: """simple docstring""" lowercase__ = create_tensor(__magic_name__ ) lowercase__ = broadcast(__magic_name__ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def UpperCamelCase ( __magic_name__ : str ) -> Dict: """simple docstring""" if state.is_main_process: lowercase__ = torch.arange(state.num_processes + 1 ).to(state.device ) else: lowercase__ = torch.arange(state.num_processes ).to(state.device ) lowercase__ = pad_across_processes(__magic_name__ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" if state.num_processes != 2: return lowercase__ = create_tensor(__magic_name__ ) lowercase__ = reduce(__magic_name__ , """sum""" ) lowercase__ = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(__magic_name__ , __magic_name__ ), f'''{reduced_tensor} != {truth_tensor}''' def UpperCamelCase ( __magic_name__ : Dict ) -> int: """simple docstring""" if state.num_processes != 2: return lowercase__ = create_tensor(__magic_name__ ) lowercase__ = reduce(__magic_name__ , """mean""" ) lowercase__ = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(__magic_name__ , __magic_name__ ), f'''{reduced_tensor} != {truth_tensor}''' def UpperCamelCase ( __magic_name__ : str ) -> int: """simple docstring""" main() def UpperCamelCase ( ) -> Optional[int]: """simple docstring""" lowercase__ = PartialState() state.print(f'''State: {state}''' ) state.print("""testing gather""" ) test_gather(__magic_name__ ) state.print("""testing gather_object""" ) test_gather_object(__magic_name__ ) state.print("""testing broadcast""" ) test_broadcast(__magic_name__ ) state.print("""testing pad_across_processes""" ) test_pad_across_processes(__magic_name__ ) state.print("""testing reduce_sum""" ) test_reduce_sum(__magic_name__ ) state.print("""testing reduce_mean""" ) test_reduce_mean(__magic_name__ ) if __name__ == "__main__": main()
305
0
"""simple docstring""" from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def SCREAMING_SNAKE_CASE__ ( snake_case : Any , snake_case : Optional[int] , snake_case : str=1E-1_2 )-> Dict: '''simple docstring''' UpperCAmelCase__ : Any = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(__a , axis=1 ) , a_min=__a ) ).T UpperCAmelCase__ : Optional[Any] = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(__a , axis=1 ) , a_min=__a ) ).T return jnp.matmul(__a , norm_emb_a.T ) class lowerCAmelCase__ ( nn.Module ): SCREAMING_SNAKE_CASE_ =42 SCREAMING_SNAKE_CASE_ =jnp.floataa def __a ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : List[Any] = FlaxCLIPVisionModule(self.config.vision_config ) UpperCAmelCase__ : Tuple = nn.Dense(self.config.projection_dim , use_bias=_a , dtype=self.dtype ) UpperCAmelCase__ : List[str] = self.param("concept_embeds" , jax.nn.initializers.ones , (1_7, self.config.projection_dim) ) UpperCAmelCase__ : Optional[int] = self.param( "special_care_embeds" , jax.nn.initializers.ones , (3, self.config.projection_dim) ) UpperCAmelCase__ : Dict = self.param("concept_embeds_weights" , jax.nn.initializers.ones , (1_7,) ) UpperCAmelCase__ : int = self.param("special_care_embeds_weights" , jax.nn.initializers.ones , (3,) ) def __call__( self : Optional[int] , snake_case__ : Tuple ): '''simple docstring''' UpperCAmelCase__ : str = self.vision_model(_a )[1] UpperCAmelCase__ : Optional[Any] = self.visual_projection(_a ) UpperCAmelCase__ : Tuple = jax_cosine_distance(_a , self.special_care_embeds ) UpperCAmelCase__ : Optional[int] = jax_cosine_distance(_a , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs UpperCAmelCase__ : Union[str, Any] = 0.0 UpperCAmelCase__ : Optional[int] = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment UpperCAmelCase__ : Dict = jnp.round(_a , 3 ) UpperCAmelCase__ : Optional[int] = jnp.any(special_scores > 0 , axis=1 , keepdims=_a ) # Use a lower threshold if an image has any special care concept UpperCAmelCase__ : Union[str, Any] = is_special_care * 0.01 UpperCAmelCase__ : Any = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment UpperCAmelCase__ : Optional[int] = jnp.round(_a , 3 ) UpperCAmelCase__ : int = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class lowerCAmelCase__ ( __lowercase ): SCREAMING_SNAKE_CASE_ =CLIPConfig SCREAMING_SNAKE_CASE_ ="clip_input" SCREAMING_SNAKE_CASE_ =FlaxStableDiffusionSafetyCheckerModule def __init__( self : List[str] , snake_case__ : Optional[Any] , snake_case__ : Tuple = None , snake_case__ : List[Any] = 0 , snake_case__ : Dict = jnp.floataa , snake_case__ : Tuple = True , **snake_case__ : Any , ): '''simple docstring''' if input_shape is None: UpperCAmelCase__ : Optional[Any] = (1, 2_2_4, 2_2_4, 3) UpperCAmelCase__ : int = self.module_class(config=_a , dtype=_a , **_a ) super().__init__(_a , _a , input_shape=_a , seed=_a , dtype=_a , _do_init=_do_init ) def __a ( self : Optional[int] , snake_case__ : List[Any] , snake_case__ : List[str] , snake_case__ : Any = None ): '''simple docstring''' # init input tensor UpperCAmelCase__ : Optional[int] = jax.random.normal(_a , _a ) UpperCAmelCase__ : str = jax.random.split(_a ) UpperCAmelCase__ : Tuple = {'''params''': params_rng, '''dropout''': dropout_rng} UpperCAmelCase__ : Tuple = self.module.init(_a , _a )['''params'''] return random_params def __call__( self : List[str] , snake_case__ : List[str] , snake_case__ : Tuple = None , ): '''simple docstring''' UpperCAmelCase__ : List[str] = jnp.transpose(_a , (0, 2, 3, 1) ) return self.module.apply( {"params": params or self.params} , jnp.array(_a , dtype=jnp.floataa ) , rngs={} , )
365
"""simple docstring""" import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] )-> Any: '''simple docstring''' assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def SCREAMING_SNAKE_CASE__ ( )-> List[Any]: '''simple docstring''' assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def SCREAMING_SNAKE_CASE__ ( )-> Optional[int]: '''simple docstring''' UpperCAmelCase__ : int = "mock-s3-bucket" UpperCAmelCase__ : Any = f's3://{mock_bucket}' UpperCAmelCase__ : Tuple = extract_path_from_uri(snake_case ) assert dataset_path.startswith("s3://" ) is False UpperCAmelCase__ : str = "./local/path" UpperCAmelCase__ : Union[str, Any] = extract_path_from_uri(snake_case ) assert dataset_path == new_dataset_path def SCREAMING_SNAKE_CASE__ ( snake_case : Any )-> str: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = is_remote_filesystem(snake_case ) assert is_remote is True UpperCAmelCase__ : str = fsspec.filesystem("file" ) UpperCAmelCase__ : Optional[Any] = is_remote_filesystem(snake_case ) assert is_remote is False @pytest.mark.parametrize("compression_fs_class" , snake_case ) def SCREAMING_SNAKE_CASE__ ( snake_case : Union[str, Any] , snake_case : Any , snake_case : List[str] , snake_case : Optional[int] , snake_case : Union[str, Any] , snake_case : Optional[Any] , snake_case : int )-> int: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_file, "bz2": bza_file, "lz4": lza_file} UpperCAmelCase__ : Dict = input_paths[compression_fs_class.protocol] if input_path is None: UpperCAmelCase__ : Optional[Any] = f'for \'{compression_fs_class.protocol}\' compression protocol, ' if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(snake_case ) UpperCAmelCase__ : Optional[Any] = fsspec.filesystem(compression_fs_class.protocol , fo=snake_case ) assert isinstance(snake_case , snake_case ) UpperCAmelCase__ : Union[str, Any] = os.path.basename(snake_case ) UpperCAmelCase__ : Optional[int] = expected_filename[: expected_filename.rindex("." )] assert fs.glob("*" ) == [expected_filename] with fs.open(snake_case , "r" , encoding="utf-8" ) as f, open(snake_case , encoding="utf-8" ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize("protocol" , ["zip", "gzip"] ) def SCREAMING_SNAKE_CASE__ ( snake_case : Tuple , snake_case : Dict , snake_case : Tuple )-> Optional[Any]: '''simple docstring''' UpperCAmelCase__ : List[str] = {"zip": zip_jsonl_path, "gzip": jsonl_gz_path} UpperCAmelCase__ : int = compressed_file_paths[protocol] UpperCAmelCase__ : Any = "dataset.jsonl" UpperCAmelCase__ : Any = f'{protocol}://{member_file_path}::{compressed_file_path}' UpperCAmelCase__ , *UpperCAmelCase__ : Optional[int] = fsspec.get_fs_token_paths(snake_case ) assert fs.isfile(snake_case ) assert not fs.isfile("non_existing_" + member_file_path ) @pytest.mark.integration def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] , snake_case : Dict , snake_case : Dict , snake_case : Dict )-> str: '''simple docstring''' UpperCAmelCase__ : Optional[int] = hf_api.dataset_info(snake_case , token=snake_case ) UpperCAmelCase__ : str = HfFileSystem(repo_info=snake_case , token=snake_case ) assert sorted(hffs.glob("*" ) ) == [".gitattributes", "data"] assert hffs.isdir("data" ) assert hffs.isfile(".gitattributes" ) and hffs.isfile("data/text_data.txt" ) with open(snake_case ) as f: assert hffs.open("data/text_data.txt" , "r" ).read() == f.read() def SCREAMING_SNAKE_CASE__ ( )-> Union[str, Any]: '''simple docstring''' UpperCAmelCase__ : Tuple = "bz2" # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(snake_case , snake_case , clobber=snake_case ) with pytest.warns(snake_case ) as warning_info: importlib.reload(datasets.filesystems ) assert len(snake_case ) == 1 assert ( str(warning_info[0].message ) == f'A filesystem protocol was already set for {protocol} and will be overwritten.' )
298
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input SCREAMING_SNAKE_CASE__ : Dict = 'Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine' def A ( ) -> Optional[Any]: lowerCamelCase : Union[str, Any] = _ask_options( "In which compute environment are you running?" ,["This machine", "AWS (Amazon SageMaker)"] ,_convert_compute_environment ,) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: lowerCamelCase : Union[str, Any] = get_sagemaker_input() else: lowerCamelCase : Tuple = get_cluster_input() return config def A ( _SCREAMING_SNAKE_CASE=None ) -> str: if subparsers is not None: lowerCamelCase : int = subparsers.add_parser("config" ,description=_SCREAMING_SNAKE_CASE ) else: lowerCamelCase : Optional[Any] = argparse.ArgumentParser("Accelerate config command" ,description=_SCREAMING_SNAKE_CASE ) parser.add_argument( "--config_file" ,default=_SCREAMING_SNAKE_CASE ,help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) ,) if subparsers is not None: parser.set_defaults(func=_SCREAMING_SNAKE_CASE ) return parser def A ( _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: lowerCamelCase : int = get_user_input() if args.config_file is not None: lowerCamelCase : Optional[int] = args.config_file else: if not os.path.isdir(_SCREAMING_SNAKE_CASE ): os.makedirs(_SCREAMING_SNAKE_CASE ) lowerCamelCase : Tuple = default_yaml_config_file if config_file.endswith(".json" ): config.to_json_file(_SCREAMING_SNAKE_CASE ) else: config.to_yaml_file(_SCREAMING_SNAKE_CASE ) print(f'''accelerate configuration saved at {config_file}''' ) def A ( ) -> List[str]: lowerCamelCase : int = config_command_parser() lowerCamelCase : Tuple = parser.parse_args() config_command(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
48
import math def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> float: if ( not isinstance(_SCREAMING_SNAKE_CASE ,(int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("power_factor must be a valid float value between -1 and 1." ) return apparent_power * power_factor def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> float: if ( not isinstance(_SCREAMING_SNAKE_CASE ,(int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("power_factor must be a valid float value between -1 and 1." ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
48
1
"""simple docstring""" import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ : Dict = logging.get_logger(__name__) lowerCAmelCase_ : int = { '''google/owlvit-base-patch32''': '''https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json''', '''google/owlvit-base-patch16''': '''https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json''', '''google/owlvit-large-patch14''': '''https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json''', } class UpperCamelCase_ ( a_ ): _A : List[Any] = 'owlvit_text_model' def __init__( self , snake_case__=4_94_08 , snake_case__=5_12 , snake_case__=20_48 , snake_case__=12 , snake_case__=8 , snake_case__=16 , snake_case__="quick_gelu" , snake_case__=1e-5 , snake_case__=0.0 , snake_case__=0.02 , snake_case__=1.0 , snake_case__=0 , snake_case__=4_94_06 , snake_case__=4_94_07 , **snake_case__ , ) -> Optional[int]: """simple docstring""" super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = intermediate_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = max_position_embeddings UpperCAmelCase = hidden_act UpperCAmelCase = layer_norm_eps UpperCAmelCase = attention_dropout UpperCAmelCase = initializer_range UpperCAmelCase = initializer_factor @classmethod def UpperCamelCase_ ( cls , snake_case__ , **snake_case__ ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(snake_case__ ) UpperCAmelCase , UpperCAmelCase = cls.get_config_dict(snake_case__ , **snake_case__ ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get("""model_type""" ) == "owlvit": UpperCAmelCase = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(snake_case__ , **snake_case__ ) class UpperCamelCase_ ( a_ ): _A : List[str] = 'owlvit_vision_model' def __init__( self , snake_case__=7_68 , snake_case__=30_72 , snake_case__=12 , snake_case__=12 , snake_case__=3 , snake_case__=7_68 , snake_case__=32 , snake_case__="quick_gelu" , snake_case__=1e-5 , snake_case__=0.0 , snake_case__=0.02 , snake_case__=1.0 , **snake_case__ , ) -> Optional[int]: """simple docstring""" super().__init__(**snake_case__ ) UpperCAmelCase = hidden_size UpperCAmelCase = intermediate_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = num_channels UpperCAmelCase = image_size UpperCAmelCase = patch_size UpperCAmelCase = hidden_act UpperCAmelCase = layer_norm_eps UpperCAmelCase = attention_dropout UpperCAmelCase = initializer_range UpperCAmelCase = initializer_factor @classmethod def UpperCamelCase_ ( cls , snake_case__ , **snake_case__ ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(snake_case__ ) UpperCAmelCase , UpperCAmelCase = cls.get_config_dict(snake_case__ , **snake_case__ ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get("""model_type""" ) == "owlvit": UpperCAmelCase = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(snake_case__ , **snake_case__ ) class UpperCamelCase_ ( a_ ): _A : Union[str, Any] = 'owlvit' _A : Dict = True def __init__( self , snake_case__=None , snake_case__=None , snake_case__=5_12 , snake_case__=2.6_592 , snake_case__=True , **snake_case__ , ) -> Union[str, Any]: """simple docstring""" super().__init__(**snake_case__ ) if text_config is None: UpperCAmelCase = {} logger.info("""text_config is None. Initializing the OwlViTTextConfig with default values.""" ) if vision_config is None: UpperCAmelCase = {} logger.info("""vision_config is None. initializing the OwlViTVisionConfig with default values.""" ) UpperCAmelCase = OwlViTTextConfig(**snake_case__ ) UpperCAmelCase = OwlViTVisionConfig(**snake_case__ ) UpperCAmelCase = projection_dim UpperCAmelCase = logit_scale_init_value UpperCAmelCase = return_dict UpperCAmelCase = 1.0 @classmethod def UpperCamelCase_ ( cls , snake_case__ , **snake_case__ ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(snake_case__ ) UpperCAmelCase , UpperCAmelCase = cls.get_config_dict(snake_case__ , **snake_case__ ) if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(snake_case__ , **snake_case__ ) @classmethod def UpperCamelCase_ ( cls , snake_case__ , snake_case__ , **snake_case__ ) -> List[Any]: """simple docstring""" UpperCAmelCase = {} UpperCAmelCase = text_config UpperCAmelCase = vision_config return cls.from_dict(snake_case__ , **snake_case__ ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" UpperCAmelCase = copy.deepcopy(self.__dict__ ) UpperCAmelCase = self.text_config.to_dict() UpperCAmelCase = self.vision_config.to_dict() UpperCAmelCase = self.__class__.model_type return output class UpperCamelCase_ ( a_ ): @property def UpperCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ] ) @property def UpperCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""logits_per_image""", {0: """batch"""}), ("""logits_per_text""", {0: """batch"""}), ("""text_embeds""", {0: """batch"""}), ("""image_embeds""", {0: """batch"""}), ] ) @property def UpperCamelCase_ ( self ) -> float: """simple docstring""" return 1e-4 def UpperCamelCase_ ( self , snake_case__ , snake_case__ = -1 , snake_case__ = -1 , snake_case__ = None , ) -> Mapping[str, Any]: """simple docstring""" UpperCAmelCase = super().generate_dummy_inputs( processor.tokenizer , batch_size=snake_case__ , seq_length=snake_case__ , framework=snake_case__ ) UpperCAmelCase = super().generate_dummy_inputs( processor.image_processor , batch_size=snake_case__ , framework=snake_case__ ) return {**text_input_dict, **image_input_dict} @property def UpperCamelCase_ ( self ) -> int: """simple docstring""" return 14
248
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class UpperCamelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase_ ( self ) -> Any: """simple docstring""" UpperCAmelCase = 1 UpperCAmelCase = 3 UpperCAmelCase = (32, 32) UpperCAmelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(snake_case__ ) return image @property def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=snake_case__ , only_cross_attention=(True, True, False) , num_class_embeds=1_00 , ) return model @property def UpperCamelCase_ ( self ) -> int: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , ) return CLIPTextModel(snake_case__ ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" UpperCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase = self.dummy_cond_unet_upscale UpperCAmelCase = DDPMScheduler() UpperCAmelCase = DDIMScheduler(prediction_type="""v_prediction""" ) UpperCAmelCase = self.dummy_vae UpperCAmelCase = self.dummy_text_encoder UpperCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) UpperCAmelCase = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase = Image.fromarray(np.uinta(snake_case__ ) ).convert("""RGB""" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk UpperCAmelCase = StableDiffusionUpscalePipeline( unet=snake_case__ , low_res_scheduler=snake_case__ , scheduler=snake_case__ , vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , max_noise_level=3_50 , ) UpperCAmelCase = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase = """A painting of a squirrel eating a burger""" UpperCAmelCase = torch.Generator(device=snake_case__ ).manual_seed(0 ) UpperCAmelCase = sd_pipe( [prompt] , image=snake_case__ , generator=snake_case__ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , ) UpperCAmelCase = output.images UpperCAmelCase = torch.Generator(device=snake_case__ ).manual_seed(0 ) UpperCAmelCase = sd_pipe( [prompt] , image=snake_case__ , generator=snake_case__ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , return_dict=snake_case__ , )[0] UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] UpperCAmelCase = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) UpperCAmelCase = np.array([0.3_113, 0.3_910, 0.4_272, 0.4_859, 0.5_061, 0.4_652, 0.5_362, 0.5_715, 0.5_661] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" UpperCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase = self.dummy_cond_unet_upscale UpperCAmelCase = DDPMScheduler() UpperCAmelCase = DDIMScheduler(prediction_type="""v_prediction""" ) UpperCAmelCase = self.dummy_vae UpperCAmelCase = self.dummy_text_encoder UpperCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) UpperCAmelCase = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase = Image.fromarray(np.uinta(snake_case__ ) ).convert("""RGB""" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk UpperCAmelCase = StableDiffusionUpscalePipeline( unet=snake_case__ , low_res_scheduler=snake_case__ , scheduler=snake_case__ , vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , max_noise_level=3_50 , ) UpperCAmelCase = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase = """A painting of a squirrel eating a burger""" UpperCAmelCase = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , ) UpperCAmelCase = output.images assert image.shape[0] == 2 UpperCAmelCase = torch.Generator(device=snake_case__ ).manual_seed(0 ) UpperCAmelCase = sd_pipe( [prompt] , image=snake_case__ , generator=snake_case__ , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , ) UpperCAmelCase = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = self.dummy_cond_unet_upscale UpperCAmelCase = DDPMScheduler() UpperCAmelCase = DDIMScheduler(prediction_type="""v_prediction""" ) UpperCAmelCase = self.dummy_vae UpperCAmelCase = self.dummy_text_encoder UpperCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) UpperCAmelCase = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase = Image.fromarray(np.uinta(snake_case__ ) ).convert("""RGB""" ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 UpperCAmelCase = unet.half() UpperCAmelCase = text_encoder.half() # make sure here that pndm scheduler skips prk UpperCAmelCase = StableDiffusionUpscalePipeline( unet=snake_case__ , low_res_scheduler=snake_case__ , scheduler=snake_case__ , vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , max_noise_level=3_50 , ) UpperCAmelCase = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase = """A painting of a squirrel eating a burger""" UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = sd_pipe( [prompt] , image=snake_case__ , generator=snake_case__ , num_inference_steps=2 , output_type="""np""" , ).images UpperCAmelCase = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) UpperCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale""" """/upsampled_cat.npy""" ) UpperCAmelCase = """stabilityai/stable-diffusion-x4-upscaler""" UpperCAmelCase = StableDiffusionUpscalePipeline.from_pretrained(snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing() UpperCAmelCase = """a cat sitting on a park bench""" UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = pipe( prompt=snake_case__ , image=snake_case__ , generator=snake_case__ , output_type="""np""" , ) UpperCAmelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 1e-3 def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" UpperCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) UpperCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale""" """/upsampled_cat_fp16.npy""" ) UpperCAmelCase = """stabilityai/stable-diffusion-x4-upscaler""" UpperCAmelCase = StableDiffusionUpscalePipeline.from_pretrained( snake_case__ , torch_dtype=torch.floataa , ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing() UpperCAmelCase = """a cat sitting on a park bench""" UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = pipe( prompt=snake_case__ , image=snake_case__ , generator=snake_case__ , output_type="""np""" , ) UpperCAmelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5e-1 def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) UpperCAmelCase = """stabilityai/stable-diffusion-x4-upscaler""" UpperCAmelCase = StableDiffusionUpscalePipeline.from_pretrained( snake_case__ , torch_dtype=torch.floataa , ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() UpperCAmelCase = """a cat sitting on a park bench""" UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = pipe( prompt=snake_case__ , image=snake_case__ , generator=snake_case__ , num_inference_steps=5 , output_type="""np""" , ) UpperCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
248
1
"""simple docstring""" import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin A_ = get_tests_dir('''fixtures/test_sentencepiece.model''') A_ = get_tests_dir('''fixtures/test_sentencepiece_bpe.model''') A_ = '''pt''' if is_torch_available() else '''tf''' @require_sentencepiece @require_tokenizers class lowercase( __a , unittest.TestCase ): '''simple docstring''' lowercase__ = CamembertTokenizer lowercase__ = CamembertTokenizerFast lowercase__ = True lowercase__ = True def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _snake_case : List[str] = CamembertTokenizer(a_ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : str = """<pad>""" _snake_case : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a_ ), a_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a_ ), a_ ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0], """<s>NOTUSED""" ) self.assertEqual(vocab_keys[1], """<pad>""" ) self.assertEqual(vocab_keys[-1], """<mask>""" ) self.assertEqual(len(a_ ), 1_004 ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size, 1_005 ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : List[Any] = CamembertTokenizer(a_ ) tokenizer.save_pretrained(self.tmpdirname ) _snake_case : Dict = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) _snake_case : Dict = """I was born in 92000, and this is falsé.""" _snake_case : List[str] = tokenizer.encode(a_ ) _snake_case : Optional[Any] = rust_tokenizer.encode(a_ ) self.assertListEqual(a_, a_ ) _snake_case : int = tokenizer.encode(a_, add_special_tokens=a_ ) _snake_case : int = rust_tokenizer.encode(a_, add_special_tokens=a_ ) self.assertListEqual(a_, a_ ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) _snake_case : Any = tokenizer.convert_ids_to_tokens(a_ ) _snake_case : Optional[Any] = rust_tokenizer.tokenize(a_ ) self.assertListEqual(a_, a_ ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' if not self.test_rust_tokenizer: return _snake_case : Tuple = self.get_tokenizer() _snake_case : Tuple = self.get_rust_tokenizer() _snake_case : List[Any] = """I was born in 92000, and this is falsé.""" _snake_case : int = tokenizer.tokenize(a_ ) _snake_case : Union[str, Any] = rust_tokenizer.tokenize(a_ ) self.assertListEqual(a_, a_ ) _snake_case : Tuple = tokenizer.encode(a_, add_special_tokens=a_ ) _snake_case : Optional[Any] = rust_tokenizer.encode(a_, add_special_tokens=a_ ) self.assertListEqual(a_, a_ ) _snake_case : Any = self.get_rust_tokenizer() _snake_case : List[str] = tokenizer.encode(a_ ) _snake_case : str = rust_tokenizer.encode(a_ ) self.assertListEqual(a_, a_ ) @slow def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : Optional[Any] = {"""input_ids""": [[5, 54, 7_196, 297, 30, 23, 776, 18, 11, 3_215, 3_705, 8_252, 22, 3_164, 1_181, 2_116, 29, 16, 813, 25, 791, 3_314, 20, 3_446, 38, 27_575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9_088, 20, 1_517, 8, 22_804, 18_818, 10, 38, 629, 607, 607, 142, 19, 7_196, 867, 56, 10_326, 24, 2_267, 20, 416, 5_072, 15_612, 233, 734, 7, 2_399, 27, 16, 3_015, 1_649, 7, 24, 20, 4_338, 2_399, 27, 13, 3_400, 14, 13, 6_189, 8, 930, 9, 6]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. _snake_case : List[str] = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=a_, model_name="""camembert-base""", revision="""3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf""", sequences=a_, )
64
"""simple docstring""" # Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union _lowercase = re.compile(r'''^(?P<major>\d+)''' r'''\.(?P<minor>\d+)''' r'''\.(?P<patch>\d+)$''') @total_ordering @dataclass class lowerCAmelCase_ : '''simple docstring''' _lowerCamelCase: str _lowerCamelCase: Optional[str] = None _lowerCamelCase: Optional[Union[str, int]] = None _lowerCamelCase: Optional[Union[str, int]] = None _lowerCamelCase: Optional[Union[str, int]] = None def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: A , A , A = _str_to_version_tuple(self.version_str ) def __repr__( self : Optional[int] ) -> Dict: return F'{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}' @property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: return self.major, self.minor, self.patch def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Tuple ) -> Union[str, Any]: if isinstance(A_ ,A_ ): return Version(A_ ) elif isinstance(A_ ,A_ ): return other raise TypeError(F'{other} (type {type(A_ )}) cannot be compared to version.' ) def __eq__( self : List[Any] ,A_ : Dict ) -> Any: try: A = self._validate_operand(A_ ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self : List[Any] ,A_ : Optional[int] ) -> Tuple: A = self._validate_operand(A_ ) return self.tuple < other.tuple def __hash__( self : Union[str, Any] ) -> Union[str, Any]: return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Any ,A_ : List[str] ) -> List[str]: A = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: return self.version_str def _snake_case ( snake_case__ : List[str] ): A = _VERSION_REG.match(snake_case__ ) if not res: raise ValueError(F'Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.' ) return tuple(int(snake_case__ ) for v in [res.group('major' ), res.group('minor' ), res.group('patch' )] ) def _snake_case ( snake_case__ : str ): return ".".join(str(snake_case__ ) for v in version_tuple )
74
0
'''simple docstring''' import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser UpperCAmelCase : Optional[int] = logging.getLogger(__name__) torch.set_grad_enabled(False) UpperCAmelCase : Optional[int] = 'cuda' if torch.cuda.is_available() else 'cpu' def a__ ( a__ , a__=1_00 , a__=" " ): """simple docstring""" __SCREAMING_SNAKE_CASE = text.split(UpperCAmelCase_ ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(UpperCAmelCase_ ) , UpperCAmelCase_ )] def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = [], [] for title, text in zip(documents["""title"""] , documents["""text"""] ): if text is not None: for passage in split_text(UpperCAmelCase_ ): titles.append(title if title is not None else """""" ) texts.append(UpperCAmelCase_ ) return {"title": titles, "text": texts} def a__ ( a__ , a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = ctx_tokenizer( documents["""title"""] , documents["""text"""] , truncation=UpperCAmelCase_ , padding="""longest""" , return_tensors="""pt""" )["""input_ids"""] __SCREAMING_SNAKE_CASE = ctx_encoder(input_ids.to(device=UpperCAmelCase_ ) , return_dict=UpperCAmelCase_ ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def a__ ( a__ , a__ , a__ , ): """simple docstring""" logger.info("""Step 1 - Create the dataset""" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way __SCREAMING_SNAKE_CASE = load_dataset( """csv""" , data_files=[rag_example_args.csv_path] , split="""train""" , delimiter="""\t""" , column_names=["""title""", """text"""] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words __SCREAMING_SNAKE_CASE = dataset.map(UpperCAmelCase_ , batched=UpperCAmelCase_ , num_proc=processing_args.num_proc ) # And compute the embeddings __SCREAMING_SNAKE_CASE = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=UpperCAmelCase_ ) __SCREAMING_SNAKE_CASE = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) __SCREAMING_SNAKE_CASE = Features( {"""text""": Value("""string""" ), """title""": Value("""string""" ), """embeddings""": Sequence(Value("""float32""" ) )} ) # optional, save as float32 instead of float64 to save space __SCREAMING_SNAKE_CASE = dataset.map( partial(UpperCAmelCase_ , ctx_encoder=UpperCAmelCase_ , ctx_tokenizer=UpperCAmelCase_ ) , batched=UpperCAmelCase_ , batch_size=processing_args.batch_size , features=UpperCAmelCase_ , ) # And finally save your dataset __SCREAMING_SNAKE_CASE = os.path.join(rag_example_args.output_dir , """my_knowledge_dataset""" ) dataset.save_to_disk(UpperCAmelCase_ ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("""Step 2 - Index the dataset""" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search __SCREAMING_SNAKE_CASE = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("""embeddings""" , custom_index=UpperCAmelCase_ ) # And save the index __SCREAMING_SNAKE_CASE = os.path.join(rag_example_args.output_dir , """my_knowledge_dataset_hnsw_index.faiss""" ) dataset.get_index("""embeddings""" ).save(UpperCAmelCase_ ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class lowerCAmelCase__ : """simple docstring""" lowerCAmelCase__ = field( default=str(Path(_lowerCamelCase ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) , metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} , ) lowerCAmelCase__ = field( default=_lowerCamelCase , metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} , ) lowerCAmelCase__ = field( default="facebook/rag-sequence-nq" , metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} , ) lowerCAmelCase__ = field( default="facebook/dpr-ctx_encoder-multiset-base" , metadata={ "help": ( "The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or" " 'facebook/dpr-ctx_encoder-multiset-base'" ) } , ) lowerCAmelCase__ = field( default=str(Path(_lowerCamelCase ).parent / "test_run" / "dummy-kb" ) , metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} , ) @dataclass class lowerCAmelCase__ : """simple docstring""" lowerCAmelCase__ = field( default=_lowerCamelCase , metadata={ "help": "The number of processes to use to split the documents into passages. Default is single process." } , ) lowerCAmelCase__ = field( default=16 , metadata={ "help": "The batch size to use when computing the passages embeddings using the DPR context encoder." } , ) @dataclass class lowerCAmelCase__ : """simple docstring""" lowerCAmelCase__ = field( default=768 , metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} , ) lowerCAmelCase__ = field( default=128 , metadata={ "help": ( "The number of bi-directional links created for every new element during the HNSW index construction." ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) UpperCAmelCase : Any = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) UpperCAmelCase : Any = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: UpperCAmelCase : str = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
353
'''simple docstring''' import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__ ( a ): """simple docstring""" def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any]=13 , __SCREAMING_SNAKE_CASE : Optional[Any]=7 , __SCREAMING_SNAKE_CASE : Tuple=True , __SCREAMING_SNAKE_CASE : List[str]=True , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : Optional[int]=99 , __SCREAMING_SNAKE_CASE : int=32 , __SCREAMING_SNAKE_CASE : Any=5 , __SCREAMING_SNAKE_CASE : Dict=4 , __SCREAMING_SNAKE_CASE : Optional[int]=37 , __SCREAMING_SNAKE_CASE : str="gelu" , __SCREAMING_SNAKE_CASE : Dict=0.1 , __SCREAMING_SNAKE_CASE : Optional[int]=0.1 , __SCREAMING_SNAKE_CASE : Tuple=512 , __SCREAMING_SNAKE_CASE : Tuple=16 , __SCREAMING_SNAKE_CASE : Union[str, Any]=2 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.02 , __SCREAMING_SNAKE_CASE : Optional[Any]=False , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : List[str]="None" , __SCREAMING_SNAKE_CASE : List[str]=3 , __SCREAMING_SNAKE_CASE : int=4 , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = seq_length __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_input_mask __SCREAMING_SNAKE_CASE = use_token_type_ids __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = type_sequence_label_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = num_labels __SCREAMING_SNAKE_CASE = num_choices __SCREAMING_SNAKE_CASE = relative_attention __SCREAMING_SNAKE_CASE = position_biased_input __SCREAMING_SNAKE_CASE = pos_att_type __SCREAMING_SNAKE_CASE = scope def UpperCAmelCase__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE = None if self.use_input_mask: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None if self.use_labels: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) __SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def UpperCAmelCase__ ( self : List[str] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_config() __SCREAMING_SNAKE_CASE = 300 return config def UpperCAmelCase__ ( self : List[Any] , __SCREAMING_SNAKE_CASE : Any ) -> Union[str, Any]: """simple docstring""" self.parent.assertListEqual(list(result.loss.size() ) , [] ) def UpperCAmelCase__ ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = DebertaModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE )[0] __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE )[0] __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[str] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = DebertaForMaskedLM(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = DebertaForSequenceClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : int ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = DebertaForTokenClassification(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase__ ( self : List[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = DebertaForQuestionAnswering(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , start_positions=__SCREAMING_SNAKE_CASE , end_positions=__SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase__ ( self : List[str] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) = config_and_inputs __SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__ ( a , a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) lowerCAmelCase__ = ( { "feature-extraction": DebertaModel, "fill-mask": DebertaForMaskedLM, "question-answering": DebertaForQuestionAnswering, "text-classification": DebertaForSequenceClassification, "token-classification": DebertaForTokenClassification, "zero-shot": DebertaForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def UpperCAmelCase__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = DebertaModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , hidden_size=37 ) def UpperCAmelCase__ ( self : Tuple ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : str ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[Any] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[str] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[str] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Any ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__SCREAMING_SNAKE_CASE ) @slow def UpperCAmelCase__ ( self : str ) -> str: """simple docstring""" for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = DebertaModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" @unittest.skip(reason="""Model not available yet""" ) def UpperCAmelCase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" pass @slow def UpperCAmelCase__ ( self : Optional[Any] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = DebertaModel.from_pretrained("""microsoft/deberta-base""" ) __SCREAMING_SNAKE_CASE = torch.tensor([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) __SCREAMING_SNAKE_CASE = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE )[0] # compare the actual values for a slice. __SCREAMING_SNAKE_CASE = torch.tensor( [[[-0.5986, -0.8055, -0.8462], [1.4484, -0.9348, -0.8059], [0.3123, 0.0032, -1.4131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) , f'{output[:, 1:4, 1:4]}' )
331
0
def _a ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : bool = False ): if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __lowerCAmelCase = F"""Expected string as input, found {type(SCREAMING_SNAKE_CASE_ )}""" raise ValueError(SCREAMING_SNAKE_CASE_ ) if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __lowerCAmelCase = F"""Expected boolean as use_pascal parameter, found {type(SCREAMING_SNAKE_CASE_ )}""" raise ValueError(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = input_str.split("_" ) __lowerCAmelCase = 0 if use_pascal else 1 __lowerCAmelCase = words[start_index:] __lowerCAmelCase = [word[0].upper() + word[1:] for word in words_to_capitalize] __lowerCAmelCase = "" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
92
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class a__ ( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): _a : str = StableUnCLIPPipeline _a : Union[str, Any] = TEXT_TO_IMAGE_PARAMS _a : Dict = TEXT_TO_IMAGE_BATCH_PARAMS _a : Optional[int] = TEXT_TO_IMAGE_IMAGE_PARAMS _a : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false _a : Optional[Any] = False def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = 3_2 __lowerCAmelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) __lowerCAmelCase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) __lowerCAmelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_A , projection_dim=_A , intermediate_size=3_7 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) ) torch.manual_seed(0 ) __lowerCAmelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=1_2 , embedding_dim=_A , num_layers=1 , ) torch.manual_seed(0 ) __lowerCAmelCase = DDPMScheduler( variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=1_0_0_0 , clip_sample=_A , clip_sample_range=5.0 , beta_schedule="squaredcos_cap_v2" , ) # regular denoising components torch.manual_seed(0 ) __lowerCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=_A ) __lowerCAmelCase = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) __lowerCAmelCase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) __lowerCAmelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_A , projection_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) ) torch.manual_seed(0 ) __lowerCAmelCase = UNetaDConditionModel( sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(3_2, 6_4) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_A , layers_per_block=1 , upcast_attention=_A , use_linear_projection=_A , ) torch.manual_seed(0 ) __lowerCAmelCase = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.0_00_85 , beta_end=0.0_12 , prediction_type="v_prediction" , set_alpha_to_one=_A , steps_offset=1 , ) torch.manual_seed(0 ) __lowerCAmelCase = AutoencoderKL() __lowerCAmelCase = { # prior components "prior_tokenizer": prior_tokenizer, "prior_text_encoder": prior_text_encoder, "prior": prior, "prior_scheduler": prior_scheduler, # image noising components "image_normalizer": image_normalizer, "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder, "unet": unet, "scheduler": scheduler, "vae": vae, } return components def __SCREAMING_SNAKE_CASE( self , _A , _A=0 ): """simple docstring""" if str(_A ).startswith("mps" ): __lowerCAmelCase = torch.manual_seed(_A ) else: __lowerCAmelCase = torch.Generator(device=_A ).manual_seed(_A ) __lowerCAmelCase = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "prior_num_inference_steps": 2, "output_type": "numpy", } return inputs def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = torch_device == "cpu" self._test_attention_slicing_forward_pass(test_max_difference=_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=_A ) @slow @require_torch_gpu class a__ ( unittest.TestCase ): def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy" ) __lowerCAmelCase = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __lowerCAmelCase = torch.Generator(device="cpu" ).manual_seed(0 ) __lowerCAmelCase = pipe("anime turle" , generator=_A , output_type="np" ) __lowerCAmelCase = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(_A , _A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __lowerCAmelCase = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) __lowerCAmelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __lowerCAmelCase = pipe( "anime turtle" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="np" , ) __lowerCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 1_0**9
92
1
from __future__ import annotations from collections.abc import Iterator from typing import Any class SCREAMING_SNAKE_CASE__ : def __init__(self : Tuple , a__ : Any ): """simple docstring""" __snake_case = data __snake_case = None class SCREAMING_SNAKE_CASE__ : def __init__(self : str ): """simple docstring""" __snake_case = None __snake_case = None def __iter__(self : Tuple ): """simple docstring""" __snake_case = self.head while self.head: yield node.data __snake_case = node.next if node == self.head: break def __len__(self : Optional[int] ): """simple docstring""" return sum(1 for _ in self ) def __repr__(self : str ): """simple docstring""" return "->".join(str(a__ ) for item in iter(self ) ) def a (self : Union[str, Any] , a__ : Any ): """simple docstring""" self.insert_nth(len(self ) , a__ ) def a (self : int , a__ : Any ): """simple docstring""" self.insert_nth(0 , a__ ) def a (self : Tuple , a__ : int , a__ : Any ): """simple docstring""" if index < 0 or index > len(self ): raise IndexError('''list index out of range.''' ) __snake_case = Node(a__ ) if self.head is None: __snake_case = new_node # first node points itself __snake_case = __snake_case = new_node elif index == 0: # insert at head __snake_case = self.head __snake_case = __snake_case = new_node else: __snake_case = self.head for _ in range(index - 1 ): __snake_case = temp.next __snake_case = temp.next __snake_case = new_node if index == len(self ) - 1: # insert at tail __snake_case = new_node def a (self : int ): """simple docstring""" return self.delete_nth(0 ) def a (self : List[str] ): """simple docstring""" return self.delete_nth(len(self ) - 1 ) def a (self : List[str] , a__ : int = 0 ): """simple docstring""" if not 0 <= index < len(self ): raise IndexError('''list index out of range.''' ) __snake_case = self.head if self.head == self.tail: # just one node __snake_case = __snake_case = None elif index == 0: # delete head node __snake_case = self.tail.next.next __snake_case = self.head.next else: __snake_case = self.head for _ in range(index - 1 ): __snake_case = temp.next __snake_case = temp.next __snake_case = temp.next.next if index == len(self ) - 1: # delete at tail __snake_case = temp return delete_node.data def a (self : str ): """simple docstring""" return len(self ) == 0 def lowerCamelCase__ ( ) -> None: __snake_case = CircularLinkedList() assert len(snake_case_ ) == 0 assert circular_linked_list.is_empty() is True assert str(snake_case_ ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(snake_case_ ) == i circular_linked_list.insert_nth(snake_case_ , i + 1 ) assert str(snake_case_ ) == "->".join(str(snake_case_ ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(snake_case_ ) == "->".join(str(snake_case_ ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(snake_case_ ) == "->".join(str(snake_case_ ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(snake_case_ ) == "->".join(str(snake_case_ ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(snake_case_ ) == "->".join(str(snake_case_ ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
364
from __future__ import annotations import collections import pprint from pathlib import Path def lowerCamelCase__ ( snake_case_ : str ) -> str: return "".join(sorted(snake_case_ ) ) def lowerCamelCase__ ( snake_case_ : str ) -> list[str]: return word_by_signature[signature(snake_case_ )] snake_case_ = Path(__file__).parent.joinpath('words.txt').read_text(encoding='utf-8') snake_case_ = sorted({word.strip().lower() for word in data.splitlines()}) snake_case_ = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": snake_case_ = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('anagrams.txt', 'w') as file: file.write('all_anagrams = \n ') file.write(pprint.pformat(all_anagrams))
238
0
"""simple docstring""" import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py _A = """src/transformers""" _A = """docs/source/en/tasks""" def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> List[Any]: with open(lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: UpperCAmelCase__ : Any = f.readlines() # Find the start prompt. UpperCAmelCase__ : Tuple = 0 while not lines[start_index].startswith(lowerCAmelCase ): start_index += 1 start_index += 1 UpperCAmelCase__ : int = start_index while not lines[end_index].startswith(lowerCAmelCase ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. _A = direct_transformers_import(TRANSFORMERS_PATH) _A = { """asr.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, """audio_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, """language_modeling.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, """image_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, """masked_language_modeling.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, """multiple_choice.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, """object_detection.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, """question_answering.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, """semantic_segmentation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, """sequence_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, """summarization.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, """token_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, """translation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, """video_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, """document_question_answering.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, """monocular_depth_estimation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). _A = { """summarization.md""": ("""nllb""",), """translation.md""": ("""nllb""",), } def a__ ( lowerCAmelCase ) -> Tuple: UpperCAmelCase__ : Optional[Any] = TASK_GUIDE_TO_MODELS[task_guide] UpperCAmelCase__ : List[str] = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(lowerCAmelCase , set() ) UpperCAmelCase__ : Optional[Any] = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F"""[{name}](../model_doc/{code})""" for code, name in model_names.items()] ) + "\n" def a__ ( lowerCAmelCase , lowerCAmelCase=False ) -> List[Any]: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = _find_text_in_file( filename=os.path.join(lowerCAmelCase , lowerCAmelCase ) , start_prompt="""<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->""" , end_prompt="""<!--End of the generated tip-->""" , ) UpperCAmelCase__ : int = get_model_list_for_task(lowerCAmelCase ) if current_list != new_list: if overwrite: with open(os.path.join(lowerCAmelCase , lowerCAmelCase ) , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F"""The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`""" """ to fix this.""" ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") _A = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
171
"""simple docstring""" import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> float: UpperCAmelCase__ : int = np.array([[1, item, train_mtch[i]] for i, item in enumerate(lowerCAmelCase )] ) UpperCAmelCase__ : Any = np.array(lowerCAmelCase ) UpperCAmelCase__ : List[Any] = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , lowerCAmelCase ) ) , x.transpose() ) , lowerCAmelCase ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> float: UpperCAmelCase__ : Union[str, Any] = (1, 2, 1) UpperCAmelCase__ : Tuple = (1, 1, 0, 7) UpperCAmelCase__ : int = SARIMAX( lowerCAmelCase , exog=lowerCAmelCase , order=lowerCAmelCase , seasonal_order=lowerCAmelCase ) UpperCAmelCase__ : Any = model.fit(disp=lowerCAmelCase , maxiter=6_00 , method="""nm""" ) UpperCAmelCase__ : Optional[Any] = model_fit.predict(1 , len(lowerCAmelCase ) , exog=[test_match] ) return result[0] def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> float: UpperCAmelCase__ : Union[str, Any] = SVR(kernel="""rbf""" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase__ : int = regressor.predict(lowerCAmelCase ) return y_pred[0] def a__ ( lowerCAmelCase ) -> float: train_user.sort() UpperCAmelCase__ : Optional[Any] = np.percentile(lowerCAmelCase , 25 ) UpperCAmelCase__ : str = np.percentile(lowerCAmelCase , 75 ) UpperCAmelCase__ : int = qa - qa UpperCAmelCase__ : Union[str, Any] = qa - (iqr * 0.1) return low_lim def a__ ( lowerCAmelCase , lowerCAmelCase ) -> bool: UpperCAmelCase__ : Dict = 0 UpperCAmelCase__ : str = 0 for i in list_vote: if i > actual_result: UpperCAmelCase__ : Tuple = not_safe + 1 else: if abs(abs(lowerCAmelCase ) - abs(lowerCAmelCase ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) _A = [[1_82_31, 0.0, 1], [2_26_21, 1.0, 2], [1_56_75, 0.0, 3], [2_35_83, 1.0, 4]] _A = pd.DataFrame( data_input, columns=["""total_user""", """total_even""", """days"""] ) _A = Normalizer().fit_transform(data_input_df.values) # split data _A = normalize_df[:, 2].tolist() _A = normalize_df[:, 0].tolist() _A = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) _A = normalize_df[:, [1, 2]].tolist() _A = x[: len(x) - 1] _A = x[len(x) - 1 :] # for linear regression & sarimax _A = total_date[: len(total_date) - 1] _A = total_user[: len(total_user) - 1] _A = total_match[: len(total_match) - 1] _A = total_date[len(total_date) - 1 :] _A = total_user[len(total_user) - 1 :] _A = total_match[len(total_match) - 1 :] # voting system with forecasting _A = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data _A = """""" if data_safety_checker(res_vote, tst_user) else """not """ print("""Today's data is {not_str}safe.""")
171
1
"""simple docstring""" import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class __magic_name__ : '''simple docstring''' def __init__( self , _a , _a=13 , _a=7 , _a=6 , _a=17 , _a=23 , _a=11 , _a=True , ): """simple docstring""" lowerCamelCase = parent lowerCamelCase = batch_size lowerCamelCase = seq_length lowerCamelCase = act_dim lowerCamelCase = state_dim lowerCamelCase = hidden_size lowerCamelCase = max_length lowerCamelCase = is_training def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) lowerCamelCase = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) lowerCamelCase = floats_tensor((self.batch_size, self.seq_length, 1) ) lowerCamelCase = floats_tensor((self.batch_size, self.seq_length, 1) ) lowerCamelCase = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1_000 ) lowerCamelCase = random_attention_mask((self.batch_size, self.seq_length) ) lowerCamelCase = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def _lowerCAmelCase ( self ): """simple docstring""" return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def _lowerCAmelCase ( self , _a , _a , _a , _a , _a , _a , _a , ): """simple docstring""" lowerCamelCase = DecisionTransformerModel(config=_a ) model.to(_a ) model.eval() lowerCamelCase = model(_a , _a , _a , _a , _a , _a ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.prepare_config_and_inputs() ( ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ) = config_and_inputs lowerCamelCase = { """states""": states, """actions""": actions, """rewards""": rewards, """returns_to_go""": returns_to_go, """timesteps""": timesteps, """attention_mask""": attention_mask, } return config, inputs_dict @require_torch class __magic_name__ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = (DecisionTransformerModel,) if is_torch_available() else () __UpperCamelCase = () __UpperCamelCase = {"feature-extraction": DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids __UpperCamelCase = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = DecisionTransformerModelTester(self ) lowerCamelCase = ConfigTester(self , config_class=_a , hidden_size=37 ) def _lowerCAmelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) @slow def _lowerCAmelCase ( self ): """simple docstring""" for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase = DecisionTransformerModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase , lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase = model_class(_a ) lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase = [*signature.parameters.keys()] lowerCamelCase = [ """states""", """actions""", """rewards""", """returns_to_go""", """timesteps""", """attention_mask""", ] self.assertListEqual(arg_names[: len(_a )] , _a ) @require_torch class __magic_name__ ( unittest.TestCase ): '''simple docstring''' @slow def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = 2 # number of steps of autoregressive prediction we will perform lowerCamelCase = 10 # defined by the RL environment, may be normalized lowerCamelCase = DecisionTransformerModel.from_pretrained("""edbeeching/decision-transformer-gym-hopper-expert""" ) lowerCamelCase = model.to(_a ) lowerCamelCase = model.config torch.manual_seed(0 ) lowerCamelCase = torch.randn(1 , 1 , config.state_dim ).to(device=_a , dtype=torch.floataa ) # env.reset() lowerCamelCase = torch.tensor( [[0.242_793, -0.28_693_074, 0.8_742_613], [0.67_815_274, -0.08_101_085, -0.12_952_147]] , device=_a ) lowerCamelCase = torch.tensor(_a , device=_a , dtype=torch.floataa ).reshape(1 , 1 , 1 ) lowerCamelCase = state lowerCamelCase = torch.zeros(1 , 0 , config.act_dim , device=_a , dtype=torch.floataa ) lowerCamelCase = torch.zeros(1 , 0 , device=_a , dtype=torch.floataa ) lowerCamelCase = torch.tensor(0 , device=_a , dtype=torch.long ).reshape(1 , 1 ) for step in range(_a ): lowerCamelCase = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=_a )] , dim=1 ) lowerCamelCase = torch.cat([rewards, torch.zeros(1 , 1 , device=_a )] , dim=1 ) lowerCamelCase = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): lowerCamelCase , lowerCamelCase , lowerCamelCase = model( states=_a , actions=_a , rewards=_a , returns_to_go=_a , timesteps=_a , attention_mask=_a , return_dict=_a , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) ) lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=_a , dtype=torch.floataa ), 1.0, False, {}, ) lowerCamelCase = action_pred[0, -1] lowerCamelCase = torch.cat([states, state] , dim=1 ) lowerCamelCase = returns_to_go[0, -1] - reward lowerCamelCase = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) lowerCamelCase = torch.cat( [timesteps, torch.ones((1, 1) , device=_a , dtype=torch.long ) * (step + 1)] , dim=1 )
168
"""simple docstring""" import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class __magic_name__ : '''simple docstring''' def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=False , _a=True , _a=99 , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.02 , _a=3 , _a=4 , _a=None , ): """simple docstring""" lowerCamelCase = parent lowerCamelCase = batch_size lowerCamelCase = seq_length lowerCamelCase = is_training lowerCamelCase = use_input_mask lowerCamelCase = use_token_type_ids lowerCamelCase = use_labels lowerCamelCase = vocab_size lowerCamelCase = hidden_size lowerCamelCase = num_hidden_layers lowerCamelCase = num_attention_heads lowerCamelCase = intermediate_size lowerCamelCase = hidden_act lowerCamelCase = hidden_dropout_prob lowerCamelCase = attention_probs_dropout_prob lowerCamelCase = max_position_embeddings lowerCamelCase = type_vocab_size lowerCamelCase = type_sequence_label_size lowerCamelCase = initializer_range lowerCamelCase = num_labels lowerCamelCase = num_choices lowerCamelCase = scope def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase = None if self.use_input_mask: lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase = None if self.use_token_type_ids: lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase = None lowerCamelCase = None lowerCamelCase = None if self.use_labels: lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCAmelCase ( self ): """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_a , initializer_range=self.initializer_range , use_stable_embedding=_a , ) def _lowerCAmelCase ( self , _a , _a , _a , _a , _a , _a , _a ): """simple docstring""" lowerCamelCase = OpenLlamaModel(config=_a ) model.to(_a ) model.eval() lowerCamelCase = model(_a , attention_mask=_a ) lowerCamelCase = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ): """simple docstring""" lowerCamelCase = True lowerCamelCase = OpenLlamaModel(_a ) model.to(_a ) model.eval() lowerCamelCase = model( _a , attention_mask=_a , encoder_hidden_states=_a , encoder_attention_mask=_a , ) lowerCamelCase = model( _a , attention_mask=_a , encoder_hidden_states=_a , ) lowerCamelCase = model(_a , attention_mask=_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ): """simple docstring""" lowerCamelCase = OpenLlamaForCausalLM(config=_a ) model.to(_a ) model.eval() lowerCamelCase = model(_a , attention_mask=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCAmelCase ( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ): """simple docstring""" lowerCamelCase = True lowerCamelCase = True lowerCamelCase = OpenLlamaForCausalLM(config=_a ) model.to(_a ) model.eval() # first forward pass lowerCamelCase = model( _a , attention_mask=_a , encoder_hidden_states=_a , encoder_attention_mask=_a , use_cache=_a , ) lowerCamelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCamelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCamelCase = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCamelCase = model( _a , attention_mask=_a , encoder_hidden_states=_a , encoder_attention_mask=_a , output_hidden_states=_a , )["""hidden_states"""][0] lowerCamelCase = model( _a , attention_mask=_a , encoder_hidden_states=_a , encoder_attention_mask=_a , past_key_values=_a , output_hidden_states=_a , )["""hidden_states"""][0] # select random slice lowerCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCamelCase = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCamelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_a , _a , atol=1e-3 ) ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.prepare_config_and_inputs() ( ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ) = config_and_inputs lowerCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __magic_name__ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __UpperCamelCase = (OpenLlamaForCausalLM,) if is_torch_available() else () __UpperCamelCase = ( { "feature-extraction": OpenLlamaModel, "text-classification": OpenLlamaForSequenceClassification, "text-generation": OpenLlamaForCausalLM, "zero-shot": OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = OpenLlamaModelTester(self ) lowerCamelCase = ConfigTester(self , config_class=_a , hidden_size=37 ) def _lowerCAmelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCamelCase = type self.model_tester.create_and_check_model(*_a ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase , lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase = 3 lowerCamelCase = input_dict["""input_ids"""] lowerCamelCase = input_ids.ne(1 ).to(_a ) lowerCamelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCamelCase = OpenLlamaForSequenceClassification(_a ) model.to(_a ) model.eval() lowerCamelCase = model(_a , attention_mask=_a , labels=_a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase , lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase = 3 lowerCamelCase = """single_label_classification""" lowerCamelCase = input_dict["""input_ids"""] lowerCamelCase = input_ids.ne(1 ).to(_a ) lowerCamelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCamelCase = OpenLlamaForSequenceClassification(_a ) model.to(_a ) model.eval() lowerCamelCase = model(_a , attention_mask=_a , labels=_a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase , lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase = 3 lowerCamelCase = """multi_label_classification""" lowerCamelCase = input_dict["""input_ids"""] lowerCamelCase = input_ids.ne(1 ).to(_a ) lowerCamelCase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowerCamelCase = OpenLlamaForSequenceClassification(_a ) model.to(_a ) model.eval() lowerCamelCase = model(_a , attention_mask=_a , labels=_a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" ) def _lowerCAmelCase ( self ): """simple docstring""" pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def _lowerCAmelCase ( self , _a ): """simple docstring""" lowerCamelCase , lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase = ids_tensor([1, 10] , config.vocab_size ) lowerCamelCase = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCamelCase = OpenLlamaModel(_a ) original_model.to(_a ) original_model.eval() lowerCamelCase = original_model(_a ).last_hidden_state lowerCamelCase = original_model(_a ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCamelCase = {"""type""": scaling_type, """factor""": 10.0} lowerCamelCase = OpenLlamaModel(_a ) scaled_model.to(_a ) scaled_model.eval() lowerCamelCase = scaled_model(_a ).last_hidden_state lowerCamelCase = scaled_model(_a ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_a , _a , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(_a , _a , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_a , _a , atol=1e-5 ) )
168
1
"""simple docstring""" import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _UpperCAmelCase ( _A , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : Any = BioGptTokenizer SCREAMING_SNAKE_CASE_ : int = False def A ( self : Any ) -> Tuple: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase_ : Dict = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] lowercase_ : Dict = dict(zip(A , range(len(A ) ) ) ) lowercase_ : List[str] = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] lowercase_ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase_ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(A ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(A ) ) def A ( self : Tuple , A : Dict ) -> int: lowercase_ : List[str] = '''lower newer''' lowercase_ : List[str] = '''lower newer''' return input_text, output_text def A ( self : Any ) -> str: lowercase_ : Dict = BioGptTokenizer(self.vocab_file , self.merges_file ) lowercase_ : List[Any] = '''lower''' lowercase_ : Dict = ['''low''', '''er</w>'''] lowercase_ : Any = tokenizer.tokenize(A ) self.assertListEqual(A , A ) lowercase_ : List[Any] = tokens + ['''<unk>'''] lowercase_ : Dict = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A ) @slow def A ( self : int ) -> List[str]: lowercase_ : Dict = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) lowercase_ : int = tokenizer.encode('''sequence builders''' , add_special_tokens=A ) lowercase_ : Tuple = tokenizer.encode('''multi-sequence build''' , add_special_tokens=A ) lowercase_ : Tuple = tokenizer.build_inputs_with_special_tokens(A ) lowercase_ : Tuple = tokenizer.build_inputs_with_special_tokens(A , A ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
33
"""simple docstring""" def lowercase ( __snake_case : int = 1_0_0 ): lowercase_ : str = 0 lowercase_ : List[Any] = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(F"""{solution() = }""")
33
1
'''simple docstring''' # Function to print upper half of diamond (pyramid) def __lowerCamelCase ( _lowercase ) -> List[Any]: for i in range(0 , _lowercase ): for _ in range(0 , n - i - 1 ): # printing spaces print(""" """ , end="""""" ) for _ in range(0 , i + 1 ): # printing stars print("""* """ , end="""""" ) print() def __lowerCamelCase ( _lowercase ) -> Dict: for i in range(_lowercase , 0 , -1 ): for _ in range(_lowercase , 0 , -1 ): # printing stars print("""* """ , end="""""" ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(""" """ , end="""""" ) def __lowerCamelCase ( _lowercase ) -> List[Any]: if n <= 0: print(""" ... .... nothing printing :(""" ) return floyd(_lowercase ) # upper half reverse_floyd(_lowercase ) # lower half if __name__ == "__main__": print(R"""| /\ | |- | |- |--| |\ /| |-""") print(R"""|/ \| |- |_ |_ |__| | \/ | |_""") a : List[Any] = 1 while K: a : int = int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) a : Tuple = int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
338
'''simple docstring''' # Function to print upper half of diamond (pyramid) def __lowerCamelCase ( _lowercase ) -> List[Any]: for i in range(0 , _lowercase ): for _ in range(0 , n - i - 1 ): # printing spaces print(""" """ , end="""""" ) for _ in range(0 , i + 1 ): # printing stars print("""* """ , end="""""" ) print() def __lowerCamelCase ( _lowercase ) -> Dict: for i in range(_lowercase , 0 , -1 ): for _ in range(_lowercase , 0 , -1 ): # printing stars print("""* """ , end="""""" ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(""" """ , end="""""" ) def __lowerCamelCase ( _lowercase ) -> List[Any]: if n <= 0: print(""" ... .... nothing printing :(""" ) return floyd(_lowercase ) # upper half reverse_floyd(_lowercase ) # lower half if __name__ == "__main__": print(R"""| /\ | |- | |- |--| |\ /| |-""") print(R"""|/ \| |- |_ |_ |__| | \/ | |_""") a : List[Any] = 1 while K: a : int = int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) a : Tuple = int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
338
1
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = { 'task_specific_params': { 'summarization': {'length_penalty': 1.0, 'max_length': 128, 'min_length': 12, 'num_beams': 4}, 'summarization_cnn': {'length_penalty': 2.0, 'max_length': 142, 'min_length': 56, 'num_beams': 4}, 'summarization_xsum': {'length_penalty': 1.0, 'max_length': 62, 'min_length': 11, 'num_beams': 6}, } } SCREAMING_SNAKE_CASE_ = { 'task_specific_params.summarization.length_penalty': 1.0, 'task_specific_params.summarization.max_length': 128, 'task_specific_params.summarization.min_length': 12, 'task_specific_params.summarization.num_beams': 4, 'task_specific_params.summarization_cnn.length_penalty': 2.0, 'task_specific_params.summarization_cnn.max_length': 142, 'task_specific_params.summarization_cnn.min_length': 56, 'task_specific_params.summarization_cnn.num_beams': 4, 'task_specific_params.summarization_xsum.length_penalty': 1.0, 'task_specific_params.summarization_xsum.max_length': 62, 'task_specific_params.summarization_xsum.min_length': 11, 'task_specific_params.summarization_xsum.num_beams': 6, } self.assertEqual(flatten_dict(_A ) , _A ) def lowerCAmelCase_ ( self : Tuple ): SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(_A ) , x.transpose() ) ) SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(_A , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE_ = torch.tensor(_A ) self.assertTrue(np.allclose(transpose(_A ) , transpose(_A ).numpy() ) ) SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 , 5 ) SCREAMING_SNAKE_CASE_ = torch.tensor(_A ) self.assertTrue(np.allclose(transpose(_A , axes=(1, 2, 0) ) , transpose(_A , axes=(1, 2, 0) ).numpy() ) ) @require_tf def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE_ = tf.constant(_A ) self.assertTrue(np.allclose(transpose(_A ) , transpose(_A ).numpy() ) ) SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 , 5 ) SCREAMING_SNAKE_CASE_ = tf.constant(_A ) self.assertTrue(np.allclose(transpose(_A , axes=(1, 2, 0) ) , transpose(_A , axes=(1, 2, 0) ).numpy() ) ) @require_flax def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE_ = jnp.array(_A ) self.assertTrue(np.allclose(transpose(_A ) , np.asarray(transpose(_A ) ) ) ) SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 , 5 ) SCREAMING_SNAKE_CASE_ = jnp.array(_A ) self.assertTrue(np.allclose(transpose(_A , axes=(1, 2, 0) ) , np.asarray(transpose(_A , axes=(1, 2, 0) ) ) ) ) def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(_A , (4, 3) ) , np.reshape(_A , (4, 3) ) ) ) SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(_A , (12, 5) ) , np.reshape(_A , (12, 5) ) ) ) @require_torch def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE_ = torch.tensor(_A ) self.assertTrue(np.allclose(reshape(_A , (4, 3) ) , reshape(_A , (4, 3) ).numpy() ) ) SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 , 5 ) SCREAMING_SNAKE_CASE_ = torch.tensor(_A ) self.assertTrue(np.allclose(reshape(_A , (12, 5) ) , reshape(_A , (12, 5) ).numpy() ) ) @require_tf def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE_ = tf.constant(_A ) self.assertTrue(np.allclose(reshape(_A , (4, 3) ) , reshape(_A , (4, 3) ).numpy() ) ) SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 , 5 ) SCREAMING_SNAKE_CASE_ = tf.constant(_A ) self.assertTrue(np.allclose(reshape(_A , (12, 5) ) , reshape(_A , (12, 5) ).numpy() ) ) @require_flax def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE_ = jnp.array(_A ) self.assertTrue(np.allclose(reshape(_A , (4, 3) ) , np.asarray(reshape(_A , (4, 3) ) ) ) ) SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 , 5 ) SCREAMING_SNAKE_CASE_ = jnp.array(_A ) self.assertTrue(np.allclose(reshape(_A , (12, 5) ) , np.asarray(reshape(_A , (12, 5) ) ) ) ) def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(_A ) , np.squeeze(_A ) ) ) SCREAMING_SNAKE_CASE_ = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(_A , axis=2 ) , np.squeeze(_A , axis=2 ) ) ) @require_torch def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ = np.random.randn(1 , 3 , 4 ) SCREAMING_SNAKE_CASE_ = torch.tensor(_A ) self.assertTrue(np.allclose(squeeze(_A ) , squeeze(_A ).numpy() ) ) SCREAMING_SNAKE_CASE_ = np.random.randn(1 , 4 , 1 , 5 ) SCREAMING_SNAKE_CASE_ = torch.tensor(_A ) self.assertTrue(np.allclose(squeeze(_A , axis=2 ) , squeeze(_A , axis=2 ).numpy() ) ) @require_tf def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ = np.random.randn(1 , 3 , 4 ) SCREAMING_SNAKE_CASE_ = tf.constant(_A ) self.assertTrue(np.allclose(squeeze(_A ) , squeeze(_A ).numpy() ) ) SCREAMING_SNAKE_CASE_ = np.random.randn(1 , 4 , 1 , 5 ) SCREAMING_SNAKE_CASE_ = tf.constant(_A ) self.assertTrue(np.allclose(squeeze(_A , axis=2 ) , squeeze(_A , axis=2 ).numpy() ) ) @require_flax def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = np.random.randn(1 , 3 , 4 ) SCREAMING_SNAKE_CASE_ = jnp.array(_A ) self.assertTrue(np.allclose(squeeze(_A ) , np.asarray(squeeze(_A ) ) ) ) SCREAMING_SNAKE_CASE_ = np.random.randn(1 , 4 , 1 , 5 ) SCREAMING_SNAKE_CASE_ = jnp.array(_A ) self.assertTrue(np.allclose(squeeze(_A , axis=2 ) , np.asarray(squeeze(_A , axis=2 ) ) ) ) def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(_A , axis=1 ) , np.expand_dims(_A , axis=1 ) ) ) @require_torch def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE_ = torch.tensor(_A ) self.assertTrue(np.allclose(expand_dims(_A , axis=1 ) , expand_dims(_A , axis=1 ).numpy() ) ) @require_tf def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE_ = tf.constant(_A ) self.assertTrue(np.allclose(expand_dims(_A , axis=1 ) , expand_dims(_A , axis=1 ).numpy() ) ) @require_flax def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE_ = jnp.array(_A ) self.assertTrue(np.allclose(expand_dims(_A , axis=1 ) , np.asarray(expand_dims(_A , axis=1 ) ) ) )
225
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def __init__( self : List[str] , _A : List[Any] , _A : bool = True , _A : Dict[str, int] = None , _A : int = 32 , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : bool = True , _A : Optional[Union[float, List[float]]] = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , _A : Optional[Union[float, List[float]]] = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , _A : bool = True , _A : Tuple=7 , _A : Tuple=30 , _A : int=400 , _A : Tuple=3 , ) -> Optional[int]: """simple docstring""" snake_case_ : str = parent snake_case_ : str = do_resize snake_case_ : str = size if size is not None else {'shortest_edge': 288} snake_case_ : Any = size_divisor snake_case_ : Any = do_rescale snake_case_ : Union[str, Any] = rescale_factor snake_case_ : str = do_normalize snake_case_ : int = do_center_crop snake_case_ : str = image_mean snake_case_ : int = image_std snake_case_ : Any = do_pad snake_case_ : Optional[int] = batch_size snake_case_ : List[str] = num_channels snake_case_ : Any = min_resolution snake_case_ : str = max_resolution def UpperCAmelCase_ ( self : Tuple ) -> Optional[int]: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def UpperCAmelCase_ ( self : Dict , _A : str , _A : Union[str, Any]=False ) -> int: """simple docstring""" if not batched: snake_case_ : Optional[int] = self.size['shortest_edge'] snake_case_ : List[Any] = image_inputs[0] if isinstance(_A , Image.Image ): snake_case_ ,snake_case_ : Optional[Any] = image.size else: snake_case_ ,snake_case_ : str = image.shape[1], image.shape[2] snake_case_ : Dict = size / min(_A , _A ) if h < w: snake_case_ ,snake_case_ : str = size, scale * w else: snake_case_ ,snake_case_ : Tuple = scale * h, size snake_case_ : Dict = int((1333 / 800) * size ) if max(_A , _A ) > max_size: snake_case_ : Union[str, Any] = max_size / max(_A , _A ) snake_case_ : Any = newh * scale snake_case_ : Union[str, Any] = neww * scale snake_case_ ,snake_case_ : Any = int(newh + 0.5 ), int(neww + 0.5 ) snake_case_ ,snake_case_ : int = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: snake_case_ : Optional[int] = [] for image in image_inputs: snake_case_ ,snake_case_ : Optional[int] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case_ : str = max(_A , key=lambda _A : item[0] )[0] snake_case_ : List[str] = max(_A , key=lambda _A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE_ ( snake_case_ , unittest.TestCase ): __magic_name__: List[Any] = BridgeTowerImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self : List[Any] ) -> Tuple: """simple docstring""" snake_case_ : int = BridgeTowerImageProcessingTester(self ) @property def UpperCAmelCase_ ( self : int ) -> Any: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict: """simple docstring""" snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , 'image_mean' ) ) self.assertTrue(hasattr(_A , 'image_std' ) ) self.assertTrue(hasattr(_A , 'do_normalize' ) ) self.assertTrue(hasattr(_A , 'do_resize' ) ) self.assertTrue(hasattr(_A , 'size' ) ) self.assertTrue(hasattr(_A , 'size_divisor' ) ) def UpperCAmelCase_ ( self : Optional[int] ) -> List[str]: """simple docstring""" pass def UpperCAmelCase_ ( self : Tuple ) -> Tuple: """simple docstring""" snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input snake_case_ : Dict = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Optional[Any] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ : List[str] = image_processing(_A , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Optional[Any] = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any: """simple docstring""" snake_case_ : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input snake_case_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Tuple = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ : Any = image_processing(_A , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Any = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self : Dict ) -> List[str]: """simple docstring""" snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input snake_case_ : Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Optional[Any] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ : str = image_processing(_A , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Tuple = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
327
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class _A ( metaclass=_a ): """simple docstring""" UpperCAmelCase : Tuple = ["""speech"""] def __init__( self : Tuple , *__UpperCAmelCase : Dict , **__UpperCAmelCase : Optional[Any]): requires_backends(self , ["speech"]) class _A ( metaclass=_a ): """simple docstring""" UpperCAmelCase : str = ["""speech"""] def __init__( self : Optional[Any] , *__UpperCAmelCase : Tuple , **__UpperCAmelCase : Any): requires_backends(self , ["speech"])
226
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _A ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[int] , __UpperCAmelCase : Dict , __UpperCAmelCase : Tuple=7 , __UpperCAmelCase : List[str]=3 , __UpperCAmelCase : int=18 , __UpperCAmelCase : int=30 , __UpperCAmelCase : Optional[int]=400 , __UpperCAmelCase : int=True , __UpperCAmelCase : Optional[Any]=None , __UpperCAmelCase : Union[str, Any]=True , ): a : Optional[int] = size if size is not None else {"height": 18, "width": 18} a : Any = parent a : int = batch_size a : str = num_channels a : Dict = image_size a : Dict = min_resolution a : Optional[int] = max_resolution a : Optional[int] = do_resize a : Any = size a : Dict = apply_ocr def __snake_case ( self : Optional[int]): return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class _A ( _a ,unittest.TestCase ): """simple docstring""" UpperCAmelCase : List[str] = LayoutLMvaImageProcessor if is_pytesseract_available() else None def __snake_case ( self : List[Any]): a : Optional[int] = LayoutLMvaImageProcessingTester(self) @property def __snake_case ( self : Optional[int]): return self.image_processor_tester.prepare_image_processor_dict() def __snake_case ( self : List[Any]): a : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(__UpperCAmelCase , "do_resize")) self.assertTrue(hasattr(__UpperCAmelCase , "size")) self.assertTrue(hasattr(__UpperCAmelCase , "apply_ocr")) def __snake_case ( self : str): a : Dict = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"height": 18, "width": 18}) a : List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=42) self.assertEqual(image_processor.size , {"height": 42, "width": 42}) def __snake_case ( self : Union[str, Any]): pass def __snake_case ( self : List[str]): # Initialize image_processing a : Any = self.image_processing_class(**self.image_processor_dict) # create random PIL images a : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , Image.Image) # Test not batched input a : str = image_processing(image_inputs[0] , return_tensors="pt") self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) self.assertIsInstance(encoding.words , __UpperCAmelCase) self.assertIsInstance(encoding.boxes , __UpperCAmelCase) # Test batched a : Dict = image_processing(__UpperCAmelCase , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def __snake_case ( self : Union[str, Any]): # Initialize image_processing a : List[str] = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors a : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , numpify=__UpperCAmelCase) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , np.ndarray) # Test not batched input a : Dict = image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched a : List[str] = image_processing(__UpperCAmelCase , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def __snake_case ( self : List[str]): # Initialize image_processing a : str = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors a : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , torchify=__UpperCAmelCase) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , torch.Tensor) # Test not batched input a : Optional[int] = image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched a : List[str] = image_processing(__UpperCAmelCase , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def __snake_case ( self : List[str]): # with apply_OCR = True a : List[Any] = LayoutLMvaImageProcessor() from datasets import load_dataset a : List[str] = load_dataset("hf-internal-testing/fixtures_docvqa" , split="test") a : int = Image.open(ds[0]["file"]).convert("RGB") a : Dict = image_processing(__UpperCAmelCase , return_tensors="pt") self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224)) self.assertEqual(len(encoding.words) , len(encoding.boxes)) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 a : Tuple = [["11:14", "to", "11:39", "a.m", "11:39", "to", "11:44", "a.m.", "11:44", "a.m.", "to", "12:25", "p.m.", "12:25", "to", "12:58", "p.m.", "12:58", "to", "4:00", "p.m.", "2:00", "to", "5:00", "p.m.", "Coffee", "Break", "Coffee", "will", "be", "served", "for", "men", "and", "women", "in", "the", "lobby", "adjacent", "to", "exhibit", "area.", "Please", "move", "into", "exhibit", "area.", "(Exhibits", "Open)", "TRRF", "GENERAL", "SESSION", "(PART", "|)", "Presiding:", "Lee", "A.", "Waller", "TRRF", "Vice", "President", "“Introductory", "Remarks”", "Lee", "A.", "Waller,", "TRRF", "Vice", "Presi-", "dent", "Individual", "Interviews", "with", "TRRF", "Public", "Board", "Members", "and", "Sci-", "entific", "Advisory", "Council", "Mem-", "bers", "Conducted", "by", "TRRF", "Treasurer", "Philip", "G.", "Kuehn", "to", "get", "answers", "which", "the", "public", "refrigerated", "warehousing", "industry", "is", "looking", "for.", "Plus", "questions", "from", "the", "floor.", "Dr.", "Emil", "M.", "Mrak,", "University", "of", "Cal-", "ifornia,", "Chairman,", "TRRF", "Board;", "Sam", "R.", "Cecil,", "University", "of", "Georgia", "College", "of", "Agriculture;", "Dr.", "Stanley", "Charm,", "Tufts", "University", "School", "of", "Medicine;", "Dr.", "Robert", "H.", "Cotton,", "ITT", "Continental", "Baking", "Company;", "Dr.", "Owen", "Fennema,", "University", "of", "Wis-", "consin;", "Dr.", "Robert", "E.", "Hardenburg,", "USDA.", "Questions", "and", "Answers", "Exhibits", "Open", "Capt.", "Jack", "Stoney", "Room", "TRRF", "Scientific", "Advisory", "Council", "Meeting", "Ballroom", "Foyer"]] # noqa: E231 a : str = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , __UpperCAmelCase) self.assertListEqual(encoding.boxes , __UpperCAmelCase) # with apply_OCR = False a : Optional[int] = LayoutLMvaImageProcessor(apply_ocr=__UpperCAmelCase) a : Dict = image_processing(__UpperCAmelCase , return_tensors="pt") self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224))
226
1
'''simple docstring''' def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : int = len(SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[Any] = arr[i + 1], arr[i] return arr if __name__ == "__main__": UpperCAmelCase_ : int = list(range(10, 0, -1)) print(F"Original: {arr}. Sorted: {odd_even_transposition(arr)}")
200
'''simple docstring''' import argparse import struct import unittest class lowercase__ : '''simple docstring''' def __init__( self , __snake_case ): _SCREAMING_SNAKE_CASE : Dict = data # Initialize hash values _SCREAMING_SNAKE_CASE : Tuple = [ 0X6A09_E667, 0XBB67_AE85, 0X3C6E_F372, 0XA54F_F53A, 0X510E_527F, 0X9B05_688C, 0X1F83_D9AB, 0X5BE0_CD19, ] # Initialize round constants _SCREAMING_SNAKE_CASE : int = [ 0X428A_2F98, 0X7137_4491, 0XB5C0_FBCF, 0XE9B5_DBA5, 0X3956_C25B, 0X59F1_11F1, 0X923F_82A4, 0XAB1C_5ED5, 0XD807_AA98, 0X1283_5B01, 0X2431_85BE, 0X550C_7DC3, 0X72BE_5D74, 0X80DE_B1FE, 0X9BDC_06A7, 0XC19B_F174, 0XE49B_69C1, 0XEFBE_4786, 0X0FC1_9DC6, 0X240C_A1CC, 0X2DE9_2C6F, 0X4A74_84AA, 0X5CB0_A9DC, 0X76F9_88DA, 0X983E_5152, 0XA831_C66D, 0XB003_27C8, 0XBF59_7FC7, 0XC6E0_0BF3, 0XD5A7_9147, 0X06CA_6351, 0X1429_2967, 0X27B7_0A85, 0X2E1B_2138, 0X4D2C_6DFC, 0X5338_0D13, 0X650A_7354, 0X766A_0ABB, 0X81C2_C92E, 0X9272_2C85, 0XA2BF_E8A1, 0XA81A_664B, 0XC24B_8B70, 0XC76C_51A3, 0XD192_E819, 0XD699_0624, 0XF40E_3585, 0X106A_A070, 0X19A4_C116, 0X1E37_6C08, 0X2748_774C, 0X34B0_BCB5, 0X391C_0CB3, 0X4ED8_AA4A, 0X5B9C_CA4F, 0X682E_6FF3, 0X748F_82EE, 0X78A5_636F, 0X84C8_7814, 0X8CC7_0208, 0X90BE_FFFA, 0XA450_6CEB, 0XBEF9_A3F7, 0XC671_78F2, ] _SCREAMING_SNAKE_CASE : Optional[int] = self.preprocessing(self.data ) self.final_hash() @staticmethod def UpperCAmelCase_ ( __snake_case ): _SCREAMING_SNAKE_CASE : Tuple = B"""\x80""" + (B"""\x00""" * (63 - (len(__snake_case ) + 8) % 64)) _SCREAMING_SNAKE_CASE : List[str] = struct.pack(""">Q""" , (len(__snake_case ) * 8) ) return data + padding + big_endian_integer def UpperCAmelCase_ ( self ): # Convert into blocks of 64 bytes _SCREAMING_SNAKE_CASE : Any = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers _SCREAMING_SNAKE_CASE : List[Any] = list(struct.unpack(""">16L""" , __snake_case ) ) # add 48 0-ed integers words += [0] * 48 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[Any] = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array _SCREAMING_SNAKE_CASE : Optional[Any] = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) _SCREAMING_SNAKE_CASE : Tuple = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) _SCREAMING_SNAKE_CASE : Tuple = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X1_0000_0000 # Compression _SCREAMING_SNAKE_CASE : Any = self.ror(__snake_case , 6 ) ^ self.ror(__snake_case , 11 ) ^ self.ror(__snake_case , 25 ) _SCREAMING_SNAKE_CASE : str = (e & f) ^ ((~e & 0XFFFF_FFFF) & g) _SCREAMING_SNAKE_CASE : str = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X1_0000_0000 _SCREAMING_SNAKE_CASE : Dict = self.ror(__snake_case , 2 ) ^ self.ror(__snake_case , 13 ) ^ self.ror(__snake_case , 22 ) _SCREAMING_SNAKE_CASE : Union[str, Any] = (a & b) ^ (a & c) ^ (b & c) _SCREAMING_SNAKE_CASE : Dict = (sa + maj) % 0X1_0000_0000 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = ( g, f, e, ((d + tempa) % 0X1_0000_0000), c, b, a, ((tempa + tempa) % 0X1_0000_0000), ) _SCREAMING_SNAKE_CASE : Union[str, Any] = [a, b, c, d, e, f, g, h] # Modify final values _SCREAMING_SNAKE_CASE : Tuple = [ ((element + mutated_hash_values[index]) % 0X1_0000_0000) for index, element in enumerate(self.hashes ) ] _SCREAMING_SNAKE_CASE : Dict = """""".join([hex(__snake_case )[2:].zfill(8 ) for value in self.hashes] ) def UpperCAmelCase_ ( self , __snake_case , __snake_case ): return 0XFFFF_FFFF & (value << (32 - rotations)) | (value >> rotations) class lowercase__ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self ): import hashlib _SCREAMING_SNAKE_CASE : Tuple = bytes("""Test String""" , """utf-8""" ) self.assertEqual(SHAaaa(__snake_case ).hash , hashlib.shaaaa(__snake_case ).hexdigest() ) def snake_case_ ( ): """simple docstring""" import doctest doctest.testmod() _SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser() parser.add_argument( """-s""" , """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument( """-f""" , """--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) _SCREAMING_SNAKE_CASE : Dict = parser.parse_args() _SCREAMING_SNAKE_CASE : Tuple = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: _SCREAMING_SNAKE_CASE : str = f.read() else: _SCREAMING_SNAKE_CASE : List[Any] = bytes(SCREAMING_SNAKE_CASE__ , """utf-8""" ) print(SHAaaa(SCREAMING_SNAKE_CASE__ ).hash ) if __name__ == "__main__": main()
200
1
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class _A ( unittest.TestCase ): def __init__( self : Optional[Any] , __magic_name__ : str , __magic_name__ : Any=7 , __magic_name__ : List[str]=3 , __magic_name__ : Tuple=30 , __magic_name__ : Dict=4_00 , __magic_name__ : int=True , __magic_name__ : int=None , __magic_name__ : int=True , __magic_name__ : Tuple=1 / 2_55 , __magic_name__ : Any=True , __magic_name__ : Any=[0.5, 0.5, 0.5] , __magic_name__ : Dict=[0.5, 0.5, 0.5] , __magic_name__ : List[str]=True , ) -> Any: """simple docstring""" __snake_case : Tuple = size if size is not None else {"shortest_edge": 18, "longest_edge": 13_33} __snake_case : Optional[int] = parent __snake_case : Any = batch_size __snake_case : Any = num_channels __snake_case : List[str] = min_resolution __snake_case : Any = max_resolution __snake_case : Optional[Any] = do_resize __snake_case : List[Any] = size __snake_case : int = do_rescale __snake_case : Any = rescale_factor __snake_case : Union[str, Any] = do_normalize __snake_case : List[str] = image_mean __snake_case : Dict = image_std __snake_case : Any = do_pad def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def lowercase__ ( self : Optional[Any] , __magic_name__ : Tuple , __magic_name__ : int=False ) -> Any: """simple docstring""" if not batched: __snake_case : Dict = image_inputs[0] if isinstance(lowerCAmelCase__ , Image.Image ): __snake_case : Optional[int] = image.size else: __snake_case : str = image.shape[1], image.shape[2] if w < h: __snake_case : Any = int(self.size["""shortest_edge"""] * h / w ) __snake_case : Optional[int] = self.size["shortest_edge"] elif w > h: __snake_case : List[str] = self.size["shortest_edge"] __snake_case : int = int(self.size["""shortest_edge"""] * w / h ) else: __snake_case : Dict = self.size["shortest_edge"] __snake_case : Union[str, Any] = self.size["shortest_edge"] else: __snake_case : Union[str, Any] = [] for image in image_inputs: __snake_case : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __snake_case : Dict = max(lowerCAmelCase__ , key=lambda __magic_name__ : item[0] )[0] __snake_case : Any = max(lowerCAmelCase__ , key=lambda __magic_name__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _A ( a__ , unittest.TestCase ): lowercase__: Dict = DetrImageProcessor if is_vision_available() else None def lowercase__ ( self : List[str] ) -> str: """simple docstring""" __snake_case : Optional[int] = DetrImageProcessingTester(self ) @property def lowercase__ ( self : Optional[Any] ) -> int: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : Tuple ) -> Dict: """simple docstring""" __snake_case : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_mean""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_std""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_rescale""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """rescale_factor""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """size""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_pad""" ) ) def lowercase__ ( self : List[Any] ) -> int: """simple docstring""" __snake_case : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 13_33} ) self.assertEqual(image_processor.do_pad , lowerCAmelCase__ ) __snake_case : Tuple = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowerCAmelCase__ ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , lowerCAmelCase__ ) def lowercase__ ( self : Dict ) -> Tuple: """simple docstring""" pass def lowercase__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" __snake_case : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __snake_case : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input __snake_case : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __snake_case : List[str] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __snake_case : List[str] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) __snake_case : Dict = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" __snake_case : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __snake_case : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input __snake_case : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __snake_case : List[Any] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __snake_case : Dict = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values __snake_case : Dict = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase__ ( self : int ) -> int: """simple docstring""" __snake_case : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input __snake_case : Optional[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __snake_case : Dict = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __snake_case : List[str] = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values __snake_case : List[str] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowercase__ ( self : str ) -> Union[str, Any]: """simple docstring""" __snake_case : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: __snake_case : Union[str, Any] = json.loads(f.read() ) __snake_case : int = {"image_id": 3_97_69, "annotations": target} # encode them __snake_case : Optional[Any] = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50""" ) __snake_case : Optional[Any] = image_processing(images=lowerCAmelCase__ , annotations=lowerCAmelCase__ , return_tensors="""pt""" ) # verify pixel values __snake_case : str = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["""pixel_values"""].shape , lowerCAmelCase__ ) __snake_case : Optional[int] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowerCAmelCase__ , atol=1E-4 ) ) # verify area __snake_case : Optional[Any] = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowerCAmelCase__ ) ) # verify boxes __snake_case : Union[str, Any] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowerCAmelCase__ ) __snake_case : Tuple = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowerCAmelCase__ , atol=1E-3 ) ) # verify image_id __snake_case : Optional[Any] = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowerCAmelCase__ ) ) # verify is_crowd __snake_case : Dict = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowerCAmelCase__ ) ) # verify class_labels __snake_case : Dict = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowerCAmelCase__ ) ) # verify orig_size __snake_case : List[Any] = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowerCAmelCase__ ) ) # verify size __snake_case : Dict = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowerCAmelCase__ ) ) @slow def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __snake_case : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: __snake_case : Optional[int] = json.loads(f.read() ) __snake_case : List[str] = {"file_name": "000000039769.png", "image_id": 3_97_69, "segments_info": target} __snake_case : Optional[int] = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them __snake_case : List[str] = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50-panoptic""" ) __snake_case : Optional[Any] = image_processing(images=lowerCAmelCase__ , annotations=lowerCAmelCase__ , masks_path=lowerCAmelCase__ , return_tensors="""pt""" ) # verify pixel values __snake_case : int = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["""pixel_values"""].shape , lowerCAmelCase__ ) __snake_case : Optional[Any] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowerCAmelCase__ , atol=1E-4 ) ) # verify area __snake_case : str = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowerCAmelCase__ ) ) # verify boxes __snake_case : List[str] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowerCAmelCase__ ) __snake_case : Optional[int] = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowerCAmelCase__ , atol=1E-3 ) ) # verify image_id __snake_case : Optional[int] = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowerCAmelCase__ ) ) # verify is_crowd __snake_case : Dict = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowerCAmelCase__ ) ) # verify class_labels __snake_case : str = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowerCAmelCase__ ) ) # verify masks __snake_case : Any = 82_28_73 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , lowerCAmelCase__ ) # verify orig_size __snake_case : Union[str, Any] = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowerCAmelCase__ ) ) # verify size __snake_case : List[str] = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowerCAmelCase__ ) )
362
'''simple docstring''' import argparse import os import torch from transformers.utils import WEIGHTS_NAME __UpperCamelCase = ["small", "medium", "large"] __UpperCamelCase = "lm_head.decoder.weight" __UpperCamelCase = "lm_head.weight" def _a ( _lowerCamelCase , _lowerCamelCase ) -> Dict: """simple docstring""" __snake_case : Optional[int] = torch.load(_lowerCamelCase ) __snake_case : Optional[int] = d.pop(_lowerCamelCase ) os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) torch.save(_lowerCamelCase , os.path.join(_lowerCamelCase , _lowerCamelCase ) ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--dialogpt_path", default=".", type=str) __UpperCamelCase = parser.parse_args() for MODEL in DIALOGPT_MODELS: __UpperCamelCase = os.path.join(args.dialogpt_path, f"""{MODEL}_ft.pkl""") __UpperCamelCase = f"""./DialoGPT-{MODEL}""" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
13
0
"""simple docstring""" import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py __A : Any = "." # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) __A : List[Any] = [ "Assert", "AssignVariableOp", "EmptyTensorList", "MergeV2Checkpoints", "ReadVariableOp", "ResourceGather", "RestoreV2", "SaveV2", "ShardedFilename", "StatefulPartitionedCall", "StaticRegexFullMatch", "VarHandleOp", ] def lowercase ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' _UpperCAmelCase = SavedModel() _UpperCAmelCase = [] with open(os.path.join(_SCREAMING_SNAKE_CASE , '''utils''' , '''tf_ops''' , '''onnx.json''' ) ) as f: _UpperCAmelCase = json.load(_SCREAMING_SNAKE_CASE )['''opsets'''] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(_SCREAMING_SNAKE_CASE )] ) with open(_SCREAMING_SNAKE_CASE , '''rb''' ) as f: saved_model.ParseFromString(f.read() ) _UpperCAmelCase = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want _UpperCAmelCase = sorted(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(_SCREAMING_SNAKE_CASE ) if strict and len(_SCREAMING_SNAKE_CASE ) > 0: raise Exception(f'Found the following incompatible ops for the opset {opset}:\n' + incompatible_ops ) elif len(_SCREAMING_SNAKE_CASE ) > 0: print(f'Found the following incompatible ops for the opset {opset}:' ) print(*_SCREAMING_SNAKE_CASE , sep='''\n''' ) else: print(f'The saved model {saved_model_path} can properly be converted with ONNX.' ) if __name__ == "__main__": __A : Optional[int] = argparse.ArgumentParser() parser.add_argument("--saved_model_path", help="Path of the saved model to check (the .pb file).") parser.add_argument( "--opset", default=12, type=int, help="The ONNX opset against which the model has to be tested." ) parser.add_argument( "--framework", choices=["onnx"], default="onnx", help="Frameworks against which to test the saved model." ) parser.add_argument( "--strict", action="store_true", help="Whether make the checking strict (raise errors) or not (raise warnings)" ) __A : List[str] = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
260
"""simple docstring""" import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return sum(param.float().sum() if '''encoder.embeddings''' not in key else 0 for key, param in state_dict.items() ) def lowercase ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue _UpperCAmelCase = key.replace('''heads.cmd.mim_head.cls.predictions''' , '''mmm_image_head''' ) _UpperCAmelCase = key.replace('''heads.cmd.mlm_head.cls.predictions''' , '''mmm_text_head''' ) _UpperCAmelCase = key.replace('''heads.cmd.itm_head.cls''' , '''itm_head''' ) _UpperCAmelCase = key.replace('''heads.cmd.itm_head.pooler''' , '''itm_head.pooler''' ) _UpperCAmelCase = key.replace('''heads.cmd.clip_head.logit_scale''' , '''flava.logit_scale''' ) _UpperCAmelCase = key.replace('''heads.fairseq_mlm.cls.predictions''' , '''mlm_head''' ) _UpperCAmelCase = key.replace('''heads.imagenet.mim_head.cls.predictions''' , '''mim_head''' ) _UpperCAmelCase = key.replace('''mm_text_projection''' , '''flava.text_to_mm_projection''' ) _UpperCAmelCase = key.replace('''mm_image_projection''' , '''flava.image_to_mm_projection''' ) _UpperCAmelCase = key.replace('''image_encoder.module''' , '''flava.image_model''' ) _UpperCAmelCase = key.replace('''text_encoder.module''' , '''flava.text_model''' ) _UpperCAmelCase = key.replace('''mm_encoder.module.encoder.cls_token''' , '''flava.multimodal_model.cls_token''' ) _UpperCAmelCase = key.replace('''mm_encoder.module''' , '''flava.multimodal_model''' ) _UpperCAmelCase = key.replace('''text_projection''' , '''flava.text_projection''' ) _UpperCAmelCase = key.replace('''image_projection''' , '''flava.image_projection''' ) _UpperCAmelCase = value.float() for key, value in codebook_state_dict.items(): _UpperCAmelCase = value return upgrade @torch.no_grad() def lowercase ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Optional[int]=None ): '''simple docstring''' if config_path is not None: _UpperCAmelCase = FlavaConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase = FlavaConfig() _UpperCAmelCase = FlavaForPreTraining(_SCREAMING_SNAKE_CASE ).eval() _UpperCAmelCase = convert_dalle_checkpoint(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , save_checkpoint=_SCREAMING_SNAKE_CASE ) if os.path.exists(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = torch.load(_SCREAMING_SNAKE_CASE , map_location='''cpu''' ) else: _UpperCAmelCase = torch.hub.load_state_dict_from_url(_SCREAMING_SNAKE_CASE , map_location='''cpu''' ) _UpperCAmelCase = upgrade_state_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) hf_model.load_state_dict(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = hf_model.state_dict() _UpperCAmelCase = count_parameters(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = count_parameters(_SCREAMING_SNAKE_CASE ) + count_parameters(_SCREAMING_SNAKE_CASE ) assert torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 ) hf_model.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __A : Dict = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--codebook_path", default=None, type=str, help="Path to flava codebook checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") __A : Optional[Any] = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
260
1
import re def _snake_case ( lowercase__ ): _lowerCamelCase : Optional[int] = re.compile(r'^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$' ) if match := re.search(lowercase__ , lowercase__ ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator("""+918827897895"""))
352
"""simple docstring""" import os import string import sys lowercase__ = 1 << 8 lowercase__ = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } lowercase__ = KEYMAP["""up"""] lowercase__ = KEYMAP["""left"""] if sys.platform == "win32": lowercase__ = [] lowercase__ = { B"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, B"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): lowercase__ = ord(str(i)) def _snake_case ( ): if os.name == "nt": import msvcrt _lowerCamelCase : Any = 'mbcs' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(lowercase__ ) == 0: # Read the keystroke _lowerCamelCase : str = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): _lowerCamelCase : List[Any] = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: _lowerCamelCase : Union[str, Any] = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(lowercase__ ) if ord(lowercase__ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) _lowerCamelCase : List[Any] = chr(KEYMAP['esc'] ) except KeyError: _lowerCamelCase : int = cha[1] else: _lowerCamelCase : Optional[int] = ch.decode(lowercase__ ) else: _lowerCamelCase : Union[str, Any] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty _lowerCamelCase : List[str] = sys.stdin.fileno() _lowerCamelCase : Tuple = termios.tcgetattr(lowercase__ ) try: tty.setraw(lowercase__ ) _lowerCamelCase : Optional[Any] = sys.stdin.read(1 ) finally: termios.tcsetattr(lowercase__ , termios.TCSADRAIN , lowercase__ ) return ch def _snake_case ( ): _lowerCamelCase : int = get_raw_chars() if ord(lowercase__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(lowercase__ ) == KEYMAP["esc"]: _lowerCamelCase : Union[str, Any] = get_raw_chars() if ord(lowercase__ ) == KEYMAP["mod_int"]: _lowerCamelCase : List[Any] = get_raw_chars() if ord(lowercase__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(lowercase__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(lowercase__ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
12
0
import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch __snake_case : List[str] = True except ImportError: __snake_case : Union[str, Any] = False try: from torch.hub import _get_torch_home __snake_case : Any = _get_torch_home() except ImportError: __snake_case : int = os.path.expanduser( os.getenv("""TORCH_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """torch""")) ) __snake_case : Optional[int] = os.path.join(torch_cache_home, """transformers""") __snake_case : Optional[int] = """https://cdn.huggingface.co""" __snake_case : Any = """https://s3.amazonaws.com/models.huggingface.co/bert""" __snake_case : str = """/""".join(str(Path(__file__).resolve()).split("""/""")[:-1]) __snake_case : Union[str, Any] = os.path.join(PATH, """config.yaml""") __snake_case : str = os.path.join(PATH, """attributes.txt""") __snake_case : int = os.path.join(PATH, """objects.txt""") __snake_case : Union[str, Any] = os.getenv("""PYTORCH_PRETRAINED_BERT_CACHE""", default_cache_path) __snake_case : Union[str, Any] = os.getenv("""PYTORCH_TRANSFORMERS_CACHE""", PYTORCH_PRETRAINED_BERT_CACHE) __snake_case : Optional[int] = os.getenv("""TRANSFORMERS_CACHE""", PYTORCH_TRANSFORMERS_CACHE) __snake_case : Optional[Any] = """pytorch_model.bin""" __snake_case : List[Any] = """config.yaml""" def _UpperCAmelCase ( a__=OBJECTS , a__=ATTRIBUTES): '''simple docstring''' a_ : List[str] = [] with open(a__) as f: for object in f.readlines(): vg_classes.append(object.split(""",""")[0].lower().strip()) a_ : Union[str, Any] = [] with open(a__) as f: for object in f.readlines(): vg_attrs.append(object.split(""",""")[0].lower().strip()) return vg_classes, vg_attrs def _UpperCAmelCase ( a__): '''simple docstring''' a_ : Any = OrderedDict() with open(a__ , """rb""") as f: a_ : Optional[Any] = pkl.load(a__)["""model"""] for k in copy.deepcopy(list(ckp.keys())): a_ : List[Any] = ckp.pop(a__) if isinstance(a__ , np.ndarray): a_ : List[str] = torch.tensor(a__) else: assert isinstance(a__ , torch.tensor), type(a__) a_ : Optional[int] = v return r class A__: """simple docstring""" _A : List[Any] = {} def __init__( self , _lowercase , _lowercase = "root" , _lowercase=0 ) -> str: a_ : Optional[int] = name a_ : Optional[int] = level a_ : Dict = {} for k, v in dictionary.items(): if v is None: raise ValueError() a_ : List[str] = copy.deepcopy(_lowercase ) a_ : List[Any] = copy.deepcopy(_lowercase ) if isinstance(_lowercase , _lowercase ): a_ : Dict = Config(_lowercase , name=_lowercase , level=level + 1 ) a_ : str = v setattr(self , _lowercase , _lowercase ) a_ : List[Any] = d def __repr__( self ) -> List[Any]: return str(list((self._pointer.keys()) ) ) def __setattr__( self , _lowercase , _lowercase ) -> Optional[int]: a_ : Optional[Any] = val a_ : Union[str, Any] = val a_ : Dict = key.split(""".""" ) a_ : Optional[Any] = len(_lowercase ) - 1 a_ : List[Any] = self._pointer if len(_lowercase ) > 1: for i, l in enumerate(_lowercase ): if hasattr(self , _lowercase ) and isinstance(getattr(self , _lowercase ) , _lowercase ): setattr(getattr(self , _lowercase ) , """.""".join(levels[i:] ) , _lowercase ) if l == last_level: a_ : Optional[Any] = val else: a_ : Optional[int] = pointer[l] def UpperCamelCase__ ( self ) -> Tuple: return self._pointer def UpperCamelCase__ ( self , _lowercase , _lowercase ) -> List[Any]: with open(F'''{file_name}''' , """w""" ) as stream: dump(_lowercase , _lowercase ) def UpperCamelCase__ ( self , _lowercase , _lowercase ) -> Tuple: with open(F'''{file_name}''' , """w""" ) as stream: json.dump(_lowercase , _lowercase ) @staticmethod def UpperCamelCase__ ( _lowercase ) -> int: with open(_lowercase ) as stream: a_ : List[Any] = load(_lowercase , Loader=_lowercase ) return data def __str__( self ) -> Optional[int]: a_ : Tuple = """ """ if self._name != "root": a_ : List[str] = F'''{t * (self._level-1)}{self._name}:\n''' else: a_ : int = """""" a_ : Dict = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(_lowercase , _lowercase ): r += F'''{t * (self._level)}{v}\n''' self._level += 1 else: r += F'''{t * (self._level)}{k}: {v} ({type(_lowercase ).__name__})\n''' a_ : Union[str, Any] = level return r[:-1] @classmethod def UpperCamelCase__ ( cls , _lowercase , **_lowercase ) -> Optional[int]: a_ , a_ : List[str] = cls.get_config_dict(_lowercase , **_lowercase ) return cls(_lowercase ) @classmethod def UpperCamelCase__ ( cls , _lowercase , **_lowercase ) -> Optional[Any]: a_ : Optional[int] = kwargs.pop("""cache_dir""" , _lowercase ) a_ : Dict = kwargs.pop("""force_download""" , _lowercase ) a_ : Optional[Any] = kwargs.pop("""resume_download""" , _lowercase ) a_ : str = kwargs.pop("""proxies""" , _lowercase ) a_ : List[str] = kwargs.pop("""local_files_only""" , _lowercase ) if os.path.isdir(_lowercase ): a_ : Any = os.path.join(_lowercase , _lowercase ) elif os.path.isfile(_lowercase ) or is_remote_url(_lowercase ): a_ : str = pretrained_model_name_or_path else: a_ : List[Any] = hf_bucket_url(_lowercase , filename=_lowercase , use_cdn=_lowercase ) try: # Load from URL or cache if already cached a_ : Tuple = cached_path( _lowercase , cache_dir=_lowercase , force_download=_lowercase , proxies=_lowercase , resume_download=_lowercase , local_files_only=_lowercase , ) # Load config dict if resolved_config_file is None: raise EnvironmentError a_ : Optional[Any] = Config.load_yaml(_lowercase ) except EnvironmentError: a_ : Optional[Any] = """Can't load config for""" raise EnvironmentError(_lowercase ) if resolved_config_file == config_file: print("""loading configuration file from path""" ) else: print("""loading configuration file cache""" ) return Config.load_yaml(_lowercase ), kwargs def _UpperCAmelCase ( a__): '''simple docstring''' a_ : int = torch.load("""dump.pt""" , map_location=in_tensor.device) a_ : int = in_tensor.numpy() a_ : List[str] = out_tensor.numpy()[0] print(na.shape , na[0, 0, :5]) print(na.shape , na[0, 0, :5]) assert np.allclose(a__ , a__ , rtol=0.01 , atol=0.1), ( f'''{sum([1 for x in np.isclose(a__ , a__ , rtol=0.01 , atol=0.1).flatten() if x is False])/len(na.flatten())*1_0_0:.4f} %''' " element-wise mismatch" ) raise Exception("""tensors are all good""") # Hugging face functions below def _UpperCAmelCase ( a__): '''simple docstring''' a_ : str = urlparse(a__) return parsed.scheme in ("http", "https") def _UpperCAmelCase ( a__ , a__ , a__=True): '''simple docstring''' a_ : List[str] = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX a_ : Dict = """/""" not in model_id if legacy_format: return f'''{endpoint}/{model_id}-{filename}''' else: return f'''{endpoint}/{model_id}/{filename}''' def _UpperCAmelCase ( a__ , a__ , a__=None , a__=0 , a__=None , ): '''simple docstring''' a_ : Optional[int] = """python/{}""".format(sys.version.split()[0]) if _torch_available: ua += "; torch/{}".format(torch.__version__) if isinstance(a__ , a__): ua += "; " + "; ".join("""{}/{}""".format(a__ , a__) for k, v in user_agent.items()) elif isinstance(a__ , a__): ua += "; " + user_agent a_ : Tuple = {"""user-agent""": ua} if resume_size > 0: a_ : Union[str, Any] = """bytes=%d-""" % (resume_size,) a_ : int = requests.get(a__ , stream=a__ , proxies=a__ , headers=a__) if response.status_code == 4_1_6: # Range not satisfiable return a_ : List[Any] = response.headers.get("""Content-Length""") a_ : Tuple = resume_size + int(a__) if content_length is not None else None a_ : Union[str, Any] = tqdm( unit="""B""" , unit_scale=a__ , total=a__ , initial=a__ , desc="""Downloading""" , ) for chunk in response.iter_content(chunk_size=1_0_2_4): if chunk: # filter out keep-alive new chunks progress.update(len(a__)) temp_file.write(a__) progress.close() def _UpperCAmelCase ( a__ , a__=None , a__=False , a__=None , a__=1_0 , a__=False , a__=None , a__=False , ): '''simple docstring''' if cache_dir is None: a_ : str = TRANSFORMERS_CACHE if isinstance(a__ , a__): a_ : Tuple = str(a__) os.makedirs(a__ , exist_ok=a__) a_ : int = None if not local_files_only: try: a_ : List[str] = requests.head(a__ , allow_redirects=a__ , proxies=a__ , timeout=a__) if response.status_code == 2_0_0: a_ : Dict = response.headers.get("""ETag""") except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass a_ : Any = url_to_filename(a__ , a__) # get cache path to put the file a_ : int = os.path.join(a__ , a__) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(a__): return cache_path else: a_ : List[str] = [ file for file in fnmatch.filter(os.listdir(a__) , filename + """.*""") if not file.endswith(""".json""") and not file.endswith(""".lock""") ] if len(a__) > 0: return os.path.join(a__ , matching_files[-1]) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( """Cannot find the requested files in the cached path and outgoing traffic has been""" """ disabled. To enable model look-ups and downloads online, set 'local_files_only'""" """ to False.""") return None # From now on, etag is not None. if os.path.exists(a__) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. a_ : List[Any] = cache_path + """.lock""" with FileLock(a__): # If the download just completed while the lock was activated. if os.path.exists(a__) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: a_ : Dict = cache_path + """.incomplete""" @contextmanager def _resumable_file_manager(): with open(a__ , """a+b""") as f: yield f a_ : List[Any] = _resumable_file_manager if os.path.exists(a__): a_ : List[str] = os.stat(a__).st_size else: a_ : Any = 0 else: a_ : int = partial(tempfile.NamedTemporaryFile , dir=a__ , delete=a__) a_ : Optional[Any] = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( """%s not found in cache or force_download set to True, downloading to %s""" , a__ , temp_file.name , ) http_get( a__ , a__ , proxies=a__ , resume_size=a__ , user_agent=a__ , ) os.replace(temp_file.name , a__) a_ : Tuple = {"""url""": url, """etag""": etag} a_ : Optional[Any] = cache_path + """.json""" with open(a__ , """w""") as meta_file: json.dump(a__ , a__) return cache_path def _UpperCAmelCase ( a__ , a__=None): '''simple docstring''' a_ : Dict = url.encode("""utf-8""") a_ : str = shaaaa(a__) a_ : Union[str, Any] = url_hash.hexdigest() if etag: a_ : Dict = etag.encode("""utf-8""") a_ : List[Any] = shaaaa(a__) filename += "." + etag_hash.hexdigest() if url.endswith(""".h5"""): filename += ".h5" return filename def _UpperCAmelCase ( a__ , a__=None , a__=False , a__=None , a__=False , a__=None , a__=False , a__=False , a__=False , ): '''simple docstring''' if cache_dir is None: a_ : Any = TRANSFORMERS_CACHE if isinstance(a__ , a__): a_ : str = str(a__) if isinstance(a__ , a__): a_ : List[str] = str(a__) if is_remote_url(a__): # URL, so get it from the cache (downloading if necessary) a_ : str = get_from_cache( a__ , cache_dir=a__ , force_download=a__ , proxies=a__ , resume_download=a__ , user_agent=a__ , local_files_only=a__ , ) elif os.path.exists(a__): # File, and it exists. a_ : Union[str, Any] = url_or_filename elif urlparse(a__).scheme == "": # File, but it doesn't exist. raise EnvironmentError("""file {} not found""".format(a__)) else: # Something unknown raise ValueError("""unable to parse {} as a URL or as a local path""".format(a__)) if extract_compressed_file: if not is_zipfile(a__) and not tarfile.is_tarfile(a__): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" a_ , a_ : Dict = os.path.split(a__) a_ : Dict = output_file.replace(""".""" , """-""") + """-extracted""" a_ : Any = os.path.join(a__ , a__) if os.path.isdir(a__) and os.listdir(a__) and not force_extract: return output_path_extracted # Prevent parallel extractions a_ : Tuple = output_path + """.lock""" with FileLock(a__): shutil.rmtree(a__ , ignore_errors=a__) os.makedirs(a__) if is_zipfile(a__): with ZipFile(a__ , """r""") as zip_file: zip_file.extractall(a__) zip_file.close() elif tarfile.is_tarfile(a__): a_ : str = tarfile.open(a__) tar_file.extractall(a__) tar_file.close() else: raise EnvironmentError("""Archive format of {} could not be identified""".format(a__)) return output_path_extracted return output_path def _UpperCAmelCase ( a__ , a__=","): '''simple docstring''' assert isinstance(a__ , a__) if os.path.isfile(a__): with open(a__) as f: a_ : Optional[Any] = eval(f.read()) else: a_ : Union[str, Any] = requests.get(a__) try: a_ : List[Any] = requests.json() except Exception: a_ : Tuple = req.content.decode() assert data is not None, "could not connect" try: a_ : Tuple = eval(a__) except Exception: a_ : str = data.split("""\n""") req.close() return data def _UpperCAmelCase ( a__): '''simple docstring''' a_ : List[Any] = requests.get(a__) a_ : Optional[Any] = np.array(Image.open(BytesIO(response.content))) return img def _UpperCAmelCase ( a__): '''simple docstring''' a_ : Union[str, Any] = url.split("""/""")[-1] if fn not in os.listdir(os.getcwd()): wget.download(a__) with open(a__ , """rb""") as stream: a_ : Dict = pkl.load(a__) a_ : List[str] = weights.pop("""model""") a_ : Dict = {} for k, v in model.items(): a_ : Optional[int] = torch.from_numpy(a__) if "running_var" in k: a_ : Optional[int] = torch.tensor([0]) a_ : List[str] = k.replace("""running_var""" , """num_batches_tracked""") a_ : List[Any] = zero return new def _UpperCAmelCase ( ): '''simple docstring''' print(f'''{os.path.abspath(os.path.join(a__ , os.pardir))}/demo.ipynb''') def _UpperCAmelCase ( a__ , a__="RGB"): '''simple docstring''' assert isinstance(a__ , a__) if os.path.isfile(a__): a_ : str = cva.imread(a__) else: a_ : Optional[Any] = get_image_from_url(a__) assert img is not None, f'''could not connect to: {im}''' a_ : Dict = cva.cvtColor(a__ , cva.COLOR_BGR2RGB) if input_format == "RGB": a_ : List[Any] = img[:, :, ::-1] return img def _UpperCAmelCase ( a__ , a__=1): '''simple docstring''' return (images[i : i + batch] for i in range(0 , len(a__) , a__))
248
import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class A__(a_, unittest.TestCase ): """simple docstring""" _A : Optional[Any] = MvpTokenizer _A : List[Any] = MvpTokenizerFast _A : Dict = True _A : Optional[Any] = filter_roberta_detectors def UpperCamelCase__ ( self ) -> Union[str, Any]: super().setUp() a_ : Dict = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] a_ : int = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) a_ : List[Any] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] a_ : Optional[int] = {"""unk_token""": """<unk>"""} a_ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) a_ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowercase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_lowercase ) ) def UpperCamelCase__ ( self , **_lowercase ) -> Optional[Any]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowercase ) def UpperCamelCase__ ( self , **_lowercase ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **_lowercase ) def UpperCamelCase__ ( self , _lowercase ) -> int: return "lower newer", "lower newer" @cached_property def UpperCamelCase__ ( self ) -> List[Any]: return MvpTokenizer.from_pretrained("""RUCAIBox/mvp""" ) @cached_property def UpperCamelCase__ ( self ) -> Union[str, Any]: return MvpTokenizerFast.from_pretrained("""RUCAIBox/mvp""" ) @require_torch def UpperCamelCase__ ( self ) -> List[str]: a_ : List[Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] a_ : List[str] = [0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: a_ : Optional[Any] = tokenizer(_lowercase , max_length=len(_lowercase ) , padding=_lowercase , return_tensors="""pt""" ) self.assertIsInstance(_lowercase , _lowercase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) a_ : Dict = batch.input_ids.tolist()[0] self.assertListEqual(_lowercase , _lowercase ) # Test that special tokens are reset @require_torch def UpperCamelCase__ ( self ) -> Union[str, Any]: a_ : List[str] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: a_ : List[str] = tokenizer(_lowercase , padding=_lowercase , return_tensors="""pt""" ) # check if input_ids are returned and no labels self.assertIn("""input_ids""" , _lowercase ) self.assertIn("""attention_mask""" , _lowercase ) self.assertNotIn("""labels""" , _lowercase ) self.assertNotIn("""decoder_attention_mask""" , _lowercase ) @require_torch def UpperCamelCase__ ( self ) -> Union[str, Any]: a_ : List[Any] = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: a_ : int = tokenizer(text_target=_lowercase , max_length=32 , padding="""max_length""" , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) @require_torch def UpperCamelCase__ ( self ) -> Any: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: a_ : int = tokenizer( ["""I am a small frog""" * 1_024, """I am a small frog"""] , padding=_lowercase , truncation=_lowercase , return_tensors="""pt""" ) self.assertIsInstance(_lowercase , _lowercase ) self.assertEqual(batch.input_ids.shape , (2, 1_024) ) @require_torch def UpperCamelCase__ ( self ) -> List[str]: a_ : Tuple = ["""A long paragraph for summarization."""] a_ : Optional[Any] = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: a_ : List[Any] = tokenizer(_lowercase , text_target=_lowercase , return_tensors="""pt""" ) a_ : Union[str, Any] = inputs["""input_ids"""] a_ : Dict = inputs["""labels"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def UpperCamelCase__ ( self ) -> int: pass def UpperCamelCase__ ( self ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): a_ : List[str] = self.rust_tokenizer_class.from_pretrained(_lowercase , **_lowercase ) a_ : List[str] = self.tokenizer_class.from_pretrained(_lowercase , **_lowercase ) a_ : Optional[int] = """A, <mask> AllenNLP sentence.""" a_ : Union[str, Any] = tokenizer_r.encode_plus(_lowercase , add_special_tokens=_lowercase , return_token_type_ids=_lowercase ) a_ : Tuple = tokenizer_p.encode_plus(_lowercase , add_special_tokens=_lowercase , return_token_type_ids=_lowercase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) a_ : List[Any] = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) a_ : str = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( _lowercase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( _lowercase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
248
1
import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: str , lowerCAmelCase: str , **lowerCAmelCase: Optional[Any] ) -> Tuple: _UpperCAmelCase : int = AutoConfig.from_pretrained(lowerCAmelCase , **lowerCAmelCase ) _UpperCAmelCase : Optional[int] = AutoModelForSeqaSeqLM.from_config(lowerCAmelCase ) model.save_pretrained(lowerCAmelCase ) AutoTokenizer.from_pretrained(lowerCAmelCase ).save_pretrained(lowerCAmelCase ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
189
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate SCREAMING_SNAKE_CASE_ = trt.Logger(trt.Logger.WARNING) SCREAMING_SNAKE_CASE_ = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) SCREAMING_SNAKE_CASE_ = logging.getLogger(__name__) SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--onnx_model_path', default=None, type=str, required=True, help='Path to ONNX model: ', ) parser.add_argument( '--output_dir', default=None, type=str, required=True, help='The output directory where the model checkpoints and predictions will be written.', ) # Other parameters parser.add_argument( '--tokenizer_name', default='', type=str, required=True, help='Pretrained tokenizer name or path if not the same as model_name', ) parser.add_argument( '--version_2_with_negative', action='store_true', help='If true, the SQuAD examples contain some that do not have an answer.', ) parser.add_argument( '--null_score_diff_threshold', type=float, default=0.0, help='If null_score - best_non_null is greater than the threshold predict null.', ) parser.add_argument( '--max_seq_length', default=384, type=int, help=( 'The maximum total input sequence length after WordPiece tokenization. Sequences ' 'longer than this will be truncated, and sequences shorter than this will be padded.' ), ) parser.add_argument( '--doc_stride', default=128, type=int, help='When splitting up a long document into chunks, how much stride to take between chunks.', ) parser.add_argument('--per_device_eval_batch_size', default=8, type=int, help='Batch size per GPU/CPU for evaluation.') parser.add_argument( '--n_best_size', default=20, type=int, help='The total number of n-best predictions to generate in the nbest_predictions.json output file.', ) parser.add_argument( '--max_answer_length', default=30, type=int, help=( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ), ) parser.add_argument('--seed', type=int, default=42, help='random seed for initialization') parser.add_argument( '--dataset_name', type=str, default=None, required=True, help='The name of the dataset to use (via the datasets library).', ) parser.add_argument( '--dataset_config_name', type=str, default=None, help='The configuration name of the dataset to use (via the datasets library).', ) parser.add_argument( '--preprocessing_num_workers', type=int, default=4, help='A csv or a json file containing the training data.' ) parser.add_argument('--overwrite_cache', action='store_true', help='Overwrite the cached training and evaluation sets') parser.add_argument( '--fp16', action='store_true', help='Whether to use 16-bit (mixed) precision instead of 32-bit', ) parser.add_argument( '--int8', action='store_true', help='Whether to use INT8', ) SCREAMING_SNAKE_CASE_ = parser.parse_args() if args.tokenizer_name: SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) logger.info('Training/evaluation parameters %s', args) SCREAMING_SNAKE_CASE_ = args.per_device_eval_batch_size SCREAMING_SNAKE_CASE_ = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = 'temp_engine/bert-fp32.engine' if args.fpaa: SCREAMING_SNAKE_CASE_ = 'temp_engine/bert-fp16.engine' if args.inta: SCREAMING_SNAKE_CASE_ = 'temp_engine/bert-int8.engine' # import ONNX file if not os.path.exists('temp_engine'): os.makedirs('temp_engine') SCREAMING_SNAKE_CASE_ = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, 'rb') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network SCREAMING_SNAKE_CASE_ = [network.get_input(i) for i in range(network.num_inputs)] SCREAMING_SNAKE_CASE_ = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: SCREAMING_SNAKE_CASE_ = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) SCREAMING_SNAKE_CASE_ = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) SCREAMING_SNAKE_CASE_ = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, 'wb') as f: f.write(engine.serialize()) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: List[str] , lowerCAmelCase: Any , lowerCAmelCase: str , lowerCAmelCase: str , lowerCAmelCase: List[str] , lowerCAmelCase: Dict , lowerCAmelCase: Optional[int] ) -> List[Any]: _UpperCAmelCase : Dict = np.asarray(inputs["input_ids"] , dtype=np.intaa ) _UpperCAmelCase : List[str] = np.asarray(inputs["attention_mask"] , dtype=np.intaa ) _UpperCAmelCase : Union[str, Any] = np.asarray(inputs["token_type_ids"] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , lowerCAmelCase ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , lowerCAmelCase ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , lowerCAmelCase ) # start time _UpperCAmelCase : Dict = time.time() # Run inference context.execute_async( bindings=[int(lowerCAmelCase ) for d_inp in d_inputs] + [int(lowerCAmelCase ), int(lowerCAmelCase )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) cuda.memcpy_dtoh_async(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Synchronize the stream and take time stream.synchronize() # end time _UpperCAmelCase : Any = time.time() _UpperCAmelCase : Any = end_time - start_time _UpperCAmelCase : Optional[int] = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. SCREAMING_SNAKE_CASE_ = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. SCREAMING_SNAKE_CASE_ = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('Evaluation requires a dataset name') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. SCREAMING_SNAKE_CASE_ = raw_datasets['validation'].column_names SCREAMING_SNAKE_CASE_ = 'question' if 'question' in column_names else column_names[0] SCREAMING_SNAKE_CASE_ = 'context' if 'context' in column_names else column_names[1] SCREAMING_SNAKE_CASE_ = 'answers' if 'answers' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). SCREAMING_SNAKE_CASE_ = tokenizer.padding_side == 'right' if args.max_seq_length > tokenizer.model_max_length: logger.warning( F'''The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the''' F'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) SCREAMING_SNAKE_CASE_ = min(args.max_seq_length, tokenizer.model_max_length) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: str ) -> Any: # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace _UpperCAmelCase : Optional[Any] = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. _UpperCAmelCase : List[str] = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="only_second" if pad_on_right else "only_first" , max_length=lowerCAmelCase , stride=args.doc_stride , return_overflowing_tokens=lowerCAmelCase , return_offsets_mapping=lowerCAmelCase , padding="max_length" , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. _UpperCAmelCase : List[Any] = tokenized_examples.pop("overflow_to_sample_mapping" ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. _UpperCAmelCase : Tuple = [] for i in range(len(tokenized_examples["input_ids"] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). _UpperCAmelCase : Tuple = tokenized_examples.sequence_ids(lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. _UpperCAmelCase : List[str] = sample_mapping[i] tokenized_examples["example_id"].append(examples["id"][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. _UpperCAmelCase : Any = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["offset_mapping"][i] ) ] return tokenized_examples SCREAMING_SNAKE_CASE_ = raw_datasets['validation'] # Validation Feature Creation SCREAMING_SNAKE_CASE_ = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='Running tokenizer on validation dataset', ) SCREAMING_SNAKE_CASE_ = default_data_collator SCREAMING_SNAKE_CASE_ = eval_dataset.remove_columns(['example_id', 'offset_mapping']) SCREAMING_SNAKE_CASE_ = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Any , lowerCAmelCase: Dict , lowerCAmelCase: str , lowerCAmelCase: Optional[Any]="eval" ) -> Union[str, Any]: # Post-processing: we match the start logits and end logits to answers in the original context. _UpperCAmelCase : Tuple = postprocess_qa_predictions( examples=lowerCAmelCase , features=lowerCAmelCase , predictions=lowerCAmelCase , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=lowerCAmelCase , ) # Format the result to the format the metric expects. if args.version_2_with_negative: _UpperCAmelCase : Optional[int] = [ {"id": k, "prediction_text": v, "no_answer_probability": 0.0} for k, v in predictions.items() ] else: _UpperCAmelCase : Optional[Any] = [{"id": k, "prediction_text": v} for k, v in predictions.items()] _UpperCAmelCase : Optional[int] = [{"id": ex["id"], "answers": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=lowerCAmelCase , label_ids=lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = load_metric('squad_v2' if args.version_2_with_negative else 'squad') # Evaluation! logger.info('Loading ONNX model %s for evaluation', args.onnx_model_path) with open(engine_name, 'rb') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: str ) -> List[str]: return trt.volume(engine.get_binding_shape(lowerCAmelCase ) ) * engine.get_binding_dtype(lowerCAmelCase ).itemsize # Allocate device memory for inputs and outputs. SCREAMING_SNAKE_CASE_ = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer SCREAMING_SNAKE_CASE_ = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) SCREAMING_SNAKE_CASE_ = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) SCREAMING_SNAKE_CASE_ = cuda.mem_alloc(h_outputa.nbytes) SCREAMING_SNAKE_CASE_ = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. SCREAMING_SNAKE_CASE_ = cuda.Stream() # Evaluation logger.info('***** Running Evaluation *****') logger.info(F''' Num examples = {len(eval_dataset)}''') logger.info(F''' Batch size = {args.per_device_eval_batch_size}''') SCREAMING_SNAKE_CASE_ = 0.0 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = timeit.default_timer() SCREAMING_SNAKE_CASE_ = None for step, batch in enumerate(eval_dataloader): SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = outputs SCREAMING_SNAKE_CASE_ = torch.tensor(start_logits) SCREAMING_SNAKE_CASE_ = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered SCREAMING_SNAKE_CASE_ = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) SCREAMING_SNAKE_CASE_ = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) SCREAMING_SNAKE_CASE_ = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) SCREAMING_SNAKE_CASE_ = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: SCREAMING_SNAKE_CASE_ = nested_truncate(all_preds, len(eval_dataset)) SCREAMING_SNAKE_CASE_ = timeit.default_timer() - start_time logger.info(' Evaluation done in total %f secs (%f sec per example)', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('Average Inference Time = {:.3f} ms'.format(total_time * 1000 / niter)) logger.info('Total Inference Time = {:.3f} ms'.format(total_time * 1000)) logger.info('Total Number of Inference = %d', niter) SCREAMING_SNAKE_CASE_ = post_processing_function(eval_examples, eval_dataset, all_preds) SCREAMING_SNAKE_CASE_ = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(F'''Evaluation metrics: {eval_metric}''')
189
1
import re def _a ( lowerCamelCase ): lowerCamelCase : Optional[int] = re.compile( R"""^(?:0|94|\+94|0{2}94)""" R"""7(0|1|2|4|5|6|7|8)""" R"""(-| |)""" R"""\d{7}$""" ) return bool(re.search(_lowercase, _lowercase ) ) if __name__ == "__main__": _lowerCamelCase ="""0094702343221""" print(is_sri_lankan_phone_number(phone))
287
"""simple docstring""" from __future__ import annotations from collections import Counter from random import random class lowerCamelCase : '''simple docstring''' def __init__( self: Tuple ) -> Optional[Any]: snake_case_ :Optional[int] = {} def lowerCAmelCase_ ( self: Dict , snake_case: str ) -> None: snake_case_ :str = {} def lowerCAmelCase_ ( self: Optional[int] , snake_case: str , snake_case: str , snake_case: float ) -> None: if nodea not in self.connections: self.add_node(snake_case ) if nodea not in self.connections: self.add_node(snake_case ) snake_case_ :Dict = probability def lowerCAmelCase_ ( self: List[Any] ) -> list[str]: return list(self.connections ) def lowerCAmelCase_ ( self: Any , snake_case: str ) -> str: snake_case_ :Optional[Any] = 0 snake_case_ :List[str] = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def A_ ( _lowercase, _lowercase, _lowercase ): '''simple docstring''' snake_case_ :List[str] = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(_lowercase, _lowercase, _lowercase ) snake_case_ :int = Counter(graph.get_nodes() ) snake_case_ :Optional[Any] = start for _ in range(_lowercase ): snake_case_ :Tuple = graph.transition(_lowercase ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
66
0
import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput lowercase__ :List[Any] = "scheduler_config.json" class lowercase ( SCREAMING_SNAKE_CASE__ ): lowercase_ : Optional[int] =1 lowercase_ : Tuple =2 lowercase_ : List[Any] =3 lowercase_ : List[Any] =4 lowercase_ : List[Any] =5 @dataclass class lowercase ( SCREAMING_SNAKE_CASE__ ): lowercase_ : jnp.ndarray class lowercase : lowercase_ : Dict =SCHEDULER_CONFIG_NAME lowercase_ : List[str] =['''dtype'''] lowercase_ : Any =[] lowercase_ : str =True @classmethod def A__ ( cls ,A__ = None ,A__ = None ,A__=False ,**A__ ,): lowercase , lowercase = cls.load_config( pretrained_model_name_or_path=A__ ,subfolder=A__ ,return_unused_kwargs=A__ ,**A__ ,) lowercase , lowercase = cls.from_config(A__ ,return_unused_kwargs=A__ ,**A__) if hasattr(A__ ,'''create_state''') and getattr(A__ ,'''has_state''' ,A__): lowercase = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def A__ ( self ,A__ ,A__ = False ,**A__): self.save_config(save_directory=A__ ,push_to_hub=A__ ,**A__) @property def A__ ( self): return self._get_compatibles() @classmethod def A__ ( cls): lowercase = list(set([cls.__name__] + cls._compatibles)) lowercase = importlib.import_module(__name__.split('''.''')[0]) lowercase = [ getattr(A__ ,A__) for c in compatible_classes_str if hasattr(A__ ,A__) ] return compatible_classes def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' assert len(lowerCAmelCase__ ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(lowerCAmelCase__ ) - x.ndim) ) , lowerCAmelCase__ ) def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__=0.9_99 , lowerCAmelCase__=jnp.floataa ): '''simple docstring''' def alpha_bar(lowerCAmelCase__ ): return math.cos((time_step + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 lowercase = [] for i in range(lowerCAmelCase__ ): lowercase = i / num_diffusion_timesteps lowercase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(lowerCAmelCase__ ) / alpha_bar(lowerCAmelCase__ ) , lowerCAmelCase__ ) ) return jnp.array(lowerCAmelCase__ , dtype=lowerCAmelCase__ ) @flax.struct.dataclass class lowercase : lowercase_ : jnp.ndarray lowercase_ : jnp.ndarray lowercase_ : jnp.ndarray @classmethod def A__ ( cls ,A__): lowercase = scheduler.config if config.trained_betas is not None: lowercase = jnp.asarray(config.trained_betas ,dtype=scheduler.dtype) elif config.beta_schedule == "linear": lowercase = jnp.linspace(config.beta_start ,config.beta_end ,config.num_train_timesteps ,dtype=scheduler.dtype) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowercase = ( jnp.linspace( config.beta_start**0.5 ,config.beta_end**0.5 ,config.num_train_timesteps ,dtype=scheduler.dtype) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowercase = betas_for_alpha_bar(config.num_train_timesteps ,dtype=scheduler.dtype) else: raise NotImplementedError( f'beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}') lowercase = 1.0 - betas lowercase = jnp.cumprod(A__ ,axis=0) return cls( alphas=A__ ,betas=A__ ,alphas_cumprod=A__ ,) def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase = state.alphas_cumprod lowercase = alphas_cumprod[timesteps] ** 0.5 lowercase = sqrt_alpha_prod.flatten() lowercase = broadcast_to_shape_from_left(lowerCAmelCase__ , original_samples.shape ) lowercase = (1 - alphas_cumprod[timesteps]) ** 0.5 lowercase = sqrt_one_minus_alpha_prod.flatten() lowercase = broadcast_to_shape_from_left(lowerCAmelCase__ , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase , lowercase = get_sqrt_alpha_prod(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase , lowercase = get_sqrt_alpha_prod(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
97
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) lowercase__ :str = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ :str = ["ViTFeatureExtractor"] lowercase__ :int = ["ViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ :int = [ "VIT_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTForImageClassification", "ViTForMaskedImageModeling", "ViTModel", "ViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ :Any = [ "TFViTForImageClassification", "TFViTModel", "TFViTPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ :Optional[int] = [ "FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys lowercase__ :Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
97
1
import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger _UpperCAmelCase : List[Any] = get_logger(__name__) _UpperCAmelCase : Tuple = R"\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n" class lowercase : @add_start_docstrings(A_ ) def __call__( self , A_ , A_ ) -> jnp.ndarray: """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class lowercase : @add_start_docstrings(A_ ) def __call__( self , A_ , A_ ) -> jnp.ndarray: """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class lowercase ( _SCREAMING_SNAKE_CASE ): @add_start_docstrings(A_ ) def __call__( self , A_ , A_ , A_ , **A_ ) -> jnp.ndarray: """simple docstring""" for processor in self: UpperCamelCase = inspect.signature(processor.__call__ ).parameters if len(A_ ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( F'''Make sure that all the required parameters: {list(function_args.keys() )} for ''' F'''{processor.__class__} are passed to the logits processor.''' ) UpperCamelCase = processor(A_ , A_ , A_ , **A_ ) else: UpperCamelCase = processor(A_ , A_ , A_ ) return scores class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ ) -> Tuple: """simple docstring""" if not isinstance(A_ , A_ ) or not (temperature > 0): raise ValueError(F'''`temperature` has to be a strictly positive float, but is {temperature}''' ) UpperCamelCase = temperature def __call__( self , A_ , A_ , A_ ) -> jnp.ndarray: """simple docstring""" UpperCamelCase = scores / self.temperature return scores class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ , A_ = -float('Inf' ) , A_ = 1 ) -> List[Any]: """simple docstring""" if not isinstance(A_ , A_ ) or (top_p < 0 or top_p > 1.0): raise ValueError(F'''`top_p` has to be a float > 0 and < 1, but is {top_p}''' ) if not isinstance(A_ , A_ ) or (min_tokens_to_keep < 1): raise ValueError(F'''`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}''' ) UpperCamelCase = top_p UpperCamelCase = filter_value UpperCamelCase = min_tokens_to_keep def __call__( self , A_ , A_ , A_ ) -> jnp.ndarray: """simple docstring""" UpperCamelCase , UpperCamelCase = lax.top_k(A_ , scores.shape[-1] ) UpperCamelCase = jnp.full_like(A_ , self.filter_value ) UpperCamelCase = jax.nn.softmax(A_ , axis=-1 ).cumsum(axis=-1 ) UpperCamelCase = cumulative_probs < self.top_p # include the token that is higher than top_p as well UpperCamelCase = jnp.roll(A_ , 1 ) score_mask |= score_mask.at[:, 0].set(A_ ) # min tokens to keep UpperCamelCase = score_mask.at[:, : self.min_tokens_to_keep].set(A_ ) UpperCamelCase = jnp.where(A_ , A_ , A_ ) UpperCamelCase = jax.lax.sort_key_val(A_ , A_ )[-1] return next_scores class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ , A_ = -float('Inf' ) , A_ = 1 ) -> List[str]: """simple docstring""" if not isinstance(A_ , A_ ) or top_k <= 0: raise ValueError(F'''`top_k` has to be a strictly positive integer, but is {top_k}''' ) UpperCamelCase = max(A_ , A_ ) UpperCamelCase = filter_value def __call__( self , A_ , A_ , A_ ) -> jnp.ndarray: """simple docstring""" UpperCamelCase , UpperCamelCase = scores.shape UpperCamelCase = jnp.full(batch_size * vocab_size , self.filter_value ) UpperCamelCase = min(self.top_k , scores.shape[-1] ) # Safety check UpperCamelCase , UpperCamelCase = lax.top_k(A_ , A_ ) UpperCamelCase = jnp.broadcast_to((jnp.arange(A_ ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() UpperCamelCase = topk_scores.flatten() UpperCamelCase = topk_indices.flatten() + shift UpperCamelCase = next_scores_flat.at[topk_indices_flat].set(A_ ) UpperCamelCase = next_scores_flat.reshape(A_ , A_ ) return next_scores class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ ) -> List[Any]: """simple docstring""" UpperCamelCase = bos_token_id def __call__( self , A_ , A_ , A_ ) -> jnp.ndarray: """simple docstring""" UpperCamelCase = jnp.full(scores.shape , -float('inf' ) ) UpperCamelCase = 1 - jnp.bool_(cur_len - 1 ) UpperCamelCase = jnp.where(A_ , new_scores.at[:, self.bos_token_id].set(0 ) , A_ ) return scores class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ , A_ ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = max_length UpperCamelCase = eos_token_id def __call__( self , A_ , A_ , A_ ) -> jnp.ndarray: """simple docstring""" UpperCamelCase = jnp.full(scores.shape , -float('inf' ) ) UpperCamelCase = 1 - jnp.bool_(cur_len - self.max_length + 1 ) UpperCamelCase = jnp.where(A_ , new_scores.at[:, self.eos_token_id].set(0 ) , A_ ) return scores class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ , A_ ) -> Optional[Any]: """simple docstring""" if not isinstance(A_ , A_ ) or min_length < 0: raise ValueError(F'''`min_length` has to be a positive integer, but is {min_length}''' ) if not isinstance(A_ , A_ ) or eos_token_id < 0: raise ValueError(F'''`eos_token_id` has to be a positive integer, but is {eos_token_id}''' ) UpperCamelCase = min_length UpperCamelCase = eos_token_id def __call__( self , A_ , A_ , A_ ) -> jnp.ndarray: """simple docstring""" # create boolean flag to decide if min length penalty should be applied UpperCamelCase = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) UpperCamelCase = jnp.where(A_ , scores.at[:, self.eos_token_id].set(-float('inf' ) ) , A_ ) return scores class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ , A_ ) -> str: """simple docstring""" UpperCamelCase = list(A_ ) UpperCamelCase = begin_index def __call__( self , A_ , A_ , A_ ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = 1 - jnp.bool_(cur_len - self.begin_index ) UpperCamelCase = jnp.where(A_ , scores.at[:, self.begin_suppress_tokens].set(-float('inf' ) ) , A_ ) return scores class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ ) -> List[Any]: """simple docstring""" UpperCamelCase = list(A_ ) def __call__( self , A_ , A_ , A_ ) -> jnp.ndarray: """simple docstring""" UpperCamelCase = scores.at[..., self.suppress_tokens].set(-float('inf' ) ) return scores class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ ) -> str: """simple docstring""" UpperCamelCase = dict(A_ ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. UpperCamelCase = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: UpperCamelCase = force_token_array.at[index].set(A_ ) UpperCamelCase = jnp.intaa(A_ ) def __call__( self , A_ , A_ , A_ ) -> jnp.ndarray: """simple docstring""" def _force_token(A_ ): UpperCamelCase = scores.shape[0] UpperCamelCase = self.force_token_array[generation_idx] UpperCamelCase = jnp.ones_like(A_ , dtype=scores.dtype ) * -float('inf' ) UpperCamelCase = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) UpperCamelCase = lax.dynamic_update_slice(A_ , A_ , (0, current_token) ) return new_scores UpperCamelCase = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(A_ ) , lambda: scores , ) , ) return scores class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ , A_ , A_ ) -> str: """simple docstring""" UpperCamelCase = generate_config.eos_token_id UpperCamelCase = generate_config.no_timestamps_token_id UpperCamelCase = generate_config.no_timestamps_token_id + 1 UpperCamelCase = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(A_ , 'max_initial_timestamp_index' ): UpperCamelCase = generate_config.max_initial_timestamp_index else: UpperCamelCase = model_config.vocab_size if self.max_initial_timestamp_index is None: UpperCamelCase = model_config.vocab_size def __call__( self , A_ , A_ , A_ ) -> Dict: """simple docstring""" # suppress <|notimestamps|> which is handled by without_timestamps UpperCamelCase = scores.at[:, self.no_timestamps_token_id].set(-float('inf' ) ) def handle_pairs(A_ , A_ ): UpperCamelCase = jnp.where((cur_len - self.begin_index) >= 1 , A_ , A_ ) UpperCamelCase = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , A_ , ) UpperCamelCase = jnp.where((cur_len - self.begin_index) < 2 , A_ , A_ ) UpperCamelCase = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , A_ , A_ , ) return jnp.where( A_ , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float('inf' ) ) , scores_k.at[: self.eos_token_id].set(-float('inf' ) ) , ) , A_ , ) UpperCamelCase = jax.vmap(A_ )(A_ , A_ ) UpperCamelCase = jnp.where(cur_len == self.begin_index , A_ , A_ ) UpperCamelCase = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , A_ , ) UpperCamelCase = self.timestamp_begin + self.max_initial_timestamp_index UpperCamelCase = jnp.where( A_ , scores.at[:, last_allowed + 1 :].set(-float('inf' ) ) , A_ , ) # if sum of probability over timestamps is above any other token, sample timestamp UpperCamelCase = jax.nn.log_softmax(A_ , axis=-1 ) def handle_cumulative_probs(A_ , A_ ): UpperCamelCase = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) UpperCamelCase = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float('inf' ) ) , A_ , ) UpperCamelCase = jax.vmap(A_ )(A_ , A_ ) return scores
222
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging _UpperCAmelCase : List[Any] = logging.get_logger(__name__) _UpperCAmelCase : Optional[Any] = { "Helsinki-NLP/opus-mt-en-de": "https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json", # See all Marian models at https://huggingface.co/models?filter=marian } class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : int = "marian" __lowercase : List[str] = ["past_key_values"] __lowercase : Any = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , A_=58_101 , A_=None , A_=1_024 , A_=12 , A_=4_096 , A_=16 , A_=12 , A_=4_096 , A_=16 , A_=0.0 , A_=0.0 , A_=True , A_=True , A_="gelu" , A_=1_024 , A_=0.1 , A_=0.0 , A_=0.0 , A_=0.02 , A_=58_100 , A_=False , A_=58_100 , A_=0 , A_=0 , A_=True , **A_ , ) -> Optional[int]: """simple docstring""" UpperCamelCase = vocab_size UpperCamelCase = decoder_vocab_size or vocab_size UpperCamelCase = max_position_embeddings UpperCamelCase = d_model UpperCamelCase = encoder_ffn_dim UpperCamelCase = encoder_layers UpperCamelCase = encoder_attention_heads UpperCamelCase = decoder_ffn_dim UpperCamelCase = decoder_layers UpperCamelCase = decoder_attention_heads UpperCamelCase = dropout UpperCamelCase = attention_dropout UpperCamelCase = activation_dropout UpperCamelCase = activation_function UpperCamelCase = init_std UpperCamelCase = encoder_layerdrop UpperCamelCase = decoder_layerdrop UpperCamelCase = use_cache UpperCamelCase = encoder_layers UpperCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True UpperCamelCase = share_encoder_decoder_embeddings super().__init__( pad_token_id=A_ , eos_token_id=A_ , is_encoder_decoder=A_ , decoder_start_token_id=A_ , forced_eos_token_id=A_ , **A_ , ) class lowercase ( _SCREAMING_SNAKE_CASE ): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def __UpperCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCamelCase = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: UpperCamelCase = {0: 'batch'} UpperCamelCase = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: UpperCamelCase = {0: 'batch', 1: 'decoder_sequence'} UpperCamelCase = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(A_ , direction='inputs' ) elif self.task == "causal-lm": # TODO: figure this case out. UpperCamelCase = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: UpperCamelCase , UpperCamelCase = self.num_layers for i in range(A_ ): UpperCamelCase = {0: 'batch', 2: 'past_sequence + sequence'} UpperCamelCase = {0: 'batch', 2: 'past_sequence + sequence'} else: UpperCamelCase = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def __UpperCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCamelCase = super().outputs else: UpperCamelCase = super(A_ , self ).outputs if self.use_past: UpperCamelCase , UpperCamelCase = self.num_layers for i in range(A_ ): UpperCamelCase = {0: 'batch', 2: 'past_sequence + sequence'} UpperCamelCase = {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def __UpperCamelCase ( self , A_ , A_ = -1 , A_ = -1 , A_ = False , A_ = None , ) -> Mapping[str, Any]: """simple docstring""" UpperCamelCase = self._generate_dummy_inputs_for_encoder_and_decoder( A_ , A_ , A_ , A_ , A_ ) # Generate decoder inputs UpperCamelCase = seq_length if not self.use_past else 1 UpperCamelCase = self._generate_dummy_inputs_for_encoder_and_decoder( A_ , A_ , A_ , A_ , A_ ) UpperCamelCase = {F'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} UpperCamelCase = dict(**A_ , **A_ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch UpperCamelCase , UpperCamelCase = common_inputs['input_ids'].shape UpperCamelCase = common_inputs['decoder_input_ids'].shape[1] UpperCamelCase , UpperCamelCase = self.num_attention_heads UpperCamelCase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCamelCase = decoder_seq_length + 3 UpperCamelCase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) UpperCamelCase = torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(A_ , A_ )] , dim=1 ) UpperCamelCase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered UpperCamelCase , UpperCamelCase = self.num_layers UpperCamelCase = min(A_ , A_ ) UpperCamelCase = max(A_ , A_ ) - min_num_layers UpperCamelCase = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(A_ ): common_inputs["past_key_values"].append( ( torch.zeros(A_ ), torch.zeros(A_ ), torch.zeros(A_ ), torch.zeros(A_ ), ) ) # TODO: test this. UpperCamelCase = encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(A_ , A_ ): common_inputs["past_key_values"].append((torch.zeros(A_ ), torch.zeros(A_ )) ) return common_inputs def __UpperCamelCase ( self , A_ , A_ = -1 , A_ = -1 , A_ = False , A_ = None , ) -> Mapping[str, Any]: """simple docstring""" UpperCamelCase = self._generate_dummy_inputs_for_encoder_and_decoder( A_ , A_ , A_ , A_ , A_ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch UpperCamelCase , UpperCamelCase = common_inputs['input_ids'].shape # Not using the same length for past_key_values UpperCamelCase = seqlen + 2 UpperCamelCase , UpperCamelCase = self.num_layers UpperCamelCase , UpperCamelCase = self.num_attention_heads UpperCamelCase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCamelCase = common_inputs['attention_mask'].dtype UpperCamelCase = torch.cat( [common_inputs['attention_mask'], torch.ones(A_ , A_ , dtype=A_ )] , dim=1 ) UpperCamelCase = [ (torch.zeros(A_ ), torch.zeros(A_ )) for _ in range(A_ ) ] return common_inputs def __UpperCamelCase ( self , A_ , A_ = -1 , A_ = -1 , A_ = False , A_ = None , ) -> Mapping[str, Any]: """simple docstring""" # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCamelCase = compute_effective_axis_dimension( A_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCamelCase = tokenizer.num_special_tokens_to_add(A_ ) UpperCamelCase = compute_effective_axis_dimension( A_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=A_ ) # Generate dummy inputs according to compute batch and sequence UpperCamelCase = [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size UpperCamelCase = dict(tokenizer(A_ , return_tensors=A_ ) ) return common_inputs def __UpperCamelCase ( self , A_ , A_ = -1 , A_ = -1 , A_ = False , A_ = None , ) -> Mapping[str, Any]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCamelCase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( A_ , batch_size=A_ , seq_length=A_ , is_pair=A_ , framework=A_ ) else: UpperCamelCase = self._generate_dummy_inputs_for_causal_lm( A_ , batch_size=A_ , seq_length=A_ , is_pair=A_ , framework=A_ ) return common_inputs def __UpperCamelCase ( self , A_ , A_ , A_ , A_ ) -> int: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCamelCase = super()._flatten_past_key_values_(A_ , A_ , A_ , A_ ) else: UpperCamelCase = super(A_ , self )._flatten_past_key_values_( A_ , A_ , A_ , A_ ) @property def __UpperCamelCase ( self ) -> float: """simple docstring""" return 1e-4
222
1
'''simple docstring''' import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse('''0.8.3'''): raise Exception('''requires gluonnlp == 0.8.3''') if version.parse(mx.__version__) != version.parse('''1.5.0'''): raise Exception('''requires mxnet == 1.5.0''') logging.set_verbosity_info() _A : Union[str, Any] =logging.get_logger(__name__) _A : Tuple ='''The Nymphenburg Palace is a beautiful palace in Munich!''' def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> Union[str, Any]: lowerCamelCase__ : Dict = { """attention_cell""": """multi_head""", """num_layers""": 4, """units""": 1024, """hidden_size""": 768, """max_length""": 512, """num_heads""": 8, """scaled""": True, """dropout""": 0.1, """use_residual""": True, """embed_size""": 1024, """embed_dropout""": 0.1, """word_embed""": None, """layer_norm_eps""": 1E-5, """token_type_vocab_size""": 2, } lowerCamelCase__ : Optional[int] = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py lowerCamelCase__ : str = BERTEncoder( attention_cell=predefined_args["""attention_cell"""] , num_layers=predefined_args["""num_layers"""] , units=predefined_args["""units"""] , hidden_size=predefined_args["""hidden_size"""] , max_length=predefined_args["""max_length"""] , num_heads=predefined_args["""num_heads"""] , scaled=predefined_args["""scaled"""] , dropout=predefined_args["""dropout"""] , output_attention=UpperCamelCase , output_all_encodings=UpperCamelCase , use_residual=predefined_args["""use_residual"""] , activation=predefined_args.get("""activation""" , """gelu""" ) , layer_norm_eps=predefined_args.get("""layer_norm_eps""" , UpperCamelCase ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later lowerCamelCase__ : Tuple = """openwebtext_ccnews_stories_books_cased""" # Specify download folder to Gluonnlp's vocab lowerCamelCase__ : List[Any] = os.path.join(get_home_dir() , """models""" ) lowerCamelCase__ : str = _load_vocab(UpperCamelCase , UpperCamelCase , UpperCamelCase , cls=UpperCamelCase ) lowerCamelCase__ : Union[str, Any] = nlp.model.BERTModel( UpperCamelCase , len(UpperCamelCase ) , units=predefined_args["""units"""] , embed_size=predefined_args["""embed_size"""] , embed_dropout=predefined_args["""embed_dropout"""] , word_embed=predefined_args["""word_embed"""] , use_pooler=UpperCamelCase , use_token_type_embed=UpperCamelCase , token_type_vocab_size=predefined_args["""token_type_vocab_size"""] , use_classifier=UpperCamelCase , use_decoder=UpperCamelCase , ) original_bort.load_parameters(UpperCamelCase , cast_dtype=UpperCamelCase , ignore_extra=UpperCamelCase ) lowerCamelCase__ : str = original_bort._collect_params_with_prefix() # Build our config 🤗 lowerCamelCase__ : Any = { """architectures""": ["""BertForMaskedLM"""], """attention_probs_dropout_prob""": predefined_args["""dropout"""], """hidden_act""": """gelu""", """hidden_dropout_prob""": predefined_args["""dropout"""], """hidden_size""": predefined_args["""embed_size"""], """initializer_range""": 0.02, """intermediate_size""": predefined_args["""hidden_size"""], """layer_norm_eps""": predefined_args["""layer_norm_eps"""], """max_position_embeddings""": predefined_args["""max_length"""], """model_type""": """bort""", """num_attention_heads""": predefined_args["""num_heads"""], """num_hidden_layers""": predefined_args["""num_layers"""], """pad_token_id""": 1, # 2 = BERT, 1 = RoBERTa """type_vocab_size""": 1, # 2 = BERT, 1 = RoBERTa """vocab_size""": len(UpperCamelCase ), } lowerCamelCase__ : Optional[Any] = BertConfig.from_dict(UpperCamelCase ) lowerCamelCase__ : List[Any] = BertForMaskedLM(UpperCamelCase ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(UpperCamelCase ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(UpperCamelCase , UpperCamelCase ): lowerCamelCase__ : Optional[int] = hf_param.shape lowerCamelCase__ : List[str] = to_torch(params[gluon_param] ) lowerCamelCase__ : List[Any] = gluon_param.shape assert ( shape_hf == shape_gluon ), f'''The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers''' return gluon_param lowerCamelCase__ : Any = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , """word_embed.0.weight""" ) lowerCamelCase__ : Tuple = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , """encoder.position_weight""" ) lowerCamelCase__ : List[str] = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , """encoder.layer_norm.beta""" ) lowerCamelCase__ : List[str] = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , """encoder.layer_norm.gamma""" ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) lowerCamelCase__ : List[Any] = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): lowerCamelCase__ : BertLayer = hf_bort_model.bert.encoder.layer[i] # self attention lowerCamelCase__ : BertSelfAttention = layer.attention.self lowerCamelCase__ : Union[str, Any] = check_and_map_params( self_attn.key.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.bias''' ) lowerCamelCase__ : Dict = check_and_map_params( self_attn.key.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.weight''' ) lowerCamelCase__ : Dict = check_and_map_params( self_attn.query.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.bias''' ) lowerCamelCase__ : str = check_and_map_params( self_attn.query.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.weight''' ) lowerCamelCase__ : List[str] = check_and_map_params( self_attn.value.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.bias''' ) lowerCamelCase__ : Dict = check_and_map_params( self_attn.value.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.weight''' ) # self attention output lowerCamelCase__ : BertSelfOutput = layer.attention.output lowerCamelCase__ : Dict = check_and_map_params( self_output.dense.bias , f'''encoder.transformer_cells.{i}.proj.bias''' ) lowerCamelCase__ : List[str] = check_and_map_params( self_output.dense.weight , f'''encoder.transformer_cells.{i}.proj.weight''' ) lowerCamelCase__ : List[str] = check_and_map_params( self_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.layer_norm.beta''' ) lowerCamelCase__ : Tuple = check_and_map_params( self_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.layer_norm.gamma''' ) # intermediate lowerCamelCase__ : BertIntermediate = layer.intermediate lowerCamelCase__ : List[str] = check_and_map_params( intermediate.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_1.bias''' ) lowerCamelCase__ : int = check_and_map_params( intermediate.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_1.weight''' ) # output lowerCamelCase__ : BertOutput = layer.output lowerCamelCase__ : int = check_and_map_params( bert_output.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_2.bias''' ) lowerCamelCase__ : Any = check_and_map_params( bert_output.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_2.weight''' ) lowerCamelCase__ : Union[str, Any] = check_and_map_params( bert_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.ffn.layer_norm.beta''' ) lowerCamelCase__ : Optional[int] = check_and_map_params( bert_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.ffn.layer_norm.gamma''' ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models lowerCamelCase__ : List[str] = RobertaTokenizer.from_pretrained("""roberta-base""" ) lowerCamelCase__ : int = tokenizer.encode_plus(UpperCamelCase )["""input_ids"""] # Get gluon output lowerCamelCase__ : List[str] = mx.nd.array([input_ids] ) lowerCamelCase__ : Dict = original_bort(inputs=UpperCamelCase , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(UpperCamelCase ) lowerCamelCase__ : Tuple = BertModel.from_pretrained(UpperCamelCase ) hf_bort_model.eval() lowerCamelCase__ : Dict = tokenizer.encode_plus(UpperCamelCase , return_tensors="""pt""" ) lowerCamelCase__ : List[str] = hf_bort_model(**UpperCamelCase )[0] lowerCamelCase__ : str = output_gluon[0].asnumpy() lowerCamelCase__ : Dict = output_hf[0].detach().numpy() lowerCamelCase__ : List[str] = np.max(np.abs(hf_layer - gluon_layer ) ).item() lowerCamelCase__ : Union[str, Any] = np.allclose(UpperCamelCase , UpperCamelCase , atol=1E-3 ) if success: print("""✔️ Both model do output the same tensors""" ) else: print("""❌ Both model do **NOT** output the same tensors""" ) print("""Absolute difference is:""" , UpperCamelCase ) if __name__ == "__main__": _A : List[str] =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bort_checkpoint_path''', default=None, type=str, required=True, help='''Path the official Bort params file.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _A : List[str] =parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
368
'''simple docstring''' from torch import nn def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> Dict: if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f'''Unsupported activation function: {act_fn}''' )
129
0
"""simple docstring""" _UpperCamelCase : Union[str, Any] = '\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' _UpperCamelCase : Dict = [{'type': 'code', 'content': INSTALL_CONTENT}] _UpperCamelCase : Optional[int] = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
220
"""simple docstring""" import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class a ( unittest.TestCase ): def __init__( self , _lowerCamelCase , _lowerCamelCase=7 , _lowerCamelCase=3 , _lowerCamelCase=1_8 , _lowerCamelCase=3_0 , _lowerCamelCase=4_0_0 , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=[0.5, 0.5, 0.5] , _lowerCamelCase=[0.5, 0.5, 0.5] , ): lowercase = size if size is not None else {'height': 1_8, 'width': 1_8} lowercase = parent lowercase = batch_size lowercase = num_channels lowercase = image_size lowercase = min_resolution lowercase = max_resolution lowercase = do_resize lowercase = size lowercase = do_normalize lowercase = image_mean lowercase = image_std def UpperCamelCase_ ( self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class a ( a_, unittest.TestCase ): UpperCAmelCase_ : Optional[int] =DPTImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self ): lowercase = DPTImageProcessingTester(self ) @property def UpperCamelCase_ ( self ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self ): lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , 'image_mean' ) ) self.assertTrue(hasattr(_lowerCamelCase , 'image_std' ) ) self.assertTrue(hasattr(_lowerCamelCase , 'do_normalize' ) ) self.assertTrue(hasattr(_lowerCamelCase , 'do_resize' ) ) self.assertTrue(hasattr(_lowerCamelCase , 'size' ) ) def UpperCamelCase_ ( self ): lowercase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 1_8, 'width': 1_8} ) lowercase = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 ) self.assertEqual(image_processor.size , {'height': 4_2, 'width': 4_2} ) def UpperCamelCase_ ( self ): # Initialize image_processing lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image ) # Test not batched input lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched lowercase = image_processing(_lowerCamelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def UpperCamelCase_ ( self ): # Initialize image_processing lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , np.ndarray ) # Test not batched input lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched lowercase = image_processing(_lowerCamelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def UpperCamelCase_ ( self ): # Initialize image_processing lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) # Test not batched input lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched lowercase = image_processing(_lowerCamelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
220
1
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 lowerCAmelCase__ = get_tests_dir('''fixtures''') class snake_case__(unittest.TestCase ): """simple docstring""" def snake_case ( self : List[str] ): # A mock response for an HTTP head request to emulate server down lowercase__ : Optional[int] = mock.Mock() lowercase__ : int = 500 lowercase__ : str = {} lowercase__ : Dict = HTTPError lowercase__ : Any = {} # Download this model to make sure it's in the cache. lowercase__ : List[Any] = ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=SCREAMING_SNAKE_CASE ) as mock_head: lowercase__ : List[str] = ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit" ) # This check we did call the fake head request mock_head.assert_called() def snake_case ( self : str ): # This test is for deprecated behavior and can be removed in v5 lowercase__ : Optional[int] = ViTImageProcessor.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json" ) def snake_case ( self : Any ): with self.assertRaises(SCREAMING_SNAKE_CASE ): # config is in subfolder, the following should not work without specifying the subfolder lowercase__ : Union[str, Any] = AutoImageProcessor.from_pretrained("hf-internal-testing/stable-diffusion-all-variants" ) lowercase__ : Optional[int] = AutoImageProcessor.from_pretrained( "hf-internal-testing/stable-diffusion-all-variants" , subfolder="feature_extractor" ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) @is_staging_test class snake_case__(unittest.TestCase ): """simple docstring""" @classmethod def snake_case ( cls : Tuple ): lowercase__ : int = TOKEN HfFolder.save_token(SCREAMING_SNAKE_CASE ) @classmethod def snake_case ( cls : Optional[int] ): try: delete_repo(token=cls._token , repo_id="test-image-processor" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-image-processor-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-image-processor" ) except HTTPError: pass def snake_case ( self : int ): lowercase__ : Dict = ViTImageProcessor.from_pretrained(SCREAMING_SNAKE_CASE ) image_processor.push_to_hub("test-image-processor" , use_auth_token=self._token ) lowercase__ : Optional[int] = ViTImageProcessor.from_pretrained(f"""{USER}/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(SCREAMING_SNAKE_CASE , getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) # Reset repo delete_repo(token=self._token , repo_id="test-image-processor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( SCREAMING_SNAKE_CASE , repo_id="test-image-processor" , push_to_hub=SCREAMING_SNAKE_CASE , use_auth_token=self._token ) lowercase__ : int = ViTImageProcessor.from_pretrained(f"""{USER}/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(SCREAMING_SNAKE_CASE , getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) def snake_case ( self : Union[str, Any] ): lowercase__ : Dict = ViTImageProcessor.from_pretrained(SCREAMING_SNAKE_CASE ) image_processor.push_to_hub("valid_org/test-image-processor" , use_auth_token=self._token ) lowercase__ : Dict = ViTImageProcessor.from_pretrained("valid_org/test-image-processor" ) for k, v in image_processor.__dict__.items(): self.assertEqual(SCREAMING_SNAKE_CASE , getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-image-processor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( SCREAMING_SNAKE_CASE , repo_id="valid_org/test-image-processor-org" , push_to_hub=SCREAMING_SNAKE_CASE , use_auth_token=self._token ) lowercase__ : str = ViTImageProcessor.from_pretrained("valid_org/test-image-processor-org" ) for k, v in image_processor.__dict__.items(): self.assertEqual(SCREAMING_SNAKE_CASE , getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) def snake_case ( self : Dict ): CustomImageProcessor.register_for_auto_class() lowercase__ : Optional[Any] = CustomImageProcessor.from_pretrained(SCREAMING_SNAKE_CASE ) image_processor.push_to_hub("test-dynamic-image-processor" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {"AutoImageProcessor": "custom_image_processing.CustomImageProcessor"} , ) lowercase__ : int = AutoImageProcessor.from_pretrained( f"""{USER}/test-dynamic-image-processor""" , trust_remote_code=SCREAMING_SNAKE_CASE ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , "CustomImageProcessor" )
121
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""" ) ) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , ) @pytest.mark.usefixtures("""sm_env""" ) @parameterized_class( [ { """framework""": """pytorch""", """script""": """run_glue.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.g4dn.xlarge""", """results""": {"""train_runtime""": 6_5_0, """eval_accuracy""": 0.6, """eval_loss""": 0.9}, }, { """framework""": """tensorflow""", """script""": """run_tf.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.g4dn.xlarge""", """results""": {"""train_runtime""": 6_0_0, """eval_accuracy""": 0.3, """eval_loss""": 0.9}, }, ] ) class snake_case__(unittest.TestCase ): """simple docstring""" def snake_case ( self : Union[str, Any] ): if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="utf-8" , check=SCREAMING_SNAKE_CASE , ) assert hasattr(self , "env" ) def snake_case ( self : Tuple , SCREAMING_SNAKE_CASE : str=1 ): # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f"""{self.env.base_job_name}-single""" , instance_count=SCREAMING_SNAKE_CASE , instance_type=self.instance_type , debugger_hook_config=SCREAMING_SNAKE_CASE , hyperparameters={**self.env.hyperparameters, "model_name_or_path": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version="py36" , ) def snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : str ): TrainingJobAnalytics(SCREAMING_SNAKE_CASE ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" ) def snake_case ( self : str ): # create estimator lowercase__ : Optional[int] = self.create_estimator() # run training estimator.fit() # result dataframe lowercase__ : Union[str, Any] = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowercase__ : str = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) lowercase__ : Tuple = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowercase__ : Any = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds" , 999_999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" , "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , SCREAMING_SNAKE_CASE )
121
1
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _lowercase ( lowerCAmelCase ): """simple docstring""" __A = ['''image_processor''', '''tokenizer'''] __A = '''BlipImageProcessor''' __A = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__(self , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" a = False super().__init__(lowerCamelCase_ , lowerCamelCase_ ) a = self.image_processor def __call__(self , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = True , lowerCamelCase_ = False , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = 0 , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = False , lowerCamelCase_ = False , lowerCamelCase_ = False , lowerCamelCase_ = False , lowerCamelCase_ = False , lowerCamelCase_ = True , lowerCamelCase_ = None , **lowerCamelCase_ , ): """simple docstring""" if images is None and text is None: raise ValueError("You have to specify either images or text." ) # Get only text if images is None: a = self.tokenizer a = self.tokenizer( text=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ , stride=lowerCamelCase_ , pad_to_multiple_of=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , return_overflowing_tokens=lowerCamelCase_ , return_special_tokens_mask=lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , return_token_type_ids=lowerCamelCase_ , return_length=lowerCamelCase_ , verbose=lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ , ) return text_encoding # add pixel_values a = self.image_processor(lowerCamelCase_ , return_tensors=lowerCamelCase_ ) if text is not None: a = self.tokenizer( text=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ , stride=lowerCamelCase_ , pad_to_multiple_of=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , return_overflowing_tokens=lowerCamelCase_ , return_special_tokens_mask=lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , return_token_type_ids=lowerCamelCase_ , return_length=lowerCamelCase_ , verbose=lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ , ) else: a = None if text_encoding is not None: encoding_image_processor.update(lowerCamelCase_ ) return encoding_image_processor def UpperCamelCase_ (self , *lowerCamelCase_ , **lowerCamelCase_ ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCamelCase_ , **lowerCamelCase_ ) def UpperCamelCase_ (self , *lowerCamelCase_ , **lowerCamelCase_ ): """simple docstring""" return self.tokenizer.decode(*lowerCamelCase_ , **lowerCamelCase_ ) @property def UpperCamelCase_ (self ): """simple docstring""" a = self.tokenizer.model_input_names a = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
227
'''simple docstring''' import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class _a ( unittest.TestCase ): '''simple docstring''' A : List[Any] = inspect.getfile(accelerate.test_utils ) A : int = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_cli.py'''] ) A : List[str] = ['''accelerate''', '''launch'''] A : List[Any] = Path.home() / '''.cache/huggingface/accelerate''' A : Any = '''default_config.yaml''' A : Dict = config_folder / config_file A : Union[str, Any] = config_folder / '''_default_config.yaml''' A : int = Path('''tests/test_configs''' ) @classmethod def UpperCamelCase_ ( cls ): '''simple docstring''' if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def UpperCamelCase_ ( cls ): '''simple docstring''' if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path], env=os.environ.copy() ) def UpperCamelCase_ ( self ): '''simple docstring''' for config in sorted(self.test_config_path.glob('**/*.yaml' ) ): with self.subTest(config_file=A ): execute_subprocess_async( self.base_cmd + ['--config_file', str(A ), self.test_file_path], env=os.environ.copy() ) def UpperCamelCase_ ( self ): '''simple docstring''' execute_subprocess_async(['accelerate', 'test'], env=os.environ.copy() ) class _a ( unittest.TestCase ): '''simple docstring''' A : Union[str, Any] = '''test-tpu''' A : List[str] = '''us-central1-a''' A : List[str] = '''ls''' A : List[str] = ['''accelerate''', '''tpu-config'''] A : List[str] = '''cd /usr/share''' A : Optional[int] = '''tests/test_samples/test_command_file.sh''' A : Optional[int] = '''Running gcloud compute tpus tpu-vm ssh''' def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = run_command( self.cmd + ['--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug'], return_stdout=A, ) self.assertIn( F"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all", A, ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = run_command( self.cmd + [ '--config_file', 'tests/test_configs/0_12_0.yaml', '--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug', ], return_stdout=A, ) self.assertIn( F"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all", A, ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--debug'], return_stdout=A ) self.assertIn( F"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all", A, ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--debug'], return_stdout=A, ) self.assertIn( F"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all", A, ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = run_command( self.cmd + [ '--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--command', 'echo "Hello World"', '--debug', ], return_stdout=A, ) self.assertIn( F"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo \"Hello World\" --worker all", A, ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command_file', self.command_file, '--debug'], return_stdout=A, ) self.assertIn( F"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all", A, ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = run_command( self.cmd + [ '--config_file', 'tests/test_configs/0_12_0.yaml', '--command_file', self.command_file, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug', ], return_stdout=A, ) self.assertIn( F"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all", A, ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--debug'], return_stdout=A, ) self.assertIn( F"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo \"hello world\"; echo \"this is a second command\" --worker all", A, ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = run_command( self.cmd + [ '--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--accelerate_version', '12.0.0', '--debug', ], return_stdout=A, ) self.assertIn( F"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo \"hello world\"; echo \"this is a second command\" --worker all", A, )
251
0
"""simple docstring""" import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path __UpperCamelCase : Any = [ {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.de'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.en'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.fr'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.frr'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.it'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.simple'''}, {'''dataset''': '''snli''', '''config_name''': '''plain_text'''}, {'''dataset''': '''eli5''', '''config_name''': '''LFQA_reddit'''}, {'''dataset''': '''wiki40b''', '''config_name''': '''en'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.nq.compressed'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.nq.no_index'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.multiset.no_index'''}, {'''dataset''': '''natural_questions''', '''config_name''': '''default'''}, ] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[Any]=True ): if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=a__ ) ) class a ( a__ ): snake_case__ = None snake_case__ = None def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" with TemporaryDirectory() as tmp_dir: lowerCAmelCase = dataset_module_factory(_snake_case , cache_dir=_snake_case ) lowerCAmelCase = import_main_class(dataset_module.module_path , dataset=_snake_case ) lowerCAmelCase = builder_cls( cache_dir=_snake_case , config_name=_snake_case , hash=dataset_module.hash , ) lowerCAmelCase = '/'.join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=_snake_case ).replace(os.sep , '/' ), config.DATASET_INFO_FILENAME, ] ) lowerCAmelCase = cached_path(_snake_case , cache_dir=_snake_case ) self.assertTrue(os.path.exists(_snake_case ) ) @pytest.mark.integration def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any ): lowerCAmelCase = tmp_path_factory.mktemp('test_hf_gcp' ) / 'test_wikipedia_simple' lowerCAmelCase = dataset_module_factory('wikipedia' , cache_dir=_UpperCAmelCase ) lowerCAmelCase = import_main_class(dataset_module.module_path ) lowerCAmelCase = builder_cls( cache_dir=_UpperCAmelCase , config_name='20220301.frr' , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam lowerCAmelCase = None builder_instance.download_and_prepare() lowerCAmelCase = builder_instance.as_dataset() assert ds @pytest.mark.integration def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ): lowerCAmelCase = dataset_module_factory('wikipedia' , cache_dir=_UpperCAmelCase ) lowerCAmelCase = import_main_class(dataset_module.module_path , dataset=_UpperCAmelCase ) lowerCAmelCase = builder_cls( cache_dir=_UpperCAmelCase , config_name='20220301.frr' , hash=dataset_module.hash , ) lowerCAmelCase = builder_instance.as_streaming_dataset() assert ds assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) assert "train" in ds assert isinstance(ds['train'] , _UpperCAmelCase ) assert next(iter(ds['train'] ) )
364
"""simple docstring""" import copy import os import cva import numpy as np from matplotlib import pyplot as plt class a : def __init__( self ): """simple docstring""" lowerCAmelCase = '' lowerCAmelCase = '' lowerCAmelCase = [] lowerCAmelCase = 0 lowerCAmelCase = 2_56 lowerCAmelCase = 0 lowerCAmelCase = 0 lowerCAmelCase = 0 lowerCAmelCase = 0 def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = cva.imread(_snake_case , 0 ) lowerCAmelCase = copy.deepcopy(self.img ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = plt.hist(self.img.ravel() , 2_56 , [0, 2_56] , label='x' ) lowerCAmelCase = np.sum(_snake_case ) for i in range(len(_snake_case ) ): lowerCAmelCase = x[i] / self.k self.sk += prk lowerCAmelCase = (self.L - 1) * self.sk if self.rem != 0: lowerCAmelCase = int(last % last ) lowerCAmelCase = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(_snake_case ) lowerCAmelCase = int(np.ma.count(self.img ) / self.img[1].size ) lowerCAmelCase = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): lowerCAmelCase = self.img[j][i] if num != self.last_list[num]: lowerCAmelCase = self.last_list[num] cva.imwrite('output_data/output.jpg' , self.img ) def UpperCamelCase__ ( self ): """simple docstring""" plt.hist(self.img.ravel() , 2_56 , [0, 2_56] ) def UpperCamelCase__ ( self ): """simple docstring""" cva.imshow('Output-Image' , self.img ) cva.imshow('Input-Image' , self.original_image ) cva.waitKey(50_00 ) cva.destroyAllWindows() if __name__ == "__main__": __UpperCamelCase : int = os.path.join(os.path.basename(__file__), '''image_data/input.jpg''') __UpperCamelCase : List[Any] = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
309
0
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor __A =logging.get_logger(__name__) class UpperCAmelCase__ ( __UpperCamelCase ): '''simple docstring''' def __init__( self : str , *a_ : int , **a_ : Dict ): '''simple docstring''' warnings.warn( '''The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use PerceiverImageProcessor instead.''' , a_ , ) super().__init__(*a_ , **a_ )
226
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __A =logging.get_logger(__name__) if is_vision_available(): import PIL class UpperCAmelCase__ ( __UpperCamelCase ): '''simple docstring''' UpperCamelCase = ["""pixel_values"""] def __init__( self : Tuple , a_ : bool = True , a_ : Dict[str, int] = None , a_ : PILImageResampling = PILImageResampling.BICUBIC , a_ : bool = True , a_ : Dict[str, int] = None , a_ : bool = True , a_ : Union[int, float] = 1 / 2_55 , a_ : bool = True , a_ : Optional[Union[float, List[float]]] = None , a_ : Optional[Union[float, List[float]]] = None , a_ : bool = True , **a_ : str , ): '''simple docstring''' super().__init__(**a_ ) __UpperCAmelCase : List[Any] = size if size is not None else {'''shortest_edge''': 2_24} __UpperCAmelCase : List[str] = get_size_dict(a_ , default_to_square=a_ ) __UpperCAmelCase : int = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} __UpperCAmelCase : Optional[int] = get_size_dict(a_ , default_to_square=a_ , param_name='''crop_size''' ) __UpperCAmelCase : int = do_resize __UpperCAmelCase : Union[str, Any] = size __UpperCAmelCase : Union[str, Any] = resample __UpperCAmelCase : Any = do_center_crop __UpperCAmelCase : Any = crop_size __UpperCAmelCase : Any = do_rescale __UpperCAmelCase : Dict = rescale_factor __UpperCAmelCase : Union[str, Any] = do_normalize __UpperCAmelCase : Any = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __UpperCAmelCase : int = image_std if image_std is not None else OPENAI_CLIP_STD __UpperCAmelCase : List[str] = do_convert_rgb def snake_case__ ( self : Optional[Any] , a_ : np.ndarray , a_ : Dict[str, int] , a_ : PILImageResampling = PILImageResampling.BICUBIC , a_ : Optional[Union[str, ChannelDimension]] = None , **a_ : Optional[int] , ): '''simple docstring''' __UpperCAmelCase : Dict = get_size_dict(a_ , default_to_square=a_ ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) __UpperCAmelCase : Optional[int] = get_resize_output_image_size(a_ , size=size['''shortest_edge'''] , default_to_square=a_ ) return resize(a_ , size=a_ , resample=a_ , data_format=a_ , **a_ ) def snake_case__ ( self : Union[str, Any] , a_ : np.ndarray , a_ : Dict[str, int] , a_ : Optional[Union[str, ChannelDimension]] = None , **a_ : Dict , ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = get_size_dict(a_ ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(a_ , size=(size['''height'''], size['''width''']) , data_format=a_ , **a_ ) def snake_case__ ( self : Union[str, Any] , a_ : np.ndarray , a_ : Union[int, float] , a_ : Optional[Union[str, ChannelDimension]] = None , **a_ : List[str] , ): '''simple docstring''' return rescale(a_ , scale=a_ , data_format=a_ , **a_ ) def snake_case__ ( self : Optional[Any] , a_ : np.ndarray , a_ : Union[float, List[float]] , a_ : Union[float, List[float]] , a_ : Optional[Union[str, ChannelDimension]] = None , **a_ : Dict , ): '''simple docstring''' return normalize(a_ , mean=a_ , std=a_ , data_format=a_ , **a_ ) def snake_case__ ( self : Any , a_ : ImageInput , a_ : bool = None , a_ : Dict[str, int] = None , a_ : PILImageResampling = None , a_ : bool = None , a_ : int = None , a_ : bool = None , a_ : float = None , a_ : bool = None , a_ : Optional[Union[float, List[float]]] = None , a_ : Optional[Union[float, List[float]]] = None , a_ : bool = None , a_ : Optional[Union[str, TensorType]] = None , a_ : Optional[ChannelDimension] = ChannelDimension.FIRST , **a_ : Dict , ): '''simple docstring''' __UpperCAmelCase : Tuple = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase : Optional[Any] = size if size is not None else self.size __UpperCAmelCase : Dict = get_size_dict(a_ , param_name='''size''' , default_to_square=a_ ) __UpperCAmelCase : int = resample if resample is not None else self.resample __UpperCAmelCase : Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCAmelCase : Any = crop_size if crop_size is not None else self.crop_size __UpperCAmelCase : Dict = get_size_dict(a_ , param_name='''crop_size''' , default_to_square=a_ ) __UpperCAmelCase : int = do_rescale if do_rescale is not None else self.do_rescale __UpperCAmelCase : Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCAmelCase : List[str] = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase : Optional[int] = image_mean if image_mean is not None else self.image_mean __UpperCAmelCase : Tuple = image_std if image_std is not None else self.image_std __UpperCAmelCase : List[str] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __UpperCAmelCase : List[str] = make_list_of_images(a_ ) if not valid_images(a_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __UpperCAmelCase : Optional[Any] = [convert_to_rgb(a_ ) for image in images] # All transformations expect numpy arrays. __UpperCAmelCase : int = [to_numpy_array(a_ ) for image in images] if do_resize: __UpperCAmelCase : int = [self.resize(image=a_ , size=a_ , resample=a_ ) for image in images] if do_center_crop: __UpperCAmelCase : List[str] = [self.center_crop(image=a_ , size=a_ ) for image in images] if do_rescale: __UpperCAmelCase : Dict = [self.rescale(image=a_ , scale=a_ ) for image in images] if do_normalize: __UpperCAmelCase : Optional[int] = [self.normalize(image=a_ , mean=a_ , std=a_ ) for image in images] __UpperCAmelCase : Optional[int] = [to_channel_dimension_format(a_ , a_ ) for image in images] __UpperCAmelCase : Union[str, Any] = {'''pixel_values''': images} return BatchFeature(data=a_ , tensor_type=a_ )
226
1
import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class lowerCamelCase : def __init__(self : int , _A : Tuple , _A : Union[str, Any]=1_3 , _A : Optional[Any]=7 , _A : str=True , _A : Optional[int]=True , _A : str=True , _A : int=True , _A : str=9_9 , _A : List[Any]=6_4 , _A : Tuple=5 , _A : Any=4 , _A : int=3_7 , _A : List[str]="gelu" , _A : Optional[Any]=0.1 , _A : Optional[Any]=0.1 , _A : Optional[int]=5_1_2 , _A : Tuple=1_6 , _A : Union[str, Any]=2 , _A : Optional[Any]=0.02 , _A : List[str]=3 , _A : Any=4 , _A : List[Any]=None , ) -> Optional[Any]: snake_case = parent snake_case = batch_size snake_case = seq_length snake_case = is_training snake_case = use_input_mask snake_case = use_token_type_ids snake_case = use_labels snake_case = vocab_size snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = intermediate_size snake_case = hidden_act snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = max_position_embeddings snake_case = type_vocab_size snake_case = type_sequence_label_size snake_case = initializer_range snake_case = num_labels snake_case = num_choices snake_case = scope snake_case = vocab_size - 1 def UpperCAmelCase(self : Tuple ) -> Any: snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case = None if self.use_input_mask: snake_case = random_attention_mask([self.batch_size, self.seq_length] ) snake_case = None if self.use_labels: snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case = self.get_config() return config, input_ids, input_mask, token_labels def UpperCAmelCase(self : Any ) -> Any: return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_A , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def UpperCAmelCase(self : List[Any] ) -> List[str]: snake_case , snake_case , snake_case , snake_case = self.prepare_config_and_inputs() snake_case = True return config, input_ids, input_mask, token_labels def UpperCAmelCase(self : Optional[int] , _A : int , _A : Tuple , _A : Tuple ) -> Any: snake_case = GPTNeoXModel(config=_A ) model.to(_A ) model.eval() snake_case = model(_A , attention_mask=_A ) snake_case = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase(self : Optional[Any] , _A : int , _A : int , _A : Optional[Any] ) -> str: snake_case = True snake_case = GPTNeoXModel(_A ) model.to(_A ) model.eval() snake_case = model(_A , attention_mask=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase(self : str , _A : Optional[int] , _A : List[Any] , _A : str , _A : Union[str, Any] ) -> List[str]: snake_case = GPTNeoXForCausalLM(config=_A ) model.to(_A ) model.eval() snake_case = model(_A , attention_mask=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase(self : Dict , _A : Union[str, Any] , _A : List[str] , _A : int , _A : List[str] ) -> Tuple: snake_case = self.num_labels snake_case = GPTNeoXForQuestionAnswering(_A ) model.to(_A ) model.eval() snake_case = model(_A , attention_mask=_A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase(self : int , _A : Any , _A : Tuple , _A : Any , _A : Dict ) -> Dict: snake_case = self.num_labels snake_case = GPTNeoXForSequenceClassification(_A ) model.to(_A ) model.eval() snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case = model(_A , attention_mask=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase(self : Any , _A : Tuple , _A : Union[str, Any] , _A : Optional[int] , _A : Dict ) -> Any: snake_case = self.num_labels snake_case = GPTNeoXForTokenClassification(_A ) model.to(_A ) model.eval() snake_case = model(_A , attention_mask=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase(self : Tuple , _A : Optional[int] , _A : Optional[Any] , _A : Optional[Any] ) -> int: snake_case = True snake_case = GPTNeoXForCausalLM(config=_A ) model.to(_A ) model.eval() # first forward pass snake_case = model(_A , attention_mask=_A , use_cache=_A ) snake_case = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids snake_case = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and snake_case = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case = torch.cat([input_mask, next_mask] , dim=-1 ) snake_case = model(_A , attention_mask=_A , output_hidden_states=_A ) snake_case = output_from_no_past["hidden_states"][0] snake_case = model( _A , attention_mask=_A , past_key_values=_A , output_hidden_states=_A , )["hidden_states"][0] # select random slice snake_case = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_A , _A , atol=1E-3 ) ) def UpperCAmelCase(self : Optional[Any] ) -> Tuple: snake_case = self.prepare_config_and_inputs() snake_case , snake_case , snake_case , snake_case = config_and_inputs snake_case = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class lowerCamelCase ( A_ , A_ , A_ , unittest.TestCase ): UpperCAmelCase__ : List[str] = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) UpperCAmelCase__ : Dict = (GPTNeoXForCausalLM,) if is_torch_available() else () UpperCAmelCase__ : str = ( { "feature-extraction": GPTNeoXModel, "question-answering": GPTNeoXForQuestionAnswering, "text-classification": GPTNeoXForSequenceClassification, "text-generation": GPTNeoXForCausalLM, "token-classification": GPTNeoXForTokenClassification, "zero-shot": GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : Dict = False UpperCAmelCase__ : List[Any] = False def UpperCAmelCase(self : str ) -> Optional[int]: snake_case = GPTNeoXModelTester(self ) snake_case = ConfigTester(self , config_class=_A , hidden_size=6_4 , num_attention_heads=8 ) def UpperCAmelCase(self : Optional[int] ) -> int: self.config_tester.run_common_tests() def UpperCAmelCase(self : List[str] ) -> str: snake_case , snake_case , snake_case , snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(_A , _A , _A ) def UpperCAmelCase(self : Union[str, Any] ) -> Any: snake_case , snake_case , snake_case , snake_case = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(_A , _A , _A ) def UpperCAmelCase(self : Optional[Any] ) -> Dict: # This regression test was failing with PyTorch < 1.3 snake_case , snake_case , snake_case , snake_case = self.model_tester.prepare_config_and_inputs_for_decoder() snake_case = None self.model_tester.create_and_check_model_as_decoder(_A , _A , _A ) def UpperCAmelCase(self : List[str] ) -> Dict: snake_case , snake_case , snake_case , snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(_A , _A , _A ) def UpperCAmelCase(self : Dict ) -> Any: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*_A ) def UpperCAmelCase(self : Tuple ) -> Any: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_A ) def UpperCAmelCase(self : Dict ) -> str: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_A ) def UpperCAmelCase(self : str ) -> Any: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_A ) @unittest.skip(reason="Feed forward chunking is not implemented" ) def UpperCAmelCase(self : List[Any] ) -> List[str]: pass @parameterized.expand([("linear",), ("dynamic",)] ) def UpperCAmelCase(self : Optional[int] , _A : List[str] ) -> int: snake_case , snake_case = self.model_tester.prepare_config_and_inputs_for_common() snake_case = ids_tensor([1, 1_0] , config.vocab_size ) snake_case = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights snake_case = GPTNeoXModel(_A ) original_model.to(_A ) original_model.eval() snake_case = original_model(_A ).last_hidden_state snake_case = original_model(_A ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights snake_case = {"type": scaling_type, "factor": 10.0} snake_case = GPTNeoXModel(_A ) scaled_model.to(_A ) scaled_model.eval() snake_case = scaled_model(_A ).last_hidden_state snake_case = scaled_model(_A ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_A , _A , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(_A , _A , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_A , _A , atol=1E-5 ) ) @require_torch class lowerCamelCase ( unittest.TestCase ): @slow def UpperCAmelCase(self : Optional[int] ) -> Optional[int]: snake_case = AutoTokenizer.from_pretrained("EleutherAI/pythia-410m-deduped" ) for checkpointing in [True, False]: snake_case = GPTNeoXForCausalLM.from_pretrained("EleutherAI/pythia-410m-deduped" ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(_A ) snake_case = tokenizer("My favorite food is" , return_tensors="pt" ).to(_A ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 snake_case = "My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI'm not sure" snake_case = model.generate(**_A , do_sample=_A , max_new_tokens=2_0 ) snake_case = tokenizer.batch_decode(_A )[0] self.assertEqual(_A , _A )
137
import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters _A = logging.get_logger(__name__) def lowercase_ ( A__ , A__ , A__ , A__=None , A__=None ) -> str: """simple docstring""" if "." in tensor_name: snake_case = tensor_name.split("." ) for split in splits[:-1]: snake_case = getattr(A__ , A__ ) if new_module is None: raise ValueError(F'{module} has no attribute {split}.' ) snake_case = new_module snake_case = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(F'{module} does not have a parameter or a buffer named {tensor_name}.' ) snake_case = tensor_name in module._buffers snake_case = getattr(A__ , A__ ) if old_value.device == torch.device("meta" ) and device not in ["meta", torch.device("meta" )] and value is None: raise ValueError(F'{tensor_name} is on the meta device, we need a `value` to put in on {device}.' ) snake_case = False snake_case = False if is_buffer or not is_bitsandbytes_available(): snake_case = False snake_case = False else: snake_case = hasattr(bnb.nn , "Params4bit" ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) snake_case = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: snake_case = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: snake_case = old_value.to(A__ ) elif isinstance(A__ , torch.Tensor ): snake_case = value.to("cpu" ) if value.dtype == torch.inta: snake_case = version.parse(importlib.metadata.version("bitsandbytes" ) ) > version.parse( "0.37.2" ) if not is_abit_serializable: raise ValueError( "Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. " "Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`." ) else: snake_case = torch.tensor(A__ , device="cpu" ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , A__ ) and fpaa_statistics is None: snake_case = new_value.T snake_case = old_value.__dict__ if is_abit: snake_case = bnb.nn.IntaParams(A__ , requires_grad=A__ , **A__ ).to(A__ ) elif is_abit: snake_case = bnb.nn.Paramsabit(A__ , requires_grad=A__ , **A__ ).to(A__ ) snake_case = new_value if fpaa_statistics is not None: setattr(module.weight , "SCB" , fpaa_statistics.to(A__ ) ) else: if value is None: snake_case = old_value.to(A__ ) elif isinstance(A__ , torch.Tensor ): snake_case = value.to(A__ ) else: snake_case = torch.tensor(A__ , device=A__ ) if is_buffer: snake_case = new_value else: snake_case = nn.Parameter(A__ , requires_grad=old_value.requires_grad ) snake_case = new_value def lowercase_ ( A__ , A__=None , A__=None , A__=None , A__=False ) -> Optional[Any]: """simple docstring""" for name, module in model.named_children(): if current_key_name is None: snake_case = [] current_key_name.append(A__ ) if (isinstance(A__ , nn.Linear ) or isinstance(A__ , A__ )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in ".".join(A__ ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(A__ , A__ ): snake_case , snake_case = module.weight.shape else: snake_case = module.in_features snake_case = module.out_features if quantization_config.quantization_method() == "llm_int8": snake_case = bnb.nn.LinearabitLt( A__ , A__ , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) snake_case = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: snake_case = bnb.nn.Linearabit( A__ , A__ , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) snake_case = True # Store the module class in case we need to transpose the weight later snake_case = type(A__ ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(A__ ) if len(list(module.children() ) ) > 0: snake_case , snake_case = _replace_with_bnb_linear( A__ , A__ , A__ , A__ , has_been_replaced=A__ , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def lowercase_ ( A__ , A__=None , A__=None , A__=None ) -> List[str]: """simple docstring""" snake_case = ["lm_head"] if modules_to_not_convert is None else modules_to_not_convert snake_case , snake_case = _replace_with_bnb_linear( A__ , A__ , A__ , A__ ) if not has_been_replaced: logger.warning( "You are loading your model in 8bit or 4bit but no linear modules were found in your model." " Please double check your model architecture, or submit an issue on github if you think this is" " a bug." ) return model def lowercase_ ( *A__ , **A__ ) -> Optional[int]: """simple docstring""" warnings.warn( "`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead" , A__ , ) return replace_with_bnb_linear(*A__ , **A__ ) def lowercase_ ( *A__ , **A__ ) -> Any: """simple docstring""" warnings.warn( "`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead" , A__ , ) return set_module_quantized_tensor_to_device(*A__ , **A__ ) def lowercase_ ( A__ ) -> Union[str, Any]: """simple docstring""" snake_case = deepcopy(A__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() snake_case = find_tied_parameters(A__ ) # For compatibility with Accelerate < 0.18 if isinstance(A__ , A__ ): snake_case = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: snake_case = sum(A__ , [] ) snake_case = len(A__ ) > 0 # Check if it is a base model snake_case = not hasattr(A__ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head snake_case = list(model.named_children() ) snake_case = [list_modules[-1][0]] # add last module together with tied weights snake_case = set(A__ ) - set(A__ ) snake_case = list(set(A__ ) ) + list(A__ ) # remove ".weight" from the keys snake_case = [".weight", ".bias"] snake_case = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: snake_case = name.replace(A__ , "" ) filtered_module_names.append(A__ ) return filtered_module_names
137
1
'''simple docstring''' from __future__ import annotations def __lowercase ( __lowercase , __lowercase = None , __lowercase = None , __lowercase = False , ) -> tuple[int, float, str]: '''simple docstring''' _A = cipher_alphabet or [chr(__lowercase ) for i in range(97 , 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) _A = { "a": 0.08497, "b": 0.01492, "c": 0.02202, "d": 0.04253, "e": 0.11162, "f": 0.02228, "g": 0.02015, "h": 0.06094, "i": 0.07546, "j": 0.00153, "k": 0.01292, "l": 0.04025, "m": 0.02406, "n": 0.06749, "o": 0.07507, "p": 0.01929, "q": 0.00095, "r": 0.07587, "s": 0.06327, "t": 0.09356, "u": 0.02758, "v": 0.00978, "w": 0.02560, "x": 0.00150, "y": 0.01994, "z": 0.00077, } else: # Custom frequencies dictionary _A = frequencies_dict if not case_sensitive: _A = ciphertext.lower() # Chi squared statistic values _A = {} # cycle through all of the shifts for shift in range(len(__lowercase ) ): _A = "" # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet _A = (alphabet_letters.index(letter.lower() ) - shift) % len( __lowercase ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter _A = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: _A = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message _A = decrypted_with_shift.lower().count(__lowercase ) # Get the excepcted amount of times the letter should appear based # on letter frequencies _A = frequencies[letter] * occurrences # Complete the chi squared statistic formula _A = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message _A = decrypted_with_shift.count(__lowercase ) # Get the excepcted amount of times the letter should appear based # on letter frequencies _A = frequencies[letter] * occurrences # Complete the chi squared statistic formula _A = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary _A = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(__lowercase ) -> tuple[float, str]: return chi_squared_statistic_values[key] _A = min( __lowercase , key=__lowercase , ) # Get all the data from the most likely cipher (key, decoded message) ( ( _A ) , ( _A ) , ) = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
79
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCAmelCase_ ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : str = field(default='''automatic-speech-recognition''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) _UpperCAmelCase : ClassVar[Features] = Features({'''audio''': Audio()} ) _UpperCAmelCase : ClassVar[Features] = Features({'''transcription''': Value('''string''' )} ) _UpperCAmelCase : str = "audio" _UpperCAmelCase : str = "transcription" def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int): if self.audio_column not in features: raise ValueError(F"Column {self.audio_column} is not present in features.") if not isinstance(features[self.audio_column] , lowerCAmelCase__): raise ValueError(F"Column {self.audio_column} is not an Audio type.") SCREAMING_SNAKE_CASE_: Tuple = copy.deepcopy(self) SCREAMING_SNAKE_CASE_: Optional[int] = self.input_schema.copy() SCREAMING_SNAKE_CASE_: Dict = features[self.audio_column] SCREAMING_SNAKE_CASE_: int = input_schema return task_template @property def _SCREAMING_SNAKE_CASE ( self : int): return {self.audio_column: "audio", self.transcription_column: "transcription"}
13
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger(__name__) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase=False ) ->List[Any]: """simple docstring""" a_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''deit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''deit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''deit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''deit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''deit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''deit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''deit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''deit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''deit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''deit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "deit.embeddings.cls_token"), ("dist_token", "deit.embeddings.distillation_token"), ("patch_embed.proj.weight", "deit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "deit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "deit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" a_ = [(pair[0], pair[1][4:]) if pair[1].startswith("deit" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("norm.weight", "deit.layernorm.weight"), ("norm.bias", "deit.layernorm.bias"), ("head.weight", "cls_classifier.weight"), ("head.bias", "cls_classifier.bias"), ("head_dist.weight", "distillation_classifier.weight"), ("head_dist.bias", "distillation_classifier.bias"), ] ) return rename_keys def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) ->Optional[Any]: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: a_ = "" else: a_ = "deit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) a_ = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) a_ = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict a_ = in_proj_weight[ : config.hidden_size, : ] a_ = in_proj_bias[: config.hidden_size] a_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] a_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] a_ = in_proj_weight[ -config.hidden_size :, : ] a_ = in_proj_bias[-config.hidden_size :] def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->List[Any]: """simple docstring""" a_ = dct.pop(UpperCAmelCase ) a_ = val def UpperCamelCase ( ) ->str: """simple docstring""" a_ = "http://images.cocodataset.org/val2017/000000039769.jpg" a_ = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) return im @torch.no_grad() def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->List[Any]: """simple docstring""" a_ = DeiTConfig() # all deit models have fine-tuned heads a_ = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size a_ = 1_000 a_ = "huggingface/label-files" a_ = "imagenet-1k-id2label.json" a_ = json.load(open(hf_hub_download(UpperCAmelCase , UpperCAmelCase , repo_type="dataset" ) , "r" ) ) a_ = {int(UpperCAmelCase ): v for k, v in idalabel.items()} a_ = idalabel a_ = {v: k for k, v in idalabel.items()} a_ = int(deit_name[-6:-4] ) a_ = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("tiny" ): a_ = 192 a_ = 768 a_ = 12 a_ = 3 elif deit_name[9:].startswith("small" ): a_ = 384 a_ = 1_536 a_ = 12 a_ = 6 if deit_name[9:].startswith("base" ): pass elif deit_name[4:].startswith("large" ): a_ = 1_024 a_ = 4_096 a_ = 24 a_ = 16 # load original model from timm a_ = timm.create_model(UpperCAmelCase , pretrained=UpperCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys a_ = timm_model.state_dict() a_ = create_rename_keys(UpperCAmelCase , UpperCAmelCase ) for src, dest in rename_keys: rename_key(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) read_in_q_k_v(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # load HuggingFace model a_ = DeiTForImageClassificationWithTeacher(UpperCAmelCase ).eval() model.load_state_dict(UpperCAmelCase ) # Check outputs on an image, prepared by DeiTImageProcessor a_ = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 a_ = DeiTImageProcessor(size=UpperCAmelCase , crop_size=config.image_size ) a_ = image_processor(images=prepare_img() , return_tensors="pt" ) a_ = encoding["pixel_values"] a_ = model(UpperCAmelCase ) a_ = timm_model(UpperCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(UpperCAmelCase , outputs.logits , atol=1E-3 ) Path(UpperCAmelCase ).mkdir(exist_ok=UpperCAmelCase ) print(F'''Saving model {deit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCAmelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCAmelCase ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--deit_name', default='vit_deit_base_distilled_patch16_224', type=str, help='Name of the DeiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) UpperCamelCase_ = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
303
"""simple docstring""" from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case ( SCREAMING_SNAKE_CASE_ ): def UpperCAmelCase__ ( self) ->Any: a_ = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(__UpperCAmelCase , "embed_dim")) self.parent.assertTrue(hasattr(__UpperCAmelCase , "num_heads")) class snake_case : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=64 , __UpperCAmelCase=3 , __UpperCAmelCase=[16, 48, 96] , __UpperCAmelCase=[1, 3, 6] , __UpperCAmelCase=[1, 2, 10] , __UpperCAmelCase=[7, 3, 3] , __UpperCAmelCase=[4, 2, 2] , __UpperCAmelCase=[2, 1, 1] , __UpperCAmelCase=[2, 2, 2] , __UpperCAmelCase=[False, False, True] , __UpperCAmelCase=[0.0, 0.0, 0.0] , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=2 , ) ->Optional[int]: a_ = parent a_ = batch_size a_ = image_size a_ = patch_sizes a_ = patch_stride a_ = patch_padding a_ = is_training a_ = use_labels a_ = num_labels a_ = num_channels a_ = embed_dim a_ = num_heads a_ = stride_kv a_ = depth a_ = cls_token a_ = attention_drop_rate a_ = initializer_range a_ = layer_norm_eps def UpperCAmelCase__ ( self) ->Any: a_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a_ = None if self.use_labels: # create a random int32 tensor of given shape a_ = ids_tensor([self.batch_size] , self.num_labels) a_ = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self) ->Union[str, Any]: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->Optional[Any]: a_ = TFCvtModel(config=__UpperCAmelCase) a_ = model(__UpperCAmelCase , training=__UpperCAmelCase) a_ = (self.image_size, self.image_size) a_ , a_ = image_size[0], image_size[1] for i in range(len(self.depth)): a_ = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1) a_ = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->str: a_ = self.num_labels a_ = TFCvtForImageClassification(__UpperCAmelCase) a_ = model(__UpperCAmelCase , labels=__UpperCAmelCase , training=__UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def UpperCAmelCase__ ( self) ->Tuple: a_ = self.prepare_config_and_inputs() a_ , a_ , a_ = config_and_inputs a_ = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class snake_case ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : Union[str, Any] = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () a_ : List[Any] = ( {"""feature-extraction""": TFCvtModel, """image-classification""": TFCvtForImageClassification} if is_tf_available() else {} ) a_ : Any = False a_ : Dict = False a_ : Optional[int] = False a_ : List[Any] = False a_ : List[Any] = False def UpperCAmelCase__ ( self) ->List[str]: a_ = TFCvtModelTester(self) a_ = TFCvtConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37) def UpperCAmelCase__ ( self) ->List[str]: self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason="Cvt does not output attentions") def UpperCAmelCase__ ( self) ->Dict: pass @unittest.skip(reason="Cvt does not use inputs_embeds") def UpperCAmelCase__ ( self) ->List[str]: pass @unittest.skip(reason="Cvt does not support input and output embeddings") def UpperCAmelCase__ ( self) ->Optional[Any]: pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU")) == 0 , reason="TF does not support backprop for grouped convolutions on CPU." , ) def UpperCAmelCase__ ( self) ->Dict: super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU")) == 0 , reason="TF does not support backprop for grouped convolutions on CPU." , ) @slow def UpperCAmelCase__ ( self) ->List[str]: super().test_keras_fit() @unittest.skip(reason="Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8") def UpperCAmelCase__ ( self) ->Dict: a_ = tf.keras.mixed_precision.Policy("mixed_float16") tf.keras.mixed_precision.set_global_policy(__UpperCAmelCase) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy("float32") def UpperCAmelCase__ ( self) ->Optional[int]: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = model_class(__UpperCAmelCase) a_ = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic a_ = [*signature.parameters.keys()] a_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , __UpperCAmelCase) def UpperCAmelCase__ ( self) ->Optional[int]: def check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase): a_ = model_class(__UpperCAmelCase) a_ = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase)) a_ = outputs.hidden_states a_ = len(self.model_tester.depth) self.assertEqual(len(__UpperCAmelCase) , __UpperCAmelCase) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:]) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a_ = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) def UpperCAmelCase__ ( self) ->Dict: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->List[str]: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase) @slow def UpperCAmelCase__ ( self) ->str: for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ = TFCvtModel.from_pretrained(__UpperCAmelCase) self.assertIsNotNone(__UpperCAmelCase) def UpperCamelCase ( ) ->Dict: """simple docstring""" a_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class snake_case ( unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self) ->int: return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) @slow def UpperCAmelCase__ ( self) ->Any: a_ = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) a_ = self.default_image_processor a_ = prepare_img() a_ = image_processor(images=__UpperCAmelCase , return_tensors="tf") # forward pass a_ = model(**__UpperCAmelCase) # verify the logits a_ = tf.TensorShape((1, 10_00)) self.assertEqual(outputs.logits.shape , __UpperCAmelCase) a_ = tf.constant([0.9_285, 0.9_015, -0.3_150]) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , __UpperCAmelCase , atol=1E-4))
303
1
from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL _snake_case : str = logging.get_logger(__name__) def a_ ( lowerCAmelCase_ : List[Any] ): if isinstance(A__, (list, tuple) ) and isinstance(videos[0], (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(A__, (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(A__ ): return [[videos]] raise ValueError(F"""Could not make batched video from {videos}""" ) class _UpperCAmelCase ( __lowerCamelCase ): """simple docstring""" a_ = ['pixel_values'] def __init__( self : Any , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[int, float] = 1 / 2_5_5 , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , **lowerCAmelCase_ : Dict , ) -> Dict: super().__init__(**UpperCamelCase_ ) __lowerCAmelCase = size if size is not None else {'shortest_edge': 2_5_6} __lowerCAmelCase = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ ) __lowerCAmelCase = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} __lowerCAmelCase = get_size_dict(UpperCamelCase_ , param_name='crop_size' ) __lowerCAmelCase = do_resize __lowerCAmelCase = size __lowerCAmelCase = do_center_crop __lowerCAmelCase = crop_size __lowerCAmelCase = resample __lowerCAmelCase = do_rescale __lowerCAmelCase = rescale_factor __lowerCAmelCase = offset __lowerCAmelCase = do_normalize __lowerCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __lowerCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase ( self : Optional[int] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : str , ) -> Tuple: __lowerCAmelCase = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ ) if "shortest_edge" in size: __lowerCAmelCase = get_resize_output_image_size(UpperCamelCase_ , size['shortest_edge'] , default_to_square=UpperCamelCase_ ) elif "height" in size and "width" in size: __lowerCAmelCase = (size['height'], size['width']) else: raise ValueError(f"""Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}""" ) return resize(UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowercase ( self : Tuple , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : List[Any] , ) -> Tuple: __lowerCAmelCase = get_size_dict(UpperCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f"""Size must have \'height\' and \'width\' as keys. Got {size.keys()}""" ) return center_crop(UpperCamelCase_ , size=(size['height'], size['width']) , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowercase ( self : Optional[Any] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[int, float] , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Union[str, Any] , ) -> int: __lowerCAmelCase = image.astype(np.floataa ) if offset: __lowerCAmelCase = image - (scale / 2) return rescale(UpperCamelCase_ , scale=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowercase ( self : Dict , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Optional[int] , ) -> Union[str, Any]: return normalize(UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowercase ( self : List[Any] , lowerCAmelCase_ : ImageInput , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : PILImageResampling = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : float = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> List[Any]: if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) if offset and not do_rescale: raise ValueError('For offset, do_rescale must also be set to True.' ) # All transformations expect numpy arrays. __lowerCAmelCase = to_numpy_array(UpperCamelCase_ ) if do_resize: __lowerCAmelCase = self.resize(image=UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ ) if do_center_crop: __lowerCAmelCase = self.center_crop(UpperCamelCase_ , size=UpperCamelCase_ ) if do_rescale: __lowerCAmelCase = self.rescale(image=UpperCamelCase_ , scale=UpperCamelCase_ , offset=UpperCamelCase_ ) if do_normalize: __lowerCAmelCase = self.normalize(image=UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ ) __lowerCAmelCase = to_channel_dimension_format(UpperCamelCase_ , UpperCamelCase_ ) return image def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : ImageInput , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : PILImageResampling = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : float = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , lowerCAmelCase_ : ChannelDimension = ChannelDimension.FIRST , **lowerCAmelCase_ : str , ) -> str: __lowerCAmelCase = do_resize if do_resize is not None else self.do_resize __lowerCAmelCase = resample if resample is not None else self.resample __lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCAmelCase = offset if offset is not None else self.offset __lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize __lowerCAmelCase = image_mean if image_mean is not None else self.image_mean __lowerCAmelCase = image_std if image_std is not None else self.image_std __lowerCAmelCase = size if size is not None else self.size __lowerCAmelCase = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ ) __lowerCAmelCase = crop_size if crop_size is not None else self.crop_size __lowerCAmelCase = get_size_dict(UpperCamelCase_ , param_name='crop_size' ) if not valid_images(UpperCamelCase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) __lowerCAmelCase = make_batched(UpperCamelCase_ ) __lowerCAmelCase = [ [ self._preprocess_image( image=UpperCamelCase_ , do_resize=UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ , do_center_crop=UpperCamelCase_ , crop_size=UpperCamelCase_ , do_rescale=UpperCamelCase_ , rescale_factor=UpperCamelCase_ , offset=UpperCamelCase_ , do_normalize=UpperCamelCase_ , image_mean=UpperCamelCase_ , image_std=UpperCamelCase_ , data_format=UpperCamelCase_ , ) for img in video ] for video in videos ] __lowerCAmelCase = {'pixel_values': videos} return BatchFeature(data=UpperCamelCase_ , tensor_type=UpperCamelCase_ )
284
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'tensor(bool)': np.bool_, 'tensor(int8)': np.inta, 'tensor(uint8)': np.uinta, 'tensor(int16)': np.intaa, 'tensor(uint16)': np.uintaa, 'tensor(int32)': np.intaa, 'tensor(uint32)': np.uintaa, 'tensor(int64)': np.intaa, 'tensor(uint64)': np.uintaa, 'tensor(float16)': np.floataa, 'tensor(float)': np.floataa, 'tensor(double)': np.floataa, } class lowerCamelCase__: def __init__( self: str , UpperCamelCase_: List[Any]=None , **UpperCamelCase_: str ): logger.info("""`diffusers.OnnxRuntimeModel` is experimental and might change in the future.""" ) __lowerCamelCase = model __lowerCamelCase = kwargs.get("""model_save_dir""" , UpperCamelCase_ ) __lowerCamelCase = kwargs.get("""latest_model_name""" , UpperCamelCase_ ) def __call__( self: Dict , **UpperCamelCase_: Any ): __lowerCamelCase = {k: np.array(UpperCamelCase_ ) for k, v in kwargs.items()} return self.model.run(UpperCamelCase_ , UpperCamelCase_ ) @staticmethod def lowerCAmelCase__ ( UpperCamelCase_: Union[str, Path] , UpperCamelCase_: Tuple=None , UpperCamelCase_: Tuple=None ): if provider is None: logger.info("""No onnxruntime provider specified, using CPUExecutionProvider""" ) __lowerCamelCase = """CPUExecutionProvider""" return ort.InferenceSession(UpperCamelCase_ , providers=[provider] , sess_options=UpperCamelCase_ ) def lowerCAmelCase__ ( self: int , UpperCamelCase_: Union[str, Path] , UpperCamelCase_: Optional[str] = None , **UpperCamelCase_: Optional[int] ): __lowerCamelCase = file_name if file_name is not None else ONNX_WEIGHTS_NAME __lowerCamelCase = self.model_save_dir.joinpath(self.latest_model_name ) __lowerCamelCase = Path(UpperCamelCase_ ).joinpath(UpperCamelCase_ ) try: shutil.copyfile(UpperCamelCase_ , UpperCamelCase_ ) except shutil.SameFileError: pass # copy external weights (for models >2GB) __lowerCamelCase = self.model_save_dir.joinpath(UpperCamelCase_ ) if src_path.exists(): __lowerCamelCase = Path(UpperCamelCase_ ).joinpath(UpperCamelCase_ ) try: shutil.copyfile(UpperCamelCase_ , UpperCamelCase_ ) except shutil.SameFileError: pass def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Union[str, os.PathLike] , **UpperCamelCase_: Optional[Any] , ): if os.path.isfile(UpperCamelCase_ ): logger.error(F'Provided path ({save_directory}) should be a directory, not a file' ) return os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ ) # saving model weights/files self._save_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) @classmethod def lowerCAmelCase__ ( cls: str , UpperCamelCase_: Union[str, Path] , UpperCamelCase_: Optional[Union[bool, str, None]] = None , UpperCamelCase_: Optional[Union[str, None]] = None , UpperCamelCase_: bool = False , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: Optional["ort.SessionOptions"] = None , **UpperCamelCase_: int , ): __lowerCamelCase = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(UpperCamelCase_ ): __lowerCamelCase = OnnxRuntimeModel.load_model( os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , provider=UpperCamelCase_ , sess_options=UpperCamelCase_ ) __lowerCamelCase = Path(UpperCamelCase_ ) # load model from hub else: # download model __lowerCamelCase = hf_hub_download( repo_id=UpperCamelCase_ , filename=UpperCamelCase_ , use_auth_token=UpperCamelCase_ , revision=UpperCamelCase_ , cache_dir=UpperCamelCase_ , force_download=UpperCamelCase_ , ) __lowerCamelCase = Path(UpperCamelCase_ ).parent __lowerCamelCase = Path(UpperCamelCase_ ).name __lowerCamelCase = OnnxRuntimeModel.load_model(UpperCamelCase_ , provider=UpperCamelCase_ , sess_options=UpperCamelCase_ ) return cls(model=UpperCamelCase_ , **UpperCamelCase_ ) @classmethod def lowerCAmelCase__ ( cls: Optional[int] , UpperCamelCase_: Union[str, Path] , UpperCamelCase_: bool = True , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: Optional[str] = None , **UpperCamelCase_: int , ): __lowerCamelCase = None if len(str(UpperCamelCase_ ).split("""@""" ) ) == 2: __lowerCamelCase, __lowerCamelCase = model_id.split("""@""" ) return cls._from_pretrained( model_id=UpperCamelCase_ , revision=UpperCamelCase_ , cache_dir=UpperCamelCase_ , force_download=UpperCamelCase_ , use_auth_token=UpperCamelCase_ , **UpperCamelCase_ , )
12
0
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class lowerCamelCase_ ( unittest.TestCase ): def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Any = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() UpperCAmelCase__ : Optional[Any] = dict(zip(_A , range(len(_A ) ) ) ) UpperCAmelCase__ : Tuple = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } UpperCAmelCase__ : Optional[int] = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 16_000, '''return_attention_mask''': False, '''do_normalize''': True, } UpperCAmelCase__ : Union[str, Any] = tempfile.mkdtemp() UpperCAmelCase__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase__ : int = os.path.join(self.tmpdirname , _A ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_A ) + '''\n''' ) with open(self.feature_extraction_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_A ) + '''\n''' ) # load decoder from hub UpperCAmelCase__ : Any = '''hf-internal-testing/ngram-beam-search-decoder''' def lowercase_ ( self : int , **_A : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Dict = self.add_kwargs_tokens_map.copy() kwargs.update(_A ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **_A ) def lowercase_ ( self : str , **_A : Any ): '''simple docstring''' return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **_A ) def lowercase_ ( self : str , **_A : Any ): '''simple docstring''' return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **_A ) def lowercase_ ( self : Any ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.get_tokenizer() UpperCAmelCase__ : Any = self.get_feature_extractor() UpperCAmelCase__ : Tuple = self.get_decoder() UpperCAmelCase__ : Tuple = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase__ : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , _A ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _A ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , _A ) def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match UpperCAmelCase__ : Optional[int] = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(_A , '''include''' ): WavaVecaProcessorWithLM( tokenizer=_A , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Any = self.get_feature_extractor() UpperCAmelCase__ : Optional[int] = self.get_tokenizer() UpperCAmelCase__ : Any = self.get_decoder() UpperCAmelCase__ : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) UpperCAmelCase__ : List[Any] = floats_list((3, 1_000) ) UpperCAmelCase__ : Dict = feature_extractor(_A , return_tensors='''np''' ) UpperCAmelCase__ : str = processor(_A , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.get_feature_extractor() UpperCAmelCase__ : str = self.get_tokenizer() UpperCAmelCase__ : str = self.get_decoder() UpperCAmelCase__ : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) UpperCAmelCase__ : Union[str, Any] = '''This is a test string''' UpperCAmelCase__ : Optional[int] = processor(text=_A ) UpperCAmelCase__ : List[str] = tokenizer(_A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase_ ( self : Dict , _A : Optional[int]=(2, 10, 16) , _A : List[str]=77 ): '''simple docstring''' np.random.seed(_A ) return np.random.rand(*_A ) def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.get_feature_extractor() UpperCAmelCase__ : Union[str, Any] = self.get_tokenizer() UpperCAmelCase__ : Optional[Any] = self.get_decoder() UpperCAmelCase__ : Tuple = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) UpperCAmelCase__ : int = self._get_dummy_logits(shape=(10, 16) , seed=13 ) UpperCAmelCase__ : List[Any] = processor.decode(_A ) UpperCAmelCase__ : List[Any] = decoder.decode_beams(_A )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def lowercase_ ( self : Any , _A : str ): '''simple docstring''' UpperCAmelCase__ : Any = self.get_feature_extractor() UpperCAmelCase__ : Tuple = self.get_tokenizer() UpperCAmelCase__ : Tuple = self.get_decoder() UpperCAmelCase__ : Any = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) UpperCAmelCase__ : Optional[Any] = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: UpperCAmelCase__ : Union[str, Any] = processor.batch_decode(_A ) else: with get_context(_A ).Pool() as pool: UpperCAmelCase__ : Union[str, Any] = processor.batch_decode(_A , _A ) UpperCAmelCase__ : str = list(_A ) with get_context('''fork''' ).Pool() as p: UpperCAmelCase__ : Dict = decoder.decode_beams_batch(_A , _A ) UpperCAmelCase__ : Dict = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(_A , decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] , decoded_processor.text ) self.assertListEqual(_A , decoded_processor.logit_score ) self.assertListEqual(_A , decoded_processor.lm_score ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : str = self.get_feature_extractor() UpperCAmelCase__ : List[Any] = self.get_tokenizer() UpperCAmelCase__ : int = self.get_decoder() UpperCAmelCase__ : Optional[int] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) UpperCAmelCase__ : str = self._get_dummy_logits() UpperCAmelCase__ : Optional[int] = 15 UpperCAmelCase__ : Dict = -20.0 UpperCAmelCase__ : Optional[Any] = -4.0 UpperCAmelCase__ : Union[str, Any] = processor.batch_decode( _A , beam_width=_A , beam_prune_logp=_A , token_min_logp=_A , ) UpperCAmelCase__ : List[Any] = decoded_processor_out.text UpperCAmelCase__ : List[str] = list(_A ) with get_context('''fork''' ).Pool() as pool: UpperCAmelCase__ : Tuple = decoder.decode_beams_batch( _A , _A , beam_width=_A , beam_prune_logp=_A , token_min_logp=_A , ) UpperCAmelCase__ : Optional[int] = [d[0][0] for d in decoded_decoder_out] UpperCAmelCase__ : Optional[Any] = [d[0][2] for d in decoded_decoder_out] UpperCAmelCase__ : Optional[int] = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(_A , _A ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] , _A ) self.assertTrue(np.array_equal(_A , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , _A , atol=1e-3 ) ) self.assertTrue(np.array_equal(_A , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9_474] , _A , atol=1e-3 ) ) def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.get_feature_extractor() UpperCAmelCase__ : Optional[Any] = self.get_tokenizer() UpperCAmelCase__ : Dict = self.get_decoder() UpperCAmelCase__ : int = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) UpperCAmelCase__ : Optional[int] = self._get_dummy_logits() UpperCAmelCase__ : List[str] = 2.0 UpperCAmelCase__ : Union[str, Any] = 5.0 UpperCAmelCase__ : str = -20.0 UpperCAmelCase__ : Optional[int] = True UpperCAmelCase__ : Union[str, Any] = processor.batch_decode( _A , alpha=_A , beta=_A , unk_score_offset=_A , lm_score_boundary=_A , ) UpperCAmelCase__ : Union[str, Any] = decoded_processor_out.text UpperCAmelCase__ : Tuple = list(_A ) decoder.reset_params( alpha=_A , beta=_A , unk_score_offset=_A , lm_score_boundary=_A , ) with get_context('''fork''' ).Pool() as pool: UpperCAmelCase__ : Optional[Any] = decoder.decode_beams_batch( _A , _A , ) UpperCAmelCase__ : str = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(_A , _A ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] , _A ) UpperCAmelCase__ : Optional[Any] = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , _A ) def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase__ : Dict = processor.decoder.model_container[processor.decoder._model_key] UpperCAmelCase__ : Optional[int] = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() UpperCAmelCase__ : Dict = os.listdir(_A ) UpperCAmelCase__ : Optional[Any] = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(_A , _A ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : str = snapshot_download('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase__ : Any = WavaVecaProcessorWithLM.from_pretrained(_A ) UpperCAmelCase__ : Optional[int] = processor.decoder.model_container[processor.decoder._model_key] UpperCAmelCase__ : str = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() UpperCAmelCase__ : List[str] = os.listdir(_A ) UpperCAmelCase__ : Any = os.listdir(_A ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(_A , _A ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Dict = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase__ : Dict = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase__ : Tuple = floats_list((3, 1_000) ) UpperCAmelCase__ : int = processor_wavaveca(_A , return_tensors='''np''' ) UpperCAmelCase__ : List[str] = processor_auto(_A , return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) UpperCAmelCase__ : Tuple = self._get_dummy_logits() UpperCAmelCase__ : List[str] = processor_wavaveca.batch_decode(_A ) UpperCAmelCase__ : int = processor_auto.batch_decode(_A ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : int = self.get_feature_extractor() UpperCAmelCase__ : int = self.get_tokenizer() UpperCAmelCase__ : Optional[Any] = self.get_decoder() UpperCAmelCase__ : Optional[int] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='''`processor` and `feature_extractor` model input names do not match''' , ) @staticmethod def lowercase_ ( _A : Dict , _A : str ): '''simple docstring''' UpperCAmelCase__ : int = [d[key] for d in offsets] return retrieved_list def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase__ : str = self._get_dummy_logits()[0] UpperCAmelCase__ : List[str] = processor.decode(_A , output_word_offsets=_A ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_A , _A ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''end_offset''' ) , [1, 3, 5] ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Any = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase__ : Dict = self._get_dummy_logits() UpperCAmelCase__ : Dict = processor.batch_decode(_A , output_word_offsets=_A ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_A , _A ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(_A , '''word''' ) ) for o in outputs['''word_offsets''']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''end_offset''' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def lowercase_ ( self : Optional[Any] ): '''simple docstring''' import torch UpperCAmelCase__ : Any = load_dataset('''common_voice''' , '''en''' , split='''train''' , streaming=_A ) UpperCAmelCase__ : Dict = ds.cast_column('''audio''' , datasets.Audio(sampling_rate=16_000 ) ) UpperCAmelCase__ : List[Any] = iter(_A ) UpperCAmelCase__ : Optional[Any] = next(_A ) UpperCAmelCase__ : Any = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) UpperCAmelCase__ : int = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train UpperCAmelCase__ : int = processor(sample['''audio''']['''array'''] , return_tensors='''pt''' ).input_values with torch.no_grad(): UpperCAmelCase__ : Dict = model(_A ).logits.cpu().numpy() UpperCAmelCase__ : int = processor.decode(logits[0] , output_word_offsets=_A ) UpperCAmelCase__ : Any = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate UpperCAmelCase__ : Any = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] UpperCAmelCase__ : int = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(_A , '''word''' ) ) , _A ) self.assertEqual(''' '''.join(self.get_from_offsets(_A , '''word''' ) ) , output.text ) # output times UpperCAmelCase__ : List[Any] = torch.tensor(self.get_from_offsets(_A , '''start_time''' ) ) UpperCAmelCase__ : List[str] = torch.tensor(self.get_from_offsets(_A , '''end_time''' ) ) # fmt: off UpperCAmelCase__ : int = torch.tensor([1.4_1_9_9, 1.6_5_9_9, 2.2_5_9_9, 3.0, 3.2_4, 3.5_9_9_9, 3.7_9_9_9, 4.0_9_9_9, 4.2_6, 4.9_4, 5.2_8, 5.6_5_9_9, 5.7_8, 5.9_4, 6.3_2, 6.5_3_9_9, 6.6_5_9_9] ) UpperCAmelCase__ : List[str] = torch.tensor([1.5_3_9_9, 1.8_9_9_9, 2.9, 3.1_6, 3.5_3_9_9, 3.7_2, 4.0_1_9_9, 4.1_7_9_9, 4.7_6, 5.1_5_9_9, 5.5_5_9_9, 5.6_9_9_9, 5.8_6, 6.1_9_9_9, 6.3_8, 6.6_1_9_9, 6.9_4] ) # fmt: on self.assertTrue(torch.allclose(_A , _A , atol=0.0_1 ) ) self.assertTrue(torch.allclose(_A , _A , atol=0.0_1 ) )
370
'''simple docstring''' from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def a__ ( lowerCAmelCase__ ) -> None: UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = analyze_text(lowerCAmelCase__ ) UpperCAmelCase__ : List[Any] = list(''' ''' + ascii_lowercase ) # what is our total sum of probabilities. UpperCAmelCase__ : str = sum(single_char_strings.values() ) # one length string UpperCAmelCase__ : int = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: UpperCAmelCase__ : Optional[int] = single_char_strings[ch] UpperCAmelCase__ : int = my_str / all_sum my_fir_sum += prob * math.loga(lowerCAmelCase__ ) # entropy formula. # print entropy print(F"""{round(-1 * my_fir_sum ):.1f}""" ) # two len string UpperCAmelCase__ : str = sum(two_char_strings.values() ) UpperCAmelCase__ : Optional[Any] = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: UpperCAmelCase__ : Optional[int] = cha + cha if sequence in two_char_strings: UpperCAmelCase__ : Dict = two_char_strings[sequence] UpperCAmelCase__ : Optional[int] = int(lowerCAmelCase__ ) / all_sum my_sec_sum += prob * math.loga(lowerCAmelCase__ ) # print second entropy print(F"""{round(-1 * my_sec_sum ):.1f}""" ) # print the difference between them print(F"""{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}""" ) def a__ ( lowerCAmelCase__ ) -> tuple[dict, dict]: UpperCAmelCase__ : Union[str, Any] = Counter() # type: ignore UpperCAmelCase__ : Tuple = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(lowerCAmelCase__ ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def a__ ( ) -> Tuple: import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
299
0
"""simple docstring""" import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __snake_case : int = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right __snake_case : Dict = 256_047 __snake_case : Optional[int] = 256_145 @require_sentencepiece @require_tokenizers class A__ ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = NllbTokenizer SCREAMING_SNAKE_CASE = NllbTokenizerFast SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = {} def _SCREAMING_SNAKE_CASE ( self: List[str]) -> Union[str, Any]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __lowerCAmelCase : int = NllbTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase) tokenizer.save_pretrained(self.tmpdirname) def _SCREAMING_SNAKE_CASE ( self: Any) -> Optional[int]: """simple docstring""" __lowerCAmelCase : Optional[Any] = NllbTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase) __lowerCAmelCase : List[str] = tokenizer.tokenize("This is a test") self.assertListEqual(_UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"]) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __lowerCAmelCase : Optional[int] = tokenizer.tokenize("I was born in 92000, and this is falsé.") self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) __lowerCAmelCase : Tuple = tokenizer.convert_tokens_to_ids(_UpperCAmelCase) self.assertListEqual( _UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __lowerCAmelCase : Dict = tokenizer.convert_ids_to_tokens(_UpperCAmelCase) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) def _SCREAMING_SNAKE_CASE ( self: Optional[Any]) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Tuple = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-nllb', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})"""): __lowerCAmelCase : List[str] = self.rust_tokenizer_class.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase) __lowerCAmelCase : Tuple = self.tokenizer_class.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase) __lowerCAmelCase : Tuple = tempfile.mkdtemp() __lowerCAmelCase : str = tokenizer_r.save_pretrained(_UpperCAmelCase) __lowerCAmelCase : str = tokenizer_p.save_pretrained(_UpperCAmelCase) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files)) __lowerCAmelCase : int = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f) self.assertSequenceEqual(_UpperCAmelCase , _UpperCAmelCase) # Checks everything loads correctly in the same way __lowerCAmelCase : Union[str, Any] = tokenizer_r.from_pretrained(_UpperCAmelCase) __lowerCAmelCase : Optional[Any] = tokenizer_p.from_pretrained(_UpperCAmelCase) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_UpperCAmelCase , _UpperCAmelCase)) shutil.rmtree(_UpperCAmelCase) # Save tokenizer rust, legacy_format=True __lowerCAmelCase : Any = tempfile.mkdtemp() __lowerCAmelCase : Tuple = tokenizer_r.save_pretrained(_UpperCAmelCase , legacy_format=_UpperCAmelCase) __lowerCAmelCase : Optional[int] = tokenizer_p.save_pretrained(_UpperCAmelCase) # Checks it save with the same files self.assertSequenceEqual(_UpperCAmelCase , _UpperCAmelCase) # Checks everything loads correctly in the same way __lowerCAmelCase : Optional[Any] = tokenizer_r.from_pretrained(_UpperCAmelCase) __lowerCAmelCase : Optional[Any] = tokenizer_p.from_pretrained(_UpperCAmelCase) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_UpperCAmelCase , _UpperCAmelCase)) shutil.rmtree(_UpperCAmelCase) # Save tokenizer rust, legacy_format=False __lowerCAmelCase : Dict = tempfile.mkdtemp() __lowerCAmelCase : Any = tokenizer_r.save_pretrained(_UpperCAmelCase , legacy_format=_UpperCAmelCase) __lowerCAmelCase : Union[str, Any] = tokenizer_p.save_pretrained(_UpperCAmelCase) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files)) # Checks everything loads correctly in the same way __lowerCAmelCase : int = tokenizer_r.from_pretrained(_UpperCAmelCase) __lowerCAmelCase : List[str] = tokenizer_p.from_pretrained(_UpperCAmelCase) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_UpperCAmelCase , _UpperCAmelCase)) shutil.rmtree(_UpperCAmelCase) @require_torch def _SCREAMING_SNAKE_CASE ( self: int) -> str: """simple docstring""" if not self.test_seqaseq: return __lowerCAmelCase : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}"""): # Longer text that will definitely require truncation. __lowerCAmelCase : Any = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for' ' Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons' ' will only worsen the violence and misery for millions of people.', ] __lowerCAmelCase : Optional[Any] = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al' ' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi' ' că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] try: __lowerCAmelCase : Optional[int] = tokenizer.prepare_seqaseq_batch( src_texts=_UpperCAmelCase , tgt_texts=_UpperCAmelCase , max_length=3 , max_target_length=10 , return_tensors="pt" , src_lang="eng_Latn" , tgt_lang="ron_Latn" , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3) self.assertEqual(batch.labels.shape[1] , 10) # max_target_length will default to max_length if not specified __lowerCAmelCase : List[str] = tokenizer.prepare_seqaseq_batch( _UpperCAmelCase , tgt_texts=_UpperCAmelCase , max_length=3 , return_tensors="pt") self.assertEqual(batch.input_ids.shape[1] , 3) self.assertEqual(batch.labels.shape[1] , 3) __lowerCAmelCase : Dict = tokenizer.prepare_seqaseq_batch( src_texts=_UpperCAmelCase , max_length=3 , max_target_length=10 , return_tensors="pt") self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3) self.assertNotIn("decoder_input_ids" , _UpperCAmelCase) @unittest.skip("Unfortunately way too slow to build a BPE with SentencePiece.") def _SCREAMING_SNAKE_CASE ( self: List[str]) -> str: """simple docstring""" pass def _SCREAMING_SNAKE_CASE ( self: Dict) -> Tuple: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})"""): __lowerCAmelCase : Dict = [AddedToken("<special>" , lstrip=_UpperCAmelCase)] __lowerCAmelCase : Dict = self.rust_tokenizer_class.from_pretrained( _UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase) __lowerCAmelCase : Tuple = tokenizer_r.encode("Hey this is a <special> token") __lowerCAmelCase : Dict = tokenizer_r.encode("<special>" , add_special_tokens=_UpperCAmelCase)[0] self.assertTrue(special_token_id in r_output) if self.test_slow_tokenizer: __lowerCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained( _UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) __lowerCAmelCase : Any = self.tokenizer_class.from_pretrained( _UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase) __lowerCAmelCase : Tuple = tokenizer_p.encode("Hey this is a <special> token") __lowerCAmelCase : Optional[Any] = tokenizer_cr.encode("Hey this is a <special> token") self.assertEqual(_UpperCAmelCase , _UpperCAmelCase) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase) self.assertTrue(special_token_id in p_output) self.assertTrue(special_token_id in cr_output) @require_torch @require_sentencepiece @require_tokenizers class A__ ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = 'facebook/nllb-200-distilled-600M' SCREAMING_SNAKE_CASE = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] SCREAMING_SNAKE_CASE = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] SCREAMING_SNAKE_CASE = [ 2_5_6_0_4_7, 1_6_2_9_7, 1_3_4_4_0_8, 8_1_6_5, 2_4_8_0_6_6, 1_4_7_3_4, 9_5_0, 1_1_3_5, 1_0_5_7_2_1, 3_5_7_3, 8_3, 2_7_3_5_2, 1_0_8, 4_9_4_8_6, 2, ] @classmethod def _SCREAMING_SNAKE_CASE ( cls: Union[str, Any]) -> Dict: """simple docstring""" __lowerCAmelCase : NllbTokenizer = NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang="eng_Latn" , tgt_lang="ron_Latn") __lowerCAmelCase : Optional[Any] = 1 return cls def _SCREAMING_SNAKE_CASE ( self: Any) -> str: """simple docstring""" self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ace_Arab"] , 25_6001) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ace_Latn"] , 25_6002) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["fra_Latn"] , 25_6057) def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> List[Any]: """simple docstring""" __lowerCAmelCase : int = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0] self.assertListEqual(self.expected_src_tokens , _UpperCAmelCase) def _SCREAMING_SNAKE_CASE ( self: Any) -> int: """simple docstring""" self.assertIn(_UpperCAmelCase , self.tokenizer.all_special_ids) # fmt: off __lowerCAmelCase : Dict = [RO_CODE, 4254, 9_8068, 11_2923, 3_9072, 3909, 713, 10_2767, 26, 1_7314, 3_5642, 1_4683, 3_3118, 2022, 6_6987, 2, 25_6047] # fmt: on __lowerCAmelCase : Tuple = self.tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase) __lowerCAmelCase : List[str] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_UpperCAmelCase) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase) self.assertNotIn(self.tokenizer.eos_token , _UpperCAmelCase) def _SCREAMING_SNAKE_CASE ( self: Optional[int]) -> Tuple: """simple docstring""" __lowerCAmelCase : Optional[int] = ['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , _UpperCAmelCase) __lowerCAmelCase : List[str] = 10 __lowerCAmelCase : List[Any] = self.tokenizer(_UpperCAmelCase , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase).input_ids[0] self.assertEqual(ids[-1] , 2) self.assertEqual(ids[0] , _UpperCAmelCase) self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase) def _SCREAMING_SNAKE_CASE ( self: Dict) -> str: """simple docstring""" self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"]) , [25_6203, 3]) def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> Dict: """simple docstring""" __lowerCAmelCase : Union[str, Any] = tempfile.mkdtemp() __lowerCAmelCase : Tuple = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_UpperCAmelCase) __lowerCAmelCase : Tuple = NllbTokenizer.from_pretrained(_UpperCAmelCase) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _UpperCAmelCase) @require_torch def _SCREAMING_SNAKE_CASE ( self: Optional[int]) -> str: """simple docstring""" __lowerCAmelCase : Optional[Any] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=len(self.expected_src_tokens) , return_tensors="pt" , ) __lowerCAmelCase : Tuple = shift_tokens_right( batch["labels"] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id["ron_Latn"]) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase) self.assertEqual((2, 15) , batch.input_ids.shape) self.assertEqual((2, 15) , batch.attention_mask.shape) __lowerCAmelCase : Optional[int] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , _UpperCAmelCase) self.assertEqual(_UpperCAmelCase , batch.decoder_input_ids[0, 0]) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE]) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) def _SCREAMING_SNAKE_CASE ( self: List[str]) -> Dict: """simple docstring""" __lowerCAmelCase : int = self.tokenizer(self.src_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=3 , return_tensors="pt") __lowerCAmelCase : str = self.tokenizer( text_target=self.tgt_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=10 , return_tensors="pt") __lowerCAmelCase : Union[str, Any] = targets['input_ids'] __lowerCAmelCase : Dict = shift_tokens_right( _UpperCAmelCase , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3) self.assertEqual(batch.decoder_input_ids.shape[1] , 10) @require_torch def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> Tuple: """simple docstring""" __lowerCAmelCase : int = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="eng_Latn" , tgt_lang="fra_Latn") self.assertEqual( nested_simplify(_UpperCAmelCase) , { # A, test, EOS, en_XX "input_ids": [[25_6047, 70, 7356, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 25_6057, } , ) @require_torch def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> Any: """simple docstring""" __lowerCAmelCase : List[str] = True __lowerCAmelCase : str = self.tokenizer( "UN Chief says there is no military solution in Syria" , src_lang="eng_Latn" , tgt_lang="fra_Latn") self.assertEqual( inputs.input_ids , [1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2, 25_6047]) __lowerCAmelCase : Tuple = False __lowerCAmelCase : str = self.tokenizer( "UN Chief says there is no military solution in Syria" , src_lang="eng_Latn" , tgt_lang="fra_Latn") self.assertEqual( inputs.input_ids , [25_6047, 1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2])
269
'''simple docstring''' from __future__ import annotations from collections.abc import Sequence from typing import Literal def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> str | Literal[False]: _a : Optional[int] = list(lowerCAmelCase_ ) _a : Optional[Any] = list(lowerCAmelCase_ ) _a : Union[str, Any] = 0 for i in range(len(lowerCAmelCase_ ) ): if lista[i] != lista[i]: count += 1 _a : Optional[int] = '_' if count > 1: return False else: return "".join(lowerCAmelCase_ ) def __lowerCamelCase ( lowerCAmelCase_ ) -> list[str]: _a : Optional[int] = [] while True: _a : Any = ['$'] * len(lowerCAmelCase_ ) _a : List[str] = [] for i in range(len(lowerCAmelCase_ ) ): for j in range(i + 1 , len(lowerCAmelCase_ ) ): _a : Optional[int] = compare_string(binary[i] , binary[j] ) if k is False: _a : Optional[Any] = '*' _a : Optional[Any] = '*' temp.append('X' ) for i in range(len(lowerCAmelCase_ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(lowerCAmelCase_ ) == 0: return pi _a : Any = list(set(lowerCAmelCase_ ) ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> list[str]: _a : int = [] for minterm in minterms: _a : Optional[int] = '' for _ in range(lowerCAmelCase_ ): _a : Union[str, Any] = str(minterm % 2 ) + string minterm //= 2 temp.append(lowerCAmelCase_ ) return temp def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> bool: _a : int = list(lowerCAmelCase_ ) _a : Union[str, Any] = list(lowerCAmelCase_ ) _a : str = 0 for i in range(len(lowerCAmelCase_ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> list[str]: _a : List[Any] = [] _a : Optional[Any] = [0] * len(lowerCAmelCase_ ) for i in range(len(chart[0] ) ): _a : Union[str, Any] = 0 _a : int = -1 for j in range(len(lowerCAmelCase_ ) ): if chart[j][i] == 1: count += 1 _a : int = j if count == 1: _a : List[Any] = 1 for i in range(len(lowerCAmelCase_ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(lowerCAmelCase_ ) ): _a : Any = 0 temp.append(prime_implicants[i] ) while True: _a : Union[str, Any] = 0 _a : List[Any] = -1 _a : str = 0 for i in range(len(lowerCAmelCase_ ) ): _a : Union[str, Any] = chart[i].count(1 ) if count_n > max_n: _a : Any = count_n _a : int = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(lowerCAmelCase_ ) ): _a : List[str] = 0 def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> list[list[int]]: _a : int = [[0 for x in range(len(lowerCAmelCase_ ) )] for x in range(len(lowerCAmelCase_ ) )] for i in range(len(lowerCAmelCase_ ) ): _a : str = prime_implicants[i].count('_' ) for j in range(len(lowerCAmelCase_ ) ): if is_for_table(prime_implicants[i] , binary[j] , lowerCAmelCase_ ): _a : Optional[Any] = 1 return chart def __lowerCamelCase ( ) -> None: _a : Optional[int] = int(input('Enter the no. of variables\n' ) ) _a : List[Any] = [ float(lowerCAmelCase_ ) for x in input( 'Enter the decimal representation of Minterms \'Spaces Separated\'\n' ).split() ] _a : List[str] = decimal_to_binary(lowerCAmelCase_ , lowerCAmelCase_ ) _a : Dict = check(lowerCAmelCase_ ) print('Prime Implicants are:' ) print(lowerCAmelCase_ ) _a : List[Any] = prime_implicant_chart(lowerCAmelCase_ , lowerCAmelCase_ ) _a : int = selection(lowerCAmelCase_ , lowerCAmelCase_ ) print('Essential Prime Implicants are:' ) print(lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
89
0
import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def lowerCAmelCase_ ( __lowerCamelCase ): monkeypatch.setattr("datasets.utils.deprecation_utils._emitted_deprecation_warnings" , set() ) @pytest.fixture def lowerCAmelCase_ ( __lowerCamelCase ): class a : """simple docstring""" def __init__( self : int , lowerCamelCase : Dict ) -> Dict: __snake_case : str = metric_id class a : """simple docstring""" __UpperCAmelCase : List[Any] = [MetricMock(_lowerCAmelCase ) for metric_id in ["accuracy", "mse", "precision", "codeparrot/apps_metric"]] def __snake_case ( self : Optional[int] ) -> Optional[Any]: return self._metrics monkeypatch.setattr("datasets.inspect.huggingface_hub" , HfhMock() ) @pytest.mark.parametrize( "func, args" , [(load_metric, ("metrics/mse",)), (list_metrics, ()), (inspect_metric, ("metrics/mse", "tmp_path"))] ) def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): if "tmp_path" in args: __snake_case : Tuple = tuple(arg if arg != "tmp_path" else tmp_path for arg in args ) with pytest.warns(__lowerCamelCase , match="https://huggingface.co/docs/evaluate" ): func(*__lowerCamelCase )
134
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING _snake_case : Optional[int] = logging.get_logger(__name__) @add_end_docstrings(_lowerCAmelCase ) class a (_lowerCAmelCase ): """simple docstring""" def __init__( self : Tuple , *lowerCamelCase : Any , **lowerCamelCase : Tuple ) -> int: super().__init__(*lowerCamelCase , **lowerCamelCase ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def __snake_case ( self : List[str] , lowerCamelCase : Optional[Any]=None ) -> Optional[int]: __snake_case : Optional[Any] = {} if top_k is not None: __snake_case : List[Any] = top_k return {}, {}, postprocess_params def __call__( self : List[Any] , lowerCamelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **lowerCamelCase : Dict ) -> Optional[int]: return super().__call__(lowerCamelCase , **lowerCamelCase ) def __snake_case ( self : Optional[Any] , lowerCamelCase : List[Any] ) -> int: __snake_case : Any = load_image(lowerCamelCase ) __snake_case : str = self.image_processor(images=lowerCamelCase , return_tensors=self.framework ) return model_inputs def __snake_case ( self : int , lowerCamelCase : List[str] ) -> Tuple: __snake_case : List[Any] = self.model(**lowerCamelCase ) return model_outputs def __snake_case ( self : List[Any] , lowerCamelCase : Any , lowerCamelCase : Optional[Any]=5 ) -> List[str]: if top_k > self.model.config.num_labels: __snake_case : int = self.model.config.num_labels if self.framework == "pt": __snake_case : Optional[Any] = model_outputs.logits.softmax(-1 )[0] __snake_case , __snake_case : List[str] = probs.topk(lowerCamelCase ) elif self.framework == "tf": __snake_case : Tuple = stable_softmax(model_outputs.logits , axis=-1 )[0] __snake_case : Optional[Any] = tf.math.top_k(lowerCamelCase , k=lowerCamelCase ) __snake_case , __snake_case : List[Any] = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(F'Unsupported framework: {self.framework}' ) __snake_case : Any = scores.tolist() __snake_case : Optional[int] = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowerCamelCase , lowerCamelCase )]
134
1
'''simple docstring''' _UpperCamelCase = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(100000)] def a_ ( _lowerCAmelCase ) -> int: __lowerCamelCase : Optional[int] = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 100000] number //= 100000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution _UpperCamelCase = [None] * 10000000 _UpperCamelCase = True _UpperCamelCase = False def a_ ( _lowerCAmelCase ) -> bool: if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore __lowerCamelCase : int = chain(next_number(_lowerCAmelCase ) ) __lowerCamelCase : Tuple = number_chain while number < 10000000: __lowerCamelCase : Dict = number_chain number *= 10 return number_chain def a_ ( _lowerCAmelCase = 10000000 ) -> int: for i in range(1 ,_lowerCAmelCase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(_lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() print(f'''{solution() = }''')
208
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 _a = { '''return_dict''': False, '''output_hidden_states''': True, '''output_attentions''': True, '''torchscript''': True, '''torch_dtype''': '''float16''', '''use_bfloat16''': True, '''tf_legacy_loss''': True, '''pruned_heads''': {'''a''': 1}, '''tie_word_embeddings''': False, '''is_decoder''': True, '''cross_attention_hidden_size''': 1_2_8, '''add_cross_attention''': True, '''tie_encoder_decoder''': True, '''max_length''': 5_0, '''min_length''': 3, '''do_sample''': True, '''early_stopping''': True, '''num_beams''': 3, '''num_beam_groups''': 3, '''diversity_penalty''': 0.5, '''temperature''': 2.0, '''top_k''': 1_0, '''top_p''': 0.7, '''typical_p''': 0.2, '''repetition_penalty''': 0.8, '''length_penalty''': 0.8, '''no_repeat_ngram_size''': 5, '''encoder_no_repeat_ngram_size''': 5, '''bad_words_ids''': [1, 2, 3], '''num_return_sequences''': 3, '''chunk_size_feed_forward''': 5, '''output_scores''': True, '''return_dict_in_generate''': True, '''forced_bos_token_id''': 2, '''forced_eos_token_id''': 3, '''remove_invalid_values''': True, '''architectures''': ['''BertModel'''], '''finetuning_task''': '''translation''', '''id2label''': {0: '''label'''}, '''label2id''': {'''label''': '''0'''}, '''tokenizer_class''': '''BertTokenizerFast''', '''prefix''': '''prefix''', '''bos_token_id''': 6, '''pad_token_id''': 7, '''eos_token_id''': 8, '''sep_token_id''': 9, '''decoder_start_token_id''': 1_0, '''exponential_decay_length_penalty''': (5, 1.01), '''suppress_tokens''': [0, 1], '''begin_suppress_tokens''': 2, '''task_specific_params''': {'''translation''': '''some_params'''}, '''problem_type''': '''regression''', } @is_staging_test class A_ ( unittest.TestCase ): @classmethod def UpperCAmelCase ( cls : Dict ) -> List[str]: __lowerCAmelCase: str = TOKEN HfFolder.save_token(UpperCAmelCase ) @classmethod def UpperCAmelCase ( cls : str ) -> List[Any]: try: delete_repo(token=cls._token , repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-config' ) except HTTPError: pass def UpperCAmelCase ( self : int ) -> Optional[int]: __lowerCAmelCase: Any = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) config.push_to_hub('test-config' , use_auth_token=self._token ) __lowerCAmelCase: str = BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase , repo_id='test-config' , push_to_hub=UpperCAmelCase , use_auth_token=self._token ) __lowerCAmelCase: Union[str, Any] = BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) def UpperCAmelCase ( self : int ) -> Dict: __lowerCAmelCase: int = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) config.push_to_hub('valid_org/test-config-org' , use_auth_token=self._token ) __lowerCAmelCase: Dict = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCAmelCase , repo_id='valid_org/test-config-org' , push_to_hub=UpperCAmelCase , use_auth_token=self._token ) __lowerCAmelCase: int = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) def UpperCAmelCase ( self : Union[str, Any] ) -> List[str]: CustomConfig.register_for_auto_class() __lowerCAmelCase: Any = CustomConfig(attribute=4_2 ) config.push_to_hub('test-dynamic-config' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'AutoConfig': 'custom_configuration.CustomConfig'} ) __lowerCAmelCase: int = AutoConfig.from_pretrained(F'''{USER}/test-dynamic-config''' , trust_remote_code=UpperCAmelCase ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , 'CustomConfig' ) self.assertEqual(new_config.attribute , 4_2 ) class A_ ( unittest.TestCase ): def UpperCAmelCase ( self : Union[str, Any] ) -> int: __lowerCAmelCase: List[Any] = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated __lowerCAmelCase: Union[str, Any] = c.n_embd + 1 # int __lowerCAmelCase: str = c.resid_pdrop + 1.0 # float __lowerCAmelCase: List[Any] = not c.scale_attn_weights # bool __lowerCAmelCase: List[str] = c.summary_type + 'foo' # str c.update_from_string( F'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(UpperCAmelCase , c.n_embd , 'mismatch for key: n_embd' ) self.assertEqual(UpperCAmelCase , c.resid_pdrop , 'mismatch for key: resid_pdrop' ) self.assertEqual(UpperCAmelCase , c.scale_attn_weights , 'mismatch for key: scale_attn_weights' ) self.assertEqual(UpperCAmelCase , c.summary_type , 'mismatch for key: summary_type' ) def UpperCAmelCase ( self : Optional[Any] ) -> Any: __lowerCAmelCase: str = PretrainedConfig() __lowerCAmelCase: Optional[int] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( UpperCAmelCase , ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) __lowerCAmelCase: int = [key for key, value in config_common_kwargs.items() if value == getattr(UpperCAmelCase , UpperCAmelCase )] if len(UpperCAmelCase ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' F''' {', '.join(UpperCAmelCase )}.''' ) def UpperCAmelCase ( self : int ) -> Optional[Any]: with self.assertRaises(UpperCAmelCase ): # config is in subfolder, the following should not work without specifying the subfolder __lowerCAmelCase: List[Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) __lowerCAmelCase: List[str] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' , subfolder='bert' ) self.assertIsNotNone(UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> List[Any]: # A mock response for an HTTP head request to emulate server down __lowerCAmelCase: Union[str, Any] = mock.Mock() __lowerCAmelCase: str = 5_0_0 __lowerCAmelCase: Optional[Any] = {} __lowerCAmelCase: Optional[int] = HTTPError __lowerCAmelCase: List[Any] = {} # Download this model to make sure it's in the cache. __lowerCAmelCase: Tuple = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=UpperCAmelCase ) as mock_head: __lowerCAmelCase: Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def UpperCAmelCase ( self : Any ) -> Optional[Any]: # This test is for deprecated behavior and can be removed in v5 __lowerCAmelCase: Tuple = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def UpperCAmelCase ( self : Dict ) -> str: __lowerCAmelCase: Optional[Any] = AutoConfig.from_pretrained('bert-base-cased' ) __lowerCAmelCase: Optional[Any] = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(UpperCAmelCase ) __lowerCAmelCase: Tuple = 2 json.dump(configuration.to_dict() , open(os.path.join(UpperCAmelCase , 'config.4.0.0.json' ) , 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 __lowerCAmelCase: Dict = AutoConfig.from_pretrained(UpperCAmelCase ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 __lowerCAmelCase: Dict = ['config.42.0.0.json'] __lowerCAmelCase: Optional[int] = 7_6_8 configuration.save_pretrained(UpperCAmelCase ) shutil.move(os.path.join(UpperCAmelCase , 'config.4.0.0.json' ) , os.path.join(UpperCAmelCase , 'config.42.0.0.json' ) ) __lowerCAmelCase: int = AutoConfig.from_pretrained(UpperCAmelCase ) self.assertEqual(new_configuration.hidden_size , 7_6_8 ) def UpperCAmelCase ( self : Union[str, Any] ) -> Dict: # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. __lowerCAmelCase: Tuple = 'hf-internal-testing/test-two-configs' import transformers as new_transformers __lowerCAmelCase: List[Any] = 'v4.0.0' __lowerCAmelCase , __lowerCAmelCase: Any = new_transformers.models.auto.AutoConfig.from_pretrained( UpperCAmelCase , return_unused_kwargs=UpperCAmelCase ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(UpperCAmelCase , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers __lowerCAmelCase: List[Any] = 'v3.0.0' __lowerCAmelCase: Union[str, Any] = old_transformers.models.auto.AutoConfig.from_pretrained(UpperCAmelCase ) self.assertEqual(old_configuration.hidden_size , 7_6_8 )
322
0
from ..utils import DummyObject, requires_backends class a__ ( metaclass=__snake_case ): A__ : Any = ['flax', 'transformers'] def __init__( self , *UpperCAmelCase , **UpperCAmelCase ) -> int: requires_backends(self , ['flax', 'transformers'] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls , *UpperCAmelCase , **UpperCAmelCase ) -> List[str]: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls , *UpperCAmelCase , **UpperCAmelCase ) -> List[str]: requires_backends(cls , ['flax', 'transformers'] ) class a__ ( metaclass=__snake_case ): A__ : Tuple = ['flax', 'transformers'] def __init__( self , *UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]: requires_backends(self , ['flax', 'transformers'] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls , *UpperCAmelCase , **UpperCAmelCase ) -> List[str]: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls , *UpperCAmelCase , **UpperCAmelCase ) -> List[Any]: requires_backends(cls , ['flax', 'transformers'] ) class a__ ( metaclass=__snake_case ): A__ : int = ['flax', 'transformers'] def __init__( self , *UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]: requires_backends(self , ['flax', 'transformers'] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls , *UpperCAmelCase , **UpperCAmelCase ) -> List[str]: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls , *UpperCAmelCase , **UpperCAmelCase ) -> Optional[Any]: requires_backends(cls , ['flax', 'transformers'] ) class a__ ( metaclass=__snake_case ): A__ : Dict = ['flax', 'transformers'] def __init__( self , *UpperCAmelCase , **UpperCAmelCase ) -> Any: requires_backends(self , ['flax', 'transformers'] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls , *UpperCAmelCase , **UpperCAmelCase ) -> int: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls , *UpperCAmelCase , **UpperCAmelCase ) -> List[str]: requires_backends(cls , ['flax', 'transformers'] )
197
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCamelCase_ : Optional[Any] = { """configuration_roberta_prelayernorm""": [ """ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaPreLayerNormConfig""", """RobertaPreLayerNormOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = [ """ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaPreLayerNormForCausalLM""", """RobertaPreLayerNormForMaskedLM""", """RobertaPreLayerNormForMultipleChoice""", """RobertaPreLayerNormForQuestionAnswering""", """RobertaPreLayerNormForSequenceClassification""", """RobertaPreLayerNormForTokenClassification""", """RobertaPreLayerNormModel""", """RobertaPreLayerNormPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Any = [ """TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaPreLayerNormForCausalLM""", """TFRobertaPreLayerNormForMaskedLM""", """TFRobertaPreLayerNormForMultipleChoice""", """TFRobertaPreLayerNormForQuestionAnswering""", """TFRobertaPreLayerNormForSequenceClassification""", """TFRobertaPreLayerNormForTokenClassification""", """TFRobertaPreLayerNormMainLayer""", """TFRobertaPreLayerNormModel""", """TFRobertaPreLayerNormPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Any = [ """FlaxRobertaPreLayerNormForCausalLM""", """FlaxRobertaPreLayerNormForMaskedLM""", """FlaxRobertaPreLayerNormForMultipleChoice""", """FlaxRobertaPreLayerNormForQuestionAnswering""", """FlaxRobertaPreLayerNormForSequenceClassification""", """FlaxRobertaPreLayerNormForTokenClassification""", """FlaxRobertaPreLayerNormModel""", """FlaxRobertaPreLayerNormPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys lowerCamelCase_ : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
197
1
"""simple docstring""" import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) class UpperCamelCase ( __a ): lowercase = 'linear' lowercase = 'cosine' lowercase = 'cosine_with_restarts' lowercase = 'polynomial' lowercase = 'constant' lowercase = 'constant_with_warmup' lowercase = 'piecewise_constant' def lowercase__( __SCREAMING_SNAKE_CASE : Optimizer , __SCREAMING_SNAKE_CASE : int = -1 ): return LambdaLR(__lowerCAmelCase , lambda __SCREAMING_SNAKE_CASE : 1 , last_epoch=__lowerCAmelCase ) def lowercase__( __SCREAMING_SNAKE_CASE : Optimizer , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int = -1 ): def lr_lambda(__SCREAMING_SNAKE_CASE : int ): if current_step < num_warmup_steps: return float(__lowerCAmelCase ) / float(max(1.0 , __lowerCAmelCase ) ) return 1.0 return LambdaLR(__lowerCAmelCase , __lowerCAmelCase , last_epoch=__lowerCAmelCase ) def lowercase__( __SCREAMING_SNAKE_CASE : Optimizer , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int = -1 ): lowercase_ : Optional[Any] = {} lowercase_ : List[str] = step_rules.split(',' ) for rule_str in rule_list[:-1]: lowercase_ , lowercase_ : Union[str, Any] = rule_str.split(':' ) lowercase_ : Any = int(__lowerCAmelCase ) lowercase_ : List[Any] = float(__lowerCAmelCase ) lowercase_ : Union[str, Any] = value lowercase_ : Optional[Any] = float(rule_list[-1] ) def create_rules_function(__SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[Any] ): def rule_func(__SCREAMING_SNAKE_CASE : int ) -> float: lowercase_ : List[str] = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(__lowerCAmelCase ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func lowercase_ : str = create_rules_function(__lowerCAmelCase , __lowerCAmelCase ) return LambdaLR(__lowerCAmelCase , __lowerCAmelCase , last_epoch=__lowerCAmelCase ) def lowercase__( __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[Any]=-1 ): def lr_lambda(__SCREAMING_SNAKE_CASE : int ): if current_step < num_warmup_steps: return float(__lowerCAmelCase ) / float(max(1 , __lowerCAmelCase ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def lowercase__( __SCREAMING_SNAKE_CASE : Optimizer , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : float = 0.5 , __SCREAMING_SNAKE_CASE : int = -1 ): def lr_lambda(__SCREAMING_SNAKE_CASE : Optional[Any] ): if current_step < num_warmup_steps: return float(__lowerCAmelCase ) / float(max(1 , __lowerCAmelCase ) ) lowercase_ : Optional[Any] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(__lowerCAmelCase ) * 2.0 * progress )) ) return LambdaLR(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def lowercase__( __SCREAMING_SNAKE_CASE : Optimizer , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int = 1 , __SCREAMING_SNAKE_CASE : int = -1 ): def lr_lambda(__SCREAMING_SNAKE_CASE : Optional[Any] ): if current_step < num_warmup_steps: return float(__lowerCAmelCase ) / float(max(1 , __lowerCAmelCase ) ) lowercase_ : int = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(__lowerCAmelCase ) * progress) % 1.0) )) ) return LambdaLR(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def lowercase__( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[str]=1E-7 , __SCREAMING_SNAKE_CASE : Any=1.0 , __SCREAMING_SNAKE_CASE : int=-1 ): lowercase_ : Union[str, Any] = optimizer.defaults['lr'] if not (lr_init > lr_end): raise ValueError(F'''lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})''' ) def lr_lambda(__SCREAMING_SNAKE_CASE : int ): if current_step < num_warmup_steps: return float(__lowerCAmelCase ) / float(max(1 , __lowerCAmelCase ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: lowercase_ : Tuple = lr_init - lr_end lowercase_ : Dict = num_training_steps - num_warmup_steps lowercase_ : Tuple = 1 - (current_step - num_warmup_steps) / decay_steps lowercase_ : List[Any] = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) __SCREAMING_SNAKE_CASE ={ SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def lowercase__( __SCREAMING_SNAKE_CASE : Union[str, SchedulerType] , __SCREAMING_SNAKE_CASE : Optimizer , __SCREAMING_SNAKE_CASE : Optional[str] = None , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : int = 1 , __SCREAMING_SNAKE_CASE : float = 1.0 , __SCREAMING_SNAKE_CASE : int = -1 , ): lowercase_ : Any = SchedulerType(__lowerCAmelCase ) lowercase_ : List[str] = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(__lowerCAmelCase , last_epoch=__lowerCAmelCase ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(__lowerCAmelCase , step_rules=__lowerCAmelCase , last_epoch=__lowerCAmelCase ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(F'''{name} requires `num_warmup_steps`, please provide that argument.''' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(__lowerCAmelCase , num_warmup_steps=__lowerCAmelCase , last_epoch=__lowerCAmelCase ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(F'''{name} requires `num_training_steps`, please provide that argument.''' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( __lowerCAmelCase , num_warmup_steps=__lowerCAmelCase , num_training_steps=__lowerCAmelCase , num_cycles=__lowerCAmelCase , last_epoch=__lowerCAmelCase , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( __lowerCAmelCase , num_warmup_steps=__lowerCAmelCase , num_training_steps=__lowerCAmelCase , power=__lowerCAmelCase , last_epoch=__lowerCAmelCase , ) return schedule_func( __lowerCAmelCase , num_warmup_steps=__lowerCAmelCase , num_training_steps=__lowerCAmelCase , last_epoch=__lowerCAmelCase )
213
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { "asapp/sew-tiny-100k": "https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json", # See all SEW models at https://huggingface.co/models?filter=sew } class _lowerCAmelCase ( __a ): _lowercase ='''sew''' def __init__( self , _UpperCamelCase=32 , _UpperCamelCase=768 , _UpperCamelCase=12 , _UpperCamelCase=12 , _UpperCamelCase=3_072 , _UpperCamelCase=2 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=0.0 , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=0.02 , _UpperCamelCase=1e-5 , _UpperCamelCase="group" , _UpperCamelCase="gelu" , _UpperCamelCase=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , _UpperCamelCase=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , _UpperCamelCase=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , _UpperCamelCase=False , _UpperCamelCase=128 , _UpperCamelCase=16 , _UpperCamelCase=True , _UpperCamelCase=0.05 , _UpperCamelCase=10 , _UpperCamelCase=2 , _UpperCamelCase=0.0 , _UpperCamelCase=10 , _UpperCamelCase=0 , _UpperCamelCase="mean" , _UpperCamelCase=False , _UpperCamelCase=False , _UpperCamelCase=256 , _UpperCamelCase=0 , _UpperCamelCase=1 , _UpperCamelCase=2 , **_UpperCamelCase , ) -> Union[str, Any]: super().__init__(**_UpperCamelCase , pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase ) lowerCAmelCase_ = hidden_size lowerCAmelCase_ = feat_extract_norm lowerCAmelCase_ = feat_extract_activation lowerCAmelCase_ = list(_UpperCamelCase ) lowerCAmelCase_ = list(_UpperCamelCase ) lowerCAmelCase_ = list(_UpperCamelCase ) lowerCAmelCase_ = conv_bias lowerCAmelCase_ = num_conv_pos_embeddings lowerCAmelCase_ = num_conv_pos_embedding_groups lowerCAmelCase_ = len(self.conv_dim ) lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = squeeze_factor lowerCAmelCase_ = hidden_act lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = hidden_dropout lowerCAmelCase_ = attention_dropout lowerCAmelCase_ = activation_dropout lowerCAmelCase_ = feat_proj_dropout lowerCAmelCase_ = final_dropout lowerCAmelCase_ = layerdrop lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = initializer_range lowerCAmelCase_ = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect." "It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`," f"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" f"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCAmelCase_ = apply_spec_augment lowerCAmelCase_ = mask_time_prob lowerCAmelCase_ = mask_time_length lowerCAmelCase_ = mask_time_min_masks lowerCAmelCase_ = mask_feature_prob lowerCAmelCase_ = mask_feature_length lowerCAmelCase_ = mask_feature_min_masks # ctc loss lowerCAmelCase_ = ctc_loss_reduction lowerCAmelCase_ = ctc_zero_infinity # sequence classification lowerCAmelCase_ = use_weighted_layer_sum lowerCAmelCase_ = classifier_proj_size @property def __a ( self ) -> Optional[Any]: return functools.reduce(operator.mul , self.conv_stride , 1 )
231
0
"""simple docstring""" from collections.abc import Sequence def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> float: return sum(c * (x**i) for i, c in enumerate(lowercase_ ) ) def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> float: A__ = 0.0 for coeff in reversed(lowercase_ ): A__ = result * x + coeff return result if __name__ == "__main__": SCREAMING_SNAKE_CASE = (0.0, 0.0, 5.0, 9.3, 7.0) SCREAMING_SNAKE_CASE = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
230
"""simple docstring""" import random from .binary_exp_mod import bin_exp_mod def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=10_00 ) -> Optional[Any]: if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd A__ = n - 1 A__ = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) A__ = 0 while count < prec: A__ = random.randint(2 , n - 1 ) A__ = bin_exp_mod(lowercase_ , lowercase_ , lowercase_ ) if b != 1: A__ = True for _ in range(lowercase_ ): if b == n - 1: A__ = False break A__ = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": SCREAMING_SNAKE_CASE = abs(int(input("Enter bound : ").strip())) print("Here's the list of primes:") print(", ".join(str(i) for i in range(n + 1) if is_prime_big(i)))
230
1
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu UpperCamelCase__ : List[Any] = [ '''EAGER''', '''AOT_EAGER''', '''INDUCTOR''', '''NVFUSER''', '''AOT_NVFUSER''', '''AOT_CUDAGRAPHS''', '''OFI''', '''FX2TRT''', '''ONNXRT''', '''IPEX''', ] def lowerCAmelCase_ ( _lowerCamelCase: str , _lowerCamelCase: Union[str, Any]=None , _lowerCamelCase: Optional[int]=None , _lowerCamelCase: str=None ): __SCREAMING_SNAKE_CASE : Optional[int] = True while ask_again: __SCREAMING_SNAKE_CASE : Tuple = input(_lowerCamelCase ) try: if default is not None and len(_lowerCamelCase ) == 0: return default return convert_value(_lowerCamelCase ) if convert_value is not None else result except Exception: if error_message is not None: print(_lowerCamelCase ) def lowerCAmelCase_ ( _lowerCamelCase: Tuple , _lowerCamelCase: Union[str, Any]=[] , _lowerCamelCase: List[Any]=None , _lowerCamelCase: Optional[Any]=0 ): __SCREAMING_SNAKE_CASE : Union[str, Any] = BulletMenu(_lowerCamelCase , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : Dict = menu.run(default_choice=_lowerCamelCase ) return convert_value(_lowerCamelCase ) if convert_value is not None else result def lowerCAmelCase_ ( _lowerCamelCase: Optional[Any] ): __SCREAMING_SNAKE_CASE : List[str] = int(_lowerCamelCase ) return ComputeEnvironment(["""LOCAL_MACHINE""", """AMAZON_SAGEMAKER"""][value] ) def lowerCAmelCase_ ( _lowerCamelCase: Any ): __SCREAMING_SNAKE_CASE : str = int(_lowerCamelCase ) return DistributedType(["""NO""", """MULTI_CPU""", """MULTI_XPU""", """MULTI_GPU""", """MULTI_NPU""", """TPU"""][value] ) def lowerCAmelCase_ ( _lowerCamelCase: Tuple ): __SCREAMING_SNAKE_CASE : Tuple = int(_lowerCamelCase ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def lowerCAmelCase_ ( _lowerCamelCase: Union[str, Any] ): __SCREAMING_SNAKE_CASE : List[str] = int(_lowerCamelCase ) return PrecisionType(["""no""", """fp16""", """bf16""", """fp8"""][value] ) def lowerCAmelCase_ ( _lowerCamelCase: Tuple ): __SCREAMING_SNAKE_CASE : int = int(_lowerCamelCase ) return SageMakerDistributedType(["""NO""", """DATA_PARALLEL""", """MODEL_PARALLEL"""][value] ) def lowerCAmelCase_ ( _lowerCamelCase: List[Any] ): return {"yes": True, "no": False}[value.lower()] class _UpperCamelCase ( argparse.RawDescriptionHelpFormatter ): '''simple docstring''' def UpperCamelCase__ ( self : Tuple , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = super()._format_usage(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = usage.replace("""<command> [<args>] """ , """""" ) return usage
112
'''simple docstring''' from __future__ import annotations def lowerCAmelCase_ ( _lowerCamelCase: list[int] , _lowerCamelCase: list[int] , _lowerCamelCase: int ): __SCREAMING_SNAKE_CASE : List[Any] = list(range(len(_lowerCamelCase ) ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = [v / w for v, w in zip(_lowerCamelCase , _lowerCamelCase )] index.sort(key=lambda _lowerCamelCase : ratio[i] , reverse=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : float = 0 __SCREAMING_SNAKE_CASE : list[float] = [0] * len(_lowerCamelCase ) for i in index: if weight[i] <= capacity: __SCREAMING_SNAKE_CASE : str = 1 max_value += value[i] capacity -= weight[i] else: __SCREAMING_SNAKE_CASE : int = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
112
1
"""simple docstring""" import os import unittest from tempfile import TemporaryDirectory import torch import torch.nn as nn from accelerate.utils import ( OffloadedWeightsLoader, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, ) class snake_case ( nn.Module ): def __init__( self) ->int: super().__init__() a_ = nn.Linear(3 , 4) a_ = nn.BatchNormad(4) a_ = nn.Linear(4 , 5) def UpperCAmelCase__ ( self , __UpperCAmelCase) ->str: return self.lineara(self.batchnorm(self.lineara(__UpperCAmelCase))) class snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self) ->List[str]: a_ = ModelForTest() with TemporaryDirectory() as tmp_dir: offload_state_dict(__UpperCAmelCase , model.state_dict()) a_ = os.path.join(__UpperCAmelCase , "index.json") self.assertTrue(os.path.isfile(__UpperCAmelCase)) # TODO: add tests on what is inside the index for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]: a_ = os.path.join(__UpperCAmelCase , F'''{key}.dat''') self.assertTrue(os.path.isfile(__UpperCAmelCase)) # TODO: add tests on the fact weights are properly loaded def UpperCAmelCase__ ( self) ->Union[str, Any]: a_ = [torch.floataa, torch.floataa, torch.bfloataa] for dtype in dtypes: a_ = torch.randn(2 , 3 , dtype=__UpperCAmelCase) with TemporaryDirectory() as tmp_dir: a_ = offload_weight(__UpperCAmelCase , "weight" , __UpperCAmelCase , {}) a_ = os.path.join(__UpperCAmelCase , "weight.dat") self.assertTrue(os.path.isfile(__UpperCAmelCase)) self.assertDictEqual(__UpperCAmelCase , {"weight": {"shape": [2, 3], "dtype": str(__UpperCAmelCase).split(".")[1]}}) a_ = load_offloaded_weight(__UpperCAmelCase , index["weight"]) self.assertTrue(torch.equal(__UpperCAmelCase , __UpperCAmelCase)) def UpperCAmelCase__ ( self) ->int: a_ = ModelForTest() a_ = model.state_dict() a_ = {k: v for k, v in state_dict.items() if "linear2" not in k} a_ = {k: v for k, v in state_dict.items() if "linear2" in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(__UpperCAmelCase , __UpperCAmelCase) a_ = OffloadedWeightsLoader(state_dict=__UpperCAmelCase , save_folder=__UpperCAmelCase) # Every key is there with the right value self.assertEqual(sorted(__UpperCAmelCase) , sorted(state_dict.keys())) for key, param in state_dict.items(): self.assertTrue(torch.allclose(__UpperCAmelCase , weight_map[key])) a_ = {k: v for k, v in state_dict.items() if "weight" in k} a_ = {k: v for k, v in state_dict.items() if "weight" not in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(__UpperCAmelCase , __UpperCAmelCase) a_ = OffloadedWeightsLoader(state_dict=__UpperCAmelCase , save_folder=__UpperCAmelCase) # Every key is there with the right value self.assertEqual(sorted(__UpperCAmelCase) , sorted(state_dict.keys())) for key, param in state_dict.items(): self.assertTrue(torch.allclose(__UpperCAmelCase , weight_map[key])) with TemporaryDirectory() as tmp_dir: offload_state_dict(__UpperCAmelCase , __UpperCAmelCase) # Duplicates are removed a_ = OffloadedWeightsLoader(state_dict=__UpperCAmelCase , save_folder=__UpperCAmelCase) # Every key is there with the right value self.assertEqual(sorted(__UpperCAmelCase) , sorted(state_dict.keys())) for key, param in state_dict.items(): self.assertTrue(torch.allclose(__UpperCAmelCase , weight_map[key])) def UpperCAmelCase__ ( self) ->List[str]: a_ = {"a.1": 0, "a.10": 1, "a.2": 2} a_ = extract_submodules_state_dict(__UpperCAmelCase , ["a.1", "a.2"]) self.assertDictEqual(__UpperCAmelCase , {"a.1": 0, "a.2": 2}) a_ = {"a.1.a": 0, "a.10.a": 1, "a.2.a": 2} a_ = extract_submodules_state_dict(__UpperCAmelCase , ["a.1", "a.2"]) self.assertDictEqual(__UpperCAmelCase , {"a.1.a": 0, "a.2.a": 2})
303
"""simple docstring""" import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 UpperCamelCase_ = 0b10_11_00_11_11_10_11_00_10_01_00_00_01_11_10_11_10_11_00_01_10_01_11_10 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 UpperCamelCase_ = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class snake_case : def __init__( self) ->Optional[int]: a_ = WATERMARK_BITS a_ = WatermarkEncoder() self.encoder.set_watermark("bits" , self.watermark) def UpperCAmelCase__ ( self , __UpperCAmelCase) ->Optional[int]: # can't encode images that are smaller than 256 if images.shape[-1] < 2_56: return images a_ = (2_55 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1).float().numpy() a_ = [self.encoder.encode(__UpperCAmelCase , "dwtDct") for image in images] a_ = torch.from_numpy(np.array(__UpperCAmelCase)).permute(0 , 3 , 1 , 2) a_ = torch.clamp(2 * (images / 2_55 - 0.5) , min=-1.0 , max=1.0) return images
303
1
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class __UpperCamelCase : """simple docstring""" def __init__( self : Dict , _A : Dict , _A : List[str]=13 , _A : Union[str, Any]=2 , _A : Union[str, Any]=24 , _A : List[str]=16 , _A : Optional[Any]=True , _A : Tuple=True , _A : int=32 , _A : Optional[Any]=5 , _A : int=4 , _A : int=37 , _A : Dict="gelu" , _A : Dict=0.1 , _A : Optional[int]=0.1 , _A : str=10 , _A : List[str]=0.02 , _A : int=None , _A : int=2 , _A : Any=2 , ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = parent __SCREAMING_SNAKE_CASE : Any = batch_size __SCREAMING_SNAKE_CASE : Any = patch_size __SCREAMING_SNAKE_CASE : List[Any] = max_length __SCREAMING_SNAKE_CASE : Union[str, Any] = num_mel_bins __SCREAMING_SNAKE_CASE : List[str] = is_training __SCREAMING_SNAKE_CASE : Tuple = use_labels __SCREAMING_SNAKE_CASE : Optional[Any] = hidden_size __SCREAMING_SNAKE_CASE : Optional[int] = num_hidden_layers __SCREAMING_SNAKE_CASE : str = num_attention_heads __SCREAMING_SNAKE_CASE : Tuple = intermediate_size __SCREAMING_SNAKE_CASE : int = hidden_act __SCREAMING_SNAKE_CASE : Optional[int] = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Tuple = type_sequence_label_size __SCREAMING_SNAKE_CASE : int = initializer_range __SCREAMING_SNAKE_CASE : str = scope __SCREAMING_SNAKE_CASE : str = frequency_stride __SCREAMING_SNAKE_CASE : str = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) __SCREAMING_SNAKE_CASE : Optional[Any] = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 __SCREAMING_SNAKE_CASE : Union[str, Any] = (self.max_length - self.patch_size) // self.time_stride + 1 __SCREAMING_SNAKE_CASE : Union[str, Any] = frequency_out_dimension * time_out_dimension __SCREAMING_SNAKE_CASE : Union[str, Any] = num_patches + 2 def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) __SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_labels: __SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE : Tuple = self.get_config() return config, input_values, labels def UpperCAmelCase__ ( self : Any ): """simple docstring""" return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_A , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def UpperCAmelCase__ ( self : List[Any] , _A : Union[str, Any] , _A : Optional[int] , _A : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = ASTModel(config=_A ) model.to(_A ) model.eval() __SCREAMING_SNAKE_CASE : Dict = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ), ( __SCREAMING_SNAKE_CASE ), ( __SCREAMING_SNAKE_CASE ), ) : Union[str, Any] = config_and_inputs __SCREAMING_SNAKE_CASE : str = {'''input_values''': input_values} return config, inputs_dict @require_torch class __UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" lowerCAmelCase_ = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) lowerCAmelCase_ = ( {'''audio-classification''': ASTForAudioClassification, '''feature-extraction''': ASTModel} if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def UpperCAmelCase__ ( self : Optional[int] , _A : Optional[Any] , _A : Tuple , _A : int , _A : Tuple , _A : Tuple ): """simple docstring""" if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = ASTModelTester(self ) __SCREAMING_SNAKE_CASE : Tuple = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 ) def UpperCAmelCase__ ( self : int ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''AST does not use inputs_embeds''' ) def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" pass def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE : Tuple = model_class(_A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __SCREAMING_SNAKE_CASE : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_A , nn.Linear ) ) def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE : Any = model_class(_A ) __SCREAMING_SNAKE_CASE : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE : Any = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE : Optional[int] = ['''input_values'''] self.assertListEqual(arg_names[:1] , _A ) def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) @slow def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE : Any = ASTModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = hf_hub_download( repo_id='''nielsr/audio-spectogram-transformer-checkpoint''' , filename='''sample_audio.flac''' , repo_type='''dataset''' ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : List[str] = torchaudio.load(snake_case ) return audio, sampling_rate @require_torch @require_torchaudio class __UpperCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase__ ( self : str ): """simple docstring""" return ( ASTFeatureExtractor.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''' ) if is_torchaudio_available() else None ) @slow def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = self.default_feature_extractor __SCREAMING_SNAKE_CASE : Dict = ASTForAudioClassification.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''' ).to(_A ) __SCREAMING_SNAKE_CASE : Dict = self.default_feature_extractor __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[Any] = prepare_audio() __SCREAMING_SNAKE_CASE : Union[str, Any] = audio.squeeze().numpy() __SCREAMING_SNAKE_CASE : Dict = feature_extractor(_A , sampling_rate=_A , return_tensors='''pt''' ).to(_A ) # forward pass with torch.no_grad(): __SCREAMING_SNAKE_CASE : str = model(**_A ) # verify the logits __SCREAMING_SNAKE_CASE : Any = torch.Size((1, 527) ) self.assertEqual(outputs.logits.shape , _A ) __SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([-0.87_60, -7.00_42, -8.66_02] ).to(_A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _A , atol=1e-4 ) )
303
import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 lowercase_ = 0b1011_0011_1110_1100_1001_0000_0111_1011_1011_0001_1001_1110 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 lowercase_ = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class __UpperCamelCase : """simple docstring""" def __init__( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = WATERMARK_BITS __SCREAMING_SNAKE_CASE : Optional[int] = WatermarkEncoder() self.encoder.set_watermark('''bits''' , self.watermark ) def UpperCAmelCase__ ( self : List[Any] , _A : torch.FloatTensor ): """simple docstring""" if images.shape[-1] < 256: return images __SCREAMING_SNAKE_CASE : Union[str, Any] = (255 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __SCREAMING_SNAKE_CASE : Dict = [self.encoder.encode(_A , '''dwtDct''' ) for image in images] __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.from_numpy(np.array(_A ) ).permute(0 , 3 , 1 , 2 ) __SCREAMING_SNAKE_CASE : Optional[Any] = torch.clamp(2 * (images / 255 - 0.5) , min=-1.0 , max=1.0 ) return images
303
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case = { """configuration_roberta""": ["""ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaConfig""", """RobertaOnnxConfig"""], """tokenization_roberta""": ["""RobertaTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = ["""RobertaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaForCausalLM""", """RobertaForMaskedLM""", """RobertaForMultipleChoice""", """RobertaForQuestionAnswering""", """RobertaForSequenceClassification""", """RobertaForTokenClassification""", """RobertaModel""", """RobertaPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaForCausalLM""", """TFRobertaForMaskedLM""", """TFRobertaForMultipleChoice""", """TFRobertaForQuestionAnswering""", """TFRobertaForSequenceClassification""", """TFRobertaForTokenClassification""", """TFRobertaMainLayer""", """TFRobertaModel""", """TFRobertaPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """FlaxRobertaForCausalLM""", """FlaxRobertaForMaskedLM""", """FlaxRobertaForMultipleChoice""", """FlaxRobertaForQuestionAnswering""", """FlaxRobertaForSequenceClassification""", """FlaxRobertaForTokenClassification""", """FlaxRobertaModel""", """FlaxRobertaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
368
from math import sqrt def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = 0 for i in range(1 , int(sqrt(lowercase ) + 1 ) ): if n % i == 0 and i != sqrt(lowercase ): total += i + n // i elif i == sqrt(lowercase ): total += i return total - n def lowerCamelCase__ ( lowercase = 10000 ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = sum( i for i in range(1 , lowercase ) if sum_of_divisors(sum_of_divisors(lowercase ) ) == i and sum_of_divisors(lowercase ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
319
0
'''simple docstring''' from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class _snake_case ( lowercase_ ): def lowerCAmelCase__ ( self , a__ ) -> float: '''simple docstring''' return 0.0 def UpperCamelCase_( snake_case : np.ndarray , snake_case : int ): '''simple docstring''' snake_case_ = min([-2_0, np.min(fft_results[1 : samplerate // 2 - 1] )] ) snake_case_ = max([2_0, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def UpperCamelCase_( snake_case : FilterType , snake_case : int ): '''simple docstring''' snake_case_ = 5_1_2 snake_case_ = [1] + [0] * (size - 1) snake_case_ = [filter_type.process(snake_case ) for item in inputs] snake_case_ = [0] * (samplerate - size) # zero-padding outputs += filler snake_case_ = np.abs(np.fft.fft(snake_case ) ) snake_case_ = 2_0 * np.logaa(snake_case ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(2_4 , samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) # Display within reasonable bounds snake_case_ = get_bounds(snake_case , snake_case ) plt.ylim(max([-8_0, bounds[0]] ) , min([8_0, bounds[1]] ) ) plt.ylabel("Gain (dB)" ) plt.plot(snake_case ) plt.show() def UpperCamelCase_( snake_case : FilterType , snake_case : int ): '''simple docstring''' snake_case_ = 5_1_2 snake_case_ = [1] + [0] * (size - 1) snake_case_ = [filter_type.process(snake_case ) for item in inputs] snake_case_ = [0] * (samplerate - size) # zero-padding outputs += filler snake_case_ = np.angle(np.fft.fft(snake_case ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(2_4 , samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel("Phase shift (Radians)" ) plt.plot(np.unwrap(snake_case , -2 * pi ) ) plt.show()
85
'''simple docstring''' import warnings from functools import wraps from typing import Callable def UpperCamelCase_( snake_case : Callable ): '''simple docstring''' @wraps(snake_case ) def _inner_fn(*snake_case : Optional[int] , **snake_case : List[Any] ): warnings.warn( (f'\'{fn.__name__}\' is experimental and might be subject to breaking changes in the future.') , snake_case , ) return fn(*snake_case , **snake_case ) return _inner_fn
85
1
'''simple docstring''' from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _a : '''simple docstring''' def __init__( self, A, A=2, A=3, A=4, A=2, A=7, A=True, A=True, A=True, A=True, A=99, A=36, A=2, A=4, A=37, A="gelu", A=0.1, A=0.1, A=512, A=16, A=2, A=0.02, A=6, A=6, A=3, A=4, A=None, A=1_000, ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = parent SCREAMING_SNAKE_CASE : Any = batch_size SCREAMING_SNAKE_CASE : Optional[int] = num_channels SCREAMING_SNAKE_CASE : str = image_size SCREAMING_SNAKE_CASE : List[Any] = patch_size SCREAMING_SNAKE_CASE : List[str] = is_training SCREAMING_SNAKE_CASE : Optional[Any] = use_input_mask SCREAMING_SNAKE_CASE : Any = use_token_type_ids SCREAMING_SNAKE_CASE : List[str] = use_labels SCREAMING_SNAKE_CASE : Optional[Any] = vocab_size SCREAMING_SNAKE_CASE : Tuple = hidden_size SCREAMING_SNAKE_CASE : Any = num_hidden_layers SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads SCREAMING_SNAKE_CASE : Tuple = intermediate_size SCREAMING_SNAKE_CASE : List[Any] = hidden_act SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Any = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Dict = max_position_embeddings SCREAMING_SNAKE_CASE : Any = type_vocab_size SCREAMING_SNAKE_CASE : Dict = type_sequence_label_size SCREAMING_SNAKE_CASE : List[Any] = initializer_range SCREAMING_SNAKE_CASE : Tuple = coordinate_size SCREAMING_SNAKE_CASE : Union[str, Any] = shape_size SCREAMING_SNAKE_CASE : Union[str, Any] = num_labels SCREAMING_SNAKE_CASE : str = num_choices SCREAMING_SNAKE_CASE : List[Any] = scope SCREAMING_SNAKE_CASE : Tuple = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) SCREAMING_SNAKE_CASE : Tuple = text_seq_length SCREAMING_SNAKE_CASE : List[Any] = (image_size // patch_size) ** 2 + 1 SCREAMING_SNAKE_CASE : Tuple = self.text_seq_length + self.image_seq_length def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size, self.text_seq_length], self.vocab_size ) SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size, self.text_seq_length, 4], self.range_bbox ) SCREAMING_SNAKE_CASE : Dict = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: SCREAMING_SNAKE_CASE : Dict = bbox[i, j, 3] SCREAMING_SNAKE_CASE : List[str] = bbox[i, j, 1] SCREAMING_SNAKE_CASE : Union[str, Any] = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: SCREAMING_SNAKE_CASE : Union[str, Any] = bbox[i, j, 2] SCREAMING_SNAKE_CASE : Any = bbox[i, j, 0] SCREAMING_SNAKE_CASE : Optional[Any] = tmp_coordinate SCREAMING_SNAKE_CASE : Any = tf.constant(A ) SCREAMING_SNAKE_CASE : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : Optional[int] = None if self.use_input_mask: SCREAMING_SNAKE_CASE : Any = random_attention_mask([self.batch_size, self.text_seq_length] ) SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size, self.text_seq_length], self.type_vocab_size ) SCREAMING_SNAKE_CASE : List[str] = None SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_labels: SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size], self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size, self.text_seq_length], self.num_labels ) SCREAMING_SNAKE_CASE : List[str] = LayoutLMvaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, coordinate_size=self.coordinate_size, shape_size=self.shape_size, input_size=self.image_size, patch_size=self.patch_size, ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def UpperCamelCase_ ( self, A, A, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = TFLayoutLMvaModel(config=A ) # text + image SCREAMING_SNAKE_CASE : Optional[Any] = model(A, pixel_values=A, training=A ) SCREAMING_SNAKE_CASE : Optional[Any] = model( A, bbox=A, pixel_values=A, attention_mask=A, token_type_ids=A, training=A, ) SCREAMING_SNAKE_CASE : str = model(A, bbox=A, pixel_values=A, training=A ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) # text only SCREAMING_SNAKE_CASE : List[str] = model(A, training=A ) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only SCREAMING_SNAKE_CASE : Optional[int] = model({'pixel_values': pixel_values}, training=A ) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.image_seq_length, self.hidden_size) ) def UpperCamelCase_ ( self, A, A, A, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.num_labels SCREAMING_SNAKE_CASE : Tuple = TFLayoutLMvaForSequenceClassification(config=A ) SCREAMING_SNAKE_CASE : Tuple = model( A, bbox=A, pixel_values=A, attention_mask=A, token_type_ids=A, labels=A, training=A, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self, A, A, A, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.num_labels SCREAMING_SNAKE_CASE : int = TFLayoutLMvaForTokenClassification(config=A ) SCREAMING_SNAKE_CASE : Dict = model( A, bbox=A, pixel_values=A, attention_mask=A, token_type_ids=A, labels=A, training=A, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.text_seq_length, self.num_labels) ) def UpperCamelCase_ ( self, A, A, A, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = 2 SCREAMING_SNAKE_CASE : Union[str, Any] = TFLayoutLMvaForQuestionAnswering(config=A ) SCREAMING_SNAKE_CASE : str = model( A, bbox=A, pixel_values=A, attention_mask=A, token_type_ids=A, start_positions=A, end_positions=A, training=A, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.prepare_config_and_inputs() (SCREAMING_SNAKE_CASE) : Any = config_and_inputs SCREAMING_SNAKE_CASE : int = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : Optional[int] = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) A : str = ( {'''document-question-answering''': TFLayoutLMvaForQuestionAnswering, '''feature-extraction''': TFLayoutLMvaModel} if is_tf_available() else {} ) A : List[Any] = False A : Optional[Any] = False A : Dict = False def UpperCamelCase_ ( self, A, A, A, A, A ): '''simple docstring''' return True def UpperCamelCase_ ( self, A, A, A=False ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = copy.deepcopy(A ) if model_class in get_values(A ): SCREAMING_SNAKE_CASE : Optional[Any] = { k: tf.tile(tf.expand_dims(A, 1 ), (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(A, tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(A ): SCREAMING_SNAKE_CASE : List[str] = tf.ones(self.model_tester.batch_size, dtype=tf.intaa ) elif model_class in get_values(A ): SCREAMING_SNAKE_CASE : Dict = tf.zeros(self.model_tester.batch_size, dtype=tf.intaa ) SCREAMING_SNAKE_CASE : Tuple = tf.zeros(self.model_tester.batch_size, dtype=tf.intaa ) elif model_class in get_values(A ): SCREAMING_SNAKE_CASE : List[Any] = tf.zeros(self.model_tester.batch_size, dtype=tf.intaa ) elif model_class in get_values(A ): SCREAMING_SNAKE_CASE : Union[str, Any] = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length), dtype=tf.intaa ) return inputs_dict def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = TFLayoutLMvaModelTester(self ) SCREAMING_SNAKE_CASE : List[Any] = ConfigTester(self, config_class=A, hidden_size=37 ) def UpperCamelCase_ ( self ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Any = model_class(A ) if getattr(A, 'hf_compute_loss', A ): # The number of elements in the loss should be the same as the number of elements in the label SCREAMING_SNAKE_CASE : Union[str, Any] = self._prepare_for_class(inputs_dict.copy(), A, return_labels=A ) SCREAMING_SNAKE_CASE : Optional[int] = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys(), reverse=A )[0] ] SCREAMING_SNAKE_CASE : Tuple = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs SCREAMING_SNAKE_CASE : str = self._prepare_for_class(inputs_dict.copy(), A, return_labels=A ) SCREAMING_SNAKE_CASE : Optional[int] = prepared_for_class.pop('input_ids' ) SCREAMING_SNAKE_CASE : Optional[int] = model(A, **A )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions SCREAMING_SNAKE_CASE : str = self._prepare_for_class(inputs_dict.copy(), A, return_labels=A ) SCREAMING_SNAKE_CASE : Any = prepared_for_class.pop('input_ids' ) if "labels" in prepared_for_class: SCREAMING_SNAKE_CASE : Dict = prepared_for_class['labels'].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: SCREAMING_SNAKE_CASE : List[str] = -100 SCREAMING_SNAKE_CASE : Union[str, Any] = tf.convert_to_tensor(A ) SCREAMING_SNAKE_CASE : List[str] = model(A, **A )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict SCREAMING_SNAKE_CASE : str = self._prepare_for_class(inputs_dict.copy(), A, return_labels=A ) SCREAMING_SNAKE_CASE : str = model(A )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple SCREAMING_SNAKE_CASE : Optional[Any] = self._prepare_for_class(inputs_dict.copy(), A, return_labels=A ) # Get keys that were added with the _prepare_for_class function SCREAMING_SNAKE_CASE : Optional[Any] = prepared_for_class.keys() - inputs_dict.keys() SCREAMING_SNAKE_CASE : List[Any] = inspect.signature(model.call ).parameters SCREAMING_SNAKE_CASE : str = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple SCREAMING_SNAKE_CASE : List[Any] = {0: 'input_ids'} for label_key in label_keys: SCREAMING_SNAKE_CASE : int = signature_names.index(A ) SCREAMING_SNAKE_CASE : str = label_key SCREAMING_SNAKE_CASE : Dict = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple SCREAMING_SNAKE_CASE : List[str] = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: SCREAMING_SNAKE_CASE : Any = prepared_for_class[value] SCREAMING_SNAKE_CASE : List[Any] = tuple(A ) # Send to model SCREAMING_SNAKE_CASE : List[Any] = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def UpperCamelCase_ ( self ): '''simple docstring''' ( SCREAMING_SNAKE_CASE ) : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(A, A, A, A, A, A ) def UpperCamelCase_ ( self ): '''simple docstring''' ( SCREAMING_SNAKE_CASE ) : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE : Optional[int] = type self.model_tester.create_and_check_model(A, A, A, A, A, A ) def UpperCamelCase_ ( self ): '''simple docstring''' ( SCREAMING_SNAKE_CASE ) : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( A, A, A, A, A, A, A ) def UpperCamelCase_ ( self ): '''simple docstring''' ( SCREAMING_SNAKE_CASE ) : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( A, A, A, A, A, A, A ) def UpperCamelCase_ ( self ): '''simple docstring''' ( SCREAMING_SNAKE_CASE ) : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( A, A, A, A, A, A, A ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : str = TFLayoutLMvaModel.from_pretrained(A ) self.assertIsNotNone(A ) def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf class _a ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self ): '''simple docstring''' return LayoutLMvaImageProcessor(apply_ocr=A ) if is_vision_available() else None @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = TFLayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ) SCREAMING_SNAKE_CASE : str = self.default_image_processor SCREAMING_SNAKE_CASE : Any = prepare_img() SCREAMING_SNAKE_CASE : Tuple = image_processor(images=A, return_tensors='tf' ).pixel_values SCREAMING_SNAKE_CASE : Tuple = tf.constant([[1, 2]] ) SCREAMING_SNAKE_CASE : Optional[Any] = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ), axis=0 ) # forward pass SCREAMING_SNAKE_CASE : Dict = model(input_ids=A, bbox=A, pixel_values=A, training=A ) # verify the logits SCREAMING_SNAKE_CASE : Dict = (1, 199, 768) self.assertEqual(outputs.last_hidden_state.shape, A ) SCREAMING_SNAKE_CASE : Optional[Any] = tf.constant( [[-0.05_29, 0.36_18, 0.16_32], [-0.15_87, -0.16_67, -0.04_00], [-0.15_57, -0.16_71, -0.05_05]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3], A, atol=1E-4 ) )
359
'''simple docstring''' from __future__ import annotations from typing import Generic, TypeVar UpperCamelCase_ = TypeVar("T") class _a ( Generic[T] ): '''simple docstring''' def __init__( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = data SCREAMING_SNAKE_CASE : int = self SCREAMING_SNAKE_CASE : Optional[Any] = 0 class _a ( Generic[T] ): '''simple docstring''' def __init__( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : dict[T, DisjointSetTreeNode[T]] = {} def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = DisjointSetTreeNode(A ) def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.map[data] if elem_ref != elem_ref.parent: SCREAMING_SNAKE_CASE : Union[str, Any] = self.find_set(elem_ref.parent.data ) return elem_ref.parent def UpperCamelCase_ ( self, A, A ): '''simple docstring''' if nodea.rank > nodea.rank: SCREAMING_SNAKE_CASE : Optional[int] = nodea else: SCREAMING_SNAKE_CASE : Optional[int] = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def UpperCamelCase_ ( self, A, A ): '''simple docstring''' self.link(self.find_set(A ), self.find_set(A ) ) class _a ( Generic[T] ): '''simple docstring''' def __init__( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : dict[T, dict[T, int]] = {} def UpperCamelCase_ ( self, A ): '''simple docstring''' if node not in self.connections: SCREAMING_SNAKE_CASE : Dict = {} def UpperCamelCase_ ( self, A, A, A ): '''simple docstring''' self.add_node(A ) self.add_node(A ) SCREAMING_SNAKE_CASE : Dict = weight SCREAMING_SNAKE_CASE : Optional[int] = weight def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = [] SCREAMING_SNAKE_CASE : int = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda A : x[2] ) # creating the disjoint set SCREAMING_SNAKE_CASE : int = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(A ) # MST generation SCREAMING_SNAKE_CASE : str = 0 SCREAMING_SNAKE_CASE : str = 0 SCREAMING_SNAKE_CASE : Dict = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = edges[index] index += 1 SCREAMING_SNAKE_CASE : List[Any] = disjoint_set.find_set(A ) SCREAMING_SNAKE_CASE : Tuple = disjoint_set.find_set(A ) if parent_u != parent_v: num_edges += 1 graph.add_edge(A, A, A ) disjoint_set.union(A, A ) return graph
246
0
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class _lowercase : """simple docstring""" def __init__( self : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple=13 , __lowerCamelCase : Optional[Any]=7 , __lowerCamelCase : str=True , __lowerCamelCase : str=True , __lowerCamelCase : Any=True , __lowerCamelCase : str=True , __lowerCamelCase : List[str]=99 , __lowerCamelCase : Optional[Any]=16 , __lowerCamelCase : List[Any]=36 , __lowerCamelCase : Any=6 , __lowerCamelCase : Any=6 , __lowerCamelCase : Dict=6 , __lowerCamelCase : List[str]=37 , __lowerCamelCase : Optional[int]="gelu" , __lowerCamelCase : int=0.1 , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : Dict=512 , __lowerCamelCase : List[Any]=16 , __lowerCamelCase : Union[str, Any]=2 , __lowerCamelCase : List[str]=0.0_2 , __lowerCamelCase : int=3 , __lowerCamelCase : List[str]=4 , __lowerCamelCase : List[Any]=None , ): '''simple docstring''' lowerCamelCase__ : List[str] = parent lowerCamelCase__ : str = batch_size lowerCamelCase__ : str = seq_length lowerCamelCase__ : Union[str, Any] = is_training lowerCamelCase__ : Dict = use_input_mask lowerCamelCase__ : Tuple = use_token_type_ids lowerCamelCase__ : Optional[Any] = use_labels lowerCamelCase__ : Optional[int] = vocab_size lowerCamelCase__ : Any = embedding_size lowerCamelCase__ : int = hidden_size lowerCamelCase__ : List[Any] = num_hidden_layers lowerCamelCase__ : Tuple = num_hidden_groups lowerCamelCase__ : Tuple = num_attention_heads lowerCamelCase__ : Dict = intermediate_size lowerCamelCase__ : List[Any] = hidden_act lowerCamelCase__ : List[Any] = hidden_dropout_prob lowerCamelCase__ : List[Any] = attention_probs_dropout_prob lowerCamelCase__ : Union[str, Any] = max_position_embeddings lowerCamelCase__ : Optional[int] = type_vocab_size lowerCamelCase__ : Optional[int] = type_sequence_label_size lowerCamelCase__ : int = initializer_range lowerCamelCase__ : Union[str, Any] = num_labels lowerCamelCase__ : Optional[int] = num_choices lowerCamelCase__ : Union[str, Any] = scope def lowerCAmelCase ( self : List[str] ): '''simple docstring''' lowerCamelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ : Optional[Any] = None if self.use_input_mask: lowerCamelCase__ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : Optional[int] = None if self.use_token_type_ids: lowerCamelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase__ : Union[str, Any] = None lowerCamelCase__ : Any = None lowerCamelCase__ : List[Any] = None if self.use_labels: lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase__ : Any = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase__ : Dict = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : List[str] ): '''simple docstring''' return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple , __lowerCamelCase : str , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[Any] ): '''simple docstring''' lowerCamelCase__ : Any = AlbertModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : int = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase ) lowerCamelCase__ : Optional[Any] = model(__lowerCamelCase , token_type_ids=__lowerCamelCase ) lowerCamelCase__ : List[Any] = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase ( self : int , __lowerCamelCase : Dict , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] ): '''simple docstring''' lowerCamelCase__ : Tuple = AlbertForPreTraining(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Optional[Any] = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , sentence_order_label=__lowerCamelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def lowerCAmelCase ( self : Any , __lowerCamelCase : Dict , __lowerCamelCase : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : Optional[int] = AlbertForMaskedLM(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Dict = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : str , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : int = AlbertForQuestionAnswering(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Optional[Any] = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , start_positions=__lowerCamelCase , end_positions=__lowerCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Any ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.num_labels lowerCamelCase__ : str = AlbertForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : List[str] = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : Tuple , __lowerCamelCase : str , __lowerCamelCase : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : str , __lowerCamelCase : Any ): '''simple docstring''' lowerCamelCase__ : List[str] = self.num_labels lowerCamelCase__ : Any = AlbertForTokenClassification(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Any = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : int , __lowerCamelCase : Dict , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.num_choices lowerCamelCase__ : Tuple = AlbertForMultipleChoice(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : List[str] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase__ : Tuple = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase__ : str = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase__ : Tuple = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : Tuple = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : Tuple = config_and_inputs lowerCamelCase__ : Optional[int] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _lowercase ( lowercase__ , lowercase__ , unittest.TestCase): """simple docstring""" A__ = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) A__ = ( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) A__ = True def lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : List[Any] , __lowerCamelCase : Dict , __lowerCamelCase : str=False ): '''simple docstring''' lowerCamelCase__ : int = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if return_labels: if model_class in get_values(__lowerCamelCase ): lowerCamelCase__ : Dict = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__lowerCamelCase ) lowerCamelCase__ : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase ) return inputs_dict def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : Dict = AlbertModelTester(self ) lowerCamelCase__ : Optional[int] = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 ) def lowerCAmelCase ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase ( self : int ): '''simple docstring''' lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__lowerCamelCase ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCamelCase ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__lowerCamelCase ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowerCamelCase ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowerCamelCase ) def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCamelCase__ : Dict = type self.model_tester.create_and_check_model(*__lowerCamelCase ) @slow def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : List[Any] = AlbertModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @require_torch class _lowercase ( unittest.TestCase): """simple docstring""" @slow def lowerCAmelCase ( self : List[str] ): '''simple docstring''' lowerCamelCase__ : Optional[int] = AlbertModel.from_pretrained("albert-base-v2" ) lowerCamelCase__ : Union[str, Any] = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) lowerCamelCase__ : int = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowerCamelCase__ : Tuple = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0] lowerCamelCase__ : int = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , __lowerCamelCase ) lowerCamelCase__ : Dict = torch.tensor( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __lowerCamelCase , atol=1E-4 ) )
184
def lowercase_ ( _A : int , _A : list ): """simple docstring""" _enforce_args(_A , _A ) if n == 0: return 0 lowerCamelCase__ : Union[str, Any] = float("-inf" ) for i in range(1 , n + 1 ): lowerCamelCase__ : int = max( _A , prices[i - 1] + naive_cut_rod_recursive(n - i , _A ) ) return max_revue def lowercase_ ( _A : int , _A : list ): """simple docstring""" _enforce_args(_A , _A ) lowerCamelCase__ : int = [float("-inf" ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(_A , _A , _A ) def lowercase_ ( _A : int , _A : list , _A : list ): """simple docstring""" if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: lowerCamelCase__ : Dict = float("-inf" ) for i in range(1 , n + 1 ): lowerCamelCase__ : int = max( _A , prices[i - 1] + _top_down_cut_rod_recursive(n - i , _A , _A ) , ) lowerCamelCase__ : List[Any] = max_revenue return max_rev[n] def lowercase_ ( _A : int , _A : list ): """simple docstring""" _enforce_args(_A , _A ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. lowerCamelCase__ : int = [float("-inf" ) for _ in range(n + 1 )] lowerCamelCase__ : Optional[int] = 0 for i in range(1 , n + 1 ): lowerCamelCase__ : Union[str, Any] = max_rev[i] for j in range(1 , i + 1 ): lowerCamelCase__ : Any = max(_A , prices[j - 1] + max_rev[i - j] ) lowerCamelCase__ : Any = max_revenue_i return max_rev[n] def lowercase_ ( _A : int , _A : list ): """simple docstring""" if n < 0: lowerCamelCase__ : Optional[int] = F"n must be greater than or equal to 0. Got n = {n}" raise ValueError(_A ) if n > len(_A ): lowerCamelCase__ : Optional[int] = ( "Each integral piece of rod must have a corresponding price. " F"Got n = {n} but length of prices = {len(_A )}" ) raise ValueError(_A ) def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : Optional[Any] = [6, 10, 12, 15, 20, 23] lowerCamelCase__ : Dict = len(_A ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. lowerCamelCase__ : int = 36 lowerCamelCase__ : List[Any] = top_down_cut_rod(_A , _A ) lowerCamelCase__ : List[Any] = bottom_up_cut_rod(_A , _A ) lowerCamelCase__ : List[Any] = naive_cut_rod_recursive(_A , _A ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
184
1
"""simple docstring""" class __SCREAMING_SNAKE_CASE : def __init__( self : Tuple ): '''simple docstring''' A__ : Optional[int] = {} def _UpperCamelCase ( self : Optional[int] ): '''simple docstring''' print(self.vertex ) for i in self.vertex: print(snake_case , """ -> """ , """ -> """.join([str(snake_case ) for j in self.vertex[i]] ) ) def _UpperCamelCase ( self : List[Any] , snake_case : int , snake_case : int ): '''simple docstring''' if from_vertex in self.vertex: self.vertex[from_vertex].append(snake_case ) else: # else make a new vertex A__ : Tuple = [to_vertex] def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ : str = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(snake_case , snake_case ) def _UpperCamelCase ( self : List[Any] , snake_case : int , snake_case : list ): '''simple docstring''' A__ : Optional[int] = True print(snake_case , end=""" """ ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(snake_case , snake_case ) if __name__ == "__main__": A_ = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print('''DFS:''') g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
296
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() A_ = logging.get_logger(__name__) def _lowerCAmelCase ( UpperCAmelCase__ : List[Any] ) ->List[str]: A__ : Union[str, Any] = DPTConfig() if "large" in checkpoint_url: A__ : int = 1_0_2_4 A__ : Union[str, Any] = 4_0_9_6 A__ : Optional[int] = 2_4 A__ : int = 1_6 A__ : Union[str, Any] = [5, 1_1, 1_7, 2_3] A__ : Tuple = [2_5_6, 5_1_2, 1_0_2_4, 1_0_2_4] A__ : Tuple = (1, 3_8_4, 3_8_4) if "ade" in checkpoint_url: A__ : Optional[int] = True A__ : int = 1_5_0 A__ : Union[str, Any] = """huggingface/label-files""" A__ : List[Any] = """ade20k-id2label.json""" A__ : Union[str, Any] = json.load(open(cached_download(hf_hub_url(UpperCAmelCase__, UpperCAmelCase__, repo_type="""dataset""" ) ), """r""" ) ) A__ : List[Any] = {int(UpperCAmelCase__ ): v for k, v in idalabel.items()} A__ : Dict = idalabel A__ : List[Any] = {v: k for k, v in idalabel.items()} A__ : Optional[Any] = [1, 1_5_0, 4_8_0, 4_8_0] return config, expected_shape def _lowerCAmelCase ( UpperCAmelCase__ : int ) ->Any: A__ : List[Any] = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""] for k in ignore_keys: state_dict.pop(UpperCAmelCase__, UpperCAmelCase__ ) def _lowerCAmelCase ( UpperCAmelCase__ : Union[str, Any] ) ->List[str]: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): A__ : str = name.replace("""pretrained.model""", """dpt.encoder""" ) if "pretrained.model" in name: A__ : Dict = name.replace("""pretrained.model""", """dpt.embeddings""" ) if "patch_embed" in name: A__ : List[Any] = name.replace("""patch_embed""", """patch_embeddings""" ) if "pos_embed" in name: A__ : int = name.replace("""pos_embed""", """position_embeddings""" ) if "attn.proj" in name: A__ : Tuple = name.replace("""attn.proj""", """attention.output.dense""" ) if "proj" in name and "project" not in name: A__ : List[Any] = name.replace("""proj""", """projection""" ) if "blocks" in name: A__ : Optional[Any] = name.replace("""blocks""", """layer""" ) if "mlp.fc1" in name: A__ : int = name.replace("""mlp.fc1""", """intermediate.dense""" ) if "mlp.fc2" in name: A__ : List[str] = name.replace("""mlp.fc2""", """output.dense""" ) if "norm1" in name: A__ : Any = name.replace("""norm1""", """layernorm_before""" ) if "norm2" in name: A__ : List[str] = name.replace("""norm2""", """layernorm_after""" ) if "scratch.output_conv" in name: A__ : Optional[int] = name.replace("""scratch.output_conv""", """head""" ) if "scratch" in name: A__ : List[str] = name.replace("""scratch""", """neck""" ) if "layer1_rn" in name: A__ : List[str] = name.replace("""layer1_rn""", """convs.0""" ) if "layer2_rn" in name: A__ : Optional[int] = name.replace("""layer2_rn""", """convs.1""" ) if "layer3_rn" in name: A__ : Any = name.replace("""layer3_rn""", """convs.2""" ) if "layer4_rn" in name: A__ : Any = name.replace("""layer4_rn""", """convs.3""" ) if "refinenet" in name: A__ : Union[str, Any] = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 A__ : str = name.replace(f'refinenet{layer_idx}', f'fusion_stage.layers.{abs(layer_idx-4 )}' ) if "out_conv" in name: A__ : Optional[Any] = name.replace("""out_conv""", """projection""" ) if "resConfUnit1" in name: A__ : List[Any] = name.replace("""resConfUnit1""", """residual_layer1""" ) if "resConfUnit2" in name: A__ : Tuple = name.replace("""resConfUnit2""", """residual_layer2""" ) if "conv1" in name: A__ : Tuple = name.replace("""conv1""", """convolution1""" ) if "conv2" in name: A__ : List[Any] = name.replace("""conv2""", """convolution2""" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: A__ : Union[str, Any] = name.replace("""pretrained.act_postprocess1.0.project.0""", """neck.reassemble_stage.readout_projects.0.0""" ) if "pretrained.act_postprocess2.0.project.0" in name: A__ : Tuple = name.replace("""pretrained.act_postprocess2.0.project.0""", """neck.reassemble_stage.readout_projects.1.0""" ) if "pretrained.act_postprocess3.0.project.0" in name: A__ : Optional[Any] = name.replace("""pretrained.act_postprocess3.0.project.0""", """neck.reassemble_stage.readout_projects.2.0""" ) if "pretrained.act_postprocess4.0.project.0" in name: A__ : Optional[Any] = name.replace("""pretrained.act_postprocess4.0.project.0""", """neck.reassemble_stage.readout_projects.3.0""" ) # resize blocks if "pretrained.act_postprocess1.3" in name: A__ : Any = name.replace("""pretrained.act_postprocess1.3""", """neck.reassemble_stage.layers.0.projection""" ) if "pretrained.act_postprocess1.4" in name: A__ : List[Any] = name.replace("""pretrained.act_postprocess1.4""", """neck.reassemble_stage.layers.0.resize""" ) if "pretrained.act_postprocess2.3" in name: A__ : Dict = name.replace("""pretrained.act_postprocess2.3""", """neck.reassemble_stage.layers.1.projection""" ) if "pretrained.act_postprocess2.4" in name: A__ : Optional[Any] = name.replace("""pretrained.act_postprocess2.4""", """neck.reassemble_stage.layers.1.resize""" ) if "pretrained.act_postprocess3.3" in name: A__ : Union[str, Any] = name.replace("""pretrained.act_postprocess3.3""", """neck.reassemble_stage.layers.2.projection""" ) if "pretrained.act_postprocess4.3" in name: A__ : Optional[int] = name.replace("""pretrained.act_postprocess4.3""", """neck.reassemble_stage.layers.3.projection""" ) if "pretrained.act_postprocess4.4" in name: A__ : Dict = name.replace("""pretrained.act_postprocess4.4""", """neck.reassemble_stage.layers.3.resize""" ) if "pretrained" in name: A__ : Union[str, Any] = name.replace("""pretrained""", """dpt""" ) if "bn" in name: A__ : Union[str, Any] = name.replace("""bn""", """batch_norm""" ) if "head" in name: A__ : Dict = name.replace("""head""", """head.head""" ) if "encoder.norm" in name: A__ : Optional[int] = name.replace("""encoder.norm""", """layernorm""" ) if "auxlayer" in name: A__ : List[str] = name.replace("""auxlayer""", """auxiliary_head.head""" ) return name def _lowerCAmelCase ( UpperCAmelCase__ : int, UpperCAmelCase__ : Dict ) ->str: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A__ : Any = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.weight' ) A__ : Tuple = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict A__ : List[str] = in_proj_weight[: config.hidden_size, :] A__ : int = in_proj_bias[: config.hidden_size] A__ : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ : Any = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A__ : str = in_proj_weight[ -config.hidden_size :, : ] A__ : Optional[Any] = in_proj_bias[-config.hidden_size :] def _lowerCAmelCase ( ) ->List[str]: A__ : int = """http://images.cocodataset.org/val2017/000000039769.jpg""" A__ : int = Image.open(requests.get(UpperCAmelCase__, stream=UpperCAmelCase__ ).raw ) return im @torch.no_grad() def _lowerCAmelCase ( UpperCAmelCase__ : int, UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : str, UpperCAmelCase__ : int ) ->str: A__ , A__ : Dict = get_dpt_config(UpperCAmelCase__ ) # load original state_dict from URL A__ : Any = torch.hub.load_state_dict_from_url(UpperCAmelCase__, map_location="""cpu""" ) # remove certain keys remove_ignore_keys_(UpperCAmelCase__ ) # rename keys for key in state_dict.copy().keys(): A__ : int = state_dict.pop(UpperCAmelCase__ ) A__ : str = val # read in qkv matrices read_in_q_k_v(UpperCAmelCase__, UpperCAmelCase__ ) # load HuggingFace model A__ : Optional[Any] = DPTForSemanticSegmentation(UpperCAmelCase__ ) if """ade""" in checkpoint_url else DPTForDepthEstimation(UpperCAmelCase__ ) model.load_state_dict(UpperCAmelCase__ ) model.eval() # Check outputs on an image A__ : Optional[Any] = 4_8_0 if """ade""" in checkpoint_url else 3_8_4 A__ : Dict = DPTImageProcessor(size=UpperCAmelCase__ ) A__ : Optional[int] = prepare_img() A__ : Any = image_processor(UpperCAmelCase__, return_tensors="""pt""" ) # forward pass A__ : List[str] = model(**UpperCAmelCase__ ).logits if """ade""" in checkpoint_url else model(**UpperCAmelCase__ ).predicted_depth # Assert logits A__ : Optional[Any] = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]] ) if "ade" in checkpoint_url: A__ : Optional[int] = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]] ) assert outputs.shape == torch.Size(UpperCAmelCase__ ) assert ( torch.allclose(outputs[0, 0, :3, :3], UpperCAmelCase__, atol=1e-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3], UpperCAmelCase__ ) ) Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(UpperCAmelCase__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(UpperCAmelCase__ ) if push_to_hub: print("""Pushing model to hub...""" ) model.push_to_hub( repo_path_or_name=Path(UpperCAmelCase__, UpperCAmelCase__ ), organization="""nielsr""", commit_message="""Add model""", use_temp_dir=UpperCAmelCase__, ) image_processor.push_to_hub( repo_path_or_name=Path(UpperCAmelCase__, UpperCAmelCase__ ), organization="""nielsr""", commit_message="""Add image processor""", use_temp_dir=UpperCAmelCase__, ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''', type=str, help='''URL of the original DPT checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) parser.add_argument( '''--model_name''', default='''dpt-large''', type=str, help='''Name of the model, in case you\'re pushing to the hub.''', ) A_ = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
296
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = """▁""" UpperCamelCase_ = {"""vocab_file""": """sentencepiece.bpe.model"""} UpperCamelCase_ = { """vocab_file""": { """facebook/mbart-large-en-ro""": ( """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model""" ), """facebook/mbart-large-cc25""": ( """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model""" ), } } UpperCamelCase_ = { """facebook/mbart-large-en-ro""": 10_24, """facebook/mbart-large-cc25""": 10_24, } # fmt: off UpperCamelCase_ = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN"""] class a_ (__SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Tuple = VOCAB_FILES_NAMES __lowerCAmelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : List[str] = ["""input_ids""", """attention_mask"""] __lowerCAmelCase : List[str] = [] __lowerCAmelCase : List[Any] = [] def __init__( self , snake_case_ , snake_case_="<s>" , snake_case_="</s>" , snake_case_="</s>" , snake_case_="<s>" , snake_case_="<unk>" , snake_case_="<pad>" , snake_case_="<mask>" , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_ = None , snake_case_=None , **snake_case_ , ): # Mask token behave like a normal word, i.e. include the space before it _lowerCAmelCase : Optional[Any] = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else mask_token _lowerCAmelCase : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_A , eos_token=_A , unk_token=_A , sep_token=_A , cls_token=_A , pad_token=_A , mask_token=_A , tokenizer_file=_A , src_lang=_A , tgt_lang=_A , additional_special_tokens=_A , sp_model_kwargs=self.sp_model_kwargs , **_A , ) _lowerCAmelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_A ) ) _lowerCAmelCase : List[str] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token _lowerCAmelCase : Optional[int] = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _lowerCAmelCase : List[str] = 1 _lowerCAmelCase : Union[str, Any] = len(self.sp_model ) _lowerCAmelCase : str = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_A ) } _lowerCAmelCase : Union[str, Any] = {v: k for k, v in self.lang_code_to_id.items()} _lowerCAmelCase : str = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) _lowerCAmelCase : Tuple = {v: k for k, v in self.fairseq_tokens_to_ids.items()} _lowerCAmelCase : Union[str, Any] = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) _lowerCAmelCase : Dict = src_lang if src_lang is not None else """en_XX""" _lowerCAmelCase : int = self.lang_code_to_id[self._src_lang] _lowerCAmelCase : Union[str, Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ): _lowerCAmelCase : List[Any] = self.__dict__.copy() _lowerCAmelCase : int = None _lowerCAmelCase : Dict = self.sp_model.serialized_model_proto() return state def __setstate__( self , snake_case_ ): _lowerCAmelCase : str = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _lowerCAmelCase : Dict = {} _lowerCAmelCase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def __UpperCamelCase ( self ): return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __UpperCamelCase ( self ): return self._src_lang @src_lang.setter def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : str = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __UpperCamelCase ( self , snake_case_ , snake_case_ = None , snake_case_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) _lowerCAmelCase : Optional[Any] = [1] * len(self.prefix_tokens ) _lowerCAmelCase : int = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_A )) + suffix_ones return prefix_ones + ([0] * len(_A )) + ([0] * len(_A )) + suffix_ones def __UpperCamelCase ( self , snake_case_ , snake_case_ = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __UpperCamelCase ( self , snake_case_ , snake_case_ = None ): _lowerCAmelCase : Optional[int] = [self.sep_token_id] _lowerCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) _lowerCAmelCase : List[str] = src_lang _lowerCAmelCase : Any = self(_A , add_special_tokens=_A , return_tensors=_A , **_A ) _lowerCAmelCase : List[Any] = self.convert_tokens_to_ids(_A ) _lowerCAmelCase : List[Any] = tgt_lang_id return inputs def __UpperCamelCase ( self ): _lowerCAmelCase : Tuple = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __UpperCamelCase ( self , snake_case_ ): return self.sp_model.encode(_A , out_type=_A ) def __UpperCamelCase ( self , snake_case_ ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _lowerCAmelCase : Dict = self.sp_model.PieceToId(_A ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __UpperCamelCase ( self , snake_case_ ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : str = """""".join(_A ).replace(_A , """ """ ).strip() return out_string def __UpperCamelCase ( self , snake_case_ , snake_case_ = None ): if not os.path.isdir(_A ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _lowerCAmelCase : List[str] = os.path.join( _A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _A ) elif not os.path.isfile(self.vocab_file ): with open(_A , """wb""" ) as fi: _lowerCAmelCase : Tuple = self.sp_model.serialized_model_proto() fi.write(_A ) return (out_vocab_file,) def __UpperCamelCase ( self , snake_case_ , snake_case_ = "en_XX" , snake_case_ = None , snake_case_ = "ro_RO" , **snake_case_ , ): _lowerCAmelCase : int = src_lang _lowerCAmelCase : Any = tgt_lang return super().prepare_seqaseq_batch(_A , _A , **_A ) def __UpperCamelCase ( self ): return self.set_src_lang_special_tokens(self.src_lang ) def __UpperCamelCase ( self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : str = self.lang_code_to_id[src_lang] _lowerCAmelCase : List[str] = [] _lowerCAmelCase : Union[str, Any] = [self.eos_token_id, self.cur_lang_code] def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : str = self.lang_code_to_id[lang] _lowerCAmelCase : Union[str, Any] = [] _lowerCAmelCase : Dict = [self.eos_token_id, self.cur_lang_code]
309
def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = { '''^''': 3, '''*''': 2, '''/''': 2, '''%''': 2, '''+''': 1, '''-''': 1, } # Priority of each operator SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) if (len(__lowerCamelCase ) > 7) else 7 # Print table header for output print( '''Symbol'''.center(8 ), '''Stack'''.center(__lowerCamelCase ), '''Postfix'''.center(__lowerCamelCase ), sep=''' | ''', ) print('''-''' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(__lowerCamelCase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(__lowerCamelCase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(__lowerCamelCase ) == 0: stack.append(__lowerCamelCase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(__lowerCamelCase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(__lowerCamelCase ) # push x to stack print( x.center(8 ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), sep=''' | ''', ) # Output in tabular format while len(__lowerCamelCase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ''' '''.center(8 ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), sep=''' | ''', ) # Output in tabular format return "".join(__lowerCamelCase ) # return Postfix as str def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = list(infix[::-1] ) # reverse the infix equation for i in range(len(__lowerCamelCase ) ): if infix[i] == "(": SCREAMING_SNAKE_CASE_ = ''')''' # change "(" to ")" elif infix[i] == ")": SCREAMING_SNAKE_CASE_ = '''(''' # change ")" to "(" return (infix_2_postfix(''''''.join(__lowerCamelCase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": __UpperCAmelCase = input("\nEnter an Infix Equation = ") # Input an Infix equation __UpperCAmelCase = "".join(Infix.split()) # Remove spaces from the input print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
299
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , _A , _A=7 , _A=3 , _A=30 , _A=400 , _A=True , _A=None , _A=True , _A=[0.5, 0.5, 0.5] , _A=[0.5, 0.5, 0.5] , _A=True , _A=1 / 255 , _A=True , ) -> Optional[Any]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p SCREAMING_SNAKE_CASE_ = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333} SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = min_resolution SCREAMING_SNAKE_CASE_ = max_resolution SCREAMING_SNAKE_CASE_ = do_resize SCREAMING_SNAKE_CASE_ = size SCREAMING_SNAKE_CASE_ = do_normalize SCREAMING_SNAKE_CASE_ = image_mean SCREAMING_SNAKE_CASE_ = image_std SCREAMING_SNAKE_CASE_ = do_rescale SCREAMING_SNAKE_CASE_ = rescale_factor SCREAMING_SNAKE_CASE_ = do_pad def _UpperCamelCase ( self ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _UpperCamelCase ( self , _A , _A=False ) -> str: if not batched: SCREAMING_SNAKE_CASE_ = image_inputs[0] if isinstance(_A , Image.Image ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = image.size else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = image.shape[1], image.shape[2] if w < h: SCREAMING_SNAKE_CASE_ = int(self.size['''shortest_edge'''] * h / w ) SCREAMING_SNAKE_CASE_ = self.size['''shortest_edge'''] elif w > h: SCREAMING_SNAKE_CASE_ = self.size['''shortest_edge'''] SCREAMING_SNAKE_CASE_ = int(self.size['''shortest_edge'''] * w / h ) else: SCREAMING_SNAKE_CASE_ = self.size['''shortest_edge'''] SCREAMING_SNAKE_CASE_ = self.size['''shortest_edge'''] else: SCREAMING_SNAKE_CASE_ = [] for image in image_inputs: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) SCREAMING_SNAKE_CASE_ = max(_A , key=lambda _A : item[0] )[0] SCREAMING_SNAKE_CASE_ = max(_A , key=lambda _A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =ConditionalDetrImageProcessor if is_vision_available() else None def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = ConditionalDetrImageProcessingTester(self ) @property def _UpperCamelCase ( self ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , '''image_mean''' ) ) self.assertTrue(hasattr(_A , '''image_std''' ) ) self.assertTrue(hasattr(_A , '''do_normalize''' ) ) self.assertTrue(hasattr(_A , '''do_resize''' ) ) self.assertTrue(hasattr(_A , '''size''' ) ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} ) self.assertEqual(image_processor.do_pad , _A ) SCREAMING_SNAKE_CASE_ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_A ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , _A ) def _UpperCamelCase ( self ) -> Any: pass def _UpperCamelCase ( self ) -> int: # Initialize image_processing SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.image_processor_tester.get_expected_values(_A , batched=_A ) SCREAMING_SNAKE_CASE_ = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _UpperCamelCase ( self ) -> List[Any]: # Initialize image_processing SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE_ = image_processing(_A , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _UpperCamelCase ( self ) -> Union[str, Any]: # Initialize image_processing SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE_ = image_processing(_A , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _UpperCamelCase ( self ) -> str: # prepare image and target SCREAMING_SNAKE_CASE_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: SCREAMING_SNAKE_CASE_ = json.loads(f.read() ) SCREAMING_SNAKE_CASE_ = {'''image_id''': 39769, '''annotations''': target} # encode them SCREAMING_SNAKE_CASE_ = ConditionalDetrImageProcessor.from_pretrained('''microsoft/conditional-detr-resnet-50''' ) SCREAMING_SNAKE_CASE_ = image_processing(images=_A , annotations=_A , return_tensors='''pt''' ) # verify pixel values SCREAMING_SNAKE_CASE_ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , _A ) SCREAMING_SNAKE_CASE_ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _A , atol=1E-4 ) ) # verify area SCREAMING_SNAKE_CASE_ = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _A ) ) # verify boxes SCREAMING_SNAKE_CASE_ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _A ) SCREAMING_SNAKE_CASE_ = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _A , atol=1E-3 ) ) # verify image_id SCREAMING_SNAKE_CASE_ = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _A ) ) # verify is_crowd SCREAMING_SNAKE_CASE_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _A ) ) # verify class_labels SCREAMING_SNAKE_CASE_ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _A ) ) # verify orig_size SCREAMING_SNAKE_CASE_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _A ) ) # verify size SCREAMING_SNAKE_CASE_ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _A ) ) @slow def _UpperCamelCase ( self ) -> Tuple: # prepare image, target and masks_path SCREAMING_SNAKE_CASE_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: SCREAMING_SNAKE_CASE_ = json.loads(f.read() ) SCREAMING_SNAKE_CASE_ = {'''file_name''': '''000000039769.png''', '''image_id''': 39769, '''segments_info''': target} SCREAMING_SNAKE_CASE_ = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them SCREAMING_SNAKE_CASE_ = ConditionalDetrImageProcessor(format='''coco_panoptic''' ) SCREAMING_SNAKE_CASE_ = image_processing(images=_A , annotations=_A , masks_path=_A , return_tensors='''pt''' ) # verify pixel values SCREAMING_SNAKE_CASE_ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , _A ) SCREAMING_SNAKE_CASE_ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _A , atol=1E-4 ) ) # verify area SCREAMING_SNAKE_CASE_ = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _A ) ) # verify boxes SCREAMING_SNAKE_CASE_ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _A ) SCREAMING_SNAKE_CASE_ = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _A , atol=1E-3 ) ) # verify image_id SCREAMING_SNAKE_CASE_ = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _A ) ) # verify is_crowd SCREAMING_SNAKE_CASE_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _A ) ) # verify class_labels SCREAMING_SNAKE_CASE_ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _A ) ) # verify masks SCREAMING_SNAKE_CASE_ = 822873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , _A ) # verify orig_size SCREAMING_SNAKE_CASE_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _A ) ) # verify size SCREAMING_SNAKE_CASE_ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _A ) )
354
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , _A , _A=7 , _A=3 , _A=30 , _A=400 , _A=True , _A=None , _A=True , _A=[0.5, 0.5, 0.5] , _A=[0.5, 0.5, 0.5] , _A=True , _A=1 / 255 , _A=True , ) -> Optional[Any]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p SCREAMING_SNAKE_CASE_ = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333} SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = min_resolution SCREAMING_SNAKE_CASE_ = max_resolution SCREAMING_SNAKE_CASE_ = do_resize SCREAMING_SNAKE_CASE_ = size SCREAMING_SNAKE_CASE_ = do_normalize SCREAMING_SNAKE_CASE_ = image_mean SCREAMING_SNAKE_CASE_ = image_std SCREAMING_SNAKE_CASE_ = do_rescale SCREAMING_SNAKE_CASE_ = rescale_factor SCREAMING_SNAKE_CASE_ = do_pad def _UpperCamelCase ( self ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _UpperCamelCase ( self , _A , _A=False ) -> str: if not batched: SCREAMING_SNAKE_CASE_ = image_inputs[0] if isinstance(_A , Image.Image ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = image.size else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = image.shape[1], image.shape[2] if w < h: SCREAMING_SNAKE_CASE_ = int(self.size['''shortest_edge'''] * h / w ) SCREAMING_SNAKE_CASE_ = self.size['''shortest_edge'''] elif w > h: SCREAMING_SNAKE_CASE_ = self.size['''shortest_edge'''] SCREAMING_SNAKE_CASE_ = int(self.size['''shortest_edge'''] * w / h ) else: SCREAMING_SNAKE_CASE_ = self.size['''shortest_edge'''] SCREAMING_SNAKE_CASE_ = self.size['''shortest_edge'''] else: SCREAMING_SNAKE_CASE_ = [] for image in image_inputs: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) SCREAMING_SNAKE_CASE_ = max(_A , key=lambda _A : item[0] )[0] SCREAMING_SNAKE_CASE_ = max(_A , key=lambda _A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =ConditionalDetrImageProcessor if is_vision_available() else None def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = ConditionalDetrImageProcessingTester(self ) @property def _UpperCamelCase ( self ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , '''image_mean''' ) ) self.assertTrue(hasattr(_A , '''image_std''' ) ) self.assertTrue(hasattr(_A , '''do_normalize''' ) ) self.assertTrue(hasattr(_A , '''do_resize''' ) ) self.assertTrue(hasattr(_A , '''size''' ) ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} ) self.assertEqual(image_processor.do_pad , _A ) SCREAMING_SNAKE_CASE_ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_A ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , _A ) def _UpperCamelCase ( self ) -> Any: pass def _UpperCamelCase ( self ) -> int: # Initialize image_processing SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.image_processor_tester.get_expected_values(_A , batched=_A ) SCREAMING_SNAKE_CASE_ = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _UpperCamelCase ( self ) -> List[Any]: # Initialize image_processing SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE_ = image_processing(_A , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _UpperCamelCase ( self ) -> Union[str, Any]: # Initialize image_processing SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE_ = image_processing(_A , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _UpperCamelCase ( self ) -> str: # prepare image and target SCREAMING_SNAKE_CASE_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: SCREAMING_SNAKE_CASE_ = json.loads(f.read() ) SCREAMING_SNAKE_CASE_ = {'''image_id''': 39769, '''annotations''': target} # encode them SCREAMING_SNAKE_CASE_ = ConditionalDetrImageProcessor.from_pretrained('''microsoft/conditional-detr-resnet-50''' ) SCREAMING_SNAKE_CASE_ = image_processing(images=_A , annotations=_A , return_tensors='''pt''' ) # verify pixel values SCREAMING_SNAKE_CASE_ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , _A ) SCREAMING_SNAKE_CASE_ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _A , atol=1E-4 ) ) # verify area SCREAMING_SNAKE_CASE_ = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _A ) ) # verify boxes SCREAMING_SNAKE_CASE_ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _A ) SCREAMING_SNAKE_CASE_ = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _A , atol=1E-3 ) ) # verify image_id SCREAMING_SNAKE_CASE_ = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _A ) ) # verify is_crowd SCREAMING_SNAKE_CASE_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _A ) ) # verify class_labels SCREAMING_SNAKE_CASE_ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _A ) ) # verify orig_size SCREAMING_SNAKE_CASE_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _A ) ) # verify size SCREAMING_SNAKE_CASE_ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _A ) ) @slow def _UpperCamelCase ( self ) -> Tuple: # prepare image, target and masks_path SCREAMING_SNAKE_CASE_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: SCREAMING_SNAKE_CASE_ = json.loads(f.read() ) SCREAMING_SNAKE_CASE_ = {'''file_name''': '''000000039769.png''', '''image_id''': 39769, '''segments_info''': target} SCREAMING_SNAKE_CASE_ = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them SCREAMING_SNAKE_CASE_ = ConditionalDetrImageProcessor(format='''coco_panoptic''' ) SCREAMING_SNAKE_CASE_ = image_processing(images=_A , annotations=_A , masks_path=_A , return_tensors='''pt''' ) # verify pixel values SCREAMING_SNAKE_CASE_ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , _A ) SCREAMING_SNAKE_CASE_ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _A , atol=1E-4 ) ) # verify area SCREAMING_SNAKE_CASE_ = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _A ) ) # verify boxes SCREAMING_SNAKE_CASE_ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _A ) SCREAMING_SNAKE_CASE_ = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _A , atol=1E-3 ) ) # verify image_id SCREAMING_SNAKE_CASE_ = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _A ) ) # verify is_crowd SCREAMING_SNAKE_CASE_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _A ) ) # verify class_labels SCREAMING_SNAKE_CASE_ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _A ) ) # verify masks SCREAMING_SNAKE_CASE_ = 822873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , _A ) # verify orig_size SCREAMING_SNAKE_CASE_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _A ) ) # verify size SCREAMING_SNAKE_CASE_ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _A ) )
257
0
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __snake_case ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase__ ( self : List[str] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCAmelCase__ ( self : Optional[Any] ): __snake_case: Optional[int] = 1 __snake_case: int = 3 __snake_case: Dict = (32, 32) __snake_case: List[str] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(A ) return image @property def UpperCAmelCase__ ( self : int ): torch.manual_seed(0 ) __snake_case: List[str] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) return model @property def UpperCAmelCase__ ( self : Dict ): torch.manual_seed(0 ) __snake_case: Tuple = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def UpperCAmelCase__ ( self : Any ): torch.manual_seed(0 ) __snake_case: str = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_006 , ) return RobertaSeriesModelWithTransformation(A ) @property def UpperCAmelCase__ ( self : Tuple ): def extract(*A : Any , **A : Dict ): class __snake_case : '''simple docstring''' def __init__( self : Union[str, Any] ): __snake_case: Optional[Any] = torch.ones([0] ) def UpperCAmelCase__ ( self : int , A : str ): self.pixel_values.to(A ) return self return Out() return extract def UpperCAmelCase__ ( self : Optional[int] ): __snake_case: str = """cpu""" # ensure determinism for the device-dependent torch.Generator __snake_case: Tuple = self.dummy_cond_unet __snake_case: List[str] = PNDMScheduler(skip_prk_steps=A ) __snake_case: Dict = self.dummy_vae __snake_case: Optional[int] = self.dummy_text_encoder __snake_case: str = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) __snake_case: Tuple = 77 __snake_case: Optional[int] = self.dummy_image.to(A ) __snake_case: Dict = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk __snake_case: Dict = AltDiffusionImgaImgPipeline( unet=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , safety_checker=A , feature_extractor=self.dummy_extractor , ) __snake_case: Union[str, Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=A ) __snake_case: Optional[Any] = alt_pipe.to(A ) alt_pipe.set_progress_bar_config(disable=A ) __snake_case: Tuple = """A painting of a squirrel eating a burger""" __snake_case: Optional[Any] = torch.Generator(device=A ).manual_seed(0 ) __snake_case: int = alt_pipe( [prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=A , ) __snake_case: Dict = output.images __snake_case: Union[str, Any] = torch.Generator(device=A ).manual_seed(0 ) __snake_case: str = alt_pipe( [prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=A , return_dict=A , )[0] __snake_case: List[Any] = image[0, -3:, -3:, -1] __snake_case: int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __snake_case: str = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def UpperCAmelCase__ ( self : List[Any] ): __snake_case: int = self.dummy_cond_unet __snake_case: Optional[int] = PNDMScheduler(skip_prk_steps=A ) __snake_case: Any = self.dummy_vae __snake_case: Tuple = self.dummy_text_encoder __snake_case: str = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) __snake_case: Any = 77 __snake_case: Tuple = self.dummy_image.to(A ) # put models in fp16 __snake_case: List[Any] = unet.half() __snake_case: Union[str, Any] = vae.half() __snake_case: Optional[Any] = bert.half() # make sure here that pndm scheduler skips prk __snake_case: Optional[int] = AltDiffusionImgaImgPipeline( unet=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , safety_checker=A , feature_extractor=self.dummy_extractor , ) __snake_case: Optional[int] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=A ) __snake_case: Any = alt_pipe.to(A ) alt_pipe.set_progress_bar_config(disable=A ) __snake_case: Union[str, Any] = """A painting of a squirrel eating a burger""" __snake_case: Dict = torch.manual_seed(0 ) __snake_case: Union[str, Any] = alt_pipe( [prompt] , generator=A , num_inference_steps=2 , output_type="""np""" , image=A , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def UpperCAmelCase__ ( self : int ): __snake_case: int = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) # resize to resolution that is divisible by 8 but not 16 or 32 __snake_case: Union[str, Any] = init_image.resize((760, 504) ) __snake_case: List[Any] = """BAAI/AltDiffusion""" __snake_case: List[Any] = AltDiffusionImgaImgPipeline.from_pretrained( A , safety_checker=A , ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() __snake_case: Any = """A fantasy landscape, trending on artstation""" __snake_case: Dict = torch.manual_seed(0 ) __snake_case: Tuple = pipe( prompt=A , image=A , strength=0.75 , guidance_scale=7.5 , generator=A , output_type="""np""" , ) __snake_case: str = output.images[0] __snake_case: str = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) __snake_case: Optional[int] = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase__ ( self : Dict ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self : Any ): __snake_case: Dict = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) __snake_case: List[str] = init_image.resize((768, 512) ) __snake_case: Optional[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy""" ) __snake_case: Union[str, Any] = """BAAI/AltDiffusion""" __snake_case: Tuple = AltDiffusionImgaImgPipeline.from_pretrained( A , safety_checker=A , ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() __snake_case: Optional[int] = """A fantasy landscape, trending on artstation""" __snake_case: Optional[Any] = torch.manual_seed(0 ) __snake_case: Optional[Any] = pipe( prompt=A , image=A , strength=0.75 , guidance_scale=7.5 , generator=A , output_type="""np""" , ) __snake_case: List[str] = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
111
__UpperCAmelCase : int = [ "Audio", "Array2D", "Array3D", "Array4D", "Array5D", "ClassLabel", "Features", "Sequence", "Value", "Image", "Translation", "TranslationVariableLanguages", ] from .audio import Audio from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
111
1
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def __UpperCAmelCase ( __a : str = "isbn/0140328726" ) -> dict: """simple docstring""" _a : str = olid.strip().strip('''/''' ) # Remove leading/trailing whitespace & slashes if new_olid.count('''/''' ) != 1: _a : Union[str, Any] = F"""{olid} is not a valid Open Library olid""" raise ValueError(__a ) return requests.get(F"""https://openlibrary.org/{new_olid}.json""" ).json() def __UpperCAmelCase ( __a : dict ) -> dict: """simple docstring""" _a : Tuple = { '''title''': '''Title''', '''publish_date''': '''Publish date''', '''authors''': '''Authors''', '''number_of_pages''': '''Number of pages:''', '''first_sentence''': '''First sentence''', '''isbn_10''': '''ISBN (10)''', '''isbn_13''': '''ISBN (13)''', } _a : Optional[Any] = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} _a : Any = [ get_openlibrary_data(author['''key'''] )['''name'''] for author in data['''Authors'''] ] _a : str = data['''First sentence''']['''value'''] for key, value in data.items(): if isinstance(__a ,__a ): _a : Any = ''', '''.join(__a ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: a__ = input('''\nEnter the ISBN code to search (or \'quit\' to stop): ''').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(f'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''') continue print(f'''\nSearching Open Library for ISBN: {isbn}...\n''') try: a__ = summarize_book(get_openlibrary_data(f'''isbn/{isbn}''')) print('''\n'''.join(f'''{key}: {value}''' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(f'''Sorry, there are no results for ISBN: {isbn}.''')
15
from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract a__ = logging.get_logger(__name__) def __UpperCAmelCase ( __a : Union[str, Any] ,__a : str ,__a : Union[str, Any] ) -> List[str]: """simple docstring""" return [ int(1_000 * (box[0] / width) ), int(1_000 * (box[1] / height) ), int(1_000 * (box[2] / width) ), int(1_000 * (box[3] / height) ), ] def __UpperCAmelCase ( __a : np.ndarray ,__a : Optional[str] ,__a : Optional[str] ) -> List[Any]: """simple docstring""" _a : str = to_pil_image(__a ) _a , _a : Optional[Any] = pil_image.size _a : Tuple = pytesseract.image_to_data(__a ,lang=__a ,output_type='''dict''' ,config=__a ) _a , _a , _a , _a , _a : List[str] = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates _a : Dict = [idx for idx, word in enumerate(__a ) if not word.strip()] _a : str = [word for idx, word in enumerate(__a ) if idx not in irrelevant_indices] _a : List[str] = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] _a : Union[str, Any] = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] _a : str = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] _a : Union[str, Any] = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format _a : int = [] for x, y, w, h in zip(__a ,__a ,__a ,__a ): _a : List[str] = [x, y, x + w, y + h] actual_boxes.append(__a ) # finally, normalize the bounding boxes _a : Dict = [] for box in actual_boxes: normalized_boxes.append(normalize_box(__a ,__a ,__a ) ) assert len(__a ) == len(__a ), "Not as many words as there are bounding boxes" return words, normalized_boxes class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Optional[int] = ["pixel_values"] def __init__( self , _a = True , _a = None , _a = PILImageResampling.BILINEAR , _a = True , _a = 1 / 2_5_5 , _a = True , _a = None , _a = None , _a = True , _a = None , _a = "" , **_a , ) -> None: super().__init__(**_a ) _a : List[str] = size if size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} _a : Union[str, Any] = get_size_dict(_a ) _a : int = do_resize _a : Optional[int] = size _a : str = resample _a : str = do_rescale _a : Any = rescale_value _a : Optional[Any] = do_normalize _a : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _a : List[str] = image_std if image_std is not None else IMAGENET_STANDARD_STD _a : List[Any] = apply_ocr _a : Optional[int] = ocr_lang _a : Tuple = tesseract_config def __lowercase ( self , _a , _a , _a = PILImageResampling.BILINEAR , _a = None , **_a , ) -> np.ndarray: _a : Any = get_size_dict(_a ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) _a : Optional[int] = (size['''height'''], size['''width''']) return resize(_a , size=_a , resample=_a , data_format=_a , **_a ) def __lowercase ( self , _a , _a , _a = None , **_a , ) -> np.ndarray: return rescale(_a , scale=_a , data_format=_a , **_a ) def __lowercase ( self , _a , _a , _a , _a = None , **_a , ) -> np.ndarray: return normalize(_a , mean=_a , std=_a , data_format=_a , **_a ) def __lowercase ( self , _a , _a = None , _a = None , _a=None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = ChannelDimension.FIRST , **_a , ) -> PIL.Image.Image: _a : Optional[int] = do_resize if do_resize is not None else self.do_resize _a : Union[str, Any] = size if size is not None else self.size _a : Any = get_size_dict(_a ) _a : List[str] = resample if resample is not None else self.resample _a : int = do_rescale if do_rescale is not None else self.do_rescale _a : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _a : int = do_normalize if do_normalize is not None else self.do_normalize _a : str = image_mean if image_mean is not None else self.image_mean _a : Tuple = image_std if image_std is not None else self.image_std _a : Any = apply_ocr if apply_ocr is not None else self.apply_ocr _a : int = ocr_lang if ocr_lang is not None else self.ocr_lang _a : Optional[int] = tesseract_config if tesseract_config is not None else self.tesseract_config _a : List[Any] = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' ) # All transformations expect numpy arrays. _a : Any = [to_numpy_array(_a ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , '''pytesseract''' ) _a : str = [] _a : str = [] for image in images: _a , _a : Union[str, Any] = apply_tesseract(_a , _a , _a ) words_batch.append(_a ) boxes_batch.append(_a ) if do_resize: _a : List[str] = [self.resize(image=_a , size=_a , resample=_a ) for image in images] if do_rescale: _a : Optional[Any] = [self.rescale(image=_a , scale=_a ) for image in images] if do_normalize: _a : List[Any] = [self.normalize(image=_a , mean=_a , std=_a ) for image in images] _a : List[str] = [to_channel_dimension_format(_a , _a ) for image in images] _a : List[str] = BatchFeature(data={'''pixel_values''': images} , tensor_type=_a ) if apply_ocr: _a : Optional[int] = words_batch _a : List[Any] = boxes_batch return data
15
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available A__ : str ={ '''configuration_longt5''': ['''LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LongT5Config''', '''LongT5OnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[int] =[ '''LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LongT5EncoderModel''', '''LongT5ForConditionalGeneration''', '''LongT5Model''', '''LongT5PreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : int =[ '''FlaxLongT5ForConditionalGeneration''', '''FlaxLongT5Model''', '''FlaxLongT5PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys A__ : Any =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
70
'''simple docstring''' # This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class UpperCAmelCase ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): _lowercase: Optional[int] = StableDiffusionControlNetImgaImgPipeline _lowercase: Tuple = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} _lowercase: str = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _lowercase: Tuple = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({'''control_image'''} ) _lowercase: Union[str, Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowercase__ ( self : List[str] ) -> List[str]: torch.manual_seed(0 ) _lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) torch.manual_seed(0 ) _lowerCAmelCase = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) _lowerCAmelCase = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="""scaled_linear""" , clip_sample=__snake_case , set_alpha_to_one=__snake_case , ) torch.manual_seed(0 ) _lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) _lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) _lowerCAmelCase = CLIPTextModel(__snake_case ) _lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _lowerCAmelCase = { """unet""": unet, """controlnet""": controlnet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowercase__ ( self : Any , __snake_case : str , __snake_case : Any=0 ) -> str: if str(__snake_case ).startswith("""mps""" ): _lowerCAmelCase = torch.manual_seed(__snake_case ) else: _lowerCAmelCase = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) _lowerCAmelCase = 2 _lowerCAmelCase = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=__snake_case , device=torch.device(__snake_case ) , ) _lowerCAmelCase = floats_tensor(control_image.shape , rng=random.Random(__snake_case ) ).to(__snake_case ) _lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase = Image.fromarray(np.uinta(__snake_case ) ).convert("""RGB""" ).resize((64, 64) ) _lowerCAmelCase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", """image""": image, """control_image""": control_image, } return inputs def lowercase__ ( self : Optional[int] ) -> List[Any]: return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowercase__ ( self : Tuple ) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def lowercase__ ( self : Tuple ) -> Optional[int]: self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) class UpperCAmelCase ( snake_case_ , snake_case_ , unittest.TestCase ): _lowercase: Any = StableDiffusionControlNetImgaImgPipeline _lowercase: Dict = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} _lowercase: List[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _lowercase: Any = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: torch.manual_seed(0 ) _lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(__snake_case : Optional[Any] ): if isinstance(__snake_case , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) _lowerCAmelCase = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(__snake_case ) torch.manual_seed(0 ) _lowerCAmelCase = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(__snake_case ) torch.manual_seed(0 ) _lowerCAmelCase = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="""scaled_linear""" , clip_sample=__snake_case , set_alpha_to_one=__snake_case , ) torch.manual_seed(0 ) _lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) _lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) _lowerCAmelCase = CLIPTextModel(__snake_case ) _lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _lowerCAmelCase = MultiControlNetModel([controlneta, controlneta] ) _lowerCAmelCase = { """unet""": unet, """controlnet""": controlnet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowercase__ ( self : Tuple , __snake_case : int , __snake_case : List[str]=0 ) -> Union[str, Any]: if str(__snake_case ).startswith("""mps""" ): _lowerCAmelCase = torch.manual_seed(__snake_case ) else: _lowerCAmelCase = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) _lowerCAmelCase = 2 _lowerCAmelCase = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=__snake_case , device=torch.device(__snake_case ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=__snake_case , device=torch.device(__snake_case ) , ), ] _lowerCAmelCase = floats_tensor(control_image[0].shape , rng=random.Random(__snake_case ) ).to(__snake_case ) _lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase = Image.fromarray(np.uinta(__snake_case ) ).convert("""RGB""" ).resize((64, 64) ) _lowerCAmelCase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", """image""": image, """control_image""": control_image, } return inputs def lowercase__ ( self : List[str] ) -> Dict: _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**__snake_case ) pipe.to(__snake_case ) _lowerCAmelCase = 10.0 _lowerCAmelCase = 4 _lowerCAmelCase = self.get_dummy_inputs(__snake_case ) _lowerCAmelCase = steps _lowerCAmelCase = scale _lowerCAmelCase = pipe(**__snake_case )[0] _lowerCAmelCase = self.get_dummy_inputs(__snake_case ) _lowerCAmelCase = steps _lowerCAmelCase = scale _lowerCAmelCase = pipe(**__snake_case , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] _lowerCAmelCase = self.get_dummy_inputs(__snake_case ) _lowerCAmelCase = steps _lowerCAmelCase = scale _lowerCAmelCase = pipe(**__snake_case , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] _lowerCAmelCase = self.get_dummy_inputs(__snake_case ) _lowerCAmelCase = steps _lowerCAmelCase = scale _lowerCAmelCase = pipe(**__snake_case , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 def lowercase__ ( self : int ) -> str: return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowercase__ ( self : Optional[Any] ) -> Dict: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def lowercase__ ( self : int ) -> str: self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**__snake_case ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(__snake_case ) except NotImplementedError: pass @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): def lowercase__ ( self : Union[str, Any] ) -> int: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : List[str] ) -> Any: _lowerCAmelCase = ControlNetModel.from_pretrained("""lllyasviel/sd-controlnet-canny""" ) _lowerCAmelCase = StableDiffusionControlNetImgaImgPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , safety_checker=__snake_case , controlnet=__snake_case ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=__snake_case ) _lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) _lowerCAmelCase = """evil space-punk bird""" _lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png""" ).resize((5_12, 5_12) ) _lowerCAmelCase = load_image( """https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png""" ).resize((5_12, 5_12) ) _lowerCAmelCase = pipe( __snake_case , __snake_case , control_image=__snake_case , generator=__snake_case , output_type="""np""" , num_inference_steps=50 , strength=0.6 , ) _lowerCAmelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) _lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy""" ) assert np.abs(expected_image - image ).max() < 9E-2
70
1
def a__ ( A__, A__, A__ = 0, A__ = 0 ): SCREAMING_SNAKE_CASE_ : int = right or len(a__ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(a__, a__, left + 1, right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
369
from collections.abc import Sequence def a__ ( A__, A__ = False ): if not arr: return 0 SCREAMING_SNAKE_CASE_ : str = 0 if allow_empty_subarrays else float('-inf' ) SCREAMING_SNAKE_CASE_ : Tuple = 0.0 for num in arr: SCREAMING_SNAKE_CASE_ : int = max(0 if allow_empty_subarrays else num, curr_sum + num ) SCREAMING_SNAKE_CASE_ : List[Any] = max(A__, A__ ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() lowerCAmelCase__ : Union[str, Any] =[-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F"""{max_subarray_sum(nums) = }""")
162
0
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = jnp.ones((batch_size, length) ) / length return scores def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = None __lowerCamelCase = 20 __lowerCamelCase = self._get_uniform_logits(batch_size=2 , length=lowerCamelCase__ ) # tweak scores to not be uniform anymore __lowerCamelCase = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch __lowerCamelCase = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax __lowerCamelCase = jax.nn.softmax(lowerCamelCase__ , axis=-1 ) __lowerCamelCase = FlaxTemperatureLogitsWarper(temperature=0.5 ) __lowerCamelCase = FlaxTemperatureLogitsWarper(temperature=1.3 ) __lowerCamelCase = jax.nn.softmax(temp_dist_warper_sharper(lowerCamelCase__ , scores.copy() , cur_len=lowerCamelCase__ ) , axis=-1 ) __lowerCamelCase = jax.nn.softmax(temp_dist_warper_smoother(lowerCamelCase__ , scores.copy() , cur_len=lowerCamelCase__ ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1e-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1e-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = None __lowerCamelCase = 10 __lowerCamelCase = 2 # create ramp distribution __lowerCamelCase = np.broadcast_to(np.arange(lowerCamelCase__ )[None, :] , (batch_size, vocab_size) ).copy() __lowerCamelCase = ramp_logits[1:, : vocab_size // 2] + vocab_size __lowerCamelCase = FlaxTopKLogitsWarper(3 ) __lowerCamelCase = top_k_warp(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case __lowerCamelCase = 5 __lowerCamelCase = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) __lowerCamelCase = np.broadcast_to(np.arange(lowerCamelCase__ )[None, :] , (batch_size, length) ).copy() __lowerCamelCase = top_k_warp_safety_check(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = None __lowerCamelCase = 10 __lowerCamelCase = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) __lowerCamelCase = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) __lowerCamelCase = FlaxTopPLogitsWarper(0.8 ) __lowerCamelCase = np.exp(top_p_warp(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 __lowerCamelCase = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) ) # check edge cases with negative and extreme logits __lowerCamelCase = np.broadcast_to(np.arange(lowerCamelCase__ )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme __lowerCamelCase = ramp_logits[1] * 1_00.0 # make sure at least 2 tokens are kept __lowerCamelCase = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) __lowerCamelCase = top_p_warp(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = 20 __lowerCamelCase = 4 __lowerCamelCase = 0 __lowerCamelCase = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCamelCase__ ) # check that min length is applied at length 5 __lowerCamelCase = ids_tensor((batch_size, 20) , vocab_size=20 ) __lowerCamelCase = 5 __lowerCamelCase = self._get_uniform_logits(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = min_dist_processor(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('inf' )] ) # check that min length is not applied anymore at length 15 __lowerCamelCase = self._get_uniform_logits(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = 15 __lowerCamelCase = min_dist_processor(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) self.assertFalse(jnp.isinf(lowerCamelCase__ ).any() ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = 20 __lowerCamelCase = 4 __lowerCamelCase = 0 __lowerCamelCase = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCamelCase__ ) # check that all scores are -inf except the bos_token_id score __lowerCamelCase = ids_tensor((batch_size, 1) , vocab_size=20 ) __lowerCamelCase = 1 __lowerCamelCase = self._get_uniform_logits(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = logits_processor(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 __lowerCamelCase = 3 __lowerCamelCase = self._get_uniform_logits(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = logits_processor(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) self.assertFalse(jnp.isinf(lowerCamelCase__ ).any() ) def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = 20 __lowerCamelCase = 4 __lowerCamelCase = 0 __lowerCamelCase = 5 __lowerCamelCase = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCamelCase__ , eos_token_id=lowerCamelCase__ ) # check that all scores are -inf except the eos_token_id when max_length is reached __lowerCamelCase = ids_tensor((batch_size, 4) , vocab_size=20 ) __lowerCamelCase = 4 __lowerCamelCase = self._get_uniform_logits(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = logits_processor(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached __lowerCamelCase = 3 __lowerCamelCase = self._get_uniform_logits(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = logits_processor(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) self.assertFalse(jnp.isinf(lowerCamelCase__ ).any() ) def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = 4 __lowerCamelCase = 10 __lowerCamelCase = 15 __lowerCamelCase = 2 __lowerCamelCase = 1 __lowerCamelCase = 15 # dummy input_ids and scores __lowerCamelCase = ids_tensor((batch_size, sequence_length) , lowerCamelCase__ ) __lowerCamelCase = input_ids.copy() __lowerCamelCase = self._get_uniform_logits(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = scores.copy() # instantiate all dist processors __lowerCamelCase = FlaxTemperatureLogitsWarper(temperature=0.5 ) __lowerCamelCase = FlaxTopKLogitsWarper(3 ) __lowerCamelCase = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors __lowerCamelCase = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCamelCase__ ) __lowerCamelCase = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCamelCase__ ) __lowerCamelCase = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCamelCase__ , eos_token_id=lowerCamelCase__ ) __lowerCamelCase = 10 # no processor list __lowerCamelCase = temp_dist_warp(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) __lowerCamelCase = top_k_warp(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) __lowerCamelCase = top_p_warp(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) __lowerCamelCase = min_dist_proc(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) __lowerCamelCase = bos_dist_proc(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) __lowerCamelCase = eos_dist_proc(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) # with processor list __lowerCamelCase = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) __lowerCamelCase = processor(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) # scores should be equal self.assertTrue(jnp.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = 4 __lowerCamelCase = 10 __lowerCamelCase = 15 __lowerCamelCase = 2 __lowerCamelCase = 1 __lowerCamelCase = 15 # dummy input_ids and scores __lowerCamelCase = ids_tensor((batch_size, sequence_length) , lowerCamelCase__ ) __lowerCamelCase = input_ids.copy() __lowerCamelCase = self._get_uniform_logits(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = scores.copy() # instantiate all dist processors __lowerCamelCase = FlaxTemperatureLogitsWarper(temperature=0.5 ) __lowerCamelCase = FlaxTopKLogitsWarper(3 ) __lowerCamelCase = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors __lowerCamelCase = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCamelCase__ ) __lowerCamelCase = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCamelCase__ ) __lowerCamelCase = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCamelCase__ , eos_token_id=lowerCamelCase__ ) __lowerCamelCase = 10 # no processor list def run_no_processor_list(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): __lowerCamelCase = temp_dist_warp(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) __lowerCamelCase = top_k_warp(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) __lowerCamelCase = top_p_warp(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) __lowerCamelCase = min_dist_proc(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) __lowerCamelCase = bos_dist_proc(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) __lowerCamelCase = eos_dist_proc(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) return scores # with processor list def run_processor_list(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): __lowerCamelCase = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) __lowerCamelCase = processor(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) return scores __lowerCamelCase = jax.jit(lowerCamelCase__ ) __lowerCamelCase = jax.jit(lowerCamelCase__ ) __lowerCamelCase = jitted_run_no_processor_list(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = jitted_run_processor_list(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # scores should be equal self.assertTrue(jnp.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
90
import math def lowerCamelCase__ ( __lowerCAmelCase : int ): """simple docstring""" lowerCAmelCase_ = 0 lowerCAmelCase_ = 0 while num > 0: lowerCAmelCase_ = num % 8 lowerCAmelCase_ = octal + (remainder * math.floor(math.pow(10 , __lowerCAmelCase ) )) counter += 1 lowerCAmelCase_ = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return F"""0o{int(__lowerCAmelCase )}""" def lowerCamelCase__ ( ): """simple docstring""" print("\n2 in octal is:" ) print(decimal_to_octal(2 ) ) # = 2 print("\n8 in octal is:" ) print(decimal_to_octal(8 ) ) # = 10 print("\n65 in octal is:" ) print(decimal_to_octal(65 ) ) # = 101 print("\n216 in octal is:" ) print(decimal_to_octal(216 ) ) # = 330 print("\n512 in octal is:" ) print(decimal_to_octal(512 ) ) # = 1000 print("\n" ) if __name__ == "__main__": main()
231
0
from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging lowerCamelCase = logging.get_logger(__name__) class _a : _a : str _a : str = None @staticmethod def UpperCAmelCase__( )-> Union[str, Any]: raise NotImplementedError def UpperCAmelCase__( self : List[str] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str , **_SCREAMING_SNAKE_CASE : Optional[int] )-> Optional[Any]: raise NotImplementedError def UpperCAmelCase__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : Any )-> List[str]: raise NotImplementedError def UpperCAmelCase__( self : str )-> Dict: if not self.is_available(): raise RuntimeError( F'You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.' ) @classmethod def UpperCAmelCase__( cls : str )-> List[str]: return F'`pip install {cls.pip_package or cls.name}`' class _a ( _lowercase): _a : str = '''optuna''' @staticmethod def UpperCAmelCase__( )-> List[Any]: return is_optuna_available() def UpperCAmelCase__( self : Tuple , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str , **_SCREAMING_SNAKE_CASE : Dict )-> Optional[Any]: return run_hp_search_optuna(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Any , _SCREAMING_SNAKE_CASE : Optional[Any] )-> Union[str, Any]: return default_hp_space_optuna(_SCREAMING_SNAKE_CASE ) class _a ( _lowercase): _a : Tuple = '''ray''' _a : Optional[int] = '''\'ray[tune]\'''' @staticmethod def UpperCAmelCase__( )-> Union[str, Any]: return is_ray_available() def UpperCAmelCase__( self : str , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str , **_SCREAMING_SNAKE_CASE : Optional[Any] )-> List[str]: return run_hp_search_ray(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : str , _SCREAMING_SNAKE_CASE : List[str] )-> Any: return default_hp_space_ray(_SCREAMING_SNAKE_CASE ) class _a ( _lowercase): _a : str = '''sigopt''' @staticmethod def UpperCAmelCase__( )-> int: return is_sigopt_available() def UpperCAmelCase__( self : int , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str , **_SCREAMING_SNAKE_CASE : Any )-> Optional[Any]: return run_hp_search_sigopt(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Tuple , _SCREAMING_SNAKE_CASE : Optional[Any] )-> Optional[int]: return default_hp_space_sigopt(_SCREAMING_SNAKE_CASE ) class _a ( _lowercase): _a : Tuple = '''wandb''' @staticmethod def UpperCAmelCase__( )-> Tuple: return is_wandb_available() def UpperCAmelCase__( self : Optional[int] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str , **_SCREAMING_SNAKE_CASE : Union[str, Any] )-> List[str]: return run_hp_search_wandb(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : Dict )-> Tuple: return default_hp_space_wandb(_SCREAMING_SNAKE_CASE ) lowerCamelCase = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def lowerCamelCase_ ( ): """simple docstring""" lowerCAmelCase__ : Tuple = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(_a ) > 0: lowerCAmelCase__ : Optional[int] = available_backends[0].name if len(_a ) > 1: logger.info( f'{len(_a )} hyperparameter search backends available. Using {name} as the default.' ) return name raise RuntimeError( '''No hyperparameter search backend available.\n''' + '''\n'''.join( f' - To install {backend.name} run {backend.pip_install()}' for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
211
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase = logging.get_logger(__name__) def lowerCamelCase_ ( _a , _a=False ): """simple docstring""" lowerCAmelCase__ : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'blocks.{i}.norm1.weight', f'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'blocks.{i}.norm1.bias', f'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((f'blocks.{i}.attn.proj.weight', f'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((f'blocks.{i}.attn.proj.bias', f'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'blocks.{i}.norm2.weight', f'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'blocks.{i}.norm2.bias', f'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase__ : Tuple = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def lowerCamelCase_ ( _a , _a , _a=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase__ : Dict = '''''' else: lowerCAmelCase__ : List[str] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase__ : Dict = state_dict.pop(f'blocks.{i}.attn.qkv.weight' ) lowerCAmelCase__ : Dict = state_dict.pop(f'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase__ : Any = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase__ : Optional[Any] = in_proj_bias[: config.hidden_size] lowerCAmelCase__ : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase__ : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase__ : Dict = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase__ : Any = in_proj_bias[-config.hidden_size :] def lowerCamelCase_ ( _a ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(_a , _a ) def lowerCamelCase_ ( _a , _a , _a ): """simple docstring""" lowerCAmelCase__ : Any = dct.pop(_a ) lowerCAmelCase__ : Optional[Any] = val def lowerCamelCase_ ( ): """simple docstring""" lowerCAmelCase__ : Dict = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase__ : Tuple = Image.open(requests.get(_a , stream=_a ).raw ) return im @torch.no_grad() def lowerCamelCase_ ( _a , _a ): """simple docstring""" lowerCAmelCase__ : List[str] = ViTConfig() lowerCAmelCase__ : Optional[Any] = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": lowerCAmelCase__ : List[Any] = True lowerCAmelCase__ : Any = int(vit_name[-12:-10] ) lowerCAmelCase__ : int = int(vit_name[-9:-6] ) else: lowerCAmelCase__ : Dict = 1_000 lowerCAmelCase__ : str = '''huggingface/label-files''' lowerCAmelCase__ : Dict = '''imagenet-1k-id2label.json''' lowerCAmelCase__ : str = json.load(open(hf_hub_download(_a , _a , repo_type='''dataset''' ) , '''r''' ) ) lowerCAmelCase__ : Any = {int(_a ): v for k, v in idalabel.items()} lowerCAmelCase__ : Optional[Any] = idalabel lowerCAmelCase__ : List[str] = {v: k for k, v in idalabel.items()} lowerCAmelCase__ : Tuple = int(vit_name[-6:-4] ) lowerCAmelCase__ : Union[str, Any] = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith('''tiny''' ): lowerCAmelCase__ : List[str] = 192 lowerCAmelCase__ : Tuple = 768 lowerCAmelCase__ : Optional[int] = 12 lowerCAmelCase__ : List[Any] = 3 elif vit_name[9:].startswith('''small''' ): lowerCAmelCase__ : Any = 384 lowerCAmelCase__ : Optional[int] = 1_536 lowerCAmelCase__ : List[Any] = 12 lowerCAmelCase__ : Tuple = 6 else: pass else: if vit_name[4:].startswith('''small''' ): lowerCAmelCase__ : List[str] = 768 lowerCAmelCase__ : Tuple = 2_304 lowerCAmelCase__ : Any = 8 lowerCAmelCase__ : Union[str, Any] = 8 elif vit_name[4:].startswith('''base''' ): pass elif vit_name[4:].startswith('''large''' ): lowerCAmelCase__ : str = 1_024 lowerCAmelCase__ : Optional[Any] = 4_096 lowerCAmelCase__ : Optional[int] = 24 lowerCAmelCase__ : Tuple = 16 elif vit_name[4:].startswith('''huge''' ): lowerCAmelCase__ : Tuple = 1_280 lowerCAmelCase__ : Tuple = 5_120 lowerCAmelCase__ : Optional[int] = 32 lowerCAmelCase__ : List[Any] = 16 # load original model from timm lowerCAmelCase__ : Tuple = timm.create_model(_a , pretrained=_a ) timm_model.eval() # load state_dict of original model, remove and rename some keys lowerCAmelCase__ : Any = timm_model.state_dict() if base_model: remove_classification_head_(_a ) lowerCAmelCase__ : List[Any] = create_rename_keys(_a , _a ) for src, dest in rename_keys: rename_key(_a , _a , _a ) read_in_q_k_v(_a , _a , _a ) # load HuggingFace model if vit_name[-5:] == "in21k": lowerCAmelCase__ : List[str] = ViTModel(_a ).eval() else: lowerCAmelCase__ : Any = ViTForImageClassification(_a ).eval() model.load_state_dict(_a ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: lowerCAmelCase__ : Dict = DeiTImageProcessor(size=config.image_size ) else: lowerCAmelCase__ : int = ViTImageProcessor(size=config.image_size ) lowerCAmelCase__ : Optional[Any] = image_processor(images=prepare_img() , return_tensors='''pt''' ) lowerCAmelCase__ : List[str] = encoding['''pixel_values'''] lowerCAmelCase__ : List[Any] = model(_a ) if base_model: lowerCAmelCase__ : Optional[Any] = timm_model.forward_features(_a ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_a , outputs.pooler_output , atol=1e-3 ) else: lowerCAmelCase__ : Union[str, Any] = timm_model(_a ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_a , outputs.logits , atol=1e-3 ) Path(_a ).mkdir(exist_ok=_a ) print(f'Saving model {vit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_a ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_a ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--vit_name''', default='''vit_base_patch16_224''', type=str, help='''Name of the ViT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) lowerCamelCase = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
211
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowercase__ = { """configuration_convnext""": ["""CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConvNextConfig""", """ConvNextOnnxConfig"""] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["""ConvNextFeatureExtractor"""] lowercase__ = ["""ConvNextImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConvNextForImageClassification""", """ConvNextModel""", """ConvNextPreTrainedModel""", """ConvNextBackbone""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """TFConvNextForImageClassification""", """TFConvNextModel""", """TFConvNextPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
96
"""simple docstring""" import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase_ ( _lowercase): def __init__( self : List[Any] , __UpperCamelCase : VQModel , __UpperCamelCase : UNetaDModel , __UpperCamelCase : DDIMScheduler ) -> Optional[Any]: super().__init__() self.register_modules(vqvae=__UpperCamelCase , unet=__UpperCamelCase , scheduler=__UpperCamelCase ) @torch.no_grad() def __call__( self : List[Any] , __UpperCamelCase : int = 1 , __UpperCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __UpperCamelCase : float = 0.0 , __UpperCamelCase : int = 50 , __UpperCamelCase : Optional[str] = "pil" , __UpperCamelCase : bool = True , **__UpperCamelCase : Optional[int] , ) -> Union[Tuple, ImagePipelineOutput]: _UpperCamelCase = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=__UpperCamelCase , ) _UpperCamelCase = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _UpperCamelCase = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(__UpperCamelCase ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature _UpperCamelCase = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _UpperCamelCase = {} if accepts_eta: _UpperCamelCase = eta for t in self.progress_bar(self.scheduler.timesteps ): _UpperCamelCase = self.scheduler.scale_model_input(__UpperCamelCase , __UpperCamelCase ) # predict the noise residual _UpperCamelCase = self.unet(__UpperCamelCase , __UpperCamelCase ).sample # compute the previous noisy sample x_t -> x_t-1 _UpperCamelCase = self.scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample # decode the image latents with the VAE _UpperCamelCase = self.vqvae.decode(__UpperCamelCase ).sample _UpperCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) _UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _UpperCamelCase = self.numpy_to_pil(__UpperCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__UpperCamelCase )
256
0
"""simple docstring""" def A_ ( snake_case_ : list[list[int]] ,snake_case_ : int ,snake_case_ : int ,snake_case_ : set ): '''simple docstring''' UpperCamelCase : int = len(snake_case_ ), len(grid[0] ) if ( min(snake_case_ ,snake_case_ ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) UpperCamelCase : Optional[int] = 0 count += depth_first_search(snake_case_ ,row + 1 ,snake_case_ ,snake_case_ ) count += depth_first_search(snake_case_ ,row - 1 ,snake_case_ ,snake_case_ ) count += depth_first_search(snake_case_ ,snake_case_ ,col + 1 ,snake_case_ ) count += depth_first_search(snake_case_ ,snake_case_ ,col - 1 ,snake_case_ ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
363
"""simple docstring""" from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer __A : Any = logging.get_logger(__name__) __A : Dict = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} __A : Optional[Any] = { '''vocab_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json''' }, '''merges_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt''' }, } __A : Any = {'''allegro/herbert-base-cased''': 514} __A : Optional[Any] = {} class lowerCamelCase ( _UpperCAmelCase ): lowercase : Dict = VOCAB_FILES_NAMES lowercase : Any = PRETRAINED_VOCAB_FILES_MAP lowercase : List[str] = PRETRAINED_INIT_CONFIGURATION lowercase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : Union[str, Any] = HerbertTokenizer def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="<unk>" , SCREAMING_SNAKE_CASE_="<pad>" , SCREAMING_SNAKE_CASE_="<mask>" , SCREAMING_SNAKE_CASE_="</s>" , **SCREAMING_SNAKE_CASE_ , ): super().__init__( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ): UpperCamelCase : Dict = [self.cls_token_id] UpperCamelCase : str = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE_ , token_ids_a=SCREAMING_SNAKE_CASE_ , already_has_special_tokens=SCREAMING_SNAKE_CASE_ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ): UpperCamelCase : Tuple = [self.sep_token_id] UpperCamelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ): UpperCamelCase : Optional[int] = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ )
27
0
"""simple docstring""" from __future__ import annotations def UpperCAmelCase__ (snake_case__ : list[float] ): """simple docstring""" _snake_case : int = 0.00 _snake_case : int = 0 for resistor in resistors: if resistor <= 0: _snake_case : Dict = F"Resistor at index {index} has a negative or zero value!" raise ValueError(snake_case__ ) first_sum += 1 / float(snake_case__ ) index += 1 return 1 / first_sum def UpperCAmelCase__ (snake_case__ : list[float] ): """simple docstring""" _snake_case : Union[str, Any] = 0.00 _snake_case : Any = 0 for resistor in resistors: sum_r += resistor if resistor < 0: _snake_case : Any = F"Resistor at index {index} has a negative value!" raise ValueError(snake_case__ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
64
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging _UpperCAmelCase = logging.get_logger(__name__) logging.set_verbosity_info() def UpperCamelCase ( __lowercase : str ,__lowercase : str ): '''simple docstring''' if "xprophetnet" in prophetnet_checkpoint_path: A_ : Any = XLMProphetNetForConditionalGenerationOld.from_pretrained(__lowercase ) A_ , A_ : List[str] = XLMProphetNetForConditionalGeneration.from_pretrained( __lowercase ,output_loading_info=__lowercase ) else: A_ : List[Any] = ProphetNetForConditionalGenerationOld.from_pretrained(__lowercase ) A_ , A_ : str = ProphetNetForConditionalGeneration.from_pretrained( __lowercase ,output_loading_info=__lowercase ) A_ : Any = ['key_proj', 'value_proj', 'query_proj'] A_ : str = { 'self_attn': 'ngram_self_attn', 'cross_attn': 'encoder_attn', 'cross_attn_layer_norm': 'encoder_attn_layer_norm', 'feed_forward_layer_norm': 'final_layer_norm', 'feed_forward': '', 'intermediate': 'fc1', 'output': 'fc2', 'key_proj': 'k_proj', 'query_proj': 'q_proj', 'value_proj': 'v_proj', 'word_embeddings': 'embed_tokens', 'embeddings_layer_norm': 'emb_layer_norm', 'relative_pos_embeddings': 'relative_linear', 'ngram_embeddings': 'ngram_input_embed', 'position_embeddings': 'embed_positions', } for key in loading_info["missing_keys"]: A_ : Optional[Any] = key.split('.' ) if attributes[0] == "lm_head": A_ : int = prophet A_ : int = prophet_old else: A_ : Tuple = prophet.prophetnet A_ : Optional[Any] = prophet_old.model A_ : Optional[int] = False for attribute in attributes: if attribute in mapping: A_ : Dict = mapping[attribute] if not hasattr(__lowercase ,__lowercase ) and len(__lowercase ) > 0: A_ : Union[str, Any] = attribute elif hasattr(__lowercase ,__lowercase ): A_ : Optional[int] = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" A_ : List[Any] = old_model.weight logger.info(f'''{attribute} is initialized.''' ) A_ : Dict = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" A_ : Optional[int] = old_model.bias logger.info(f'''{attribute} is initialized''' ) A_ : List[str] = True break elif attribute in special_keys and hasattr(__lowercase ,'in_proj_weight' ): A_ : Union[str, Any] = old_model.in_proj_weight.shape[0] // 3 A_ : Optional[int] = getattr(__lowercase ,__lowercase ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": A_ : Tuple = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) A_ : Any = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": A_ : Tuple = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) A_ : Tuple = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": A_ : Dict = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) A_ : str = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) A_ : Union[str, Any] = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings." A_ : Any = nn.Parameter(old_model.embed_positions.weight[:5_12, :] ) A_ : Union[str, Any] = True break if attribute.isdigit(): A_ : str = model[int(__lowercase )] A_ : List[str] = old_model[int(__lowercase )] else: A_ : int = getattr(__lowercase ,__lowercase ) if old_attribute == "": A_ : List[str] = old_model else: if not hasattr(__lowercase ,__lowercase ): raise ValueError(f'''{old_model} does not have {old_attribute}''' ) A_ : Union[str, Any] = getattr(__lowercase ,__lowercase ) if not is_key_init: raise ValueError(f'''{key} was not correctly initialized!''' ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) prophet.save_pretrained(__lowercase ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--prophetnet_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) _UpperCAmelCase = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
140
0
"""simple docstring""" import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union _lowerCAmelCase : Tuple = re.compile(R'''^(?P<major>\d+)''' R'''\.(?P<minor>\d+)''' R'''\.(?P<patch>\d+)$''') @total_ordering @dataclass class A_ : lowerCAmelCase__ = 4_2 lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : Any = _str_to_version_tuple(self.version_str ) def __repr__( self: List[str] ): '''simple docstring''' return F"""{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}""" @property def _lowercase ( self: Dict ): '''simple docstring''' return self.major, self.minor, self.patch def _lowercase ( self: str ,__lowerCAmelCase: Optional[int] ): '''simple docstring''' if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): return Version(__lowerCAmelCase ) elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ): return other raise TypeError(F"""{other} (type {type(__lowerCAmelCase )}) cannot be compared to version.""" ) def __eq__( self: int ,__lowerCAmelCase: str ): '''simple docstring''' try: _lowerCamelCase : int = self._validate_operand(__lowerCAmelCase ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self: List[Any] ,__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : int = self._validate_operand(__lowerCAmelCase ) return self.tuple < other.tuple def __hash__( self: Optional[int] ): '''simple docstring''' return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def _lowercase ( cls: Optional[Any] ,__lowerCAmelCase: Dict ): '''simple docstring''' _lowerCamelCase : Any = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def _lowercase ( self: int ): '''simple docstring''' return self.version_str def lowerCamelCase_( _lowerCamelCase ) -> List[str]: '''simple docstring''' _lowerCamelCase : List[str] = _VERSION_REG.match(_lowerCamelCase ) if not res: raise ValueError(F"""Invalid version '{version_str}'. Format should be x.y.z with {{x,y,z}} being digits.""" ) return tuple(int(_lowerCamelCase ) for v in [res.group("major" ), res.group("minor" ), res.group("patch" )] ) def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' return ".".join(str(_lowerCamelCase ) for v in version_tuple )
356
"""simple docstring""" import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class A_ ( _a ): lowerCAmelCase__ = 'char' lowerCAmelCase__ = 'bpe' lowerCAmelCase__ = 'wp' _lowerCAmelCase : List[str] = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class A_ ( _a ): lowerCAmelCase__ = ['image_processor', 'char_tokenizer'] lowerCAmelCase__ = 'ViTImageProcessor' lowerCAmelCase__ = 'MgpstrTokenizer' def __init__( self: List[Any] ,__lowerCAmelCase: int=None ,__lowerCAmelCase: Optional[int]=None ,**__lowerCAmelCase: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Any = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." ,__lowerCAmelCase ,) _lowerCamelCase : List[Any] = kwargs.pop("feature_extractor" ) _lowerCamelCase : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) _lowerCamelCase : List[str] = tokenizer _lowerCamelCase : str = AutoTokenizer.from_pretrained("gpt2" ) _lowerCamelCase : List[str] = AutoTokenizer.from_pretrained("bert-base-uncased" ) super().__init__(__lowerCAmelCase ,__lowerCAmelCase ) def __call__( self: Optional[int] ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Union[str, Any]=None ,__lowerCAmelCase: Optional[Any]=None ,**__lowerCAmelCase: Tuple ): '''simple docstring''' if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process." ) if images is not None: _lowerCamelCase : Optional[int] = self.image_processor(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) if text is not None: _lowerCamelCase : int = self.char_tokenizer(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) if text is None: return inputs elif images is None: return encodings else: _lowerCamelCase : Tuple = encodings["input_ids"] return inputs def _lowercase ( self: int ,__lowerCAmelCase: Dict ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[int] = sequences _lowerCamelCase : Dict = char_preds.size(0 ) _lowerCamelCase, _lowerCamelCase : Optional[Any] = self._decode_helper(__lowerCAmelCase ,"char" ) _lowerCamelCase, _lowerCamelCase : Union[str, Any] = self._decode_helper(__lowerCAmelCase ,"bpe" ) _lowerCamelCase, _lowerCamelCase : Tuple = self._decode_helper(__lowerCAmelCase ,"wp" ) _lowerCamelCase : List[str] = [] _lowerCamelCase : str = [] for i in range(__lowerCAmelCase ): _lowerCamelCase : str = [char_scores[i], bpe_scores[i], wp_scores[i]] _lowerCamelCase : List[Any] = [char_strs[i], bpe_strs[i], wp_strs[i]] _lowerCamelCase : Optional[Any] = scores.index(max(__lowerCAmelCase ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) _lowerCamelCase : Tuple = {} _lowerCamelCase : Tuple = final_strs _lowerCamelCase : int = final_scores _lowerCamelCase : str = char_strs _lowerCamelCase : Dict = bpe_strs _lowerCamelCase : int = wp_strs return out def _lowercase ( self: List[str] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: List[Any] ): '''simple docstring''' if format == DecodeType.CHARACTER: _lowerCamelCase : int = self.char_decode _lowerCamelCase : List[str] = 1 _lowerCamelCase : Optional[int] = "[s]" elif format == DecodeType.BPE: _lowerCamelCase : Dict = self.bpe_decode _lowerCamelCase : str = 2 _lowerCamelCase : Union[str, Any] = "#" elif format == DecodeType.WORDPIECE: _lowerCamelCase : int = self.wp_decode _lowerCamelCase : List[str] = 102 _lowerCamelCase : List[Any] = "[SEP]" else: raise ValueError(F"""Format {format} is not supported.""" ) _lowerCamelCase, _lowerCamelCase : Union[str, Any] = [], [] _lowerCamelCase : Any = pred_logits.size(0 ) _lowerCamelCase : int = pred_logits.size(1 ) _lowerCamelCase, _lowerCamelCase : List[Any] = pred_logits.topk(1 ,dim=-1 ,largest=__lowerCAmelCase ,sorted=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = preds_index.view(-1 ,__lowerCAmelCase )[:, 1:] _lowerCamelCase : List[str] = decoder(__lowerCAmelCase ) _lowerCamelCase, _lowerCamelCase : str = torch.nn.functional.softmax(__lowerCAmelCase ,dim=2 ).max(dim=2 ) _lowerCamelCase : Any = preds_max_prob[:, 1:] for index in range(__lowerCAmelCase ): _lowerCamelCase : List[Any] = preds_str[index].find(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = preds_str[index][:pred_eos] _lowerCamelCase : Optional[Any] = preds_index[index].cpu().tolist() _lowerCamelCase : List[str] = pred_index.index(__lowerCAmelCase ) if eos_token in pred_index else -1 _lowerCamelCase : str = preds_max_prob[index][: pred_eos_index + 1] _lowerCamelCase : Union[str, Any] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(__lowerCAmelCase ) conf_scores.append(__lowerCAmelCase ) return dec_strs, conf_scores def _lowercase ( self: Tuple ,__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : str = [seq.replace(" " ,"" ) for seq in self.char_tokenizer.batch_decode(__lowerCAmelCase )] return decode_strs def _lowercase ( self: List[str] ,__lowerCAmelCase: List[str] ): '''simple docstring''' return self.bpe_tokenizer.batch_decode(__lowerCAmelCase ) def _lowercase ( self: Tuple ,__lowerCAmelCase: Optional[int] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = [seq.replace(" " ,"" ) for seq in self.wp_tokenizer.batch_decode(__lowerCAmelCase )] return decode_strs
340
0
"""simple docstring""" import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration lowerCAmelCase : int = 5_0000 lowerCAmelCase : Optional[int] = 5000 lowerCAmelCase , lowerCAmelCase : Dict = os.path.split(__file__) lowerCAmelCase : List[str] = os.path.join(RESULTS_BASEPATH, """results""", RESULTS_FILENAME.replace(""".py""", """.json""")) @get_duration def a__ ( snake_case__ , snake_case__ ) -> Tuple: for i in range(snake_case__ ): lowerCamelCase = dataset[i] @get_duration def a__ ( snake_case__ , snake_case__ , snake_case__ ) -> Any: for i in range(0 , len(snake_case__ ) , snake_case__ ): lowerCamelCase = dataset[i : i + batch_size] @get_duration def a__ ( snake_case__ , snake_case__ , snake_case__ ) -> List[str]: with dataset.formatted_as(type=snake_case__ ): for i in range(snake_case__ ): lowerCamelCase = dataset[i] @get_duration def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> List[str]: with dataset.formatted_as(type=snake_case__ ): for i in range(0 , snake_case__ , snake_case__ ): lowerCamelCase = dataset[i : i + batch_size] def a__ ( ) -> Any: lowerCamelCase = {"""num examples""": SPEED_TEST_N_EXAMPLES} lowerCamelCase = [ (read, {"""length""": SMALL_TEST}), (read, {"""length""": SPEED_TEST_N_EXAMPLES}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 10}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1_00}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 10_00}), (read_formatted, {"""type""": """numpy""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """pandas""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """torch""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """tensorflow""", """length""": SMALL_TEST}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 10}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 10_00}), ] lowerCamelCase = [ (read, {"""length""": SMALL_TEST}), (read, {"""length""": SPEED_TEST_N_EXAMPLES}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 10}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1_00}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 10_00}), (read_formatted, {"""type""": """numpy""", """length""": SMALL_TEST}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 10}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 10_00}), ] with tempfile.TemporaryDirectory() as tmp_dir: print("""generating dataset""" ) lowerCamelCase = datasets.Features( {"""list""": datasets.Sequence(datasets.Value("""float32""" ) ), """numbers""": datasets.Value("""float32""" )} ) lowerCamelCase = generate_example_dataset( os.path.join(snake_case__ , """dataset.arrow""" ) , snake_case__ , num_examples=snake_case__ , seq_shapes={"""list""": (1_00,)} , ) print("""first set of iterations""" ) for func, kwargs in functions: print(func.__name__ , str(snake_case__ ) ) lowerCamelCase = func(snake_case__ , **snake_case__ ) print("""shuffling dataset""" ) lowerCamelCase = dataset.shuffle() print("""Second set of iterations (after shuffling""" ) for func, kwargs in functions_shuffled: print("""shuffled """ , func.__name__ , str(snake_case__ ) ) lowerCamelCase = func( snake_case__ , **snake_case__ ) with open(snake_case__ , """wb""" ) as f: f.write(json.dumps(snake_case__ ).encode("""utf-8""" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
291
"""simple docstring""" from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging lowerCAmelCase : List[str] = logging.get_logger(__name__) class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = ["audio_values", "audio_mask"] def __init__( self , _a=2_048 , _a=1 , _a=[16, 16] , _a=128 , _a=44_100 , _a=86 , _a=2_048 , _a=0.0 , **_a , ): """simple docstring""" super().__init__( feature_size=_a , sampling_rate=_a , padding_value=_a , **_a , ) lowerCamelCase = spectrogram_length lowerCamelCase = num_channels lowerCamelCase = patch_size lowerCamelCase = feature_size // self.patch_size[1] lowerCamelCase = n_fft lowerCamelCase = sampling_rate // hop_length_to_sampling_rate lowerCamelCase = sampling_rate lowerCamelCase = padding_value lowerCamelCase = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=_a , min_frequency=0.0 , max_frequency=22_050.0 , sampling_rate=_a , norm="""slaney""" , mel_scale="""slaney""" , ).T def _lowerCAmelCase ( self , _a ): """simple docstring""" lowerCamelCase = spectrogram( _a , window_function(self.n_fft , """hann""" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel="""dB""" , db_range=80.0 , ) lowerCamelCase = log_spec[:, :-1] lowerCamelCase = log_spec - 20.0 lowerCamelCase = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self , _a , _a = None , _a = True , _a = None , _a = False , _a = False , **_a , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( """This feature extractor is set to support sampling rate""" f' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled' f' with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) lowerCamelCase = isinstance(_a , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) lowerCamelCase = is_batched_numpy or ( isinstance(_a , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCamelCase = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(_a , np.ndarray ): lowerCamelCase = np.asarray(_a , dtype=np.floataa ) elif isinstance(_a , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCamelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCamelCase = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis lowerCamelCase = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , _a ): lowerCamelCase = [np.asarray(_a , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask lowerCamelCase = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: lowerCamelCase = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] lowerCamelCase = np.array(_a ).astype(np.floataa ) # convert into correct format for padding lowerCamelCase = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch lowerCamelCase = np.ones([len(_a ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) lowerCamelCase = padded_audio_features * self.padding_value for i in range(len(_a ) ): lowerCamelCase = audio_features[i] lowerCamelCase = feature # return as BatchFeature if return_attention_mask: lowerCamelCase = {"""audio_values""": padded_audio_features, """audio_mask""": audio_mask} else: lowerCamelCase = {"""audio_values""": padded_audio_features} lowerCamelCase = BatchFeature(data=_a , tensor_type=_a ) return encoded_inputs
291
1
import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin __lowerCamelCase = random.Random() def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : List[str]=1.0 , __lowerCamelCase : Any=None , __lowerCamelCase : Optional[int]=None ): if rng is None: snake_case : Optional[Any] = global_rng snake_case : Union[str, Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class UpperCAmelCase ( unittest.TestCase ): def __init__(self : Dict , snake_case__ : List[str] , snake_case__ : List[str]=7 , snake_case__ : Optional[int]=4_00 , snake_case__ : Optional[int]=20_00 , snake_case__ : Dict=1 , snake_case__ : Dict=0.0 , snake_case__ : Union[str, Any]=1_60_00 , snake_case__ : str=True , snake_case__ : Optional[Any]=True , ) -> Dict: '''simple docstring''' snake_case : str = parent snake_case : List[Any] = batch_size snake_case : int = min_seq_length snake_case : Dict = max_seq_length snake_case : Tuple = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) snake_case : str = feature_size snake_case : List[Any] = padding_value snake_case : Union[str, Any] = sampling_rate snake_case : List[str] = return_attention_mask snake_case : int = do_normalize def _SCREAMING_SNAKE_CASE (self : Any ) -> str: '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : str=False , snake_case__ : Optional[int]=False ) -> Dict: '''simple docstring''' def _flatten(snake_case__ : List[str] ): return list(itertools.chain(*snake_case__ ) ) if equal_length: snake_case : Union[str, Any] = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size snake_case : int = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: snake_case : List[Any] = [np.asarray(snake_case__ ) for x in speech_inputs] return speech_inputs class UpperCAmelCase ( A_ ,unittest.TestCase ): A__ : int = WavaVecaFeatureExtractor def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Tuple: '''simple docstring''' snake_case : Any = WavaVecaFeatureExtractionTester(self ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' self.assertTrue(np.all(np.mean(snake_case__ , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(snake_case__ , axis=0 ) - 1 ) < 1e-3 ) ) def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> int: '''simple docstring''' snake_case : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 snake_case : Tuple = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] snake_case : List[str] = [np.asarray(snake_case__ ) for speech_input in speech_inputs] # Test not batched input snake_case : Dict = feat_extract(speech_inputs[0] , return_tensors="np" ).input_values snake_case : Any = feat_extract(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(snake_case__ , snake_case__ , atol=1e-3 ) ) # Test batched snake_case : Union[str, Any] = feat_extract(snake_case__ , return_tensors="np" ).input_values snake_case : Any = feat_extract(snake_case__ , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(snake_case__ , snake_case__ ): self.assertTrue(np.allclose(snake_case__ , snake_case__ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. snake_case : Any = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] snake_case : Union[str, Any] = np.asarray(snake_case__ ) snake_case : Any = feat_extract(snake_case__ , return_tensors="np" ).input_values snake_case : List[str] = feat_extract(snake_case__ , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(snake_case__ , snake_case__ ): self.assertTrue(np.allclose(snake_case__ , snake_case__ , atol=1e-3 ) ) def _SCREAMING_SNAKE_CASE (self : str ) -> Tuple: '''simple docstring''' snake_case : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case : Optional[int] = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] snake_case : int = ["longest", "max_length", "do_not_pad"] snake_case : List[str] = [None, 16_00, None] for max_length, padding in zip(snake_case__ , snake_case__ ): snake_case : Optional[Any] = feat_extract(snake_case__ , padding=snake_case__ , max_length=snake_case__ , return_tensors="np" ) snake_case : str = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_00] ) self.assertTrue(input_values[0][8_00:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:10_00] ) self.assertTrue(input_values[0][10_00:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:12_00] ) def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Any: '''simple docstring''' snake_case : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case : Tuple = range(8_00 , 14_00 , 2_00 ) snake_case : Optional[Any] = [floats_list((1, x) )[0] for x in lengths] snake_case : Tuple = ["longest", "max_length", "do_not_pad"] snake_case : Optional[Any] = [None, 16_00, None] for max_length, padding in zip(snake_case__ , snake_case__ ): snake_case : Any = feat_extract(snake_case__ , max_length=snake_case__ , padding=snake_case__ ) snake_case : int = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_00] ) self._check_zero_mean_unit_variance(input_values[1][:10_00] ) self._check_zero_mean_unit_variance(input_values[2][:12_00] ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> List[Any]: '''simple docstring''' snake_case : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case : Optional[int] = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] snake_case : Tuple = feat_extract( snake_case__ , truncation=snake_case__ , max_length=10_00 , padding="max_length" , return_tensors="np" ) snake_case : str = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' snake_case : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case : Optional[int] = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] snake_case : Optional[Any] = feat_extract( snake_case__ , truncation=snake_case__ , max_length=10_00 , padding="longest" , return_tensors="np" ) snake_case : Optional[int] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00] ) self._check_zero_mean_unit_variance(input_values[1, :10_00] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 10_00) ) snake_case : Optional[Any] = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] snake_case : Optional[Any] = feat_extract( snake_case__ , truncation=snake_case__ , max_length=20_00 , padding="longest" , return_tensors="np" ) snake_case : Any = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00] ) self._check_zero_mean_unit_variance(input_values[1, :10_00] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 12_00) ) @require_torch def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Any: '''simple docstring''' import torch snake_case : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case : Any = np.random.rand(1_00 ).astype(np.floataa ) snake_case : Tuple = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: snake_case : Union[str, Any] = feature_extractor.pad([{"input_values": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) snake_case : str = feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def _SCREAMING_SNAKE_CASE (self : Any ) -> List[str]: '''simple docstring''' for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: snake_case : Any = WavaVecaConfig.from_pretrained(snake_case__ ) snake_case : List[Any] = WavaVecaFeatureExtractor.from_pretrained(snake_case__ ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == "layer" )
10
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py __lowerCamelCase = """.""" if __name__ == "__main__": __lowerCamelCase = os.path.join(REPO_PATH, """utils/documentation_tests.txt""") __lowerCamelCase = [] __lowerCamelCase = [] with open(doctest_file_path) as fp: for line in fp: __lowerCamelCase = line.strip() __lowerCamelCase = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: __lowerCamelCase = """\n""".join(non_existent_paths) raise ValueError(F'`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}') if all_paths != sorted(all_paths): raise ValueError("""Files in `utils/documentation_tests.txt` are not in alphabetical order.""")
10
1
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings SCREAMING_SNAKE_CASE_ = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' __snake_case : bool = field(default=lowerCAmelCase_ , metadata={"help": "Whether to use SortishSampler or not."} ) __snake_case : bool = field( default=lowerCAmelCase_ , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) __snake_case : Optional[int] = field( default=lowerCAmelCase_ , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) __snake_case : Optional[int] = field( default=lowerCAmelCase_ , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) __snake_case : Optional[Union[str, Path, GenerationConfig]] = field( default=lowerCAmelCase_ , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = super().to_dict() for k, v in d.items(): if isinstance(lowerCamelCase__ ,lowerCamelCase__ ): SCREAMING_SNAKE_CASE = v.to_dict() return d
296
import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 SCREAMING_SNAKE_CASE_ = get_tests_dir("""fixtures/dummy-config.json""") class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = 0 def SCREAMING_SNAKE_CASE__ ( self : Any ) -> str: '''simple docstring''' self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec("""transformers.models.auto""" ) ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained("""bert-base-uncased""" ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = AutoConfig.for_model("""roberta""" ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> int: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. SCREAMING_SNAKE_CASE = os.path.join(lowerCamelCase__ ,"""fake-roberta""" ) os.makedirs(lowerCamelCase__ ,exist_ok=lowerCamelCase__ ) with open(os.path.join(lowerCamelCase__ ,"""config.json""" ) ,"""w""" ) as f: f.write(json.dumps({} ) ) SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertEqual(type(lowerCamelCase__ ) ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> str: '''simple docstring''' try: AutoConfig.register("""custom""" ,lowerCamelCase__ ) # Wrong model type will raise an error with self.assertRaises(lowerCamelCase__ ): AutoConfig.register("""model""" ,lowerCamelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCamelCase__ ): AutoConfig.register("""bert""" ,lowerCamelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API SCREAMING_SNAKE_CASE = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def SCREAMING_SNAKE_CASE__ ( self : str ) -> Dict: '''simple docstring''' with self.assertRaisesRegex( lowerCamelCase__ ,"""bert-base is not a local folder and is not a valid model identifier""" ): SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained("""bert-base""" ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> str: '''simple docstring''' with self.assertRaisesRegex( lowerCamelCase__ ,R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(lowerCamelCase__ ,revision="""aaaaaa""" ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> List[Any]: '''simple docstring''' with self.assertRaisesRegex( lowerCamelCase__ ,"""hf-internal-testing/no-config-test-repo does not appear to have a file named config.json.""" ,): SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained("""hf-internal-testing/no-config-test-repo""" ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' with self.assertRaises(lowerCamelCase__ ): SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCamelCase__ ): SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ,trust_remote_code=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ,trust_remote_code=lowerCamelCase__ ) self.assertEqual(config.__class__.__name__ ,"""NewModelConfig""" ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(lowerCamelCase__ ,trust_remote_code=lowerCamelCase__ ) self.assertEqual(reloaded_config.__class__.__name__ ,"""NewModelConfig""" ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' __snake_case : Union[str, Any] = "new-model" try: AutoConfig.register("""new-model""" ,lowerCamelCase__ ) # If remote code is not set, the default is to use local SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ) self.assertEqual(config.__class__.__name__ ,"""NewModelConfigLocal""" ) # If remote code is disabled, we load the local one. SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ,trust_remote_code=lowerCamelCase__ ) self.assertEqual(config.__class__.__name__ ,"""NewModelConfigLocal""" ) # If remote is enabled, we load from the Hub SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ,trust_remote_code=lowerCamelCase__ ) self.assertEqual(config.__class__.__name__ ,"""NewModelConfig""" ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
296
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() __A = logging.get_logger(__name__) def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ) -> Optional[int]: __lowerCAmelCase: List[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"blocks.{i}.norm1.weight", F"deit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"blocks.{i}.norm1.bias", F"deit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((F"blocks.{i}.attn.proj.weight", F"deit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((F"blocks.{i}.attn.proj.bias", F"deit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"blocks.{i}.norm2.weight", F"deit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"blocks.{i}.norm2.bias", F"deit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc1.weight", F"deit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc1.bias", F"deit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc2.weight", F"deit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc2.bias", F"deit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "deit.embeddings.cls_token"), ("dist_token", "deit.embeddings.distillation_token"), ("patch_embed.proj.weight", "deit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "deit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "deit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" __lowerCAmelCase: List[str] = [(pair[0], pair[1][4:]) if pair[1].startswith("deit" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("norm.weight", "deit.layernorm.weight"), ("norm.bias", "deit.layernorm.bias"), ("head.weight", "cls_classifier.weight"), ("head.bias", "cls_classifier.bias"), ("head_dist.weight", "distillation_classifier.weight"), ("head_dist.bias", "distillation_classifier.bias"), ] ) return rename_keys def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ) -> str: for i in range(config.num_hidden_layers ): if base_model: __lowerCAmelCase: Tuple = "" else: __lowerCAmelCase: Optional[Any] = "deit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowerCAmelCase: List[Any] = state_dict.pop(F"blocks.{i}.attn.qkv.weight" ) __lowerCAmelCase: List[str] = state_dict.pop(F"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase: Dict = in_proj_weight[ : config.hidden_size, : ] __lowerCAmelCase: Dict = in_proj_bias[: config.hidden_size] __lowerCAmelCase: int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowerCAmelCase: str = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowerCAmelCase: Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] __lowerCAmelCase: Any = in_proj_bias[-config.hidden_size :] def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[str]: __lowerCAmelCase: List[str] = dct.pop(lowerCamelCase__ ) __lowerCAmelCase: int = val def a__ ( ) -> Tuple: __lowerCAmelCase: Tuple = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowerCAmelCase: Optional[int] = Image.open(requests.get(lowerCamelCase__ , stream=lowerCamelCase__ ).raw ) return im @torch.no_grad() def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> int: __lowerCAmelCase: Any = DeiTConfig() # all deit models have fine-tuned heads __lowerCAmelCase: Optional[int] = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size __lowerCAmelCase: str = 1_0_0_0 __lowerCAmelCase: Optional[int] = "huggingface/label-files" __lowerCAmelCase: List[str] = "imagenet-1k-id2label.json" __lowerCAmelCase: Optional[int] = json.load(open(hf_hub_download(lowerCamelCase__ , lowerCamelCase__ , repo_type="dataset" ) , "r" ) ) __lowerCAmelCase: Union[str, Any] = {int(lowerCamelCase__ ): v for k, v in idalabel.items()} __lowerCAmelCase: List[Any] = idalabel __lowerCAmelCase: Tuple = {v: k for k, v in idalabel.items()} __lowerCAmelCase: List[str] = int(deit_name[-6:-4] ) __lowerCAmelCase: Tuple = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("tiny" ): __lowerCAmelCase: Optional[Any] = 1_9_2 __lowerCAmelCase: Any = 7_6_8 __lowerCAmelCase: str = 1_2 __lowerCAmelCase: Tuple = 3 elif deit_name[9:].startswith("small" ): __lowerCAmelCase: List[str] = 3_8_4 __lowerCAmelCase: Optional[Any] = 1_5_3_6 __lowerCAmelCase: Optional[int] = 1_2 __lowerCAmelCase: List[Any] = 6 if deit_name[9:].startswith("base" ): pass elif deit_name[4:].startswith("large" ): __lowerCAmelCase: int = 1_0_2_4 __lowerCAmelCase: List[Any] = 4_0_9_6 __lowerCAmelCase: Union[str, Any] = 2_4 __lowerCAmelCase: List[Any] = 1_6 # load original model from timm __lowerCAmelCase: Tuple = timm.create_model(lowerCamelCase__ , pretrained=lowerCamelCase__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys __lowerCAmelCase: Tuple = timm_model.state_dict() __lowerCAmelCase: int = create_rename_keys(lowerCamelCase__ , lowerCamelCase__ ) for src, dest in rename_keys: rename_key(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) read_in_q_k_v(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # load HuggingFace model __lowerCAmelCase: Union[str, Any] = DeiTForImageClassificationWithTeacher(lowerCamelCase__ ).eval() model.load_state_dict(lowerCamelCase__ ) # Check outputs on an image, prepared by DeiTImageProcessor __lowerCAmelCase: int = int( (2_5_6 / 2_2_4) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 __lowerCAmelCase: str = DeiTImageProcessor(size=lowerCamelCase__ , crop_size=config.image_size ) __lowerCAmelCase: List[Any] = image_processor(images=prepare_img() , return_tensors="pt" ) __lowerCAmelCase: int = encoding["pixel_values"] __lowerCAmelCase: List[Any] = model(lowerCamelCase__ ) __lowerCAmelCase: Optional[Any] = timm_model(lowerCamelCase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowerCamelCase__ , outputs.logits , atol=1E-3 ) Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ ) print(F"Saving model {deit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCamelCase__ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowerCamelCase__ ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--deit_name", default="vit_deit_base_distilled_patch16_224", type=str, help="Name of the DeiT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) __A = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
350
"""simple docstring""" import os from bleurt import score # From: git+https://github.com/google-research/bleurt.git import datasets __A = datasets.logging.get_logger(__name__) __A = "\\n@inproceedings{bleurt,\n title={BLEURT: Learning Robust Metrics for Text Generation},\n author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh},\n booktitle={ACL},\n year={2020},\n url={https://arxiv.org/abs/2004.04696}\n}\n" __A = "\\nBLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018)\nand then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune\nit for your specific application (the latter is expected to perform better).\n\nSee the project's README at https://github.com/google-research/bleurt#readme for more information.\n" __A = "\nBLEURT score.\n\nArgs:\n `predictions` (list of str): prediction/candidate sentences\n `references` (list of str): reference sentences\n `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None.\n\nReturns:\n 'scores': List of scores.\nExamples:\n\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> bleurt = datasets.load_metric(\"bleurt\")\n >>> results = bleurt.compute(predictions=predictions, references=references)\n >>> print([round(v, 2) for v in results[\"scores\"]])\n [1.03, 1.04]\n" __A = { "bleurt-tiny-128": "https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip", "bleurt-tiny-512": "https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip", "bleurt-base-128": "https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip", "bleurt-base-512": "https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip", "bleurt-large-128": "https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip", "bleurt-large-512": "https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip", "BLEURT-20-D3": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip", "BLEURT-20-D6": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip", "BLEURT-20-D12": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip", "BLEURT-20": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip", } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class snake_case ( datasets.Metric ): def lowercase_ ( self : Optional[int])-> Any: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/google-research/bleurt" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence"), "references": datasets.Value("string" , id="sequence"), }) , codebase_urls=["https://github.com/google-research/bleurt"] , reference_urls=["https://github.com/google-research/bleurt", "https://arxiv.org/abs/2004.04696"] , ) def lowercase_ ( self : int , UpperCamelCase__ : Dict)-> List[str]: '''simple docstring''' if self.config_name == "default": logger.warning( "Using default BLEURT-Base checkpoint for sequence maximum length 128. " "You can use a bigger model for better results with e.g.: datasets.load_metric('bleurt', 'bleurt-large-512').") __lowerCAmelCase: List[str] = "bleurt-base-128" if self.config_name.lower() in CHECKPOINT_URLS: __lowerCAmelCase: Optional[int] = self.config_name.lower() elif self.config_name.upper() in CHECKPOINT_URLS: __lowerCAmelCase: Tuple = self.config_name.upper() else: raise KeyError( f"{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}") # download the model checkpoint specified by self.config_name and set up the scorer __lowerCAmelCase: Union[str, Any] = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name]) __lowerCAmelCase: Dict = score.BleurtScorer(os.path.join(UpperCamelCase__ , UpperCamelCase__)) def lowercase_ ( self : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : int)-> str: '''simple docstring''' __lowerCAmelCase: str = self.scorer.score(references=UpperCamelCase__ , candidates=UpperCamelCase__) return {"scores": scores}
108
0
def lowerCAmelCase_ ( ): _A : Optional[int] = [] _A : Optional[Any] = 1 while len(_lowerCAmelCase ) < 1e6: constant.append(str(_lowerCAmelCase ) ) i += 1 _A : str = """""".join(_lowerCAmelCase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[99999] ) * int(constant[999999] ) ) if __name__ == "__main__": print(solution())
26
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''edbeeching/decision-transformer-gym-hopper-medium''': ( '''https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json''' ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : List[Any] = 'decision_transformer' A_ : Union[str, Any] = ['past_key_values'] A_ : str = { 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , __UpperCAmelCase=17 , __UpperCAmelCase=4 , __UpperCAmelCase=128 , __UpperCAmelCase=4096 , __UpperCAmelCase=True , __UpperCAmelCase=1 , __UpperCAmelCase=1024 , __UpperCAmelCase=3 , __UpperCAmelCase=1 , __UpperCAmelCase=None , __UpperCAmelCase="relu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=1e-5 , __UpperCAmelCase=0.02 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=50256 , __UpperCAmelCase=50256 , __UpperCAmelCase=False , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> Optional[int]: _a = state_dim _a = act_dim _a = hidden_size _a = max_ep_len _a = action_tanh _a = vocab_size _a = n_positions _a = n_layer _a = n_head _a = n_inner _a = activation_function _a = resid_pdrop _a = embd_pdrop _a = attn_pdrop _a = layer_norm_epsilon _a = initializer_range _a = scale_attn_weights _a = use_cache _a = scale_attn_by_inverse_layer_idx _a = reorder_and_upcast_attn _a = bos_token_id _a = eos_token_id super().__init__(bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase )
320
0
import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __magic_name__: Dict = get_tests_dir("fixtures/test_sentencepiece.model") if is_sentencepiece_available(): import sentencepiece as sp __magic_name__: Any = 5 __magic_name__: Optional[int] = 10 @require_sentencepiece @require_tokenizers class snake_case__ ( a__ , unittest.TestCase ): lowercase__ : Dict = SpeechaTextTokenizer lowercase__ : Optional[int] = False lowercase__ : Union[str, Any] = True def __magic_name__ ( self ) -> Optional[int]: super().setUp() __magic_name__ : Any = sp.SentencePieceProcessor() spm_model.Load(SCREAMING_SNAKE_CASE_ ) __magic_name__ : Optional[Any] = ['<s>', '<pad>', '</s>', '<unk>'] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(SCREAMING_SNAKE_CASE_ ) )] __magic_name__ : Tuple = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) __magic_name__ : Any = Path(self.tmpdirname ) save_json(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES["""vocab_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES["""spm_file"""] ) __magic_name__ : Union[str, Any] = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __magic_name__ ( self ) -> List[Any]: __magic_name__ : Union[str, Any] = '<pad>' __magic_name__ : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def __magic_name__ ( self ) -> str: __magic_name__ : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 10_01 ) def __magic_name__ ( self ) -> List[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 10_01 ) def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : Optional[Any] = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) __magic_name__ : Optional[int] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , [2_89, 50, 14, 1_74, 3_86] , ) __magic_name__ : Tuple = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """."""] , ) __magic_name__ : Optional[int] = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , [12, 25, 88, 59, 28, 23, 11, 4, 6_06, 3_51, 3_51, 3_51, 7, 16, 70, 50, 76, 84, 10, 4, 8] ) __magic_name__ : Union[str, Any] = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """."""] , ) @slow def __magic_name__ ( self ) -> List[Any]: # fmt: off __magic_name__ : int = {'input_ids': [[37_91, 7_97, 31, 11, 64, 7_97, 31, 24_29, 4_33, 12, 11_76, 12, 20, 7_86, 9_15, 1_42, 24_13, 2_40, 37, 32_38, 7_97, 31, 11, 35, 93, 9_15, 1_42, 24_13, 2_40, 37, 55_40, 5_67, 12_76, 93, 37, 6_10, 40, 62, 4_55, 6_57, 10_42, 1_23, 7_80, 1_77, 37, 3_09, 2_41, 12_98, 5_14, 20, 2_92, 27_37, 1_14, 24_69, 2_41, 85, 64, 3_02, 5_48, 5_28, 4_23, 4, 5_09, 4_06, 4_23, 37, 6_01, 4, 7_77, 3_02, 5_48, 5_28, 4_23, 2_84, 4, 33_88, 5_11, 4_59, 4, 35_55, 40, 3_21, 3_02, 7_05, 4, 33_88, 5_11, 5_83, 3_26, 5, 5, 5, 62, 33_10, 5_60, 1_77, 26_80, 2_17, 15_08, 32, 31, 8_53, 4_18, 64, 5_83, 5_11, 16_05, 62, 35, 93, 5_60, 1_77, 26_80, 2_17, 15_08, 15_21, 64, 5_83, 5_11, 5_19, 62, 20, 15_15, 7_64, 20, 1_49, 2_61, 56_25, 79_72, 20, 55_40, 5_67, 12_76, 93, 39_25, 16_75, 11, 15, 8_02, 79_72, 5_76, 2_17, 15_08, 11, 35, 93, 12_53, 24_41, 15, 2_89, 6_52, 31, 4_16, 3_21, 38_42, 1_15, 40, 9_11, 8, 4_76, 6_19, 4, 3_80, 1_42, 4_23, 3_35, 2_40, 35, 93, 2_64, 8, 11, 3_35, 5_69, 4_20, 1_63, 5, 2], [2_60, 5_48, 5_28, 4_23, 20, 4_51, 20, 26_81, 11_53, 34_34, 20, 55_40, 37, 5_67, 1_26, 12_53, 24_41, 33_76, 4_49, 2_10, 4_31, 15_63, 1_77, 7_67, 55_40, 11, 12_03, 4_72, 11, 29_53, 6_85, 2_85, 3_64, 7_06, 11_53, 20, 67_99, 20, 28_69, 20, 44_64, 1_26, 40, 24_29, 20, 10_40, 8_66, 26_64, 4_18, 20, 3_18, 20, 17_26, 1_86, 20, 2_65, 5_22, 35, 93, 21_91, 46_34, 20, 10_40, 12, 67_99, 15, 2_28, 23_56, 1_42, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_75, 26_66, 6_84, 15_82, 11_76, 12, 6_27, 1_49, 6_19, 20, 49_02, 5_63, 11, 20, 1_49, 2_61, 34_20, 23_56, 1_74, 1_42, 47_14, 1_31, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE_ , model_name="""facebook/s2t-small-mustc-en-de-st""" , revision="""a14f04cf0776c02f62a8cb800cf7909e15ea23ad""" , ) @require_sentencepiece class snake_case__ ( unittest.TestCase ): lowercase__ : int = "valhalla/s2t_mustc_multilinguial_medium" lowercase__ : int = "C'est trop cool" lowercase__ : List[str] = "Esto es genial" @classmethod def __magic_name__ ( cls ) -> List[str]: __magic_name__ : SpeechaTextTokenizer = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def __magic_name__ ( self ) -> Optional[Any]: self.assertEqual(self.tokenizer.lang_code_to_id["""pt"""] , 4 ) self.assertEqual(self.tokenizer.lang_code_to_id["""ru"""] , 6 ) self.assertEqual(self.tokenizer.lang_code_to_id["""it"""] , 9 ) self.assertEqual(self.tokenizer.lang_code_to_id["""de"""] , 11 ) def __magic_name__ ( self ) -> str: self.assertEqual(self.tokenizer.vocab_size , 1_00_00 ) def __magic_name__ ( self ) -> str: self.assertIn(SCREAMING_SNAKE_CASE_ , self.tokenizer.all_special_ids ) __magic_name__ : int = [ES_CODE, 4, 16_01, 47, 76_47, 2] __magic_name__ : List[Any] = self.tokenizer.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) __magic_name__ : str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertNotIn(self.tokenizer.eos_token , SCREAMING_SNAKE_CASE_ ) def __magic_name__ ( self ) -> int: __magic_name__ : List[str] = 'fr' __magic_name__ : Dict = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] , SCREAMING_SNAKE_CASE_ ) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id ) def __magic_name__ ( self ) -> Any: __magic_name__ : int = 'fr' self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] ) __magic_name__ : Tuple = 'es' self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
365
def UpperCamelCase ( _A ): """simple docstring""" if not isinstance(_A, _A ) or number < 0: raise ValueError("""Input must be a non-negative integer""" ) __magic_name__ : str = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
138
0
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def UpperCAmelCase ( a_ = "isbn/0140328726" ) -> dict: """simple docstring""" __A = olid.strip().strip("/" ) # Remove leading/trailing whitespace & slashes if new_olid.count("/" ) != 1: __A = F'''{olid} is not a valid Open Library olid''' raise ValueError(a_ ) return requests.get(F'''https://openlibrary.org/{new_olid}.json''' ).json() def UpperCAmelCase ( a_ ) -> dict: """simple docstring""" __A = { "title": "Title", "publish_date": "Publish date", "authors": "Authors", "number_of_pages": "Number of pages:", "first_sentence": "First sentence", "isbn_10": "ISBN (10)", "isbn_13": "ISBN (13)", } __A = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} __A = [ get_openlibrary_data(author["key"] )["name"] for author in data["Authors"] ] __A = data["First sentence"]["value"] for key, value in data.items(): if isinstance(a_ , a_ ): __A = ", ".join(a_ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: SCREAMING_SNAKE_CASE :List[Any] = input('\nEnter the ISBN code to search (or \'quit\' to stop): ').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(f'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''') continue print(f'''\nSearching Open Library for ISBN: {isbn}...\n''') try: SCREAMING_SNAKE_CASE :Any = summarize_book(get_openlibrary_data(f'''isbn/{isbn}''')) print('\n'.join(f'''{key}: {value}''' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(f'''Sorry, there are no results for ISBN: {isbn}.''')
15
def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" __A = [0] * len(a_ ) __A = [] __A = [1] * len(a_ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(a_ ) ): if indegree[i] == 0: queue.append(a_ ) while queue: __A = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: __A = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(a_ ) print(max(a_ ) ) # Adjacency list of Graph SCREAMING_SNAKE_CASE :List[Any] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
15
1
import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( '''kwargs, expected''' , [ ({'''num_shards''': 0, '''max_num_jobs''': 1}, []), ({'''num_shards''': 10, '''max_num_jobs''': 1}, [range(10 )]), ({'''num_shards''': 10, '''max_num_jobs''': 10}, [range(SCREAMING_SNAKE_CASE , i + 1 ) for i in range(10 )]), ({'''num_shards''': 1, '''max_num_jobs''': 10}, [range(1 )]), ({'''num_shards''': 10, '''max_num_jobs''': 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({'''num_shards''': 3, '''max_num_jobs''': 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = _distribute_shards(**SCREAMING_SNAKE_CASE ) assert out == expected @pytest.mark.parametrize( '''gen_kwargs, max_num_jobs, expected''' , [ ({'''foo''': 0}, 10, [{'''foo''': 0}]), ({'''shards''': [0, 1, 2, 3]}, 1, [{'''shards''': [0, 1, 2, 3]}]), ({'''shards''': [0, 1, 2, 3]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}, {'''shards''': [2]}, {'''shards''': [3]}]), ({'''shards''': [0, 1]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}]), ({'''shards''': [0, 1, 2, 3]}, 2, [{'''shards''': [0, 1]}, {'''shards''': [2, 3]}]), ] , ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = _split_gen_kwargs(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert out == expected @pytest.mark.parametrize( '''gen_kwargs, expected''' , [ ({'''foo''': 0}, 1), ({'''shards''': [0]}, 1), ({'''shards''': [0, 1, 2, 3]}, 4), ({'''shards''': [0, 1, 2, 3], '''foo''': 0}, 4), ({'''shards''': [0, 1, 2, 3], '''other''': (0, 1)}, 4), ({'''shards''': [0, 1, 2, 3], '''shards2''': [0, 1]}, RuntimeError), ] , ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if expected is RuntimeError: with pytest.raises(SCREAMING_SNAKE_CASE ): _number_of_shards_in_gen_kwargs(SCREAMING_SNAKE_CASE ) else: lowercase__ = _number_of_shards_in_gen_kwargs(SCREAMING_SNAKE_CASE ) assert out == expected
367
def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = len(SCREAMING_SNAKE_CASE ) lowercase__ = [] for i in range(len(SCREAMING_SNAKE_CASE ) - pat_len + 1 ): lowercase__ = True for j in range(SCREAMING_SNAKE_CASE ): if s[i + j] != pattern[j]: lowercase__ = False break if match_found: position.append(SCREAMING_SNAKE_CASE ) return position if __name__ == "__main__": assert naive_pattern_search('ABCDEFG', 'DE') == [3] print(naive_pattern_search('ABAAABCDBBABCDDEBCABC', 'ABC'))
93
0
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def UpperCAmelCase__ ( UpperCAmelCase_ : Tuple ) -> Optional[int]: __lowerCamelCase : Optional[int] = filter(lambda UpperCAmelCase_ : p.requires_grad , model.parameters() ) __lowerCamelCase : int = sum([np.prod(p.size() ) for p in model_parameters] ) return params A__ : Optional[Any] = logging.getLogger(__name__) def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] ) -> Tuple: if metric == "rouge2": __lowerCamelCase : Dict = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": __lowerCamelCase : List[str] = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": __lowerCamelCase : str = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": __lowerCamelCase : Dict = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( F'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' ' function.' ) __lowerCamelCase : List[str] = ModelCheckpoint( dirpath=UpperCAmelCase_ , filename=UpperCAmelCase_ , monitor=F'val_{metric}' , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] ) -> str: return EarlyStopping( monitor=F'val_{metric}' , mode='min' if 'loss' in metric else 'max' , patience=UpperCAmelCase_ , verbose=UpperCAmelCase_ , ) class UpperCAmelCase_ (pl.Callback ): """simple docstring""" def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: __lowerCamelCase : Any = {f'lr_group_{i}': param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(SCREAMING_SNAKE_CASE_ ) @rank_zero_only def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=True ) -> None: logger.info(f'***** {type_path} results at step {trainer.global_step:05d} *****' ) __lowerCamelCase : List[str] = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results __lowerCamelCase : Optional[Any] = Path(pl_module.hparams.output_dir ) if type_path == "test": __lowerCamelCase : int = od / 'test_results.txt' __lowerCamelCase : List[str] = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. __lowerCamelCase : Any = od / f'{type_path}_results/{trainer.global_step:05d}.txt' __lowerCamelCase : Any = od / f'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) generations_file.parent.mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) with open(SCREAMING_SNAKE_CASE_ , 'a+' ) as writer: for key in sorted(SCREAMING_SNAKE_CASE_ ): if key in ["log", "progress_bar", "preds"]: continue __lowerCamelCase : Any = metrics[key] if isinstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ): __lowerCamelCase : List[Any] = val.item() __lowerCamelCase : Optional[int] = f'{key}: {val:.6f}\n' writer.write(SCREAMING_SNAKE_CASE_ ) if not save_generations: return if "preds" in metrics: __lowerCamelCase : str = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(SCREAMING_SNAKE_CASE_ ) @rank_zero_only def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: try: __lowerCamelCase : Optional[int] = pl_module.model.model.num_parameters() except AttributeError: __lowerCamelCase : Tuple = pl_module.model.num_parameters() __lowerCamelCase : Union[str, Any] = count_trainable_parameters(SCREAMING_SNAKE_CASE_ ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 'test' ) @rank_zero_only def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
185
'''simple docstring''' import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration A__ : str = [ # tf -> hf ("""/""", """."""), ("""layer_""", """layers."""), ("""kernel""", """weight"""), ("""beta""", """bias"""), ("""gamma""", """weight"""), ("""pegasus""", """model"""), ] A__ : Dict = [ (""".output.dense""", """.fc2"""), ("""intermediate.LayerNorm""", """final_layer_norm"""), ("""intermediate.dense""", """fc1"""), ] A__ : int = ( INIT_COMMON + [ ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.out_proj"""), ("""attention.self""", """self_attn"""), ("""attention.encdec.LayerNorm""", """encoder_attn_layer_norm"""), ("""attention.encdec_output.dense""", """encoder_attn.out_proj"""), ("""attention.encdec""", """encoder_attn"""), ("""key""", """k_proj"""), ("""value""", """v_proj"""), ("""query""", """q_proj"""), ("""decoder.LayerNorm""", """decoder.layernorm_embedding"""), ] + END_COMMON ) A__ : Tuple = ( INIT_COMMON + [ ("""embeddings.word_embeddings""", """shared.weight"""), ("""embeddings.position_embeddings""", """embed_positions.weight"""), ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.output"""), ("""attention.self""", """self_attn.self"""), ("""encoder.LayerNorm""", """encoder.layernorm_embedding"""), ] + END_COMMON ) A__ : Tuple = [ """encdec/key/bias""", """encdec/query/bias""", """encdec/value/bias""", """self/key/bias""", """self/query/bias""", """self/value/bias""", """encdec_output/dense/bias""", """attention/output/dense/bias""", ] def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any ) -> List[str]: for tf_name, hf_name in patterns: __lowerCamelCase : Optional[int] = k.replace(UpperCAmelCase_ , UpperCAmelCase_ ) return k def UpperCAmelCase__ ( UpperCAmelCase_ : dict , UpperCAmelCase_ : dict ) -> BigBirdPegasusForConditionalGeneration: __lowerCamelCase : int = BigBirdPegasusConfig(**UpperCAmelCase_ ) __lowerCamelCase : Any = BigBirdPegasusForConditionalGeneration(UpperCAmelCase_ ) __lowerCamelCase : Union[str, Any] = torch_model.state_dict() __lowerCamelCase : Tuple = {} # separating decoder weights __lowerCamelCase : Dict = {k: tf_weights[k] for k in tf_weights if k.startswith('pegasus/decoder' )} __lowerCamelCase : str = {k: tf_weights[k] for k in tf_weights if not k.startswith('pegasus/decoder' )} for k, v in tqdm(decoder_weights.items() , 'tf -> hf conversion' ): __lowerCamelCase : Tuple = [k.endswith(UpperCAmelCase_ ) for ending in KEYS_TO_IGNORE] if any(UpperCAmelCase_ ): continue __lowerCamelCase : Tuple = DECODER_PATTERNS __lowerCamelCase : Optional[int] = rename_state_dict_key(UpperCAmelCase_ , UpperCAmelCase_ ) if new_k not in state_dict: raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): __lowerCamelCase : Union[str, Any] = v.T __lowerCamelCase : str = torch.from_numpy(UpperCAmelCase_ ) assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() , 'tf -> hf conversion' ): __lowerCamelCase : Optional[Any] = [k.endswith(UpperCAmelCase_ ) for ending in KEYS_TO_IGNORE] if any(UpperCAmelCase_ ): continue __lowerCamelCase : Dict = REMAINING_PATTERNS __lowerCamelCase : List[str] = rename_state_dict_key(UpperCAmelCase_ , UpperCAmelCase_ ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): __lowerCamelCase : List[str] = v.T __lowerCamelCase : List[str] = torch.from_numpy(UpperCAmelCase_ ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' __lowerCamelCase : Any = mapping['model.embed_positions.weight'] __lowerCamelCase : Union[str, Any] = mapping.pop('model.embed_positions.weight' ) __lowerCamelCase , __lowerCamelCase : List[str] = torch_model.load_state_dict(UpperCAmelCase_ , strict=UpperCAmelCase_ ) __lowerCamelCase : Any = [ k for k in missing if k not in [ 'final_logits_bias', 'model.encoder.embed_tokens.weight', 'model.decoder.embed_tokens.weight', 'lm_head.weight', ] ] assert unexpected_missing == [], F'no matches found for the following torch keys {unexpected_missing}' assert extra == [], F'no matches found for the following tf keys {extra}' return torch_model def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] ) -> Dict: __lowerCamelCase : int = tf.train.list_variables(UpperCAmelCase_ ) __lowerCamelCase : List[str] = {} __lowerCamelCase : List[Any] = ['global_step'] for name, shape in tqdm(UpperCAmelCase_ , desc='converting tf checkpoint to dict' ): __lowerCamelCase : Any = any(pat in name for pat in ignore_name ) if skip_key: continue __lowerCamelCase : Dict = tf.train.load_variable(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : List[Any] = array return tf_weights def UpperCAmelCase__ ( UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : dict ) -> Union[str, Any]: __lowerCamelCase : Optional[int] = get_tf_weights_as_numpy(UpperCAmelCase_ ) __lowerCamelCase : List[str] = convert_bigbird_pegasus(UpperCAmelCase_ , UpperCAmelCase_ ) torch_model.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": A__ : Any = argparse.ArgumentParser() parser.add_argument("""--tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""--save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") A__ : List[str] = parser.parse_args() A__ : Optional[int] = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
185
1
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCamelCase__ ( __lowercase ,unittest.TestCase ): _SCREAMING_SNAKE_CASE : int = BioGptTokenizer _SCREAMING_SNAKE_CASE : Union[str, Any] = False def lowerCAmelCase (self : List[str] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __a : List[str] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] __a : List[Any] = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) __a : Optional[int] = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] __a : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __a : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(snake_case_ ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(snake_case_ ) ) def lowerCAmelCase (self : Tuple , snake_case_ : Union[str, Any] ): __a : List[Any] = '''lower newer''' __a : List[Any] = '''lower newer''' return input_text, output_text def lowerCAmelCase (self : Optional[int] ): __a : Optional[Any] = BioGptTokenizer(self.vocab_file , self.merges_file ) __a : Dict = '''lower''' __a : List[str] = ['''low''', '''er</w>'''] __a : Any = tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __a : str = tokens + ['''<unk>'''] __a : Dict = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case_ ) , snake_case_ ) @slow def lowerCAmelCase (self : int ): __a : Union[str, Any] = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) __a : Optional[Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=snake_case_ ) __a : int = tokenizer.encode('''multi-sequence build''' , add_special_tokens=snake_case_ ) __a : List[str] = tokenizer.build_inputs_with_special_tokens(snake_case_ ) __a : Dict = tokenizer.build_inputs_with_special_tokens(snake_case_ , snake_case_ ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
358
import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration lowercase__ =50000 lowercase__ =5000 lowercase__ , lowercase__ =os.path.split(__file__) lowercase__ =os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def __UpperCamelCase ( lowerCAmelCase__ : datasets.Dataset , lowerCAmelCase__ : List[str] ): for i in range(lowerCAmelCase__ ): __a : str = dataset[i] @get_duration def __UpperCamelCase ( lowerCAmelCase__ : datasets.Dataset , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Tuple ): for i in range(0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ ): __a : Optional[int] = dataset[i : i + batch_size] @get_duration def __UpperCamelCase ( lowerCAmelCase__ : datasets.Dataset , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : str ): with dataset.formatted_as(type=lowerCAmelCase__ ): for i in range(lowerCAmelCase__ ): __a : Dict = dataset[i] @get_duration def __UpperCamelCase ( lowerCAmelCase__ : datasets.Dataset , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : int ): with dataset.formatted_as(type=lowerCAmelCase__ ): for i in range(0 , lowerCAmelCase__ , lowerCAmelCase__ ): __a : int = dataset[i : i + batch_size] def __UpperCamelCase ( ): __a : Any = {'''num examples''': SPEED_TEST_N_EXAMPLES} __a : List[Any] = [ (read, {'''length''': SMALL_TEST}), (read, {'''length''': SPEED_TEST_N_EXAMPLES}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 1_0}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 1_0_0}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 1_0_0_0}), (read_formatted, {'''type''': '''numpy''', '''length''': SMALL_TEST}), (read_formatted, {'''type''': '''pandas''', '''length''': SMALL_TEST}), (read_formatted, {'''type''': '''torch''', '''length''': SMALL_TEST}), (read_formatted, {'''type''': '''tensorflow''', '''length''': SMALL_TEST}), (read_formatted_batch, {'''type''': '''numpy''', '''length''': SMALL_TEST, '''batch_size''': 1_0}), (read_formatted_batch, {'''type''': '''numpy''', '''length''': SMALL_TEST, '''batch_size''': 1_0_0_0}), ] __a : Union[str, Any] = [ (read, {'''length''': SMALL_TEST}), (read, {'''length''': SPEED_TEST_N_EXAMPLES}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 1_0}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 1_0_0}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 1_0_0_0}), (read_formatted, {'''type''': '''numpy''', '''length''': SMALL_TEST}), (read_formatted_batch, {'''type''': '''numpy''', '''length''': SMALL_TEST, '''batch_size''': 1_0}), (read_formatted_batch, {'''type''': '''numpy''', '''length''': SMALL_TEST, '''batch_size''': 1_0_0_0}), ] with tempfile.TemporaryDirectory() as tmp_dir: print('''generating dataset''' ) __a : Optional[Any] = datasets.Features( {'''list''': datasets.Sequence(datasets.Value('''float32''' ) ), '''numbers''': datasets.Value('''float32''' )} ) __a : Optional[int] = generate_example_dataset( os.path.join(lowerCAmelCase__ , '''dataset.arrow''' ) , lowerCAmelCase__ , num_examples=lowerCAmelCase__ , seq_shapes={'''list''': (1_0_0,)} , ) print('''first set of iterations''' ) for func, kwargs in functions: print(func.__name__ , str(lowerCAmelCase__ ) ) __a : str = func(lowerCAmelCase__ , **lowerCAmelCase__ ) print('''shuffling dataset''' ) __a : int = dataset.shuffle() print('''Second set of iterations (after shuffling''' ) for func, kwargs in functions_shuffled: print('''shuffled ''' , func.__name__ , str(lowerCAmelCase__ ) ) __a : List[Any] = func( lowerCAmelCase__ , **lowerCAmelCase__ ) with open(lowerCAmelCase__ , '''wb''' ) as f: f.write(json.dumps(lowerCAmelCase__ ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
90
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCAmelCase__ ( __lowercase , unittest.TestCase ): a__ : List[Any] = KandinskyImgaImgPipeline a__ : Dict = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image"""] a__ : Tuple = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", ] a__ : List[Any] = [ """generator""", """height""", """width""", """strength""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] a__ : Optional[int] = False @property def __A ( self : List[Any] ) -> int: return 32 @property def __A ( self : Tuple ) -> Optional[int]: return 32 @property def __A ( self : List[Any] ) -> List[Any]: return self.time_input_dim @property def __A ( self : List[str] ) -> List[Any]: return self.time_input_dim * 4 @property def __A ( self : Union[str, Any] ) -> str: return 1_00 @property def __A ( self : int ) -> List[str]: __lowerCamelCase = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def __A ( self : List[Any] ) -> List[str]: torch.manual_seed(0 ) __lowerCamelCase = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) __lowerCamelCase = MultilingualCLIP(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = text_encoder.eval() return text_encoder @property def __A ( self : Any ) -> Union[str, Any]: torch.manual_seed(0 ) __lowerCamelCase = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } __lowerCamelCase = UNetaDConditionModel(**SCREAMING_SNAKE_CASE__ ) return model @property def __A ( self : Union[str, Any] ) -> Tuple: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __A ( self : Any ) -> Optional[Any]: torch.manual_seed(0 ) __lowerCamelCase = VQModel(**self.dummy_movq_kwargs ) return model def __A ( self : int ) -> Dict: __lowerCamelCase = self.dummy_text_encoder __lowerCamelCase = self.dummy_tokenizer __lowerCamelCase = self.dummy_unet __lowerCamelCase = self.dummy_movq __lowerCamelCase = { '''num_train_timesteps''': 10_00, '''beta_schedule''': '''linear''', '''beta_start''': 0.00085, '''beta_end''': 0.012, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } __lowerCamelCase = DDIMScheduler(**SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int=0 ) -> Dict: __lowerCamelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(SCREAMING_SNAKE_CASE__ ) # create init_image __lowerCamelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowerCamelCase = Image.fromarray(np.uinta(SCREAMING_SNAKE_CASE__ ) ).convert('''RGB''' ).resize((2_56, 2_56) ) if str(SCREAMING_SNAKE_CASE__ ).startswith('''mps''' ): __lowerCamelCase = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: __lowerCamelCase = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = { '''prompt''': '''horse''', '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def __A ( self : Tuple ) -> str: __lowerCamelCase = '''cpu''' __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) ) __lowerCamelCase = output.images __lowerCamelCase = pipe( **self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) , return_dict=SCREAMING_SNAKE_CASE__ , )[0] __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __lowerCamelCase = np.array( [0.61474943, 0.6073539, 0.43308544, 0.5928269, 0.47493595, 0.46755973, 0.4613838, 0.45368797, 0.50119233] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): def __A ( self : Optional[int] ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self : str ) -> Union[str, Any]: __lowerCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_img2img_frog.npy''' ) __lowerCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) __lowerCamelCase = '''A red cartoon frog, 4k''' __lowerCamelCase = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = KandinskyImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1''' , torch_dtype=torch.floataa ) __lowerCamelCase = pipeline.to(SCREAMING_SNAKE_CASE__ ) pipeline.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __lowerCamelCase , __lowerCamelCase = pipe_prior( SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() __lowerCamelCase = pipeline( SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , image_embeds=SCREAMING_SNAKE_CASE__ , negative_image_embeds=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , num_inference_steps=1_00 , height=7_68 , width=7_68 , strength=0.2 , output_type='''np''' , ) __lowerCamelCase = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
270
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ : List[Any] = { "configuration_resnet": ["RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "ResNetConfig", "ResNetOnnxConfig"] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : int = [ "RESNET_PRETRAINED_MODEL_ARCHIVE_LIST", "ResNetForImageClassification", "ResNetModel", "ResNetPreTrainedModel", "ResNetBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : List[Any] = [ "TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFResNetForImageClassification", "TFResNetModel", "TFResNetPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Union[str, Any] = [ "FlaxResNetForImageClassification", "FlaxResNetModel", "FlaxResNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys SCREAMING_SNAKE_CASE__ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure)
270
1
'''simple docstring''' import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase=5 ) -> Optional[Any]: '''simple docstring''' assert masked_input.count('''<mask>''' ) == 1 snake_case_ = torch.tensor(tokenizer.encode(lowercase_, add_special_tokens=lowercase_ ) ).unsqueeze(0 ) # Batch size 1 snake_case_ = model(lowercase_ )[0] # The last hidden-state is the first element of the output tuple snake_case_ = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() snake_case_ = logits[0, masked_index, :] snake_case_ = logits.softmax(dim=0 ) snake_case_ ,snake_case_ = prob.topk(k=lowercase_, dim=0 ) snake_case_ = ''' '''.join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(lowercase_ ) )] ) snake_case_ = tokenizer.mask_token snake_case_ = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(''' ''' ) ): snake_case_ = predicted_token_bpe.replace('''\u2581''', ''' ''' ) if " {0}".format(lowercase_ ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(''' {0}'''.format(lowercase_ ), lowercase_ ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(lowercase_, lowercase_ ), values[index].item(), predicted_token, ) ) return topk_filled_outputs a : Union[str, Any] = CamembertTokenizer.from_pretrained('camembert-base') a : Union[str, Any] = CamembertForMaskedLM.from_pretrained('camembert-base') model.eval() a : Optional[int] = '''Le camembert est <mask> :)''' print(fill_mask(masked_input, model, tokenizer, topk=3))
356
'''simple docstring''' import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class a ( unittest.TestCase ): def A_ ( self : List[Any] ): snake_case_ = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(lowercase_ ) ) def A_ ( self : Optional[Any] ): snake_case_ = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(lowercase_ ) ) def A_ ( self : List[Any] ): snake_case_ = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(lowercase_ ) ) def A_ ( self : str ): snake_case_ = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] self.assertTrue(is_safetensors_compatible(lowercase_ ) ) def A_ ( self : Optional[int] ): snake_case_ = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', # Removed: 'text_encoder/model.safetensors', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertFalse(is_safetensors_compatible(lowercase_ ) ) def A_ ( self : Union[str, Any] ): snake_case_ = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] snake_case_ = '''fp16''' self.assertTrue(is_safetensors_compatible(lowercase_ , variant=lowercase_ ) ) def A_ ( self : int ): snake_case_ = [ '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] snake_case_ = '''fp16''' self.assertTrue(is_safetensors_compatible(lowercase_ , variant=lowercase_ ) ) def A_ ( self : Any ): # pass variant but use the non-variant filenames snake_case_ = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] snake_case_ = '''fp16''' self.assertTrue(is_safetensors_compatible(lowercase_ , variant=lowercase_ ) ) def A_ ( self : int ): snake_case_ = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] snake_case_ = '''fp16''' self.assertFalse(is_safetensors_compatible(lowercase_ , variant=lowercase_ ) ) def A_ ( self : str ): snake_case_ = [ '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', ] snake_case_ = '''fp16''' self.assertTrue(is_safetensors_compatible(lowercase_ , variant=lowercase_ ) ) def A_ ( self : Tuple ): # pass variant but use the non-variant filenames snake_case_ = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] snake_case_ = '''fp16''' self.assertTrue(is_safetensors_compatible(lowercase_ , variant=lowercase_ ) ) def A_ ( self : List[str] ): snake_case_ = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', # 'text_encoder/model.fp16.safetensors', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] snake_case_ = '''fp16''' self.assertFalse(is_safetensors_compatible(lowercase_ , variant=lowercase_ ) )
72
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase__ : Dict = {'configuration_yolos': ['YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'YolosConfig', 'YolosOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : List[str] = ['YolosFeatureExtractor'] UpperCAmelCase__ : Optional[Any] = ['YolosImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : int = [ 'YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST', 'YolosForObjectDetection', 'YolosModel', 'YolosPreTrainedModel', ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys UpperCAmelCase__ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
121
'''simple docstring''' import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer __lowercase : List[Any] = 'bart' __lowercase : Union[str, Any] = True @st.cache(allow_output_mutation=_SCREAMING_SNAKE_CASE ) def lowerCamelCase (): if LOAD_DENSE_INDEX: __a : List[Any] = AutoTokenizer.from_pretrained('yjernite/retribert-base-uncased' ) __a : Dict = AutoModel.from_pretrained('yjernite/retribert-base-uncased' ).to('cuda:0' ) __a : Optional[int] = qar_model.eval() else: __a , __a : str = (None, None) if MODEL_TYPE == "bart": __a : Union[str, Any] = AutoTokenizer.from_pretrained('yjernite/bart_eli5' ) __a : int = AutoModelForSeqaSeqLM.from_pretrained('yjernite/bart_eli5' ).to('cuda:0' ) __a : Optional[Any] = torch.load('seq2seq_models/eli5_bart_model_blm_2.pth' ) sas_model.load_state_dict(save_dict['model'] ) __a : str = sas_model.eval() else: __a , __a : Tuple = make_qa_sas_model( model_name='t5-small' , from_file='seq2seq_models/eli5_t5_model_1024_4.pth' , device='cuda:0' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=_SCREAMING_SNAKE_CASE ) def lowerCamelCase (): if LOAD_DENSE_INDEX: __a : Optional[Any] = faiss.StandardGpuResources() __a : Dict = datasets.load_dataset(path='wiki_snippets' , name='wiki40b_en_100_0' )['train'] __a : int = np.memmap( 'wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat' , dtype='float32' , mode='r' , shape=(wikiaab_passages.num_rows, 128) , ) __a : int = faiss.IndexFlatIP(128 ) __a : Any = faiss.index_cpu_to_gpu(_SCREAMING_SNAKE_CASE , 1 , _SCREAMING_SNAKE_CASE ) wikiaab_gpu_index_flat.add(_SCREAMING_SNAKE_CASE ) # TODO fix for larger GPU else: __a , __a : str = (None, None) __a : Optional[int] = Elasticsearch([{'host': 'localhost', 'port': '9200'}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=_SCREAMING_SNAKE_CASE ) def lowerCamelCase (): __a : Dict = datasets.load_dataset('eli5' , name='LFQA_reddit' ) __a : Dict = elia['train_eli5'] __a : Optional[int] = np.memmap( 'eli5_questions_reps.dat' , dtype='float32' , mode='r' , shape=(elia_train.num_rows, 128) ) __a : str = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(_SCREAMING_SNAKE_CASE ) return (elia_train, eli5_train_q_index) __lowercase , __lowercase , __lowercase : Any = load_indexes() __lowercase , __lowercase , __lowercase , __lowercase : Dict = load_models() __lowercase , __lowercase : int = load_train_data() def lowerCamelCase (_SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[str]=10 ): __a : Optional[int] = embed_questions_for_retrieval([question] , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __a , __a : Union[str, Any] = eli5_train_q_index.search(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __a : Any = [elia_train[int(_SCREAMING_SNAKE_CASE )] for i in I[0]] return nn_examples def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : str="wiki40b" , _SCREAMING_SNAKE_CASE : List[str]="dense" , _SCREAMING_SNAKE_CASE : Any=10 ): if source == "none": __a , __a : Any = (' <P> '.join(['' for _ in range(11 )] ).strip(), []) else: if method == "dense": __a , __a : str = query_qa_dense_index( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: __a , __a : Union[str, Any] = query_es_index( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , index_name='english_wiki40b_snippets_100w' , n_results=_SCREAMING_SNAKE_CASE , ) __a : Dict = [ (res['article_title'], res['section_title'].strip(), res['score'], res['passage_text']) for res in hit_lst ] __a : Any = 'question: {} context: {}'.format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda _SCREAMING_SNAKE_CASE : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _SCREAMING_SNAKE_CASE : None), } ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Dict=64 , _SCREAMING_SNAKE_CASE : Dict=256 , _SCREAMING_SNAKE_CASE : Any=False , _SCREAMING_SNAKE_CASE : Tuple=2 , _SCREAMING_SNAKE_CASE : Union[str, Any]=0.9_5 , _SCREAMING_SNAKE_CASE : str=0.8 ): with torch.no_grad(): __a : Union[str, Any] = qa_sas_generate( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_answers=1 , num_beams=_SCREAMING_SNAKE_CASE , min_len=_SCREAMING_SNAKE_CASE , max_len=_SCREAMING_SNAKE_CASE , do_sample=_SCREAMING_SNAKE_CASE , temp=_SCREAMING_SNAKE_CASE , top_p=_SCREAMING_SNAKE_CASE , top_k=_SCREAMING_SNAKE_CASE , max_input_length=1_024 , device='cuda:0' , )[0] return (answer, support_list) st.title('Long Form Question Answering with ELI5') # Start sidebar __lowercase : Optional[Any] = '<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>' __lowercase : str = '\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class="img-container"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia __lowercase : str = '\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n' st.sidebar.markdown(description, unsafe_allow_html=True) __lowercase : Dict = [ 'Answer the question', 'View the retrieved document only', 'View the most similar ELI5 question and answer', 'Show me everything, please!', ] __lowercase : Union[str, Any] = st.sidebar.checkbox('Demo options') if demo_options: __lowercase : Any = st.sidebar.selectbox( '', action_list, index=3, ) __lowercase : Tuple = action_list.index(action_st) __lowercase : Tuple = st.sidebar.selectbox( '', ['Show full text of passages', 'Show passage section titles'], index=0, ) __lowercase : List[Any] = show_type == 'Show full text of passages' else: __lowercase : int = 3 __lowercase : str = True __lowercase : Tuple = st.sidebar.checkbox('Retrieval options') if retrieval_options: __lowercase : List[Any] = '\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n ' st.sidebar.markdown(retriever_info) __lowercase : Union[str, Any] = st.sidebar.selectbox('Which Wikipedia format should the model use?', ['wiki40b', 'none']) __lowercase : Union[str, Any] = st.sidebar.selectbox('Which Wikipedia indexer should the model use?', ['dense', 'sparse', 'mixed']) else: __lowercase : str = 'wiki40b' __lowercase : List[Any] = 'dense' __lowercase : Dict = 'beam' __lowercase : Optional[int] = 2 __lowercase : List[str] = 64 __lowercase : Tuple = 2_56 __lowercase : List[str] = None __lowercase : Tuple = None __lowercase : List[Any] = st.sidebar.checkbox('Generation options') if generate_options: __lowercase : Optional[Any] = '\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder\'s output probabilities.\n ' st.sidebar.markdown(generate_info) __lowercase : List[Any] = st.sidebar.selectbox('Would you like to use beam search or sample an answer?', ['beam', 'sampled']) __lowercase : Tuple = st.sidebar.slider( 'Minimum generation length', min_value=8, max_value=2_56, value=64, step=8, format=None, key=None ) __lowercase : int = st.sidebar.slider( 'Maximum generation length', min_value=64, max_value=5_12, value=2_56, step=16, format=None, key=None ) if sampled == "beam": __lowercase : Any = st.sidebar.slider('Beam size', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: __lowercase : Dict = st.sidebar.slider( 'Nucleus sampling p', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) __lowercase : Union[str, Any] = st.sidebar.slider( 'Temperature', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) __lowercase : List[str] = None # start main text __lowercase : int = [ '<MY QUESTION>', 'How do people make chocolate?', 'Why do we get a fever when we are sick?', 'How can different animals perceive different colors?', 'What is natural language processing?', 'What\'s the best way to treat a sunburn?', 'What exactly are vitamins ?', 'How does nuclear energy provide electricity?', 'What\'s the difference between viruses and bacteria?', 'Why are flutes classified as woodwinds when most of them are made out of metal ?', 'Why do people like drinking coffee even though it tastes so bad?', 'What happens when wine ages? How does it make the wine taste better?', 'If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?', 'How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?', 'How does New Zealand have so many large bird predators?', ] __lowercase : Optional[int] = st.selectbox( 'What would you like to ask? ---- select <MY QUESTION> to enter a new query', questions_list, index=1, ) if question_s == "<MY QUESTION>": __lowercase : Any = st.text_input('Enter your question here:', '') else: __lowercase : Any = question_s if st.button('Show me!'): if action in [0, 1, 3]: if index_type == "mixed": __lowercase , __lowercase : Optional[int] = make_support(question, source=wiki_source, method='dense', n_results=10) __lowercase , __lowercase : List[Any] = make_support(question, source=wiki_source, method='sparse', n_results=10) __lowercase : Optional[int] = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] __lowercase : str = support_list[:10] __lowercase : Optional[int] = '<P> ' + ' <P> '.join([res[-1] for res in support_list]) else: __lowercase , __lowercase : Optional[Any] = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: __lowercase , __lowercase : int = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == 'sampled'), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('### The model generated answer is:') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('--- \n ### The model is drawing information from the following Wikipedia passages:') for i, res in enumerate(support_list): __lowercase : str = 'https://en.wikipedia.org/wiki/{}'.format(res[0].replace(' ', '_')) __lowercase : Any = res[1].strip() if sec_titles == "": __lowercase : List[str] = '[{}]({})'.format(res[0], wiki_url) else: __lowercase : Union[str, Any] = sec_titles.split(' & ') __lowercase : str = ' & '.join( ['[{}]({}#{})'.format(sec.strip(), wiki_url, sec.strip().replace(' ', '_')) for sec in sec_list] ) st.markdown( '{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '> <span style="font-family:arial; font-size:10pt;">' + res[-1] + '</span>', unsafe_allow_html=True ) if action in [2, 3]: __lowercase : str = find_nearest_training(question) __lowercase : Optional[int] = nn_train_list[0] st.markdown( '--- \n ### The most similar question in the ELI5 training set was: \n\n {}'.format(train_exple['title']) ) __lowercase : Any = [ '{}. {}'.format(i + 1, ' \n'.join([line.strip() for line in ans.split('\n') if line.strip() != ''])) for i, (ans, sc) in enumerate(zip(train_exple['answers']['text'], train_exple['answers']['score'])) if i == 0 or sc > 2 ] st.markdown('##### Its answers were: \n\n {}'.format('\n'.join(answers_st))) __lowercase : List[Any] = '\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
27
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'google/canine-s': 'https://huggingface.co/google/canine-s/resolve/main/config.json', # See all CANINE models at https://huggingface.co/models?filter=canine } class a__ ( lowercase__ ): '''simple docstring''' lowercase__ : List[Any] = 'canine' def __init__( self , lowerCamelCase_=7_68 , lowerCamelCase_=12 , lowerCamelCase_=12 , lowerCamelCase_=30_72 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=1_63_84 , lowerCamelCase_=16 , lowerCamelCase_=0.02 , lowerCamelCase_=1e-12 , lowerCamelCase_=0 , lowerCamelCase_=0XE000 , lowerCamelCase_=0XE001 , lowerCamelCase_=4 , lowerCamelCase_=4 , lowerCamelCase_=8 , lowerCamelCase_=1_63_84 , lowerCamelCase_=1_28 , **lowerCamelCase_ , ) -> Optional[Any]: super().__init__(pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = initializer_range lowerCAmelCase__ = type_vocab_size lowerCAmelCase__ = layer_norm_eps # Character config: lowerCAmelCase__ = downsampling_rate lowerCAmelCase__ = upsampling_kernel_size lowerCAmelCase__ = num_hash_functions lowerCAmelCase__ = num_hash_buckets lowerCAmelCase__ = local_transformer_stride
358
'''simple docstring''' import numpy as np import datasets __UpperCAmelCase = ''' Compute the Mahalanobis Distance Mahalonobis distance is the distance between a point and a distribution. And not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance. It was introduced by Prof. P. C. Mahalanobis in 1936 and has been used in various statistical applications ever since [source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/] ''' __UpperCAmelCase = '''\ @article{de2000mahalanobis, title={The mahalanobis distance}, author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L}, journal={Chemometrics and intelligent laboratory systems}, volume={50}, number={1}, pages={1--18}, year={2000}, publisher={Elsevier} } ''' __UpperCAmelCase = ''' Args: X: List of datapoints to be compared with the `reference_distribution`. reference_distribution: List of datapoints from the reference distribution we want to compare to. Returns: mahalanobis: The Mahalonobis distance for each datapoint in `X`. Examples: >>> mahalanobis_metric = datasets.load_metric("mahalanobis") >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]]) >>> print(results) {\'mahalanobis\': array([0.5])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''X''': datasets.Sequence(datasets.Value('''float''' , id='''sequence''' ) , id='''X''' ), } ) , ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ ) -> str: # convert to numpy arrays lowerCAmelCase__ = np.array(lowerCamelCase_ ) lowerCAmelCase__ = np.array(lowerCamelCase_ ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError('''Expected `X` to be a 2D vector''' ) if len(reference_distribution.shape ) != 2: raise ValueError('''Expected `reference_distribution` to be a 2D vector''' ) if reference_distribution.shape[0] < 2: raise ValueError( '''Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension''' ) # Get mahalanobis distance for each prediction lowerCAmelCase__ = X - np.mean(lowerCamelCase_ ) lowerCAmelCase__ = np.cov(reference_distribution.T ) try: lowerCAmelCase__ = np.linalg.inv(lowerCamelCase_ ) except np.linalg.LinAlgError: lowerCAmelCase__ = np.linalg.pinv(lowerCamelCase_ ) lowerCAmelCase__ = np.dot(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = np.dot(lowerCamelCase_ , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
228
0
'''simple docstring''' from collections.abc import Sequence def lowercase_ ( lowerCAmelCase__ : Sequence[float] , lowerCAmelCase__ : float ): """simple docstring""" return sum(c * (x**i) for i, c in enumerate(lowerCAmelCase__ ) ) def lowercase_ ( lowerCAmelCase__ : Sequence[float] , lowerCAmelCase__ : float ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = 0.0 for coeff in reversed(lowerCAmelCase__ ): __UpperCAmelCase : Union[str, Any] = result * x + coeff return result if __name__ == "__main__": _UpperCamelCase = (0.0, 0.0, 5.0, 9.3, 7.0) _UpperCamelCase = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
254
'''simple docstring''' from collections.abc import Sequence def lowercase_ ( lowerCAmelCase__ : Sequence[float] , lowerCAmelCase__ : float ): """simple docstring""" return sum(c * (x**i) for i, c in enumerate(lowerCAmelCase__ ) ) def lowercase_ ( lowerCAmelCase__ : Sequence[float] , lowerCAmelCase__ : float ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = 0.0 for coeff in reversed(lowerCAmelCase__ ): __UpperCAmelCase : Union[str, Any] = result * x + coeff return result if __name__ == "__main__": _UpperCamelCase = (0.0, 0.0, 5.0, 9.3, 7.0) _UpperCamelCase = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
254
1
from typing import TYPE_CHECKING from ...utils import _LazyModule _UpperCAmelCase = {"""tokenization_byt5""": ["""ByT5Tokenizer"""]} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
192
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _UpperCAmelCase = { """configuration_bridgetower""": [ """BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BridgeTowerConfig""", """BridgeTowerTextConfig""", """BridgeTowerVisionConfig""", ], """processing_bridgetower""": ["""BridgeTowerProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = ["""BridgeTowerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST""", """BridgeTowerForContrastiveLearning""", """BridgeTowerForImageAndTextRetrieval""", """BridgeTowerForMaskedLM""", """BridgeTowerModel""", """BridgeTowerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bridgetower import ( BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP, BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig, ) from .processing_bridgetower import BridgeTowerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_bridgetower import BridgeTowerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bridgetower import ( BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST, BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, BridgeTowerPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
192
1
import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin __A = random.Random() def lowerCAmelCase_ ( __a , __a=1.0 , __a=None , __a=None ) -> Optional[Any]: """simple docstring""" if rng is None: lowerCamelCase__: Union[str, Any] =global_rng lowerCamelCase__: List[Any] =[] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __init__(self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : Any=7 , UpperCAmelCase_ : Any=400 , UpperCAmelCase_ : Dict=2_000 , UpperCAmelCase_ : Union[str, Any]=1 , UpperCAmelCase_ : Optional[int]=0.0 , UpperCAmelCase_ : int=16_000 , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : Optional[Any]=True , ) ->List[str]: '''simple docstring''' lowerCamelCase__: List[str] =parent lowerCamelCase__: int =batch_size lowerCamelCase__: Tuple =min_seq_length lowerCamelCase__: Dict =max_seq_length lowerCamelCase__: Optional[int] =(self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCamelCase__: Any =feature_size lowerCamelCase__: List[str] =padding_value lowerCamelCase__: Union[str, Any] =sampling_rate lowerCamelCase__: Dict =return_attention_mask lowerCamelCase__: Optional[Any] =do_normalize def SCREAMING_SNAKE_CASE_ (self : Dict) ->Dict: '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : str=False) ->List[Any]: '''simple docstring''' def _flatten(UpperCAmelCase_ : Optional[int]): return list(itertools.chain(*UpperCAmelCase_)) if equal_length: lowerCamelCase__: List[Any] =floats_list((self.batch_size, self.max_seq_length)) else: # make sure that inputs increase in size lowerCamelCase__: Dict =[ _flatten(floats_list((x, self.feature_size))) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff) ] if numpify: lowerCamelCase__: List[str] =[np.asarray(UpperCAmelCase_) for x in speech_inputs] return speech_inputs class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = WavaVecaFeatureExtractor def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Any: '''simple docstring''' lowerCamelCase__: Any =WavaVecaFeatureExtractionTester(self) def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : List[Any]) ->str: '''simple docstring''' self.assertTrue(np.all(np.mean(UpperCAmelCase_ , axis=0) < 1E-3)) self.assertTrue(np.all(np.abs(np.var(UpperCAmelCase_ , axis=0) - 1) < 1E-3)) def SCREAMING_SNAKE_CASE_ (self : int) ->int: '''simple docstring''' lowerCamelCase__: str =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) # create three inputs of length 800, 1000, and 1200 lowerCamelCase__: Optional[Any] =[floats_list((1, x))[0] for x in range(800 , 1_400 , 200)] lowerCamelCase__: Any =[np.asarray(UpperCAmelCase_) for speech_input in speech_inputs] # Test not batched input lowerCamelCase__: str =feat_extract(speech_inputs[0] , return_tensors="np").input_values lowerCamelCase__: int =feat_extract(np_speech_inputs[0] , return_tensors="np").input_values self.assertTrue(np.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3)) # Test batched lowerCamelCase__: List[str] =feat_extract(UpperCAmelCase_ , return_tensors="np").input_values lowerCamelCase__: Dict =feat_extract(UpperCAmelCase_ , return_tensors="np").input_values for enc_seq_a, enc_seq_a in zip(UpperCAmelCase_ , UpperCAmelCase_): self.assertTrue(np.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3)) # Test 2-D numpy arrays are batched. lowerCamelCase__: Union[str, Any] =[floats_list((1, x))[0] for x in (800, 800, 800)] lowerCamelCase__: Union[str, Any] =np.asarray(UpperCAmelCase_) lowerCamelCase__: Optional[int] =feat_extract(UpperCAmelCase_ , return_tensors="np").input_values lowerCamelCase__: Dict =feat_extract(UpperCAmelCase_ , return_tensors="np").input_values for enc_seq_a, enc_seq_a in zip(UpperCAmelCase_ , UpperCAmelCase_): self.assertTrue(np.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3)) def SCREAMING_SNAKE_CASE_ (self : Any) ->List[str]: '''simple docstring''' lowerCamelCase__: str =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) lowerCamelCase__: Optional[int] =[floats_list((1, x))[0] for x in range(800 , 1_400 , 200)] lowerCamelCase__: List[Any] =["longest", "max_length", "do_not_pad"] lowerCamelCase__: Optional[Any] =[None, 1_600, None] for max_length, padding in zip(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: str =feat_extract(UpperCAmelCase_ , padding=UpperCAmelCase_ , max_length=UpperCAmelCase_ , return_tensors="np") lowerCamelCase__: Tuple =processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800]) self.assertTrue(input_values[0][800:].sum() < 1E-6) self._check_zero_mean_unit_variance(input_values[1][:1_000]) self.assertTrue(input_values[0][1_000:].sum() < 1E-6) self._check_zero_mean_unit_variance(input_values[2][:1_200]) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Dict: '''simple docstring''' lowerCamelCase__: Any =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) lowerCamelCase__: Union[str, Any] =range(800 , 1_400 , 200) lowerCamelCase__: Optional[int] =[floats_list((1, x))[0] for x in lengths] lowerCamelCase__: Any =["longest", "max_length", "do_not_pad"] lowerCamelCase__: int =[None, 1_600, None] for max_length, padding in zip(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: int =feat_extract(UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding=UpperCAmelCase_) lowerCamelCase__: Any =processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800]) self._check_zero_mean_unit_variance(input_values[1][:1_000]) self._check_zero_mean_unit_variance(input_values[2][:1_200]) def SCREAMING_SNAKE_CASE_ (self : str) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Tuple =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) lowerCamelCase__: Union[str, Any] =[floats_list((1, x))[0] for x in range(800 , 1_400 , 200)] lowerCamelCase__: Tuple =feat_extract( UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=1_000 , padding="max_length" , return_tensors="np") lowerCamelCase__: int =processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800]) self._check_zero_mean_unit_variance(input_values[1]) self._check_zero_mean_unit_variance(input_values[2]) def SCREAMING_SNAKE_CASE_ (self : int) ->List[str]: '''simple docstring''' lowerCamelCase__: Dict =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) lowerCamelCase__: Any =[floats_list((1, x))[0] for x in range(800 , 1_400 , 200)] lowerCamelCase__: str =feat_extract( UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=1_000 , padding="longest" , return_tensors="np") lowerCamelCase__: int =processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800]) self._check_zero_mean_unit_variance(input_values[1, :1_000]) self._check_zero_mean_unit_variance(input_values[2]) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_000)) lowerCamelCase__: Optional[Any] =[floats_list((1, x))[0] for x in range(800 , 1_400 , 200)] lowerCamelCase__: str =feat_extract( UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=2_000 , padding="longest" , return_tensors="np") lowerCamelCase__: int =processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800]) self._check_zero_mean_unit_variance(input_values[1, :1_000]) self._check_zero_mean_unit_variance(input_values[2]) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_200)) @require_torch def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Any: '''simple docstring''' import torch lowerCamelCase__: Tuple =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) lowerCamelCase__: int =np.random.rand(100).astype(np.floataa) lowerCamelCase__: Any =np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCamelCase__: str =feature_extractor.pad([{"input_values": inputs}] , return_tensors="np") self.assertTrue(np_processed.input_values.dtype == np.floataa) lowerCamelCase__: Any =feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt") self.assertTrue(pt_processed.input_values.dtype == torch.floataa) @slow @require_torch def SCREAMING_SNAKE_CASE_ (self : str) ->Optional[int]: '''simple docstring''' for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: lowerCamelCase__: Optional[int] =WavaVecaConfig.from_pretrained(UpperCAmelCase_) lowerCamelCase__: List[str] =WavaVecaFeatureExtractor.from_pretrained(UpperCAmelCase_) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == "layer")
10
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCAmelCase_ ( __a , __a ) -> Optional[Any]: """simple docstring""" assert isinstance(__a , __a ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: Any =tmp_path / "cache" lowerCamelCase__: Optional[int] ={"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase__: int =ParquetDatasetReader(__a , cache_dir=__a , keep_in_memory=__a ).read() _check_parquet_dataset(__a , __a ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: int =tmp_path / "cache" lowerCamelCase__: Tuple ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Union[str, Any] =features.copy() if features else default_expected_features lowerCamelCase__: Union[str, Any] =( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase__: int =ParquetDatasetReader(__a , features=__a , cache_dir=__a ).read() _check_parquet_dataset(__a , __a ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCAmelCase_ ( __a , __a , __a ) -> Any: """simple docstring""" lowerCamelCase__: Union[str, Any] =tmp_path / "cache" lowerCamelCase__: Dict ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Optional[int] =ParquetDatasetReader(__a , cache_dir=__a , split=__a ).read() _check_parquet_dataset(__a , __a ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def lowerCAmelCase_ ( __a , __a , __a ) -> Dict: """simple docstring""" if issubclass(__a , __a ): lowerCamelCase__: str =parquet_path elif issubclass(__a , __a ): lowerCamelCase__: str =[parquet_path] lowerCamelCase__: Optional[Any] =tmp_path / "cache" lowerCamelCase__: Any ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Optional[int] =ParquetDatasetReader(__a , cache_dir=__a ).read() _check_parquet_dataset(__a , __a ) def lowerCAmelCase_ ( __a , __a , __a=("train",) ) -> Union[str, Any]: """simple docstring""" assert isinstance(__a , __a ) for split in splits: lowerCamelCase__: Optional[Any] =dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: Any =tmp_path / "cache" lowerCamelCase__: str ={"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase__: List[str] =ParquetDatasetReader( {"train": parquet_path} , cache_dir=__a , keep_in_memory=__a ).read() _check_parquet_datasetdict(__a , __a ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: List[Any] =tmp_path / "cache" lowerCamelCase__: Any ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: int =features.copy() if features else default_expected_features lowerCamelCase__: Union[str, Any] =( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase__: Union[str, Any] =ParquetDatasetReader({"train": parquet_path} , features=__a , cache_dir=__a ).read() _check_parquet_datasetdict(__a , __a ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[str]: """simple docstring""" if split: lowerCamelCase__: Union[str, Any] ={split: parquet_path} else: lowerCamelCase__: int ="train" lowerCamelCase__: Union[str, Any] ={"train": parquet_path, "test": parquet_path} lowerCamelCase__: int =tmp_path / "cache" lowerCamelCase__: Union[str, Any] ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Optional[Any] =ParquetDatasetReader(__a , cache_dir=__a ).read() _check_parquet_datasetdict(__a , __a , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCAmelCase_ ( __a , __a ) -> Tuple: """simple docstring""" lowerCamelCase__: Tuple =ParquetDatasetWriter(__a , tmp_path / "foo.parquet" ) assert writer.write() > 0 lowerCamelCase__: Tuple =pq.ParquetFile(tmp_path / "foo.parquet" ) lowerCamelCase__: Optional[int] =pf.read() assert dataset.data.table == output_table def lowerCAmelCase_ ( __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: List[str] =str(shared_datadir / "test_image_rgb.jpg" ) lowerCamelCase__: Union[str, Any] ={"image": [image_path]} lowerCamelCase__: int =Features({"image": Image()} ) lowerCamelCase__: Tuple =Dataset.from_dict(__a , features=__a ) lowerCamelCase__: Optional[int] =ParquetDatasetWriter(__a , tmp_path / "foo.parquet" ) assert writer.write() > 0 lowerCamelCase__: Optional[Any] =Dataset.from_parquet(str(tmp_path / "foo.parquet" ) ) assert dataset.features == reloaded_dataset.features lowerCamelCase__: List[str] =ParquetDatasetReader(str(tmp_path / "foo.parquet" ) , streaming=__a ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected" , [ (Features({"foo": Value("int32" )} ), None), (Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def lowerCAmelCase_ ( __a , __a ) -> Any: """simple docstring""" assert get_writer_batch_size(__a ) == expected
10
1
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Optional[int] = IFInpaintingPipeline UpperCAmelCase__ : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} UpperCAmelCase__ : Dict = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCAmelCase__ : List[str] = PipelineTesterMixin.required_optional_params - {'latents'} def lowerCAmelCase__ ( self: List[str] ): return self._get_dummy_components() def lowerCAmelCase__ ( self: int , UpperCamelCase_: Dict , UpperCamelCase_: str=0 ): if str(UpperCamelCase_ ).startswith("""mps""" ): __lowerCamelCase = torch.manual_seed(UpperCamelCase_ ) else: __lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowerCamelCase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCAmelCase__ ( self: Union[str, Any] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def lowerCAmelCase__ ( self: Union[str, Any] ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def lowerCAmelCase__ ( self: Optional[int] ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def lowerCAmelCase__ ( self: Any ): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def lowerCAmelCase__ ( self: str ): self._test_save_load_local() def lowerCAmelCase__ ( self: str ): self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
29
import requests from bsa import BeautifulSoup def lowerCamelCase__ ( A__ : str = "https://www.worldometers.info/coronavirus" ): '''simple docstring''' __lowerCamelCase = BeautifulSoup(requests.get(A__ ).text , """html.parser""" ) __lowerCamelCase = soup.findAll("""h1""" ) __lowerCamelCase = soup.findAll("""div""" , {"""class""": """maincounter-number"""} ) keys += soup.findAll("""span""" , {"""class""": """panel-title"""} ) values += soup.findAll("""div""" , {"""class""": """number-table-main"""} ) return {key.text.strip(): value.text.strip() for key, value in zip(A__ , A__ )} if __name__ == "__main__": print('\033[1m' + 'COVID-19 Status of the World' + '\033[0m\n') for key, value in world_covidaa_stats().items(): print(f"""{key}\n{value}\n""")
29
1
"""simple docstring""" import logging import os from .state import PartialState class _UpperCAmelCase ( logging.LoggerAdapter ): '''simple docstring''' @staticmethod def SCREAMING_SNAKE_CASE (a_ ): '''simple docstring''' __snake_case : Union[str, Any] = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def SCREAMING_SNAKE_CASE (self , a_ , a_ , *a_ , **a_ ): '''simple docstring''' if PartialState._shared_state == {}: raise RuntimeError( '''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' ) __snake_case : Optional[Any] = kwargs.pop('''main_process_only''' , A_ ) __snake_case : Optional[Any] = kwargs.pop('''in_order''' , A_ ) if self.isEnabledFor(A_ ): if self._should_log(A_ ): __snake_case , __snake_case : Dict = self.process(A_ , A_ ) self.logger.log(A_ , A_ , *A_ , **A_ ) elif in_order: __snake_case : Dict = PartialState() for i in range(state.num_processes ): if i == state.process_index: __snake_case , __snake_case : str = self.process(A_ , A_ ) self.logger.log(A_ , A_ , *A_ , **A_ ) state.wait_for_everyone() def lowercase ( _snake_case : str , _snake_case : str = None ) ->Union[str, Any]: """simple docstring""" if log_level is None: __snake_case : Tuple = os.environ.get('''ACCELERATE_LOG_LEVEL''' , snake_case__ ) __snake_case : Tuple = logging.getLogger(snake_case__ ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(snake_case__ , {} )
102
"""simple docstring""" import argparse import struct import unittest class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Tuple ,A_ : bytes ) -> None: A = data # Initialize hash values A = [ 0X6_A_0_9_E_6_6_7, 0XB_B_6_7_A_E_8_5, 0X3_C_6_E_F_3_7_2, 0XA_5_4_F_F_5_3_A, 0X5_1_0_E_5_2_7_F, 0X9_B_0_5_6_8_8_C, 0X1_F_8_3_D_9_A_B, 0X5_B_E_0_C_D_1_9, ] # Initialize round constants A = [ 0X4_2_8_A_2_F_9_8, 0X7_1_3_7_4_4_9_1, 0XB_5_C_0_F_B_C_F, 0XE_9_B_5_D_B_A_5, 0X3_9_5_6_C_2_5_B, 0X5_9_F_1_1_1_F_1, 0X9_2_3_F_8_2_A_4, 0XA_B_1_C_5_E_D_5, 0XD_8_0_7_A_A_9_8, 0X1_2_8_3_5_B_0_1, 0X2_4_3_1_8_5_B_E, 0X5_5_0_C_7_D_C_3, 0X7_2_B_E_5_D_7_4, 0X8_0_D_E_B_1_F_E, 0X9_B_D_C_0_6_A_7, 0XC_1_9_B_F_1_7_4, 0XE_4_9_B_6_9_C_1, 0XE_F_B_E_4_7_8_6, 0X0_F_C_1_9_D_C_6, 0X2_4_0_C_A_1_C_C, 0X2_D_E_9_2_C_6_F, 0X4_A_7_4_8_4_A_A, 0X5_C_B_0_A_9_D_C, 0X7_6_F_9_8_8_D_A, 0X9_8_3_E_5_1_5_2, 0XA_8_3_1_C_6_6_D, 0XB_0_0_3_2_7_C_8, 0XB_F_5_9_7_F_C_7, 0XC_6_E_0_0_B_F_3, 0XD_5_A_7_9_1_4_7, 0X0_6_C_A_6_3_5_1, 0X1_4_2_9_2_9_6_7, 0X2_7_B_7_0_A_8_5, 0X2_E_1_B_2_1_3_8, 0X4_D_2_C_6_D_F_C, 0X5_3_3_8_0_D_1_3, 0X6_5_0_A_7_3_5_4, 0X7_6_6_A_0_A_B_B, 0X8_1_C_2_C_9_2_E, 0X9_2_7_2_2_C_8_5, 0XA_2_B_F_E_8_A_1, 0XA_8_1_A_6_6_4_B, 0XC_2_4_B_8_B_7_0, 0XC_7_6_C_5_1_A_3, 0XD_1_9_2_E_8_1_9, 0XD_6_9_9_0_6_2_4, 0XF_4_0_E_3_5_8_5, 0X1_0_6_A_A_0_7_0, 0X1_9_A_4_C_1_1_6, 0X1_E_3_7_6_C_0_8, 0X2_7_4_8_7_7_4_C, 0X3_4_B_0_B_C_B_5, 0X3_9_1_C_0_C_B_3, 0X4_E_D_8_A_A_4_A, 0X5_B_9_C_C_A_4_F, 0X6_8_2_E_6_F_F_3, 0X7_4_8_F_8_2_E_E, 0X7_8_A_5_6_3_6_F, 0X8_4_C_8_7_8_1_4, 0X8_C_C_7_0_2_0_8, 0X9_0_B_E_F_F_F_A, 0XA_4_5_0_6_C_E_B, 0XB_E_F_9_A_3_F_7, 0XC_6_7_1_7_8_F_2, ] A = self.preprocessing(self.data ) self.final_hash() @staticmethod def _SCREAMING_SNAKE_CASE ( A_ : bytes ) -> bytes: A = B'\x80' + (B'\x00' * (63 - (len(A_ ) + 8) % 64)) A = struct.pack('>Q' ,(len(A_ ) * 8) ) return data + padding + big_endian_integer def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> None: # Convert into blocks of 64 bytes A = [ self.preprocessed_data[x : x + 64] for x in range(0 ,len(self.preprocessed_data ) ,64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers A = list(struct.unpack('>16L' ,A_ ) ) # add 48 0-ed integers words += [0] * 48 A , A , A , A , A , A , A , A = self.hashes for index in range(0 ,64 ): if index > 15: # modify the zero-ed indexes at the end of the array A = ( self.ror(words[index - 15] ,7 ) ^ self.ror(words[index - 15] ,18 ) ^ (words[index - 15] >> 3) ) A = ( self.ror(words[index - 2] ,17 ) ^ self.ror(words[index - 2] ,19 ) ^ (words[index - 2] >> 10) ) A = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X1_0_0_0_0_0_0_0_0 # Compression A = self.ror(A_ ,6 ) ^ self.ror(A_ ,11 ) ^ self.ror(A_ ,25 ) A = (e & f) ^ ((~e & 0XF_F_F_F_F_F_F_F) & g) A = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X1_0_0_0_0_0_0_0_0 A = self.ror(A_ ,2 ) ^ self.ror(A_ ,13 ) ^ self.ror(A_ ,22 ) A = (a & b) ^ (a & c) ^ (b & c) A = (sa + maj) % 0X1_0_0_0_0_0_0_0_0 A , A , A , A , A , A , A , A = ( g, f, e, ((d + tempa) % 0X1_0_0_0_0_0_0_0_0), c, b, a, ((tempa + tempa) % 0X1_0_0_0_0_0_0_0_0), ) A = [a, b, c, d, e, f, g, h] # Modify final values A = [ ((element + mutated_hash_values[index]) % 0X1_0_0_0_0_0_0_0_0) for index, element in enumerate(self.hashes ) ] A = ''.join([hex(A_ )[2:].zfill(8 ) for value in self.hashes] ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : int ,A_ : int ) -> int: return 0XF_F_F_F_F_F_F_F & (value << (32 - rotations)) | (value >> rotations) class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> None: import hashlib A = bytes('Test String' ,'utf-8' ) self.assertEqual(SHAaaa(A_ ).hash ,hashlib.shaaaa(A_ ).hexdigest() ) def _snake_case ( ): import doctest doctest.testmod() A = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file' ) A = parser.parse_args() A = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: A = f.read() else: A = bytes(snake_case__ , 'utf-8' ) print(SHAaaa(snake_case__ ).hash ) if __name__ == "__main__": main()
74
0
from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class A (_a , _a , _a ): '''simple docstring''' __lowerCamelCase : Optional[int] = [R'''h\.\d+\.attn\.bias''', R'''h\.\d+\.attn\.masked_bias'''] @register_to_config def __init__( self : Optional[int] , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : int = 5_02_57 , __lowerCAmelCase : int = 10_24 , __lowerCAmelCase : int = 7_68 , __lowerCAmelCase : int = 12 , __lowerCAmelCase : int = 12 , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : str = "gelu_new" , __lowerCAmelCase : float = 0.1 , __lowerCAmelCase : float = 0.1 , __lowerCAmelCase : float = 0.1 , __lowerCAmelCase : float = 1e-5 , __lowerCAmelCase : float = 0.0_2 , __lowerCAmelCase : bool = True , __lowerCAmelCase : bool = True , __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = False , ) -> Dict: """simple docstring""" super().__init__() A__ = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f'`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and' f' `n_embd`: {n_embd} are not equal.' ) A__ = prefix_inner_dim A__ = prefix_hidden_dim A__ = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) A__ = ( nn.Linear(self.prefix_hidden_dim , snake_case_ ) if self.prefix_hidden_dim is not None else nn.Identity() ) A__ = GPTaConfig( vocab_size=snake_case_ , n_positions=snake_case_ , n_embd=snake_case_ , n_layer=snake_case_ , n_head=snake_case_ , n_inner=snake_case_ , activation_function=snake_case_ , resid_pdrop=snake_case_ , embd_pdrop=snake_case_ , attn_pdrop=snake_case_ , layer_norm_epsilon=snake_case_ , initializer_range=snake_case_ , scale_attn_weights=snake_case_ , use_cache=snake_case_ , scale_attn_by_inverse_layer_idx=snake_case_ , reorder_and_upcast_attn=snake_case_ , ) A__ = GPTaLMHeadModel(snake_case_ ) def a_ ( self : Optional[int] , __lowerCAmelCase : torch.Tensor , __lowerCAmelCase : torch.Tensor , __lowerCAmelCase : Optional[torch.Tensor] = None , __lowerCAmelCase : Optional[torch.Tensor] = None , ) -> List[Any]: """simple docstring""" A__ = self.transformer.transformer.wte(snake_case_ ) A__ = self.encode_prefix(snake_case_ ) A__ = self.decode_prefix(snake_case_ ) A__ = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: A__ = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) A__ = torch.cat((dummy_token, input_ids) , dim=1 ) A__ = self.transformer(inputs_embeds=snake_case_ , labels=snake_case_ , attention_mask=snake_case_ ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def a_ ( self : Optional[Any] , __lowerCAmelCase : int , __lowerCAmelCase : torch.device ) -> int: """simple docstring""" return torch.zeros(snake_case_ , self.prefix_length , dtype=torch.intaa , device=snake_case_ ) def a_ ( self : Tuple , __lowerCAmelCase : Tuple ) -> int: """simple docstring""" return self.encode_prefix(snake_case_ ) @torch.no_grad() def a_ ( self : List[str] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] ) -> Optional[int]: """simple docstring""" A__ = torch.split(snake_case_ , 1 , dim=0 ) A__ = [] A__ = [] for feature in features: A__ = self.decode_prefix(feature.to(snake_case_ ) ) # back to the clip feature # Only support beam search for now A__ = self.generate_beam( input_embeds=snake_case_ , device=snake_case_ , eos_token_id=snake_case_ ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) A__ = torch.stack(snake_case_ ) A__ = torch.stack(snake_case_ ) return generated_tokens, generated_seq_lengths @torch.no_grad() def a_ ( self : Optional[int] , __lowerCAmelCase : Optional[Any]=None , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : int = 5 , __lowerCAmelCase : int = 67 , __lowerCAmelCase : float = 1.0 , __lowerCAmelCase : Optional[int] = None , ) -> Dict: """simple docstring""" A__ = eos_token_id A__ = None A__ = None A__ = torch.ones(snake_case_ , device=snake_case_ , dtype=torch.int ) A__ = torch.zeros(snake_case_ , device=snake_case_ , dtype=torch.bool ) if input_embeds is not None: A__ = input_embeds else: A__ = self.transformer.transformer.wte(snake_case_ ) for i in range(snake_case_ ): A__ = self.transformer(inputs_embeds=snake_case_ ) A__ = outputs.logits A__ = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) A__ = logits.softmax(-1 ).log() if scores is None: A__ = logits.topk(snake_case_ , -1 ) A__ = generated.expand(snake_case_ , *generated.shape[1:] ) A__ = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: A__ = next_tokens else: A__ = tokens.expand(snake_case_ , *tokens.shape[1:] ) A__ = torch.cat((tokens, next_tokens) , dim=1 ) else: A__ = -float(np.inf ) A__ = 0 A__ = scores[:, None] + logits seq_lengths[~is_stopped] += 1 A__ = scores_sum / seq_lengths[:, None] A__ = scores_sum_average.view(-1 ).topk(snake_case_ , -1 ) A__ = next_tokens // scores_sum.shape[1] A__ = seq_lengths[next_tokens_source] A__ = next_tokens % scores_sum.shape[1] A__ = next_tokens.unsqueeze(1 ) A__ = tokens[next_tokens_source] A__ = torch.cat((tokens, next_tokens) , dim=1 ) A__ = generated[next_tokens_source] A__ = scores_sum_average * seq_lengths A__ = is_stopped[next_tokens_source] A__ = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) A__ = torch.cat((generated, next_token_embed) , dim=1 ) A__ = is_stopped + next_tokens.eq(snake_case_ ).squeeze() if is_stopped.all(): break A__ = scores / seq_lengths A__ = scores.argsort(descending=snake_case_ ) # tokens tensors are already padded to max_seq_length A__ = [tokens[i] for i in order] A__ = torch.stack(snake_case_ , dim=0 ) A__ = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
371
import math def __lowerCamelCase ( __a :int ) -> bool: """simple docstring""" A__ = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(__a ) def __lowerCamelCase ( __a :float = 1 / 1_2_3_4_5 ) -> int: """simple docstring""" A__ = 0 A__ = 0 A__ = 3 while True: A__ = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(__a ): A__ = int(__a ) total_partitions += 1 if check_partition_perfect(__a ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(__a ) integer += 1 if __name__ == "__main__": print(F'''{solution() = }''')
276
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a ='microsoft/speecht5_tts' __a =( 'This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ' 'text to read (in English) and returns a waveform object containing the sound.' ) __a ='text_reader' __a =SpeechTaProcessor __a =SpeechTaForTextToSpeech __a =SpeechTaHifiGan __a =['text'] __a =['audio'] def UpperCamelCase__ ( self : int ): if self.post_processor is None: _a = "microsoft/speecht5_hifigan" super().setup() def UpperCamelCase__ ( self : Any , __a : Optional[int] , __a : Dict=None ): _a = self.pre_processor(text=__a , return_tensors="pt" , truncation=__a ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("Datasets needs to be installed if not passing speaker embeddings." ) _a = load_dataset("Matthijs/cmu-arctic-xvectors" , split="validation" ) _a = torch.tensor(embeddings_dataset[73_05]["xvector"] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def UpperCamelCase__ ( self : Optional[Any] , __a : List[Any] ): with torch.no_grad(): return self.model.generate_speech(**__a ) def UpperCamelCase__ ( self : List[Any] , __a : Optional[Any] ): with torch.no_grad(): return self.post_processor(__a ).cpu().detach()
63
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def _lowerCamelCase ( lowercase : Dict ) -> Any: _a = filter(lambda lowercase : p.requires_grad , model.parameters() ) _a = sum([np.prod(p.size() ) for p in model_parameters] ) return params lowerCAmelCase_ : int = logging.getLogger(__name__) def _lowerCamelCase ( lowercase : List[Any] , lowercase : Any ) -> Any: if metric == "rouge2": _a = "{val_avg_rouge2:.4f}-{step_count}" elif metric == "bleu": _a = "{val_avg_bleu:.4f}-{step_count}" elif metric == "em": _a = "{val_avg_em:.4f}-{step_count}" else: raise NotImplementedError( F'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' " function." ) _a = ModelCheckpoint( dirpath=lowercase , filename=lowercase , monitor=F'val_{metric}' , mode="max" , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def _lowerCamelCase ( lowercase : Optional[int] , lowercase : Optional[int] ) -> Union[str, Any]: return EarlyStopping( monitor=F'val_{metric}' , mode="min" if "loss" in metric else "max" , patience=lowercase , verbose=lowercase , ) class __SCREAMING_SNAKE_CASE (pl.Callback ): """simple docstring""" def UpperCamelCase__ ( self : Optional[int] , __a : str , __a : List[Any] ): _a = {f'lr_group_{i}': param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(__a ) @rank_zero_only def UpperCamelCase__ ( self : Optional[int] , __a : pl.Trainer , __a : pl.LightningModule , __a : str , __a : Tuple=True ): logger.info(f'***** {type_path} results at step {trainer.global_step:05d} *****' ) _a = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} ) # Log results _a = Path(pl_module.hparams.output_dir ) if type_path == "test": _a = od / "test_results.txt" _a = od / "test_generations.txt" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _a = od / f'{type_path}_results/{trainer.global_step:05d}.txt' _a = od / f'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=__a ) generations_file.parent.mkdir(exist_ok=__a ) with open(__a , "a+" ) as writer: for key in sorted(__a ): if key in ["log", "progress_bar", "preds"]: continue _a = metrics[key] if isinstance(__a , torch.Tensor ): _a = val.item() _a = f'{key}: {val:.6f}\n' writer.write(__a ) if not save_generations: return if "preds" in metrics: _a = "\n".join(metrics["preds"] ) generations_file.open("w+" ).write(__a ) @rank_zero_only def UpperCamelCase__ ( self : int , __a : List[Any] , __a : Union[str, Any] ): try: _a = pl_module.model.model.num_parameters() except AttributeError: _a = pl_module.model.num_parameters() _a = count_trainable_parameters(__a ) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1e6, "grad_mp": n_trainable_pars / 1e6} ) @rank_zero_only def UpperCamelCase__ ( self : Union[str, Any] , __a : pl.Trainer , __a : pl.LightningModule ): save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(__a , __a , "test" ) @rank_zero_only def UpperCamelCase__ ( self : Any , __a : pl.Trainer , __a : int ): save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
63
1
"""simple docstring""" from __future__ import annotations def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): _lowercase : List[Any] = list(range(len(__UpperCAmelCase ) ) ) _lowercase : Optional[int] = [v / w for v, w in zip(__UpperCAmelCase , __UpperCAmelCase )] index.sort(key=lambda __UpperCAmelCase : ratio[i] , reverse=__UpperCAmelCase ) _lowercase : float = 0 _lowercase : list[float] = [0] * len(__UpperCAmelCase ) for i in index: if weight[i] <= capacity: _lowercase : Optional[Any] = 1 max_value += value[i] capacity -= weight[i] else: _lowercase : Any = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
336
"""simple docstring""" UpperCAmelCase: str = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ UpperCAmelCase: Any = [{"""type""": """code""", """content""": INSTALL_CONTENT}] UpperCAmelCase: int = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
336
1